Bertholet, Jenny; Worm, Esben; Høyer, Morten; Poulsen, Per
2017-06-01
Accurate patient positioning is crucial in stereotactic body radiation therapy (SBRT) due to a high dose regimen. Cone-beam computed tomography (CBCT) is often used for patient positioning based on radio-opaque markers. We compared six CBCT-based set-up strategies with or without rotational correction. Twenty-nine patients with three implanted markers received 3-6 fraction liver SBRT. The markers were delineated on the mid-ventilation phase of a 4D-planning-CT. One pretreatment CBCT was acquired per fraction. Set-up strategy 1 used only translational correction based on manual marker match between the CBCT and planning CT. Set-up strategy 2 used automatic 6 degrees-of-freedom registration of the vertebrae closest to the target. The 3D marker trajectories were also extracted from the projections and the mean position of each marker was calculated and used for set-up strategies 3-6. Translational correction only was used for strategy 3. Translational and rotational corrections were used for strategies 4-6 with the rotation being either vertebrae based (strategy 4), or marker based and constrained to ±3° (strategy 5) or unconstrained (strategy 6). The resulting set-up error was calculated as the 3D root-mean-square set-up error of the three markers. The set-up error of the spinal cord was calculated for all strategies. The bony anatomy set-up (2) had the largest set-up error (5.8 mm). The marker-based set-up with unconstrained rotations (6) had the smallest set-up error (0.8 mm) but the largest spinal cord set-up error (12.1 mm). The marker-based set-up with translational correction only (3) or with bony anatomy rotational correction (4) had equivalent set-up error (1.3 mm) but rotational correction reduced the spinal cord set-up error from 4.1 mm to 3.5 mm. Marker-based set-up was substantially better than bony-anatomy set-up. Rotational correction may improve the set-up, but further investigations are required to determine the optimal correction strategy.
TH-A-9A-03: Dosimetric Effect of Rotational Errors for Lung Stereotactic Body Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J; Kim, H; Park, J
2014-06-15
Purpose: To evaluate the dosimetric effects on target volume and organs at risk (OARs) due to roll rotational errors in treatment setup of stereotactic body radiation therapy (SBRT) for lung cancer. Methods: There were a total of 23 volumetric modulated arc therapy (VMAT) plans for lung SBRT examined in this retrospective study. Each CT image of VMAT plans was intentionally rotated by ±1°, ±2°, and ±3° to simulate roll rotational setup errors. The axis of rotation was set at the center of T-spine. The target volume and OARs in the rotated CT images were re-defined by deformable registration of originalmore » contours. The dose distributions on each set of rotated images were re-calculated to cover the planning target volume (PTV) with the prescription dose before and after the couch translational correction. The dose-volumetric changes of PTVs and spinal cords were analyzed. Results: The differences in D95% of PTVs by −3°, −2°, −1°, 1°, 2°, and 3° roll rotations before the couch translational correction were on average −11.3±11.4%, −5.46±7.24%, −1.11±1.38% −3.34±3.97%, −9.64±10.3%, and −16.3±14.7%, respectively. After the couch translational correction, those values were −0.195±0.544%, −0.159±0.391%, −0.188±0.262%, −0.310±0.270%, −0.407±0.331%, and −0.433±0.401%, respectively. The maximum dose difference of spinal cord among the 23 plans even after the couch translational correction was 25.9% at −3° rotation. Conclusions: Roll rotational setup errors in lung SBRT significantly influenced the coverage of target volume using VMAT technique. This could be in part compensated by the translational couch correction. However, in spite of the translational correction, the delivered doses to the spinal cord could be more than the calculated doses. Therefore if rotational setup errors exist during lung SBRT using VMAT technique, the rotational correction would rather be considered to prevent over-irradiation of normal tissues than the translational correction.« less
Tersi, Luca; Barré, Arnaud; Fantozzi, Silvia; Stagni, Rita
2013-03-01
Model-based mono-planar and bi-planar 3D fluoroscopy methods can quantify intact joints kinematics with performance/cost trade-off. The aim of this study was to compare the performances of mono- and bi-planar setups to a marker-based gold-standard, during dynamic phantom knee acquisitions. Absolute pose errors for in-plane parameters were lower than 0.6 mm or 0.6° for both mono- and bi-planar setups. Mono-planar setups resulted critical in quantifying the out-of-plane translation (error < 6.5 mm), and bi-planar in quantifying the rotation along bone longitudinal axis (error < 1.3°). These errors propagated to joint angles and translations differently depending on the alignment of the anatomical axes and the fluoroscopic reference frames. Internal-external rotation was the least accurate angle both with mono- (error < 4.4°) and bi-planar (error < 1.7°) setups, due to bone longitudinal symmetries. Results highlighted that accuracy for mono-planar in-plane pose parameters is comparable to bi-planar, but with halved computational costs, halved segmentation time and halved ionizing radiation dose. Bi-planar analysis better compensated for the out-of-plane uncertainty that is differently propagated to relative kinematics depending on the setup. To take its full benefits, the motion task to be investigated should be designed to maintain the joint inside the visible volume introducing constraints with respect to mono-planar analysis.
Yan, M; Lovelock, D; Hunt, M; Mechalakos, J; Hu, Y; Pham, H; Jackson, A
2013-12-01
To use Cone Beam CT scans obtained just prior to treatments of head and neck cancer patients to measure the setup error and cumulative dose uncertainty of the cochlea. Data from 10 head and neck patients with 10 planning CTs and 52 Cone Beam CTs taken at time of treatment were used in this study. Patients were treated with conventional fractionation using an IMRT dose painting technique, most with 33 fractions. Weekly radiographic imaging was used to correct the patient setup. The authors used rigid registration of the planning CT and Cone Beam CT scans to find the translational and rotational setup errors, and the spatial setup errors of the cochlea. The planning CT was rotated and translated such that the cochlea positions match those seen in the cone beam scans, cochlea doses were recalculated and fractional doses accumulated. Uncertainties in the positions and cumulative doses of the cochlea were calculated with and without setup adjustments from radiographic imaging. The mean setup error of the cochlea was 0.04 ± 0.33 or 0.06 ± 0.43 cm for RL, 0.09 ± 0.27 or 0.07 ± 0.48 cm for AP, and 0.00 ± 0.21 or -0.24 ± 0.45 cm for SI with and without radiographic imaging, respectively. Setup with radiographic imaging reduced the standard deviation of the setup error by roughly 1-2 mm. The uncertainty of the cochlea dose depends on the treatment plan and the relative positions of the cochlea and target volumes. Combining results for the left and right cochlea, the authors found the accumulated uncertainty of the cochlea dose per fraction was 4.82 (0.39-16.8) cGy, or 10.1 (0.8-32.4) cGy, with and without radiographic imaging, respectively; the percentage uncertainties relative to the planned doses were 4.32% (0.28%-9.06%) and 10.2% (0.7%-63.6%), respectively. Patient setup error introduces uncertainty in the position of the cochlea during radiation treatment. With the assistance of radiographic imaging during setup, the standard deviation of setup error reduced by 31%, 42%, and 54% in RL, AP, and SI direction, respectively, and consequently, the uncertainty of the mean dose to cochlea reduced more than 50%. The authors estimate that the effects of these uncertainties on the probability of hearing loss for an individual patient could be as large as 10%.
Yan, M.; Lovelock, D.; Hunt, M.; Mechalakos, J.; Hu, Y.; Pham, H.; Jackson, A.
2013-01-01
Purpose: To use Cone Beam CT scans obtained just prior to treatments of head and neck cancer patients to measure the setup error and cumulative dose uncertainty of the cochlea. Methods: Data from 10 head and neck patients with 10 planning CTs and 52 Cone Beam CTs taken at time of treatment were used in this study. Patients were treated with conventional fractionation using an IMRT dose painting technique, most with 33 fractions. Weekly radiographic imaging was used to correct the patient setup. The authors used rigid registration of the planning CT and Cone Beam CT scans to find the translational and rotational setup errors, and the spatial setup errors of the cochlea. The planning CT was rotated and translated such that the cochlea positions match those seen in the cone beam scans, cochlea doses were recalculated and fractional doses accumulated. Uncertainties in the positions and cumulative doses of the cochlea were calculated with and without setup adjustments from radiographic imaging. Results: The mean setup error of the cochlea was 0.04 ± 0.33 or 0.06 ± 0.43 cm for RL, 0.09 ± 0.27 or 0.07 ± 0.48 cm for AP, and 0.00 ± 0.21 or −0.24 ± 0.45 cm for SI with and without radiographic imaging, respectively. Setup with radiographic imaging reduced the standard deviation of the setup error by roughly 1–2 mm. The uncertainty of the cochlea dose depends on the treatment plan and the relative positions of the cochlea and target volumes. Combining results for the left and right cochlea, the authors found the accumulated uncertainty of the cochlea dose per fraction was 4.82 (0.39–16.8) cGy, or 10.1 (0.8–32.4) cGy, with and without radiographic imaging, respectively; the percentage uncertainties relative to the planned doses were 4.32% (0.28%–9.06%) and 10.2% (0.7%–63.6%), respectively. Conclusions: Patient setup error introduces uncertainty in the position of the cochlea during radiation treatment. With the assistance of radiographic imaging during setup, the standard deviation of setup error reduced by 31%, 42%, and 54% in RL, AP, and SI direction, respectively, and consequently, the uncertainty of the mean dose to cochlea reduced more than 50%. The authors estimate that the effects of these uncertainties on the probability of hearing loss for an individual patient could be as large as 10%. PMID:24320510
Helical tomotherapy setup variations in canine nasal tumor patients immobilized with a bite block.
Kubicek, Lyndsay N; Seo, Songwon; Chappell, Richard J; Jeraj, Robert; Forrest, Lisa J
2012-01-01
The purpose of our study was to compare setup variation in four degrees of freedom (vertical, longitudinal, lateral, and roll) between canine nasal tumor patients immobilized with a mattress and bite block, versus a mattress alone. Our secondary aim was to define a clinical target volume (CTV) to planning target volume (PTV) expansion margin based on our mean systematic error values associated with nasal tumor patients immobilized by a mattress and bite block. We evaluated six parameters for setup corrections: systematic error, random error, patient-patient variation in systematic errors, the magnitude of patient-specific random errors (root mean square [RMS]), distance error, and the variation of setup corrections from zero shift. The variations in all parameters were statistically smaller in the group immobilized by a mattress and bite block. The mean setup corrections in the mattress and bite block group ranged from 0.91 mm to 1.59 mm for the translational errors and 0.5°. Although most veterinary radiation facilities do not have access to Image-guided radiotherapy (IGRT), we identified a need for more rigid fixation, established the value of adding IGRT to veterinary radiation therapy, and define the CTV-PTV setup error margin for canine nasal tumor patients immobilized in a mattress and bite block. © 2012 Veterinary Radiology & Ultrasound.
NASA Astrophysics Data System (ADS)
Meng, Bowen; Xing, Lei; Han, Bin; Koong, Albert; Chang, Daniel; Cheng, Jason; Li, Ruijiang
2013-11-01
Non-coplanar beams are important for treatment of both cranial and noncranial tumors. Treatment verification of such beams with couch rotation/kicks, however, is challenging, particularly for the application of cone beam CT (CBCT). In this situation, only limited and unconventional imaging angles are feasible to avoid collision between the gantry, couch, patient, and on-board imaging system. The purpose of this work is to develop a CBCT verification strategy for patients undergoing non-coplanar radiation therapy. We propose an image reconstruction scheme that integrates a prior image constrained compressed sensing (PICCS) technique with image registration. Planning CT or CBCT acquired at the neutral position is rotated and translated according to the nominal couch rotation/translation to serve as the initial prior image. Here, the nominal couch movement is chosen to have a rotational error of 5° and translational error of 8 mm from the ground truth in one or more axes or directions. The proposed reconstruction scheme alternates between two major steps. First, an image is reconstructed using the PICCS technique implemented with total-variation minimization and simultaneous algebraic reconstruction. Second, the rotational/translational setup errors are corrected and the prior image is updated by applying rigid image registration between the reconstructed image and the previous prior image. The PICCS algorithm and rigid image registration are alternated iteratively until the registration results fall below a predetermined threshold. The proposed reconstruction algorithm is evaluated with an anthropomorphic digital phantom and physical head phantom. The proposed algorithm provides useful volumetric images for patient setup using projections with an angular range as small as 60°. It reduced the translational setup errors from 8 mm to generally <1 mm and the rotational setup errors from 5° to <1°. Compared with the PICCS algorithm alone, the integration of rigid registration significantly improved the reconstructed image quality, with a reduction of mostly 2-3 folds (up to 100) in root mean square image error. The proposed algorithm provides a remedy for solving the problem of non-coplanar CBCT reconstruction from limited angle of projections by combining the PICCS technique and rigid image registration in an iterative framework. In this proof of concept study, non-coplanar beams with couch rotations of 45° can be effectively verified with the CBCT technique.
A novel method to correct for pitch and yaw patient setup errors in helical tomotherapy.
Boswell, Sarah A; Jeraj, Robert; Ruchala, Kenneth J; Olivera, Gustavo H; Jaradat, Hazim A; James, Joshua A; Gutierrez, Alonso; Pearson, Dave; Frank, Gary; Mackie, T Rock
2005-06-01
An accurate means of determining and correcting for daily patient setup errors is important to the cancer outcome in radiotherapy. While many tools have been developed to detect setup errors, difficulty may arise in accurately adjusting the patient to account for the rotational error components. A novel, automated method to correct for rotational patient setup errors in helical tomotherapy is proposed for a treatment couch that is restricted to motion along translational axes. In tomotherapy, only a narrow superior/inferior section of the target receives a dose at any instant, thus rotations in the sagittal and coronal planes may be approximately corrected for by very slow continuous couch motion in a direction perpendicular to the scanning direction. Results from proof-of-principle tests indicate that the method improves the accuracy of treatment delivery, especially for long and narrow targets. Rotational corrections about an axis perpendicular to the transverse plane continue to be implemented easily in tomotherapy by adjustment of the initial gantry angle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keeling, V; Jin, H; Ali, I
2014-06-01
Purpose: To determine dosimetric impact of positioning errors in the stereotactic hypo-fractionated treatment of intracranial lesions using 3Dtransaltional and 3D-rotational corrections (6D) frameless BrainLAB ExacTrac X-Ray system. Methods: 20 cranial lesions, treated in 3 or 5 fractions, were selected. An infrared (IR) optical positioning system was employed for initial patient setup followed by stereoscopic kV X-ray radiographs for position verification. 6D-translational and rotational shifts were determined to correct patient position. If these shifts were above tolerance (0.7 mm translational and 1° rotational), corrections were applied and another set of X-rays was taken to verify patient position. Dosimetric impact (D95, Dmin,more » Dmax, and Dmean of planning target volume (PTV) compared to original plans) of positioning errors for initial IR setup (XC: Xray Correction) and post-correction (XV: X-ray Verification) was determined in a treatment planning system using a method proposed by Yue et al. (Med. Phys. 33, 21-31 (2006)) with 3D-translational errors only and 6D-translational and rotational errors. Results: Absolute mean translational errors (±standard deviation) for total 92 fractions (XC/XV) were 0.79±0.88/0.19±0.15 mm (lateral), 1.66±1.71/0.18 ±0.16 mm (longitudinal), 1.95±1.18/0.15±0.14 mm (vertical) and rotational errors were 0.61±0.47/0.17±0.15° (pitch), 0.55±0.49/0.16±0.24° (roll), and 0.68±0.73/0.16±0.15° (yaw). The average changes (loss of coverage) in D95, Dmin, Dmax, and Dmean were 4.5±7.3/0.1±0.2%, 17.8±22.5/1.1±2.5%, 0.4±1.4/0.1±0.3%, and 0.9±1.7/0.0±0.1% using 6Dshifts and 3.1±5.5/0.0±0.1%, 14.2±20.3/0.8±1.7%, 0.0±1.2/0.1±0.3%, and 0.7±1.4/0.0±0.1% using 3D-translational shifts only. The setup corrections (XC-XV) improved the PTV coverage by 4.4±7.3% (D95) and 16.7±23.5% (Dmin) using 6D adjustment. Strong correlations were observed between translation errors and deviations in dose coverage for XC. Conclusion: The initial BrainLAB IR system based on rigidity of the mask-frame setup is not sufficient for accurate stereotactic positioning; however, with X-ray imageguidance sub-millimeter accuracy is achieved with negligible deviations in dose coverage. The angular corrections (mean angle summation=1.84°) are important and cause considerable deviations in dose coverage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falco, Maria Daniela, E-mail: mdanielafalco@hotmail.co; Fontanarosa, Davide; Miceli, Roberto
2011-04-01
Cone-beam X-ray volumetric imaging in the treatment room, allows online correction of set-up errors and offline assessment of residual set-up errors and organ motion. In this study the registration algorithm of the X-ray volume imaging software (XVI, Elekta, Crawley, United Kingdom), which manages a commercial cone-beam computed tomography (CBCT)-based positioning system, has been tested using a homemade and an anthropomorphic phantom to: (1) assess its performance in detecting known translational and rotational set-up errors and (2) transfer the transformation matrix of its registrations into a commercial treatment planning system (TPS) for offline organ motion analysis. Furthermore, CBCT dose index hasmore » been measured for a particular site (prostate: 120 kV, 1028.8 mAs, approximately 640 frames) using a standard Perspex cylindrical body phantom (diameter 32 cm, length 15 cm) and a 10-cm-long pencil ionization chamber. We have found that known displacements were correctly calculated by the registration software to within 1.3 mm and 0.4{sup o}. For the anthropomorphic phantom, only translational displacements have been considered. Both studies have shown errors within the intrinsic uncertainty of our system for translational displacements (estimated as 0.87 mm) and rotational displacements (estimated as 0.22{sup o}). The resulting table translations proposed by the system to correct the displacements were also checked with portal images and found to place the isocenter of the plan on the linac isocenter within an error of 1 mm, which is the dimension of the spherical lead marker inserted at the center of the homemade phantom. The registration matrix translated into the TPS image fusion module correctly reproduced the alignment between planning CT scans and CBCT scans. Finally, measurements on the CBCT dose index indicate that CBCT acquisition delivers less dose than conventional CT scans and electronic portal imaging device portals. The registration software was found to be accurate, and its registration matrix can be easily translated into the TPS and a low dose is delivered to the patient during image acquisition. These results can help in designing imaging protocols for offline evaluations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keeling, V; Jin, H; Hossain, S
2014-06-15
Purpose: To evaluate setup accuracy and quantify individual systematic and random errors for the various hardware and software components of the frameless 6D-BrainLAB ExacTrac system. Methods: 35 patients with cranial lesions, some with multiple isocenters (50 total lesions treated in 1, 3, 5 fractions), were investigated. All patients were simulated with a rigid head-and-neck mask and the BrainLAB localizer. CT images were transferred to the IPLAN treatment planning system where optimized plans were generated using stereotactic reference frame based on the localizer. The patients were setup initially with infrared (IR) positioning ExacTrac system. Stereoscopic X-ray images (XC: X-ray Correction) weremore » registered to their corresponding digitally-reconstructed-radiographs, based on bony anatomy matching, to calculate 6D-translational and rotational (Lateral, Longitudinal, Vertical, Pitch, Roll, Yaw) shifts. XC combines systematic errors of the mask, localizer, image registration, frame, and IR. If shifts were below tolerance (0.7 mm translational and 1 degree rotational), treatment was initiated; otherwise corrections were applied and additional X-rays were acquired to verify patient position (XV: X-ray Verification). Statistical analysis was used to extract systematic and random errors of the different components of the 6D-ExacTrac system and evaluate the cumulative setup accuracy. Results: Mask systematic errors (translational; rotational) were the largest and varied from one patient to another in the range (−15 to 4mm; −2.5 to 2.5degree) obtained from mean of XC for each patient. Setup uncertainty in IR positioning (0.97,2.47,1.62mm;0.65,0.84,0.96degree) was extracted from standard-deviation of XC. Combined systematic errors of the frame and localizer (0.32,−0.42,−1.21mm; −0.27,0.34,0.26degree) was extracted from mean of means of XC distributions. Final patient setup uncertainty was obtained from the standard deviations of XV (0.57,0.77,0.67mm,0.39,0.35,0.30degree). Conclusion: Statistical analysis was used to calculate cumulative and individual systematic errors from the different hardware and software components of the 6D-ExacTrac-system. Patients were treated with cumulative errors (<1mm,<1degree) with XV image guidance.« less
SU-E-J-15: A Patient-Centered Scheme to Mitigate Impacts of Treatment Setup Error
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, L; Southern Medical University, Guangzhou; Tian, Z
2014-06-01
Purpose: Current Intensity Modulated Radiation Therapy (IMRT) is plan-centered. At each treatment fraction, we position the patient to match the setup in treatment plan. Inaccurate setup can compromise delivered dose distribution, and hence leading to suboptimal treatments. Moreover, current setup approach via couch shift under image guidance can correct translational errors, while rotational and deformation errors are hard to address. To overcome these problems, we propose in this abstract a patient-centered scheme to mitigate impacts of treatment setup errors. Methods: In the patient-centered scheme, we first position the patient on the couch approximately matching the planned-setup. Our Supercomputing Online Replanningmore » Environment (SCORE) is then employed to design an optimal treatment plan based on the daily patient geometry. It hence mitigates the impacts of treatment setup error and reduces the requirements on setup accuracy. We have conducted simulations studies in 10 head-and-neck (HN) patients to investigate the feasibility of this scheme. Rotational and deformation setup errors were simulated. Specifically, 1, 3, 5, 7 degrees of rotations were put on pitch, roll, and yaw directions; deformation errors were simulated by splitting neck movements into four basic types: rotation, lateral bending, flexion and extension. Setup variation ranges are based on observed numbers in previous studies. Dosimetric impacts of our scheme were evaluated on PTVs and OARs in comparison with original plan dose with original geometry and original plan recalculated dose with new setup geometries. Results: With conventional plan-centered approach, setup error could lead to significant PTV D99 decrease (−0.25∼+32.42%) and contralateral-parotid Dmean increase (−35.09∼+42.90%). The patientcentered approach is effective in mitigating such impacts to 0∼+0.20% and −0.03∼+5.01%, respectively. Computation time is <128 s. Conclusion: Patient-centered scheme is proposed to mitigate setup error impacts using replanning. Its superiority in terms of dosimetric impacts and feasibility has been shown through simulation studies on HN cases.« less
Wang, He; Wang, Congjun; Tung, Samuel; Dimmitt, Andrew Wilson; Wong, Pei Fong; Edson, Mark A.; Garden, Adam S.; Rosenthal, David I.; Fuller, Clifton D.; Gunn, Gary B.; Takiar, Vinita; Wang, Xin A.; Luo, Dershan; Yang, James N.; Wong, Jennifer
2016-01-01
The purpose of this study was to investigate the setup and positioning uncertainty of a custom cushion/mask/bite‐block (CMB) immobilization system and determine PTV margin for image‐guided head and neck stereotactic ablative radiotherapy (HN‐SABR). We analyzed 105 treatment sessions among 21 patients treated with HN‐SABR for recurrent head and neck cancers using a custom CMB immobilization system. Initial patient setup was performed using the ExacTrac infrared (IR) tracking system and initial setup errors were based on comparison of ExacTrac IR tracking system to corrected online ExacTrac X‐rays images registered to treatment plans. Residual setup errors were determined using repeat verification X‐ray. The online ExacTrac corrections were compared to cone‐beam CT (CBCT) before treatment to assess agreement. Intrafractional positioning errors were determined using prebeam X‐rays. The systematic and random errors were analyzed. The initial translational setup errors were −0.8±1.3 mm, −0.8±1.6 mm, and 0.3±1.9 mm in AP, CC, and LR directions, respectively, with a three‐dimensional (3D) vector of 2.7±1.4 mm. The initial rotational errors were up to 2.4° if 6D couch is not available. CBCT agreed with ExacTrac X‐ray images to within 2 mm and 2.5°. The intrafractional uncertainties were 0.1±0.6 mm, 0.1±0.6 mm, and 0.2±0.5 mm in AP, CC, and LR directions, respectively, and 0.0∘±0.5°, 0.0∘±0.6°, and −0.1∘±0.4∘ in yaw, roll, and pitch direction, respectively. The translational vector was 0.9±0.6 mm. The calculated PTV margins mPTV(90,95) were within 1.6 mm when using image guidance for online setup correction. The use of image guidance for online setup correction, in combination with our customized CMB device, highly restricted target motion during treatments and provided robust immobilization to ensure minimum dose of 95% to target volume with 2.0 mm PTV margin for HN‐SABR. PACS number(s): 87.55.ne PMID:27167275
Precision assessment of model-based RSA for a total knee prosthesis in a biplanar set-up.
Trozzi, C; Kaptein, B L; Garling, E H; Shelyakova, T; Russo, A; Bragonzoni, L; Martelli, S
2008-10-01
Model-based Roentgen Stereophotogrammetric Analysis (RSA) was recently developed for the measurement of prosthesis micromotion. Its main advantage is that markers do not need to be attached to the implants as traditional marker-based RSA requires. Model-based RSA has only been tested in uniplanar radiographic set-ups. A biplanar set-up would theoretically facilitate the pose estimation algorithm, since radiographic projections would show more different shape features of the implants than in uniplanar images. We tested the precision of model-based RSA and compared it with that of the traditional marker-based method in a biplanar set-up. Micromotions of both tibial and femoral components were measured with both the techniques from double examinations of patients participating in a clinical study. The results showed that in the biplanar set-up model-based RSA presents a homogeneous distribution of precision for all the translation directions, but an inhomogeneous error for rotations, especially internal-external rotation presented higher errors than rotations about the transverse and sagittal axes. Model-based RSA was less precise than the marker-based method, although the differences were not significant for the translations and rotations of the tibial component, with the exception of the internal-external rotations. For both prosthesis components the precisions of model-based RSA were below 0.2 mm for all the translations, and below 0.3 degrees for rotations about transverse and sagittal axes. These values are still acceptable for clinical studies aimed at evaluating total knee prosthesis micromotion. In a biplanar set-up model-based RSA is a valid alternative to traditional marker-based RSA where marking of the prosthesis is an enormous disadvantage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoiber, Eva Maria, E-mail: eva.stoiber@med.uni-heidelberg.de; Department of Medical Physics, German Cancer Research Center, Heidelberg; Giske, Kristina
Purpose: To evaluate local positioning errors of the lumbar spine during fractionated intensity-modulated radiotherapy of patients treated with craniospinal irradiation and to assess the impact of rotational error correction on these uncertainties for one patient setup correction strategy. Methods and Materials: 8 patients (6 adults, 2 children) treated with helical tomotherapy for craniospinal irradiation were retrospectively chosen for this analysis. Patients were immobilized with a deep-drawn Aquaplast head mask. Additionally to daily megavoltage control computed tomography scans of the skull, once-a-week positioning of the lumbar spine was assessed. Therefore, patient setup was corrected by a target point correction, derived frommore » a registration of the patient's skull. The residual positioning variations of the lumbar spine were evaluated applying a rigid-registration algorithm. The impact of different rotational error corrections was simulated. Results: After target point correction, residual local positioning errors of the lumbar spine varied considerably. Craniocaudal axis rotational error correction did not improve or deteriorate these translational errors, whereas simulation of a rotational error correction of the right-left and anterior-posterior axis increased these errors by a factor of 2 to 3. Conclusion: The patient fixation used allows for deformations between the patient's skull and spine. Therefore, for the setup correction strategy evaluated in this study, generous margins for the lumbar spinal target volume are needed to prevent a local geographic miss. With any applied correction strategy, it needs to be evaluated whether or not a rotational error correction is beneficial.« less
Taylor, C; Parker, J; Stratford, J; Warren, M
2018-05-01
Although all systematic and random positional setup errors can be corrected for in entirety during on-line image-guided radiotherapy, the use of a specified action level, below which no correction occurs, is also an option. The following service evaluation aimed to investigate the use of this 3 mm action level for on-line image assessment and correction (online, systematic set-up error and weekly evaluation) for lower extremity sarcoma, and understand the impact on imaging frequency and patient positioning error within one cancer centre. All patients were immobilised using a thermoplastic shell attached to a plastic base and an individual moulded footrest. A retrospective analysis of 30 patients was performed. Patient setup and correctional data derived from cone beam CT analysis was retrieved. The timing, frequency and magnitude of corrections were evaluated. The population systematic and random error was derived. 20% of patients had no systematic corrections over the duration of treatment, and 47% had one. The maximum number of systematic corrections per course of radiotherapy was 4, which occurred for 2 patients. 34% of episodes occurred within the first 5 fractions. All patients had at least one observed translational error during their treatment greater than 0.3 cm, and 80% of patients had at least one observed translational error during their treatment greater than 0.5 cm. The population systematic error was 0.14 cm, 0.10 cm, 0.14 cm and random error was 0.27 cm, 0.22 cm, 0.23 cm in the lateral, caudocranial and anteroposterial directions. The required Planning Target Volume margin for the study population was 0.55 cm, 0.41 cm and 0.50 cm in the lateral, caudocranial and anteroposterial directions. The 3 mm action level for image assessment and correction prior to delivery reduced the imaging burden and focussed intervention on patients that exhibited greater positional variability. This strategy could be an efficient deployment of departmental resources if full daily correction of positional setup error is not possible. Copyright © 2017. Published by Elsevier Ltd.
Radiotherapy setup displacements in breast cancer patients: 3D surface imaging experience.
Cravo Sá, Ana; Fermento, Ana; Neves, Dalila; Ferreira, Sara; Silva, Teresa; Marques Coelho, Carina; Vaandering, Aude; Roma, Ana; Quaresma, Sérgio; Bonnarens, Emmanuel
2018-01-01
In this study, we intend to compare two different setup procedures for female breast cancer patients. Imaging in radiotherapy provides a precise localization of the tumour, increasing the accuracy of the treatment delivery in breast cancer. Twenty breast cancer patients who underwent whole breast radiotherapy (WBRT) were selected for this study. Patients were divided into two groups of ten. Group one (G1) was positioned by tattoos and then the patient positioning was adjusted with the aid of AlignRT (Vision RT, London, UK). In group two (G2), patients were positioned only by tattoos. For both groups, the first 15 fractions were analyzed, a daily kilovoltage (kV) cone beam computed tomography (CBCT) image was made and then the rotational and translational displacements and, posteriorly, the systematic ( Σ ) and random ( σ ) errors were analyzed. The comparison of CBCT displacements for the two groups showed a statistically significant difference in the translational left-right (LR) direction ( ρ = 0.03), considering that the procedure with AlignRT system has smaller lateral displacements. The results of systematic ( Σ ) and random ( σ ) errors showed that for translational displacements the group positioned only by tattoos (G2) demonstrated higher values of errors when compared with the group positioned with the aid of AlignRT (G1). AlignRT could help the positioning of breast cancer patients; however, it should be used with another imaging method.
Set-up uncertainties: online correction with X-ray volume imaging.
Kataria, Tejinder; Abhishek, Ashu; Chadha, Pranav; Nandigam, Janardhan
2011-01-01
To determine interfractional three-dimensional set-up errors using X-ray volumetric imaging (XVI). Between December 2007 and August 2009, 125 patients were taken up for image-guided radiotherapy using online XVI. After matching of reference and acquired volume view images, set-up errors in three translation directions were recorded and corrected online before treatment each day. Mean displacements, population systematic (Σ), and random (σ) errors were calculated and analyzed using SPSS (v16) software. Optimum clinical target volume (CTV) to planning target volume (PTV) margin was calculated using Van Herk's (2.5Σ + 0.7 σ) and Stroom's (2Σ + 0.7 σ) formula. Patients were grouped in 4 cohorts, namely brain, head and neck, thorax, and abdomen-pelvis. The mean vector displacement recorded were 0.18 cm, 0.15 cm, 0.36 cm, and 0.35 cm for brain, head and neck, thorax, and abdomen-pelvis, respectively. Analysis of individual mean set-up errors revealed good agreement with the proposed 0.3 cm isotropic margins for brain and 0.5 cm isotropic margins for head-neck. Similarly, 0.5 cm circumferential and 1 cm craniocaudal proposed margins were in agreement with thorax and abdomen-pelvic cases. The calculated mean displacements were well within CTV-PTV margin estimates of Van Herk (90% population coverage to minimum 95% prescribed dose) and Stroom (99% target volume coverage by 95% prescribed dose). Employing these individualized margins in a particular cohort ensure comparable target coverage as described in literature, which is further improved if XVI-aided set-up error detection and correction is used before treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S; Oh, S; Yea, J
Purpose: This study evaluated the setup uncertainties for brain sites when using BrainLAB’s ExacTrac X-ray 6D system for daily pretreatment to determine the optimal planning target volume (PTV) margin. Methods: Between August 2012 and April 2015, 28 patients with brain tumors were treated by daily image-guided radiotherapy using the BrainLAB ExacTrac 6D image guidance system of the Novalis-Tx linear accelerator. DUONTM (Orfit Industries, Wijnegem, Belgium) masks were used to fix the head. The radiotherapy was fractionated into 27–33 treatments. In total, 844 image verifications were performed for 28 patients and used for the analysis. The setup corrections along with themore » systematic and random errors were analyzed for six degrees of freedom in the translational (lateral, longitudinal, and vertical) and rotational (pitch, roll, and yaw) dimensions. Results: Optimal PTV margins were calculated based on van Herk et al.’s [margin recipe = 2.5∑ + 0.7σ − 3 mm] and Stroom et al.’s [margin recipe = 2∑ + 0.7σ] formulas. The systematic errors (∑) were 0.72, 1.57, and 0.97 mm in the lateral, longitudinal, and vertical translational dimensions, respectively, and 0.72°, 0.87°, and 0.83° in the pitch, roll, and yaw rotational dimensions, respectively. The random errors (σ) were 0.31, 0.46, and 0.54 mm in the lateral, longitudinal, and vertical rotational dimensions, respectively, and 0.28°, 0.24°, and 0.31° in the pitch, roll, and yaw rotational dimensions, respectively. According to van Herk et al.’s and Stroom et al.’s recipes, the recommended lateral PTV margins were 0.97 and 1.66 mm, respectively; the longitudinal margins were 1.26 and 3.47 mm, respectively; and the vertical margins were 0.21 and 2.31 mm, respectively. Conclusion: Therefore, daily setup verifications using the BrainLAB ExacTrac 6D image guide system are very useful for evaluating the setup uncertainties and determining the setup margin.∑σ.« less
Mori, Shinichiro; Shibayama, Kouichi; Tanimoto, Katsuyuki; Kumagai, Motoki; Matsuzaki, Yuka; Furukawa, Takuji; Inaniwa, Taku; Shirai, Toshiyuki; Noda, Koji; Tsuji, Hiroshi; Kamada, Tadashi
2012-09-01
Our institute has constructed a new treatment facility for carbon ion scanning beam therapy. The first clinical trials were successfully completed at the end of November 2011. To evaluate patient setup accuracy, positional errors between the reference Computed Tomography (CT) scan and final patient setup images were calculated using 2D-3D registration software. Eleven patients with tumors of the head and neck, prostate and pelvis receiving carbon ion scanning beam treatment participated. The patient setup process takes orthogonal X-ray flat panel detector (FPD) images and the therapists adjust the patient table position in six degrees of freedom to register the reference position by manual or auto- (or both) registration functions. We calculated residual positional errors with the 2D-3D auto-registration function using the final patient setup orthogonal FPD images and treatment planning CT data. Residual error averaged over all patients in each fraction decreased from the initial to the last treatment fraction [1.09 mm/0.76° (averaged in the 1st and 2nd fractions) to 0.77 mm/0.61° (averaged in the 15th and 16th fractions)]. 2D-3D registration calculation time was 8.0 s on average throughout the treatment course. Residual errors in translation and rotation averaged over all patients as a function of date decreased with the passage of time (1.6 mm/1.2° in May 2011 to 0.4 mm/0.2° in December 2011). This retrospective residual positional error analysis shows that the accuracy of patient setup during the first clinical trials of carbon ion beam scanning therapy was good and improved with increasing therapist experience.
Accounting for hardware imperfections in EIT image reconstruction algorithms.
Hartinger, Alzbeta E; Gagnon, Hervé; Guardo, Robert
2007-07-01
Electrical impedance tomography (EIT) is a non-invasive technique for imaging the conductivity distribution of a body section. Different types of EIT images can be reconstructed: absolute, time difference and frequency difference. Reconstruction algorithms are sensitive to many errors which translate into image artefacts. These errors generally result from incorrect modelling or inaccurate measurements. Every reconstruction algorithm incorporates a model of the physical set-up which must be as accurate as possible since any discrepancy with the actual set-up will cause image artefacts. Several methods have been proposed in the literature to improve the model realism, such as creating anatomical-shaped meshes, adding a complete electrode model and tracking changes in electrode contact impedances and positions. Absolute and frequency difference reconstruction algorithms are particularly sensitive to measurement errors and generally assume that measurements are made with an ideal EIT system. Real EIT systems have hardware imperfections that cause measurement errors. These errors translate into image artefacts since the reconstruction algorithm cannot properly discriminate genuine measurement variations produced by the medium under study from those caused by hardware imperfections. We therefore propose a method for eliminating these artefacts by integrating a model of the system hardware imperfections into the reconstruction algorithms. The effectiveness of the method has been evaluated by reconstructing absolute, time difference and frequency difference images with and without the hardware model from data acquired on a resistor mesh phantom. Results have shown that artefacts are smaller for images reconstructed with the model, especially for frequency difference imaging.
Immobilisation precision in VMAT for oral cancer patients
NASA Astrophysics Data System (ADS)
Norfadilah, M. N.; Ahmad, R.; Heng, S. P.; Lam, K. S.; Radzi, A. B. Ahmad; John, L. S. H.
2017-05-01
A study was conducted to evaluate and quantify a precision of the interfraction setup with different immobilisation devices throughout the treatment time. Local setup accuracy was analysed for 8 oral cancer patients receiving radiotherapy; 4 with HeadFIX® mouthpiece moulded with wax (HFW) and 4 with 10 ml/cc syringe barrel (SYR). Each patients underwent Image Guided Radiotherapy (IGRT) with total of 209 cone-beam computed tomography (CBCT) data sets for position set up errors measurement. The setup variations in the mediolateral (ML), craniocaudal (CC), and anteroposterior (AP) dimensions were measured. Overall mean displacement (M), the population systematic (Σ) and random (σ) errors and the 3D vector length were calculated. Clinical target volume to planning target volume (CTV-PTV) margins were calculated according to the van Herk formula (2.5Σ+0.7σ). The M values for both group were < 1 mm and < 1° in all translational and rotational directions. This indicate there is no significant imprecision in the equipment (lasers) and during procedure. The interfraction translational 3 dimension vector for HFW and SYR were 1.93±0.66mm and 3.84±1.34mm, respectively. The interfraction average rotational error were 0.00°±0.65° and 0.34°±0.59°, respectively. CTV-PTV margins along the 3 translational axis (Right-Left, Superior-Inferior, Anterior-Posterior) calculated were 3.08, 2.22 and 0.81 mm for HFW and 3.76, 6.24 and 5.06 mm for SYR. The results of this study have demonstrated that HFW more precise in reproducing patient position compared to conventionally used SYR (p<0.001). All margin calculated did not exceed hospital protocol (5mm) except S-I and A-P axes using syringe. For this reason, a daily IGRT is highly recommended to improve the immobilisation precision.
2012-01-01
Background To investigate geometric and dosimetric accuracy of frame-less image-guided radiosurgery (IG-RS) for brain metastases. Methods and materials Single fraction IG-RS was practiced in 72 patients with 98 brain metastases. Patient positioning and immobilization used either double- (n = 71) or single-layer (n = 27) thermoplastic masks. Pre-treatment set-up errors (n = 98) were evaluated with cone-beam CT (CBCT) based image-guidance (IG) and were corrected in six degrees of freedom without an action level. CBCT imaging after treatment measured intra-fractional errors (n = 64). Pre- and post-treatment errors were simulated in the treatment planning system and target coverage and dose conformity were evaluated. Three scenarios of 0 mm, 1 mm and 2 mm GTV-to-PTV (gross tumor volume, planning target volume) safety margins (SM) were simulated. Results Errors prior to IG were 3.9 mm ± 1.7 mm (3D vector) and the maximum rotational error was 1.7° ± 0.8° on average. The post-treatment 3D error was 0.9 mm ± 0.6 mm. No differences between double- and single-layer masks were observed. Intra-fractional errors were significantly correlated with the total treatment time with 0.7mm±0.5mm and 1.2mm±0.7mm for treatment times ≤23 minutes and >23 minutes (p<0.01), respectively. Simulation of RS without image-guidance reduced target coverage and conformity to 75% ± 19% and 60% ± 25% of planned values. Each 3D set-up error of 1 mm decreased target coverage and dose conformity by 6% and 10% on average, respectively, with a large inter-patient variability. Pre-treatment correction of translations only but not rotations did not affect target coverage and conformity. Post-treatment errors reduced target coverage by >5% in 14% of the patients. A 1 mm safety margin fully compensated intra-fractional patient motion. Conclusions IG-RS with online correction of translational errors achieves high geometric and dosimetric accuracy. Intra-fractional errors decrease target coverage and conformity unless compensated with appropriate safety margins. PMID:22531060
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxim, Peter G.; Loo, Billy W.; Murphy, James D.
2011-11-15
Purpose: To evaluate the positioning accuracy of an optical positioning system for stereotactic radiosurgery in a pilot experience of optically guided, conventionally fractionated, radiotherapy for paranasal sinus and skull base tumors. Methods and Materials: Before each daily radiotherapy session, the positioning of 28 patients was set up using an optical positioning system. After this initial setup, the patients underwent standard on-board imaging that included daily orthogonal kilovoltage images and weekly cone beam computed tomography scans. Daily translational shifts were made after comparing the on-board images with the treatment planning computed tomography scans. These daily translational shifts represented the daily positionalmore » error in the optical tracking system and were recorded during the treatment course. For 13 patients treated with smaller fields, a three-degree of freedom (3DOF) head positioner was used for more accurate setup. Results: The mean positional error for the optically guided system in patients with and without the 3DOF head positioner was 1.4 {+-} 1.1 mm and 3.9 {+-} 1.6 mm, respectively (p <.0001). The mean positional error drifted 0.11 mm/wk upward during the treatment course for patients using the 3DOF head positioner (p = .057). No positional drift was observed in the patients without the 3DOF head positioner. Conclusion: Our initial clinical experience with optically guided head-and-neck fractionated radiotherapy was promising and demonstrated clinical feasibility. The optically guided setup was especially useful when used in conjunction with the 3DOF head positioner and when it was recalibrated to the shifts using the weekly portal images.« less
Sturgeon, Jared D; Cox, John A; Mayo, Lauren L; Gunn, G Brandon; Zhang, Lifei; Balter, Peter A; Dong, Lei; Awan, Musaddiq; Kocak-Uzel, Esengul; Mohamed, Abdallah Sherif Radwan; Rosenthal, David I; Fuller, Clifton David
2015-10-01
Digitally reconstructed radiographs (DRRs) are routinely used as an a priori reference for setup correction in radiotherapy. The spatial resolution of DRRs may be improved to reduce setup error in fractionated radiotherapy treatment protocols. The influence of finer CT slice thickness reconstruction (STR) and resultant increased resolution DRRs on physician setup accuracy was prospectively evaluated. Four head and neck patient CT-simulation images were acquired and used to create DRR cohorts by varying STRs at 0.5, 1, 2, 2.5, and 3 mm. DRRs were displaced relative to a fixed isocenter using 0-5 mm random shifts in the three cardinal axes. Physician observers reviewed DRRs of varying STRs and displacements and then aligned reference and test DRRs replicating daily KV imaging workflow. A total of 1,064 images were reviewed by four blinded physicians. Observer errors were analyzed using nonparametric statistics (Friedman's test) to determine whether STR cohorts had detectably different displacement profiles. Post hoc bootstrap resampling was applied to evaluate potential generalizability. The observer-based trial revealed a statistically significant difference between cohort means for observer displacement vector error ([Formula: see text]) and for [Formula: see text]-axis [Formula: see text]. Bootstrap analysis suggests a 15% gain in isocenter translational setup error with reduction of STR from 3 mm to [Formula: see text]2 mm, though interobserver variance was a larger feature than STR-associated measurement variance. Higher resolution DRRs generated using finer CT scan STR resulted in improved observer performance at shift detection and could decrease operator-dependent geometric error. Ideally, CT STRs [Formula: see text]2 mm should be utilized for DRR generation in the head and neck.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Lilie L., E-mail: lin@uphs.upenn.edu; Hertan, Lauren; Rengan, Ramesh
2012-06-01
Purpose: To determine the impact of body mass index (BMI) on daily setup variations and frequency of imaging necessary for patients with endometrial cancer treated with adjuvant intensity-modulated radiotherapy (IMRT) with daily image guidance. Methods and Materials: The daily shifts from a total of 782 orthogonal kilovoltage images from 30 patients who received pelvic IMRT between July 2008 and August 2010 were analyzed. The BMI, mean daily shifts, and random and systematic errors in each translational and rotational direction were calculated for each patient. Margin recipes were generated based on BMI. Linear regression and spearman rank correlation analysis were performed.more » To simulate a less-than-daily IGRT protocol, the average shift of the first five fractions was applied to subsequent setups without IGRT for assessing the impact on setup error and margin requirements. Results: Median BMI was 32.9 (range, 23-62). Of the 30 patients, 16.7% (n = 5) were normal weight (BMI <25); 23.3% (n = 7) were overweight (BMI {>=}25 to <30); 26.7% (n = 8) were mildly obese (BMI {>=}30 to <35); and 33.3% (n = 10) were moderately to severely obese (BMI {>=} 35). On linear regression, mean absolute vertical, longitudinal, and lateral shifts positively correlated with BMI (p = 0.0127, p = 0.0037, and p < 0.0001, respectively). Systematic errors in the longitudinal and vertical direction were found to be positively correlated with BMI category (p < 0.0001 for both). IGRT for the first five fractions, followed by correction of the mean error for all subsequent fractions, led to a substantial reduction in setup error and resultant margin requirement overall compared with no IGRT. Conclusions: Daily shifts, systematic errors, and margin requirements were greatest in obese patients. For women who are normal or overweight, a planning target margin margin of 7 to 10 mm may be sufficient without IGRT, but for patients who are moderately or severely obese, this is insufficient.« less
Immobilization precision of a modified GTC frame.
Winey, Brian; Daartz, Juliane; Dankers, Frank; Bussière, Marc
2012-05-10
The purpose of this study was to evaluate and quantify the interfraction reproducibility and intrafraction immobilization precision of a modified GTC frame. The error of the patient alignment and imaging systems were measured using a cranial skull phantom, with simulated, predetermined shifts. The kV setup images were acquired with a room-mounted set of kV sources and panels. Calculated translations and rotations provided by the computer alignment software relying upon three implanted fiducials were compared to the known shifts, and the accuracy of the imaging and positioning systems was calculated. Orthogonal kV setup images for 45 proton SRT patients and 1002 fractions (average 22.3 fractions/patient) were analyzed for interfraction and intrafraction immobilization precision using a modified GTC frame. The modified frame employs a radiotransparent carbon cup and molded pillow to allow for more treatment angles from posterior directions for cranial lesions. Patients and the phantom were aligned with three 1.5 mm stainless steel fiducials implanted into the skull. The accuracy and variance of the patient positioning and imaging systems were measured to be 0.10 ± 0.06 mm, with the maximum uncertainty of rotation being ±0.07°. 957 pairs of interfraction image sets and 974 intrafraction image sets were analyzed. 3D translations and rotations were recorded. The 3D vector interfraction setup reproducibility was 0.13 mm ± 1.8 mm for translations and the largest uncertainty of ± 1.07º for rotations. The intrafraction immobilization efficacy was 0.19 mm ± 0.66 mm for translations and the largest uncertainty of ± 0.50º for rotations. The modified GTC frame provides reproducible setup and effective intrafraction immobilization, while allowing for the complete range of entrance angles from the posterior direction.
Evaluation of kidney motion and target localization in abdominal SBRT patients
Sonier, Marcus; Chu, William; Lalani, Nafisha; Erler, Darby; Cheung, Patrick
2016-01-01
The purpose of this study was to evaluate bilateral kidney and target translational/rotational intrafraction motion during stereotactic body radiation therapy treatment delivery of primary renal cell carcinoma and oligometastatic adrenal lesions for patients immobilized in the Elekta BodyFIX system. Bilateral kidney motion was assessed at midplane for 30 patients immobilized in a full‐body dual‐vacuum‐cushion system with two patients immobilized via abdominal compression. Intrafraction motion was assessed for 15 patients using kilovoltage cone‐beam computed tomography (kV‐CBCT) datasets (n=151) correlated to the planning CT. Patient positioning was corrected for translational and rotational misalignments using a robotic couch in six degrees of freedom if setup errors exceeded 1 mm and 1°. Absolute bilateral kidney motion between inhale and exhale 4D CT imaging phases for left–right (LR), superior–inferior (SI), and anterior–posterior (AP) directions was 1.51±1.00mm,8.10±4.33mm, and 3.08±2.11mm, respectively. Residual setup error determined across CBCT type (pretreatment, intrafraction, and post‐treatment) for x (LR), y (SI), and z (AP) translations was 0.63±0.74mm,1.08±1.38mm, and 0.70±1.00mm; while for x (pitch), y (roll), and z (yaw) rotations was 0.24±0.39°,0.19±0.34°, and 0.26±0.43°, respectively. Targets were localized to within 2.1 mm and 0.8° 95% of the time. The frequency of misalignments in the y direction was significant (p<0.05) when compared to the x and z directions with no significant difference in translations between IMRT and VMAT. This technique is robust using BodyFIX for patient immobilization and reproducible localization of kidney and adrenal targets and daily CBCT image guidance for correction of positional errors to maintain treatment accuracy. PACS number(s): 87.55.‐x, 87.56.‐v, 87.56.Da PMID:27929514
Evaluation of a head-repositioner and Z-plate system for improved accuracy of dose delivery.
Charney, Sarah C; Lutz, Wendell R; Klein, Mary K; Jones, Pamela D
2009-01-01
Radiation therapy requires accurate dose delivery to targets often identifiable only on computed tomography (CT) images. Translation between the isocenter localized on CT and laser setup for radiation treatment, and interfractional head repositioning are frequent sources of positioning error. The objective was to design a simple, accurate apparatus to eliminate these sources of error. System accuracy was confirmed with phantom and in vivo measurements. A head repositioner that fixates the maxilla via dental mold with fiducial marker Z-plates attached was fabricated to facilitate the connection between the isocenter on CT and laser treatment setup. A phantom study targeting steel balls randomly located within the head repositioner was performed. The center of each ball was marked on a transverse CT slice on which six points of the Z-plate were also visible. Based on the relative position of the six Z-plate points and the ball center, the laser setup position on each Z-plate and a top plate was calculated. Based on these setup marks, orthogonal port films, directed toward each target, were evaluated for accuracy without regard to visual setup. A similar procedure was followed to confirm accuracy of in vivo treatment setups in four dogs using implanted gold seeds. Sequential port films of three dogs were made to confirm interfractional accuracy. Phantom and in vivo measurements confirmed accuracy of 2 mm between isocenter on CT and the center of the treatment dose distribution. Port films confirmed similar accuracy for interfractional treatments. The system reliably connects CT target localization to accurate initial and interfractional radiation treatment setup.
Dinges, Eric; Felderman, Nicole; McGuire, Sarah; Gross, Brandie; Bhatia, Sudershan; Mott, Sarah; Buatti, John; Wang, Dongxu
2015-01-01
Background and Purpose This study evaluates the potential efficacy and robustness of functional bone marrow sparing (BMS) using intensity-modulated proton therapy (IMPT) for cervical cancer, with the goal of reducing hematologic toxicity. Material and Methods IMPT plans with prescription dose of 45 Gy were generated for ten patients who have received BMS intensity-modulated x-ray therapy (IMRT). Functional bone marrow was identified by 18F-flourothymidine positron emission tomography. IMPT plans were designed to minimize the volume of functional bone marrow receiving 5–40 Gy while maintaining similar target coverage and healthy organ sparing as IMRT. IMPT robustness was analyzed with ±3% range uncertainty errors and/or ±3mm translational setup errors in all three principal dimensions. Results In the static scenario, the median dose volume reductions for functional bone marrow by IMPT were: 32% for V5GY, 47% for V10Gy, 54% for V20Gy, and 57% for V40Gy, all with p<0.01 compared to IMRT. With assumed errors, even the worst-case reductions by IMPT were: 23% for V5Gy, 37% for V10Gy, 41% for V20Gy, and 39% for V40Gy, all with p<0.01. Conclusions The potential sparing of functional bone marrow by IMPT for cervical cancer is significant and robust under realistic systematic range uncertainties and clinically relevant setup errors. PMID:25981130
Immobilization precision of a modified GTC frame
Daartz, Juliane; Dankers, Frank; Bussière, Marc
2012-01-01
The purpose of this study was to evaluate and quantify the interfraction reproducibility and intrafraction immobilization precision of a modified GTC frame. The error of the patient alignment and imaging systems were measured using a cranial skull phantom, with simulated, predetermined shifts. The kV setup images were acquired with a room‐mounted set of kV sources and panels. Calculated translations and rotations provided by the computer alignment software relying upon three implanted fiducials were compared to the known shifts, and the accuracy of the imaging and positioning systems was calculated. Orthogonal kV setup images for 45 proton SRT patients and 1002 fractions (average 22.3 fractions/patient) were analyzed for interfraction and intrafraction immobilization precision using a modified GTC frame. The modified frame employs a radiotransparent carbon cup and molded pillow to allow for more treatment angles from posterior directions for cranial lesions. Patients and the phantom were aligned with three 1.5 mm stainless steel fiducials implanted into the skull. The accuracy and variance of the patient positioning and imaging systems were measured to be 0.10±0.06 mm, with the maximum uncertainty of rotation being ±0.07°.957 pairs of interfraction image sets and 974 intrafraction image sets were analyzed. 3D translations and rotations were recorded. The 3D vector interfraction setup reproducibility was 0.13 mm ±1.8 mm for translations and the largest uncertainty of ±1.07° for rotations. The intrafraction immobilization efficacy was 0.19 mm ±0.66 mm for translations and the largest uncertainty of ±0.50° for rotations. The modified GTC frame provides reproducible setup and effective intrafraction immobilization, while allowing for the complete range of entrance angles from the posterior direction. PACS number: 87.53.Ly, 87.55.Qr PMID:22584167
Patni, Nidhi; Burela, Nagarjuna; Pasricha, Rajesh; Goyal, Jaishree; Soni, Tej Prakash; Kumar, T Senthil; Natarajan, T
2017-01-01
To achieve the best possible therapeutic ratio using high-precision techniques (image-guided radiation therapy/volumetric modulated arc therapy [IGRT/VMAT]) of external beam radiation therapy in cases of carcinoma cervix using kilovoltage cone-beam computed tomography (kV-CBCT). One hundred and five patients of gynecological malignancies who were treated with IGRT (IGRT/VMAT) were included in the study. CBCT was done once a week for intensity-modulated radiation therapy and daily in IGRT/VMAT. These images were registered with the planning CT scan images and translational errors were applied and recorded. In all, 2078 CBCT images were studied. The margins of planning target volume were calculated from the variations in the setup. The setup variation was 5.8, 10.3, and 5.6 mm in anteroposterior, superoinferior, and mediolateral direction. This allowed adequate dose delivery to the clinical target volume and the sparing of organ at risks. Daily kV-CBCT is a satisfactory method of accurate patient positioning in treating gynecological cancers with high-precision techniques. This resulted in avoiding geographic miss.
Verhoeven, Karolien; Weltens, Caroline; Van den Heuvel, Frank
2015-01-01
Quantification of the setup errors is vital to define appropriate setup margins preventing geographical misses. The no‐action–level (NAL) correction protocol reduces the systematic setup errors and, hence, the setup margins. The manual entry of the setup corrections in the record‐and‐verify software, however, increases the susceptibility of the NAL protocol to human errors. Moreover, the impact of the skin mobility on the anteroposterior patient setup reproducibility in whole‐breast radiotherapy (WBRT) is unknown. In this study, we therefore investigated the potential of fixed vertical couch position‐based patient setup in WBRT. The possibility to introduce a threshold for correction of the systematic setup errors was also explored. We measured the anteroposterior, mediolateral, and superior–inferior setup errors during fractions 1–12 and weekly thereafter with tangential angled single modality paired imaging. These setup data were used to simulate the residual setup errors of the NAL protocol, the fixed vertical couch position protocol, and the fixed‐action–level protocol with different correction thresholds. Population statistics of the setup errors of 20 breast cancer patients and 20 breast cancer patients with additional regional lymph node (LN) irradiation were calculated to determine the setup margins of each off‐line correction protocol. Our data showed the potential of the fixed vertical couch position protocol to restrict the systematic and random anteroposterior residual setup errors to 1.8 mm and 2.2 mm, respectively. Compared to the NAL protocol, a correction threshold of 2.5 mm reduced the frequency of mediolateral and superior–inferior setup corrections with 40% and 63%, respectively. The implementation of the correction threshold did not deteriorate the accuracy of the off‐line setup correction compared to the NAL protocol. The combination of the fixed vertical couch position protocol, for correction of the anteroposterior setup error, and the fixed‐action–level protocol with 2.5 mm correction threshold, for correction of the mediolateral and the superior–inferior setup errors, was proved to provide adequate and comparable patient setup accuracy in WBRT and WBRT with additional LN irradiation. PACS numbers: 87.53.Kn, 87.57.‐s
Effect of patient setup errors on simultaneously integrated boost head and neck IMRT treatment plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siebers, Jeffrey V.; Keall, Paul J.; Wu Qiuwen
2005-10-01
Purpose: The purpose of this study is to determine dose delivery errors that could result from random and systematic setup errors for head-and-neck patients treated using the simultaneous integrated boost (SIB)-intensity-modulated radiation therapy (IMRT) technique. Methods and Materials: Twenty-four patients who participated in an intramural Phase I/II parotid-sparing IMRT dose-escalation protocol using the SIB treatment technique had their dose distributions reevaluated to assess the impact of random and systematic setup errors. The dosimetric effect of random setup error was simulated by convolving the two-dimensional fluence distribution of each beam with the random setup error probability density distribution. Random setup errorsmore » of {sigma} = 1, 3, and 5 mm were simulated. Systematic setup errors were simulated by randomly shifting the patient isocenter along each of the three Cartesian axes, with each shift selected from a normal distribution. Systematic setup error distributions with {sigma} = 1.5 and 3.0 mm along each axis were simulated. Combined systematic and random setup errors were simulated for {sigma} = {sigma} = 1.5 and 3.0 mm along each axis. For each dose calculation, the gross tumor volume (GTV) received by 98% of the volume (D{sub 98}), clinical target volume (CTV) D{sub 90}, nodes D{sub 90}, cord D{sub 2}, and parotid D{sub 50} and parotid mean dose were evaluated with respect to the plan used for treatment for the structure dose and for an effective planning target volume (PTV) with a 3-mm margin. Results: Simultaneous integrated boost-IMRT head-and-neck treatment plans were found to be less sensitive to random setup errors than to systematic setup errors. For random-only errors, errors exceeded 3% only when the random setup error {sigma} exceeded 3 mm. Simulated systematic setup errors with {sigma} = 1.5 mm resulted in approximately 10% of plan having more than a 3% dose error, whereas a {sigma} = 3.0 mm resulted in half of the plans having more than a 3% dose error and 28% with a 5% dose error. Combined random and systematic dose errors with {sigma} = {sigma} = 3.0 mm resulted in more than 50% of plans having at least a 3% dose error and 38% of the plans having at least a 5% dose error. Evaluation with respect to a 3-mm expanded PTV reduced the observed dose deviations greater than 5% for the {sigma} = {sigma} = 3.0 mm simulations to 5.4% of the plans simulated. Conclusions: Head-and-neck SIB-IMRT dosimetric accuracy would benefit from methods to reduce patient systematic setup errors. When GTV, CTV, or nodal volumes are used for dose evaluation, plans simulated including the effects of random and systematic errors deviate substantially from the nominal plan. The use of PTVs for dose evaluation in the nominal plan improves agreement with evaluated GTV, CTV, and nodal dose values under simulated setup errors. PTV concepts should be used for SIB-IMRT head-and-neck squamous cell carcinoma patients, although the size of the margins may be less than those used with three-dimensional conformal radiation therapy.« less
Hyde, Derek; Lochray, Fiona; Korol, Renee; Davidson, Melanie; Wong, C Shun; Ma, Lijun; Sahgal, Arjun
2012-03-01
To evaluate the residual setup error and intrafraction motion following kilovoltage cone-beam CT (CBCT) image guidance, for immobilized spine stereotactic body radiotherapy (SBRT) patients, with positioning corrected for in all six degrees of freedom. Analysis is based on 42 consecutive patients (48 thoracic and/or lumbar metastases) treated with a total of 106 fractions and 307 image registrations. Following initial setup, a CBCT was acquired for patient alignment and a pretreatment CBCT taken to verify shifts and determine the residual setup error, followed by a midtreatment and posttreatment CBCT image. For 13 single-fraction SBRT patients, two midtreatment CBCT images were obtained. Initially, a 1.5-mm and 1° tolerance was used to reposition the patient following couch shifts which was subsequently reduced to 1 mm and 1° degree after the first 10 patients. Small positioning errors after the initial CBCT setup were observed, with 90% occurring within 1 mm and 97% within 1°. In analyzing the impact of the time interval for verification imaging (10 ± 3 min) and subsequent image acquisitions (17 ± 4 min), the residual setup error was not significantly different (p > 0.05). A significant difference (p = 0.04) in the average three-dimensional intrafraction positional deviations favoring a more strict tolerance in translation (1 mm vs. 1.5 mm) was observed. The absolute intrafraction motion averaged over all patients and all directions along x, y, and z axis (± SD) were 0.7 ± 0.5 mm and 0.5 ± 0.4 mm for the 1.5 mm and 1 mm tolerance, respectively. Based on a 1-mm and 1° correction threshold, the target was localized to within 1.2 mm and 0.9° with 95% confidence. Near-rigid body immobilization, intrafraction CBCT imaging approximately every 15-20 min, and strict repositioning thresholds in six degrees of freedom yields minimal intrafraction motion allowing for safe spine SBRT delivery. Copyright © 2012 Elsevier Inc. All rights reserved.
Technical Note: Introduction of variance component analysis to setup error analysis in radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuo, Yukinori, E-mail: ymatsuo@kuhp.kyoto-u.ac.
Purpose: The purpose of this technical note is to introduce variance component analysis to the estimation of systematic and random components in setup error of radiotherapy. Methods: Balanced data according to the one-factor random effect model were assumed. Results: Analysis-of-variance (ANOVA)-based computation was applied to estimate the values and their confidence intervals (CIs) for systematic and random errors and the population mean of setup errors. The conventional method overestimates systematic error, especially in hypofractionated settings. The CI for systematic error becomes much wider than that for random error. The ANOVA-based estimation can be extended to a multifactor model considering multiplemore » causes of setup errors (e.g., interpatient, interfraction, and intrafraction). Conclusions: Variance component analysis may lead to novel applications to setup error analysis in radiotherapy.« less
Giske, Kristina; Stoiber, Eva M; Schwarz, Michael; Stoll, Armin; Muenter, Marc W; Timke, Carmen; Roeder, Falk; Debus, Juergen; Huber, Peter E; Thieke, Christian; Bendl, Rolf
2011-06-01
To evaluate the local positioning uncertainties during fractionated radiotherapy of head-and-neck cancer patients immobilized using a custom-made fixation device and discuss the effect of possible patient correction strategies for these uncertainties. A total of 45 head-and-neck patients underwent regular control computed tomography scanning using an in-room computed tomography scanner. The local and global positioning variations of all patients were evaluated by applying a rigid registration algorithm. One bounding box around the complete target volume and nine local registration boxes containing relevant anatomic structures were introduced. The resulting uncertainties for a stereotactic setup and the deformations referenced to one anatomic local registration box were determined. Local deformations of the patients immobilized using our custom-made device were compared with previously published results. Several patient positioning correction strategies were simulated, and the residual local uncertainties were calculated. The patient anatomy in the stereotactic setup showed local systematic positioning deviations of 1-4 mm. The deformations referenced to a particular anatomic local registration box were similar to the reported deformations assessed from patients immobilized with commercially available Aquaplast masks. A global correction, including the rotational error compensation, decreased the remaining local translational errors. Depending on the chosen patient positioning strategy, the remaining local uncertainties varied considerably. Local deformations in head-and-neck patients occur even if an elaborate, custom-made patient fixation method is used. A rotational error correction decreased the required margins considerably. None of the considered correction strategies achieved perfect alignment. Therefore, weighting of anatomic subregions to obtain the optimal correction vector should be investigated in the future. Copyright © 2011 Elsevier Inc. All rights reserved.
Govindarajan, R; Llueguera, E; Melero, A; Molero, J; Soler, N; Rueda, C; Paradinas, C
2010-01-01
Statistical Process Control (SPC) was applied to monitor patient set-up in radiotherapy and, when the measured set-up error values indicated a loss of process stability, its root cause was identified and eliminated to prevent set-up errors. Set up errors were measured for medial-lateral (ml), cranial-caudal (cc) and anterior-posterior (ap) dimensions and then the upper control limits were calculated. Once the control limits were known and the range variability was acceptable, treatment set-up errors were monitored using sub-groups of 3 patients, three times each shift. These values were plotted on a control chart in real time. Control limit values showed that the existing variation was acceptable. Set-up errors, measured and plotted on a X chart, helped monitor the set-up process stability and, if and when the stability was lost, treatment was interrupted, the particular cause responsible for the non-random pattern was identified and corrective action was taken before proceeding with the treatment. SPC protocol focuses on controlling the variability due to assignable cause instead of focusing on patient-to-patient variability which normally does not exist. Compared to weekly sampling of set-up error in each and every patient, which may only ensure that just those sampled sessions were set-up correctly, the SPC method enables set-up error prevention in all treatment sessions for all patients and, at the same time, reduces the control costs. Copyright © 2009 SECA. Published by Elsevier Espana. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Runxiao, L; Aikun, W; Xiaomei, F
2015-06-15
Purpose: To compare two registration methods in the CBCT guided radiotherapy for cervical carcinoma, analyze the setup errors and registration methods, determine the margin required for clinical target volume(CTV) extending to planning target volume(PTV). Methods: Twenty patients with cervical carcinoma were enrolled. All patients were underwent CT simulation in the supine position. Transfering the CT images to the treatment planning system and defining the CTV, PTV and the organs at risk (OAR), then transmit them to the XVI workshop. CBCT scans were performed before radiotherapy and registered to planning CT images according to bone and gray value registration methods. Comparedmore » two methods and obtain left-right(X), superior-inferior(Y), anterior-posterior (Z) setup errors, the margin required for CTV to PTV were calculated. Results: Setup errors were unavoidable in postoperative cervical carcinoma irradiation. The setup errors measured by method of bone (systemic ± random) on X(1eft.right),Y(superior.inferior),Z(anterior.posterior) directions were(0.24±3.62),(0.77±5.05) and (0.13±3.89)mm, respectively, the setup errors measured by method of grey (systemic ± random) on X(1eft-right), Y(superior-inferior), Z(anterior-posterior) directions were(0.31±3.93), (0.85±5.16) and (0.21±4.12)mm, respectively.The spatial distributions of setup error was maximum in Y direction. The margins were 4 mm in X axis, 6 mm in Y axis, 4 mm in Z axis respectively.These two registration methods were similar and highly recommended. Conclusion: Both bone and grey registration methods could offer an accurate setup error. The influence of setup errors of a PTV margin would be suggested by 4mm, 4mm and 6mm on X, Y and Z directions for postoperative radiotherapy for cervical carcinoma.« less
Prasad, Devleena; Das, Pinaki; Saha, Niladri S; Chatterjee, Sanjoy; Achari, Rimpa; Mallick, Indranil
2014-01-01
This aim of this study was to determine if a less resource-intensive and established offline correction protocol - the No Action Level (NAL) protocol was as effective as daily online corrections of setup deviations in curative high-dose radiotherapy of prostate cancer. A total of 683 daily megavoltage CT (MVCT) or kilovoltage CT (kvCBCT) images of 30 patients with localized prostate cancer treated with intensity modulated radiotherapy were evaluated. Daily image-guidance was performed and setup errors in three translational axes recorded. The NAL protocol was simulated by using the mean shift calculated from the first five fractions and implemented on all subsequent treatments. Using the imaging data from the remaining fractions, the daily residual error (RE) was determined. The proportion of fractions where the RE was greater than 3,5 and 7 mm was calculated, and also the actual PTV margin that would be required if the offline protocol was followed. Using the NAL protocol reduced the systematic but not the random errors. Corrections made using the NAL protocol resulted in small and acceptable RE in the mediolateral (ML) and superoinferior (SI) directions with 46/533 (8.1%) and 48/533 (5%) residual shifts above 5 mm. However; residual errors greater than 5mm in the anteroposterior (AP) direction remained in 181/533 (34%) of fractions. The PTV margins calculated based on residual errors were 5mm, 5mm and 13 mm in the ML, SI and AP directions respectively. Offline correction using the NAL protocol resulted in unacceptably high residual errors in the AP direction, due to random uncertainties of rectal and bladder filling. Daily online imaging and corrections remain the standard image guidance policy for highly conformal radiotherapy of prostate cancer.
SU-F-J-130: Margin Determination for Hypofractionated Partial Breast Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geady, C; Keller, B; Hahn, E
2016-06-15
Purpose: To determine the Planning Target Volume (PTV) margin for Hypofractionated Partial Breast Irradiation (HPBI) using the van Herk formalism (M=2.5∑+0.7σ). HPBI is a novel technique intended to provide local control in breast cancer patients not eligible for surgical resection, using 40 Gy in 5 fractions prescribed to the gross disease. Methods: Setup uncertainties were quantified through retrospective analysis of cone-beam computed tomography (CBCT) data sets, collected prior to (prefraction) and after (postfraction) treatment delivery. During simulation and treatment, patients were immobilized using a wing board and an evacuated bag. Prefraction CBCT was rigidly registered to planning 4-dimensional computed tomographymore » (4DCT) using the chest wall and tumor, and translational couch shifts were applied as needed. This clinical workflow was faithfully reproduced in Pinnacle (Philips Medical Systems) to yield residual setup and intrafractional error through translational shifts and rigid registrations (ribs and sternum) of prefraction CBCT to 4DCT and postfraction CBCT to prefraction CBCT, respectively. All ten patients included in this investigation were medically inoperable; the median age was 84 (range, 52–100) years. Results: Systematic (and random) setup uncertainties (in mm) detected for the left-right, craniocaudal and anteroposterior directions were 0.4 (1.5), 0.8 (1.8) and 0.4 (1.0); net uncertainty was determined to be 0.7 (1.5). Rotations >2° in any axis occurred on 8/72 (11.1%) registrations. Conclusion: Preliminary results suggest a non-uniform setup margin (in mm) of 2.2, 3.3 and 1.7 for the left-right, craniocaudal and anteroposterior directions is required for HPBI, given its immobilization techniques and online setup verification protocol. This investigation is ongoing, though published results from similar studies are consistent with the above findings. Determination of margins in breast radiotherapy is a paradigm shift, but a necessary step in moving towards hypofractionated regiments, which may ultimately redefine the standard of care for this select patient population.« less
Wei, Xiaobo; Liu, Mengjiao; Ding, Yun; Li, Qilin; Cheng, Changhai; Zong, Xian; Yin, Wenming; Chen, Jie; Gu, Wendong
2018-05-08
Breast-conserving surgery (BCS) plus postoperative radiotherapy has become the standard treatment for early-stage breast cancer. The aim of this study was to compare the setup accuracy of optical surface imaging by the Sentinel system with cone-beam computerized tomography (CBCT) imaging currently used in our clinic for patients received BCS. Two optical surface scans were acquired before and immediately after couch movement correction. The correlation between the setup errors as determined by the initial optical surface scan and CBCT was analyzed. The deviation of the second optical surface scan from the reference planning CT was considered an estimate for the residual errors for the new method for patient setup correction. The consequences in terms for necessary planning target volume (PTV) margins for treatment sessions without setup correction applied. We analyzed 145 scans in 27 patients treated for early stage breast cancer. The setup errors of skin marker based patient alignment by optical surface scan and CBCT were correlated, and the residual setup errors as determined by the optical surface scan after couch movement correction were reduced. Optical surface imaging provides a convenient method for improving the setup accuracy for breast cancer patient without unnecessary imaging dose.
Evaluation of RSA set-up from a clinical biplane fluoroscopy system for 3D joint kinematic analysis.
Bonanzinga, Tommaso; Signorelli, Cecilia; Bontempi, Marco; Russo, Alessandro; Zaffagnini, Stefano; Marcacci, Maurilio; Bragonzoni, Laura
2016-01-01
dinamic roentgen stereophotogrammetric analysis (RSA), a technique currently based only on customized radiographic equipment, has been shown to be a very accurate method for detecting three-dimensional (3D) joint motion. The aim of the present work was to evaluate the applicability of an innovative RSA set-up for in vivo knee kinematic analysis, using a biplane fluoroscopic image system. To this end, the Authors describe the set-up as well as a possible protocol for clinical knee joint evaluation. The accuracy of the kinematic measurements is assessed. the Authors evaluated the accuracy of 3D kinematic analysis of the knee in a new RSA set-up, based on a commercial biplane fluoroscopy system integrated into the clinical environment. The study was organized in three main phases: an in vitro test under static conditions, an in vitro test under dynamic conditions reproducing a flexion-extension range of motion (ROM), and an in vivo analysis of the flexion-extension ROM. For each test, the following were calculated, as an indication of the tracking accuracy: mean, minimum, maximum values and standard deviation of the error of rigid body fitting. in terms of rigid body fitting, in vivo test errors were found to be 0.10±0.05 mm. Phantom tests in static and kinematic conditions showed precision levels, for translations and rotations, of below 0.1 mm/0.2° and below 0.5 mm/0.3° respectively for all directions. the results of this study suggest that kinematic RSA can be successfully performed using a standard clinical biplane fluoroscopy system for the acquisition of slow movements of the lower limb. a kinematic RSA set-up using a clinical biplane fluoroscopy system is potentially applicable and provides a useful method for obtaining better characterization of joint biomechanics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Y; National Cancer Center, Kashiwa, Chiba; Tachibana, H
Purpose: Total body irradiation (TBI) and total marrow irradiation (TMI) using Tomotherapy have been reported. A gantry-based linear accelerator uses one isocenter during one rotational irradiation. Thus, 3–5 isocenter points should be used for a whole plan of TBI-VMAT during smoothing out the junctional dose distribution. IGRT provides accurate and precise patient setup for the multiple junctions, however it is evident that some setup errors should occur and affect accuracy of dose distribution in the area. In this study, we evaluated the robustness for patient’s setup error in VMAT-TBI. Methods: VMAT-TBI Planning was performed in an adult whole-body human phantommore » using Eclipse. Eight full arcs with four isocenter points using 6MV-X were used to cover the entire whole body. Dose distribution was optimized using two structures of patient’s body as PTV and lung. The two arcs were shared with one isocenter and the two arcs were 5 cm-overlapped with the other two arcs. Point absolute dose using ionization-chamber and planer relative dose distribution using film in the junctional regions were performed using water-equivalent slab phantom. In the measurements, several setup errors of (+5∼−5mm) were added. Results: The result of the chamber measurement shows the deviations were within ±3% when the setup errors were within ±3 mm. In the planer evaluation, the pass ratio of gamma evaluation (3%/2mm) shows more than 90% if the errors within ±3 mm. However, there were hot/cold areas in the edge of the junction even with acceptable gamma pass ratio. 5 mm setup error caused larger hot and cold areas and the dosimetric acceptable areas were decreased in the overlapped areas. Conclusion: It can be clinically acceptable for VMAT-TBI when patient setup error is within ±3mm. Averaging effects from patient random error would be helpful to blur the hot/cold area in the junction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Christine H.; Gerry, Emily; Chmura, Steven J.
2015-01-01
Purpose: To calculate planning target volume (PTV) margins for chest wall and regional nodal targets using daily orthogonal kilovolt (kV) imaging and to study residual setup error after kV alignment using volumetric cone-beam computed tomography (CBCT). Methods and Materials: Twenty-one postmastectomy patients were treated with intensity modulated radiation therapy with 7-mm PTV margins. Population-based PTV margins were calculated from translational shifts after daily kV positioning and/or weekly CBCT data for each of 8 patients, whose surgical clips were used as surrogates for target volumes. Errors from kV and CBCT data were mathematically combined to generate PTV margins for 3 simulatedmore » alignment workflows: (1) skin marks alone; (2) weekly kV imaging; and (3) daily kV imaging. Results: The kV data from 613 treatment fractions indicated that a 7-mm uniform margin would account for 95% of daily shifts if patients were positioned using only skin marks. Total setup errors incorporating both kV and CBCT data were larger than those from kV alone, yielding PTV expansions of 7 mm anterior–posterior, 9 mm left–right, and 9 mm superior–inferior. Required PTV margins after weekly kV imaging were similar in magnitude as alignment to skin marks, but rotational adjustments of patients were required in 32% ± 17% of treatments. These rotations would have remained uncorrected without the use of daily kV imaging. Despite the use of daily kV imaging, CBCT data taken at the treatment position indicate that an anisotropic PTV margin of 6 mm anterior–posterior, 4 mm left–right, and 8 mm superior–inferior must be retained to account for residual errors. Conclusions: Cone-beam CT provides additional information on 3-dimensional reproducibility of treatment setup for chest wall targets. Three-dimensional data indicate that a uniform 7-mm PTV margin is insufficient in the absence of daily IGRT. Interfraction movement is greater than suggested by 2-dimensional imaging, thus a margin of at least 4 to 8 mm must be retained despite the use of daily IGRT.« less
Dosimetric effects of patient rotational setup errors on prostate IMRT treatments
NASA Astrophysics Data System (ADS)
Fu, Weihua; Yang, Yong; Li, Xiang; Heron, Dwight E.; Saiful Huq, M.; Yue, Ning J.
2006-10-01
The purpose of this work is to determine dose delivery errors that could result from systematic rotational setup errors (ΔΦ) for prostate cancer patients treated with three-phase sequential boost IMRT. In order to implement this, different rotational setup errors around three Cartesian axes were simulated for five prostate patients and dosimetric indices, such as dose-volume histogram (DVH), tumour control probability (TCP), normal tissue complication probability (NTCP) and equivalent uniform dose (EUD), were employed to evaluate the corresponding dosimetric influences. Rotational setup errors were simulated by adjusting the gantry, collimator and horizontal couch angles of treatment beams and the dosimetric effects were evaluated by recomputing the dose distributions in the treatment planning system. Our results indicated that, for prostate cancer treatment with the three-phase sequential boost IMRT technique, the rotational setup errors do not have significant dosimetric impacts on the cumulative plan. Even in the worst-case scenario with ΔΦ = 3°, the prostate EUD varied within 1.5% and TCP decreased about 1%. For seminal vesicle, slightly larger influences were observed. However, EUD and TCP changes were still within 2%. The influence on sensitive structures, such as rectum and bladder, is also negligible. This study demonstrates that the rotational setup error degrades the dosimetric coverage of target volume in prostate cancer treatment to a certain degree. However, the degradation was not significant for the three-phase sequential boost prostate IMRT technique and for the margin sizes used in our institution.
Baron, Charles A.; Awan, Musaddiq J.; Mohamed, Abdallah S.R.; Akel, Imad; Rosenthal, David I.; Gunn, G. Brandon; Garden, Adam S.; Dyer, Brandon A.; Court, Laurence; Sevak, Parag R.; Kocak‐Uzel, Esengul
2014-01-01
Larynx may alternatively serve as a target or organs at risk (OAR) in head and neck cancer (HNC) image‐guided radiotherapy (IGRT). The objective of this study was to estimate IGRT parameters required for larynx positional error independent of isocentric alignment and suggest population‐based compensatory margins. Ten HNC patients receiving radiotherapy (RT) with daily CT on‐rails imaging were assessed. Seven landmark points were placed on each daily scan. Taking the most superior‐anterior point of the C5 vertebra as a reference isocenter for each scan, residual displacement vectors to the other six points were calculated postisocentric alignment. Subsequently, using the first scan as a reference, the magnitude of vector differences for all six points for all scans over the course of treatment was calculated. Residual systematic and random error and the necessary compensatory CTV‐to‐PTV and OAR‐to‐PRV margins were calculated, using both observational cohort data and a bootstrap‐resampled population estimator. The grand mean displacements for all anatomical points was 5.07 mm, with mean systematic error of 1.1 mm and mean random setup error of 2.63 mm, while bootstrapped POIs grand mean displacement was 5.09 mm, with mean systematic error of 1.23 mm and mean random setup error of 2.61 mm. Required margin for CTV‐PTV expansion was 4.6 mm for all cohort points, while the bootstrap estimator of the equivalent margin was 4.9 mm. The calculated OAR‐to‐PRV expansion for the observed residual setup error was 2.7 mm and bootstrap estimated expansion of 2.9 mm. We conclude that the interfractional larynx setup error is a significant source of RT setup/delivery error in HNC, both when the larynx is considered as a CTV or OAR. We estimate the need for a uniform expansion of 5 mm to compensate for setup error if the larynx is a target, or 3 mm if the larynx is an OAR, when using a nonlaryngeal bony isocenter. PACS numbers: 87.55.D‐, 87.55.Qr
A review of setup error in supine breast radiotherapy using cone-beam computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batumalai, Vikneswary, E-mail: Vikneswary.batumalai@sswahs.nsw.gov.au; Liverpool and Macarthur Cancer Therapy Centres, New South Wales; Ingham Institute of Applied Medical Research, Sydney, New South Wales
2016-10-01
Setup error in breast radiotherapy (RT) measured with 3-dimensional cone-beam computed tomography (CBCT) is becoming more common. The purpose of this study is to review the literature relating to the magnitude of setup error in breast RT measured with CBCT. The different methods of image registration between CBCT and planning computed tomography (CT) scan were also explored. A literature search, not limited by date, was conducted using Medline and Google Scholar with the following key words: breast cancer, RT, setup error, and CBCT. This review includes studies that reported on systematic and random errors, and the methods used when registeringmore » CBCT scans with planning CT scan. A total of 11 relevant studies were identified for inclusion in this review. The average magnitude of error is generally less than 5 mm across a number of studies reviewed. The common registration methods used when registering CBCT scans with planning CT scan are based on bony anatomy, soft tissue, and surgical clips. No clear relationships between the setup errors detected and methods of registration were observed from this review. Further studies are needed to assess the benefit of CBCT over electronic portal image, as CBCT remains unproven to be of wide benefit in breast RT.« less
Deveau, Michael A; Gutiérrez, Alonso N; Mackie, Thomas R; Tomé, Wolfgang A; Forrest, Lisa J
2010-01-01
Intensity-modulated radiation therapy (IMRT) can be employed to yield precise dose distributions that tightly conform to targets and reduce high doses to normal structures by generating steep dose gradients. Because of these sharp gradients, daily setup variations may have an adverse effect on clinical outcome such that an adjacent normal structure may be overdosed and/or the target may be underdosed. This study provides a detailed analysis of the impact of daily setup variations on optimized IMRT canine nasal tumor treatment plans when variations are not accounted for due to the lack of image guidance. Setup histories of ten patients with nasal tumors previously treated using helical tomotherapy were replanned retrospectively to study the impact of daily setup variations on IMRT dose distributions. Daily setup shifts were applied to IMRT plans on a fraction-by-fraction basis. Using mattress immobilization and laser alignment, mean setup error magnitude in any single dimension was at least 2.5 mm (0-10.0 mm). With inclusions of all three translational coordinates, mean composite offset vector was 5.9 +/- 3.3 mm. Due to variations, a loss of equivalent uniform dose for target volumes of up to 5.6% was noted which corresponded to a potential loss in tumor control probability of 39.5%. Overdosing of eyes and brain was noted by increases in mean normalized total dose and highest normalized dose given to 2% of the volume. Findings suggest that successful implementation of canine nasal IMRT requires daily image guidance to ensure accurate delivery of precise IMRT distributions when non-rigid immobilization techniques are utilized. Unrecognized geographical misses may result in tumor recurrence and/or radiation toxicities to the eyes and brain.
Deveau, Michael A.; Gutiérrez, Alonso N.; Mackie, Thomas R.; Tomé, Wolfgang A.; Forrest, Lisa J.
2009-01-01
Intensity-modulated radiation therapy (IMRT) can be employed to yield precise dose distributions that tightly conform to targets and reduce high doses to normal structures by generating steep dose gradients. Because of these sharp gradients, daily setup variations may have an adverse effect on clinical outcome such that an adjacent normal structure may be overdosed and/or the target may be underdosed. This study provides a detailed analysis of the impact of daily setup variations on optimized IMRT canine nasal tumor treatment plans when variations are not accounted for due to the lack of image guidance. Setup histories of ten patients with nasal tumors previously treated using helical tomotherapy were replanned retrospectively to study the impact of daily setup variations on IMRT dose distributions. Daily setup shifts were applied to IMRT plans on a fraction-by-fraction basis. Using mattress immobilization and laser alignment, mean setup error magnitude in any single dimension was at least 2.5mm (0-10.0mm). With inclusions of all three translational coordinates, mean composite offset vector was 5.9±3.3mm. Due to variations, a loss of equivalent uniform dose (EUD) for target volumes of up to 5.6% was noted which corresponded to a potential loss in TCP of 39.5%. Overdosing of eyes and brain was noted by increases in mean normalized total dose (NTDmean) and highest normalized dose given to 2% of the volume (NTD2%). Findings suggest that successful implementation of canine nasal IMRT requires daily image guidance to ensure accurate delivery of precise IMRT distributions when non-rigid immobilization techniques are utilized. Unrecognized geographical misses may result in tumor recurrence and/or radiation toxicities to the eyes and brain. PMID:20166402
Initial clinical experience with a video-based patient positioning system.
Johnson, L S; Milliken, B D; Hadley, S W; Pelizzari, C A; Haraf, D J; Chen, G T
1999-08-01
To report initial clinical experience with an interactive, video-based patient positioning system that is inexpensive, quick, accurate, and easy to use. System hardware includes two black-and-white CCD cameras, zoom lenses, and a PC equipped with a frame grabber. Custom software is used to acquire and archive video images, as well as to display real-time subtraction images revealing patient misalignment in multiple views. Two studies are described. In the first study, video is used to document the daily setup histories of 5 head and neck patients. Time-lapse cine loops are generated for each patient and used to diagnose and correct common setup errors. In the second study, 6 twice-daily (BID) head and neck patients are positioned according to the following protocol: at AM setups conventional treatment room lasers are used; at PM setups lasers are used initially and then video is used for 1-2 minutes to fine-tune the patient position. Lateral video images and lateral verification films are registered off-line to compare the distribution of setup errors per patient, with and without video assistance. In the first study, video images were used to determine the accuracy of our conventional head and neck setup technique, i.e., alignment of lightcast marks and surface anatomy to treatment room lasers and the light field. For this initial cohort of patients, errors ranged from sigma = 5 to 7 mm and were patient-specific. Time-lapse cine loops of the images revealed sources of the error, and as a result, our localization techniques and immobilization device were modified to improve setup accuracy. After the improvements, conventional setup errors were reduced to sigma = 3 to 5 mm. In the second study, when a stereo pair of live subtraction images were introduced to perform daily "on-line" setup correction, errors were reduced to sigma = 1 to 3 mm. Results depended on patient health and cooperation and the length of time spent fine-tuning the position. An interactive, video-based patient positioning system was shown to reduce setup errors to within 1 to 3 mm in head and neck patients, without a significant increase in overall treatment time or labor-intensive procedures. Unlike retrospective portal image analysis, use of two live-video images provides the therapists with immediate feedback and allows for true 3-D positioning and correction of out-of-plane rotation before radiation is delivered. With significant improvement in head and neck alignment and the elimination of setup errors greater than 3 to 5 mm, margins associated with treatment volumes potentially can be reduced, thereby decreasing normal tissue irradiation.
Jeong, Songmi; Lee, Jong Hoon; Chung, Mi Joo; Lee, Sea Won; Lee, Jeong Won; Kang, Dae Gyu; Kim, Sung Hwan
2016-01-01
We evaluate geometric shifts of daily setup for evaluating the appropriateness of treatment and determining proper margins for the planning target volume (PTV) in prostate cancer patients.We analyzed 1200 sets of pretreatment megavoltage-CT scans that were acquired from 40 patients with intermediate to high-risk prostate cancer. They received whole pelvic intensity-modulated radiotherapy (IMRT). They underwent daily endorectal ballooning and enema to limit intrapelvic organ movement. The mean and standard deviation (SD) of daily translational shifts in right-to-left (X), anterior-to-posterior (Y), and superior-to-inferior (Z) were evaluated for systemic and random error.The mean ± SD of systemic error (Σ) in X, Y, Z, and roll was 2.21 ± 3.42 mm, -0.67 ± 2.27 mm, 1.05 ± 2.87 mm, and -0.43 ± 0.89°, respectively. The mean ± SD of random error (δ) was 1.95 ± 1.60 mm in X, 1.02 ± 0.50 mm in Y, 1.01 ± 0.48 mm in Z, and 0.37 ± 0.15° in roll. The calculated proper PTV margins that cover >95% of the target on average were 8.20 (X), 5.25 (Y), and 6.45 (Z) mm. Mean systemic geometrical shifts of IMRT were not statistically different in all transitional and three-dimensional shifts from early to late weeks. There was no grade 3 or higher gastrointestinal or genitourianry toxicity.The whole pelvic IMRT technique is a feasible and effective modality that limits intrapelvic organ motion and reduces setup uncertainties. Proper margins for the PTV can be determined by using geometric shifts data.
Jeong, Songmi; Lee, Jong Hoon; Chung, Mi Joo; Lee, Sea Won; Lee, Jeong Won; Kang, Dae Gyu; Kim, Sung Hwan
2016-01-01
Abstract We evaluate geometric shifts of daily setup for evaluating the appropriateness of treatment and determining proper margins for the planning target volume (PTV) in prostate cancer patients. We analyzed 1200 sets of pretreatment megavoltage-CT scans that were acquired from 40 patients with intermediate to high-risk prostate cancer. They received whole pelvic intensity-modulated radiotherapy (IMRT). They underwent daily endorectal ballooning and enema to limit intrapelvic organ movement. The mean and standard deviation (SD) of daily translational shifts in right-to-left (X), anterior-to-posterior (Y), and superior-to-inferior (Z) were evaluated for systemic and random error. The mean ± SD of systemic error (Σ) in X, Y, Z, and roll was 2.21 ± 3.42 mm, −0.67 ± 2.27 mm, 1.05 ± 2.87 mm, and −0.43 ± 0.89°, respectively. The mean ± SD of random error (δ) was 1.95 ± 1.60 mm in X, 1.02 ± 0.50 mm in Y, 1.01 ± 0.48 mm in Z, and 0.37 ± 0.15° in roll. The calculated proper PTV margins that cover >95% of the target on average were 8.20 (X), 5.25 (Y), and 6.45 (Z) mm. Mean systemic geometrical shifts of IMRT were not statistically different in all transitional and three-dimensional shifts from early to late weeks. There was no grade 3 or higher gastrointestinal or genitourianry toxicity. The whole pelvic IMRT technique is a feasible and effective modality that limits intrapelvic organ motion and reduces setup uncertainties. Proper margins for the PTV can be determined by using geometric shifts data. PMID:26765418
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laaksomaa, Marko, E-mail: marko.laaksomaa@pshp.fi; Kapanen, Mika; Department of Medical Physics, Tampere University Hospital
We evaluated adequate setup margins for the radiotherapy (RT) of pelvic tumors based on overall position errors of bony landmarks. We also estimated the difference in setup accuracy between the male and female patients. Finally, we compared the patient rotation for 2 immobilization devices. The study cohort included consecutive 64 male and 64 female patients. Altogether, 1794 orthogonal setup images were analyzed. Observer-related deviation in image matching and the effect of patient rotation were explicitly determined. Overall systematic and random errors were calculated in 3 orthogonal directions. Anisotropic setup margins were evaluated based on residual errors after weekly image guidance.more » The van Herk formula was used to calculate the margins. Overall, 100 patients were immobilized with a house-made device. The patient rotation was compared against 28 patients immobilized with CIVCO's Kneefix and Feetfix. We found that the usually applied isotropic setup margin of 8 mm covered all the uncertainties related to patient setup for most RT treatments of the pelvis. However, margins of even 10.3 mm were needed for the female patients with very large pelvic target volumes centered either in the symphysis or in the sacrum containing both of these structures. This was because the effect of rotation (p ≤ 0.02) and the observer variation in image matching (p ≤ 0.04) were significantly larger for the female patients than for the male patients. Even with daily image guidance, the required margins remained larger for the women. Patient rotations were largest about the lateral axes. The difference between the required margins was only 1 mm for the 2 immobilization devices. The largest component of overall systematic position error came from patient rotation. This emphasizes the need for rotation correction. Overall, larger position errors and setup margins were observed for the female patients with pelvic cancer than for the male patients.« less
Batumalai, Vikneswary; Phan, Penny; Choong, Callie; Holloway, Lois; Delaney, Geoff P
2016-12-01
To compare the differences in setup errors measured with electronic portal image (EPI) and cone-beam computed tomography (CBCT) in patients undergoing tangential breast radiotherapy (RT). Relationship between setup errors, body mass index (BMI) and breast size was assessed. Twenty-five patients undergoing postoperative RT to the breast were consented for this study. Weekly CBCT scans were acquired and retrospectively registered to the planning CT in three dimensions, first using bony anatomy for bony registration (CBCT-B) and again using breast tissue outline for soft tissue registration (CBCT-S). Digitally reconstructed radiographs (DRR) generated from CBCT to simulate EPI were compared to the planning DRR using bony anatomy in the V (parallel to the cranio-caudal axis) and U (perpendicular to V) planes. The systematic (Σ) and random (σ) errors were calculated and correlated with BMI and breast size. The systematic and random errors for EPI (Σ V = 3.7 mm, Σ U = 2.8 mm and σ V = 2.9 mm, σ U = 2.5) and CBCT-B (Σ V = 3.5 mm, Σ U = 3.4 mm and σ V = 2.8 mm, σ U = 2.8) were of similar magnitude in the V and U planes. Similarly, the differences in setup errors for CBCT-B and CBCT-S in three dimensions were less than 1 mm. Only CBCT-S setup error correlated with BMI and breast size. CBCT and EPI show insignificant variation in their ability to detect setup error. These findings suggest no significant differences that would make one modality considered superior over the other and EPI should remain the standard of care for most patients. However, there is a correlation with breast size, BMI and setup error as detected by CBCT-S, justifying the use of CBCT-S for larger patients. © 2016 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.
NASA Astrophysics Data System (ADS)
Jung, Jae Hong; Jung, Joo-Young; Bae, Sun Hyun; Moon, Seong Kwon; Cho, Kwang Hwan
2016-10-01
The purpose of this study was to compare patient setup deviations for different image-guided protocols (weekly vs. biweekly) that are used in TomoDirect three-dimensional conformal radiotherapy (TD-3DCRT) for whole-breast radiation therapy (WBRT). A total of 138 defined megavoltage computed tomography (MVCT) image sets from 46 breast cancer cases were divided into two groups based on the imaging acquisition times: weekly or biweekly. The mean error, three-dimensional setup displacement error (3D-error), systematic error (Σ), and random error (σ) were calculated for each group. The 3D-errors were 4.29 ± 1.11 mm and 5.02 ± 1.85 mm for the weekly and biweekly groups, respectively; the biweekly error was 14.6% higher than the weekly error. The systematic errors in the roll angle and the x, y, and z directions were 0.48°, 1.72 mm, 2.18 mm, and 1.85 mm for the weekly protocol and 0.21°, 1.24 mm, 1.39 mm, and 1.85 mm for the biweekly protocol. Random errors in the roll angle and the x, y, and z directions were 25.7%, 40.6%, 40.0%, and 40.8% higher in the biweekly group than in the weekly group. For the x, y, and z directions, the distributions of the treatment frequency at less than 5 mm were 98.6%, 91.3%, and 94.2% in the weekly group and 94.2%, 89.9%, and 82.6% in the biweekly group. Moreover, the roll angles with 0 - 1° were 79.7% and 89.9% in the weekly and the biweekly groups, respectively. Overall, the evaluation of setup deviations for the two protocols revealed no significant differences (p > 0.05). Reducing the frequency of MVCT imaging could have promising effects on imaging doses and machine times during treatment. However, the biweekly protocol was associated with increased random setup deviations in the treatment. We have demonstrated a biweekly protocol of TD-3DCRT for WBRT, and we anticipate that our method may provide an alternative approach for considering the uncertainties in the patient setup.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, JY; Hong, DL
Purpose: The purpose of this study is to investigate the patient set-up error and interfraction target coverage in cervical cancer using image-guided adaptive radiotherapy (IGART) with cone-beam computed tomography (CBCT). Methods: Twenty cervical cancer patients undergoing intensity modulated radiotherapy (IMRT) were randomly selected. All patients were matched to the isocenter using laser with the skin markers. Three dimensional CBCT projections were acquired by the Varian Truebeam treatment system. Set-up errors were evaluated by radiation oncologists, after CBCT correction. The clinical target volume (CTV) was delineated on each CBCT, and the planning target volume (PTV) coverage of each CBCT-CTVs was analyzed.more » Results: A total of 152 CBCT scans were acquired from twenty cervical cancer patients, the mean set-up errors in the longitudinal, vertical, and lateral direction were 3.57, 2.74 and 2.5mm respectively, without CBCT corrections. After corrections, these were decreased to 1.83, 1.44 and 0.97mm. For the target coverage, CBCT-CTV coverage without CBCT correction was 94% (143/152), and 98% (149/152) with correction. Conclusion: Use of CBCT verfication to measure patient setup errors could be applied to improve the treatment accuracy. In addition, the set-up error corrections significantly improve the CTV coverage for cervical cancer patients.« less
Wu, Jian; Murphy, Martin J
2010-06-01
To assess the precision and robustness of patient setup corrections computed from 3D/3D rigid registration methods using image intensity, when no ground truth validation is possible. Fifteen pairs of male pelvic CTs were rigidly registered using four different in-house registration methods. Registration results were compared for different resolutions and image content by varying the image down-sampling ratio and by thresholding out soft tissue to isolate bony landmarks. Intrinsic registration precision was investigated by comparing the different methods and by reversing the source and the target roles of the two images being registered. The translational reversibility errors for successful registrations ranged from 0.0 to 1.69 mm. Rotations were less than 1 degrees. Mutual information failed in most registrations that used only bony landmarks. The magnitude of the reversibility error was strongly correlated with the success/ failure of each algorithm to find the global minimum. Rigid image registrations have an intrinsic uncertainty and robustness that depends on the imaging modality, the registration algorithm, the image resolution, and the image content. In the absence of an absolute ground truth, the variation in the shifts calculated by several different methods provides a useful estimate of that uncertainty. The difference observed by reversing the source and target images can be used as an indication of robust convergence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imura, K; Fujibuchi, T; Hirata, H
Purpose: Patient set-up skills in radiotherapy treatment room have a great influence on treatment effect for image guided radiotherapy. In this study, we have developed the training system for improving practical set-up skills considering rotational correction in the virtual environment away from the pressure of actual treatment room by using three-dimensional computer graphic (3DCG) engine. Methods: The treatment room for external beam radiotherapy was reproduced in the virtual environment by using 3DCG engine (Unity). The viewpoints to perform patient set-up in the virtual treatment room were arranged in both sides of the virtual operable treatment couch to assume actual performancemore » by two clinical staffs. The position errors to mechanical isocenter considering alignment between skin marker and laser on the virtual patient model were displayed by utilizing numerical values expressed in SI units and the directions of arrow marks. The rotational errors calculated with a point on the virtual body axis as the center of each rotation axis for the virtual environment were corrected by adjusting rotational position of the body phantom wound the belt with gyroscope preparing on table in a real space. These rotational errors were evaluated by describing vector outer product operations and trigonometric functions in the script for patient set-up technique. Results: The viewpoints in the virtual environment allowed individual user to visually recognize the position discrepancy to mechanical isocenter until eliminating the positional errors of several millimeters. The rotational errors between the two points calculated with the center point could be efficiently corrected to display the minimum technique mathematically by utilizing the script. Conclusion: By utilizing the script to correct the rotational errors as well as accurate positional recognition for patient set-up technique, the training system developed for improving patient set-up skills enabled individual user to indicate efficient positional correction methods easily.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alderliesten, Tanja; Sonke, Jan-Jakob; Betgen, Anja
2013-02-01
Purpose: To investigate the applicability of 3-dimensional (3D) surface imaging for image guidance in deep-inspiration breath-hold radiation therapy (DIBH-RT) for patients with left-sided breast cancer. For this purpose, setup data based on captured 3D surfaces was compared with setup data based on cone beam computed tomography (CBCT). Methods and Materials: Twenty patients treated with DIBH-RT after breast-conserving surgery (BCS) were included. Before the start of treatment, each patient underwent a breath-hold CT scan for planning purposes. During treatment, dose delivery was preceded by setup verification using CBCT of the left breast. 3D surfaces were captured by a surface imaging systemmore » concurrently with the CBCT scan. Retrospectively, surface registrations were performed for CBCT to CT and for a captured 3D surface to CT. The resulting setup errors were compared with linear regression analysis. For the differences between setup errors, group mean, systematic error, random error, and 95% limits of agreement were calculated. Furthermore, receiver operating characteristic (ROC) analysis was performed. Results: Good correlation between setup errors was found: R{sup 2}=0.70, 0.90, 0.82 in left-right, craniocaudal, and anterior-posterior directions, respectively. Systematic errors were {<=}0.17 cm in all directions. Random errors were {<=}0.15 cm. The limits of agreement were -0.34-0.48, -0.42-0.39, and -0.52-0.23 cm in left-right, craniocaudal, and anterior-posterior directions, respectively. ROC analysis showed that a threshold between 0.4 and 0.8 cm corresponds to promising true positive rates (0.78-0.95) and false positive rates (0.12-0.28). Conclusions: The results support the application of 3D surface imaging for image guidance in DIBH-RT after BCS.« less
ERIC Educational Resources Information Center
Zhao, Xueyu; Solano-Flores, Guillermo; Qian, Ming
2018-01-01
This article addresses test translation review in international test comparisons. We investigated the applicability of the theory of test translation error--a theory of the multidimensionality and inevitability of test translation error--across source language-target language combinations in the translation of PISA (Programme of International…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, W; Yang, H; Wang, Y
2014-06-01
Purpose: To investigate the impact of different clipbox volumes with automated registration techniques using commercially available software with on board volumetric imaging(OBI) for treatment verification in cervical cancer patients. Methods: Fifty cervical cancer patients received daily CBCT scans(on-board imaging v1.5 system, Varian Medical Systems) during the first treatment week and weekly thereafter were included this analysis. A total of 450 CBCT scans were registered to the planning CTscan using pelvic clipbox(clipbox-Pelvic) and around PTV clip box(clipbox- PTV). The translations(anterior-posterior, left-right, superior-inferior) and the rotations(yaw, pitch and roll) errors for each matches were recorded. The setup errors and the systematic andmore » random errors for both of the clip-boxes were calculated. Paired Samples t test was used to analysis the differences between clipbox-Pelvic and clipbox-PTV. Results: . The SD of systematic error(σ) was 1.0mm, 2.0mm,3.2mm and 1.9mm,2.3mm, 3.0mm in the AP, LR and SI directions for clipbox-Pelvic and clipbox-PTV, respectively. The average random error(Σ)was 1.7mm, 2.0mm,4.2mm and 1.7mm,3.4mm, 4.4mm in the AP, LR and SI directions for clipbox-Pelvic and clipbox-PTV, respectively. But, only the SI direction was acquired significantly differences between two image registration volumes(p=0.002,p=0.01 for mean and SD). For rotations, the yaw mean/SD and the pitch SD were acquired significantly differences between clipbox-Pelvic and clipbox-PTV. Conclusion: The defined volume for Image registration is important for cervical cancer when 3D/3D match was used. The alignment clipbox can effect the setup errors obtained. Further analysis is need to determine the optimal defined volume to use the image registration in cervical cancer. Conflict of interest: none.« less
Baron, Charles A.; Awan, Musaddiq J.; Mohamed, Abdallah S. R.; Akel, Imad; Rosenthal, David I.; Gunn, G. Brandon; Garden, Adam S.; Dyer, Brandon A.; Court, Laurence; Sevak, Parag R; Kocak-Uzel, Esengul; Fuller, Clifton D.
2016-01-01
Larynx may alternatively serve as a target or organ-at-risk (OAR) in head and neck cancer (HNC) image-guided radiotherapy (IGRT). The objective of this study was to estimate IGRT parameters required for larynx positional error independent of isocentric alignment and suggest population–based compensatory margins. Ten HNC patients receiving radiotherapy (RT) with daily CT-on-rails imaging were assessed. Seven landmark points were placed on each daily scan. Taking the most superior anterior point of the C5 vertebra as a reference isocenter for each scan, residual displacement vectors to the other 6 points were calculated post-isocentric alignment. Subsequently, using the first scan as a reference, the magnitude of vector differences for all 6 points for all scans over the course of treatment were calculated. Residual systematic and random error, and the necessary compensatory CTV-to-PTV and OAR-to-PRV margins were calculated, using both observational cohort data and a bootstrap-resampled population estimator. The grand mean displacements for all anatomical points was 5.07mm, with mean systematic error of 1.1mm and mean random setup error of 2.63mm, while bootstrapped POIs grand mean displacement was 5.09mm, with mean systematic error of 1.23mm and mean random setup error of 2.61mm. Required margin for CTV-PTV expansion was 4.6mm for all cohort points, while the bootstrap estimator of the equivalent margin was 4.9mm. The calculated OAR-to-PRV expansion for the observed residual set-up error was 2.7mm, and bootstrap estimated expansion of 2.9mm. We conclude that the interfractional larynx setup error is a significant source of RT set-up/delivery error in HNC both when the larynx is considered as a CTV or OAR. We estimate the need for a uniform expansion of 5mm to compensate for set up error if the larynx is a target or 3mm if the larynx is an OAR when using a non-laryngeal bony isocenter. PMID:25679151
Heinz, Christian; Gerum, Sabine; Freislederer, Philipp; Ganswindt, Ute; Roeder, Falk; Corradini, Stefanie; Belka, Claus; Niyazi, Maximilian
2016-06-27
Fiducial markers are the superior method to compensate for interfractional motion in liver SBRT. However this method is invasive and thereby limits its application range. In this retrospective study, the compensation method for the interfractional motion using fiducial markers (gold standard) was compared to a new non-invasive approach, which does rely on the organ motion of the liver and the relative tumor position within this volume. We analyzed six patients (3 m, 3f) treated with SBRT in 2014. After fiducial marker implantation, all patients received a treatment CT (free breathing, without abdominal compression) and a 4D-CT (consisting of 10 respiratory phases). For all patients the gross tumor volumes (GTVs), internal target volume (ITV), planning target volume (PTV), internal marker target volumes (IMTVs) and the internal liver target volume (ILTV) were delineated based on the CT and 4D-CT images. CBCT imaging was used for the standard treatment setup based on the fiducial markers. According to the patient coordinates the 3 translational compensation values (t x , t y , t z ) for the interfractional motion were calculated by matching the blurred fiducial markers with the corresponding IMTV structures. 4 observers were requested to recalculate the translational compensation values for each CBCT (31) based on the ILTV structures. The differences of the translational compensation values between the IMTV and ILTV approach were analyzed. The magnitude of the mean absolute 3D registration error with regard to the gold standard overall patients and observers was 0.50 cm ± 0.28 cm. Individual registration errors up to 1.3 cm were observed. There was no significant overall linear correlation between the respiratory motion and the registration error of the ILTV approach. Two different methods to calculate the translational compensation values for interfractional motion in stereotactic liver therapy were evaluated. The registration accuracy of the ILTV approach is mainly limited by the non-rigid behavior of the liver and the individual registration experience of the observer. The ILTV approach lacks the accuracy that would be desired for stereotactic radiotherapy of the liver.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jani, S; Low, D; Lamb, J
2015-06-15
Purpose: To develop a system that can automatically detect patient identification and positioning errors using 3D computed tomography (CT) setup images and kilovoltage CT (kVCT) planning images. Methods: Planning kVCT images were collected for head-and-neck (H&N), pelvis, and spine treatments with corresponding 3D cone-beam CT (CBCT) and megavoltage CT (MVCT) setup images from TrueBeam and TomoTherapy units, respectively. Patient identification errors were simulated by registering setup and planning images from different patients. Positioning errors were simulated by misaligning the setup image by 1cm to 5cm in the six anatomical directions for H&N and pelvis patients. Misalignments for spine treatments weremore » simulated by registering the setup image to adjacent vertebral bodies on the planning kVCT. A body contour of the setup image was used as an initial mask for image comparison. Images were pre-processed by image filtering and air voxel thresholding, and image pairs were assessed using commonly-used image similarity metrics as well as custom -designed metrics. A linear discriminant analysis classifier was trained and tested on the datasets, and misclassification error (MCE), sensitivity, and specificity estimates were generated using 10-fold cross validation. Results: Our workflow produced MCE estimates of 0.7%, 1.7%, and 0% for H&N, pelvis, and spine TomoTherapy images, respectively. Sensitivities and specificities ranged from 98.0% to 100%. MCEs of 3.5%, 2.3%, and 2.1% were obtained for TrueBeam images of the above sites, respectively, with sensitivity and specificity estimates between 96.2% and 98.4%. MCEs for 1cm H&N/pelvis misalignments were 1.3/5.1% and 9.1/8.6% for TomoTherapy and TrueBeam images, respectively. 2cm MCE estimates were 0.4%/1.6% and 3.1/3.2%, respectively. Vertebral misalignment MCEs were 4.8% and 4.9% for TomoTherapy and TrueBeam images, respectively. Conclusion: Patient identification and gross misalignment errors can be robustly and automatically detected using 3D setup images of two imaging modalities across three commonly-treated anatomical sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakar, Ramachandran; Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi; Department of Radiology, All India Institute of Medical Sciences, New Delhi
Setup error plays a significant role in the final treatment outcome in radiotherapy. The effect of setup error on the planning target volume (PTV) and surrounding critical structures has been studied and the maximum allowed tolerance in setup error with minimal complications to the surrounding critical structure and acceptable tumor control probability is determined. Twelve patients were selected for this study after breast conservation surgery, wherein 8 patients were right-sided and 4 were left-sided breast. Tangential fields were placed on the 3-dimensional-computed tomography (3D-CT) dataset by isocentric technique and the dose to the PTV, ipsilateral lung (IL), contralateral lung (CLL),more » contralateral breast (CLB), heart, and liver were then computed from dose-volume histograms (DVHs). The planning isocenter was shifted for 3 and 10 mm in all 3 directions (X, Y, Z) to simulate the setup error encountered during treatment. Dosimetric studies were performed for each patient for PTV according to ICRU 50 guidelines: mean doses to PTV, IL, CLL, heart, CLB, liver, and percentage of lung volume that received a dose of 20 Gy or more (V20); percentage of heart volume that received a dose of 30 Gy or more (V30); and volume of liver that received a dose of 50 Gy or more (V50) were calculated for all of the above-mentioned isocenter shifts and compared to the results with zero isocenter shift. Simulation of different isocenter shifts in all 3 directions showed that the isocentric shifts along the posterior direction had a very significant effect on the dose to the heart, IL, CLL, and CLB, which was followed by the lateral direction. The setup error in isocenter should be strictly kept below 3 mm. The study shows that isocenter verification in the case of tangential fields should be performed to reduce future complications to adjacent normal tissues.« less
Boughalia, A; Marcie, S; Fellah, M; Chami, S; Mekki, F
2015-06-01
The aim of this study is to assess and quantify patients' set-up errors using an electronic portal imaging device and to evaluate their dosimetric and biological impact in terms of generalized equivalent uniform dose (gEUD) on predictive models, such as the tumour control probability (TCP) and the normal tissue complication probability (NTCP). 20 patients treated for nasopharyngeal cancer were enrolled in the radiotherapy-oncology department of HCA. Systematic and random errors were quantified. The dosimetric and biological impact of these set-up errors on the target volume and the organ at risk (OARs) coverage were assessed using calculation of dose-volume histogram, gEUD, TCP and NTCP. For this purpose, an in-house software was developed and used. The standard deviations (1SDs) of the systematic set-up and random set-up errors were calculated for the lateral and subclavicular fields and gave the following results: ∑ = 0.63 ± (0.42) mm and σ = 3.75 ± (0.79) mm, respectively. Thus a planning organ at risk volume (PRV) margin of 3 mm was defined around the OARs, and a 5-mm margin used around the clinical target volume. The gEUD, TCP and NTCP calculations obtained with and without set-up errors have shown increased values for tumour, where ΔgEUD (tumour) = 1.94% Gy (p = 0.00721) and ΔTCP = 2.03%. The toxicity of OARs was quantified using gEUD and NTCP. The values of ΔgEUD (OARs) vary from 0.78% to 5.95% in the case of the brainstem and the optic chiasm, respectively. The corresponding ΔNTCP varies from 0.15% to 0.53%, respectively. The quantification of set-up errors has a dosimetric and biological impact on the tumour and on the OARs. The developed in-house software using the concept of gEUD, TCP and NTCP biological models has been successfully used in this study. It can be used also to optimize the treatment plan established for our patients. The gEUD, TCP and NTCP may be more suitable tools to assess the treatment plans before treating the patients.
Measurement of electromagnetic tracking error in a navigated breast surgery setup
NASA Astrophysics Data System (ADS)
Harish, Vinyas; Baksh, Aidan; Ungi, Tamas; Lasso, Andras; Baum, Zachary; Gauvin, Gabrielle; Engel, Jay; Rudan, John; Fichtinger, Gabor
2016-03-01
PURPOSE: The measurement of tracking error is crucial to ensure the safety and feasibility of electromagnetically tracked, image-guided procedures. Measurement should occur in a clinical environment because electromagnetic field distortion depends on positioning relative to the field generator and metal objects. However, we could not find an accessible and open-source system for calibration, error measurement, and visualization. We developed such a system and tested it in a navigated breast surgery setup. METHODS: A pointer tool was designed for concurrent electromagnetic and optical tracking. Software modules were developed for automatic calibration of the measurement system, real-time error visualization, and analysis. The system was taken to an operating room to test for field distortion in a navigated breast surgery setup. Positional and rotational electromagnetic tracking errors were then calculated using optical tracking as a ground truth. RESULTS: Our system is quick to set up and can be rapidly deployed. The process from calibration to visualization also only takes a few minutes. Field distortion was measured in the presence of various surgical equipment. Positional and rotational error in a clean field was approximately 0.90 mm and 0.31°. The presence of a surgical table, an electrosurgical cautery, and anesthesia machine increased the error by up to a few tenths of a millimeter and tenth of a degree. CONCLUSION: In a navigated breast surgery setup, measurement and visualization of tracking error defines a safe working area in the presence of surgical equipment. Our system is available as an extension for the open-source 3D Slicer platform.
ERIC Educational Resources Information Center
El-Banna, Adel I.; Naeem, Marwa A.
2016-01-01
This research work aimed at making use of Machine Translation to help students avoid some syntactic, semantic and pragmatic common errors in translation from English into Arabic. Participants were a hundred and five freshmen who studied the "Translation Common Errors Remedial Program" prepared by the researchers. A testing kit that…
Beam-specific planning volumes for scattered-proton lung radiotherapy
NASA Astrophysics Data System (ADS)
Flampouri, S.; Hoppe, B. S.; Slopsema, R. L.; Li, Z.
2014-08-01
This work describes the clinical implementation of a beam-specific planning treatment volume (bsPTV) calculation for lung cancer proton therapy and its integration into the treatment planning process. Uncertainties incorporated in the calculation of the bsPTV included setup errors, machine delivery variability, breathing effects, inherent proton range uncertainties and combinations of the above. Margins were added for translational and rotational setup errors and breathing motion variability during the course of treatment as well as for their effect on proton range of each treatment field. The effect of breathing motion and deformation on the proton range was calculated from 4D computed tomography data. Range uncertainties were considered taking into account the individual voxel HU uncertainty along each proton beamlet. Beam-specific treatment volumes generated for 12 patients were used: a) as planning targets, b) for routine plan evaluation, c) to aid beam angle selection and d) to create beam-specific margins for organs at risk to insure sparing. The alternative planning technique based on the bsPTVs produced similar target coverage as the conventional proton plans while better sparing the surrounding tissues. Conventional proton plans were evaluated by comparing the dose distributions per beam with the corresponding bsPTV. The bsPTV volume as a function of beam angle revealed some unexpected sources of uncertainty and could help the planner choose more robust beams. Beam-specific planning volume for the spinal cord was used for dose distribution shaping to ensure organ sparing laterally and distally to the beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briscoe, M; Ploquin, N; Voroney, JP
2015-06-15
Purpose: To quantify the effect of patient rotation in stereotactic radiation therapy and establish a threshold where rotational patient set-up errors have a significant impact on target coverage. Methods: To simulate rotational patient set-up errors, a Matlab code was created to rotate the patient dose distribution around the treatment isocentre, located centrally in the lesion, while keeping the structure contours in the original locations on the CT and MRI. Rotations of 1°, 3°, and 5° for each of the pitch, roll, and yaw, as well as simultaneous rotations of 1°, 3°, and 5° around all three axes were applied tomore » two types of brain lesions: brain metastasis and acoustic neuroma. In order to analyze multiple tumour shapes, these plans included small spherical (metastasis), elliptical (acoustic neuroma), and large irregular (metastasis) tumour structures. Dose-volume histograms and planning target volumes were compared between the planned patient positions and those with simulated rotational set-up errors. The RTOG conformity index for patient rotation was also investigated. Results: Examining the tumour volumes that received 80% of the prescription dose in the planned and rotated patient positions showed decreases in prescription dose coverage of up to 2.3%. Conformity indices for treatments with simulated rotational errors showed decreases of up to 3% compared to the original plan. For irregular lesions, degradation of 1% of the target coverage can be seen for rotations as low as 3°. Conclusions: This data shows that for elliptical or spherical targets, rotational patient set-up errors less than 3° around any or all axes do not have a significant impact on the dose delivered to the target volume or the conformity index of the plan. However the same rotational errors would have an impact on plans for irregular tumours.« less
Automated estimation of hip prosthesis migration: a feasibility study
NASA Astrophysics Data System (ADS)
Vandemeulebroucke, Jef; Deklerck, Rudi; Temmermans, Frederik; Van Gompel, Gert; Buls, Nico; Scheerlinck, Thierry; de Mey, Johan
2013-09-01
A common complication associated with hip arthoplasty is prosthesis migration, and for most cemented components a migration greater than 0.85 mm within the first six months after surgery, are an indicator for prosthesis failure. Currently, prosthesis migration is evaluated using X-ray images, which can only reliably estimate migrations larger than 5 mm. We propose an automated method for estimating prosthesis migration more accurately, using CT images and image registration techniques. We report on the results obtained using an experimental set-up, in which a metal prosthesis can be translated and rotated with respect to a cadaver femur, over distances and angles applied using a combination of positioning stages. Images are first preprocessed to reduce artefacts. Bone and prosthesis are extracted using consecutive thresholding and morphological operations. Two registrations are performed, one aligning the bones and the other aligning the prostheses. The migration is estimated as the difference between the found transformations. We use a robust, multi-resolution, stochastic optimization approach, and compare the mean squared intensity differences (MS) to mutual information (MI). 30 high-resolution helical CT scans were acquired for prosthesis translations ranging from 0.05 mm to 4 mm, and rotations ranging from 0.3° to 3° . For the translations, the mean 3D registration error was found to be 0.22 mm for MS, and 0.15 mm for MI. For the rotations, the standard deviation of the estimation error was 0.18° for MS, and 0.08° for MI. The results show that the proposed approach is feasible and that clinically acceptable accuracies can be obtained. Clinical validation studies on patient images will now be undertaken.
Theory of Test Translation Error
ERIC Educational Resources Information Center
Solano-Flores, Guillermo; Backhoff, Eduardo; Contreras-Nino, Luis Angel
2009-01-01
In this article, we present a theory of test translation whose intent is to provide the conceptual foundation for effective, systematic work in the process of test translation and test translation review. According to the theory, translation error is multidimensional; it is not simply the consequence of defective translation but an inevitable fact…
Irradiation setup at the U-120M cyclotron facility
NASA Astrophysics Data System (ADS)
Křížek, F.; Ferencei, J.; Matlocha, T.; Pospíšil, J.; Príbeli, P.; Raskina, V.; Isakov, A.; Štursa, J.; Vaňát, T.; Vysoká, K.
2018-06-01
This paper describes parameters of the proton beams provided by the U-120M cyclotron and the related irradiation setup at the open access irradiation facility at the Nuclear Physics Institute of the Czech Academy of Sciences. The facility is suitable for testing radiation hardness of various electronic components. The use of the setup is illustrated by a measurement of an error rate for errors caused by Single Event Transients in an SRAM-based Xilinx XC3S200 FPGA. This measurement provides an estimate of a possible occurrence of Single Event Transients. Data suggest that the variation of error rate of the Single Event Effects for different clock phase shifts is not significant enough to use clock phase alignment with the beam as a fault mitigation technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Elizabeth S.; Prosnitz, Robert G.; Yu Xiaoli
2006-11-15
Purpose: The aim of this study was to assess the impact of patient-specific factors, left ventricle (LV) volume, and treatment set-up errors on the rate of perfusion defects 6 to 60 months post-radiation therapy (RT) in patients receiving tangential RT for left-sided breast cancer. Methods and Materials: Between 1998 and 2005, a total of 153 patients were enrolled onto an institutional review board-approved prospective study and had pre- and serial post-RT (6-60 months) cardiac perfusion scans to assess for perfusion defects. Of the patients, 108 had normal pre-RT perfusion scans and available follow-up data. The impact of patient-specific factors onmore » the rate of perfusion defects was assessed at various time points using univariate and multivariate analysis. The impact of set-up errors on the rate of perfusion defects was also analyzed using a one-tailed Fisher's Exact test. Results: Consistent with our prior results, the volume of LV in the RT field was the most significant predictor of perfusion defects on both univariate (p = 0.0005 to 0.0058) and multivariate analysis (p = 0.0026 to 0.0029). Body mass index (BMI) was the only significant patient-specific factor on both univariate (p = 0.0005 to 0.022) and multivariate analysis (p = 0.0091 to 0.05). In patients with very small volumes of LV in the planned RT fields, the rate of perfusion defects was significantly higher when the fields set-up 'too deep' (83% vs. 30%, p = 0.059). The frequency of deep set-up errors was significantly higher among patients with BMI {>=}25 kg/m{sup 2} compared with patients of normal weight (47% vs. 28%, p = 0.068). Conclusions: BMI {>=}25 kg/m{sup 2} may be a significant risk factor for cardiac toxicity after RT for left-sided breast cancer, possibly because of more frequent deep set-up errors resulting in the inclusion of additional heart in the RT fields. Further study is necessary to better understand the impact of patient-specific factors and set-up errors on the development of RT-induced perfusion defects.« less
Marcie, S; Fellah, M; Chami, S; Mekki, F
2015-01-01
Objective: The aim of this study is to assess and quantify patients' set-up errors using an electronic portal imaging device and to evaluate their dosimetric and biological impact in terms of generalized equivalent uniform dose (gEUD) on predictive models, such as the tumour control probability (TCP) and the normal tissue complication probability (NTCP). Methods: 20 patients treated for nasopharyngeal cancer were enrolled in the radiotherapy–oncology department of HCA. Systematic and random errors were quantified. The dosimetric and biological impact of these set-up errors on the target volume and the organ at risk (OARs) coverage were assessed using calculation of dose–volume histogram, gEUD, TCP and NTCP. For this purpose, an in-house software was developed and used. Results: The standard deviations (1SDs) of the systematic set-up and random set-up errors were calculated for the lateral and subclavicular fields and gave the following results: ∑ = 0.63 ± (0.42) mm and σ = 3.75 ± (0.79) mm, respectively. Thus a planning organ at risk volume (PRV) margin of 3 mm was defined around the OARs, and a 5-mm margin used around the clinical target volume. The gEUD, TCP and NTCP calculations obtained with and without set-up errors have shown increased values for tumour, where ΔgEUD (tumour) = 1.94% Gy (p = 0.00721) and ΔTCP = 2.03%. The toxicity of OARs was quantified using gEUD and NTCP. The values of ΔgEUD (OARs) vary from 0.78% to 5.95% in the case of the brainstem and the optic chiasm, respectively. The corresponding ΔNTCP varies from 0.15% to 0.53%, respectively. Conclusion: The quantification of set-up errors has a dosimetric and biological impact on the tumour and on the OARs. The developed in-house software using the concept of gEUD, TCP and NTCP biological models has been successfully used in this study. It can be used also to optimize the treatment plan established for our patients. Advances in knowledge: The gEUD, TCP and NTCP may be more suitable tools to assess the treatment plans before treating the patients. PMID:25882689
High dimensional linear regression models under long memory dependence and measurement error
NASA Astrophysics Data System (ADS)
Kaul, Abhishek
This dissertation consists of three chapters. The first chapter introduces the models under consideration and motivates problems of interest. A brief literature review is also provided in this chapter. The second chapter investigates the properties of Lasso under long range dependent model errors. Lasso is a computationally efficient approach to model selection and estimation, and its properties are well studied when the regression errors are independent and identically distributed. We study the case, where the regression errors form a long memory moving average process. We establish a finite sample oracle inequality for the Lasso solution. We then show the asymptotic sign consistency in this setup. These results are established in the high dimensional setup (p> n) where p can be increasing exponentially with n. Finally, we show the consistency, n½ --d-consistency of Lasso, along with the oracle property of adaptive Lasso, in the case where p is fixed. Here d is the memory parameter of the stationary error sequence. The performance of Lasso is also analysed in the present setup with a simulation study. The third chapter proposes and investigates the properties of a penalized quantile based estimator for measurement error models. Standard formulations of prediction problems in high dimension regression models assume the availability of fully observed covariates and sub-Gaussian and homogeneous model errors. This makes these methods inapplicable to measurement errors models where covariates are unobservable and observations are possibly non sub-Gaussian and heterogeneous. We propose weighted penalized corrected quantile estimators for the regression parameter vector in linear regression models with additive measurement errors, where unobservable covariates are nonrandom. The proposed estimators forgo the need for the above mentioned model assumptions. We study these estimators in both the fixed dimension and high dimensional sparse setups, in the latter setup, the dimensionality can grow exponentially with the sample size. In the fixed dimensional setting we provide the oracle properties associated with the proposed estimators. In the high dimensional setting, we provide bounds for the statistical error associated with the estimation, that hold with asymptotic probability 1, thereby providing the ℓ1-consistency of the proposed estimator. We also establish the model selection consistency in terms of the correctly estimated zero components of the parameter vector. A simulation study that investigates the finite sample accuracy of the proposed estimator is also included in this chapter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velec, Michael; Waldron, John N.; O'Sullivan, Brian
2010-03-01
Purpose: To prospectively compare setup error in standard thermoplastic masks and skin-sparing masks (SSMs) modified with low neck cutouts for head-and-neck intensity-modulated radiation therapy (IMRT) patients. Methods and Materials: Twenty head-and-neck IMRT patients were randomized to be treated in a standard mask (SM) or SSM. Cone-beam computed tomography (CBCT) scans, acquired daily after both initial setup and any repositioning, were used for initial and residual interfraction evaluation, respectively. Weekly, post-IMRT CBCT scans were acquired for intrafraction setup evaluation. The population random (sigma) and systematic (SIGMA) errors were compared for SMs and SSMs. Skin toxicity was recorded weekly by use ofmore » Radiation Therapy Oncology Group criteria. Results: We evaluated 762 CBCT scans in 11 patients randomized to the SM and 9 to the SSM. Initial interfraction sigma was 1.6 mm or less or 1.1 deg. or less for SM and 2.0 mm or less and 0.8 deg. for SSM. Initial interfraction SIGMA was 1.0 mm or less or 1.4 deg. or less for SM and 1.1 mm or less or 0.9 deg. or less for SSM. These errors were reduced before IMRT with CBCT image guidance with no significant differences in residual interfraction or intrafraction uncertainties between SMs and SSMs. Intrafraction sigma and SIGMA were less than 1 mm and less than 1 deg. for both masks. Less severe skin reactions were observed in the cutout regions of the SSM compared with non-cutout regions. Conclusions: Interfraction and intrafraction setup error is not significantly different for SSMs and conventional masks in head-and-neck radiation therapy. Mask cutouts should be considered for these patients in an effort to reduce skin toxicity.« less
Defining robustness protocols: a method to include and evaluate robustness in clinical plans
NASA Astrophysics Data System (ADS)
McGowan, S. E.; Albertini, F.; Thomas, S. J.; Lomax, A. J.
2015-04-01
We aim to define a site-specific robustness protocol to be used during the clinical plan evaluation process. Plan robustness of 16 skull base IMPT plans to systematic range and random set-up errors have been retrospectively and systematically analysed. This was determined by calculating the error-bar dose distribution (ebDD) for all the plans and by defining some metrics used to define protocols aiding the plan assessment. Additionally, an example of how to clinically use the defined robustness database is given whereby a plan with sub-optimal brainstem robustness was identified. The advantage of using different beam arrangements to improve the plan robustness was analysed. Using the ebDD it was found range errors had a smaller effect on dose distribution than the corresponding set-up error in a single fraction, and that organs at risk were most robust to the range errors, whereas the target was more robust to set-up errors. A database was created to aid planners in terms of plan robustness aims in these volumes. This resulted in the definition of site-specific robustness protocols. The use of robustness constraints allowed for the identification of a specific patient that may have benefited from a treatment of greater individuality. A new beam arrangement showed to be preferential when balancing conformality and robustness for this case. The ebDD and error-bar volume histogram proved effective in analysing plan robustness. The process of retrospective analysis could be used to establish site-specific robustness planning protocols in proton therapy. These protocols allow the planner to determine plans that, although delivering a dosimetrically adequate dose distribution, have resulted in sub-optimal robustness to these uncertainties. For these cases the use of different beam start conditions may improve the plan robustness to set-up and range uncertainties.
Lamb, James M; Agazaryan, Nzhde; Low, Daniel A
2013-10-01
To determine whether kilovoltage x-ray projection radiation therapy setup images could be used to perform patient identification and detect gross errors in patient setup using a computer algorithm. Three patient cohorts treated using a commercially available image guided radiation therapy (IGRT) system that uses 2-dimensional to 3-dimensional (2D-3D) image registration were retrospectively analyzed: a group of 100 cranial radiation therapy patients, a group of 100 prostate cancer patients, and a group of 83 patients treated for spinal lesions. The setup images were acquired using fixed in-room kilovoltage imaging systems. In the prostate and cranial patient groups, localizations using image registration were performed between computed tomography (CT) simulation images from radiation therapy planning and setup x-ray images corresponding both to the same patient and to different patients. For the spinal patients, localizations were performed to the correct vertebral body, and to an adjacent vertebral body, using planning CTs and setup x-ray images from the same patient. An image similarity measure used by the IGRT system image registration algorithm was extracted from the IGRT system log files and evaluated as a discriminant for error detection. A threshold value of the similarity measure could be chosen to separate correct and incorrect patient matches and correct and incorrect vertebral body localizations with excellent accuracy for these patient cohorts. A 10-fold cross-validation using linear discriminant analysis yielded misclassification probabilities of 0.000, 0.0045, and 0.014 for the cranial, prostate, and spinal cases, respectively. An automated measure of the image similarity between x-ray setup images and corresponding planning CT images could be used to perform automated patient identification and detection of localization errors in radiation therapy treatments. Copyright © 2013 Elsevier Inc. All rights reserved.
Translation fidelity coevolves with longevity.
Ke, Zhonghe; Mallik, Pramit; Johnson, Adam B; Luna, Facundo; Nevo, Eviatar; Zhang, Zhengdong D; Gladyshev, Vadim N; Seluanov, Andrei; Gorbunova, Vera
2017-10-01
Whether errors in protein synthesis play a role in aging has been a subject of intense debate. It has been suggested that rare mistakes in protein synthesis in young organisms may result in errors in the protein synthesis machinery, eventually leading to an increasing cascade of errors as organisms age. Studies that followed generally failed to identify a dramatic increase in translation errors with aging. However, whether translation fidelity plays a role in aging remained an open question. To address this issue, we examined the relationship between translation fidelity and maximum lifespan across 17 rodent species with diverse lifespans. To measure translation fidelity, we utilized sensitive luciferase-based reporter constructs with mutations in an amino acid residue critical to luciferase activity, wherein misincorporation of amino acids at this mutated codon re-activated the luciferase. The frequency of amino acid misincorporation at the first and second codon positions showed strong negative correlation with maximum lifespan. This correlation remained significant after phylogenetic correction, indicating that translation fidelity coevolves with longevity. These results give new life to the role of protein synthesis errors in aging: Although the error rate may not significantly change with age, the basal rate of translation errors is important in defining lifespan across mammals. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Jani, Shyam S; Low, Daniel A; Lamb, James M
2015-01-01
To develop an automated system that detects patient identification and positioning errors between 3-dimensional computed tomography (CT) and kilovoltage CT planning images. Planning kilovoltage CT images were collected for head and neck (H&N), pelvis, and spine treatments with corresponding 3-dimensional cone beam CT and megavoltage CT setup images from TrueBeam and TomoTherapy units, respectively. Patient identification errors were simulated by registering setup and planning images from different patients. For positioning errors, setup and planning images were misaligned by 1 to 5 cm in the 6 anatomical directions for H&N and pelvis patients. Spinal misalignments were simulated by misaligning to adjacent vertebral bodies. Image pairs were assessed using commonly used image similarity metrics as well as custom-designed metrics. Linear discriminant analysis classification models were trained and tested on the imaging datasets, and misclassification error (MCE), sensitivity, and specificity parameters were estimated using 10-fold cross-validation. For patient identification, our workflow produced MCE estimates of 0.66%, 1.67%, and 0% for H&N, pelvis, and spine TomoTherapy images, respectively. Sensitivity and specificity ranged from 97.5% to 100%. MCEs of 3.5%, 2.3%, and 2.1% were obtained for TrueBeam images of the above sites, respectively, with sensitivity and specificity estimates between 95.4% and 97.7%. MCEs for 1-cm H&N/pelvis misalignments were 1.3%/5.1% and 9.1%/8.6% for TomoTherapy and TrueBeam images, respectively. Two-centimeter MCE estimates were 0.4%/1.6% and 3.1/3.2%, respectively. MCEs for vertebral body misalignments were 4.8% and 3.6% for TomoTherapy and TrueBeam images, respectively. Patient identification and gross misalignment errors can be robustly and automatically detected using 3-dimensional setup images of different energies across 3 commonly treated anatomical sites. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Oh, Se An; Park, Jae Won; Yea, Ji Woon; Kim, Sung Kyu
2017-01-01
The objective of this study was to evaluate the setup discrepancy between BrainLAB 6 degree-of-freedom (6D) ExacTrac and cone-beam computed tomography (CBCT) used with the imaging guidance system Novalis Tx for intracranial stereotactic radiosurgery. We included 107 consecutive patients for whom white stereotactic head frame masks (R408; Clarity Medical Products, Newark, OH) were used to fix the head during intracranial stereotactic radiosurgery, between August 2012 and July 2016. The patients were immobilized in the same state for both the verification image using 6D ExacTrac and online 3D CBCT. In addition, after radiation treatment, registration between the computed tomography simulation images and the CBCT images was performed with offline 6D fusion in an offline review. The root-mean-square of the difference in the translational dimensions between the ExacTrac system and CBCT was <1.01 mm for online matching and <1.10 mm for offline matching. Furthermore, the root-mean-square of the difference in the rotational dimensions between the ExacTrac system and the CBCT were <0.82° for online matching and <0.95° for offline matching. It was concluded that while the discrepancies in residual setup errors between the ExacTrac 6D X-ray and the CBCT were minor, they should not be ignored.
Application of statistical machine translation to public health information: a feasibility study.
Kirchhoff, Katrin; Turner, Anne M; Axelrod, Amittai; Saavedra, Francisco
2011-01-01
Accurate, understandable public health information is important for ensuring the health of the nation. The large portion of the US population with Limited English Proficiency is best served by translations of public-health information into other languages. However, a large number of health departments and primary care clinics face significant barriers to fulfilling federal mandates to provide multilingual materials to Limited English Proficiency individuals. This article presents a pilot study on the feasibility of using freely available statistical machine translation technology to translate health promotion materials. The authors gathered health-promotion materials in English from local and national public-health websites. Spanish versions were created by translating the documents using a freely available machine-translation website. Translations were rated for adequacy and fluency, analyzed for errors, manually corrected by a human posteditor, and compared with exclusively manual translations. Machine translation plus postediting took 15-53 min per document, compared to the reported days or even weeks for the standard translation process. A blind comparison of machine-assisted and human translations of six documents revealed overall equivalency between machine-translated and manually translated materials. The analysis of translation errors indicated that the most important errors were word-sense errors. The results indicate that machine translation plus postediting may be an effective method of producing multilingual health materials with equivalent quality but lower cost compared to manual translations.
Application of statistical machine translation to public health information: a feasibility study
Turner, Anne M; Axelrod, Amittai; Saavedra, Francisco
2011-01-01
Objective Accurate, understandable public health information is important for ensuring the health of the nation. The large portion of the US population with Limited English Proficiency is best served by translations of public-health information into other languages. However, a large number of health departments and primary care clinics face significant barriers to fulfilling federal mandates to provide multilingual materials to Limited English Proficiency individuals. This article presents a pilot study on the feasibility of using freely available statistical machine translation technology to translate health promotion materials. Design The authors gathered health-promotion materials in English from local and national public-health websites. Spanish versions were created by translating the documents using a freely available machine-translation website. Translations were rated for adequacy and fluency, analyzed for errors, manually corrected by a human posteditor, and compared with exclusively manual translations. Results Machine translation plus postediting took 15–53 min per document, compared to the reported days or even weeks for the standard translation process. A blind comparison of machine-assisted and human translations of six documents revealed overall equivalency between machine-translated and manually translated materials. The analysis of translation errors indicated that the most important errors were word-sense errors. Conclusion The results indicate that machine translation plus postediting may be an effective method of producing multilingual health materials with equivalent quality but lower cost compared to manual translations. PMID:21498805
Richmond, N D; Pilling, K E; Peedell, C; Shakespeare, D; Walker, C P
2012-01-01
Stereotactic body radiotherapy for early stage non-small cell lung cancer is an emerging treatment option in the UK. Since relatively few high-dose ablative fractions are delivered to a small target volume, the consequences of a geometric miss are potentially severe. This paper presents the results of treatment delivery set-up data collected using Elekta Synergy (Elekta, Crawley, UK) cone-beam CT imaging for 17 patients immobilised using the Bodyfix system (Medical Intelligence, Schwabmuenchen, Germany). Images were acquired on the linear accelerator at initial patient treatment set-up, following any position correction adjustments, and post-treatment. These were matched to the localisation CT scan using the Elekta XVI software. In total, 71 fractions were analysed for patient set-up errors. The mean vector error at initial set-up was calculated as 5.3±2.7 mm, which was significantly reduced to 1.4±0.7 mm following image guided correction. Post-treatment the corresponding value was 2.1±1.2 mm. The use of the Bodyfix abdominal compression plate on 5 patients to reduce the range of tumour excursion during respiration produced mean longitudinal set-up corrections of −4.4±4.5 mm compared with −0.7±2.6 mm without compression for the remaining 12 patients. The use of abdominal compression led to a greater variation in set-up errors and a shift in the mean value. PMID:22665927
ERIC Educational Resources Information Center
Karoly, Adrienn
2012-01-01
This paper reports the findings of a study aiming to reveal the recurring patterns of lexical, syntactic and textual errors in student translations of a specialized EU genre from English into Hungarian. By comparing the student translations to the official translation of the text, this article uncovers the most frequent errors that students made…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, J; Labarbe, R; Sterpin, E
2016-06-15
Purpose: To understand the extent to which the prompt gamma camera measurements can be used to predict the residual proton range due to setup errors and errors in the calibration curve. Methods: We generated ten variations on a default calibration curve (CC) and ten corresponding range maps (RM). Starting with the default RM, we chose a square array of N beamlets, which were then rotated by a random angle θ and shifted by a random vector s. We added a 5% distal Gaussian noise to each beamlet in order to introduce discrepancies that exist between the ranges predicted from themore » prompt gamma measurements and those simulated with Monte Carlo algorithms. For each RM, s, θ, along with an offset u in the CC, were optimized using a simple Euclidian distance between the default ranges and the ranges produced by the given RM. Results: The application of our method lead to the maximal overrange of 2.0mm and underrange of 0.6mm on average. Compared to the situations where s, θ, and u were ignored, these values were larger: 2.1mm and 4.3mm. In order to quantify the need for setup error corrections, we also performed computations in which u was corrected for, but s and θ were not. This yielded: 3.2mm and 3.2mm. The average computation time for 170 beamlets was 65 seconds. Conclusion: These results emphasize the necessity to correct for setup errors and the errors in the calibration curve. The simplicity and speed of our method makes it a good candidate for being implemented as a tool for in-room adaptive therapy. This work also demonstrates that the Prompt gamma range measurements can indeed be useful in the effort to reduce range errors. Given these results, and barring further refinements, this approach is a promising step towards an adaptive proton radiotherapy.« less
Technical Note: Unified imaging and robotic couch quality assurance.
Cook, Molly C; Roper, Justin; Elder, Eric S; Schreibmann, Eduard
2016-09-01
To introduce a simplified quality assurance (QA) procedure that integrates tests for the linac's imaging components and the robotic couch. Current QA procedures for evaluating the alignment of the imaging system and linac require careful positioning of a phantom at isocenter before image acquisition and analysis. A complementary procedure for the robotic couch requires an initial displacement of the phantom and then evaluates the accuracy of repositioning the phantom at isocenter. We propose a two-in-one procedure that introduces a custom software module and incorporates both checks into one motion for increased efficiency. The phantom was manually set with random translational and rotational shifts, imaged with the in-room imaging system, and then registered to the isocenter using a custom software module. The software measured positioning accuracy by comparing the location of the repositioned phantom with a CAD model of the phantom at isocenter, which is physically verified using the MV port graticule. Repeatability of the custom software was tested by an assessment of internal marker location extraction on a series of scans taken over differing kV and CBCT acquisition parameters. The proposed method was able to correctly position the phantom at isocenter within acceptable 1 mm and 1° SRS tolerances, verified by both physical inspection and the custom software. Residual errors for mechanical accuracy were 0.26 mm vertically, 0.21 mm longitudinally, 0.55 mm laterally, 0.21° in pitch, 0.1° in roll, and 0.67° in yaw. The software module was shown to be robust across various scan acquisition parameters, detecting markers within 0.15 mm translationally in kV acquisitions and within 0.5 mm translationally and 0.3° rotationally across CBCT acquisitions with significant variations in voxel size. Agreement with vendor registration methods was well within 0.5 mm; differences were not statistically significant. As compared to the current two-step approach, the proposed QA procedure streamlines the workflow, accounts for rotational errors in imaging alignment, and simulates a broad range of variations in setup errors seen in clinical practice.
Prevention of gross setup errors in radiotherapy with an efficient automatic patient safety system.
Yan, Guanghua; Mittauer, Kathryn; Huang, Yin; Lu, Bo; Liu, Chihray; Li, Jonathan G
2013-11-04
Treatment of the wrong body part due to incorrect setup is among the leading types of errors in radiotherapy. The purpose of this paper is to report an efficient automatic patient safety system (PSS) to prevent gross setup errors. The system consists of a pair of charge-coupled device (CCD) cameras mounted in treatment room, a single infrared reflective marker (IRRM) affixed on patient or immobilization device, and a set of in-house developed software. Patients are CT scanned with a CT BB placed over their surface close to intended treatment site. Coordinates of the CT BB relative to treatment isocenter are used as reference for tracking. The CT BB is replaced with an IRRM before treatment starts. PSS evaluates setup accuracy by comparing real-time IRRM position with reference position. To automate system workflow, PSS synchronizes with the record-and-verify (R&V) system in real time and automatically loads in reference data for patient under treatment. Special IRRMs, which can permanently stick to patient face mask or body mold throughout the course of treatment, were designed to minimize therapist's workload. Accuracy of the system was examined on an anthropomorphic phantom with a designed end-to-end test. Its performance was also evaluated on head and neck as well as abdominalpelvic patients using cone-beam CT (CBCT) as standard. The PSS system achieved a seamless clinic workflow by synchronizing with the R&V system. By permanently mounting specially designed IRRMs on patient immobilization devices, therapist intervention is eliminated or minimized. Overall results showed that the PSS system has sufficient accuracy to catch gross setup errors greater than 1 cm in real time. An efficient automatic PSS with sufficient accuracy has been developed to prevent gross setup errors in radiotherapy. The system can be applied to all treatment sites for independent positioning verification. It can be an ideal complement to complex image-guidance systems due to its advantages of continuous tracking ability, no radiation dose, and fully automated clinic workflow.
SU-F-T-642: Sub Millimeter Accurate Setup of More Than Three Vertebrae in Spinal SBRT with 6D Couch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X; Zhao, Z; Yang, J
Purpose: To assess the initial setup accuracy in treating more than 3 vertebral body levels in spinal SBRT using a 6D couch. Methods: We retrospectively analyzed last 20 spinal SBRT patients (4 cervical, 9 thoracic, 7 lumbar/sacrum) treated in our clinic. These patients in customized immobilization device were treated in 1 or 3 fractions. Initial setup used ExacTrac and Brainlab 6D couch to align target within 1 mm and 1 degree, following by a cone beam CT (CBCT) for verification. Our current standard practice allows treating a maximum of three continuous vertebrae. Here we assess the possibility to achieve submore » millimeter setup accuracy for more than three vertebrae by examining the residual error in every slice of CBCT. The CBCT had a range of 17.5 cm, which covered 5 to 9 continuous vertebrae depending on the patient and target location. In the study, CBCT from the 1st fraction treatment was rigidly registered with the planning CT in Pinnacle. The residual setup error of a vertebra was determined by expanding the vertebra contour on the planning CT to be large enough to enclose the corresponding vertebra on CBCT. The margin of the expansion was considered as setup error. Results: Out of the 20 patients analyzed, initial setup accuracy can be achieved within 1 mm for a span of 5 or more vertebrae starting from T2 vertebra to inferior vertebra levels. 2 cervical and 2 upper thoracic patients showed the cervical spine was difficult to achieve sub millimeter accuracy for multi levels without a customized immobilization headrest. Conclusion: If the curvature of spinal columns can be reproduced in customized immobilization device during treatment as simulation, multiple continuous vertebrae can be setup within 1 mm with the use of a 6D couch.« less
Analysis of Prostate Patient Setup and Tracking Data: Potential Intervention Strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su Zhong, E-mail: zsu@floridaproton.org; Zhang Lisha; Murphy, Martin
Purpose: To evaluate the setup, interfraction, and intrafraction organ motion error distributions and simulate intrafraction intervention strategies for prostate radiotherapy. Methods and Materials: A total of 17 patients underwent treatment setup and were monitored using the Calypso system during radiotherapy. On average, the prostate tracking measurements were performed for 8 min/fraction for 28 fractions for each patient. For both patient couch shift data and intrafraction organ motion data, the systematic and random errors were obtained from the patient population. The planning target volume margins were calculated using the van Herk formula. Two intervention strategies were simulated using the tracking data:more » the deviation threshold and period. The related planning target volume margins, time costs, and prostate position 'fluctuation' were presented. Results: The required treatment margin for the left-right, superoinferior, and anteroposterior axes was 8.4, 10.8, and 14.7 mm for skin mark-only setup and 1.3, 2.3, and 2.8 mm using the on-line setup correction, respectively. Prostate motion significantly correlated among the superoinferior and anteroposterior directions. Of the 17 patients, 14 had prostate motion within 5 mm of the initial setup position for {>=}91.6% of the total tracking time. The treatment margin decreased to 1.1, 1.8, and 2.3 mm with a 3-mm threshold correction and to 0.5, 1.0, and 1.5 mm with an every-2-min correction in the left-right, superoinferior, and anteroposterior directions, respectively. The periodic corrections significantly increase the treatment time and increased the number of instances when the setup correction was made during transient excursions. Conclusions: The residual systematic and random error due to intrafraction prostate motion is small after on-line setup correction. Threshold-based and time-based intervention strategies both reduced the planning target volume margins. The time-based strategies increased the treatment time and the in-fraction position fluctuation.« less
Mock, U; Dieckmann, K; Wolff, U; Knocke, T H; Pötter, R
1999-08-01
Geometrical accuracy in patient positioning can vary substantially during external radiotherapy. This study estimated the set-up accuracy during pelvic irradiation for gynecological malignancies for determination of safety margins (planning target volume, PTV). Based on electronic portal imaging devices (EPID), 25 patients undergoing 4-field pelvic irradiation for gynecological malignancies were analyzed with regard to set-up accuracy during the treatment course. Regularly performed EPID images were used in order to systematically assess the systematic and random component of set-up displacements. Anatomical matching of verification and simulation images was followed by measuring corresponding distances between the central axis and anatomical features. Data analysis of set-up errors referred to the x-, y-,and z-axes. Additionally, cumulative frequencies were evaluated. A total of 50 simulation films and 313 verification images were analyzed. For the anterior-posterior (AP) beam direction mean deviations along the x- and z-axes were 1.5 mm and -1.9 mm, respectively. Moreover, random errors of 4.8 mm (x-axis) and 3.0 mm (z-axis) were determined. Concerning the latero-lateral treatment fields, the systematic errors along the two axes were calculated to 2.9 mm (y-axis) and -2.0 mm (z-axis) and random errors of 3.8 mm and 3.5 mm were found, respectively. The cumulative frequency of misalignments < or =5 mm showed values of 75% (AP fields) and 72% (latero-lateral fields). With regard to cumulative frequencies < or =10 mm quantification revealed values of 97% for both beam directions. During external pelvic irradiation therapy for gynecological malignancies, EPID images on a regular basis revealed acceptable set-up inaccuracies. Safety margins (PTV) of 1 cm appear to be sufficient, accounting for more than 95% of all deviations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredriksson, Albin, E-mail: albin.fredriksson@raysearchlabs.com; Hårdemark, Björn; Forsgren, Anders
2015-07-15
Purpose: This paper introduces a method that maximizes the probability of satisfying the clinical goals in intensity-modulated radiation therapy treatments subject to setup uncertainty. Methods: The authors perform robust optimization in which the clinical goals are constrained to be satisfied whenever the setup error falls within an uncertainty set. The shape of the uncertainty set is included as a variable in the optimization. The goal of the optimization is to modify the shape of the uncertainty set in order to maximize the probability that the setup error will fall within the modified set. Because the constraints enforce the clinical goalsmore » to be satisfied under all setup errors within the uncertainty set, this is equivalent to maximizing the probability of satisfying the clinical goals. This type of robust optimization is studied with respect to photon and proton therapy applied to a prostate case and compared to robust optimization using an a priori defined uncertainty set. Results: Slight reductions of the uncertainty sets resulted in plans that satisfied a larger number of clinical goals than optimization with respect to a priori defined uncertainty sets, both within the reduced uncertainty sets and within the a priori, nonreduced, uncertainty sets. For the prostate case, the plans taking reduced uncertainty sets into account satisfied 1.4 (photons) and 1.5 (protons) times as many clinical goals over the scenarios as the method taking a priori uncertainty sets into account. Conclusions: Reducing the uncertainty sets enabled the optimization to find better solutions with respect to the errors within the reduced as well as the nonreduced uncertainty sets and thereby achieve higher probability of satisfying the clinical goals. This shows that asking for a little less in the optimization sometimes leads to better overall plan quality.« less
A Conjoint Analysis Framework for Evaluating User Preferences in Machine Translation
Kirchhoff, Katrin; Capurro, Daniel; Turner, Anne M.
2013-01-01
Despite much research on machine translation (MT) evaluation, there is surprisingly little work that directly measures users’ intuitive or emotional preferences regarding different types of MT errors. However, the elicitation and modeling of user preferences is an important prerequisite for research on user adaptation and customization of MT engines. In this paper we explore the use of conjoint analysis as a formal quantitative framework to assess users’ relative preferences for different types of translation errors. We apply our approach to the analysis of MT output from translating public health documents from English into Spanish. Our results indicate that word order errors are clearly the most dispreferred error type, followed by word sense, morphological, and function word errors. The conjoint analysis-based model is able to predict user preferences more accurately than a baseline model that chooses the translation with the fewest errors overall. Additionally we analyze the effect of using a crowd-sourced respondent population versus a sample of domain experts and observe that main preference effects are remarkably stable across the two samples. PMID:24683295
Feedforward operation of a lens setup for large defocus and astigmatism correction
NASA Astrophysics Data System (ADS)
Verstraete, Hans R. G. W.; Almasian, MItra; Pozzi, Paolo; Bilderbeek, Rolf; Kalkman, Jeroen; Faber, Dirk J.; Verhaegen, Michel
2016-04-01
In this manuscript, we present a lens setup for large defocus and astigmatism correction. A deformable defocus lens and two rotational cylindrical lenses are used to control the defocus and astigmatism. The setup is calibrated using a simple model that allows the calculation of the lens inputs so that a desired defocus and astigmatism are actuated on the eye. The setup is tested by determining the feedforward prediction error, imaging a resolution target, and removing introduced aberrations.
Quantitative evaluation of statistical errors in small-angle X-ray scattering measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedlak, Steffen M.; Bruetzel, Linda K.; Lipfert, Jan
A new model is proposed for the measurement errors incurred in typical small-angle X-ray scattering (SAXS) experiments, which takes into account the setup geometry and physics of the measurement process. The model accurately captures the experimentally determined errors from a large range of synchrotron and in-house anode-based measurements. Its most general formulation gives for the variance of the buffer-subtracted SAXS intensity σ 2(q) = [I(q) + const.]/(kq), whereI(q) is the scattering intensity as a function of the momentum transferq;kand const. are fitting parameters that are characteristic of the experimental setup. The model gives a concrete procedure for calculating realistic measurementmore » errors for simulated SAXS profiles. In addition, the results provide guidelines for optimizing SAXS measurements, which are in line with established procedures for SAXS experiments, and enable a quantitative evaluation of measurement errors.« less
An, Xinliang; Brittelle, Mack S; Lauzier, Pascal T; Gord, James R; Roy, Sukesh; Chen, Guang-Hong; Sanders, Scott T
2015-11-01
This paper introduces temperature imaging by total-variation-based compressed sensing (CS) tomography of H2O vapor absorption spectroscopy. A controlled laboratory setup is used to generate a constant two-dimensional temperature distribution in air (a roughly Gaussian temperature profile with a central temperature of 677 K). A wavelength-tunable laser beam is directed through the known distribution; the beam is translated and rotated using motorized stages to acquire complete absorption spectra in the 1330-1365 nm range at each of 64 beam locations and 60 view angles. Temperature reconstructions are compared to independent thermocouple measurements. Although the distribution studied is approximately axisymmetric, axisymmetry is not assumed and simulations show similar performance for arbitrary temperature distributions. We study the measurement error as a function of number of beams and view angles used in reconstruction to gauge the potential for application of CS in practical test articles where optical access is limited.
Experimental validation of 2D uncertainty quantification for DIC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reu, Phillip L.
Because digital image correlation (DIC) has become such an important and standard tool in the toolbox of experimental mechanicists, a complete uncertainty quantification of the method is needed. It should be remembered that each DIC setup and series of images will have a unique uncertainty based on the calibration quality and the image and speckle quality of the analyzed images. Any pretest work done with a calibrated DIC stereo-rig to quantify the errors using known shapes and translations, while useful, do not necessarily reveal the uncertainty of a later test. This is particularly true with high-speed applications where actual testmore » images are often less than ideal. Work has previously been completed on the mathematical underpinnings of DIC uncertainty quantification and is already published, this paper will present corresponding experimental work used to check the validity of the uncertainty equations.« less
Experimental validation of 2D uncertainty quantification for digital image correlation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reu, Phillip L.
Because digital image correlation (DIC) has become such an important and standard tool in the toolbox of experimental mechanicists, a complete uncertainty quantification of the method is needed. It should be remembered that each DIC setup and series of images will have a unique uncertainty based on the calibration quality and the image and speckle quality of the analyzed images. Any pretest work done with a calibrated DIC stereo-rig to quantify the errors using known shapes and translations, while useful, do not necessarily reveal the uncertainty of a later test. This is particularly true with high-speed applications where actual testmore » images are often less than ideal. Work has previously been completed on the mathematical underpinnings of DIC uncertainty quantification and is already published, this paper will present corresponding experimental work used to check the validity of the uncertainty equations.« less
Monoplane 3D-2D registration of cerebral angiograms based on multi-objective stratified optimization
NASA Astrophysics Data System (ADS)
Aksoy, T.; Špiclin, Ž.; Pernuš, F.; Unal, G.
2017-12-01
Registration of 3D pre-interventional to 2D intra-interventional medical images has an increasingly important role in surgical planning, navigation and treatment, because it enables the physician to co-locate depth information given by pre-interventional 3D images with the live information in intra-interventional 2D images such as x-ray. Most tasks during image-guided interventions are carried out under a monoplane x-ray, which is a highly ill-posed problem for state-of-the-art 3D to 2D registration methods. To address the problem of rigid 3D-2D monoplane registration we propose a novel multi-objective stratified parameter optimization, wherein a small set of high-magnitude intensity gradients are matched between the 3D and 2D images. The stratified parameter optimization matches rotation templates to depth templates, first sampled from projected 3D gradients and second from the 2D image gradients, so as to recover 3D rigid-body rotations and out-of-plane translation. The objective for matching was the gradient magnitude correlation coefficient, which is invariant to in-plane translation. The in-plane translations are then found by locating the maximum of the gradient phase correlation between the best matching pair of rotation and depth templates. On twenty pairs of 3D and 2D images of ten patients undergoing cerebral endovascular image-guided intervention the 3D to monoplane 2D registration experiments were setup with a rather high range of initial mean target registration error from 0 to 100 mm. The proposed method effectively reduced the registration error to below 2 mm, which was further refined by a fast iterative method and resulted in a high final registration accuracy (0.40 mm) and high success rate (> 96%). Taking into account a fast execution time below 10 s, the observed performance of the proposed method shows a high potential for application into clinical image-guidance systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qinghui; Chan, Maria F.; Burman, Chandra
2013-12-15
Purpose: Setting a proper margin is crucial for not only delivering the required radiation dose to a target volume, but also reducing the unnecessary radiation to the adjacent organs at risk. This study investigated the independent one-dimensional symmetric and asymmetric margins between the clinical target volume (CTV) and the planning target volume (PTV) for linac-based single-fraction frameless stereotactic radiosurgery (SRS).Methods: The authors assumed a Dirac delta function for the systematic error of a specific machine and a Gaussian function for the residual setup errors. Margin formulas were then derived in details to arrive at a suitable CTV-to-PTV margin for single-fractionmore » frameless SRS. Such a margin ensured that the CTV would receive the prescribed dose in 95% of the patients. To validate our margin formalism, the authors retrospectively analyzed nine patients who were previously treated with noncoplanar conformal beams. Cone-beam computed tomography (CBCT) was used in the patient setup. The isocenter shifts between the CBCT and linac were measured for a Varian Trilogy linear accelerator for three months. For each plan, the authors shifted the isocenter of the plan in each direction by ±3 mm simultaneously to simulate the worst setup scenario. Subsequently, the asymptotic behavior of the CTV V{sub 80%} for each patient was studied as the setup error approached the CTV-PTV margin.Results: The authors found that the proper margin for single-fraction frameless SRS cases with brain cancer was about 3 mm for the machine investigated in this study. The isocenter shifts between the CBCT and the linac remained almost constant over a period of three months for this specific machine. This confirmed our assumption that the machine systematic error distribution could be approximated as a delta function. This definition is especially relevant to a single-fraction treatment. The prescribed dose coverage for all the patients investigated was 96.1%± 5.5% with an extreme 3-mm setup error in all three directions simultaneously. It was found that the effect of the setup error on dose coverage was tumor location dependent. It mostly affected the tumors located in the posterior part of the brain, resulting in a minimum coverage of approximately 72%. This was entirely due to the unique geometry of the posterior head.Conclusions: Margin expansion formulas were derived for single-fraction frameless SRS such that the CTV would receive the prescribed dose in 95% of the patients treated for brain cancer. The margins defined in this study are machine-specific and account for nonzero mean systematic error. The margin for single-fraction SRS for a group of machines was also derived in this paper.« less
A Noninvasive Body Setup Method for Radiotherapy by Using a Multimodal Image Fusion Technique
Zhang, Jie; Chen, Yunxia; Wang, Chenchen; Chu, Kaiyue; Jin, Jianhua; Huang, Xiaolin; Guan, Yue; Li, Weifeng
2017-01-01
Purpose: To minimize the mismatch error between patient surface and immobilization system for tumor location by a noninvasive patient setup method. Materials and Methods: The method, based on a point set registration, proposes a shift for patient positioning by integrating information of the computed tomography scans and that of optical surface landmarks. An evaluation of the method included 3 areas: (1) a validation on a phantom by estimating 100 known mismatch errors between patient surface and immobilization system. (2) Five patients with pelvic tumors were considered. The tumor location errors of the method were measured using the difference between the proposal shift of cone-beam computed tomography and that of our method. (3) The collected setup data from the evaluation of patients were compared with the published performance data of other 2 similar systems. Results: The phantom verification results showed that the method was capable of estimating mismatch error between patient surface and immobilization system in a precision of <0.22 mm. For the pelvic tumor, the method had an average tumor location error of 1.303, 2.602, and 1.684 mm in left–right, anterior–posterior, and superior–inferior directions, respectively. The performance comparison with other 2 similar systems suggested that the method had a better positioning accuracy for pelvic tumor location. Conclusion: By effectively decreasing an interfraction uncertainty source (mismatch error between patient surface and immobilization system) in radiotherapy, the method can improve patient positioning precision for pelvic tumor. PMID:29333959
Navarro, F A; Barnes, J
1996-03-02
Journals that are not published solely in English have the titles of papers translated into English, the international language of medicine. The aim of this paper is to analyse the accuracy and quality of such translations in Medicina Clínica and to assess the influence of the morphology and syntax of Spanish on the English versions of the titles. Two professional medical translators, one Spanish and the other English, each with a knowledge of both languages, compared the original Spanish and the English translations of the titles of the 292 papers and communications published in the 20 issues of volume 100 of Medicina Clínica. The discrepancies or "errors" were classified in five groups of increasing seriousness. Of the titles studied, 77% contained some sort of error (458 errors were detected). In 100 titles (34%) there were differences in meaning between the original Spanish and the English translations. Another 72 titles contained serious orthographical, lexical or grammatical mistakes, though the basic meaning was not distorted. Approximately a third of the lexical and grammatical errors were attributable to the direct influence of Spanish. The English translations of titles in Medicina Clínica contain numerous orthographical, lexical and gammatical mistakes. Serious errors of meaning in a number of translated titles could result in misinterpretation by readers who do not know Spanish. We recommend that the authors should play a part in the translation of the titles, as this should provide a simple and effective mean of improving the accuracy of the translations. Our comparison yielded much worse results than had been expected, which suggests that similar studies with other medical journals in Spanish and other languages would be justified.
An efficient, movable single-particle detector for use in cryogenic ultra-high vacuum environments.
Spruck, Kaija; Becker, Arno; Fellenberger, Florian; Grieser, Manfred; von Hahn, Robert; Klinkhamer, Vincent; Novotný, Oldřich; Schippers, Stefan; Vogel, Stephen; Wolf, Andreas; Krantz, Claude
2015-02-01
A compact, highly efficient single-particle counting detector for ions of keV/u kinetic energy, movable by a long-stroke mechanical translation stage, has been developed at the Max-Planck-Institut für Kernphysik (Max Planck Institute for Nuclear Physics, MPIK). Both, detector and translation mechanics, can operate at ambient temperatures down to ∼10 K and consist fully of ultra-high vacuum compatible, high-temperature bakeable, and non-magnetic materials. The set-up is designed to meet the technical demands of MPIK's Cryogenic Storage Ring. We present a series of functional tests that demonstrate full suitability for this application and characterise the set-up with regard to its particle detection efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, R; Chisela, W; Dorbu, G
2016-06-15
Purpose: To evaluate clinical usefulness of AlignRT (Vision RT Ltd., London, UK) in reducing patient positioning errors in breast irradiation. Methods: 60 patients undergoing whole breast irradiation were selected for this study. Patients were treated to the left or right breast lying on Qfix Access breast board (Qfix, Avondale, PA) in supine position for 28 fractions using tangential fields. 30 patients were aligned using AlignRT by aligning a breast surface region of interest (ROI) to the same area from a reference surface image extracted from planning CT. When the patient’s surface image deviated from the reference by more than 3mmmore » on one or more translational and rotational directions, a new reference was acquired using AlignRT in-room cameras. The other 30 patients were aligned to the skin marks with room lasers. On-Board MV portal images of medial field were taken daily and matched to the DRRs. The magnitude and frequency of positioning errors were determined from measured translational shifts. Kolmogorov-Smirnov test was used to evaluate statistical differences of positional accuracy and precision between AlignRT and non-AlignRT patients. Results: The percentage of port images with no shift required was 46.5% and 27.0% in vertical, 49.8% and 25.8% in longitudinal, 47.6% and 28.5% in lateral for AlignRT and non-AlignRT patients, respectively. The percentage of port images requiring more than 3mm shifts was 18.1% and 35.1% in vertical, 28.6% and 50.8% in longitudinal, 11.3% and 24.2% in lateral for AlignRT and non-AlignRT patients, respectively. Kolmogorov-Smirnov test showed that there were significant differences between the frequency distributions of AlignRT and non-AlignRT in vertical, longitudinal, and lateral shifts. Conclusion: As confirmed by port images, AlignRT-assisted patient positioning can significantly reduce the frequency and magnitude of patient setup errors in breast irradiation compared to the use of lasers and skin marks.« less
SU-E-J-245: Is Off-Line Adaptive Radiotherapy Sufficient for Head and Neck Cancer with IGRT?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Z; Cleveland Clinic, Cleveland, OH; Shang, Q
2014-06-01
Purpose: Radiation doses delivered to patients with head and neck cancer (HN) may deviate from the planned doses because of variations in patient setup and anatomy. This study was to evaluate whether off-line Adaptive Radiotherapy (ART) is sufficient. Methods: Ten HN patients, who received IMRT under daily imaging guidance using CT-on-rail/KV-CBCT, were randomly selected for this study. For each patient, the daily treatment setup was corrected with translational only directions. Sixty weekly verification CTs were retrospectively analyzed. On these weekly verification CTs, the tumor volumes and OAR contours were manually delineated by a physician. With the treatment iso-center placed onmore » the verification CTs, according to the recorded clinical shifts, the treatment beams from the original IMRT plans were then applied to these CTs to calculate the delivered doses. The electron density of the planning CTs and weekly CTs were overridden to 1 g/cm3. Results: Among 60 fractions, D99 of the CTVs in 4 fractions decreased more than 5% of the planned doses. The maximum dose of the spinal cord exceeded 10% of the planned values in 2 fractions. A close examination indicated that the dose discrepancy in these 6 fractions was due to patient rotations, especially shoulder rotations. After registering these 6 CTs with the planning CT allowing six degree of freedoms, the maximum rotations around 3 axes were > 1.5° for these fractions. With rotation setup errors removed, 4 out of 10 patients still required off-line ART to accommodate anatomical changes. Conclusion: A significant shoulder rotations were observed in 10% fractions, requiring patient re-setup. Off-line ART alone is not sufficient to correct for random variations of patient position, although ART is effective to adapt to patients' gradual anatomic changes. Re-setup or on-line ART may be considered for patients with large deviations detected early by daily IGRT images. The study is supported in part by Siemens Medical Solutions.« less
Grammatical Errors Produced by English Majors: The Translation Task
ERIC Educational Resources Information Center
Mohaghegh, Hamid; Zarandi, Fatemeh Mahmoudi; Shariati, Mohammad
2011-01-01
This study investigated the frequency of the grammatical errors related to the four categories of preposition, relative pronoun, article, and tense using the translation task. In addition, the frequencies of these grammatical errors in different categories and in each category were examined. The quantitative component of the study further looked…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangsaas, Anne, E-mail: a.gangsaas@erasmusmc.nl; Astreinidou, Eleftheria; Quint, Sandra
2013-10-01
Purpose: To investigate interfraction setup variations of the primary tumor, elective nodes, and vertebrae in laryngeal cancer patients and to validate protocols for cone beam computed tomography (CBCT)-guided correction. Methods and Materials: For 30 patients, CBCT-measured displacements in fractionated treatments were used to investigate population setup errors and to simulate residual setup errors for the no action level (NAL) offline protocol, the extended NAL (eNAL) protocol, and daily CBCT acquisition with online analysis and repositioning. Results: Without corrections, 12 of 26 patients treated with radical radiation therapy would have experienced a gradual change (time trend) in primary tumor setup ≥4more » mm in the craniocaudal (CC) direction during the fractionated treatment (11/12 in caudal direction, maximum 11 mm). Due to these trends, correction of primary tumor displacements with NAL resulted in large residual CC errors (required margin 6.7 mm). With the weekly correction vector adjustments in eNAL, the trends could be largely compensated (CC margin 3.5 mm). Correlation between movements of the primary and nodal clinical target volumes (CTVs) in the CC direction was poor (r{sup 2}=0.15). Therefore, even with online setup corrections of the primary CTV, the required CC margin for the nodal CTV was as large as 6.8 mm. Also for the vertebrae, large time trends were observed for some patients. Because of poor CC correlation (r{sup 2}=0.19) between displacements of the primary CTV and the vertebrae, even with daily online repositioning of the vertebrae, the required CC margin around the primary CTV was 6.9 mm. Conclusions: Laryngeal cancer patients showed substantial interfraction setup variations, including large time trends, and poor CC correlation between primary tumor displacements and motion of the nodes and vertebrae (internal tumor motion). These trends and nonrigid anatomy variations have to be considered in the choice of setup verification protocol and planning target volume margins. eNAL could largely compensate time trends with minor prolongation of fraction time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapanen, Mika; Department of Medical Physics, Tampere University Hospital; Laaksomaa, Marko, E-mail: Marko.Laaksomaa@pshp.fi
2016-04-01
Residual position errors of the lymph node (LN) surrogates and humeral head (HH) were determined for 2 different arm fixation devices in radiotherapy (RT) of breast cancer: a standard wrist-hold (WH) and a house-made rod-hold (RH). The effect of arm position correction (APC) based on setup images was also investigated. A total of 113 consecutive patients with early-stage breast cancer with LN irradiation were retrospectively analyzed (53 and 60 using the WH and RH, respectively). Residual position errors of the LN surrogates (Th1-2 and clavicle) and the HH were investigated to compare the 2 fixation devices. The position errors andmore » setup margins were determined before and after the APC to investigate the efficacy of the APC in the treatment situation. A threshold of 5 mm was used for the residual errors of the clavicle and Th1-2 to perform the APC, and a threshold of 7 mm was used for the HH. The setup margins were calculated with the van Herk formula. Irradiated volumes of the HH were determined from RT treatment plans. With the WH and the RH, setup margins up to 8.1 and 6.7 mm should be used for the LN surrogates, and margins up to 4.6 and 3.6 mm should be used to spare the HH, respectively, without the APC. After the APC, the margins of the LN surrogates were equal to or less than 7.5/6.0 mm with the WH/RH, but margins up to 4.2/2.9 mm were required for the HH. The APC was needed at least once with both the devices for approximately 60% of the patients. With the RH, irradiated volume of the HH was approximately 2 times more than with the WH, without any dose constraints. Use of the RH together with the APC resulted in minimal residual position errors and setup margins for all the investigated bony landmarks. Based on the obtained results, we prefer the house-made RH. However, more attention should be given to minimize the irradiation of the HH with the RH than with the WH.« less
Reduction of prostate intrafraction motion using gas-release rectal balloons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su Zhong; Zhao Tianyu; Li Zuofeng
2012-10-15
Purpose: To analyze prostate intrafraction motion using both non-gas-release (NGR) and gas-release (GR) rectal balloons and to evaluate the ability of GR rectal balloons to reduce prostate intrafraction motion. Methods: Twenty-nine patients with NGR rectal balloons and 29 patients with GR balloons were randomly selected from prostate patients treated with proton therapy at University of Florida Proton Therapy Institute (Jacksonville, FL). Their pretreatment and post-treatment orthogonal radiographs were analyzed, and both pretreatment setup residual error and intrafraction-motion data were obtained. Population histograms of intrafraction motion were plotted for both types of balloons. Population planning target-volume (PTV) margins were calculated withmore » the van Herk formula of 2.5{Sigma}+ 0.7{sigma} to account for setup residual errors and intrafraction motion errors. Results: Pretreatment and post-treatment radiographs indicated that the use of gas-release rectal balloons reduced prostate intrafraction motion along superior-inferior (SI) and anterior-posterior (AP) directions. Similar patient setup residual errors were exhibited for both types of balloons. Gas-release rectal balloons resulted in PTV margin reductions from 3.9 to 2.8 mm in the SI direction, 3.1 to 1.8 mm in the AP direction, and an increase from 1.9 to 2.1 mm in the left-right direction. Conclusions: Prostate intrafraction motion is an important uncertainty source in radiotherapy after image-guided patient setup with online corrections. Compared to non-gas-release rectal balloons, gas-release balloons can reduce prostate intrafraction motion in the SI and AP directions caused by gas buildup.« less
Karlsson, Kristin; Lax, Ingmar; Lindbäck, Elias; Poludniowski, Gavin
2017-09-01
Geometrical uncertainties can result in a delivered dose to the tumor different from that estimated in the static treatment plan. The purpose of this project was to investigate the accuracy of the dose calculated to the clinical target volume (CTV) with the dose-shift approximation, in stereotactic body radiation therapy (SBRT) of lung tumors considering setup errors and breathing motion. The dose-shift method was compared with a beam-shift method with dose recalculation. Included were 10 patients (10 tumors) selected to represent a variety of SBRT-treated lung tumors in terms of tumor location, CTV volume, and tumor density. An in-house developed toolkit within a treatment planning system allowed the shift of either the dose matrix or a shift of the beam isocenter with dose recalculation, to simulate setup errors and breathing motion. Setup shifts of different magnitudes (up to 10 mm) and directions as well as breathing with different peak-to-peak amplitudes (up to 10:5:5 mm) were modeled. The resulting dose-volume histograms (DVHs) were recorded and dose statistics were extracted. Generally, both the dose-shift and beam-shift methods resulted in calculated doses lower than the static planned dose, although the minimum (D 98% ) dose exceeded the prescribed dose in all cases, for setup shifts up to 5 mm. The dose-shift method also generally underestimated the dose compared with the beam-shift method. For clinically realistic systematic displacements of less than 5 mm, the results demonstrated that in the minimum dose region within the CTV, the dose-shift method was accurate to 2% (root-mean-square error). Breathing motion only marginally degraded the dose distributions. Averaged over the patients and shift directions, the dose-shift approximation was determined to be accurate to approximately 2% (RMS) within the CTV, for clinically relevant geometrical uncertainties for SBRT of lung tumors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, R., E-mail: ruth.harding2@wales.nhs.uk; Trnková, P.; Lomax, A. J.
Purpose: Base of skull meningioma can be treated with both intensity modulated radiation therapy (IMRT) and spot scanned proton therapy (PT). One of the main benefits of PT is better sparing of organs at risk, but due to the physical and dosimetric characteristics of protons, spot scanned PT can be more sensitive to the uncertainties encountered in the treatment process compared with photon treatment. Therefore, robustness analysis should be part of a comprehensive comparison between these two treatment methods in order to quantify and understand the sensitivity of the treatment techniques to uncertainties. The aim of this work was tomore » benchmark a spot scanning treatment planning system for planning of base of skull meningioma and to compare the created plans and analyze their robustness to setup errors against the IMRT technique. Methods: Plans were produced for three base of skull meningioma cases: IMRT planned with a commercial TPS [Monaco (Elekta AB, Sweden)]; single field uniform dose (SFUD) spot scanning PT produced with an in-house TPS (PSI-plan); and SFUD spot scanning PT plan created with a commercial TPS [XiO (Elekta AB, Sweden)]. A tool for evaluating robustness to random setup errors was created and, for each plan, both a dosimetric evaluation and a robustness analysis to setup errors were performed. Results: It was possible to create clinically acceptable treatment plans for spot scanning proton therapy of meningioma with a commercially available TPS. However, since each treatment planning system uses different methods, this comparison showed different dosimetric results as well as different sensitivities to setup uncertainties. The results confirmed the necessity of an analysis tool for assessing plan robustness to provide a fair comparison of photon and proton plans. Conclusions: Robustness analysis is a critical part of plan evaluation when comparing IMRT plans with spot scanned proton therapy plans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, N; DiCostanzo, D; Fullenkamp, M
2015-06-15
Purpose: To determine appropriate couch tolerance values for modern radiotherapy linac R&V systems with indexed patient setup. Methods: Treatment table tolerance values have been the most difficult to lower, due to many factors including variations in patient positioning and differences in table tops between machines. We recently installed nine linacs with similar tables and started indexing every patient in our clinic. In this study we queried our R&V database and analyzed the deviation of couch position values from the acquired values at verification simulation for all patients treated with indexed positioning. Mean and standard deviations of daily setup deviations weremore » computed in the longitudinal, lateral and vertical direction for 343 patient plans. The mean, median and standard error of the standard deviations across the whole patient population and for some disease sites were computed to determine tolerance values. Results: The plot of our couch deviation values showed a gaussian distribution, with some small deviations, corresponding to setup uncertainties on non-imaging days, and SRS/SRT/SBRT patients, as well as some large deviations which were spot checked and found to be corresponding to indexing errors that were overriden. Setting our tolerance values based on the median + 1 standard error resulted in tolerance values of 1cm lateral and longitudinal, and 0.5 cm vertical for all non- SRS/SRT/SBRT cases. Re-analizing the data, we found that about 92% of the treated fractions would be within these tolerance values (ignoring the mis-indexed patients). We also analyzed data for disease site based subpopulations and found no difference in the tolerance values that needed to be used. Conclusion: With the use of automation, auto-setup and other workflow efficiency tools being introduced into radiotherapy workflow, it is very essential to set table tolerances that allow safe treatments, but flag setup errors that need to be reassessed before treatments.« less
Registration of pencil beam proton radiography data with X-ray CT.
Deffet, Sylvain; Macq, Benoît; Righetto, Roberto; Vander Stappen, François; Farace, Paolo
2017-10-01
Proton radiography seems to be a promising tool for assessing the quality of the stopping power computation in proton therapy. However, range error maps obtained on the basis of proton radiographs are very sensitive to small misalignment between the planning CT and the proton radiography acquisitions. In order to be able to mitigate misalignment in postprocessing, the authors implemented a fast method for registration between pencil proton radiography data obtained with a multilayer ionization chamber (MLIC) and an X-ray CT acquired on a head phantom. The registration was performed by optimizing a cost function which performs a comparison between the acquired data and simulated integral depth-dose curves. Two methodologies were considered, one based on dual orthogonal projections and the other one on a single projection. For each methodology, the robustness of the registration algorithm with respect to three confounding factors (measurement noise, CT calibration errors, and spot spacing) was investigated by testing the accuracy of the method through simulations based on a CT scan of a head phantom. The present registration method showed robust convergence towards the optimal solution. For the level of measurement noise and the uncertainty in the stopping power computation expected in proton radiography using a MLIC, the accuracy appeared to be better than 0.3° for angles and 0.3 mm for translations by use of the appropriate cost function. The spot spacing analysis showed that a spacing larger than the 5 mm used by other authors for the investigation of a MLIC for proton radiography led to results with absolute accuracy better than 0.3° for angles and 1 mm for translations when orthogonal proton radiographs were fed into the algorithm. In the case of a single projection, 6 mm was the largest spot spacing presenting an acceptable registration accuracy. For registration of proton radiography data with X-ray CT, the use of a direct ray-tracing algorithm to compute sums of squared differences and corrections of range errors showed very good accuracy and robustness with respect to three confounding factors: measurement noise, calibration error, and spot spacing. It is therefore a suitable algorithm to use in the in vivo range verification framework, allowing to separate in postprocessing the proton range uncertainty due to setup errors from the other sources of uncertainty. © 2017 American Association of Physicists in Medicine.
Haefner, Matthias Felix; Giesel, Frederik Lars; Mattke, Matthias; Rath, Daniel; Wade, Moritz; Kuypers, Jacob; Preuss, Alan; Kauczor, Hans-Ulrich; Schenk, Jens-Peter; Debus, Juergen; Sterzing, Florian; Unterhinninghofen, Roland
2018-01-01
We developed a new approach to produce individual immobilization devices for the head based on MRI data and 3D printing technologies. The purpose of this study was to determine positioning accuracy with healthy volunteers. 3D MRI data of the head were acquired for 8 volunteers. In-house developed software processed the image data to generate a surface mesh model of the immobilization mask. After adding an interface for the couch, the fixation setup was materialized using a 3D printer with acrylonitrile butadiene styrene (ABS). Repeated MRI datasets (n=10) were acquired for all volunteers wearing their masks thus simulating a setup for multiple fractions. Using automatic image-to-image registration, displacements of the head were calculated relative to the first dataset (6 degrees of freedom). The production process has been described in detail. The absolute lateral (x), vertical (y) and longitudinal (z) translations ranged between −0.7 and 0.5 mm, −1.8 and 1.4 mm, and −1.6 and 2.4 mm, respectively. The absolute rotations for pitch (x), yaw (y) and roll (z) ranged between −0.9 and 0.8°, −0.5 and 1.1°, and −0.6 and 0.8°, respectively. The mean 3D displacement was 0.9 mm with a standard deviation (SD) of the systematic and random error of 0.2 mm and 0.5 mm, respectively. In conclusion, an almost entirely automated production process of 3D printed immobilization masks for the head derived from MRI data was established. A high level of setup accuracy was demonstrated in a volunteer cohort. Future research will have to focus on workflow optimization and clinical evaluation. PMID:29464087
Haefner, Matthias Felix; Giesel, Frederik Lars; Mattke, Matthias; Rath, Daniel; Wade, Moritz; Kuypers, Jacob; Preuss, Alan; Kauczor, Hans-Ulrich; Schenk, Jens-Peter; Debus, Juergen; Sterzing, Florian; Unterhinninghofen, Roland
2018-01-19
We developed a new approach to produce individual immobilization devices for the head based on MRI data and 3D printing technologies. The purpose of this study was to determine positioning accuracy with healthy volunteers. 3D MRI data of the head were acquired for 8 volunteers. In-house developed software processed the image data to generate a surface mesh model of the immobilization mask. After adding an interface for the couch, the fixation setup was materialized using a 3D printer with acrylonitrile butadiene styrene (ABS). Repeated MRI datasets (n=10) were acquired for all volunteers wearing their masks thus simulating a setup for multiple fractions. Using automatic image-to-image registration, displacements of the head were calculated relative to the first dataset (6 degrees of freedom). The production process has been described in detail. The absolute lateral (x), vertical (y) and longitudinal (z) translations ranged between -0.7 and 0.5 mm, -1.8 and 1.4 mm, and -1.6 and 2.4 mm, respectively. The absolute rotations for pitch (x), yaw (y) and roll (z) ranged between -0.9 and 0.8°, -0.5 and 1.1°, and -0.6 and 0.8°, respectively. The mean 3D displacement was 0.9 mm with a standard deviation (SD) of the systematic and random error of 0.2 mm and 0.5 mm, respectively. In conclusion, an almost entirely automated production process of 3D printed immobilization masks for the head derived from MRI data was established. A high level of setup accuracy was demonstrated in a volunteer cohort. Future research will have to focus on workflow optimization and clinical evaluation.
Identifying the Machine Translation Error Types with the Greatest Impact on Post-editing Effort.
Daems, Joke; Vandepitte, Sonia; Hartsuiker, Robert J; Macken, Lieve
2017-01-01
Translation Environment Tools make translators' work easier by providing them with term lists, translation memories and machine translation output. Ideally, such tools automatically predict whether it is more effortful to post-edit than to translate from scratch, and determine whether or not to provide translators with machine translation output. Current machine translation quality estimation systems heavily rely on automatic metrics, even though they do not accurately capture actual post-editing effort. In addition, these systems do not take translator experience into account, even though novices' translation processes are different from those of professional translators. In this paper, we report on the impact of machine translation errors on various types of post-editing effort indicators, for professional translators as well as student translators. We compare the impact of MT quality on a product effort indicator (HTER) with that on various process effort indicators. The translation and post-editing process of student translators and professional translators was logged with a combination of keystroke logging and eye-tracking, and the MT output was analyzed with a fine-grained translation quality assessment approach. We find that most post-editing effort indicators (product as well as process) are influenced by machine translation quality, but that different error types affect different post-editing effort indicators, confirming that a more fine-grained MT quality analysis is needed to correctly estimate actual post-editing effort. Coherence, meaning shifts, and structural issues are shown to be good indicators of post-editing effort. The additional impact of experience on these interactions between MT quality and post-editing effort is smaller than expected.
Principle and analysis of a rotational motion Fourier transform infrared spectrometer
NASA Astrophysics Data System (ADS)
Cai, Qisheng; Min, Huang; Han, Wei; Liu, Yixuan; Qian, Lulu; Lu, Xiangning
2017-09-01
Fourier transform infrared spectroscopy is an important technique in studying molecular energy levels, analyzing material compositions, and environmental pollutants detection. A novel rotational motion Fourier transform infrared spectrometer with high stability and ultra-rapid scanning characteristics is proposed in this paper. The basic principle, the optical path difference (OPD) calculations, and some tolerance analysis are elaborated. The OPD of this spectrometer is obtained by the continuously rotational motion of a pair of parallel mirrors instead of the translational motion in traditional Michelson interferometer. Because of the rotational motion, it avoids the tilt problems occurred in the translational motion Michelson interferometer. There is a cosine function relationship between the OPD and the rotating angle of the parallel mirrors. An optical model is setup in non-sequential mode of the ZEMAX software, and the interferogram of a monochromatic light is simulated using ray tracing method. The simulated interferogram is consistent with the theoretically calculated interferogram. As the rotating mirrors are the only moving elements in this spectrometer, the parallelism of the rotating mirrors and the vibration during the scan are analyzed. The vibration of the parallel mirrors is the main error during the rotation. This high stability and ultra-rapid scanning Fourier transform infrared spectrometer is a suitable candidate for airborne and space-borne remote sensing spectrometer.
2013-01-01
Background The purpose of this study was to evaluate the impact of Cone Beam CT (CBCT) based setup correction on total dose distributions in fractionated frameless stereotactic radiation therapy of intracranial lesions. Methods Ten patients with intracranial lesions treated with 30 Gy in 6 fractions were included in this study. Treatment planning was performed with Oncentra® for a SynergyS® (Elekta Ltd, Crawley, UK) linear accelerator with XVI® Cone Beam CT, and HexaPOD™ couch top. Patients were immobilized by thermoplastic masks (BrainLab, Reuther). After initial patient setup with respect to lasers, a CBCT study was acquired and registered to the planning CT (PL-CT) study. Patient positioning was corrected according to the correction values (translational, rotational) calculated by the XVI® system. Afterwards a second CBCT study was acquired and registered to the PL-CT to confirm the accuracy of the corrections. An in-house developed software was used for rigid transformation of the PL-CT to the CBCT geometry, and dose calculations for each fraction were performed on the transformed CT. The total dose distribution was achieved by back-transformation and summation of the dose distributions of each fraction. Dose distributions based on PL-CT, CBCT (laser set-up), and final CBCT were compared to assess the influence of setup inaccuracies. Results The mean displacement vector, calculated over all treatments, was reduced from (4.3 ± 1.3) mm for laser based setup to (0.5 ± 0.2) mm if CBCT corrections were applied. The mean rotational errors around the medial-lateral, superior-inferior, anterior-posterior axis were reduced from (−0.1 ± 1.4)°, (0.1 ± 1.2)° and (−0.2 ± 1.0)°, to (0.04 ± 0.4)°, (0.01 ± 0.4)° and (0.02 ± 0.3)°. As a consequence the mean deviation between planned and delivered dose in the planning target volume (PTV) could be reduced from 12.3% to 0.4% for D95 and from 5.9% to 0.1% for Dav. Maximum deviation was reduced from 31.8% to 0.8% for D95, and from 20.4% to 0.1% for Dav. Conclusion Real dose distributions differ substantially from planned dose distributions, if setup is performed according to lasers only. Thermoplasic masks combined with a daily CBCT enabled a sufficient accuracy in dose distribution. PMID:23800172
A Study of Vicon System Positioning Performance.
Merriaux, Pierre; Dupuis, Yohan; Boutteau, Rémi; Vasseur, Pascal; Savatier, Xavier
2017-07-07
Motion capture setups are used in numerous fields. Studies based on motion capture data can be found in biomechanical, sport or animal science. Clinical science studies include gait analysis as well as balance, posture and motor control. Robotic applications encompass object tracking. Today's life applications includes entertainment or augmented reality. Still, few studies investigate the positioning performance of motion capture setups. In this paper, we study the positioning performance of one player in the optoelectronic motion capture based on markers: Vicon system. Our protocol includes evaluations of static and dynamic performances. Mean error as well as positioning variabilities are studied with calibrated ground truth setups that are not based on other motion capture modalities. We introduce a new setup that enables directly estimating the absolute positioning accuracy for dynamic experiments contrary to state-of-the art works that rely on inter-marker distances. The system performs well on static experiments with a mean absolute error of 0.15 mm and a variability lower than 0.025 mm. Our dynamic experiments were carried out at speeds found in real applications. Our work suggests that the system error is less than 2 mm. We also found that marker size and Vicon sampling rate must be carefully chosen with respect to the speed encountered in the application in order to reach optimal positioning performance that can go to 0.3 mm for our dynamic study.
Lei, Yu; Wu, Qiuwen
2010-04-21
Offline adaptive radiotherapy (ART) has been used to effectively correct and compensate for prostate motion and reduce the required margin. The efficacy depends on the characteristics of the patient setup error and interfraction motion through the whole treatment; specifically, systematic errors are corrected and random errors are compensated for through the margins. In online image-guided radiation therapy (IGRT) of prostate cancer, the translational setup error and inter-fractional prostate motion are corrected through pre-treatment imaging and couch correction at each fraction. However, the rotation and deformation of the target are not corrected and only accounted for with margins in treatment planning. The purpose of this study was to investigate whether the offline ART strategy is necessary for an online IGRT protocol and to evaluate the benefit of the hybrid strategy. First, to investigate the rationale of the hybrid strategy, 592 cone-beam-computed tomography (CBCT) images taken before and after each fraction for an online IGRT protocol from 16 patients were analyzed. Specifically, the characteristics of prostate rotation were analyzed. It was found that there exist systematic inter-fractional prostate rotations, and they are patient specific. These rotations, if not corrected, are persistent through the treatment fraction, and rotations detected in early fractions are representative of those in later fractions. These findings suggest that the offline adaptive replanning strategy is beneficial to the online IGRT protocol with further margin reductions. Second, to quantitatively evaluate the benefit of the hybrid strategy, 412 repeated helical CT scans from 25 patients during the course of treatment were included in the replanning study. Both low-risk patients (LRP, clinical target volume, CTV = prostate) and intermediate-risk patients (IRP, CTV = prostate + seminal vesicles) were included in the simulation. The contours of prostate and seminal vesicles were delineated on each CT. The benefit of margin reduction to compensate for both rotation and deformation in the hybrid strategy was evaluated geometrically. With the hybrid strategy, the planning margins can be reduced by 1.4 mm for LRP, and 2.0 mm for IRP, compared with the standard online IGRT only, to maintain the same 99% target volume coverage. The average relative reduction in planning target volume (PTV) based on the internal target volume (ITV) from PTV based on CTV is 19% for LRP, and 27% for IRP.
Identifying the Machine Translation Error Types with the Greatest Impact on Post-editing Effort
Daems, Joke; Vandepitte, Sonia; Hartsuiker, Robert J.; Macken, Lieve
2017-01-01
Translation Environment Tools make translators’ work easier by providing them with term lists, translation memories and machine translation output. Ideally, such tools automatically predict whether it is more effortful to post-edit than to translate from scratch, and determine whether or not to provide translators with machine translation output. Current machine translation quality estimation systems heavily rely on automatic metrics, even though they do not accurately capture actual post-editing effort. In addition, these systems do not take translator experience into account, even though novices’ translation processes are different from those of professional translators. In this paper, we report on the impact of machine translation errors on various types of post-editing effort indicators, for professional translators as well as student translators. We compare the impact of MT quality on a product effort indicator (HTER) with that on various process effort indicators. The translation and post-editing process of student translators and professional translators was logged with a combination of keystroke logging and eye-tracking, and the MT output was analyzed with a fine-grained translation quality assessment approach. We find that most post-editing effort indicators (product as well as process) are influenced by machine translation quality, but that different error types affect different post-editing effort indicators, confirming that a more fine-grained MT quality analysis is needed to correctly estimate actual post-editing effort. Coherence, meaning shifts, and structural issues are shown to be good indicators of post-editing effort. The additional impact of experience on these interactions between MT quality and post-editing effort is smaller than expected. PMID:28824482
Secondary School Students' Errors in the Translation of Algebraic Statements
ERIC Educational Resources Information Center
Molina, Marta; Rodríguez-Domingo, Susana; Cañadas, María Consuelo; Castro, Encarnación
2017-01-01
In this article, we present the results of a research study that explores secondary students' capacity to perform translations of algebraic statements between the verbal and symbolic representation systems through the lens of errors. We classify and compare the errors made by 2 groups of students: 1 at the beginning of their studies in school…
Astigmatism error modification for absolute shape reconstruction using Fourier transform method
NASA Astrophysics Data System (ADS)
He, Yuhang; Li, Qiang; Gao, Bo; Liu, Ang; Xu, Kaiyuan; Wei, Xiaohong; Chai, Liqun
2014-12-01
A method is proposed to modify astigmatism errors in absolute shape reconstruction of optical plane using Fourier transform method. If a transmission and reflection flat are used in an absolute test, two translation measurements lead to obtain the absolute shapes by making use of the characteristic relationship between the differential and original shapes in spatial frequency domain. However, because the translation device cannot guarantee the test and reference flats rigidly parallel to each other after the translations, a tilt error exists in the obtained differential data, which caused power and astigmatism errors in the reconstructed shapes. In order to modify the astigmatism errors, a rotation measurement is added. Based on the rotation invariability of the form of Zernike polynomial in circular domain, the astigmatism terms are calculated by solving polynomial coefficient equations related to the rotation differential data, and subsequently the astigmatism terms including error are modified. Computer simulation proves the validity of the proposed method.
Using Edit Distance to Analyse Errors in a Natural Language to Logic Translation Corpus
ERIC Educational Resources Information Center
Barker-Plummer, Dave; Dale, Robert; Cox, Richard; Romanczuk, Alex
2012-01-01
We have assembled a large corpus of student submissions to an automatic grading system, where the subject matter involves the translation of natural language sentences into propositional logic. Of the 2.3 million translation instances in the corpus, 286,000 (approximately 12%) are categorized as being in error. We want to understand the nature of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, K; Wang, J; Liu, D
2014-06-01
Purpose: Image-guided radiation therapy (IGRT) is one of the major treatment of esophageal cancer. Gray value registration and bone registration are two kinds of image registration, the purpose of this work is to compare which one is more suitable for esophageal cancer patients. Methods: Twenty three esophageal patients were treated by Elekta Synergy, CBCT images were acquired and automatically registered to planning kilovoltage CT scans according to gray value or bone registration. The setup errors were measured in the X, Y and Z axis, respectively. Two kinds of setup errors were analysed by matching T test statistical method. Results: Fourmore » hundred and five groups of CBCT images were available and the systematic and random setup errors (cm) in X, Y, Z directions were 0.35, 0.63, 0.29 and 0.31, 0.53, 0.21 with gray value registration, while 0.37, 0.64, 0.26 and 0.32, 0.55, 0.20 with bone registration, respectively. Compared with bone registration and gray value registration, the setup errors in X and Z axis have significant differences. In Y axis, both measurement comparison results of T value is 0.256 (P value > 0.05); In X axis, the T value is 5.287(P value < 0.05); In Z axis, the T value is −5.138 (P value < 0.05). Conclusion: Gray value registration is recommended in image-guided radiotherapy for esophageal cancer and the other thoracic tumors. Manual registration could be applied when it is necessary. Bone registration is more suitable for the head tumor and pelvic tumor department where composed of redundant interconnected and immobile bone tissue.« less
Hijazi, Bilal; Cool, Simon; Vangeyte, Jürgen; Mertens, Koen C; Cointault, Frédéric; Paindavoine, Michel; Pieters, Jan G
2014-11-13
A 3D imaging technique using a high speed binocular stereovision system was developed in combination with corresponding image processing algorithms for accurate determination of the parameters of particles leaving the spinning disks of centrifugal fertilizer spreaders. Validation of the stereo-matching algorithm using a virtual 3D stereovision simulator indicated an error of less than 2 pixels for 90% of the particles. The setup was validated using the cylindrical spread pattern of an experimental spreader. A 2D correlation coefficient of 90% and a Relative Error of 27% was found between the experimental results and the (simulated) spread pattern obtained with the developed setup. In combination with a ballistic flight model, the developed image acquisition and processing algorithms can enable fast determination and evaluation of the spread pattern which can be used as a tool for spreader design and precise machine calibration.
Zumsteg, Zachary; DeMarco, John; Lee, Steve P; Steinberg, Michael L; Lin, Chun Shu; McBride, William; Lin, Kevin; Wang, Pin-Chieh; Kupelian, Patrick; Lee, Percy
2012-06-01
On-board cone-beam computed tomography (CBCT) is currently available for alignment of patients with head-and-neck cancer before radiotherapy. However, daily CBCT is time intensive and increases the overall radiation dose. We assessed the feasibility of using the average couch shifts from the first several CBCTs to estimate and correct for the presumed systematic setup error. 56 patients with head-and-neck cancer who received daily CBCT before intensity-modulated radiation therapy had recorded shift values in the medial-lateral, superior-inferior, and anterior-posterior dimensions. The average displacements in each direction were calculated for each patient based on the first five or 10 CBCT shifts and were presumed to represent the systematic setup error. The residual error after this correction was determined by subtracting the calculated shifts from the shifts obtained using daily CBCT. The magnitude of the average daily residual three-dimensional (3D) error was 4.8 ± 1.4 mm, 3.9 ± 1.3 mm, and 3.7 ± 1.1 mm for uncorrected, five CBCT corrected, and 10 CBCT corrected protocols, respectively. With no image guidance, 40.8% of fractions would have been >5 mm off target. Using the first five CBCT shifts to correct subsequent fractions, this percentage decreased to 19.0% of all fractions delivered and decreased the percentage of patients with average daily 3D errors >5 mm from 35.7% to 14.3% vs. no image guidance. Using an average of the first 10 CBCT shifts did not significantly improve this outcome. Using the first five CBCT shift measurements as an estimation of the systematic setup error improves daily setup accuracy for a subset of patients with head-and-neck cancer receiving intensity-modulated radiation therapy and primarily benefited those with large 3D correction vectors (>5 mm). Daily CBCT is still necessary until methods are developed that more accurately determine which patients may benefit from alternative imaging strategies. Copyright © 2012 Elsevier Inc. All rights reserved.
Translational errors as an early event in prion conversion.
Hatin, I; Bidou, L; Cullin, C; Rousset, J P
2001-01-01
A prion is an infectious, altered form of a cellular protein which can self-propagate and affect normal phenotype. Prion conversion has been observed for mammalian and yeast proteins but molecular mechanisms that trigger this process remain unclear. Up to now, only post-translational models have been explored. In this work, we tested the hypothesis that co-translational events may be implicated in the conformation changes of the Ure2p protein of Saccharomyces cerevisiae. This protein can adopt a prion conformation leading to an [URE3] phenotype which can be easily assessed and quantified. We analyzed the effect of two antibiotics, known to affect translation, on [URE3] conversion frequency. For cells treated with G418 we observed a parallel increase of translational errors rate and frequency of [URE3] conversion. By contrast, cycloheximide which was not found to affect translational fidelity, has no influence on the induction of [URE3] phenotype. These results raise the possibility that the mechanism of prion conversion might not only involve alternative structures of strictly identical molecules but also aberrant proteins resulting from translational errors.
Use of Existing CAD Models for Radiation Shielding Analysis
NASA Technical Reports Server (NTRS)
Lee, K. T.; Barzilla, J. E.; Wilson, P.; Davis, A.; Zachman, J.
2015-01-01
The utility of a radiation exposure analysis depends not only on the accuracy of the underlying particle transport code, but also on the accuracy of the geometric representations of both the vehicle used as radiation shielding mass and the phantom representation of the human form. The current NASA/Space Radiation Analysis Group (SRAG) process to determine crew radiation exposure in a vehicle design incorporates both output from an analytic High Z and Energy Particle Transport (HZETRN) code and the properties (i.e., material thicknesses) of a previously processed drawing. This geometry pre-process can be time-consuming, and the results are less accurate than those determined using a Monte Carlo-based particle transport code. The current work aims to improve this process. Although several Monte Carlo programs (FLUKA, Geant4) are readily available, most use an internal geometry engine. The lack of an interface with the standard CAD formats used by the vehicle designers limits the ability of the user to communicate complex geometries. Translation of native CAD drawings into a format readable by these transport programs is time consuming and prone to error. The Direct Accelerated Geometry -United (DAGU) project is intended to provide an interface between the native vehicle or phantom CAD geometry and multiple particle transport codes to minimize problem setup, computing time and analysis error.
Røn, Troels; Jacobsen, Kristina Pilgaard; Lee, Seunghwan
2018-04-24
In this study, we introduce a new experimental approach to characterize the forces emerging from simulated catherization. This setup allows for a linear translation of urinary catheters in vertical direction as controlled by an actuator. By employing silicone-based elastomer with a duct of comparable diameter with catheters as urethra model, sliding contacts during the translation of catheters along the duct is generated. A most unique design and operation feature of this setup is that a digital balance was employed as the sensor to detect emerging forces from simulated catherization. Moreover, the possibility to give a variation in environment (ambient air vs. water), clearance, elasticity, and curvature of silicone-based urethra model allows for the detection of forces arising from diverse simulated catherization conditions. Two types of commercially available catheters varying in tubing materials and surface coatings were tested together with their respective uncoated catheter tubing. The first set of testing on the catheter samples showed that this setup can probe the combined effect from flexural strain of bulk tubing materials and slipperiness of surface coatings, both of which are expected to affect the comfort and smooth gliding in clinical catherization. We argue that this new experimental setup can provide unique and valuable information in preclinical friction testing of urinary catheters. Copyright © 2018 Elsevier Ltd. All rights reserved.
Optical digital to analog conversion performance analysis for indoor set-up conditions
NASA Astrophysics Data System (ADS)
Dobesch, Aleš; Alves, Luis Nero; Wilfert, Otakar; Ribeiro, Carlos Gaspar
2017-10-01
In visible light communication (VLC) the optical digital to analog conversion (ODAC) approach was proposed as a suitable driving technique able to overcome light-emitting diode's (LED) non-linear characteristic. This concept is analogous to an electrical digital-to-analog converter (EDAC). In other words, digital bits are binary weighted to represent an analog signal. The method supports elementary on-off based modulations able to exploit the essence of LED's non-linear characteristic allowing simultaneous lighting and communication. In the ODAC concept the reconstruction error does not simply rely upon the converter bit depth as in case of EDAC. It rather depends on communication system set-up and geometrical relation between emitter and receiver as well. The paper describes simulation results presenting the ODAC's error performance taking into account: the optical channel, the LED's half power angle (HPA) and the receiver field of view (FOV). The set-up under consideration examines indoor conditions for a square room with 4 m length and 3 m height, operating with one dominant wavelength (blue) and having walls with a reflection coefficient of 0.8. The achieved results reveal that reconstruction error increases for higher data rates as a result of interference due to multipath propagation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, X; Fox, T; Schreibmann, E
2014-06-15
Purpose: To create a non-supervised quality assurance program to monitor image-based patient setup. The system acts a secondary check by independently computing shifts and rotations and interfaces with Varian's database to verify therapist's work and warn against sub-optimal setups. Methods: Temporary digitally-reconstructed radiographs (DRRs) and OBI radiographic image files created by Varian's treatment console during patient setup are intercepted and used as input in an independent registration module customized for accuracy that determines the optimal rotations and shifts. To deal with the poor quality of OBI images, a histogram equalization of the live images to the DDR counterparts is performedmore » as a pre-processing step. A search for the most sensitive metric was performed by plotting search spaces subject to various translations and convergence analysis was applied to ensure the optimizer finds the global minima. Final system configuration uses the NCC metric with 150 histogram bins and a one plus one optimizer running for 2000 iterations with customized scales for translations and rotations in a multi-stage optimization setup that first corrects and translations and subsequently rotations. Results: The system was installed clinically to monitor and provide almost real-time feedback on patient positioning. On a 2 month-basis uncorrected pitch values were of a mean 0.016° with standard deviation of 1.692°, and couch rotations of − 0.090°± 1.547°. The couch shifts were −0.157°±0.466° cm for the vertical, 0.045°±0.286 laterally and 0.084°± 0.501° longitudinally. Uncorrected pitch angles were the most common source of discrepancies. Large variations in the pitch angles were correlated with patient motion inside the mask. Conclusion: A system for automated quality assurance of therapist's registration was designed and tested in clinical practice. The approach complements the clinical software's automated registration in terms of algorithm configuration and performance and constitutes a practical approach to implement safe and cost-effective radiotherapy.« less
Development of a Machine-Vision System for Recording of Force Calibration Data
NASA Astrophysics Data System (ADS)
Heamawatanachai, Sumet; Chaemthet, Kittipong; Changpan, Tawat
This paper presents the development of a new system for recording of force calibration data using machine vision technology. Real time camera and computer system were used to capture images of the reading from the instruments during calibration. Then, the measurement images were transformed and translated to numerical data using optical character recognition (OCR) technique. These numerical data along with raw images were automatically saved to memories as the calibration database files. With this new system, the human error of recording would be eliminated. The verification experiments were done by using this system for recording the measurement results from an amplifier (DMP 40) with load cell (HBM-Z30-10kN). The NIMT's 100-kN deadweight force standard machine (DWM-100kN) was used to generate test forces. The experiments setup were done in 3 categories; 1) dynamics condition (record during load changing), 2) statics condition (record during fix load), and 3) full calibration experiments in accordance with ISO 376:2011. The captured images from dynamics condition experiment gave >94% without overlapping of number. The results from statics condition experiment were >98% images without overlapping. All measurement images without overlapping were translated to number by the developed program with 100% accuracy. The full calibration experiments also gave 100% accurate results. Moreover, in case of incorrect translation of any result, it is also possible to trace back to the raw calibration image to check and correct it. Therefore, this machine-vision-based system and program should be appropriate for recording of force calibration data.
Patient motion tracking in the presence of measurement errors.
Haidegger, Tamás; Benyó, Zoltán; Kazanzides, Peter
2009-01-01
The primary aim of computer-integrated surgical systems is to provide physicians with superior surgical tools for better patient outcome. Robotic technology is capable of both minimally invasive surgery and microsurgery, offering remarkable advantages for the surgeon and the patient. Current systems allow for sub-millimeter intraoperative spatial positioning, however certain limitations still remain. Measurement noise and unintended changes in the operating room environment can result in major errors. Positioning errors are a significant danger to patients in procedures involving robots and other automated devices. We have developed a new robotic system at the Johns Hopkins University to support cranial drilling in neurosurgery procedures. The robot provides advanced visualization and safety features. The generic algorithm described in this paper allows for automated compensation of patient motion through optical tracking and Kalman filtering. When applied to the neurosurgery setup, preliminary results show that it is possible to identify patient motion within 700 ms, and apply the appropriate compensation with an average of 1.24 mm positioning error after 2 s of setup time.
Measurement of 3D refractive index distribution by optical diffraction tomography
NASA Astrophysics Data System (ADS)
Chi, Weining; Wang, Dayong; Wang, Yunxin; Zhao, Jie; Rong, Lu; Yuan, Yuanyuan
2018-01-01
Optical Diffraction Tomography (ODT), as a novel 3D imaging technique, can obtain a 3D refractive index (RI) distribution to reveal the important optical properties of transparent samples. According to the theory of ODT, an optical diffraction tomography setup is built based on the Mach-Zehnder interferometer. The propagation direction of object beam is controlled by a 2D translation stage, and 121 holograms based on different illumination angles are recorded by a Charge-coupled Device (CCD). In order to prove the validity and accuracy of the ODT, the 3D RI profile of microsphere with a known RI is firstly measured. An iterative constraint algorithm is employed to improve the imaging accuracy effectively. The 3D morphology and average RI of the microsphere are consistent with that of the actual situation, and the RI error is less than 0.0033. Then, an optical element fabricated by laser with a non-uniform RI is taken as the sample. Its 3D RI profile is obtained by the optical diffraction tomography system.
Simultaneous Translation: Idiom Interpretation and Parsing Heuristics.
ERIC Educational Resources Information Center
McDonald, Janet L.; Carpenter, Patricia A.
1981-01-01
Presents a model of interpretation, parsing and error recovery in simultaneous translation using two experts and two amateur German-English bilingual translators orally translating from English to German. Argues that the translator first comprehends the text in English and divides it into meaningful units before translating. Study also…
Kortschot, R J; Bakelaar, I A; Erné, B H; Kuipers, B W M
2014-03-01
A sensitive dielectric spectroscopy setup is built to measure the response of nanoparticles dispersed in a liquid to an alternating electric field over a frequency range from 10(-2) to 10(7) Hz. The measured complex permittivity spectrum records both the rotational dynamics due to a permanent electric dipole moment and the translational dynamics due to net charges. The setup consists of a half-transparent capacitor connected in a bridge circuit, which is balanced on pure solvent only, using a software-controlled compensating voltage. In this way, the measured signal is dominated by the contributions of the nanoparticles rather than by the solvent. We demonstrate the performance of the setup with measurements on a dispersion of colloidal CdSe quantum dots in the apolar liquid decalin.
2017-09-01
analyzing Snort alerts. The first section covers the Snort alert-generation program, the methodology involved in developing it, and how it accelerates...guide on system setup. The methodologies described can be translated to the setup and use of the ELK stack for storing and visualizing any data...Figures iv List of Tables iv 1. Introduction 1 2. Methodology 2 2.1. Snort Alert Generation 2 2.2 The SELK Stack 8 3. Discussion and Conclusion 11
A new method and device of aligning patient setup lasers in radiation therapy.
Hwang, Ui-Jung; Jo, Kwanghyun; Lim, Young Kyung; Kwak, Jung Won; Choi, Sang Hyuon; Jeong, Chiyoung; Kim, Mi Young; Jeong, Jong Hwi; Shin, Dongho; Lee, Se Byeong; Park, Jeong-Hoon; Park, Sung Yong; Kim, Siyong
2016-01-08
The aim of this study is to develop a new method to align the patient setup lasers in a radiation therapy treatment room and examine its validity and efficiency. The new laser alignment method is realized by a device composed of both a metallic base plate and a few acrylic transparent plates. Except one, every plate has either a crosshair line (CHL) or a single vertical line that is used for alignment. Two holders for radiochromic film insertion are prepared in the device to find a radiation isocenter. The right laser positions can be found optically by matching the shadows of all the CHLs in the gantry head and the device. The reproducibility, accuracy, and efficiency of laser alignment and the dependency on the position error of the light source were evaluated by comparing the means and the standard deviations of the measured laser positions. After the optical alignment of the lasers, the radiation isocenter was found by the gantry and collimator star shots, and then the lasers were translated parallel to the isocenter. In the laser position reproducibility test, the mean and standard deviation on the wall of treatment room were 32.3 ± 0.93 mm for the new method whereas they were 33.4 ± 1.49 mm for the conventional method. The mean alignment accuracy was 1.4 mm for the new method, and 2.1 mm for the conventional method on the walls. In the test of the dependency on the light source position error, the mean laser position was shifted just by a similar amount of the shift of the light source in the new method, but it was greatly magnified in the conventional method. In this study, a new laser alignment method was devised and evaluated successfully. The new method provided more accurate, more reproducible, and faster alignment of the lasers than the conventional method.
Optimized linear motor and digital PID controller setup used in Mössbauer spectrometer
NASA Astrophysics Data System (ADS)
Kohout, Pavel; Kouřil, Lukáš; Navařík, Jakub; Novák, Petr; Pechoušek, Jiří
2014-10-01
Optimization of a linear motor and digital PID controller setup used in a Mössbauer spectrometer is presented. Velocity driving system with a digital PID feedback subsystem was developed in the LabVIEW graphical environment and deployed on the sbRIO real-time hardware device (National Instruments). The most important data acquisition processes are performed as real-time deterministic tasks on an FPGA chip. Velocity transducer of a double loudspeaker type with a power amplifier circuit is driven by the system. Series of calibration measurements were proceeded to find the optimal setup of the P, I, D parameters together with velocity error signal analysis. The shape and given signal characteristics of the velocity error signal are analyzed in details. Remote applications for controlling and monitoring the PID system from computer or smart phone, respectively, were also developed. The best setup and P, I, D parameters were set and calibration spectrum of α-Fe sample with an average nonlinearity of the velocity scale below 0.08% was collected. Furthermore, the width of the spectral line below 0.30 mm/s was observed. Powerful and complex velocity driving system was designed.
Performance of an online translation tool when applied to patient educational material.
Khanna, Raman R; Karliner, Leah S; Eck, Matthias; Vittinghoff, Eric; Koenig, Christopher J; Fang, Margaret C
2011-11-01
Language barriers may prevent clinicians from tailoring patient educational material to the needs of individuals with limited English proficiency. Online translation tools could fill this gap, but their accuracy is unknown. We evaluated the accuracy of an online translation tool for patient educational material. We selected 45 sentences from a pamphlet available in both English and Spanish, and translated it into Spanish using GoogleTranslate™ (GT). Three bilingual Spanish speakers then performed a blinded evaluation on these 45 sentences, comparing GT-translated sentences to those translated professionally, along four domains: fluency (grammatical correctness), adequacy (information preservation), meaning (connotation maintenance), and severity (perceived dangerousness of an error if present). In addition, evaluators indicated whether they had a preference for either the GT-translated or professionally translated sentences. The GT-translated sentences had significantly lower fluency scores compared to the professional translation (3.4 vs. 4.7, P < 0.001), but similar adequacy (4.2 vs. 4.5, P = 0.19) and meaning (4.5 vs. 4.8, P = 0.29) scores. The GT-translated sentences were more likely to have any error (39% vs. 22%, P = 0.05), but not statistically more likely to have a severe error (4% vs. 2%, P = 0.61). Evaluators preferred the professional translation for complex sentences, but not for simple ones. When applied to patient educational material, GT performed comparably to professional human translation in terms of preserving information and meaning, though it was slightly worse in preserving grammar. In situations where professional human translations are unavailable or impractical, online translation may someday fill an important niche. Copyright © 2011 Society of Hospital Medicine.
Schill, Matthew R.; Varela, J. Esteban; Frisella, Margaret M.; Brunt, L. Michael
2015-01-01
Background We compared performance of validated laparoscopic tasks on four commercially available single site access (SSA) access devices (AD) versus an independent port (IP) SSA set-up. Methods A prospective, randomized comparison of laparoscopic skills performance on four AD (GelPOINT™, SILS™ Port, SSL Access System™, TriPort™) and one IP SSA set-up was conducted. Eighteen medical students (2nd–4th year), four surgical residents, and five attending surgeons were trained to proficiency in multi-port laparoscopy using four laparoscopic drills (peg transfer, bean drop, pattern cutting, extracorporeal suturing) in a laparoscopic trainer box. Drills were then performed in random order on each IP-SSA and AD-SSA set-up using straight laparoscopic instruments. Repetitions were timed and errors recorded. Data are mean ± SD, and statistical analysis was by two-way ANOVA with Tukey HSD post-hoc tests. Results Attending surgeons had significantly faster total task times than residents or students (p< 0.001), but the difference between residents and students was NS. Pair-wise comparisons revealed significantly faster total task times for the IP-SSA set-up compared to all four AD-SSA’s within the student group only (p<0.05). Total task times for residents and attending surgeons showed a similar profile, but the differences were NS. When data for the three groups was combined, the total task time was less for the IP-SSA set-up than for each of the four AD-SSA set-ups (p < 0.001). Similarly,, the IP-SSA set-up was significantly faster than 3 of 4 AD-SSA set-ups for peg transfer, 3 of 4 for pattern cutting, and 2 of 4 for suturing. No significant differences in error rates between IP-SSA and AD-SSA set-ups were detected. Conclusions When compared to an IP-SSA laparoscopic set-up, single site access devices are associated with longer task performance times in a trainer box model, independent of level of training. Task performance was similar across different SSA devices. PMID:21993938
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carson, M; Molineu, A; Taylor, P
Purpose: To analyze the most recent results of IROC Houston’s anthropomorphic H&N phantom to determine the nature of failing irradiations and the feasibility of altering pass/fail credentialing criteria. Methods: IROC Houston’s H&N phantom, used for IMRT credentialing for NCI-sponsored clinical trials, requires that an institution’s treatment plan must agree with measurement within 7% (TLD doses) and ≥85% pixels must pass 7%/4 mm gamma analysis. 156 phantom irradiations (November 2014 – October 2015) were re-evaluated using tighter criteria: 1) 5% TLD and 5%/4 mm, 2) 5% TLD and 5%/3 mm, 3) 4% TLD and 4%/4 mm, and 4) 3% TLD andmore » 3%/3 mm. Failure/poor performance rates were evaluated with respect to individual film and TLD performance by location in the phantom. Overall poor phantom results were characterized qualitatively as systematic (dosimetric) errors, setup errors/positional shifts, global but non-systematic errors, and errors affecting only a local region. Results: The pass rate for these phantoms using current criteria is 90%. Substituting criteria 1-4 reduces the overall pass rate to 77%, 70%, 63%, and 37%, respectively. Statistical analyses indicated the probability of noise-induced TLD failure at the 5% criterion was <0.5%. Using criteria 1, TLD results were most often the cause of failure (86% failed TLD while 61% failed film), with most failures identified in the primary PTV (77% cases). Other criteria posed similar results. Irradiations that failed from film only were overwhelmingly associated with phantom shifts/setup errors (≥80% cases). Results failing criteria 1 were primarily diagnosed as systematic: 58% of cases. 11% were setup/positioning errors, 8% were global non-systematic errors, and 22% were local errors. Conclusion: This study demonstrates that 5% TLD and 5%/4 mm gamma criteria may be both practically and theoretically achievable. Further work is necessary to diagnose and resolve dosimetric inaccuracy in these trials, particularly for systematic dose errors. This work is funded by NCI Grant CA180803.« less
Modeling of a bubble-memory organization with self-checking translators to achieve high reliability.
NASA Technical Reports Server (NTRS)
Bouricius, W. G.; Carter, W. C.; Hsieh, E. P.; Wadia, A. B.; Jessep, D. C., Jr.
1973-01-01
Study of the design and modeling of a highly reliable bubble-memory system that has the capabilities of: (1) correcting a single 16-adjacent bit-group error resulting from failures in a single basic storage module (BSM), and (2) detecting with a probability greater than 0.99 any double errors resulting from failures in BSM's. The results of the study justify the design philosophy adopted of employing memory data encoding and a translator to correct single group errors and detect double group errors to enhance the overall system reliability.
mRNA Translation Gone Awry: Translation Fidelity and Neurological Disease.
Kapur, Mridu; Ackerman, Susan L
2018-03-01
Errors during mRNA translation can lead to a reduction in the levels of functional proteins and an increase in deleterious molecules. Advances in next-generation sequencing have led to the discovery of rare genetic disorders, many caused by mutations in genes encoding the mRNA translation machinery, as well as to a better understanding of translational dynamics through ribosome profiling. We discuss here multiple neurological disorders that are linked to errors in tRNA aminoacylation and ribosome decoding. We draw on studies from genetic models, including yeast and mice, to enhance our understanding of the translational defects observed in these diseases. Finally, we emphasize the importance of tRNA, their associated enzymes, and the inextricable link between accuracy and efficiency in the maintenance of translational fidelity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Machine Translation of Public Health Materials From English to Chinese: A Feasibility Study
Desai, Loma
2015-01-01
Background Chinese is the second most common language spoken by limited English proficiency individuals in the United States, yet there are few public health materials available in Chinese. Previous studies have indicated that use of machine translation plus postediting by bilingual translators generated quality translations in a lower time and at a lower cost than human translations. Objective The purpose of this study was to investigate the feasibility of using machine translation (MT) tools (eg, Google Translate) followed by human postediting (PE) to produce quality Chinese translations of public health materials. Methods From state and national public health websites, we collected 60 health promotion documents that had been translated from English to Chinese through human translation. The English version of the documents were then translated to Chinese using Google Translate. The MTs were analyzed for translation errors. A subset of the MT documents was postedited by native Chinese speakers with health backgrounds. Postediting time was measured. Postedited versions were then blindly compared against human translations by bilingual native Chinese quality raters. Results The most common machine translation errors were errors of word sense (40%) and word order (22%). Posteditors corrected the MTs at a rate of approximately 41 characters per minute. Raters, blinded to the source of translation, consistently selected the human translation over the MT+PE. Initial investigation to determine the reasons for the lower quality of MT+PE indicate that poor MT quality, lack of posteditor expertise, and insufficient posteditor instructions can be barriers to producing quality Chinese translations. Conclusions Our results revealed problems with using MT tools plus human postediting for translating public health materials from English to Chinese. Additional work is needed to improve MT and to carefully design postediting processes before the MT+PE approach can be used routinely in public health practice for a variety of language pairs. PMID:27227135
Situating Student Errors: Linguistic-to-Algebra Translation Errors
ERIC Educational Resources Information Center
Adu-Gyamfi, Kwaku; Bossé, Michael J.; Chandler, Kayla
2015-01-01
While it is well recognized that students are prone to difficulties when performing linguistic-to-algebra translations, the nature of students' difficulties remain an issue of contention. Moreover, the literature indicates that these difficulties are not easily remediated by domain-specific instruction. Some have opined that this is the case…
Inoue, Tatsuya; Widder, Joachim; van Dijk, Lisanne V; Takegawa, Hideki; Koizumi, Masahiko; Takashina, Masaaki; Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru; Saito, Anneyuko I; Sasai, Keisuke; Van't Veld, Aart A; Langendijk, Johannes A; Korevaar, Erik W
2016-11-01
To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2. The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D2 - D98, where D2 and D98 are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to <98% (clinical threshold) in 3 of 10 patients for robust 5-mm evaluations. However, the TC remained >98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. In robustly optimized IMPT for stage III NSCLC, the setup and range uncertainties, breathing motion, and interplay effects have limited impact on target coverage, dose homogeneity, and organ-at-risk dose parameters. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, H; Wang, W; Hu, W
2014-06-01
Purpose: To quantify setup errors by pretreatment kilovolt cone-beam computed tomography(KV-CBCT) scans for middle or distal esophageal carcinoma patients. Methods: Fifty-two consecutive middle or distal esophageal carcinoma patients who underwent IMRT were included this study. A planning CT scan using a big-bore CT simulator was performed in the treatment position and was used as the reference scan for image registration with CBCT. CBCT scans(On-Board Imaging v1. 5 system, Varian Medical Systems) were acquired daily during the first treatment week. A total of 260 CBCT scans was assessed with a registration clip box defined around the PTV-thorax in the reference scanmore » based on(nine CBCTs per patient) bony anatomy using Offline Review software v10.0(Varian Medical Systems). The anterior-posterior(AP), left-right(LR), superiorinferior( SI) corrections were recorded. The systematic and random errors were calculated. The CTV-to-PTV margins in each CBCT frequency was based on the Van Herk formula (2.5Σ+0.7σ). Results: The SD of systematic error (Σ) was 2.0mm, 2.3mm, 3.8mm in the AP, LR and SI directions, respectively. The average random error (σ) was 1.6mm, 2.4mm, 4.1mm in the AP, LR and SI directions, respectively. The CTV-to-PTV safety margin was 6.1mm, 7.5mm, 12.3mm in the AP, LR and SI directions based on van Herk formula. Conclusion: Our data recommend the use of 6 mm, 8mm, and 12 mm for esophageal carcinoma patient setup in AP, LR, SI directions, respectively.« less
TH-EF-BRB-11: Volumetric Modulated Arc Therapy for Total Body Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, L; Folkerts, M; Hrycushko, B
Purpose: To develop a modern, patient-comfortable total body irradiation (TBI) technique suitable for standard-sized linac vaults. Methods: An indexed rotatable immobilization system (IRIS) was developed to make possible total-body CT imaging and radiation delivery on conventional couches. Treatment consists of multi-isocentric volumetric modulated arc therapy (VMAT) to the upper body and parallel-opposed fields to the lower body. Each isocenter is indexed to the couch and includes a 180° IRIS rotation between the upper and lower body fields. VMAT fields are optimized to satisfy lung dose objectives while achieving a uniform therapeutic dose to the torso. End-to-end tests with a randomore » phantom were used to verify dosimetric characteristics. Treatment plan robustness regarding setup uncertainty was assessed by simulating global and regional isocenter setup shifts on patient data sets. Dosimetric comparisons were made with conventional extended distance, standing TBI (cTBI) plans using a Monte Carlo-based calculation. Treatment efficiency was assessed for eight courses of patient treatment. Results: The IRIS system is level and orthogonal to the scanned CT image plane, with lateral shifts <2mm following rotation. End-to-end tests showed surface doses within ±10% of the prescription dose, field junction doses within ±15% of prescription dose. Plan robustness tests showed <15% changes in dose with global setup errors up to 5mm in each direction. Local 5mm relative setup errors in the chest resulted in < 5% dose changes. Local 5mm shift errors in the pelvic and upper leg junction resulted in <10% dose changes while a 10mm shift error causes dose changes up to 25%. Dosimetric comparison with cTBI showed VMAT-TBI has advantages in preserving chest wall dose with flexibility in leveraging the PTV-body and PTV-lung dose. Conclusion: VMAT-TBI with the IRIS system was shown clinically feasible as a cost-effective approach to TBI for standard-sized linac vaults.« less
Chinese Translation Errors in English/Chinese Bilingual Children's Picture Books
ERIC Educational Resources Information Center
Huang, Qiaoya; Chen, Xiaoning
2012-01-01
The aim of this study was to review the Chinese translation errors in 31 English/Chinese bilingual children's picture books. While bilingual children's books make definite contributions to language acquisition, few studies have examined the quality of these books, and even fewer have specifically focused on English/Chinese bilingual books.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Yong; Zhou, Yong-Kang; Chen, Yi-Xing
Objective: A comprehensive clinical evaluation was conducted, assessing the Body Pro-Lok immobilization and positioning system to facilitate hypofractionated radiotherapy of intrahepatic hepatocellular carcinoma (HCC), using helical tomotherapy to improve treatment precision. Methods: Clinical applications of the Body Pro-Lok system were investigated (as above) in terms of interfractional and intrafractional setup errors and compressive abdominal breath control. To assess interfractional setup errors, a total of 42 patients who were given 5 to 20 fractions of helical tomotherapy for intrahepatic HCC were analyzed. Overall, 15 patients were immobilized using simple vacuum cushion (group A), and the Body Pro-Lok system was used inmore » 27 patients (group B), performing megavoltage computed tomography (MVCT) scans 196 times and 435 times, respectively. Pretreatment MVCT scans were registered to the planning kilovoltage computed tomography (KVCT) for error determination, and group comparisons were made. To establish intrafractional setup errors, 17 patients with intrahepatic HCC were selected at random for immobilization by Body Pro-Lok system, undergoing MVCT scans after helical tomotherapy every week. A total of 46 MVCT re-scans were analyzed for this purpose. In researching breath control, 12 patients, randomly selected, were immobilized by Body Pro-Lok system and subjected to 2-phase 4-dimensional CT (4DCT) scans, with compressive abdominal control or in freely breathing states, respectively. Respiratory-induced liver motion was then compared. Results: Mean interfractional setup errors were as follows: (1) group A: X, 2.97 ± 2.47 mm; Y, 4.85 ± 4.04 mm; and Z, 3.77 ± 3.21 mm; pitch, 0.66 ± 0.62°; roll, 1.09 ± 1.06°; and yaw, 0.85 ± 0.82°; and (2) group B: X, 2.23 ± 1.79 mm; Y, 4.10 ± 3.36 mm; and Z, 1.67 ± 1.91 mm; pitch, 0.45 ± 0.38°; roll, 0.77 ± 0.63°; and yaw, 0.52 ± 0.49°. Between-group differences were statistically significant in 6 directions (p < 0.05). Mean intrafractional setup errors with use of the Body Pro-Lok system were as follows: X, 0.41 ± 0.46 mm; Y, 0.86 ± 0.80 mm; Z, 0.33 ± 0.44 mm; and roll, 0.12 ± 0.19°. Mean liver-induced respiratory motion determinations were as follows: (1) abdominal compression: X, 2.33 ± 1.22 mm; Y, 5.11 ± 2.05 mm; Z, 2.13 ± 1.05 mm; and 3D vector, 6.22 ± 1.94 mm; and (2) free breathing: X, 3.48 ± 1.14 mm; Y, 9.83 ± 3.00 mm; Z, 3.38 ± 1.59 mm; and 3D vector, 11.07 ± 3.16 mm. Between-group differences were statistically different in 4 directions (p < 0.05). Conclusions: The Body Pro-Lok system is capable of improving interfractional and intrafractional setup accuracy and minimizing tumor movement owing to respirations in patients with intrahepatic HCC during hypofractionated helical tomotherapy.« less
ERIC Educational Resources Information Center
Ghasemi, Hadis; Hashemian, Mahmood
2016-01-01
Both lack of time and the need to translate texts for numerous reasons brought about an increase in studying machine translation with a history spanning over 65 years. During the last decades, Google Translate, as a statistical machine translation (SMT), was in the center of attention for supporting 90 languages. Although there are many studies on…
Empirical parameterization of setup, swash, and runup
Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H.
2006-01-01
Using shoreline water-level time series collected during 10 dynamically diverse field experiments, an empirical parameterization for extreme runup, defined by the 2% exceedence value, has been developed for use on natural beaches over a wide range of conditions. Runup, the height of discrete water-level maxima, depends on two dynamically different processes; time-averaged wave setup and total swash excursion, each of which is parameterized separately. Setup at the shoreline was best parameterized using a dimensional form of the more common Iribarren-based setup expression that includes foreshore beach slope, offshore wave height, and deep-water wavelength. Significant swash can be decomposed into the incident and infragravity frequency bands. Incident swash is also best parameterized using a dimensional form of the Iribarren-based expression. Infragravity swash is best modeled dimensionally using offshore wave height and wavelength and shows no statistically significant linear dependence on either foreshore or surf-zone slope. On infragravity-dominated dissipative beaches, the magnitudes of both setup and swash, modeling both incident and infragravity frequency components together, are dependent only on offshore wave height and wavelength. Statistics of predicted runup averaged over all sites indicate a - 17 cm bias and an rms error of 38 cm: the mean observed runup elevation for all experiments was 144 cm. On intermediate and reflective beaches with complex foreshore topography, the use of an alongshore-averaged beach slope in practical applications of the runup parameterization may result in a relative runup error equal to 51% of the fractional variability between the measured and the averaged slope.
Practical considerations for coil-wrapped Distributed Temperature Sensing setups
NASA Astrophysics Data System (ADS)
Solcerova, Anna; van Emmerik, Tim; Hilgersom, Koen; van de Giesen, Nick
2015-04-01
Fiber-optic Distributed Temperature Sensing (DTS) has been applied widely in hydrological and meteorological systems. For example, DTS has been used to measure streamflow, groundwater, soil moisture and temperature, air temperature, and lake energy fluxes. Many of these applications require a spatial monitoring resolution smaller than the minimum resolution of the DTS device. Therefore, measuring with these resolutions requires a custom made setup. To obtain both high temporal and high spatial resolution temperature measurements, fiber-optic cable is often wrapped around, and glued to, a coil, for example a PVC conduit. For these setups, it is often assumed that the construction characteristics (e.g., the coil material, shape, diameter) do not influence the DTS temperature measurements significantly. This study compares DTS datasets obtained during four measurement campaigns. The datasets were acquired using different setups, allowing to investigate the influence of the construction characteristics on the monitoring results. This comparative study suggests that the construction material, shape, diameter, and way of attachment can have a significant influence on the results. We present a qualitative and quantitative approximation of errors introduced through the selection of the construction, e.g., choice of coil material, influence of solar radiation, coil diameter, and cable attachment method. Our aim is to provide insight in factors that influence DTS measurements, which designers of future DTS measurements setups can take into account. Moreover, we present a number of solutions to minimize these errors for improved temperature retrieval using DTS.
NASA Astrophysics Data System (ADS)
Lv, Zeqian; Xu, Xiaohai; Yan, Tianhao; Cai, Yulong; Su, Yong; Zhang, Qingchuan
2018-01-01
In the measurement of plate specimens, traditional two-dimensional (2D) digital image correlation (DIC) is challenged by two aspects: (1) the slant optical axis (misalignment of the optical camera axis and the object surface) and (2) out-of-plane motions (including translations and rotations) of the specimens. There are measurement errors in the results measured by 2D DIC, especially when the out-of-plane motions are big enough. To solve this problem, a novel compensation method has been proposed to correct the unsatisfactory results. The proposed compensation method consists of three main parts: 1) a pre-calibration step is used to determine the intrinsic parameters and lens distortions; 2) a compensation panel (a rigid panel with several markers located at known positions) is mounted to the specimen to track the specimen's motion so that the relative coordinate transformation between the compensation panel and the 2D DIC setup can be calculated using the coordinate transform algorithm; 3) three-dimensional world coordinates of measuring points on the specimen can be reconstructed via the coordinate transform algorithm and used to calculate deformations. Simulations have been carried out to validate the proposed compensation method. Results come out that when the extensometer length is 400 pixels, the strain accuracy reaches 10 με no matter out-of-plane translations (less than 1/200 of the object distance) nor out-of-plane rotations (rotation angle less than 5°) occur. The proposed compensation method leads to good results even when the out-of-plane translation reaches several percents of the object distance or the out-of-plane rotation angle reaches tens of degrees. The proposed compensation method has been applied in tensile experiments to obtain high-accuracy results as well.
Michael, John S
2017-09-01
Johann Friedrich Blumenbach has been called 'The Father of Physical Anthropology' because of his pioneering publications describing human racial variation. He proposed a racial typology consisting of five 'major varieties/races' of humanity. Since the 1990s, Londa Schiebinger and other Anglophone scholars have argued that Blumenbach's writings on race show evidence that he was significantly influenced by nineteenth-century race supremacist beliefs which held Europeans/Caucasians to be the highest ranked and most beautiful race. However, these modern authors relied largely on Thomas Bendyshe's 1865 English translations of Blumenbach's Latin and German texts. As documented herein, Bendyshe's publication includes numerous translation errors which form a pattern indicating that he employed two translators. The first translator was consistent with five earlier English translations. The second translator was not consistent with the earlier translators. This second translator also used English terms that denigrated extra-Europeans while adulating Europeans. Furthermore, Bendyshe's1865 translation regularly used the term 'beauty' to translate different Latin words that Blumenbach used to express his nuanced view of aesthetics and structural symmetry. Given the inconsistency and errors in Bendyshe's 1865 translations, they should not be unquestionably accepted as an accurate reflection of Blumenbach's views.
SU-E-J-45: The Correlation Between CBCT Flat Panel Misalignment and 3D Image Guidance Accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenton, O; Valdes, G; Yin, L
Purpose To simulate the impact of CBCT flat panel misalignment on the image quality, the calculated correction vectors in 3D image guided proton therapy and to determine if these calibration errors can be caught in our QA process. Methods The X-ray source and detector geometrical calibration (flexmap) file of the CBCT system in the AdaPTinsight software (IBA proton therapy) was edited to induce known changes in the rotational and translational calibrations of the imaging panel. Translations of up to ±10 mm in the x, y and z directions (see supplemental) and rotational errors of up to ±3° were induced. Themore » calibration files were then used to reconstruct the CBCT image of a pancreatic patient and CatPhan phantom. Correction vectors were calculated for the patient using the software’s auto match system and compared to baseline values. The CatPhan CBCT images were used for quantitative evaluation of image quality for each type of induced error. Results Translations of 1 to 3 mm in the x and y calibration resulted in corresponding correction vector errors of equal magnitude. Similar 10mm shifts were seen in the y-direction; however, in the x-direction, the image quality was too degraded for a match. These translational errors can be identified through differences in isocenter from orthogonal kV images taken during routine QA. Errors in the z-direction had no effect on the correction vector and image quality.Rotations of the imaging panel calibration resulted in corresponding correction vector rotations of the patient images. These rotations also resulted in degraded image quality which can be identified through quantitative image quality metrics. Conclusion Misalignment of CBCT geometry can lead to incorrect translational and rotational patient correction vectors. These errors can be identified through QA of the imaging isocenter as compared to orthogonal images combined with monitoring of CBCT image quality.« less
Linguistic Precautions That to Be Considered When Translating the Holy Quran
ERIC Educational Resources Information Center
Siddiek, Ahmed Gumaa
2017-01-01
The present study is an attempt to raise some points that should be considered when translating the Quranic Text into English. We have looked into some samples of translations, selected from well known English translations of the Holy Quran and critically examined them. There were some errors in those translations, due to linguistic factors, owing…
Amiri, Shahram; Wilson, David R; Masri, Bassam A; Sharma, Gulshan; Anglin, Carolyn
2011-06-03
Determining the 3D pose of the patella after total knee arthroplasty is challenging. The commonly used single-plane fluoroscopy is prone to large errors in the clinically relevant mediolateral direction. A conventional fixed bi-planar setup is limited in the minimum angular distance between the imaging planes necessary for visualizing the patellar component, and requires a highly flexible setup to adjust for the subject-specific geometries. As an alternative solution, this study investigated the use of a novel multi-planar imaging setup that consists of a C-arm tracked by an external optoelectric tracking system, to acquire calibrated radiographs from multiple orientations. To determine the accuracies, a knee prosthesis was implanted on artificial bones and imaged in simulated 'Supine' and 'Weightbearing' configurations. The results were compared with measures from a coordinate measuring machine as the ground-truth reference. The weightbearing configuration was the preferred imaging direction with RMS errors of 0.48 mm and 1.32 ° for mediolateral shift and tilt of the patella, respectively, the two most clinically relevant measures. The 'imaging accuracies' of the system, defined as the accuracies in 3D reconstruction of a cylindrical ball bearing phantom (so as to avoid the influence of the shape and orientation of the imaging object), showed an order of magnitude (11.5 times) reduction in the out-of-plane RMS errors in comparison to single-plane fluoroscopy. With this new method, complete 3D pose of the patellofemoral and tibiofemoral joints during quasi-static activities can be determined with a many-fold (up to 8 times) (3.4mm) improvement in the out-of-plane accuracies compared to a conventional single-plane fluoroscopy setup. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Baek, Jong Geun; Jang, Hyun Soo; Oh, Young Kee; Lee, Hyun Jeong; Kim, Eng Chan
2015-07-01
The purpose of this study was to evaluate the setup uncertainties for single-fraction stereotactic radiosurgery (SF-SRS) based on clinical data with two different mask-creation methods using pretreatment con-beam computed tomography imaging guidance. Dedicated frameless fixation Brain- LAB masks for 23 patients were created as a routine mask (R-mask) making method, as explained in the BrainLAB's user manual. Alternative masks (A-masks), which were created by modifying the cover range of the R-masks for the patient's head, were used for 23 patients. The systematic errors including these for each mask and stereotactic target localizer were analyzed, and the errors were calculated as the means ± standard deviations (SD) from the left-right (LR), superior-inferior (SI), anterior-posterior (AP), and yaw setup corrections. In addition, the frequencies of the threedimensional (3D) vector length were analyzed. The values of the mean setup corrections for the R-mask in all directions were < 0.7 mm and < 0.1°, whereas the magnitudes of the SDs were relatively large compared to the mean values. In contrast, the means and SDs of the A-mask were smaller than those for the R-mask with the exception of the SD in the AP direction. The means and SDs in the yaw rotational direction for the R-mask and the A-mask system were comparable. 3D vector shifts of larger magnitude occurred more frequently for the R-mask than the A-mask. The setup uncertainties for each mask with the stereotactic localizing system had an asymmetric offset towards the positive AP direction. The A-mask-creation method, which is capable of covering the top of the patient's head, is superior to that for the R-mask, so the use of the A-mask is encouraged for SF-SRS to reduce the setup uncertainties. Moreover, careful mask-making is required to prevent possible setup uncertainties.
NASA Astrophysics Data System (ADS)
Mundermann, Lars; Mundermann, Annegret; Chaudhari, Ajit M.; Andriacchi, Thomas P.
2005-01-01
Anthropometric parameters are fundamental for a wide variety of applications in biomechanics, anthropology, medicine and sports. Recent technological advancements provide methods for constructing 3D surfaces directly. Of these new technologies, visual hull construction may be the most cost-effective yet sufficiently accurate method. However, the conditions influencing the accuracy of anthropometric measurements based on visual hull reconstruction are unknown. The purpose of this study was to evaluate the conditions that influence the accuracy of 3D shape-from-silhouette reconstruction of body segments dependent on number of cameras, camera resolution and object contours. The results demonstrate that the visual hulls lacked accuracy in concave regions and narrow spaces, but setups with a high number of cameras reconstructed a human form with an average accuracy of 1.0 mm. In general, setups with less than 8 cameras yielded largely inaccurate visual hull constructions, while setups with 16 and more cameras provided good volume estimations. Body segment volumes were obtained with an average error of 10% at a 640x480 resolution using 8 cameras. Changes in resolution did not significantly affect the average error. However, substantial decreases in error were observed with increasing number of cameras (33.3% using 4 cameras; 10.5% using 8 cameras; 4.1% using 16 cameras; 1.2% using 64 cameras).
NASA Astrophysics Data System (ADS)
Saga, R. S.; Jauhari, W. A.; Laksono, P. W.
2017-11-01
This paper presents an integrated inventory model which consists of single vendor and buyer. The buyer managed its inventory periodically and orders products from the vendor to satisfy the end customer’s demand, where the annual demand and the ordering cost were in the fuzzy environment. The buyer used a service level constraint instead of the stock-out cost term, so that the stock-out level per cycle was bounded. Then, the vendor produced and delivered products to the buyer. The vendor had a choice to commit an investment to reduce the setup cost. However, the vendor’s production process was imperfect, thus the lot delivered contained some defective products. Moreover, the buyer’s inspection process was not error-free since the inspector could be mistaken in categorizing the product’s quality. The objective was to find the optimum value for the review period, the setup cost, and the number of deliveries in one production cycle which might minimize the joint total cost. Furthermore, the algorithm and numerical example were provided to illustrate the application of the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, S; Charpentier, P; Sayler, E
2015-06-15
Purpose Isocenter shifts and rotations to correct patient setup errors and organ motion cannot remedy some shape changes of large targets. We are investigating new methods in quantification of target deformation for realtime IGRT of breast and chest wall cancer. Methods Ninety-five patients of breast or chest wall cancer were accrued in an IRB-approved clinical trial of IGRT using 3D surface images acquired at daily setup and beam-on time via an in-room camera. Shifts and rotations relating to the planned reference surface were determined using iterative-closest-point alignment. Local surface displacements and target deformation are measured via a ray-surface intersection andmore » principal component analysis (PCA) of external surface, respectively. Isocenter shift, upper-abdominal displacement, and vectors of the surface projected onto the two principal components, PC1 and PC2, were evaluated for sensitivity and accuracy in detection of target deformation. Setup errors for some deformed targets were estimated by superlatively registering target volume, inner surface, or external surface in weekly CBCT or these outlines on weekly EPI. Results Setup difference according to the inner-surface, external surface, or target volume could be 1.5 cm. Video surface-guided setup agreed with EPI results to within < 0.5 cm while CBCT results were sometimes (∼20%) different from that of EPI (>0.5 cm) due to target deformation for some large breasts and some chest walls undergoing deep-breath-hold irradiation. Square root of PC1 and PC2 is very sensitive to external surface deformation and irregular breathing. Conclusion PCA of external surfaces is quick and simple way to detect target deformation in IGRT of breast and chest wall cancer. Setup corrections based on the target volume, inner surface, and external surface could be significant different. Thus, checking of target shape changes is essential for accurate image-guided patient setup and motion tracking of large deformable targets. NIH grant for the first author as cionsultant and the last author as the PI.« less
Couch height–based patient setup for abdominal radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohira, Shingo; Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita; Ueda, Yoshihiro
2016-04-01
There are 2 methods commonly used for patient positioning in the anterior-posterior (A-P) direction: one is the skin mark patient setup method (SMPS) and the other is the couch height–based patient setup method (CHPS). This study compared the setup accuracy of these 2 methods for abdominal radiation therapy. The enrollment for this study comprised 23 patients with pancreatic cancer. For treatments (539 sessions), patients were set up by using isocenter skin marks and thereafter treatment couch was shifted so that the distance between the isocenter and the upper side of the treatment couch was equal to that indicated on themore » computed tomographic (CT) image. Setup deviation in the A-P direction for CHPS was measured by matching the spine of the digitally reconstructed radiograph (DRR) of a lateral beam at simulation with that of the corresponding time-integrated electronic portal image. For SMPS with no correction (SMPS/NC), setup deviation was calculated based on the couch-level difference between SMPS and CHPS. SMPS/NC was corrected using 2 off-line correction protocols: no action level (SMPS/NAL) and extended NAL (SMPS/eNAL) protocols. Margins to compensate for deviations were calculated using the Stroom formula. A-P deviation > 5 mm was observed in 17% of SMPS/NC, 4% of SMPS/NAL, and 4% of SMPS/eNAL sessions but only in one CHPS session. For SMPS/NC, 7 patients (30%) showed deviations at an increasing rate of > 0.1 mm/fraction, but for CHPS, no such trend was observed. The standard deviations (SDs) of systematic error (Σ) were 2.6, 1.4, 0.6, and 0.8 mm and the root mean squares of random error (σ) were 2.1, 2.6, 2.7, and 0.9 mm for SMPS/NC, SMPS/NAL, SMPS/eNAL, and CHPS, respectively. Margins to compensate for the deviations were wide for SMPS/NC (6.7 mm), smaller for SMPS/NAL (4.6 mm) and SMPS/eNAL (3.1 mm), and smallest for CHPS (2.2 mm). Achieving better setup with smaller margins, CHPS appears to be a reproducible method for abdominal patient setup.« less
NASA Astrophysics Data System (ADS)
Ammazzalorso, F.; Bednarz, T.; Jelen, U.
2014-03-01
We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, Tatsuya; Widder, Joachim; Dijk, Lisanne V. van
2016-11-01
Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2.more » The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D{sub 2} − D{sub 98}, where D{sub 2} and D{sub 98} are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. Results: The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to <98% (clinical threshold) in 3 of 10 patients for robust 5-mm evaluations. However, the TC remained >98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. Conclusions: In robustly optimized IMPT for stage III NSCLC, the setup and range uncertainties, breathing motion, and interplay effects have limited impact on target coverage, dose homogeneity, and organ-at-risk dose parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Samantha, E-mail: samantha.warren@oncology.ox.ac.uk; Partridge, Mike; Bolsi, Alessandra
Purpose: Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. Methods andmore » Materials: For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV){sub 50Gy} or PTV{sub 62.5Gy} (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose–volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. Results: SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D{sub 98} was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D{sub 98} was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D{sub 98} was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D{sub 98} was lower by 0.3% to 2.2% of the prescribed GTV dose. Conclusions: The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be unacceptable for certain patients. Robust optimization to ensure adequate target coverage of SIB proton plans might be beneficial.« less
Warren, Samantha; Partridge, Mike; Bolsi, Alessandra; Lomax, Anthony J.; Hurt, Chris; Crosby, Thomas; Hawkins, Maria A.
2016-01-01
Purpose Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. Methods and Materials For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV)50Gy or PTV62.5Gy (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose–volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. Results SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D98 was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D98 was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D98 was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D98 was lower by 0.3% to 2.2% of the prescribed GTV dose. Conclusions The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be unacceptable for certain patients. Robust optimization to ensure adequate target coverage of SIB proton plans might be beneficial. PMID:27084641
Warren, Samantha; Partridge, Mike; Bolsi, Alessandra; Lomax, Anthony J; Hurt, Chris; Crosby, Thomas; Hawkins, Maria A
2016-05-01
Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV)50Gy or PTV62.5Gy (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose-volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D98 was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D98 was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D98 was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D98 was lower by 0.3% to 2.2% of the prescribed GTV dose. The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be unacceptable for certain patients. Robust optimization to ensure adequate target coverage of SIB proton plans might be beneficial. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Yohay Carmel; Curtis Flather; Denis Dean
2006-01-01
This paper summarizes our efforts to investigate the nature, behavior, and implications of positional error and attribute error in spatiotemporal datasets. Estimating the combined influence of these errors on map analysis has been hindered by the fact that these two error types are traditionally expressed in different units (distance units, and categorical units,...
ERIC Educational Resources Information Center
Taylor, David P.
1995-01-01
Presents an experiment that demonstrates conservation of momentum and energy using a box on the ground moving backwards as it is struck by a projectile. Discusses lab calculations, setup, management, errors, and improvements. (JRH)
Comparison of 2c- and 3cLIF droplet temperature imaging
NASA Astrophysics Data System (ADS)
Palmer, Johannes; Reddemann, Manuel A.; Kirsch, Valeri; Kneer, Reinhold
2018-06-01
This work presents "pulsed 2D-3cLIF-EET" as a measurement setup for micro-droplet internal temperature imaging. The setup relies on a third color channel that allows correcting spatially changing energy transfer rates between the two applied fluorescent dyes. First measurement results are compared with results of two slightly different versions of the recent "pulsed 2D-2cLIF-EET" method. Results reveal a higher temperature measurement accuracy of the recent 2cLIF setup. Average droplet temperature is determined by the 2cLIF setup with an uncertainty of less than 1 K and a spatial deviation of about 3.7 K. The new 3cLIF approach would become competitive, if the existing droplet size dependency is anticipated by an additional calibration and if the processing algorithm includes spatial measurement errors more appropriately.
More Heads Are Better than One: Peer Editing in a Translation Classroom of EFL Learners
ERIC Educational Resources Information Center
Insai, Sakolkarn; Poonlarp, Tongtip
2017-01-01
During the process of translation, students need to learn how to detect and correct errors in their translation drafts, and collaboration among themselves is one possible way to do this. As Pym (2003) has explained, translation is a process of problem-solving; translators must be able to decide which choices are more or less appropriate for the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyapa, Robert; Lowe, Matthew; Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester
Purpose: To evaluate the robustness of head and neck plans for treatment with intensity modulated proton therapy to range and setup errors, and to establish robustness parameters for the planning of future head and neck treatments. Methods and Materials: Ten patients previously treated were evaluated in terms of robustness to range and setup errors. Error bar dose distributions were generated for each plan, from which several metrics were extracted and used to define a robustness database of acceptable parameters over all analyzed plans. The patients were treated in sequentially delivered series, and plans were evaluated for both the first seriesmore » and for the combined error over the whole treatment. To demonstrate the application of such a database in the head and neck, for 1 patient, an alternative treatment plan was generated using a simultaneous integrated boost (SIB) approach and plans of differing numbers of fields. Results: The robustness database for the treatment of head and neck patients is presented. In an example case, comparison of single and multiple field plans against the database show clear improvements in robustness by using multiple fields. A comparison of sequentially delivered series and an SIB approach for this patient show both to be of comparable robustness, although the SIB approach shows a slightly greater sensitivity to uncertainties. Conclusions: A robustness database was created for the treatment of head and neck patients with intensity modulated proton therapy based on previous clinical experience. This will allow the identification of future plans that may benefit from alternative planning approaches to improve robustness.« less
Inter- and Intrafraction Uncertainty in Prostate Bed Image-Guided Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Kitty; Palma, David A.; Department of Oncology, University of Western Ontario, London
2012-10-01
Purpose: The goals of this study were to measure inter- and intrafraction setup error and prostate bed motion (PBM) in patients undergoing post-prostatectomy image-guided radiotherapy (IGRT) and to propose appropriate population-based three-dimensional clinical target volume to planning target volume (CTV-PTV) margins in both non-IGRT and IGRT scenarios. Methods and Materials: In this prospective study, 14 patients underwent adjuvant or salvage radiotherapy to the prostate bed under image guidance using linac-based kilovoltage cone-beam CT (kV-CBCT). Inter- and intrafraction uncertainty/motion was assessed by offline analysis of three consecutive daily kV-CBCT images of each patient: (1) after initial setup to skin marks, (2)more » after correction for positional error/immediately before radiation treatment, and (3) immediately after treatment. Results: The magnitude of interfraction PBM was 2.1 mm, and intrafraction PBM was 0.4 mm. The maximum inter- and intrafraction prostate bed motion was primarily in the anterior-posterior direction. Margins of at least 3-5 mm with IGRT and 4-7 mm without IGRT (aligning to skin marks) will ensure 95% of the prescribed dose to the clinical target volume in 90% of patients. Conclusions: PBM is a predominant source of intrafraction error compared with setup error and has implications for appropriate PTV margins. Based on inter- and estimated intrafraction motion of the prostate bed using pre- and post-kV-CBCT images, CBCT IGRT to correct for day-to-day variances can potentially reduce CTV-PTV margins by 1-2 mm. CTV-PTV margins for prostate bed treatment in the IGRT and non-IGRT scenarios are proposed; however, in cases with more uncertainty of target delineation and image guidance accuracy, larger margins are recommended.« less
NASA Astrophysics Data System (ADS)
Smith, V.
2000-11-01
This report documents the development of analytical techniques required for interpreting and comparing space systems electromagnetic interference test data with commercial electromagnetic interference test data using NASA Specification SSP 30237A "Space Systems Electromagnetic Emission and Susceptibility Requirements for Electromagnetic Compatibility." The PSpice computer simulation results and the laboratory measurements for the test setups under study compare well. The study results, however, indicate that the transfer function required to translate test results of one setup to another is highly dependent on cables and their actual layout in the test setup. Since cables are equipment specific and are not specified in the test standards, developing a transfer function that would cover all cable types (random, twisted, or coaxial), sizes (gauge number and length), and layouts (distance from the ground plane) is not practical.
NASA Technical Reports Server (NTRS)
Smith, V.; Minor, J. L. (Technical Monitor)
2000-01-01
This report documents the development of analytical techniques required for interpreting and comparing space systems electromagnetic interference test data with commercial electromagnetic interference test data using NASA Specification SSP 30237A "Space Systems Electromagnetic Emission and Susceptibility Requirements for Electromagnetic Compatibility." The PSpice computer simulation results and the laboratory measurements for the test setups under study compare well. The study results, however, indicate that the transfer function required to translate test results of one setup to another is highly dependent on cables and their actual layout in the test setup. Since cables are equipment specific and are not specified in the test standards, developing a transfer function that would cover all cable types (random, twisted, or coaxial), sizes (gauge number and length), and layouts (distance from the ground plane) is not practical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirose, T; Arimura, H; Oga, S
2016-06-15
Purpose: The purpose of this study was to investigate the impact of planning target volume (PTV) margins with taking into consideration clinical target volume (CTV) shape variations on treatment plans of intensity modulated radiation therapy (IMRT) for prostate cancer. Methods: The systematic errors and the random errors for patient setup errors in right-left (RL), anterior-posterior (AP), and superior-inferior (SI) directions were obtained from data of 20 patients, and those for CTV shape variations were calculated from 10 patients, who were weekly scanned using cone beam computed tomography (CBCT). The setup error was defined as the difference in prostate centers betweenmore » planning CT and CBCT images after bone-based registrations. CTV shape variations of high, intermediate and low risk CTVs were calculated for each patient from variances of interfractional shape variations on each vertex of three-dimensional CTV point distributions, which were manually obtained from CTV contours on the CBCT images. PTV margins were calculated using the setup errors with and without CTV shape variations for each risk CTV. Six treatment plans were retrospectively made by using the PTV margins with and without CTV shape variations for the three risk CTVs of 5 test patients. Furthermore, the treatment plans were applied to CBCT images for investigating the impact of shape variations on PTV margins. Results: The percentages of population to cover with the PTV, which satisfies the CTV D98 of 95%, with and without the shape variations were 89.7% and 74.4% for high risk, 89.7% and 76.9% for intermediate risk, 84.6% and 76.9% for low risk, respectively. Conclusion: PTV margins taking into account CTV shape variation provide significant improvement of applicable percentage of population (P < 0.05). This study suggested that CTV shape variation should be taken consideration into determination of the PTV margins.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aristophanous, M; Court, L
Purpose: Despite daily image guidance setup uncertainties can be high when treating large areas of the body. The aim of this study was to measure local uncertainties inside the PTV for patients receiving IMRT to the mediastinum region. Methods: Eleven lymphoma patients that received radiotherapy (breath-hold) to the mediastinum were included in this study. The treated region could range all the way from the neck to the diaphragm. Each patient had a CT scan with a CT-on-rails system prior to every treatment. The entire PTV region was matched to the planning CT using automatic rigid registration. The PTV was thenmore » split into 5 regions: neck, supraclavicular, superior mediastinum, upper heart, lower heart. Additional auto-registrations for each of the 5 local PTV regions were performed. The residual local setup errors were calculated as the difference between the final global PTV position and the individual final local PTV positions for the AP, SI and RL directions. For each patient 4 CT scans were analyzed (1 per week of treatment). Results: The residual mean group error (M) and standard deviation of the inter-patient (or systematic) error (Σ) were lowest in the RL direction of the superior mediastinum (0.0mm and 0.5mm) and highest in the RL direction of the lower heart (3.5mm and 2.9mm). The standard deviation of the inter-fraction (or random) error (σ) was lowest in the RL direction of the superior mediastinum (0.5mm) and highest in the SI direction of the lower heart (3.9mm) The directionality of local uncertainties is important; a superior residual error in the lower heart for example keeps it in the global PTV. Conclusion: There is a complex relationship between breath-holding and positioning uncertainties that needs further investigation. Residual setup uncertainties can be significant even under daily CT image guidance when treating large regions of the body.« less
SU-E-J-117: Verification Method for the Detection Accuracy of Automatic Winston Lutz Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, A; Chan, K; Fee, F
2014-06-01
Purpose: Winston Lutz test (WLT) has been a standard QA procedure performed prior to SRS treatment, to verify the mechanical iso-center setup accuracy upon different Gantry/Couch movements. Several detection algorithms exist,for analyzing the ball-radiation field alignment automatically. However, the accuracy of these algorithms have not been fully addressed. Here, we reveal the possible errors arise from each step in WLT, and verify the software detection accuracy with the Rectilinear Phantom Pointer (RLPP), a tool commonly used for aligning treatment plan coordinate with mechanical iso-center. Methods: WLT was performed with the radio-opaque ball mounted on a MIS and irradiated onto EDR2more » films. The films were scanned and processed with an in-house Matlab program for automatic iso-center detection. Tests were also performed to identify the errors arise from setup, film development and scanning process. The radioopaque ball was then mounted onto the RLPP, and offset laterally and longitudinally in 7 known positions ( 0, ±0.2, ±0.5, ±0.8 mm) manually for irradiations. The gantry and couch was set to zero degree for all irradiation. The same scanned images were processed repeatedly to check the repeatability of the software. Results: Miminal discrepancies (mean=0.05mm) were detected with 2 films overlapped and irradiated but developed separately. This reveals the error arise from film processor and scanner alone. Maximum setup errors were found to be around 0.2mm, by analyzing data collected from 10 irradiations over 2 months. For the known shift introduced using the RLPP, the results agree with the manual offset, and fit linearly (R{sup 2}>0.99) when plotted relative to the first ball with zero shift. Conclusion: We systematically reveal the possible errors arise from each step in WLT, and introduce a simple method to verify the detection accuracy of our in-house software using a clinically available tool.« less
SU-F-BRD-05: Robustness of Dose Painting by Numbers in Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montero, A Barragan; Sterpin, E; Lee, J
Purpose: Proton range uncertainties may cause important dose perturbations within the target volume, especially when steep dose gradients are present as in dose painting. The aim of this study is to assess the robustness against setup and range errors for high heterogeneous dose prescriptions (i.e., dose painting by numbers), delivered by proton pencil beam scanning. Methods: An automatic workflow, based on MATLAB functions, was implemented through scripting in RayStation (RaySearch Laboratories). It performs a gradient-based segmentation of the dose painting volume from 18FDG-PET images (GTVPET), and calculates the dose prescription as a linear function of the FDG-uptake value on eachmore » voxel. The workflow was applied to two patients with head and neck cancer. Robustness against setup and range errors of the conventional PTV margin strategy (prescription dilated by 2.5 mm) versus CTV-based (minimax) robust optimization (2.5 mm setup, 3% range error) was assessed by comparing the prescription with the planned dose for a set of error scenarios. Results: In order to ensure dose coverage above 95% of the prescribed dose in more than 95% of the GTVPET voxels while compensating for the uncertainties, the plans with a PTV generated a high overdose. For the nominal case, up to 35% of the GTVPET received doses 5% beyond prescription. For the worst of the evaluated error scenarios, the volume with 5% overdose increased to 50%. In contrast, for CTV-based plans this 5% overdose was present only in a small fraction of the GTVPET, which ranged from 7% in the nominal case to 15% in the worst of the evaluated scenarios. Conclusion: The use of a PTV leads to non-robust dose distributions with excessive overdose in the painted volume. In contrast, robust optimization yields robust dose distributions with limited overdose. RaySearch Laboratories is sincerely acknowledged for providing us with RayStation treatment planning system and for the support provided.« less
Errors in radiation oncology: A study in pathways and dosimetric impact
Drzymala, Robert E.; Purdy, James A.; Michalski, Jeff
2005-01-01
As complexity for treating patients increases, so does the risk of error. Some publications have suggested that record and verify (R&V) systems may contribute in propagating errors. Direct data transfer has the potential to eliminate most, but not all, errors. And although the dosimetric consequences may be obvious in some cases, a detailed study does not exist. In this effort, we examined potential errors in terms of scenarios, pathways of occurrence, and dosimetry. Our goal was to prioritize error prevention according to likelihood of event and dosimetric impact. For conventional photon treatments, we investigated errors of incorrect source‐to‐surface distance (SSD), energy, omitted wedge (physical, dynamic, or universal) or compensating filter, incorrect wedge or compensating filter orientation, improper rotational rate for arc therapy, and geometrical misses due to incorrect gantry, collimator or table angle, reversed field settings, and setup errors. For electron beam therapy, errors investigated included incorrect energy, incorrect SSD, along with geometric misses. For special procedures we examined errors for total body irradiation (TBI, incorrect field size, dose rate, treatment distance) and LINAC radiosurgery (incorrect collimation setting, incorrect rotational parameters). Likelihood of error was determined and subsequently rated according to our history of detecting such errors. Dosimetric evaluation was conducted by using dosimetric data, treatment plans, or measurements. We found geometric misses to have the highest error probability. They most often occurred due to improper setup via coordinate shift errors or incorrect field shaping. The dosimetric impact is unique for each case and depends on the proportion of fields in error and volume mistreated. These errors were short‐lived due to rapid detection via port films. The most significant dosimetric error was related to a reversed wedge direction. This may occur due to incorrect collimator angle or wedge orientation. For parallel‐opposed 60° wedge fields, this error could be as high as 80% to a point off‐axis. Other examples of dosimetric impact included the following: SSD, ~2%/cm for photons or electrons; photon energy (6 MV vs. 18 MV), on average 16% depending on depth, electron energy, ~0.5cm of depth coverage per MeV (mega‐electron volt). Of these examples, incorrect distances were most likely but rapidly detected by in vivo dosimetry. Errors were categorized by occurrence rate, methods and timing of detection, longevity, and dosimetric impact. Solutions were devised according to these criteria. To date, no one has studied the dosimetric impact of global errors in radiation oncology. Although there is heightened awareness that with increased use of ancillary devices and automation, there must be a parallel increase in quality check systems and processes, errors do and will continue to occur. This study has helped us identify and prioritize potential errors in our clinic according to frequency and dosimetric impact. For example, to reduce the use of an incorrect wedge direction, our clinic employs off‐axis in vivo dosimetry. To avoid a treatment distance setup error, we use both vertical table settings and optical distance indicator (ODI) values to properly set up fields. As R&V systems become more automated, more accurate and efficient data transfer will occur. This will require further analysis. Finally, we have begun examining potential intensity‐modulated radiation therapy (IMRT) errors according to the same criteria. PACS numbers: 87.53.Xd, 87.53.St PMID:16143793
Form Overrides Meaning When Bilinguals Monitor for Errors
Ivanova, Iva; Ferreira, Victor S.; Gollan, Tamar H.
2016-01-01
Bilinguals rarely produce unintended language switches, which may in part be because switches are detected and corrected by an internal monitor. But are language switches easier or harder to detect than within-language semantic errors? To approximate internal monitoring, bilinguals listened (Experiment 1) or read aloud (Experiment 2) stories, and detected language switches (translation equivalents or semantically unrelated to expected words) and within-language errors (semantically related or unrelated to expected words). Bilinguals detected semantically related within-language errors most slowly and least accurately, language switches more quickly and accurately than within-language errors, and (in Experiment 2), translation equivalents as quickly and accurately as unrelated language switches. These results suggest that internal monitoring of form (which can detect mismatches in language membership) completes earlier than, and is independent of, monitoring of meaning. However, analysis of reading times prior to error detection revealed meaning violations to be more disruptive for processing than language violations. PMID:28649169
Brückner, Michael; Becker, Katja; Popp, Jürgen; Frosch, Torsten
2015-09-24
A new setup for Raman spectroscopic wide-field imaging is presented. It combines the advantages of a fiber array based spectral translator with a tailor-made laser illumination system for high-quality Raman chemical imaging of sensitive biological samples. The Gaussian-like intensity distribution of the illuminating laser beam is shaped by a square-core optical multimode fiber to a top-hat profile with very homogeneous intensity distribution to fulfill the conditions of Koehler. The 30 m long optical fiber and an additional vibrator efficiently destroy the polarization and coherence of the illuminating light. This homogeneous, incoherent illumination is an essential prerequisite for stable quantitative imaging of complex biological samples. The fiber array translates the two-dimensional lateral information of the Raman stray light into separated spectral channels with very high contrast. The Raman image can be correlated with a corresponding white light microscopic image of the sample. The new setup enables simultaneous quantification of all Raman spectra across the whole spatial area with very good spectral resolution and thus outperforms other Raman imaging approaches based on scanning and tunable filters. The unique capabilities of the setup for fast, gentle, sensitive, and selective chemical imaging of biological samples were applied for automated hemozoin analysis. A special algorithm was developed to generate Raman images based on the hemozoin distribution in red blood cells without any influence from other Raman scattering. The new imaging setup in combination with the robust algorithm provides a novel, elegant way for chemical selective analysis of the malaria pigment hemozoin in early ring stages of Plasmodium falciparum infected erythrocytes. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Fontecchio, Adam K. (Inventor); Rai, Kashma (Inventor)
2017-01-01
Described herein is a new holographic polymer dispersed liquid crystal (HPDLC) medium with broadband reflective properties, and a new technique for fabrication of broadband HPDLC mediums. The new technique involves dynamic variation of the holography setup during HPDLC formation, enabling the broadening of the HPDLC medium's wavelength response. Dynamic variation of the holography setup may include the rotation and/or translation of one or more motorized stages, allowing for time and spatial, or angular, multiplexing through variation of the incident angles of one or more laser beams on a pre-polymer mixture during manufacture. An HPDLC medium manufactured using these techniques exhibits improved optical response by reflecting a broadband spectrum of wavelengths. A new broadband holographic polymer dispersed liquid crystal thin film polymeric mirror stack with electrically-switchable beam steering capability is disclosed. XXXX Described herein is a new holographic polymer dispersed liquid crystal (HPDLC) medium with broadband reflective properties, and a new technique for fabrication of broadband 10 HPDLC mediums. The new technique involves dynamic variation of the holography setup during HPDLC formation, enabling the broadening of the HPDLC medium's wavelength response. Dynamic variation of the holography setup may include the rotation and/or translation of one or more 15 motorized stages, allowing for time and spatial, or angular, multiplexing through variation of the incident angles of one or more laser beams on a pre-polymer mixture during manufacture. An HPDLC medium manufactured using these techniques exhibits improved optical response by reflecting 20 a broadband spectrum of wavelengths. A new broadband holographic polymer dispersed liquid crystal thin film polymeric mirror stack with electrically switchable beam steering capability is disclosed.
Phonological Substitution Errors in L2 ASL Sentence Processing by Hearing M2L2 Learners
ERIC Educational Resources Information Center
Williams, Joshua; Newman, Sharlene
2016-01-01
In the present study we aimed to investigate phonological substitution errors made by hearing second language (M2L2) learners of American Sign Language (ASL) during a sentence translation task. Learners saw sentences in ASL that were signed by either a native signer or a M2L2 learner. Learners were to simply translate the sentence from ASL to…
A new method and device of aligning patient setup lasers in radiation therapy
Hwang, Ui‐Jung; Jo, Kwanghyun; Kwak, Jung Won; Choi, Sang Hyoun; Jeong, Chiyoung; Kim, Mi Young; Jeong, Jong Hwi; Shin, Dongho; Lee, Se Byeong; Park, Jeong‐Hoon; Park, Sung Yong; Kim, Siyong
2016-01-01
The aim of this study is to develop a new method to align the patient setup lasers in a radiation therapy treatment room and examine its validity and efficiency. The new laser alignment method is realized by a device composed of both a metallic base plate and a few acrylic transparent plates. Except one, every plate has either a crosshair line (CHL) or a single vertical line that is used for alignment. Two holders for radiochromic film insertion are prepared in the device to find a radiation isocenter. The right laser positions can be found optically by matching the shadows of all the CHLs in the gantry head and the device. The reproducibility, accuracy, and efficiency of laser alignment and the dependency on the position error of the light source were evaluated by comparing the means and the standard deviations of the measured laser positions. After the optical alignment of the lasers, the radiation isocenter was found by the gantry and collimator star shots, and then the lasers were translated parallel to the isocenter. In the laser position reproducibility test, the mean and standard deviation on the wall of treatment room were 32.3±0.93 mm for the new method whereas they were 33.4±1.49 mm for the conventional method. The mean alignment accuracy was 1.4 mm for the new method, and 2.1 mm for the conventional method on the walls. In the test of the dependency on the light source position error, the mean laser position was shifted just by a similar amount of the shift of the light source in the new method, but it was greatly magnified in the conventional method. In this study, a new laser alignment method was devised and evaluated successfully. The new method provided more accurate, more reproducible, and faster alignment of the lasers than the conventional method. PACS numbers: 87.56.Fc, 87.53.Bn, 87.53.Kn, 87.53.Ly, 87.55.Gh PMID:26894331
SU-E-J-29: Automatic Image Registration Performance of Three IGRT Systems for Prostate Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barber, J; University of Sydney, Sydney, NSW; Sykes, J
Purpose: To compare the performance of an automatic image registration algorithm on image sets collected on three commercial image guidance systems, and explore its relationship with imaging parameters such as dose and sharpness. Methods: Images of a CIRS Virtually Human Male Pelvis phantom (VHMP) were collected on the CBCT systems of Varian TrueBeam/OBI and Elekta Synergy/XVI linear accelerators, across a range of mAs settings; and MVCT on a Tomotherapy Hi-ART accelerator with a range of pitch. Using the 6D correlation ratio algorithm of XVI, each image was registered to a mask of the prostate volume with a 5 mm expansion.more » Registrations were repeated 100 times, with random initial offsets introduced to simulate daily matching. Residual registration errors were calculated by correcting for the initial phantom set-up error. Automatic registration was also repeated after reconstructing images with different sharpness filters. Results: All three systems showed good registration performance, with residual translations <0.5mm (1σ) for typical clinical dose and reconstruction settings. Residual rotational error had larger range, with 0.8°, 1.2° and 1.9° for 1σ in XVI, OBI and Tomotherapy respectively. The registration accuracy of XVI images showed a strong dependence on imaging dose, particularly below 4mGy. No evidence of reduced performance was observed at the lowest dose settings for OBI and Tomotherapy, but these were above 4mGy. Registration failures (maximum target registration error > 3.6 mm on the surface of a 30mm sphere) occurred in 5% to 10% of registrations. Changing the sharpness of image reconstruction had no significant effect on registration performance. Conclusions: Using the present automatic image registration algorithm, all IGRT systems tested provided satisfactory registrations for clinical use, within a normal range of acquisition settings.« less
Epstein, Jonathan; Osborne, Richard H; Elsworth, Gerald R; Beaton, Dorcas E; Guillemin, Francis
2015-04-01
To assess the contribution of back-translation and expert committee to the content and psychometric properties of a translated multidimensional questionnaire. Recommendations for questionnaire translation include back-translation and expert committee, but their contribution to measurement properties is unknown. Four English to French translations of the Health Education Impact Questionnaire were generated with and without committee or back-translation. Face validity, acceptability, and structural properties were compared after random assignment to people with rheumatoid arthritis (N = 1,168), chronic renal failure (N = 2,368), and diabetes (N = 538). For face validity, 15 bilingual people compared translations quality with the original. Psychometric properties were examined using confirmatory factor analysis (metric and scalar invariance) and item response theory. Qualitatively, there were five types of translation errors: style, intensity, frequency/time frame, breadth, and meaning. Bilingual assessors ranked best the translations with committee (P = 0.0026). All translations had good structural properties (root mean square error of approximation <0.05; comparative fit index [CFI], ≥0.899; and Tucker-Lewis index, ≥0.889). Full measurement invariance was observed between translations (ΔCFI ≤ 0.01) with metric invariance between translations and original (lowest ΔCFI = 0.022 between fully constrained models and models with free intercepts). Item characteristic curve analyses revealed no significant differences. This is the first experimental evidence that back-translation has moderate impact, whereas expert committee helps to ensure accurate content. Copyright © 2015 Elsevier Inc. All rights reserved.
Lin, Mu-Han; Veltchev, Iavor; Koren, Sion; Ma, Charlie; Li, Jinsgeng
2015-07-08
Robotic radiosurgery system has been increasingly employed for extracranial treatments. This work is aimed to study the feasibility of a cylindrical diode array and a planar ion chamber array for patient-specific QA with this robotic radiosurgery system and compare their performance. Fiducial markers were implanted in both systems to enable image-based setup. An in-house program was developed to postprocess the movie file of the measurements and apply the beam-by-beam angular corrections for both systems. The impact of noncoplanar delivery was then assessed by evaluating the angles created by the incident beams with respect to the two detector arrangements and cross-comparing the planned dose distribution to the measured ones with/without the angular corrections. The sensitivity of detecting the translational (1-3 mm) and the rotational (1°-3°) delivery errors were also evaluated for both systems. Six extracranial patient plans (PTV 7-137 cm³) were measured with these two systems and compared with the calculated doses. The plan dose distributions were calculated with ray-tracing and the Monte Carlo (MC) method, respectively. With 0.8 by 0.8 mm² diodes, the output factors measured with the cylindrical diode array agree better with the commissioning data. The maximum angular correction for a given beam is 8.2% for the planar ion chamber array and 2.4% for the cylindrical diode array. The two systems demonstrate a comparable sensitivity of detecting the translational targeting errors, while the cylindrical diode array is more sensitive to the rotational targeting error. The MC method is necessary for dose calculations in the cylindrical diode array phantom because the ray-tracing algorithm fails to handle the high-Z diodes and the acrylic phantom. For all the patient plans, the cylindrical diode array/ planar ion chamber array demonstrate 100% / > 92% (3%/3 mm) and > 96% / ~ 80% (2%/2 mm) passing rates. The feasibility of using both systems for robotic radiosurgery system patient-specific QA has been demonstrated. For gamma evaluation, 2%/2 mm criteria for cylindrical diode array and 3%/3 mm criteria for planar ion chamber array are suggested. The customized angular correction is necessary as proven by the improved passing rate, especially with the planar ion chamber array system.
High performance interconnection between high data rate networks
NASA Technical Reports Server (NTRS)
Foudriat, E. C.; Maly, K.; Overstreet, C. M.; Zhang, L.; Sun, W.
1992-01-01
The bridge/gateway system needed to interconnect a wide range of computer networks to support a wide range of user quality-of-service requirements is discussed. The bridge/gateway must handle a wide range of message types including synchronous and asynchronous traffic, large, bursty messages, short, self-contained messages, time critical messages, etc. It is shown that messages can be classified into three basic classes, synchronous and large and small asynchronous messages. The first two require call setup so that packet identification, buffer handling, etc. can be supported in the bridge/gateway. Identification enables resequences in packet size. The third class is for messages which do not require call setup. Resequencing hardware based to handle two types of resequencing problems is presented. The first is for a virtual parallel circuit which can scramble channel bytes. The second system is effective in handling both synchronous and asynchronous traffic between networks with highly differing packet sizes and data rates. The two other major needs for the bridge/gateway are congestion and error control. A dynamic, lossless congestion control scheme which can easily support effective error correction is presented. Results indicate that the congestion control scheme provides close to optimal capacity under congested conditions. Under conditions where error may develop due to intervening networks which are not lossless, intermediate error recovery and correction takes 1/3 less time than equivalent end-to-end error correction under similar conditions.
The control of translational accuracy is a determinant of healthy ageing in yeast
Leadsham, Jane E.; Sauvadet, Aimie; Tarrant, Daniel; Adam, Ilectra S.; Saromi, Kofo; Laun, Peter; Rinnerthaler, Mark; Breitenbach-Koller, Hannelore; Breitenbach, Michael; Tuite, Mick F.; Gourlay, Campbell W.
2017-01-01
Life requires the maintenance of molecular function in the face of stochastic processes that tend to adversely affect macromolecular integrity. This is particularly relevant during ageing, as many cellular functions decline with age, including growth, mitochondrial function and energy metabolism. Protein synthesis must deliver functional proteins at all times, implying that the effects of protein synthesis errors like amino acid misincorporation and stop-codon read-through must be minimized during ageing. Here we show that loss of translational accuracy accelerates the loss of viability in stationary phase yeast. Since reduced translational accuracy also reduces the folding competence of at least some proteins, we hypothesize that negative interactions between translational errors and age-related protein damage together overwhelm the cellular chaperone network. We further show that multiple cellular signalling networks control basal error rates in yeast cells, including a ROS signal controlled by mitochondrial activity, and the Ras pathway. Together, our findings indicate that signalling pathways regulating growth, protein homeostasis and energy metabolism may jointly safeguard accurate protein synthesis during healthy ageing. PMID:28100667
The control of translational accuracy is a determinant of healthy ageing in yeast.
von der Haar, Tobias; Leadsham, Jane E; Sauvadet, Aimie; Tarrant, Daniel; Adam, Ilectra S; Saromi, Kofo; Laun, Peter; Rinnerthaler, Mark; Breitenbach-Koller, Hannelore; Breitenbach, Michael; Tuite, Mick F; Gourlay, Campbell W
2017-01-01
Life requires the maintenance of molecular function in the face of stochastic processes that tend to adversely affect macromolecular integrity. This is particularly relevant during ageing, as many cellular functions decline with age, including growth, mitochondrial function and energy metabolism. Protein synthesis must deliver functional proteins at all times, implying that the effects of protein synthesis errors like amino acid misincorporation and stop-codon read-through must be minimized during ageing. Here we show that loss of translational accuracy accelerates the loss of viability in stationary phase yeast. Since reduced translational accuracy also reduces the folding competence of at least some proteins, we hypothesize that negative interactions between translational errors and age-related protein damage together overwhelm the cellular chaperone network. We further show that multiple cellular signalling networks control basal error rates in yeast cells, including a ROS signal controlled by mitochondrial activity, and the Ras pathway. Together, our findings indicate that signalling pathways regulating growth, protein homeostasis and energy metabolism may jointly safeguard accurate protein synthesis during healthy ageing. © 2017 The Authors.
Comparative evaluation of user interfaces for robot-assisted laser phonomicrosurgery.
Dagnino, Giulio; Mattos, Leonardo S; Becattini, Gabriele; Dellepiane, Massimo; Caldwell, Darwin G
2011-01-01
This research investigates the impact of three different control devices and two visualization methods on the precision, safety and ergonomics of a new medical robotic system prototype for assistive laser phonomicrosurgery. This system allows the user to remotely control the surgical laser beam using either a flight simulator type joystick, a joypad, or a pen display system in order to improve the traditional surgical setup composed by a mechanical micromanipulator coupled with a surgical microscope. The experimental setup and protocol followed to obtain quantitative performance data from the control devices tested are fully described here. This includes sets of path following evaluation experiments conducted with ten subjects with different skills, for a total of 700 trials. The data analysis method and experimental results are also presented, demonstrating an average 45% error reduction when using the joypad and up to 60% error reduction when using the pen display system versus the standard phonomicrosurgery setup. These results demonstrate the new system can provide important improvements in terms of surgical precision, ergonomics and safety. In addition, the evaluation method presented here is shown to support an objective selection of control devices for this application.
Impact of uncertainties in free stream conditions on the aerodynamics of a rectangular cylinder
NASA Astrophysics Data System (ADS)
Mariotti, Alessandro; Shoeibi Omrani, Pejman; Witteveen, Jeroen; Salvetti, Maria Vittoria
2015-11-01
The BARC benchmark deals with the flow around a rectangular cylinder with chord-to-depth ratio equal to 5. This flow configuration is of practical interest for civil and industrial structures and it is characterized by massively separated flow and unsteadiness. In a recent review of BARC results, significant dispersion was observed both in experimental and numerical predictions of some flow quantities, which are extremely sensitive to various uncertainties, which may be present in experiments and simulations. Besides modeling and numerical errors, in simulations it is difficult to exactly reproduce the experimental conditions due to uncertainties in the set-up parameters, which sometimes cannot be exactly controlled or characterized. Probabilistic methods and URANS simulations are used to investigate the impact of the uncertainties in the following set-up parameters: the angle of incidence, the free stream longitudinal turbulence intensity and length scale. Stochastic collocation is employed to perform the probabilistic propagation of the uncertainty. The discretization and modeling errors are estimated by repeating the same analysis for different grids and turbulence models. The results obtained for different assumed PDF of the set-up parameters are also compared.
On the use of inexact, pruned hardware in atmospheric modelling
Düben, Peter D.; Joven, Jaume; Lingamneni, Avinash; McNamara, Hugh; De Micheli, Giovanni; Palem, Krishna V.; Palmer, T. N.
2014-01-01
Inexact hardware design, which advocates trading the accuracy of computations in exchange for significant savings in area, power and/or performance of computing hardware, has received increasing prominence in several error-tolerant application domains, particularly those involving perceptual or statistical end-users. In this paper, we evaluate inexact hardware for its applicability in weather and climate modelling. We expand previous studies on inexact techniques, in particular probabilistic pruning, to floating point arithmetic units and derive several simulated set-ups of pruned hardware with reasonable levels of error for applications in atmospheric modelling. The set-up is tested on the Lorenz ‘96 model, a toy model for atmospheric dynamics, using software emulation for the proposed hardware. The results show that large parts of the computation tolerate the use of pruned hardware blocks without major changes in the quality of short- and long-time diagnostics, such as forecast errors and probability density functions. This could open the door to significant savings in computational cost and to higher resolution simulations with weather and climate models. PMID:24842031
Pálfalvi, László; Tóth, György; Tokodi, Levente; Márton, Zsuzsanna; Fülöp, József András; Almási, Gábor; Hebling, János
2017-11-27
A hybrid-type terahertz pulse source is proposed for high energy terahertz pulse generation. It is the combination of the conventional tilted-pulse-front setup and a transmission stair-step echelon-faced nonlinear crystal with a period falling in the hundred-micrometer range. The most important advantage of the setup is the possibility of using plane parallel nonlinear optical crystal for producing good-quality, symmetric terahertz beam. Another advantage of the proposed setup is the significant reduction of imaging errors, which is important in the case of wide pump beams that are used in high energy experiments. A one dimensional model was developed for determining the terahertz generation efficiency, and it was used for quantitative comparison between the proposed new hybrid setup and previously introduced terahertz sources. With lithium niobate nonlinear material, calculations predict an approximately ten-fold increase in the efficiency of the presently described hybrid terahertz pulse source with respect to that of the earlier proposed setup, which utilizes a reflective stair-step echelon and a prism shaped nonlinear optical crystal. By using pump pulses of 50 mJ pulse energy, 500 fs pulse length and 8 mm beam spot radius, approximately 1% conversion efficiency and 0.5 mJ terahertz pulse energy can be reached with the newly proposed setup.
The Online Translator: Implementing National Standard 4.1.
ERIC Educational Resources Information Center
Burton, Christine
2003-01-01
A pedagogical idea for addressing National Standard 4.1 (Students demonstrate understanding of the nature of language through comparisons of language studied and their own) suggests the deliberate use of the online translator to illustrate to students the syntactical errors that occur when translating idioms from one language to another. (VWL)
SU-E-J-15: Automatically Detect Patient Treatment Position and Orientation in KV Portal Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, J; Yang, D
2015-06-15
Purpose: In the course of radiation therapy, the complex information processing workflow will Result in potential errors, such as incorrect or inaccurate patient setups. With automatic image check and patient identification, such errors could be effectively reduced. For this purpose, we developed a simple and rapid image processing method, to automatically detect the patient position and orientation in 2D portal images, so to allow automatic check of positions and orientations for patient daily RT treatments. Methods: Based on the principle of portal image formation, a set of whole body DRR images were reconstructed from multiple whole body CT volume datasets,more » and fused together to be used as the matching template. To identify the patient setup position and orientation shown in a 2D portal image, the 2D portal image was preprocessed (contrast enhancement, down-sampling and couch table detection), then matched to the template image so to identify the laterality (left or right), position, orientation and treatment site. Results: Five day’s clinical qualified portal images were gathered randomly, then were processed by the automatic detection and matching method without any additional information. The detection results were visually checked by physicists. 182 images were correct detection in a total of 200kV portal images. The correct rate was 91%. Conclusion: The proposed method can detect patient setup and orientation quickly and automatically. It only requires the image intensity information in KV portal images. This method can be useful in the framework of Electronic Chart Check (ECCK) to reduce the potential errors in workflow of radiation therapy and so to improve patient safety. In addition, the auto-detection results, as the patient treatment site position and patient orientation, could be useful to guide the sequential image processing procedures, e.g. verification of patient daily setup accuracy. This work was partially supported by research grant from Varian Medical System.« less
Experimental assessment of a 3-D plenoptic endoscopic imaging system.
Le, Hanh N D; Decker, Ryan; Krieger, Axel; Kang, Jin U
2017-01-01
An endoscopic imaging system using a plenoptic technique to reconstruct 3-D information is demonstrated and analyzed in this Letter. The proposed setup integrates a clinical surgical endoscope with a plenoptic camera to achieve a depth accuracy error of about 1 mm and a precision error of about 2 mm, within a 25 mm × 25 mm field of view, operating at 11 frames per second.
Experimental assessment of a 3-D plenoptic endoscopic imaging system
Le, Hanh N. D.; Decker, Ryan; Krieger, Axel; Kang, Jin U.
2017-01-01
An endoscopic imaging system using a plenoptic technique to reconstruct 3-D information is demonstrated and analyzed in this Letter. The proposed setup integrates a clinical surgical endoscope with a plenoptic camera to achieve a depth accuracy error of about 1 mm and a precision error of about 2 mm, within a 25 mm × 25 mm field of view, operating at 11 frames per second. PMID:29449863
NASA Technical Reports Server (NTRS)
Haas, Evan; DeLuccia, Frank
2016-01-01
In evaluating GOES-R Advanced Baseline Imager (ABI) image navigation quality, upsampled sub-images of ABI images are translated against downsampled Landsat 8 images of localized, high contrast earth scenes to determine the translations in the East-West and North-South directions that provide maximum correlation. The native Landsat resolution is much finer than that of ABI, and Landsat navigation accuracy is much better than ABI required navigation accuracy and expected performance. Therefore, Landsat images are considered to provide ground truth for comparison with ABI images, and the translations of ABI sub-images that produce maximum correlation with Landsat localized images are interpreted as ABI navigation errors. The measured local navigation errors from registration of numerous sub-images with the Landsat images are averaged to provide a statistically reliable measurement of the overall navigation error of the ABI image. The dispersion of the local navigation errors is also of great interest, since ABI navigation requirements are specified as bounds on the 99.73rd percentile of the magnitudes of per pixel navigation errors. However, the measurement uncertainty inherent in the use of image registration techniques tends to broaden the dispersion in measured local navigation errors, masking the true navigation performance of the ABI system. We have devised a novel and simple method for estimating the magnitude of the measurement uncertainty in registration error for any pair of images of the same earth scene. We use these measurement uncertainty estimates to filter out the higher quality measurements of local navigation error for inclusion in statistics. In so doing, we substantially reduce the dispersion in measured local navigation errors, thereby better approximating the true navigation performance of the ABI system.
Radtke, Christine; Wewetzer, Konstantin
2009-06-12
Olfactory ensheathing cells (OECs) are Schwann cell-like glial cells of the olfactory system that have been shown to promote axonal regeneration and remyelination in a variety of different lesion paradigms. It is still a matter of debate in how far OECs differ from Schwann cells regarding their regenerative potential and molecular setup. The fact that OECs have been already used for transplantation in humans may imply that the need of the hour is the fine-tuning of clinical application details rather than to cross the bridge between laboratory animal and man. Considering the therapeutic transplantation of OECs, however, the basic question to date is not 'how' to translate but rather 'what' to translate into clinical practice. The aim of the present article is to provide a summary of the current literature and to define the open issues relevant for translating basic research on OECs into clinical practice.
Frames of Reference in the Classroom
NASA Astrophysics Data System (ADS)
Grossman, Joshua
2012-12-01
The classic film "Frames of Reference"1,2 effectively illustrates concepts involved with inertial and non-inertial reference frames. In it, Donald G. Ivey and Patterson Hume use the cameras perspective to allow the viewer to see motion in reference frames translating with a constant velocity, translating while accelerating, and rotating—all with respect to the Earth frame. The film is a classic for good reason, but today it does have a couple of drawbacks: 1) The film by nature only accommodates passive learning. It does not give students the opportunity to try any of the experiments themselves. 2) The dated style of the 50-year-old film can distract students from the physics content. I present here a simple setup that can recreate many of the movies demonstrations in the classroom. The demonstrations can be used to supplement the movie or in its place, if desired. All of the materials except perhaps the inexpensive web camera should likely be available already in most teaching laboratories. Unlike previously described activities, these experiments do not require travel to another location3 or an involved setup.4,5
A gamma-ray testing technique for spacecraft. [considering cosmic radiation effects
NASA Technical Reports Server (NTRS)
Gribov, B. S.; Repin, N. N.; Sakovich, V. A.; Sakharov, V. M.
1977-01-01
The simulated cosmic radiation effect on a spacecraft structure is evaluated by gamma ray testing in relation to structural thickness. A drawing of the test set-up is provided and measurement errors are discussed.
Yingying, Zhang; Jiancheng, Lai; Cheng, Yin; Zhenhua, Li
2009-03-01
The dependence of the surface plasmon resonance (SPR) phase difference curve on the complex refractive index of a sample in Kretschmann configuration is discussed comprehensively, based on which a new method is proposed to measure the complex refractive index of turbid liquid. A corresponding experiment setup was constructed to measure the SPR phase difference curve, and the complex refractive index of turbid liquid was determined. By using the setup, the complex refractive indices of Intralipid solutions with concentrations of 5%, 10%, 15%, and 20% are obtained to be 1.3377+0.0005 i, 1.3427+0.0028 i, 1.3476+0.0034 i, and 1.3496+0.0038 i, respectively. Furthermore, the error analysis indicates that the root-mean-square errors of both the real and the imaginary parts of the measured complex refractive index are less than 5x10(-5).
Note: Automated electrochemical etching and polishing of silver scanning tunneling microscope tips.
Sasaki, Stephen S; Perdue, Shawn M; Rodriguez Perez, Alejandro; Tallarida, Nicholas; Majors, Julia H; Apkarian, V Ara; Lee, Joonhee
2013-09-01
Fabrication of sharp and smooth Ag tips is crucial in optical scanning probe microscope experiments. To ensure reproducible tip profiles, the polishing process is fully automated using a closed-loop laminar flow system to deliver the electrolytic solution to moving electrodes mounted on a motorized translational stage. The repetitive translational motion is controlled precisely on the μm scale with a stepper motor and screw-thread mechanism. The automated setup allows reproducible control over the tip profile and improves smoothness and sharpness of tips (radius 27 ± 18 nm), as measured by ultrafast field emission.
47 CFR 74.790 - Permissible service of digital TV translator and LPTV stations.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Digital signal regeneration (i.e., DTV signal demodulation, decoding, error processing, encoding... paragraph (f) of this section, a digital TV translator station may be used only to receive the signals of a... to alter a TV broadcast and/or DTV broadcast signal. (f) A digital TV translator station may transmit...
47 CFR 74.790 - Permissible service of digital TV translator and LPTV stations.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Digital signal regeneration (i.e., DTV signal demodulation, decoding, error processing, encoding... paragraph (f) of this section, a digital TV translator station may be used only to receive the signals of a... to alter a TV broadcast and/or DTV broadcast signal. (f) A digital TV translator station may transmit...
47 CFR 74.790 - Permissible service of digital TV translator and LPTV stations.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Digital signal regeneration (i.e., DTV signal demodulation, decoding, error processing, encoding... paragraph (f) of this section, a digital TV translator station may be used only to receive the signals of a... to alter a TV broadcast and/or DTV broadcast signal. (f) A digital TV translator station may transmit...
Accounting for optical errors in microtensiometry.
Hinton, Zachary R; Alvarez, Nicolas J
2018-09-15
Drop shape analysis (DSA) techniques measure interfacial tension subject to error in image analysis and the optical system. While considerable efforts have been made to minimize image analysis errors, very little work has treated optical errors. There are two main sources of error when considering the optical system: the angle of misalignment and the choice of focal plane. Due to the convoluted nature of these sources, small angles of misalignment can lead to large errors in measured curvature. We demonstrate using microtensiometry the contributions of these sources to measured errors in radius, and, more importantly, deconvolute the effects of misalignment and focal plane. Our findings are expected to have broad implications on all optical techniques measuring interfacial curvature. A geometric model is developed to analytically determine the contributions of misalignment angle and choice of focal plane on measurement error for spherical cap interfaces. This work utilizes a microtensiometer to validate the geometric model and to quantify the effect of both sources of error. For the case of a microtensiometer, an empirical calibration is demonstrated that corrects for optical errors and drastically simplifies implementation. The combination of geometric modeling and experimental results reveal a convoluted relationship between the true and measured interfacial radius as a function of the misalignment angle and choice of focal plane. The validated geometric model produces a full operating window that is strongly dependent on the capillary radius and spherical cap height. In all cases, the contribution of optical errors is minimized when the height of the spherical cap is equivalent to the capillary radius, i.e. a hemispherical interface. The understanding of these errors allow for correct measure of interfacial curvature and interfacial tension regardless of experimental setup. For the case of microtensiometry, this greatly decreases the time for experimental setup and increases experiential accuracy. In a broad sense, this work outlines the importance of optical errors in all DSA techniques. More specifically, these results have important implications for all microscale and microfluidic measurements of interface curvature. Copyright © 2018 Elsevier Inc. All rights reserved.
Marker Configuration Model-Based Roentgen Fluoroscopic Analysis.
Garling, Eric H; Kaptein, Bart L; Geleijns, Koos; Nelissen, Rob G H H; Valstar, Edward R
2005-04-01
It remains unknown if and how the polyethylene bearing in mobile bearing knees moves during dynamic activities with respect to the tibial base plate. Marker Configuration Model-Based Roentgen Fluoroscopic Analysis (MCM-based RFA) uses a marker configuration model of inserted tantalum markers in order to accurately estimate the pose of an implant or bone using single plane Roentgen images or fluoroscopic images. The goal of this study is to assess the accuracy of (MCM-Based RFA) in a standard fluoroscopic set-up using phantom experiments and to determine the error propagation with computer simulations. The experimental set-up of the phantom study was calibrated using a calibration box equipped with 600 tantalum markers, which corrected for image distortion and determined the focus position. In the computer simulation study the influence of image distortion, MC-model accuracy, focus position, the relative distance between MC-models and MC-model configuration on the accuracy of MCM-Based RFA were assessed. The phantom study established that the in-plane accuracy of MCM-Based RFA is 0.1 mm and the out-of-plane accuracy is 0.9 mm. The rotational accuracy is 0.1 degrees. A ninth-order polynomial model was used to correct for image distortion. Marker-Based RFA was estimated to have, in a worst case scenario, an in vivo translational accuracy of 0.14 mm (x-axis), 0.17 mm (y-axis), 1.9 mm (z-axis), respectively, and a rotational accuracy of 0.3 degrees. When using fluoroscopy to study kinematics, image distortion and the accuracy of models are important factors, which influence the accuracy of the measurements. MCM-Based RFA has the potential to be an accurate, clinically useful tool for studying kinematics after total joint replacement using standard equipment.
ERIC Educational Resources Information Center
Nicewander, W. Alan
2018-01-01
Spearman's correction for attenuation (measurement error) corrects a correlation coefficient for measurement errors in either-or-both of two variables, and follows from the assumptions of classical test theory. Spearman's equation removes all measurement error from a correlation coefficient which translates into "increasing the reliability of…
Accuracy of an optical active-marker system to track the relative motion of rigid bodies.
Maletsky, Lorin P; Sun, Junyi; Morton, Nicholas A
2007-01-01
The measurement of relative motion between two moving bones is commonly accomplished for in vitro studies by attaching to each bone a series of either passive or active markers in a fixed orientation to create a rigid body (RB). This work determined the accuracy of motion between two RBs using an Optotrak optical motion capture system with active infrared LEDs. The stationary noise in the system was quantified by recording the apparent change in position with the RBs stationary and found to be 0.04 degrees and 0.03 mm. Incremental 10 degrees rotations and 10-mm translations were made using a more precise tool than the Optotrak. Increasing camera distance decreased the precision or increased the range of values observed for a set motion and increased the error in rotation or bias between the measured and actual rotation. The relative positions of the RBs with respect to the camera-viewing plane had a minimal effect on the kinematics and, therefore, for a given distance in the volume less than or close to the precalibrated camera distance, any motion was similarly reliable. For a typical operating set-up, a 10 degrees rotation showed a bias of 0.05 degrees and a 95% repeatability limit of 0.67 degrees. A 10-mm translation showed a bias of 0.03 mm and a 95% repeatability limit of 0.29 mm. To achieve a high level of accuracy it is important to keep the distance between the cameras and the markers near the distance the cameras are focused to during calibration.
More irregular eye shape in low myopia than in emmetropia.
Tabernero, Juan; Schaeffel, Frank
2009-09-01
To improve the description of the peripheral eye shape in myopia and emmetropia by using a new method for continuous measurement of the peripheral refractive state. A scanning photorefractor was designed to record refractive errors in the vertical pupil meridian across the horizontal visual field (up to +/-45 degrees ). The setup consists of a hot mirror that continuously projects the infrared light from a photoretinoscope under different angles of eccentricity into the eye. The movement of the mirror is controlled by using two stepping motors. Refraction in a group of 17 emmetropic subjects and 11 myopic subjects (mean, -4.3 D; SD, 1.7) was measured without spectacle correction. For the analysis of eye shape, the refractive error versus the eccentricity angles was fitted with different polynomials (from second to tenth order). The new setup presents some important advantages over previous techniques: The subject does not have to change gaze during the measurements, and a continuous profile is obtained rather than discrete points. There was a significant difference in the fitting errors between the subjects with myopia and those with emmetropia. Tenth-order polynomials were required in myopic subjects to achieve a quality of fit similar to that in emmetropic subjects fitted with only sixth-order polynomials. Apparently, the peripheral shape of the myopic eye is more "bumpy." A new setup is presented for obtaining continuous peripheral refraction profiles. It was found that the peripheral retinal shape is more irregular even in only moderately myopic eyes, perhaps because the sclera lost some rigidity even at the early stage of myopia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batin, E; Depauw, N; MacDonald, S
Purpose: Historically, the set-up for proton post-mastectomy chestwall irradiation at our institution started with positioning the patient using tattoos and lasers. One or more rounds of orthogonal X-rays at gantry 0° and beamline X-ray at treatment gantry angle were then taken to finalize the set-up position. As chestwall targets are shallow and superficial, surface imaging is a promising tool for set-up and needs to be investigated Methods: The orthogonal imaging was entirely replaced by AlignRT™ (ART) images. The beamline X-Ray image is kept as a confirmation, based primarily on three opaque markers placed on skin surface instead of bony anatomy.more » In the first phase of the process, ART gated images were used to set-up the patient and the same specific point of the breathing curve was used every day. The moves (translations and rotations) computed for each point of the breathing curve during the first five fractions were analyzed for ten patients. During a second phase of the study, ART gated images were replaced by ART non-gated images combined with real-time monitoring. In both cases, ART images were acquired just before treatment to access the patient position compare to the non-gated CT. Results: The average difference between the maximum move and the minimum move depending on the chosen breathing curve point was less than 1.7 mm for all translations and less than 0.7° for all rotations. The average position discrepancy over the course of treatment obtained by ART non gated images combined to real-time monitoring taken before treatment to the planning CT were smaller than the average position discrepancy obtained using ART gated images. The X-Ray validation images show similar results with both ART imaging process. Conclusion: The use of ART non gated images combined with real time imaging allows positioning post-mastectomy chestwall patients in less than 3 mm / 1°.« less
Ohtakara, Kazuhiro; Hayashi, Shinya; Tanaka, Hidekazu; Hoshi, Hiroaki; Kitahara, Masashi; Matsuyama, Katsuya; Okada, Hitoshi
2012-02-01
To compare the positioning accuracy and stability of two distinct noninvasive immobilization devices, a dedicated (D-) and conventional (C-) mask, and to evaluate the applicability of a 6-degrees-of-freedom (6D) correction, especially to the C-mask, based on our initial experience with cranial stereotactic radiotherapy (SRT) using ExacTrac (ET)/Robotics integrated into the Novalis Tx platform. The D- and C-masks were the BrainLAB frameless mask system and a general thermoplastic mask used for conventional radiotherapy such as whole brain irradiation, respectively. A total of 148 fractions in 71 patients and 125 fractions in 20 patients were analyzed for the D- and C-masks, respectively. For the C-mask, 3D correction was applied to the initial 10 patients, and thereafter, 6D correction was adopted. The 6D residual errors (REs) in the initial setup, after correction (pre-treatment), and during post-treatment were measured and compared. The D-mask provided no significant benefit for initial setup. The post-treatment median 3D vector displacements (interquatile range) were 0.38 mm (0.22, 0.60) and 0.74 mm (0.49, 1.04) for the D- and C-masks, respectively (p<0.001). The post-treatment maximal translational REs were within 1 mm and 2 mm for the D- and C-masks, respectively, and notably within 1.5 mm for the C-mask with 6D correction. The pre-treatment 3D vector displacements were significantly correlated with those for post-treatment in both masks. The D-mask confers positional stability acceptable for SRT. For the C-mask, 6D correction is also recommended, and an additional setup margin of 0.5 mm to that for the D-mask would be sufficient. The tolerance levels for the pre-treatment REs should similarly be set as small as possible for both systems. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jia, Jing; Xu, Gongming; Pei, Xi; Cao, Ruifen; Hu, Liqin; Wu, Yican
2015-03-01
An infrared based positioning and tracking (IPT) system was introduced and its accuracy and efficiency for patient setup and monitoring were tested for daily radiotherapy treatment. The IPT system consists of a pair of floor mounted infrared stereoscopic cameras, passive infrared markers and tools used for acquiring localization information as well as a custom controlled software which can perform the positioning and tracking functions. The evaluation of IPT system characteristics was conducted based on the AAPM 147 task report. Experiments on spatial drift and reproducibility as well as static and dynamic localization accuracy were carried out to test the efficiency of the IPT system. Measurements of known translational (up to 55.0 mm) set-up errors in three dimensions have been performed on a calibration phantom. The accuracy of positioning was evaluated on an anthropomorphic phantom with five markers attached to the surface; the precision of the tracking ability was investigated through a sinusoidal motion platform. For the monitoring of the respiration, three volunteers contributed to the breathing testing in real time. The spatial drift of the IPT system was 0.65 mm within 60 min to be stable. The reproducibility of position variations were between 0.01 and 0.04 mm. The standard deviation of static marker localization was 0.26 mm. The repositioning accuracy was 0.19 mm, 0.29 mm, and 0.53 mm in the left/right (L/R), superior/inferior (S/I) and anterior/posterior (A/P) directions, respectively. The measured dynamic accuracy was 0.57 mm and discrepancies measured for the respiratory motion tracking was better than 1 mm. The overall positioning accuracy of the IPT system was within 2 mm. In conclusion, the IPT system is an accurate and effective tool for assisting patient positioning in the treatment room. The characteristics of the IPT system can successfully meet the needs for real time external marker tracking and patient positioning as well as respiration monitoring during image guided radiotherapy treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Maso, L; Forbang, R Teboh; Zhang, Y
Purpose: To explore the dosimetric consequences of uncorrected rotational setup errors during SBRT for pancreatic cancer patients. Methods: This was a retrospective study utilizing data from ten (n=10) previously treated SBRT pancreas patients. For each original planning CT, we applied rotational transformations to derive additional CT images representative of possible rotational setup errors. This resulted in 6 different sets of rotational combinations, creating a total of 60 CT planning images. The patients’ clinical dosimetric plans were then applied to their corresponding rotated CT images. The 6 rotation sets encompassed a 3, 2 and 1-degree rotation in each rotational direction andmore » a 3-degree in just the pitch, a 3-degree in just the yaw and a 3-degree in just the roll. After the dosimetric plan was applied to the rotated CT images, the resulting plan was then evaluated and compared with the clinical plan for tumor coverage and normal tissue sparing. Results: PTV coverage, defined here by V33 throughout all of the patients’ clinical plans, ranged from 92–98%. After an n degree rotation in each rotational direction that range decreased to 68–87%, 85–92%, and 88– 94% for n=3, 2 and 1 respectively. Normal tissue sparing defined here by the proximal stomach V15 throughout all of the patients’ clinical plans ranged from 0–8.9 cc. After an n degree rotation in each rotational direction that range increased to 0–17 cc, 0–12 cc, and 0–10 cc for n=3, 2, and 1 respectively. Conclusion: For pancreatic SBRT, small rotational setup errors in the pitch, yaw and roll direction on average caused under dosage to PTV and over dosage to proximal normal tissue. The 1-degree rotation was on average the least detrimental to the normal tissue and the coverage of the PTV. The 3-degree yaw created on average the lowest increase in volume coverage to normal tissue. This research was sponsored by the AAPM Education Council through the AAPM Education and Research Fund for the AAPM Summer Undergraduate Fellowship Program.« less
Developing and implementing a high precision setup system
NASA Astrophysics Data System (ADS)
Peng, Lee-Cheng
The demand for high-precision radiotherapy (HPRT) was first implemented in stereotactic radiosurgery using a rigid, invasive stereotactic head frame. Fractionated stereotactic radiotherapy (SRT) with a frameless device was developed along a growing interest in sophisticated treatment with a tight margin and high-dose gradient. This dissertation establishes the complete management for HPRT in the process of frameless SRT, including image-guided localization, immobilization, and dose evaluation. The most ideal and precise positioning system can allow for ease of relocation, real-time patient movement assessment, high accuracy, and no additional dose in daily use. A new image-guided stereotactic positioning system (IGSPS), the Align RT3C 3D surface camera system (ART, VisionRT), which combines 3D surface images and uses a real-time tracking technique, was developed to ensure accurate positioning at the first place. The uncertainties of current optical tracking system, which causes patient discomfort due to additional bite plates using the dental impression technique and external markers, are found. The accuracy and feasibility of ART is validated by comparisons with the optical tracking and cone-beam computed tomography (CBCT) systems. Additionally, an effective daily quality assurance (QA) program for the linear accelerator and multiple IGSPSs is the most important factor to ensure system performance in daily use. Currently, systematic errors from the phantom variety and long measurement time caused by switching phantoms were discovered. We investigated the use of a commercially available daily QA device to improve the efficiency and thoroughness. Reasonable action level has been established by considering dosimetric relevance and clinic flow. As for intricate treatments, the effect of dose deviation caused by setup errors remains uncertain on tumor coverage and toxicity on OARs. The lack of adequate dosimetric simulations based on the true treatment coordinates from the treatment planning system (TPS) has limited adaptive treatments. A reliable and accurate dosimetric simulation using TPS and in-house software in uncorrected errors has been developed. In SRT, the calculated dose deviation is compared to the original treatment dose with the dose-volume histogram to investigate the dose effect of rotational errors. In summary, this work performed a quality assessment to investigate the overall accuracy of current setup systems. To reach the ideal HPRT, the reliable dosimetric simulation, an effective daily QA program and effective, precise setup systems were developed and validated.
Pella, A; Riboldi, M; Tagaste, B; Bianculli, D; Desplanques, M; Fontana, G; Cerveri, P; Seregni, M; Fattori, G; Orecchia, R; Baroni, G
2014-08-01
In an increasing number of clinical indications, radiotherapy with accelerated particles shows relevant advantages when compared with high energy X-ray irradiation. However, due to the finite range of ions, particle therapy can be severely compromised by setup errors and geometric uncertainties. The purpose of this work is to describe the commissioning and the design of the quality assurance procedures for patient positioning and setup verification systems at the Italian National Center for Oncological Hadrontherapy (CNAO). The accuracy of systems installed in CNAO and devoted to patient positioning and setup verification have been assessed using a laser tracking device. The accuracy in calibration and image based setup verification relying on in room X-ray imaging system was also quantified. Quality assurance tests to check the integration among all patient setup systems were designed, and records of daily QA tests since the start of clinical operation (2011) are presented. The overall accuracy of the patient positioning system and the patient verification system motion was proved to be below 0.5 mm under all the examined conditions, with median values below the 0.3 mm threshold. Image based registration in phantom studies exhibited sub-millimetric accuracy in setup verification at both cranial and extra-cranial sites. The calibration residuals of the OTS were found consistent with the expectations, with peak values below 0.3 mm. Quality assurance tests, daily performed before clinical operation, confirm adequate integration and sub-millimetric setup accuracy. Robotic patient positioning was successfully integrated with optical tracking and stereoscopic X-ray verification for patient setup in particle therapy. Sub-millimetric setup accuracy was achieved and consistently verified in daily clinical operation.
AXAF VETA-I mirror encircled energy measurements and data reduction
NASA Technical Reports Server (NTRS)
Zhao, Ping; Freeman, Mark D.; Hughes, John P.; Kellogg, Edwin M.; Nguyen, Dan T.; Joy, Marshall; Kolodziejczak, Jeffery J.
1992-01-01
The AXAF VETA-I mirror encircled energy was measured with a series of apertures and two flow gas proportional counters at five X-ray energies ranging from 0.28 to 2.3 keV. The proportional counter has a thin plastic window with an opaque wire mesh supporting grid. Depending on the counter position, this mesh can cause the X-ray transmission to vary as much as +/-9 percent, which directly translates into an error in the encircled energy. In order to correct this wire mesh effect, window scan measurements were made, in which the counter was scanned in both horizontal (Y) and vertical (Z) directions with the aperture fixed. Post VETA measurement of the VXDS setup were made to determine the exact geometry and position of the mesh grid. Computer models of the window mesh were developed to simulate the X-ray transmission based on this measurement. The window scan data were fitted to such mesh models and corrections were made. After this study, the mesh effect was well understood and the final results of the encircled energy were obtained with an uncertainty of less than 0.8 percent.
NASA Astrophysics Data System (ADS)
Sivasubramanian, Kathyayini; Periyasamy, Vijitha; Wen, Kew Kok; Pramanik, Manojit
2017-03-01
Photoacoustic tomography is a hybrid imaging modality that combines optical and ultrasound imaging. It is rapidly gaining attention in the field of medical imaging. The challenge is to translate it into a clinical setup. In this work, we report the development of a handheld clinical photoacoustic imaging system. A clinical ultrasound imaging system is modified to integrate photoacoustic imaging with the ultrasound imaging. Hence, light delivery has been integrated with the ultrasound probe. The angle of light delivery is optimized in this work with respect to the depth of imaging. Optimization was performed based on Monte Carlo simulation for light transport in tissues. Based on the simulation results, the probe holders were fabricated using 3D printing. Similar results were obtained experimentally using phantoms. Phantoms were developed to mimic sentinel lymph node imaging scenario. Also, in vivo sentinel lymph node imaging was done using the same system with contrast agent methylene blue up to a depth of 1.5 cm. The results validate that one can use Monte Carlo simulation as a tool to optimize the probe holder design depending on the imaging needs. This eliminates a trial and error approach generally used for designing a probe holder.
ERIC Educational Resources Information Center
Mateo, Roberto Martínez
2015-01-01
The negative attitude towards translation as another pedagogical means in Foreign Language Teaching (FLT) has prevailed for much time (Cook, 2010). Nonetheless, currently, many theorists and linguistics agree on the importance of using translation activities in foreign language teaching and underline its beneficial effects to expand vocabulary, to…
Research on the Translation of Public Signs
ERIC Educational Resources Information Center
Qiannan, Ma
2012-01-01
Because of the increasing international image of China, the translation of public signs in city has become the very important issue. From the point of view of cross-cultural communication, the public signs have crucial influence on the image of the city, even for the whole China. However, there exist many translation errors of the public signs in…
Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser
NASA Technical Reports Server (NTRS)
Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan
2010-01-01
The figure schematically depicts a laboratory setup for determining the optical length of a fiber-optic delay line at a precision greater than that obtainable by use of optical time-domain reflectometry or of mechanical measurement of length during the delay-line-winding process. In this setup, the delay line becomes part of the resonant optical cavity that governs the frequency of oscillation of a mode-locked laser. The length can then be determined from frequency-domain measurements, as described below. The laboratory setup is basically an all-fiber ring laser in which the delay line constitutes part of the ring. Another part of the ring - the laser gain medium - is an erbium-doped fiber amplifier pumped by a diode laser at a wavelength of 980 nm. The loop also includes an optical isolator, two polarization controllers, and a polarizing beam splitter. The optical isolator enforces unidirectional lasing. The polarization beam splitter allows light in only one polarization mode to pass through the ring; light in the orthogonal polarization mode is rejected from the ring and utilized as a diagnostic output, which is fed to an optical spectrum analyzer and a photodetector. The photodetector output is fed to a radio-frequency spectrum analyzer and an oscilloscope. The fiber ring laser can generate continuous-wave radiation in non-mode-locked operation or ultrashort optical pulses in mode-locked operation. The mode-locked operation exhibited by this ring is said to be passive in the sense that no electro-optical modulator or other active optical component is used to achieve it. Passive mode locking is achieved by exploiting optical nonlinearity of passive components in such a manner as to obtain ultra-short optical pulses. In this setup, the particular nonlinear optical property exploited to achieve passive mode locking is nonlinear polarization rotation. This or any ring laser can support oscillation in multiple modes as long as sufficient gain is present to overcome losses in the ring. When mode locking is achieved, oscillation occurs in all the modes having the same phase and same polarization. The frequency interval between modes, often denoted the free spectral range (FSR), is given by c/nL, where c is the speed of light in vacuum, n is the effective index of refraction of the fiber, and L is the total length of optical path around the ring. Therefore, the length of the fiber-optic delay line, as part of the length around the ring, can be calculated from the FSRs measured with and without the delay line incorporated into the ring. For this purpose, the FSR measurements are made by use of the optical and radio-frequency spectrum analyzers. In experimentation on a 10-km-long fiber-optic delay line, it was found that this setup made it possible to measure the length to within a fractional error of about 3 10(exp -6), corresponding to a length error of 3 cm. In contrast, measurements by optical time-domain reflectometry and mechanical measurement were found to be much less precise: For optical time-domain reflectometry, the fractional error was found no less than 10(exp -4) (corresponding to a length error of 1 m) and for mechanical measurement, the fractional error was found to be about 10(exp -2) (corresponding to a length error of 100 m).
Lovelock, D Michael; Hua, Chiaho; Wang, Ping; Hunt, Margie; Fournier-Bidoz, Nathalie; Yenice, Kamil; Toner, Sean; Lutz, Wendell; Amols, Howard; Bilsky, Mark; Fuks, Zvi; Yamada, Yoshiya
2005-08-01
Because of the proximity of the spinal cord, effective radiotherapy of paraspinal tumors to high doses requires highly conformal dose distributions, accurate patient setup, setup verification, and patient immobilization. An immobilization cradle has been designed to facilitate the rapid setup and radiation treatment of patients with paraspinal disease. For all treatments, patients were set up to within 2.5 mm of the design using an amorphous silicon portal imager. Setup reproducibility of the target using the cradle and associated clinical procedures was assessed by measuring the setup error prior to any correction. From 350 anterior/posterior images, and 303 lateral images, the standard deviations, as determined by the imaging procedure, were 1.3 m, 1.6 m, and 2.1 in the ant/post, right/left, and superior/inferior directions. Immobilization was assessed by measuring patient shifts between localization images taken before and after treatment. From 67 ant/post image pairs and 49 lateral image pairs, the standard deviations were found to be less than 1 mm in all directions. Careful patient positioning and immobilization has enabled us to develop a successful clinical program of high dose, conformal radiotherapy of paraspinal disease using a conventional Linac equipped with dynamic multileaf collimation and an amorphous silicon portal imager.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, Austin; Ding, George X., E-mail: george.ding@vanderbilt.edu
2014-01-01
Craniospinal irradiation (CSI) requires abutting fields at the cervical spine. Junction shifts are conventionally used to prevent setup error–induced overdosage/underdosage from occurring at the same location. This study compared the dosimetric differences at the cranial-spinal junction between a single-gradient junction technique and conventional multiple-junction shifts and evaluated the effect of setup errors on the dose distributions between both techniques for a treatment course and single fraction. Conventionally, 2 lateral brain fields and a posterior spine field(s) are used for CSI with weekly 1-cm junction shifts. We retrospectively replanned 4 CSI patients using a single-gradient junction between the lateral brain fieldsmore » and the posterior spine field. The fields were extended to allow a minimum 3-cm field overlap. The dose gradient at the junction was achieved using dose painting and intensity-modulated radiation therapy planning. The effect of positioning setup errors on the dose distributions for both techniques was simulated by applying shifts of ± 3 and 5 mm. The resulting cervical spine doses across the field junction for both techniques were calculated and compared. Dose profiles were obtained for both a single fraction and entire treatment course to include the effects of the conventional weekly junction shifts. Compared with the conventional technique, the gradient-dose technique resulted in higher dose uniformity and conformity to the target volumes, lower organ at risk (OAR) mean and maximum doses, and diminished hot spots from systematic positioning errors over the course of treatment. Single-fraction hot and cold spots were improved for the gradient-dose technique. The single-gradient junction technique provides improved conformity, dose uniformity, diminished hot spots, lower OAR mean and maximum dose, and one plan for the entire treatment course, which reduces the potential human error associated with conventional 4-shifted plans.« less
Chang, C M; Fang, K M; Huang, T W; Wang, C T; Cheng, P W
2013-12-01
Studies on the performance of surface registration with electromagnetic tracking systems are lacking in both live surgery and the laboratory setting. This study presents the efficiency in time of the system preparation as well as the navigational accuracy of surface registration using electromagnetic tracking systems. Forty patients with bilateral chronic paranasal pansinusitis underwent endoscopic sinus surgery after undergoing sinus computed tomography scans. The surgeries were performed under electromagnetic navigation guidance after the surface registration had been carried out on all of the patients. The intraoperative measurements indicate the time taken for equipment set-up, surface registration and surgical procedure, as well as the degree of navigation error along 3 axes. The time taken for equipment set-up, surface registration and the surgical procedure was 179 +- 23 seconds, 39 +- 4.8 seconds and 114 +- 36 minutes, respectively. A comparison of the navigation error along the 3 axes showed that the deviation in the medial-lateral direction was significantly less than that in the anterior-posterior and cranial-caudal directions. The procedures of equipment set-up and surface registration in electromagnetic navigation tracking are efficient, convenient and easy to manipulate. The system accuracy is within the acceptable ranges, especially on the medial-lateral axis.
High-resolution smile measurement and control of wavelength-locked QCW and CW laser diode bars
NASA Astrophysics Data System (ADS)
Rosenkrantz, Etai; Yanson, Dan; Klumel, Genady; Blonder, Moshe; Rappaport, Noam; Peleg, Ophir
2018-02-01
High-power linewidth-narrowed applications of laser diode arrays demand high beam quality in the fast, or vertical, axis. This requires very high fast-axis collimation (FAC) quality with sub-mrad angular errors, especially where laser diode bars are wavelength-locked by a volume Bragg grating (VBG) to achieve high pumping efficiency in solid-state and fiber lasers. The micron-scale height deviation of emitters in a bar against the FAC lens causes the so-called smile effect with variable beam pointing errors and wavelength locking degradation. We report a bar smile imaging setup allowing FAC-free smile measurement in both QCW and CW modes. By Gaussian beam simulation, we establish optimum smile imaging conditions to obtain high resolution and accuracy with well-resolved emitter images. We then investigate the changes in the smile shape and magnitude under thermal stresses such as variable duty cycles in QCW mode and, ultimately, CW operation. Our smile measurement setup provides useful insights into the smile behavior and correlation between the bar collimation in QCW mode and operating conditions under CW pumping. With relaxed alignment tolerances afforded by our measurement setup, we can screen bars for smile compliance and potential VBG lockability prior to assembly, with benefits in both lower manufacturing costs and higher yield.
Balter, Peter; Morice, Rodolfo C.; Choi, Bum; Kudchadker, Rajat J.; Bucci, Kara; Chang, Joe Y.; Dong, Lei; Tucker, Susan; Vedam, Sastry; Briere, Tina; Starkschall, George
2008-01-01
This study aimed to validate and implement a methodology in which fiducials implanted in the periphery of lung tumors can be used to reduce uncertainties in tumor location. Alignment software that matches marker positions on two‐dimensional (2D) kilovoltage portal images to positions on three‐dimensional (3D) computed tomography data sets was validated using static and moving phantoms. This software also was used to reduce uncertainties in tumor location in a patient with fiducials implanted in the periphery of a lung tumor. Alignment of fiducial locations in orthogonal projection images with corresponding fiducial locations in 3D data sets can position both static and moving phantoms with an accuracy of 1 mm. In a patient, alignment based on fiducial locations reduced systematic errors in the left–right direction by 3 mm and random errors by 2 mm, and random errors in the superior–inferior direction by 3 mm as measured by anterior–posterior cine images. Software that matches fiducial markers on 2D and 3D images is effective for aligning both static and moving fiducials before treatment and can be implemented to reduce patient setup uncertainties. PACS number: 81.40.Wx
Hyperbolic Positioning with Antenna Arrays and Multi-Channel Pseudolite for Indoor Localization
Fujii, Kenjirou; Sakamoto, Yoshihiro; Wang, Wei; Arie, Hiroaki; Schmitz, Alexander; Sugano, Shigeki
2015-01-01
A hyperbolic positioning method with antenna arrays consisting of proximately-located antennas and a multi-channel pseudolite is proposed in order to overcome the problems of indoor positioning with conventional pseudolites (ground-based GPS transmitters). A two-dimensional positioning experiment using actual devices is conducted. The experimental result shows that the positioning accuracy varies centimeter- to meter-level according to the geometric relation between the pseudolite antennas and the receiver. It also shows that the bias error of the carrier-phase difference observables is more serious than their random error. Based on the size of the bias error of carrier-phase difference that is inverse-calculated from the experimental result, three-dimensional positioning performance is evaluated by computer simulation. In addition, in the three-dimensional positioning scenario, an initial value convergence analysis of the non-linear least squares is conducted. Its result shows that initial values that can converge to a right position exist at least under the proposed antenna setup. The simulated values and evaluation methods introduced in this work can be applied to various antenna setups; therefore, by using them, positioning performance can be predicted in advance of installing an actual system. PMID:26437405
On the assimilation set-up of ASCAT soil moisture data for improving streamflow catchment simulation
NASA Astrophysics Data System (ADS)
Loizu, Javier; Massari, Christian; Álvarez-Mozos, Jesús; Tarpanelli, Angelica; Brocca, Luca; Casalí, Javier
2018-01-01
Assimilation of remotely sensed surface soil moisture (SSM) data into hydrological catchment models has been identified as a means to improve streamflow simulations, but reported results vary markedly depending on the particular model, catchment and assimilation procedure used. In this study, the influence of key aspects, such as the type of model, re-scaling technique and SSM observation error considered, were evaluated. For this aim, Advanced SCATterometer ASCAT-SSM observations were assimilated through the ensemble Kalman filter into two hydrological models of different complexity (namely MISDc and TOPLATS) run on two Mediterranean catchments of similar size (750 km2). Three different re-scaling techniques were evaluated (linear re-scaling, variance matching and cumulative distribution function matching), and SSM observation error values ranging from 0.01% to 20% were considered. Four different efficiency measures were used for evaluating the results. Increases in Nash-Sutcliffe efficiency (0.03-0.15) and efficiency indices (10-45%) were obtained, especially when linear re-scaling and observation errors within 4-6% were considered. This study found out that there is a potential to improve streamflow prediction through data assimilation of remotely sensed SSM in catchments of different characteristics and with hydrological models of different conceptualizations schemes, but for that, a careful evaluation of the observation error and re-scaling technique set-up utilized is required.
NASA Astrophysics Data System (ADS)
Möhler, Christian; Russ, Tom; Wohlfahrt, Patrick; Elter, Alina; Runz, Armin; Richter, Christian; Greilich, Steffen
2018-01-01
An experimental setup for consecutive measurement of ion and x-ray absorption in tissue or other materials is introduced. With this setup using a 3D-printed sample container, the reference stopping-power ratio (SPR) of materials can be measured with an uncertainty of below 0.1%. A total of 65 porcine and bovine tissue samples were prepared for measurement, comprising five samples each of 13 tissue types representing about 80% of the total body mass (three different muscle and fatty tissues, liver, kidney, brain, heart, blood, lung and bone). Using a standard stoichiometric calibration for single-energy CT (SECT) as well as a state-of-the-art dual-energy CT (DECT) approach, SPR was predicted for all tissues and then compared to the measured reference. With the SECT approach, the SPRs of all tissues were predicted with a mean error of (-0.84 ± 0.12)% and a mean absolute error of (1.27 ± 0.12)%. In contrast, the DECT-based SPR predictions were overall consistent with the measured reference with a mean error of (-0.02 ± 0.15)% and a mean absolute error of (0.10 ± 0.15)%. Thus, in this study, the potential of DECT to decrease range uncertainty could be confirmed in biological tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaskuri, Anna, E-mail: anna.vaskuri@aalto.fi; Kärhä, Petri; Heikkilä, Anu
2015-10-15
Polystyrene and many other materials turn yellow when exposed to ultraviolet (UV) radiation. All photodegradation mechanisms including photoyellowing are functions of the exposure wavelength, which can be described with an action spectrum. In this work, a new high-resolution transmittance measurement setup based on lasers has been developed for measuring color changes, such as the photoyellowing of translucent materials aged with a spectrograph. The measurement setup includes 14 power-stabilized laser lines between 325 nm and 933 nm wavelengths, of which one at a time is directed on to the aged sample. The power transmitted through the sample is measured with amore » silicon detector utilizing an integrating sphere. The sample is mounted on a high-resolution XY translation stage. Measurement at various locations aged with different wavelengths of exposure radiation gives the transmittance data required for acquiring the action spectrum. The combination of a UV spectrograph and the new high-resolution transmittance measurement setup enables a novel method for studying the UV-induced ageing of translucent materials with a spectral resolution of 3–8 nm, limited by the adjustable spectral bandwidth range of the spectrograph. These achievements form a significant improvement over earlier methods.« less
Study on Network Error Analysis and Locating based on Integrated Information Decision System
NASA Astrophysics Data System (ADS)
Yang, F.; Dong, Z. H.
2017-10-01
Integrated information decision system (IIDS) integrates multiple sub-system developed by many facilities, including almost hundred kinds of software, which provides with various services, such as email, short messages, drawing and sharing. Because the under-layer protocols are different, user standards are not unified, many errors are occurred during the stages of setup, configuration, and operation, which seriously affect the usage. Because the errors are various, which may be happened in different operation phases, stages, TCP/IP communication protocol layers, sub-system software, it is necessary to design a network error analysis and locating tool for IIDS to solve the above problems. This paper studies on network error analysis and locating based on IIDS, which provides strong theory and technology supports for the running and communicating of IIDS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, Klaudia U.; Fernandes, Laura L.; Vineberg, Karen A.
2013-11-15
Purpose: Doses actually delivered to the parotid glands during radiation therapy often exceed planned doses. We hypothesized that the delivered doses correlate better with parotid salivary output than the planned doses, used in all previous studies, and that determining these correlations will help make decisions regarding adaptive radiation therapy (ART) aimed at reducing the delivered doses. Methods and Materials: In this prospective study, oropharyngeal cancer patients treated definitively with chemoirradiation underwent daily cone-beam computed tomography (CBCT) with clinical setup alignment based on the C2 posterior edge. Parotid glands in the CBCTs were aligned by deformable registration to calculate cumulative deliveredmore » doses. Stimulated salivary flow rates were measured separately from each parotid gland pretherapy and periodically posttherapy. Results: Thirty-six parotid glands of 18 patients were analyzed. Average mean planned doses was 32 Gy, and differences from planned to delivered mean gland doses were −4.9 to +8.4 Gy, median difference +2.2 Gy in glands in which delivered doses increased relative to planned. Both planned and delivered mean doses were significantly correlated with posttreatment salivary outputs at almost all posttherapy time points, without statistically significant differences in the correlations. Large dispersions (on average, SD 3.6 Gy) characterized the dose–effect relationships for both. The differences between the cumulative delivered doses and planned doses were evident at first fraction (r=.92, P<.0001) because of complex setup deviations (eg, rotations and neck articulations), uncorrected by the translational clinical alignments. Conclusions: After daily translational setup corrections, differences between planned and delivered doses in most glands were small relative to the SDs of the dose–saliva data, suggesting that ART is not likely to gain measurable salivary output improvement in most cases. These differences were observed at first treatment, indicating potential benefit for more complex setup corrections or adaptive interventions in the minority of patients with large deviations detected early by CBCT.« less
NASA Astrophysics Data System (ADS)
Schuldt, Thilo; Kraus, Hans-Jürgen; Weise, Dennis; Braxmaier, Claus; Peters, Achim; Johann, Ulrich
2017-11-01
The space-based gravitational wave detector LISA (Laser Interferometer Space Antenna) requires a high performance position sensor in order to measure the translation and tilt of the free flying test mass with respect to the LISA optical bench. Here, we present a mechanically highly stable and compact setup of a heterodyne interferometer combined with differential wavefront sensing for the tilt measurement which serves as a demonstrator for an optical readout of the LISA test mass position. First results show noise levels below 1 nm/√Hz and 1 μrad/√Hz, respectively, for frequencies < 10-3 Hz.
NASA Astrophysics Data System (ADS)
Westerhausen, Markus; Martin, Tanja; Kappel, Marcel; Hofmann, Boris
2018-02-01
We present a measurement setup consisting of two fluid-filled pressure chambers to mimic the mechanical stress likely to that of small body movements on biomedical flexible micro-electrode arrays for the analysis of various degradation mechanisms. Our main goal was the simulation of micro-motions in fluid conditions, while maintaining an electric access to the device. These micro-motions would be likely to those occurring in the human body caused by the intracranial pressure in magnitudes of 7-25 mmHg, which translates to a fluid pressure of 9-33 mbar. Furthermore, severe mechanical stress can be administered to the samples under the previously mentioned environment. Therefore, a flexible, polyimide-based sample with various metal test structures was fabricated and analyzed in the presented measurement setup. A comparison of the elongation of the sample's surface as a function of the applied hydrostatic pressure is given with computer simulations.
Accuracy of off-line bioluminescence imaging to localize targets in preclinical radiation research.
Tuli, Richard; Armour, Michael; Surmak, Andrew; Reyes, Juvenal; Iordachita, Iulian; Patterson, Michael; Wong, John
2013-04-01
In this study, we investigated the accuracy of using off-line bioluminescence imaging (BLI) and tomography (BLT) to guide irradiation of small soft tissue targets on a small animal radiation research platform (SARRP) with on-board cone beam CT (CBCT) capability. A small glass bulb containing BL cells was implanted as a BL source in the abdomen of 11 mouse carcasses. Bioluminescence imaging and tomography were acquired for each carcass. Six carcasses were setup visually without immobilization and 5 were restrained in position with tape. All carcasses were setup in treatment position on the SARRP where the centroid position of the bulb on CBCT was taken as "truth". In the 2D visual setup, the carcass was setup by aligning the point of brightest luminescence with the vertical beam axis. In the CBCT assisted setup, the pose of the carcass on CBCT was aligned with that on the 2D BL image for setup. For both 2D setup methods, the offset of the bulb centroid on CBCT from the vertical beam axis was measured. In the BLT-CBCT fusion method, the 3D torso on BLT and CBCT was registered and the 3D offset of the respective source centroids was calculated. The setup results were independent of the carcass being immobilized or not due to the onset of rigor mortis. The 2D offset of the perceived BL source position from the CBCT bulb position was 2.3 mm ± 1.3 mm. The 3D offset between BLT and CBCT was 1.5 mm ± 0.9 mm. Given the rigidity of the carcasses, the setup results represent the best that can be achieved with off-line 2D BLI and 3D BLT. The setup uncertainty would require the use of undesirably large margin of 4-5 mm. The results compel the implementation of on-board BLT capability on the SARRP to eliminate setup error and to improve BLT accuracy.
Accuracy of Off-Line Bioluminescence Imaging to Localize Targets in Preclinical Radiation Research
Tuli, Richard; Armour, Michael; Surmak, Andrew; Reyes, Juvenal; Iordachita, Iulian; Patterson, Michael; Wong, John
2013-01-01
In this study, we investigated the accuracy of using off-line bioluminescence imaging (BLI) and tomography (BLT) to guide irradiation of small soft tissue targets on a small animal radiation research platform (SARRP) with on-board cone beam CT (CBCT) capability. A small glass bulb containing BL cells was implanted as a BL source in the abdomen of 11 mouse carcasses. Bioluminescence imaging and tomography were acquired for each carcass. Six carcasses were setup visually without immobilization and 5 were restrained in position with tape. All carcasses were setup in treatment position on the SARRP where the centroid position of the bulb on CBCT was taken as “truth”. In the 2D visual setup, the carcass was setup by aligning the point of brightest luminescence with the vertical beam axis. In the CBCT assisted setup, the pose of the carcass on CBCT was aligned with that on the 2D BL image for setup. For both 2D setup methods, the offset of the bulb centroid on CBCT from the vertical beam axis was measured. In the BLT-CBCT fusion method, the 3D torso on BLT and CBCT was registered and the 3D offset of the respective source centroids was calculated. The setup results were independent of the carcass being immobilized or not due to the onset of rigor mortis. The 2D offset of the perceived BL source position from the CBCT bulb position was 2.3 mm ± 1.3 mm. The 3D offset between BLT and CBCT was 1.5 mm ± 0.9 mm. Given the rigidity of the carcasses, the setup results represent the best that can be achieved with off-line 2D BLI and 3D BLT. The setup uncertainty would require the use of undesirably large margin of 4–5 mm. The results compel the implementation of on-board BLT capability on the SARRP to eliminate setup error and to improve BLT accuracy. PMID:23578189
NASA Technical Reports Server (NTRS)
Clark, William A. (Inventor); Juneau, Thor N. (Inventor); Lemkin, Mark A. (Inventor); Roessig, Allen W. (Inventor)
2001-01-01
A microfabricated vibratory rate gyroscope to measure rotation includes two proof-masses mounted in a suspension system anchored to a substrate. The suspension has two principal modes of compliance, one of which is driven into oscillation. The driven oscillation combined with rotation of the substrate about an axis perpendicular to the substrate results in Coriolis acceleration along the other mode of compliance, the sense-mode. The sense-mode is designed to respond to Coriolis accelerationwhile suppressing the response to translational acceleration. This is accomplished using one or more rigid levers connecting the two proof-masses. The lever allows the proof-masses to move in opposite directions in response to Coriolis acceleration. The invention includes a means for canceling errors, termed quadrature error, due to imperfections in implementation of the sensor. Quadrature-error cancellation utilizes electrostatic forces to cancel out undesired sense-axis motion in phase with drive-mode position.
Hoffmans-Holtzer, Nienke A; Hoffmans, Daan; Dahele, Max; Slotman, Ben J; Verbakel, Wilko F A R
2015-03-01
The purpose of this work was to investigate whether adapting gantry and collimator angles can compensate for roll and pitch setup errors during volumetric modulated arc therapy (VMAT) delivery. Previously delivered clinical plans for locally advanced head-and-neck (H&N) cancer (n = 5), localized prostate cancer (n = 2), and whole brain with simultaneous integrated boost to 5 metastases (WB + 5M, n = 1) were used for this study. Known rigid rotations were introduced in the planning CT scans. To compensate for these, in-house software was used to adapt gantry and collimator angles in the plan. Doses to planning target volumes (PTV) and critical organs at risk (OAR) were calculated with and without compensation and compared with the original clinical plan. Measurements in the sagittal plane in a polystyrene phantom using radiochromic film were compared by gamma (γ) evaluation for 2 H&N cancer patients. For H&N plans, the introduction of 2°-roll and 3°-pitch rotations reduced mean PTV coverage from 98.7 to 96.3%. This improved to 98.1% with gantry and collimator compensation. For prostate plans respective figures were 98.4, 97.5, and 98.4%. For WB + 5M, compensation worked less well, especially for smaller volumes and volumes farther from the isocenter. Mean comparative γ evaluation (3%, 1 mm) between original and pitched plans resulted in 86% γ < 1. The corrected plan restored the mean comparison to 96% γ < 1. Preliminary data suggest that adapting gantry and collimator angles is a promising way to correct roll and pitch set-up errors of < 3° during VMAT for H&N and prostate cancer.
Evaluation of wave runup predictions from numerical and parametric models
Stockdon, Hilary F.; Thompson, David M.; Plant, Nathaniel G.; Long, Joseph W.
2014-01-01
Wave runup during storms is a primary driver of coastal evolution, including shoreline and dune erosion and barrier island overwash. Runup and its components, setup and swash, can be predicted from a parameterized model that was developed by comparing runup observations to offshore wave height, wave period, and local beach slope. Because observations during extreme storms are often unavailable, a numerical model is used to simulate the storm-driven runup to compare to the parameterized model and then develop an approach to improve the accuracy of the parameterization. Numerically simulated and parameterized runup were compared to observations to evaluate model accuracies. The analysis demonstrated that setup was accurately predicted by both the parameterized model and numerical simulations. Infragravity swash heights were most accurately predicted by the parameterized model. The numerical model suffered from bias and gain errors that depended on whether a one-dimensional or two-dimensional spatial domain was used. Nonetheless, all of the predictions were significantly correlated to the observations, implying that the systematic errors can be corrected. The numerical simulations did not resolve the incident-band swash motions, as expected, and the parameterized model performed best at predicting incident-band swash heights. An assimilated prediction using a weighted average of the parameterized model and the numerical simulations resulted in a reduction in prediction error variance. Finally, the numerical simulations were extended to include storm conditions that have not been previously observed. These results indicated that the parameterized predictions of setup may need modification for extreme conditions; numerical simulations can be used to extend the validity of the parameterized predictions of infragravity swash; and numerical simulations systematically underpredict incident swash, which is relatively unimportant under extreme conditions.
NASA Astrophysics Data System (ADS)
Sperling, A.; Meyer, M.; Pendsa, S.; Jordan, W.; Revtova, E.; Poikonen, T.; Renoux, D.; Blattner, P.
2018-04-01
Proper characterization of test setups used in industry for testing and traceable measurement of lighting devices by the substitution method is an important task. According to new standards for testing LED lamps, luminaires and modules, uncertainty budgets are requested because in many cases the properties of the device under test differ from the transfer standard used, which may cause significant errors, for example if a LED-based lamp is tested or calibrated in an integrating sphere which was calibrated with a tungsten lamp. This paper introduces a multiple transfer standard, which was designed not only to transfer a single calibration value (e.g. luminous flux) but also to characterize test setups used for LED measurements with additional provided and calibrated output features to enable the application of the new standards.
A heterodyne interferometer for high-performance industrial metrology
NASA Astrophysics Data System (ADS)
Schuldt, Thilo; Gohlke, Martin; Weise, Dennis; Johann, Ulrich; Peters, Achim; Braxmaier, Claus
2008-11-01
We developed a compact, fiber-coupled heterodyne interferometer for translation and tilt metrology. Noise levels below 5 pm/√Hz in translation and below 10 nrad/√Hz in tilt measurement, both for frequencies above 10-2 Hz, were demonstrated in lab experiments. While this setup was developed with respect to the LISA (Laser Interferometer Space Antenna) space mission current activities focus on its adaptation for dimensional characterization of ultra-stable materials and industrial metrology. The interferometer is used in high-accuracy dilatometry measuring the coefficient of thermal expansion (CTE) of dimensionally highly stable materials such as carbon-fiber reinforced plastic (CFRP) and Zerodur. The facility offers the possibility to measure the CTE with an accuracy better 10-8/K. We also develop a very compact and quasi-monolithic sensor head utilizing ultra-low expansion glass material which is the basis for a future space-qualifiable interferometer setup and serves as a prototype for a sensor head used in industrial environment. For high resolution 3D profilometry and surface property measurements (i. e. roughness, evenness and roundness), a low-noise (<=1nm/√ Hz) actuator will be implemented which enables a scan of the measurement beam over the surface under investigation.
Development of an ultrasensitive interferometry system as a key to precision metrology applications
NASA Astrophysics Data System (ADS)
Gohlke, Martin; Schuldt, Thilo; Weise, Dennis; Johann, Ulrich; Peters, Achim; Braxmaier, Claus
2009-06-01
We present a symmetric heterodyne interferometer as a prototype of a highly sensitive translation and tilt measurement system. This compact optical metrology system was developed over the past several years by EADS Astrium (Friedrichshafen) in cooperation with the Humboldt-University (Berlin) and the university of applied science Konstanz (HTWG-Konstanz). The noise performance was tested at frequencies between 10-4 and 3 Hz, the noise levels are below 1 nm/Hz 1/2 for translation and below 1 μrad/Hz1/2, for tilt measurements. For frequencies higher than 10 mHz noise levels below 5pm/Hz1/2 and 4 nrad/Hz1/2 respectively, were demonstrated. Based on this highly sensitive metrology system we also developed a dilatometer for the characterization of the CTE (coefficient of thermal expansion) of various materials, i.e. CFRP (carbon fiber reinforced plastic) or Zerodur. The currently achieved sensitivity of these measurements is better than 10-7 K-1. Future planned applications of the interferometer include ultra-high-precision surface profiling and characterization of actuator noise in low-noise opto-mechanics setups. We will give an overview of the current experimental setup and the latest measurement results.
NASA Astrophysics Data System (ADS)
Schuldt, Thilo; Gohlke, Martin; Weise, Dennis; Johann, Ulrich; Peters, Achim; Braxmaier, Claus
2007-10-01
The space mission LISA (Laser Interferometer Space Antenna) aims at detecting gravitational waves in the frequency range 30 μ Hz to 1Hz. Free flying proof masses inside the satellites act as inertial sensors and represent the end mirrors of the interferometer. In the current baseline design, LISA utilizes an optical readout of the position and tilt of the proof mass with respect to the satellite housing. This readout must have ~ 5pm/√Hz sensitivity for the translation measurement (for frequencies above 2.8mHz with an -2 relaxation down to 30 μHz) and ~ 10 nrad/√Hz sensitivity for the tilt measurement (for frequencies above 0.1mHz with an -1 relaxation down to 30 μHz). The University of Applied Sciences Konstanz (HTWG) - in collaboration with Astrium GmbH, Friedrichshafen, and the Humboldt-University Berlin - therefore develops a highly symmetric heterodyne interferometer implementing differential wavefront sensing for the tilt measurement. We realized a mechanically highly stable and compact setup. In a second, improved setup we measured initial noise levels below 5 pm/√Hz and 10 nrad/√Hz, respectively, for frequencies above 10mHz.
Koch, Cosima; Posch, Andreas E; Herwig, Christoph; Lendl, Bernhard
2016-12-01
The performance of a fiber optic and an optical conduit in-line attenuated total reflection mid-infrared (IR) probe during in situ monitoring of Penicillium chrysogenum fermentation were compared. The fiber optic probe was connected to a sealed, portable, Fourier transform infrared (FT-IR) process spectrometer via a plug-and-play interface. The optical conduit, on the other hand, was connected to a FT-IR process spectrometer via a knuckled probe with mirrors that had to be adjusted prior to each fermentation, which were purged with dry air. Penicillin V (PenV) and its precursor phenoxyacetic acid (POX) concentrations were determined by online high-performance liquid chromatography and the obtained concentrations were used as reference to build partial least squares regression models. Cross-validated root-mean-square errors of prediction were found to be 0.2 g L -1 (POX) and 0.19 g L -1 (PenV) for the fiber optic setup and 0.17 g L -1 (both POX and PenV) for the conduit setup. Higher noise-levels and spectrum-to-spectrum variations of the fiber optic setup lead to higher noise of estimated (i.e., unknown) POX and PenV concentrations than was found for the conduit setup. It seems that trade-off has to be made between ease of handling (fiber optic setup) and measurement accuracy (optical conduit setup) when choosing one of these systems for bioprocess monitoring. © The Author(s) 2016.
pTRA - A reporter system for monitoring the intracellular dynamics of gene expression.
Wagner, Sabine G; Ziegler, Martin; Löwe, Hannes; Kremling, Andreas; Pflüger-Grau, Katharina
2018-01-01
The presence of standardised tools and methods to measure and represent accurately biological parts and functions is a prerequisite for successful metabolic engineering and crucial to understand and predict the behaviour of synthetic genetic circuits. Many synthetic gene networks are based on transcriptional circuits, thus information on transcriptional and translational activity is important for understanding and fine-tuning the synthetic function. To this end, we have developed a toolkit to analyse systematically the transcriptional and translational activity of a specific synthetic part in vivo. It is based on the plasmid pTRA and allows the assignment of specific transcriptional and translational outputs to the gene(s) of interest (GOI) and to compare different genetic setups. By this, the optimal combination of transcriptional strength and translational activity can be identified. The design is tested in a case study using the gene encoding the fluorescent mCherry protein as GOI. We show the intracellular dynamics of mRNA and protein formation and discuss the potential and shortcomings of the pTRA plasmid.
Quantum biological channel modeling and capacity calculation.
Djordjevic, Ivan B
2012-12-10
Quantum mechanics has an important role in photosynthesis, magnetoreception, and evolution. There were many attempts in an effort to explain the structure of genetic code and transfer of information from DNA to protein by using the concepts of quantum mechanics. The existing biological quantum channel models are not sufficiently general to incorporate all relevant contributions responsible for imperfect protein synthesis. Moreover, the problem of determination of quantum biological channel capacity is still an open problem. To solve these problems, we construct the operator-sum representation of biological channel based on codon basekets (basis vectors), and determine the quantum channel model suitable for study of the quantum biological channel capacity and beyond. The transcription process, DNA point mutations, insertions, deletions, and translation are interpreted as the quantum noise processes. The various types of quantum errors are classified into several broad categories: (i) storage errors that occur in DNA itself as it represents an imperfect storage of genetic information, (ii) replication errors introduced during DNA replication process, (iii) transcription errors introduced during DNA to mRNA transcription, and (iv) translation errors introduced during the translation process. By using this model, we determine the biological quantum channel capacity and compare it against corresponding classical biological channel capacity. We demonstrate that the quantum biological channel capacity is higher than the classical one, for a coherent quantum channel model, suggesting that quantum effects have an important role in biological systems. The proposed model is of crucial importance towards future study of quantum DNA error correction, developing quantum mechanical model of aging, developing the quantum mechanical models for tumors/cancer, and study of intracellular dynamics in general.
General-Purpose Software For Computer Graphics
NASA Technical Reports Server (NTRS)
Rogers, Joseph E.
1992-01-01
NASA Device Independent Graphics Library (NASADIG) is general-purpose computer-graphics package for computer-based engineering and management applications which gives opportunity to translate data into effective graphical displays for presentation. Features include two- and three-dimensional plotting, spline and polynomial interpolation, control of blanking of areas, multiple log and/or linear axes, control of legends and text, control of thicknesses of curves, and multiple text fonts. Included are subroutines for definition of areas and axes of plots; setup and display of text; blanking of areas; setup of style, interpolation, and plotting of lines; control of patterns and of shading of colors; control of legends, blocks of text, and characters; initialization of devices; and setting of mixed alphabets. Written in FORTRAN 77.
Feuerstein, Marco; Reichl, Tobias; Vogel, Jakob; Traub, Joerg; Navab, Nassir
2009-06-01
Electromagnetic tracking is currently one of the most promising means of localizing flexible endoscopic instruments such as flexible laparoscopic ultrasound transducers. However, electromagnetic tracking is also susceptible to interference from ferromagnetic material, which distorts the magnetic field and leads to tracking errors. This paper presents new methods for real-time online detection and reduction of dynamic electromagnetic tracking errors when localizing a flexible laparoscopic ultrasound transducer. We use a hybrid tracking setup to combine optical tracking of the transducer shaft and electromagnetic tracking of the flexible transducer tip. A novel approach of modeling the poses of the transducer tip in relation to the transducer shaft allows us to reliably detect and significantly reduce electromagnetic tracking errors. For detecting errors of more than 5 mm, we achieved a sensitivity and specificity of 91% and 93%, respectively. Initial 3-D rms error of 6.91 mm were reduced to 3.15 mm.
Contributions to the problem of piezoelectric accelerometer calibration. [using lock-in voltmeter
NASA Technical Reports Server (NTRS)
Jakab, I.; Bordas, A.
1974-01-01
After discussing the principal calibration methods for piezoelectric accelerometers, an experimental setup for accelerometer calibration by the reciprocity method is described It is shown how the use of a lock-in voltmeter eliminates errors due to viscous damping and electrical loading.
Bian, Liheng; Suo, Jinli; Chung, Jaebum; Ou, Xiaoze; Yang, Changhuei; Chen, Feng; Dai, Qionghai
2016-06-10
Fourier ptychographic microscopy (FPM) is a novel computational coherent imaging technique for high space-bandwidth product imaging. Mathematically, Fourier ptychographic (FP) reconstruction can be implemented as a phase retrieval optimization process, in which we only obtain low resolution intensity images corresponding to the sub-bands of the sample's high resolution (HR) spatial spectrum, and aim to retrieve the complex HR spectrum. In real setups, the measurements always suffer from various degenerations such as Gaussian noise, Poisson noise, speckle noise and pupil location error, which would largely degrade the reconstruction. To efficiently address these degenerations, we propose a novel FP reconstruction method under a gradient descent optimization framework in this paper. The technique utilizes Poisson maximum likelihood for better signal modeling, and truncated Wirtinger gradient for effective error removal. Results on both simulated data and real data captured using our laser-illuminated FPM setup show that the proposed method outperforms other state-of-the-art algorithms. Also, we have released our source code for non-commercial use.
Virtual rigid body: a new optical tracking paradigm in image-guided interventions
NASA Astrophysics Data System (ADS)
Cheng, Alexis; Lee, David S.; Deshmukh, Nishikant; Boctor, Emad M.
2015-03-01
Tracking technology is often necessary for image-guided surgical interventions. Optical tracking is one the options, but it suffers from line of sight and workspace limitations. Optical tracking is accomplished by attaching a rigid body marker, having a pattern for pose detection, onto a tool or device. A larger rigid body results in more accurate tracking, but at the same time large size limits its usage in a crowded surgical workspace. This work presents a prototype of a novel optical tracking method using a virtual rigid body (VRB). We define the VRB as a 3D rigid body marker in the form of pattern on a surface generated from a light source. Its pose can be recovered by observing the projected pattern with a stereo-camera system. The rigid body's size is no longer physically limited as we can manufacture small size light sources. Conventional optical tracking also requires line of sight to the rigid body. VRB overcomes these limitations by detecting a pattern projected onto the surface. We can project the pattern onto a region of interest, allowing the pattern to always be in the view of the optical tracker. This helps to decrease the occurrence of occlusions. This manuscript describes the method and results compared with conventional optical tracking in an experiment setup using known motions. The experiments are done using an optical tracker and a linear-stage, resulting in targeting errors of 0.38mm+/-0.28mm with our method compared to 0.23mm+/-0.22mm with conventional optical markers. Another experiment that replaced the linear stage with a robot arm resulted in rotational errors of 0.50+/-0.31° and 2.68+/-2.20° and the translation errors of 0.18+/-0.10 mm and 0.03+/-0.02 mm respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gierga, David P., E-mail: dgierga@partners.org; Harvard Medical School, Boston, Massachusetts; Turcotte, Julie C.
2012-12-01
Purpose: Breath-hold (BH) treatments can be used to reduce cardiac dose for patients with left-sided breast cancer and unfavorable cardiac anatomy. A surface imaging technique was developed for accurate patient setup and reproducible real-time BH positioning. Methods and Materials: Three-dimensional surface images were obtained for 20 patients. Surface imaging was used to correct the daily setup for each patient. Initial setup data were recorded for 443 fractions and were analyzed to assess random and systematic errors. Real time monitoring was used to verify surface placement during BH. The radiation beam was not turned on if the BH position difference wasmore » greater than 5 mm. Real-time surface data were analyzed for 2398 BHs and 363 treatment fractions. The mean and maximum differences were calculated. The percentage of BHs greater than tolerance was calculated. Results: The mean shifts for initial patient setup were 2.0 mm, 1.2 mm, and 0.3 mm in the vertical, longitudinal, and lateral directions, respectively. The mean 3-dimensional vector shift was 7.8 mm. Random and systematic errors were less than 4 mm. Real-time surface monitoring data indicated that 22% of the BHs were outside the 5-mm tolerance (range, 7%-41%), and there was a correlation with breast volume. The mean difference between the treated and reference BH positions was 2 mm in each direction. For out-of-tolerance BHs, the average difference in the BH position was 6.3 mm, and the average maximum difference was 8.8 mm. Conclusions: Daily real-time surface imaging ensures accurate and reproducible positioning for BH treatment of left-sided breast cancer patients with unfavorable cardiac anatomy.« less
Kirby, Anna M; Lee, Steven F; Bartlett, Freddie; Titmarsh, Kumud; Donovan, Ellen; Griffin, Clare L; Gothard, Lone; Locke, Imogen; McNair, Helen A
2016-01-01
Objective: The purpose of this UK study was to evaluate interfraction reproducibility and body image score when using ultraviolet (UV) tattoos (not visible in ambient lighting) for external references during breast/chest wall radiotherapy and compare with conventional dark ink. Methods: In this non-blinded, single-centre, parallel group, randomized control trial, patients were allocated to receive either conventional dark ink or UV ink tattoos using computer-generated random blocks. Participant assignment was not masked. Systematic (∑) and random (σ) setup errors were determined using electronic portal images. Body image questionnaires were completed at pre-treatment, 1 month and 6 months to determine the impact of tattoo type on body image. The primary end point was to determine that UV tattoo random error (σsetup) was no less accurate than with conventional dark ink tattoos, i.e. <2.8 mm. Results: 46 patients were randomized to receive conventional dark or UV ink tattoos. 45 patients completed treatment (UV: n = 23, dark: n = 22). σsetup for the UV tattoo group was <2.8 mm in the u and v directions (p = 0.001 and p = 0.009, respectively). A larger proportion of patients reported improvement in body image score in the UV tattoo group compared with the dark ink group at 1 month [56% (13/23) vs 14% (3/22), respectively] and 6 months [52% (11/21) vs 38% (8/21), respectively]. Conclusion: UV tattoos were associated with interfraction setup reproducibility comparable with conventional dark ink. Patients reported a more favourable change in body image score up to 6 months following treatment. Advances in knowledge: This study is the first to evaluate UV tattoo external references in a randomized control trial. PMID:27710100
Landeg, Steven J; Kirby, Anna M; Lee, Steven F; Bartlett, Freddie; Titmarsh, Kumud; Donovan, Ellen; Griffin, Clare L; Gothard, Lone; Locke, Imogen; McNair, Helen A
2016-12-01
The purpose of this UK study was to evaluate interfraction reproducibility and body image score when using ultraviolet (UV) tattoos (not visible in ambient lighting) for external references during breast/chest wall radiotherapy and compare with conventional dark ink. In this non-blinded, single-centre, parallel group, randomized control trial, patients were allocated to receive either conventional dark ink or UV ink tattoos using computer-generated random blocks. Participant assignment was not masked. Systematic (∑) and random (σ) setup errors were determined using electronic portal images. Body image questionnaires were completed at pre-treatment, 1 month and 6 months to determine the impact of tattoo type on body image. The primary end point was to determine that UV tattoo random error (σ setup ) was no less accurate than with conventional dark ink tattoos, i.e. <2.8 mm. 46 patients were randomized to receive conventional dark or UV ink tattoos. 45 patients completed treatment (UV: n = 23, dark: n = 22). σ setup for the UV tattoo group was <2.8 mm in the u and v directions (p = 0.001 and p = 0.009, respectively). A larger proportion of patients reported improvement in body image score in the UV tattoo group compared with the dark ink group at 1 month [56% (13/23) vs 14% (3/22), respectively] and 6 months [52% (11/21) vs 38% (8/21), respectively]. UV tattoos were associated with interfraction setup reproducibility comparable with conventional dark ink. Patients reported a more favourable change in body image score up to 6 months following treatment. Advances in knowledge: This study is the first to evaluate UV tattoo external references in a randomized control trial.
Rotational motions for teleseismic surface waves
NASA Astrophysics Data System (ADS)
Lin, Chin-Jen; Huang, Han-Pang; Pham, Nguyen Dinh; Liu, Chun-Chi; Chi, Wu-Cheng; Lee, William H. K.
2011-08-01
We report the findings for the first teleseismic six degree-of-freedom (6-DOF) measurements including three components of rotational motions recorded by a sensitive rotation-rate sensor (model R-1, made by eentec) and three components of translational motions recorded by a traditional seismometer (STS-2) at the NACB station in Taiwan. The consistent observations in waveforms of rotational motions and translational motions in sections of Rayleigh and Love waves are presented in reference to the analytical solution for these waves in a half space of Poisson solid. We show that additional information (e.g., Rayleigh wave phase velocity, shear wave velocity of the surface layer) might be exploited from six degree-of-freedom recordings of teleseismic events at only one station. We also find significant errors in the translational records of these teleseismic surface waves due to the sensitivity of inertial translation sensors (seismometers) to rotational motions. The result suggests that the effects of such errors need to be counted in surface wave inversions commonly used to derive earthquake source parameters and Earth structure.
Found in translation: Integrating laboratory and clinical oncology research
Wagner, H
2008-01-01
Translational research in medicine aims to inform the clinic and the laboratory with the results of each other’s work, and to bring promising and validated new therapies into clinical application. While laudable in intent, this is complicated in practice and the current state of translational research in cancer shows both striking success stories and examples of the numerous potential obstacles as well as opportunities for delays and errors in translation. This paper reviews the premises, promises, and problems of translational research with a focus on radiation oncology and suggests opportunities for improvements in future research design. PMID:21611010
Student Misconceptions in Introductory Biology.
ERIC Educational Resources Information Center
Fisher, Kathleen M.; Lipson, Joseph I.
Defining a "misconception" as an error of translation (transformation, correspondence, interpolation, interpretation) between two different kinds of information which causes students to have incorrect expectations, a Taxonomy of Errors has been developed to examine student misconceptions in an introductory biology course for science…
Formal Analysis of the Remote Agent Before and After Flight
NASA Technical Reports Server (NTRS)
Havelund, Klaus; Lowry, Mike; Park, SeungJoon; Pecheur, Charles; Penix, John; Visser, Willem; White, Jon L.
2000-01-01
This paper describes two separate efforts that used the SPIN model checker to verify deep space autonomy flight software. The first effort occurred at the beginning of a spiral development process and found five concurrency errors early in the design cycle that the developers acknowledge would not have been found through testing. This effort required a substantial manual modeling effort involving both abstraction and translation from the prototype LISP code to the PROMELA language used by SPIN. This experience and others led to research to address the gap between formal method tools and the development cycle used by software developers. The Java PathFinder tool which directly translates from Java to PROMELA was developed as part of this research, as well as automatic abstraction tools. In 1999 the flight software flew on a space mission, and a deadlock occurred in a sibling subsystem to the one which was the focus of the first verification effort. A second quick-response "cleanroom" verification effort found the concurrency error in a short amount of time. The error was isomorphic to one of the concurrency errors found during the first verification effort. The paper demonstrates that formal methods tools can find concurrency errors that indeed lead to loss of spacecraft functions, even for the complex software required for autonomy. Second, it describes progress in automatic translation and abstraction that eventually will enable formal methods tools to be inserted directly into the aerospace software development cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Algan, Ozer, E-mail: oalgan@ouhsc.edu; Jamgade, Ambarish; Ali, Imad
2012-01-01
The purpose of this study was to evaluate the impact of daily setup error and interfraction organ motion on the overall dosimetric radiation treatment plans. Twelve patients undergoing definitive intensity-modulated radiation therapy (IMRT) treatments for prostate cancer were evaluated in this institutional review board-approved study. Each patient had fiducial markers placed into the prostate gland before treatment planning computed tomography scan. IMRT plans were generated using the Eclipse treatment planning system. Each patient was treated to a dose of 8100 cGy given in 45 fractions. In this study, we retrospectively created a plan for each treatment day that had amore » shift available. To calculate the dose, the patient would have received under this plan, we mathematically 'negated' the shift by moving the isocenter in the exact opposite direction of the shift. The individualized daily plans were combined to generate an overall plan sum. The dose distributions from these plans were compared with the treatment plans that were used to treat the patients. Three-hundred ninety daily shifts were negated and their corresponding plans evaluated. The mean isocenter shift based on the location of the fiducial markers was 3.3 {+-} 6.5 mm to the right, 1.6 {+-} 5.1 mm posteriorly, and 1.0 {+-} 5.0 mm along the caudal direction. The mean D95 doses for the prostate gland when setup error was corrected and uncorrected were 8228 and 7844 cGy (p < 0.002), respectively, and for the planning target volume (PTV8100) was 8089 and 7303 cGy (p < 0.001), respectively. The mean V95 values when patient setup was corrected and uncorrected were 99.9% and 87.3%, respectively, for the PTV8100 volume (p < 0.0001). At an individual patient level, the difference in the D95 value for the prostate volume could be >1200 cGy and for the PTV8100 could approach almost 2000 cGy when comparing corrected against uncorrected plans. There was no statistically significant difference in the D35 parameter for the surrounding normal tissue except for the dose received by the penile bulb and the right hip. Our dosimetric evaluation suggests significant underdosing with inaccurate target localization and emphasizes the importance of accurate patient setup and target localization. Further studies are needed to evaluate the impact of intrafraction organ motion, rotation, and deformation on doses delivered to target volumes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Topolnjak, Rajko; Borst, Gerben R.; Nijkamp, Jasper
Purpose: To quantify the geometrical uncertainties for the heart during radiotherapy treatment of left-sided breast cancer patients and to determine and validate planning organ at risk volume (PRV) margins. Methods and Materials: Twenty-two patients treated in supine position in 28 fractions with regularly acquired cone-beam computed tomography (CBCT) scans for offline setup correction were included. Retrospectively, the CBCT scans were reconstructed into 10-phase respiration correlated four-dimensional scans. The heart was registered in each breathing phase to the planning CT scan to establish the respiratory heart motion during the CBCT scan ({sigma}{sub resp}). The average of the respiratory motion was calculatedmore » as the heart displacement error for a fraction. Subsequently, the systematic ({Sigma}), random ({sigma}), and total random ({sigma}{sub tot}={radical}({sigma}{sup 2}+{sigma}{sub resp}{sup 2})) errors of the heart position were calculated. Based on the errors a PRV margin for the heart was calculated to ensure that the maximum heart dose (D{sub max}) is not underestimated in at least 90% of the cases (M{sub heart} = 1.3{Sigma}-0.5{sigma}{sub tot}). All analysis were performed in left-right (LR), craniocaudal (CC), and anteroposterior (AP) directions with respect to both online and offline bony anatomy setup corrections. The PRV margin was validated by accumulating the dose to the heart based on the heart registrations and comparing the planned PRV D{sub max} to the accumulated heart D{sub max}. Results: For online setup correction, the cardiac geometrical uncertainties and PRV margins were N-Ary-Summation = 2.2/3.2/2.1 mm, {sigma} = 2.1/2.9/1.4 mm, and M{sub heart} = 1.6/2.3/1.3 mm for LR/CC/AP, respectively. For offline setup correction these were N-Ary-Summation = 2.4/3.7/2.2 mm, {sigma} = 2.9/4.1/2.7 mm, and M{sub heart} = 1.6/2.1/1.4 mm. Cardiac motion induced by breathing was {sigma}{sub resp} = 1.4/2.9/1.4 mm for LR/CC/AP. The PRV D{sub max} underestimated the accumulated heart D{sub max} for 9.1% patients using online and 13.6% patients using offline bony anatomy setup correction, which validated that PRV margin size was adequate. Conclusion: Considerable cardiac position variability relative to the bony anatomy was observed in breast cancer patients. A PRV margin can be used during treatment planning to take these uncertainties into account.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, J; Dept of Radiation Oncology, New York Weill Cornell Medical Ctr, New York, NY
Purpose: To develop a generalized statistical model that incorporates the treatment uncertainty from the rotational error of single iso-center technique, and calculate the additional PTV (planning target volume) margin required to compensate for this error. Methods: The random vectors for setup and additional rotation errors in the three-dimensional (3D) patient coordinate system were assumed to follow the 3D independent normal distribution with zero mean, and standard deviations σx, σy, σz, for setup error and a uniform σR for rotational error. Both random vectors were summed, normalized and transformed to the spherical coordinates to derive the chi distribution with 3 degreesmore » of freedom for the radical distance ρ. PTV margin was determined using the critical value of this distribution for 0.05 significant level so that 95% of the time the treatment target would be covered by ρ. The additional PTV margin required to compensate for the rotational error was calculated as a function of σx, σy, σz and σR. Results: The effect of the rotational error is more pronounced for treatments that requires high accuracy/precision like stereotactic radiosurgery (SRS) or stereotactic body radiotherapy (SBRT). With a uniform 2mm PTV margin (or σx =σy=σz=0.7mm), a σR=0.32mm will decrease the PTV coverage from 95% to 90% of the time, or an additional 0.2mm PTV margin is needed to prevent this loss of coverage. If we choose 0.2 mm as the threshold, any σR>0.3mm will lead to an additional PTV margin that cannot be ignored, and the maximal σR that can be ignored is 0.0064 rad (or 0.37°) for iso-to-target distance=5cm, or 0.0032 rad (or 0.18°) for iso-to-target distance=10cm. Conclusions: The rotational error cannot be ignored for high-accuracy/-precision treatments like SRS/SBRT, particularly when the distance between the iso-center and target is large.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Cheng-Chung; Tsai, Tsung-Yuan; Hsu, Shih-Jung
2013-03-15
Purpose: The study aimed to propose a new single-plane fluoroscopy-to-CT registration method integrated with intervertebral anticollision constraints for measuring three-dimensional (3D) intervertebral kinematics of the spine; and to evaluate the performance of the method without anticollision and with three variations of the anticollision constraints via an in vitro experiment. Methods: The proposed fluoroscopy-to-CT registration approach, called the weighted edge-matching with anticollision (WEMAC) method, was based on the integration of geometrical anticollision constraints for adjacent vertebrae and the weighted edge-matching score (WEMS) method that matched the digitally reconstructed radiographs of the CT models of the vertebrae and the measured single-plane fluoroscopymore » images. Three variations of the anticollision constraints, namely, T-DOF, R-DOF, and A-DOF methods, were proposed. An in vitro experiment using four porcine cervical spines in different postures was performed to evaluate the performance of the WEMS and the WEMAC methods. Results: The WEMS method gave high precision and small bias in all components for both vertebral pose and intervertebral pose measurements, except for relatively large errors for the out-of-plane translation component. The WEMAC method successfully reduced the out-of-plane translation errors for intervertebral kinematic measurements while keeping the measurement accuracies for the other five degrees of freedom (DOF) more or less unaltered. The means (standard deviations) of the out-of-plane translational errors were less than -0.5 (0.6) and -0.3 (0.8) mm for the T-DOF method and the R-DOF method, respectively. Conclusions: The proposed single-plane fluoroscopy-to-CT registration method reduced the out-of-plane translation errors for intervertebral kinematic measurements while keeping the measurement accuracies for the other five DOF more or less unaltered. With the submillimeter and subdegree accuracy, the WEMAC method was considered accurate for measuring 3D intervertebral kinematics during various functional activities for research and clinical applications.« less
Volume II: Compendium Abstracts
2008-08-01
project developed a fast and simple method of characterization for ceramic , polymer composite, and ceramic -composite materials systems. Current methods...incrementally at 1-inch intervals and displayed as a false-color image map of the sample. This experimental setup can be easily scaled from single ceramic ...low-power, high-force characteristics of lead zirconate titanate ( PZT ) and an offset-beam design to achieve rotational or near-linear translational
A Simple and Reliable Setup for Monitoring Corrosion Rate of Steel Rebars in Concrete
Jibran, Mohammed Abdul Azeem; Azad, Abul Kalam
2014-01-01
The accuracy in the measurement of the rate of corrosion of steel in concrete depends on many factors. The high resistivity of concrete makes the polarization data erroneous due to the Ohmic drop. The other source of error is the use of an arbitrarily assumed value of the Stern-Geary constant for calculating corrosion current density. This paper presents the outcomes of a research work conducted to develop a reliable and low-cost experimental setup and a simple calculation procedure that can be utilised to calculate the corrosion current density considering the Ohmic drop compensation and the actual value of the Stern-Geary constants calculated using the polarization data. The measurements conducted on specimens corroded to different levels indicate the usefulness of the developed setup to determine the corrosion current density with and without Ohmic drop compensation. PMID:24526907
Rotation, scale, and translation invariant pattern recognition using feature extraction
NASA Astrophysics Data System (ADS)
Prevost, Donald; Doucet, Michel; Bergeron, Alain; Veilleux, Luc; Chevrette, Paul C.; Gingras, Denis J.
1997-03-01
A rotation, scale and translation invariant pattern recognition technique is proposed.It is based on Fourier- Mellin Descriptors (FMD). Each FMD is taken as an independent feature of the object, and a set of those features forms a signature. FMDs are naturally rotation invariant. Translation invariance is achieved through pre- processing. A proper normalization of the FMDs gives the scale invariance property. This approach offers the double advantage of providing invariant signatures of the objects, and a dramatic reduction of the amount of data to process. The compressed invariant feature signature is next presented to a multi-layered perceptron neural network. This final step provides some robustness to the classification of the signatures, enabling good recognition behavior under anamorphically scaled distortion. We also present an original feature extraction technique, adapted to optical calculation of the FMDs. A prototype optical set-up was built, and experimental results are presented.
Sine-Bar Attachment For Machine Tools
NASA Technical Reports Server (NTRS)
Mann, Franklin D.
1988-01-01
Sine-bar attachment for collets, spindles, and chucks helps machinists set up quickly for precise angular cuts that require greater precision than provided by graduations of machine tools. Machinist uses attachment to index head, carriage of milling machine or lathe relative to table or turning axis of tool. Attachment accurate to 1 minute or arc depending on length of sine bar and precision of gauge blocks in setup. Attachment installs quickly and easily on almost any type of lathe or mill. Requires no special clamps or fixtures, and eliminates many trial-and-error measurements. More stable than improvised setups and not jarred out of position readily.
Broadband microwave spectroscopy in Corbino geometry at 3He temperatures
NASA Astrophysics Data System (ADS)
Steinberg, Katrin; Scheffler, Marc; Dressel, Martin
2012-02-01
A broadband microwave spectrometer has been constructed to determine the complex conductivity of thin metal films at frequencies from 45 MHz to 20 GHz working in the temperature range from 0.45 K to 2 K (in a 3He cryostat). The setup follows the Corbino approach: a vector network analyzer measures the complex reflection coefficient of a microwave signal hitting the sample as termination of a coaxial transmission line. As the calibration of the setup limits the achievable resolution, we discuss the sources of error hampering different types of calibration. Test measurements of the complex conductivity of a heavy-fermion material demonstrate the applicability of the calibration procedures.
Site‐specific tolerance tables and indexing device to improve patient setup reproducibility
James, Joshua A.; Cetnar, Ashley J.; McCullough, Mark A.; Wang, Brian
2015-01-01
While the implementation of tools such as image‐guidance and immobilization devices have helped to prevent geometric misses in radiation therapy, many treatments remain prone to error if these items are not available, not utilized for every fraction, or are misused. The purpose of this project is to design a set of site‐specific treatment tolerance tables to be applied to the treatment couch for use in a record and verify (R&V) system that will insure accurate patient setup with minimal workflow interruption. This project also called for the construction of a simple indexing device to help insure reproducible patient setup for patients that could not be indexed with existing equipment. The tolerance tables were created by retrospective analysis on a total of 66 patients and 1,308 treatments, separating them into five categories based on disease site: lung, head and neck (H&N), breast, pelvis, and abdomen. Couch parameter tolerance tables were designed to encompass 95% of treatments, and were generated by calculating the standard deviation of couch vertical, longitudinal, and lateral values using the first day of treatment as a baseline. We also investigated an alternative method for generating the couch tolerances by updating the baseline values when patient position was verified with image guidance. This was done in order to adapt the tolerances to any gradual changes in patient setup that would not correspond with a mistreatment. The tolerance tables and customizable indexing device were then implemented for a trial period in order to determine the feasibility of the system. During this trial period we collected data from 1,054 fractions from 65 patients. We then analyzed the number of treatments that would have been out of tolerance, as well as whether or not the tolerances or setup techniques should be adjusted. When the couch baseline values were updated with every imaging fraction, the average rate of tolerance violations was 10% for the lung, H&N, abdomen, and pelvis treatments. Using the indexing device, tolerances for patients with pelvic disease decreased (e.g., from 5.3 cm to 4.3 cm longitudinally). Unfortunately, the results from breast patients were highly variable due to the complexity of the setup technique, making the couch an inadequate surrogate for measuring setup accuracy. In summary, we have developed a method to turn the treatment couch parameters within the R&V system into a useful alert tool, which can be implemented at other institutions, in order to identify potential errors in patient setup. PACS numbers: 87.53Kn, 87.55.kh, 87.55.ne, 87.55.km, 87.55K‐, 87.55.Qr PMID:26103475
Earth-Moon system: Dynamics and parameter estimation
NASA Technical Reports Server (NTRS)
Breedlove, W. J., Jr.
1979-01-01
The following topics are discussed: (1) the Unified Model of Lunar Translation/Rotation (UMLTR); (2) the effect of figure-figure interactions on lunar physical librations; (3) the effect of translational-rotational coupling on the lunar orbit; and(4) an error analysis for estimating lunar inertias from LURE (Lunar Laser Ranging Experiment) data.
A Microcomputer Exercise on Genetic Transcription and Translation.
ERIC Educational Resources Information Center
Meisenheimer, John L.
1985-01-01
Describes a microcomputer program (written for the Apple II+) which can serve as a lecture demonstration aid in explaining genetic transcription and translation. The program provides unemotional information on student errors, thus serving as a review drill to supplement the classroom. Student participation and instructor options are discussed. (DH)
Yao, Lihong; Zhu, Lihong; Wang, Junjie; Liu, Lu; Zhou, Shun; Jiang, ShuKun; Cao, Qianqian; Qu, Ang; Tian, Suqing
2015-04-26
To improve the delivery of radiotherapy in gynecologic malignancies and to minimize the irradiation of unaffected tissues by using daily kilovoltage cone beam computed tomography (kV-CBCT) to reduce setup errors. Thirteen patients with gynecologic cancers were treated with postoperative volumetric-modulated arc therapy (VMAT). All patients had a planning CT scan and daily CBCT during treatment. Automatic bone anatomy matching was used to determine initial inter-fraction positioning error. Positional correction on a six-degrees-of-freedom (6DoF) couch was followed by a second scan to calculate the residual inter-fraction error, and a post-treatment scan assessed intra-fraction motion. The margins of the planning target volume (MPTV) were calculated from these setup variations and the effect of margin size on normal tissue sparing was evaluated. In total, 573 CBCT scans were acquired. Mean absolute pre-/post-correction errors were obtained in all six planes. With 6DoF couch correction, the MPTV accounting for intra-fraction errors was reduced by 3.8-5.6 mm. This permitted a reduction in the maximum dose to the small intestine, bladder and femoral head (P=0.001, 0.035 and 0.032, respectively), the average dose to the rectum, small intestine, bladder and pelvic marrow (P=0.003, 0.000, 0.001 and 0.000, respectively) and markedly reduced irradiated normal tissue volumes. A 6DoF couch in combination with daily kV-CBCT can considerably improve positioning accuracy during VMAT treatment in gynecologic malignancies, reducing the MPTV. The reduced margin size permits improved normal tissue sparing and a smaller total irradiated volume.
Desplanques, Maxime; Tagaste, Barbara; Fontana, Giulia; Pella, Andrea; Riboldi, Marco; Fattori, Giovanni; Donno, Andrea; Baroni, Guido; Orecchia, Roberto
2013-01-01
The synergy between in-room imaging and optical tracking, in co-operation with highly accurate robotic patient handling represents a concept for patient-set-up which has been implemented at CNAO (Centro Nazionale di Adroterapia Oncologica). In-room imaging is based on a double oblique X-ray projection system; optical tracking consists of the detection of the position of spherical markers placed directly on the patient's skin or on the immobilization devices. These markers are used as external fiducials during patient positioning and dose delivery. This study reports the results of a comparative analysis between in-room imaging and optical tracking data for patient positioning within the framework of high-precision particle therapy. Differences between the optical tracking system (OTS) and the imaging system (IS) were on average within the expected localization accuracy. On the first 633 fractions for head and neck (H&N) set-up procedures, the corrections applied by the IS, after patient positioning using the OTS only, were for the mostly sub-millimetric regarding the translations (0.4±1.1 mm) and sub-gradual regarding the rotations (0.0°±0.8°). On the first 236 fractions for pelvis localizations the amplitude of the corrections applied by the IS after preliminary optical set-up correction were moderately higher and more dispersed (translations: 1.3±2.9 mm, rotations 0.1±0.9°). Although the indication of the OTS cannot replace information provided by in-room imaging devices and 2D-3D image registration, the reported data show that OTS preliminary correction might greatly support image-based patient set-up refinement and also provide a secondary, independent verification system for patient positioning. PMID:23824116
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dellamonica, D.; Luo, G.; Ding, G.
Purpose: Setup errors on the order of millimeters may cause under-dosing of targets and significant changes in dose to critical structures especially when planning with tight margins in stereotactic radiosurgery. This study evaluates the effects of these types of patient positioning uncertainties on planning target volume (PTV) coverage and cochlear dose for stereotactic treatments of acoustic neuromas. Methods: Twelve acoustic neuroma patient treatment plans were retrospectively evaluated in Brainlab iPlan RT Dose 4.1.3. All treatment beams were shaped by HDMLC from a Varian TX machine. Seven patients had planning margins of 2mm, five had 1–1.5mm. Six treatment plans were createdmore » for each patient simulating a 1mm setup error in six possible directions: anterior-posterior, lateral, and superiorinferior. The arcs and HDMLC shapes were kept the same for each plan. Change in PTV coverage and mean dose to the cochlea was evaluated for each plan. Results: The average change in PTV coverage for the 72 simulated plans was −1.7% (range: −5 to +1.1%). The largest average change in coverage was observed for shifts in the patient's superior direction (−2.9%). The change in mean cochlear dose was highly dependent upon the direction of the shift. Shifts in the anterior and superior direction resulted in an average increase in dose of 13.5 and 3.8%, respectively, while shifts in the posterior and inferior direction resulted in an average decrease in dose of 17.9 and 10.2%. The average change in dose to the cochlea was 13.9% (range: 1.4 to 48.6%). No difference was observed based on the size of the planning margin. Conclusion: This study indicates that if the positioning uncertainty is kept within 1mm the setup errors may not result in significant under-dosing of the acoustic neuroma target volumes. However, the change in mean cochlear dose is highly dependent upon the direction of the shift.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worm, Esben S., E-mail: esbeworm@rm.dk; Department of Medical Physics, Aarhus University Hospital, Aarhus; Hoyer, Morten
2012-05-01
Purpose: To develop and evaluate accurate and objective on-line patient setup based on a novel semiautomatic technique in which three-dimensional marker trajectories were estimated from two-dimensional cone-beam computed tomography (CBCT) projections. Methods and Materials: Seven treatment courses of stereotactic body radiotherapy for liver tumors were delivered in 21 fractions in total to 6 patients by a linear accelerator. Each patient had two to three gold markers implanted close to the tumors. Before treatment, a CBCT scan with approximately 675 two-dimensional projections was acquired during a full gantry rotation. The marker positions were segmented in each projection. From this, the three-dimensionalmore » marker trajectories were estimated using a probability based method. The required couch shifts for patient setup were calculated from the mean marker positions along the trajectories. A motion phantom moving with known tumor trajectories was used to examine the accuracy of the method. Trajectory-based setup was retrospectively used off-line for the first five treatment courses (15 fractions) and on-line for the last two treatment courses (6 fractions). Automatic marker segmentation was compared with manual segmentation. The trajectory-based setup was compared with setup based on conventional CBCT guidance on the markers (first 15 fractions). Results: Phantom measurements showed that trajectory-based estimation of the mean marker position was accurate within 0.3 mm. The on-line trajectory-based patient setup was performed within approximately 5 minutes. The automatic marker segmentation agreed with manual segmentation within 0.36 {+-} 0.50 pixels (mean {+-} SD; pixel size, 0.26 mm in isocenter). The accuracy of conventional volumetric CBCT guidance was compromised by motion smearing ({<=}21 mm) that induced an absolute three-dimensional setup error of 1.6 {+-} 0.9 mm (maximum, 3.2) relative to trajectory-based setup. Conclusions: The first on-line clinical use of trajectory estimation from CBCT projections for precise setup in stereotactic body radiotherapy was demonstrated. Uncertainty in the conventional CBCT-based setup procedure was eliminated with the new method.« less
The detection error of thermal test low-frequency cable based on M sequence correlation algorithm
NASA Astrophysics Data System (ADS)
Wu, Dongliang; Ge, Zheyang; Tong, Xin; Du, Chunlin
2018-04-01
The problem of low accuracy and low efficiency of off-line detecting on thermal test low-frequency cable faults could be solved by designing a cable fault detection system, based on FPGA export M sequence code(Linear feedback shift register sequence) as pulse signal source. The design principle of SSTDR (Spread spectrum time-domain reflectometry) reflection method and hardware on-line monitoring setup figure is discussed in this paper. Testing data show that, this detection error increases with fault location of thermal test low-frequency cable.
Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stynes, J. K.; Ihas, B.
2012-04-01
The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of themore » absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.« less
Continuous Process Improvement Transformation Guidebook
2006-05-01
except full-scale im- plementation. Error Proofing ( Poka Yoke ) Finding and correcting defects caused by errors costs more and more as a system or...proofing. Shigeo Shingo introduced the concept of Poka - Yoke at Toyota Motor Corporation. Poka Yoke (pronounced “poh-kah yoh-kay”) translates to “avoid
Auto-tracking system for human lumbar motion analysis.
Sui, Fuge; Zhang, Da; Lam, Shing Chun Benny; Zhao, Lifeng; Wang, Dongjun; Bi, Zhenggang; Hu, Yong
2011-01-01
Previous lumbar motion analyses suggest the usefulness of quantitatively characterizing spine motion. However, the application of such measurements is still limited by the lack of user-friendly automatic spine motion analysis systems. This paper describes an automatic analysis system to measure lumbar spine disorders that consists of a spine motion guidance device, an X-ray imaging modality to acquire digitized video fluoroscopy (DVF) sequences and an automated tracking module with a graphical user interface (GUI). DVF sequences of the lumbar spine are recorded during flexion-extension under a guidance device. The automatic tracking software utilizing a particle filter locates the vertebra-of-interest in every frame of the sequence, and the tracking result is displayed on the GUI. Kinematic parameters are also extracted from the tracking results for motion analysis. We observed that, in a bone model test, the maximum fiducial error was 3.7%, and the maximum repeatability error in translation and rotation was 1.2% and 2.6%, respectively. In our simulated DVF sequence study, the automatic tracking was not successful when the noise intensity was greater than 0.50. In a noisy situation, the maximal difference was 1.3 mm in translation and 1° in the rotation angle. The errors were calculated in translation (fiducial error: 2.4%, repeatability error: 0.5%) and in the rotation angle (fiducial error: 1.0%, repeatability error: 0.7%). However, the automatic tracking software could successfully track simulated sequences contaminated by noise at a density ≤ 0.5 with very high accuracy, providing good reliability and robustness. A clinical trial with 10 healthy subjects and 2 lumbar spondylolisthesis patients were enrolled in this study. The measurement with auto-tacking of DVF provided some information not seen in the conventional X-ray. The results proposed the potential use of the proposed system for clinical applications.
SU-E-J-34: Setup Accuracy in Spine SBRT Using CBCT 6D Image Guidance in Comparison with 6D ExacTrac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Z; Yip, S; Lewis, J
2015-06-15
Purpose Volumetric information of the spine captured on CBCT can potentially improve the accuracy in spine SBRT setup that has been commonly performed through 2D radiographs. This work evaluates the setup accuracy in spine SBRT using 6D CBCT image guidance that recently became available on Varian systems. Methods ExacTrac radiographs have been commonly used for Spine SBRT setup. The setup process involves first positioning patients with lasers followed by localization imaging, registration, and repositioning. Verification images are then taken providing the residual errors (ExacTracRE) before beam on. CBCT verification is also acquired in our institute. The availability of both ExacTracmore » and CBCT verifications allows a comparison study. 41 verification CBCT of 16 patients were retrospectively registered with the planning CT enabling 6D corrections, giving CBCT residual errors (CBCTRE) which were compared with ExacTracRE. Results The RMS discrepancies between CBCTRE and ExacTracRE are 1.70mm, 1.66mm, 1.56mm in vertical, longitudinal and lateral directions and 0.27°, 0.49°, 0.35° in yaw, roll and pitch respectively. The corresponding mean discrepancies (and standard deviation) are 0.62mm (1.60mm), 0.00mm (1.68mm), −0.80mm (1.36mm) and 0.05° (0.58°), 0.11° (0.48°), −0.16° (0.32°). Of the 41 CBCT, 17 had high-Z surgical implants. No significant difference in ExacTrac-to-CBCT discrepancy was observed between patients with and without the implants. Conclusion Multiple factors can contribute to the discrepancies between CBCT and ExacTrac: 1) the imaging iso-centers of the two systems, while calibrated to coincide, can be different; 2) the ROI used for registration can be different especially if ribs were included in ExacTrac images; 3) small patient motion can occur between the two verification image acquisitions; 4) the algorithms can be different between CBCT (volumetric) and ExacTrac (radiographic) registrations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, B; Maquilan, G; Anders, M
Purpose: Full face and neck thermoplastic masks provide standard-of-care immobilization for patients receiving H&N IMRT. However, these masks are uncomfortable and increase skin dose. The purpose of this pilot study was to investigate the feasibility and setup accuracy of open face and neck mask immobilization with OIG. Methods: Ten patients were consented and enrolled to this IRB-approved protocol. Patients were immobilized with open masks securing only forehead and chin. Standard IMRT to 60–70 Gy in 30 fractions were delivered in all cases. Patient simulation information, including isocenter location and CT skin contours, were imported to a commercial OIG system. Onmore » the first day of treatment, patients were initially set up to surface markings and then OIG referenced to face and neck skin regions of interest (ROI) localized on simulation CT images, followed by in-room CBCT. CBCTs were acquired at least weekly while planar OBI was acquired on the days without CBCT. Following 6D robotic couch correction with kV imaging, a new optical real-time surface image was acquired to track intrafraction motion and to serve as a reference surface for setup at the next treatment fraction. Therapists manually recorded total treatment time as well as couch shifts based on kV imaging. Intrafractional ROI motion tracking was automatically recorded. Results: Setup accuracy of OIG was compared with CBCT results. The setup error based on OIG was represented as a 6D shift (vertical/longitudinal/lateral/rotation/pitch/roll). Mean error values were −0.70±3.04mm, −0.69±2.77mm, 0.33±2.67 mm, −0.14±0.94 o, −0.15±1.10o and 0.12±0.82o, respectively for the cohort. Average treatment time was 24.1±9.2 minutes, comparable to standard immobilization. The amplitude of intrafractional ROI motion was 0.69±0.36 mm, driven primarily by respiratory neck motion. Conclusion: OGI can potentially provide accurate setup and treatment tracking for open face and neck immobilization. Study accrual and patient/provider satisfaction survey collection remain ongoing. This study is supported by VisionRT, Ltd.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, G; Qin, A; Zhang, J
Purpose: With the implementation of Cone-beam Computed-Tomography (CBCT) in proton treatment, we introduces a quick and effective tool to verify the patient’s daily setup and geometry changes based on the Water-Equivalent-Thickness Projection-Image(WETPI) from individual beam angle. Methods: A bilateral head neck cancer(HNC) patient previously treated via VMAT was used in this study. The patient received 35 daily CBCT during the whole treatment and there is no significant weight change. The CT numbers of daily CBCTs were corrected by mapping the CT numbers from simulation CT via Deformable Image Registration(DIR). IMPT plan was generated using 4-field IMPT robust optimization (3.5% rangemore » and 3mm setup uncertainties) with beam angle 60, 135, 300, 225 degree. WETPI within CTV through all beam directions were calculated. 3%/3mm gamma index(GI) were used to provide a quantitative comparison between initial sim-CT and mapped daily CBCT. To simulate an extreme case where human error is involved, a couch bar was manually inserted in front of beam angle 225 degree of one CBCT. WETPI was compared in this scenario. Results: The average of GI passing rate of this patient from different beam angles throughout the treatment course is 91.5 ± 8.6. In the cases with low passing rate, it was found that the difference between shoulder and neck angle as well as the head rest often causes major deviation. This indicates that the most challenge in treating HNC is the setup around neck area. In the extreme case where a couch bar is accidently inserted in the beam line, GI passing rate drops to 52 from 95. Conclusion: WETPI and quantitative gamma analysis give clinicians, therapists and physicists a quick feedback of the patient’s setup accuracy or geometry changes. The tool could effectively avoid some human errors. Furthermore, this tool could be used potentially as an initial signal to trigger plan adaptation.« less
Don't Get Lost in the Translation.
ERIC Educational Resources Information Center
Wederspahn, Gary M.
In this era of rapid globalization of business opportunities, many managers face the need to communicate with foreign counterparts who do not speak English. The solution, in many cases, is to use an interpreter. Interpreters, however, may make mistakes, and irritation, embarrassment and even major problems may arise from errors in translation.…
NASA Astrophysics Data System (ADS)
Gourdji, S. M.; Yadav, V.; Karion, A.; Mueller, K. L.; Conley, S.; Ryerson, T.; Nehrkorn, T.; Kort, E. A.
2018-04-01
Urban greenhouse gas (GHG) flux estimation with atmospheric measurements and modeling, i.e. the ‘top-down’ approach, can potentially support GHG emission reduction policies by assessing trends in surface fluxes and detecting anomalies from bottom-up inventories. Aircraft-collected GHG observations also have the potential to help quantify point-source emissions that may not be adequately sampled by fixed surface tower-based atmospheric observing systems. Here, we estimate CH4 emissions from a known point source, the Aliso Canyon natural gas leak in Los Angeles, CA from October 2015–February 2016, using atmospheric inverse models with airborne CH4 observations from twelve flights ≈4 km downwind of the leak and surface sensitivities from a mesoscale atmospheric transport model. This leak event has been well-quantified previously using various methods by the California Air Resources Board, thereby providing high confidence in the mass-balance leak rate estimates of (Conley et al 2016), used here for comparison to inversion results. Inversions with an optimal setup are shown to provide estimates of the leak magnitude, on average, within a third of the mass balance values, with remaining errors in estimated leak rates predominantly explained by modeled wind speed errors of up to 10 m s‑1, quantified by comparing airborne meteorological observations with modeled values along the flight track. An inversion setup using scaled observational wind speed errors in the model-data mismatch covariance matrix is shown to significantly reduce the influence of transport model errors on spatial patterns and estimated leak rates from the inversions. In sum, this study takes advantage of a natural tracer release experiment (i.e. the Aliso Canyon natural gas leak) to identify effective approaches for reducing the influence of transport model error on atmospheric inversions of point-source emissions, while suggesting future potential for integrating surface tower and aircraft atmospheric GHG observations in top-down urban emission monitoring systems.
Automated body weight prediction of dairy cows using 3-dimensional vision.
Song, X; Bokkers, E A M; van der Tol, P P J; Groot Koerkamp, P W G; van Mourik, S
2018-05-01
The objectives of this study were to quantify the error of body weight prediction using automatically measured morphological traits in a 3-dimensional (3-D) vision system and to assess the influence of various sources of uncertainty on body weight prediction. In this case study, an image acquisition setup was created in a cow selection box equipped with a top-view 3-D camera. Morphological traits of hip height, hip width, and rump length were automatically extracted from the raw 3-D images taken of the rump area of dairy cows (n = 30). These traits combined with days in milk, age, and parity were used in multiple linear regression models to predict body weight. To find the best prediction model, an exhaustive feature selection algorithm was used to build intermediate models (n = 63). Each model was validated by leave-one-out cross-validation, giving the root mean square error and mean absolute percentage error. The model consisting of hip width (measurement variability of 0.006 m), days in milk, and parity was the best model, with the lowest errors of 41.2 kg of root mean square error and 5.2% mean absolute percentage error. Our integrated system, including the image acquisition setup, image analysis, and the best prediction model, predicted the body weights with a performance similar to that achieved using semi-automated or manual methods. Moreover, the variability of our simplified morphological trait measurement showed a negligible contribution to the uncertainty of body weight prediction. We suggest that dairy cow body weight prediction can be improved by incorporating more predictive morphological traits and by improving the prediction model structure. The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Hansen, Helle; Nielsen, Berit Kjærside; Boejen, Annette; Vestergaard, Anne
2018-06-01
The aim of this study was to investigate if teaching patients about positioning before radiotherapy treatment would (a) reduce the residual rotational set-up errors, (b) reduce the number of repositionings and (c) improve patients' sense of control by increasing self-efficacy and reducing distress. Patients were randomized to either standard care (control group) or standard care and a teaching session combining visual aids and practical exercises (intervention group). Daily images from the treatment sessions were evaluated off-line. Both groups filled in a questionnaire before and at the end of the treatment course on various aspects of cooperation with the staff regarding positioning. Comparisons of residual rotational set-up errors showed an improvement in the intervention group compared to the control group. No significant differences were found in number of repositionings, self-efficacy or distress. Results show that it is possible to teach patients about positioning and thereby improve precision in positioning. Teaching patients about positioning did not seem to affect self-efficacy or distress scores at baseline and at the end of the treatment course.
Lemaire, E D; Lamontagne, M; Barclay, H W; John, T; Martel, G
1991-01-01
A balance platform setup was defined for use in the determination of the center of gravity in the sagittal plane for a wheelchair and patient. Using the center of gravity information, measurements from the wheelchair and patient (weight, tire coefficients of friction), and various assumptions (constant speed, level-concrete surface, patient-wheelchair system is a rigid body), a method for estimating the rolling resistance for a wheelchair was outlined. The center of gravity and rolling resistance techniques were validated against criterion values (center of gravity error = 1 percent, rolling resistance root mean square error = 0.33 N, rolling resistance Pearson correlation coefficient = 0.995). Consistent results were also obtained from a test dummy and five subjects. Once the center of gravity is known, it is possible to evaluate the stability of a wheelchair (in terms of tipping over) and the interaction between the level of stability and rolling resistance. These quantitative measures are expected to be of use in the setup of wheelchairs with a variable seat angle and variable wheelbase length or when making comparisons between different wheelchairs.
Korucu, M Kemal; Kaplan, Özgür; Büyük, Osman; Güllü, M Kemal
2016-10-01
In this study, we investigate the usability of sound recognition for source separation of packaging wastes in reverse vending machines (RVMs). For this purpose, an experimental setup equipped with a sound recording mechanism was prepared. Packaging waste sounds generated by three physical impacts such as free falling, pneumatic hitting and hydraulic crushing were separately recorded using two different microphones. To classify the waste types and sizes based on sound features of the wastes, a support vector machine (SVM) and a hidden Markov model (HMM) based sound classification systems were developed. In the basic experimental setup in which only free falling impact type was considered, SVM and HMM systems provided 100% classification accuracy for both microphones. In the expanded experimental setup which includes all three impact types, material type classification accuracies were 96.5% for dynamic microphone and 97.7% for condenser microphone. When both the material type and the size of the wastes were classified, the accuracy was 88.6% for the microphones. The modeling studies indicated that hydraulic crushing impact type recordings were very noisy for an effective sound recognition application. In the detailed analysis of the recognition errors, it was observed that most of the errors occurred in the hitting impact type. According to the experimental results, it can be said that the proposed novel approach for the separation of packaging wastes could provide a high classification performance for RVMs. Copyright © 2016 Elsevier Ltd. All rights reserved.
A New KE-Free Online ICALL System Featuring Error Contingent Feedback
ERIC Educational Resources Information Center
Tokuda, Naoyuki; Chen, Liang
2004-01-01
As a first step towards implementing a human language teacher, we have developed a new template-based on-line ICALL (intelligent computer assisted language learning) system capable of automatically diagnosing learners' free-format translated inputs and returning error contingent feedback. The system architecture we have adopted allows language…
Yue, Ning J; Goyal, Sharad; Kim, Leonard H; Khan, Atif; Haffty, Bruce G
2014-01-01
This study investigated the patterns of intrafractional motion and accuracy of treatment setup strategies in 3-dimensional conformal radiation therapy of accelerated partial breast irradiation (APBI) for right- and left-sided breast cancers. Sixteen right-sided and 17 left-sided breast cancer patients were enrolled in an institutional APBI trial in which gold fiducial markers were strategically sutured to the surgical cavity walls. Daily pre- and postradiation therapy kV imaging were performed and were matched to digitally reconstructed radiographs based on bony anatomy and fiducial markers, respectively, to determine the intrafractional motion. The positioning differences of the laser-tattoo and the bony anatomy-based setups with respect to the marker-based setup (benchmark) were determined to evaluate their accuracy. Statistical differences were found between the right- and left-sided APBI treatments in vector directions of intrafractional motion and treatment setup errors in the reference systems, but less in their overall magnitudes. The directional difference was more pronounced in the lateral direction. It was found that the intrafractional motion and setup reference systems tended to deviate in the right direction for the right-sided breast treatments and in the left direction for the left-sided breast treatments. It appears that the fiducial markers placed in the seroma cavity exhibit side dependent directional intrafractional motion, although additional data may be needed to further validate the conclusion. The bony anatomy-based treatment setup improves the accuracy over laser-tattoo. But it is inadequate to rely on bony anatomy to assess intrafractional target motion in both magnitude and direction. Copyright © 2014 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
On the use of programmable hardware and reduced numerical precision in earth-system modeling.
Düben, Peter D; Russell, Francis P; Niu, Xinyu; Luk, Wayne; Palmer, T N
2015-09-01
Programmable hardware, in particular Field Programmable Gate Arrays (FPGAs), promises a significant increase in computational performance for simulations in geophysical fluid dynamics compared with CPUs of similar power consumption. FPGAs allow adjusting the representation of floating-point numbers to specific application needs. We analyze the performance-precision trade-off on FPGA hardware for the two-scale Lorenz '95 model. We scale the size of this toy model to that of a high-performance computing application in order to make meaningful performance tests. We identify the minimal level of precision at which changes in model results are not significant compared with a maximal precision version of the model and find that this level is very similar for cases where the model is integrated for very short or long intervals. It is therefore a useful approach to investigate model errors due to rounding errors for very short simulations (e.g., 50 time steps) to obtain a range for the level of precision that can be used in expensive long-term simulations. We also show that an approach to reduce precision with increasing forecast time, when model errors are already accumulated, is very promising. We show that a speed-up of 1.9 times is possible in comparison to FPGA simulations in single precision if precision is reduced with no strong change in model error. The single-precision FPGA setup shows a speed-up of 2.8 times in comparison to our model implementation on two 6-core CPUs for large model setups.
Facial motion parameter estimation and error criteria in model-based image coding
NASA Astrophysics Data System (ADS)
Liu, Yunhai; Yu, Lu; Yao, Qingdong
2000-04-01
Model-based image coding has been given extensive attention due to its high subject image quality and low bit-rates. But the estimation of object motion parameter is still a difficult problem, and there is not a proper error criteria for the quality assessment that are consistent with visual properties. This paper presents an algorithm of the facial motion parameter estimation based on feature point correspondence and gives the motion parameter error criteria. The facial motion model comprises of three parts. The first part is the global 3-D rigid motion of the head, the second part is non-rigid translation motion in jaw area, and the third part consists of local non-rigid expression motion in eyes and mouth areas. The feature points are automatically selected by a function of edges, brightness and end-node outside the blocks of eyes and mouth. The numbers of feature point are adjusted adaptively. The jaw translation motion is tracked by the changes of the feature point position of jaw. The areas of non-rigid expression motion can be rebuilt by using block-pasting method. The estimation approach of motion parameter error based on the quality of reconstructed image is suggested, and area error function and the error function of contour transition-turn rate are used to be quality criteria. The criteria reflect the image geometric distortion caused by the error of estimated motion parameters properly.
Progress on control experiments of flexible structures
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan
1990-01-01
Progress at the NASA Langley Research Center in the area of control experiments for flexible structures is described. First the author presents the experimental results for a linear model which represents slewing maneuvers of a generic space station solar panel carried out to evaluate experimentally some control technologies. Then the status of the rotational/translational maneuvering experiment of a flexible steel panel carried by a translation cart is presented. Finally, experimental results of the NASA minimast testbed using velocity command stepper motors as reaction mass reactors are shown. All the test configurations are briefly described, including actuator and sensor, test setup, and test software. The status of some research activities oriented primarily to the experimental methods for control of flexible structures is presented.
Analysis on the misalignment errors between Hartmann-Shack sensor and 45-element deformable mirror
NASA Astrophysics Data System (ADS)
Liu, Lihui; Zhang, Yi; Tao, Jianjun; Cao, Fen; Long, Yin; Tian, Pingchuan; Chen, Shangwu
2017-02-01
Aiming at 45-element adaptive optics system, the model of 45-element deformable mirror is truly built by COMSOL Multiphysics, and every actuator's influence function is acquired by finite element method. The process of this system correcting optical aberration is simulated by making use of procedure, and aiming for Strehl ratio of corrected diffraction facula, in the condition of existing different translation and rotation error between Hartmann-Shack sensor and deformable mirror, the system's correction ability for 3-20 Zernike polynomial wave aberration is analyzed. The computed result shows: the system's correction ability for 3-9 Zernike polynomial wave aberration is higher than that of 10-20 Zernike polynomial wave aberration. The correction ability for 3-20 Zernike polynomial wave aberration does not change with misalignment error changing. With rotation error between Hartmann-Shack sensor and deformable mirror increasing, the correction ability for 3-20 Zernike polynomial wave aberration gradually goes down, and with translation error increasing, the correction ability for 3-9 Zernike polynomial wave aberration gradually goes down, but the correction ability for 10-20 Zernike polynomial wave aberration behave up-and-down depression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.
The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associatedmore » with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.« less
Translating the short version of the Perinatal Grief Scale: process and challenges.
Capitulo, K L; Cornelio, M A; Lenz, E R
2001-08-01
Non-English-speaking populations may be excluded from rigorous clinical research because of the lack of reliable and valid instrumentation to measure psychosocial variables. The purpose of this article is to describe the process and challenges when translating a research instrument. The process will be illustrated in the project of translating into Spanish the Short Version of the Perinatal Grief Scale, extensively studied in English-speaking, primarily Caucasian populations. Translation methods, errors, and tips are included. Tools cannot be used in transcultural research and practice without careful and accurate translation and subsequent psychometric evaluation, which are essential to generate credible and valid findings. Copyright 2001 by W.B. Saunders Company
Manzanilla-Granados, Héctor M; Saint-Martín, Humberto; Fuentes-Azcatl, Raúl; Alejandre, José
2015-07-02
The solubility of NaCl, an equilibrium between a saturated solution of ions and a solid with a crystalline structure, was obtained from molecular dynamics simulations using the SPC/E and TIP4P-Ew water models. Four initial setups on supersaturated systems were tested on sodium chloride (NaCl) solutions to determine the equilibrium conditions and computational performance: (1) an ionic solution confined between two crystal plates of periodic NaCl, (2) a solution with all the ions initially distributed randomly, (3) a nanocrystal immersed in pure water, and (4) a nanocrystal immersed in an ionic solution. In some cases, the equilibration of the system can take several microseconds. The results from this work showed that the solubility of NaCl was the same, within simulation error, for the four setups, and in agreement with previously reported values from simulations with the setup (1). The system of a nanocrystal immersed in supersaturated solution was found to equilibrate faster than others. In agreement with laser-Doppler droplet measurements, at equilibrium with the solution the crystals in all the setups had a slight positive charge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, D; Chen, J; Hao, Y
Purpose: This work employs the retraction method to compute and evaluate the margin from CTV to PTV based on the influence of target dosimetry of setup errors during cervical carcinoma patients treatment. Methods: Sixteen patients with cervical cancer were treated by Elekta synergy and received a total of 305 KV-CBCT images. The iso-center of the initial plans were changed according to the setup errors to simulate radiotherapy and then recalculated the dose distribution using leaf sequences and MUs for individual plans. The margin from CTV to PTV will be concluded both by the method of retracting (Fixed the PTV ofmore » the original plan, and retract PTV a certain distance defined as simulative organization CTVnx. The minimum distance value from PTV to CTVnx which get specified doses, namely guarantee at least 99% CTV volume can receive the dose of 95%, is the margin CTV to PTV we found) and the former formula method. Results: (1)The setup errors of 16 patients in X, Y and Z directions were(1.13±2.94) mm,(−1.63±7.13) mm,(−0.65±2.25) mm. (2) The distance between CTVx and PTV was 5, 9 and 3mm in X, Y and Z directions According to 2.5+0.7σ. (3) Transplantation plans displayed 99% of CTVx10- CTVx7 and received 95% of prescription dose, but CTVx6- CTVx3 departed from standard of clinic.In order to protect normal tissues, we selected 7mm as the minimum value of the margin from CTV to PTV. Conclusion: We have test an retraction method for the margin from CTV to PTV evaluation. The retraction method is more reliable than the formula method for calculating the margin from the CTV to the PTV, because it represented practice of treatment, and increasing a new method in this field.« less
Altomare, Cristina; Guglielmann, Raffaella; Riboldi, Marco; Bellazzi, Riccardo; Baroni, Guido
2015-02-01
In high precision photon radiotherapy and in hadrontherapy, it is crucial to minimize the occurrence of geometrical deviations with respect to the treatment plan in each treatment session. To this end, point-based infrared (IR) optical tracking for patient set-up quality assessment is performed. Such tracking depends on external fiducial points placement. The main purpose of our work is to propose a new algorithm based on simulated annealing and augmented Lagrangian pattern search (SAPS), which is able to take into account prior knowledge, such as spatial constraints, during the optimization process. The SAPS algorithm was tested on data related to head and neck and pelvic cancer patients, and that were fitted with external surface markers for IR optical tracking applied for patient set-up preliminary correction. The integrated algorithm was tested considering optimality measures obtained with Computed Tomography (CT) images (i.e. the ratio between the so-called target registration error and fiducial registration error, TRE/FRE) and assessing the marker spatial distribution. Comparison has been performed with randomly selected marker configuration and with the GETS algorithm (Genetic Evolutionary Taboo Search), also taking into account the presence of organs at risk. The results obtained with SAPS highlight improvements with respect to the other approaches: (i) TRE/FRE ratio decreases; (ii) marker distribution satisfies both marker visibility and spatial constraints. We have also investigated how the TRE/FRE ratio is influenced by the number of markers, obtaining significant TRE/FRE reduction with respect to the random configurations, when a high number of markers is used. The SAPS algorithm is a valuable strategy for fiducial configuration optimization in IR optical tracking applied for patient set-up error detection and correction in radiation therapy, showing that taking into account prior knowledge is valuable in this optimization process. Further work will be focused on the computational optimization of the SAPS algorithm toward fast point-of-care applications. Copyright © 2014 Elsevier Inc. All rights reserved.
Kenney, Terry A.
2010-01-01
Operational procedures at U.S. Geological Survey gaging stations include periodic leveling checks to ensure that gages are accurately set to the established gage datum. Differential leveling techniques are used to determine elevations for reference marks, reference points, all gages, and the water surface. The techniques presented in this manual provide guidance on instruments and methods that ensure gaging-station levels are run to both a high precision and accuracy. Levels are run at gaging stations whenever differences in gage readings are unresolved, stations may have been damaged, or according to a pre-determined frequency. Engineer's levels, both optical levels and electronic digital levels, are commonly used for gaging-station levels. Collimation tests should be run at least once a week for any week that levels are run, and the absolute value of the collimation error cannot exceed 0.003 foot/100 feet (ft). An acceptable set of gaging-station levels consists of a minimum of two foresights, each from a different instrument height, taken on at least two independent reference marks, all reference points, all gages, and the water surface. The initial instrument height is determined from another independent reference mark, known as the origin, or base reference mark. The absolute value of the closure error of a leveling circuit must be less than or equal to ft, where n is the total number of instrument setups, and may not exceed |0.015| ft regardless of the number of instrument setups. Closure error for a leveling circuit is distributed by instrument setup and adjusted elevations are determined. Side shots in a level circuit are assessed by examining the differences between the adjusted first and second elevations for each objective point in the circuit. The absolute value of these differences must be less than or equal to 0.005 ft. Final elevations for objective points are determined by averaging the valid adjusted first and second elevations. If final elevations indicate that the reference gage is off by |0.015| ft or more, it must be reset.
Alachiotis, Nikolaos; Vogiatzi, Emmanouella; Pavlidis, Pavlos; Stamatakis, Alexandros
2013-01-01
Automated DNA sequencers generate chromatograms that contain raw sequencing data. They also generate data that translates the chromatograms into molecular sequences of A, C, G, T, or N (undetermined) characters. Since chromatogram translation programs frequently introduce errors, a manual inspection of the generated sequence data is required. As sequence numbers and lengths increase, visual inspection and manual correction of chromatograms and corresponding sequences on a per-peak and per-nucleotide basis becomes an error-prone, time-consuming, and tedious process. Here, we introduce ChromatoGate (CG), an open-source software that accelerates and partially automates the inspection of chromatograms and the detection of sequencing errors for bidirectional sequencing runs. To provide users full control over the error correction process, a fully automated error correction algorithm has not been implemented. Initially, the program scans a given multiple sequence alignment (MSA) for potential sequencing errors, assuming that each polymorphic site in the alignment may be attributed to a sequencing error with a certain probability. The guided MSA assembly procedure in ChromatoGate detects chromatogram peaks of all characters in an alignment that lead to polymorphic sites, given a user-defined threshold. The threshold value represents the sensitivity of the sequencing error detection mechanism. After this pre-filtering, the user only needs to inspect a small number of peaks in every chromatogram to correct sequencing errors. Finally, we show that correcting sequencing errors is important, because population genetic and phylogenetic inferences can be misled by MSAs with uncorrected mis-calls. Our experiments indicate that estimates of population mutation rates can be affected two- to three-fold by uncorrected errors. PMID:24688709
Alachiotis, Nikolaos; Vogiatzi, Emmanouella; Pavlidis, Pavlos; Stamatakis, Alexandros
2013-01-01
Automated DNA sequencers generate chromatograms that contain raw sequencing data. They also generate data that translates the chromatograms into molecular sequences of A, C, G, T, or N (undetermined) characters. Since chromatogram translation programs frequently introduce errors, a manual inspection of the generated sequence data is required. As sequence numbers and lengths increase, visual inspection and manual correction of chromatograms and corresponding sequences on a per-peak and per-nucleotide basis becomes an error-prone, time-consuming, and tedious process. Here, we introduce ChromatoGate (CG), an open-source software that accelerates and partially automates the inspection of chromatograms and the detection of sequencing errors for bidirectional sequencing runs. To provide users full control over the error correction process, a fully automated error correction algorithm has not been implemented. Initially, the program scans a given multiple sequence alignment (MSA) for potential sequencing errors, assuming that each polymorphic site in the alignment may be attributed to a sequencing error with a certain probability. The guided MSA assembly procedure in ChromatoGate detects chromatogram peaks of all characters in an alignment that lead to polymorphic sites, given a user-defined threshold. The threshold value represents the sensitivity of the sequencing error detection mechanism. After this pre-filtering, the user only needs to inspect a small number of peaks in every chromatogram to correct sequencing errors. Finally, we show that correcting sequencing errors is important, because population genetic and phylogenetic inferences can be misled by MSAs with uncorrected mis-calls. Our experiments indicate that estimates of population mutation rates can be affected two- to three-fold by uncorrected errors.
Translating Radiometric Requirements for Satellite Sensors to Match International Standards.
Pearlman, Aaron; Datla, Raju; Kacker, Raghu; Cao, Changyong
2014-01-01
International scientific standards organizations created standards on evaluating uncertainty in the early 1990s. Although scientists from many fields use these standards, they are not consistently implemented in the remote sensing community, where traditional error analysis framework persists. For a satellite instrument under development, this can create confusion in showing whether requirements are met. We aim to create a methodology for translating requirements from the error analysis framework to the modern uncertainty approach using the product level requirements of the Advanced Baseline Imager (ABI) that will fly on the Geostationary Operational Environmental Satellite R-Series (GOES-R). In this paper we prescribe a method to combine several measurement performance requirements, written using a traditional error analysis framework, into a single specification using the propagation of uncertainties formula. By using this approach, scientists can communicate requirements in a consistent uncertainty framework leading to uniform interpretation throughout the development and operation of any satellite instrument.
Translating Radiometric Requirements for Satellite Sensors to Match International Standards
Pearlman, Aaron; Datla, Raju; Kacker, Raghu; Cao, Changyong
2014-01-01
International scientific standards organizations created standards on evaluating uncertainty in the early 1990s. Although scientists from many fields use these standards, they are not consistently implemented in the remote sensing community, where traditional error analysis framework persists. For a satellite instrument under development, this can create confusion in showing whether requirements are met. We aim to create a methodology for translating requirements from the error analysis framework to the modern uncertainty approach using the product level requirements of the Advanced Baseline Imager (ABI) that will fly on the Geostationary Operational Environmental Satellite R-Series (GOES-R). In this paper we prescribe a method to combine several measurement performance requirements, written using a traditional error analysis framework, into a single specification using the propagation of uncertainties formula. By using this approach, scientists can communicate requirements in a consistent uncertainty framework leading to uniform interpretation throughout the development and operation of any satellite instrument. PMID:26601032
Adequate margins for random setup uncertainties in head-and-neck IMRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Astreinidou, Eleftheria; Bel, Arjan; Raaijmakers, Cornelis P.J.
2005-03-01
Purpose: To investigate the effect of random setup uncertainties on the highly conformal dose distributions produced by intensity-modulated radiotherapy (IMRT) for clinical head-and-neck cancer patients and to determine adequate margins to account for those uncertainties. Methods and materials: We have implemented in our clinical treatment planning system the possibility of simulating normally distributed patient setup displacements, translations, and rotations. The planning CT data of 8 patients with Stage T1-T3N0M0 oropharyngeal cancer were used. The clinical target volumes of the primary tumor (CTV{sub primary}) and of the lymph nodes (CTV{sub elective}) were expanded by 0.0, 1.5, 3.0, and 5.0 mm inmore » all directions, creating the planning target volumes (PTVs). We performed IMRT dose calculation using our class solution for each PTV margin, resulting in the conventional static plans. Then, the system recalculated the plan for each positioning displacement derived from a normal distribution with {sigma} = 2 mm and {sigma} = 4 mm (standard deviation) for translational deviations and {sigma} = 1 deg for rotational deviations. The dose distributions of the 30 fractions were summed, resulting in the actual plan. The CTV dose coverage of the actual plans was compared with that of the static plans. Results: Random translational deviations of {sigma} = 2 mm and rotational deviations of {sigma} = 1 deg did not affect the CTV{sub primary} volume receiving 95% of the prescribed dose (V{sub 95}) regardless of the PTV margin used. A V{sub 95} reduction of 3% and 1% for a 0.0-mm and 1.5-mm PTV margin, respectively, was observed for {sigma} = 4 mm. The V{sub 95} of the CTV{sub elective} contralateral was approximately 1% and 5% lower than that of the static plan for {sigma} = 2 mm and {sigma} = 4 mm, respectively, and for PTV margins < 5.0 mm. An additional reduction of 1% was observed when rotational deviations were included. The same effect was observed for the CTV{sub elective} ipsilateral but with smaller dose differences than those for the contralateral side. The effect of the random uncertainties on the mean dose to the parotid glands was not significant. The maximal dose to the spinal cord increased by a maximum of 3 Gy. Conclusions: The margins to account for random setup uncertainties, in our clinical IMRT solution, should be 1.5 mm and 3.0 mm in the case of {sigma} = 2 mm and {sigma} = 4 mm, respectively, for the CTV{sub primary}. Larger margins (5.0 mm), however, should be applied to the CTV{sub elective}, if the goal of treatment is a V{sub 95} value of at least 99%.« less
Analysis of Mongolian Students' Common Translation Errors and Its Solutions
ERIC Educational Resources Information Center
Zhao, Changhua
2013-01-01
In Inner Mongolia, those Mongolian students face lots of difficulties in learning English. Especially the English translation ability of Mongolian students is a weak point. It is worth to think a problem that how to let our students use the English freely on a certain foundation. This article investigates the problems of Mongolian English learners…
Rathi, Sangeeta; Taylor, Nicholas F; Gee, Jamie; Green, Rodney A
2016-12-01
Ultrasonography is an economical and non-invasive method for measuring real-time joint movements. Although physiotherapists are increasingly using ultrasound imaging for rotator cuff disorders, there is a lack of evidence on their reliability in using ultrasonography to measure glenohumeral translation. The aim of this study was to evaluate the reliability of a physiotherapist in measuring anterior and posterior glenohumeral joint translation with ultrasound. Study design: within day reliability. Anterior and posterior glenohumeral translations were measured at rest, in response to passive accessory motion testing force, and with isometric internal and external rotation in 12 young healthy adults. All the measurements were made in real time by a physiotherapist and an experienced sonographer in two positions (neutral and abducted) and in two views (anterior and posterior). Intra-rater and inter-rater reliability were expressed using intraclass correlation coefficients (ICC) and measurement error (mm). Intra-rater reliability was good for both raters (ICC P : 0.86-0.98; ICC S : 0.85-0.96). The inter-rater reliability between the physiotherapist and sonographer was moderate to good for posterior measurements (ICC 0.50-0.75) and poor to moderate for anterior measurements (ICC 0.31-0.53). For both intra-rater and inter-rater measurements, posterior translation was more reliable than the anterior translation with smaller measurement errors (posterior: 0.1-0.2 mm, anterior: 0.2-0.3 mm). A physiotherapist with minimal training was reliable in measuring glenohumeral joint translations. The ultrasound method was reliable for repeated measurement of both anterior and posterior glenohumeral translations with posterior measurements being more reliable than anterior. This method is recommended for future research to investigate the stabilising role of rotator cuff muscles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jin, Peng; van der Horst, Astrid; de Jong, Rianne; van Hooft, Jeanin E; Kamphuis, Martijn; van Wieringen, Niek; Machiels, Melanie; Bel, Arjan; Hulshof, Maarten C C M; Alderliesten, Tanja
2015-12-01
The aim of this study was to quantify interfractional esophageal tumor position variation using markers and investigate the use of markers for setup verification. Sixty-five markers placed in the tumor volumes of 24 esophageal cancer patients were identified in computed tomography (CT) and follow-up cone-beam CT. For each patient we calculated pairwise distances between markers over time to evaluate geometric tumor volume variation. We then quantified marker displacements relative to bony anatomy and estimated the variation of systematic (Σ) and random errors (σ). During bony anatomy-based setup verification, we visually inspected whether the markers were inside the planning target volume (PTV) and attempted marker-based registration. Minor time trends with substantial fluctuations in pairwise distances implied tissue deformation. Overall, Σ(σ) in the left-right/cranial-caudal/anterior-posterior direction was 2.9(2.4)/4.1(2.4)/2.2(1.8) mm; for the proximal stomach, it was 5.4(4.3)/4.9(3.2)/1.9(2.4) mm. After bony anatomy-based setup correction, all markers were inside the PTV. However, due to large tissue deformation, marker-based registration was not feasible. Generally, the interfractional position variation of esophageal tumors is more pronounced in the cranial-caudal direction and in the proximal stomach. Currently, marker-based setup verification is not feasible for clinical routine use, but markers can facilitate the setup verification by inspecting whether the PTV covers the tumor volume adequately. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Tagaste, Barbara; Riboldi, Marco; Spadea, Maria F; Bellante, Simone; Baroni, Guido; Cambria, Raffaella; Garibaldi, Cristina; Ciocca, Mario; Catalano, Gianpiero; Alterio, Daniela; Orecchia, Roberto
2012-04-01
To compare infrared (IR) optical vs. stereoscopic X-ray technologies for patient setup in image-guided stereotactic radiotherapy. Retrospective data analysis of 233 fractions in 127 patients treated with hypofractionated stereotactic radiotherapy was performed. Patient setup at the linear accelerator was carried out by means of combined IR optical localization and stereoscopic X-ray image fusion in 6 degrees of freedom (6D). Data were analyzed to evaluate the geometric and dosimetric discrepancy between the two patient setup strategies. Differences between IR optical localization and 6D X-ray image fusion parameters were on average within the expected localization accuracy, as limited by CT image resolution (3 mm). A disagreement between the two systems below 1 mm in all directions was measured in patients treated for cranial tumors. In extracranial sites, larger discrepancies and higher variability were observed as a function of the initial patient alignment. The compensation of IR-detected rotational errors resulted in a significantly improved agreement with 6D X-ray image fusion. On the basis of the bony anatomy registrations, the measured differences were found not to be sensitive to patient breathing. The related dosimetric analysis showed that IR-based patient setup caused limited variations in three cases, with 7% maximum dose reduction in the clinical target volume and no dose increase in organs at risk. In conclusion, patient setup driven by IR external surrogates localization in 6D featured comparable accuracy with respect to procedures based on stereoscopic X-ray imaging. Copyright © 2012 Elsevier Inc. All rights reserved.
Automated patient setup and gating using cone beam computed tomography projections
NASA Astrophysics Data System (ADS)
Wan, Hanlin; Bertholet, Jenny; Ge, Jiajia; Poulsen, Per; Parikh, Parag
2016-03-01
In radiation therapy, fiducial markers are often implanted near tumors and used for patient positioning and respiratory gating purposes. These markers are then used to manually align the patients by matching the markers in the cone beam computed tomography (CBCT) reconstruction to those in the planning CT. This step is time-intensive and user-dependent, and often results in a suboptimal patient setup. We propose a fully automated, robust method based on dynamic programming (DP) for segmenting radiopaque fiducial markers in CBCT projection images, which are then used to automatically optimize the treatment couch position and/or gating window bounds. The mean of the absolute 2D segmentation error of our DP algorithm is 1.3+/- 1.0 mm for 87 markers on 39 patients. Intrafraction images were acquired every 3 s during treatment at two different institutions. For gated patients from Institution A (8 patients, 40 fractions), the DP algorithm increased the delivery accuracy (96+/- 6% versus 91+/- 11% , p < 0.01) compared to the manual setup using kV fluoroscopy. For non-gated patients from Institution B (6 patients, 16 fractions), the DP algorithm performed similarly (1.5+/- 0.8 mm versus 1.6+/- 0.9 mm, p = 0.48) compared to the manual setup matching the fiducial markers in the CBCT to the mean position. Our proposed automated patient setup algorithm only takes 1-2 s to run, requires no user intervention, and performs as well as or better than the current clinical setup.
ERIC Educational Resources Information Center
Jones, Katherine J.; Cochran, Gary; Hicks, Rodney W.; Mueller, Keith J.
2004-01-01
Context:Low service volume, insufficient information technology, and limited human resources are barriers to learning about and correcting system failures in small rural hospitals. This paper describes the implementation of and initial findings from a voluntary medication error reporting program developed by the Nebraska Center for Rural Health…
Consciousness-Raising, Error Correction and Proofreading
ERIC Educational Resources Information Center
O'Brien, Josephine
2015-01-01
The paper discusses the impact of developing a consciousness-raising approach in error correction at the sentence level to improve students' proofreading ability. Learners of English in a foreign language environment often rely on translation as a composing tool and while this may act as a scaffold and provide some support, it frequently leads to…
Considerations for Creating Multi-Language Personality Norms: A Three-Component Model of Error
ERIC Educational Resources Information Center
Meyer, Kevin D.; Foster, Jeff L.
2008-01-01
With the increasing globalization of human resources practices, a commensurate increase in demand has occurred for multi-language ("global") personality norms for use in selection and development efforts. The combination of data from multiple translations of a personality assessment into a single norm engenders error from multiple sources. This…
The Effectiveness of Chinese NNESTs in Teaching English Syntax
ERIC Educational Resources Information Center
Chou, Chun-Hui; Bartz, Kevin
2007-01-01
This paper evaluates the effect of Chinese non-native English-speaking teachers (NNESTs) on Chinese ESL students' struggles with English syntax. The paper first classifies Chinese learners' syntactic errors into 10 common types. It demonstrates how each type of error results from an internal attempt to translate a common Chinese construction into…
What Can Errors Tell Us about Differences between Monolingual and Bilingual Vocabulary Learning?
ERIC Educational Resources Information Center
Kaushanskaya, Margarita
2018-01-01
Error patterns in vocabulary learning data were used as a window into the mechanisms that underlie vocabulary learning performance in bilinguals vs. monolinguals. English--Spanish bilinguals (n = 18) and English-speaking monolinguals (n = 18) were taught novel vocabulary items in association with English translations. At testing, participants…
Quantitative vs. subjective portal verification using digital portal images.
Bissett, R; Leszczynski, K; Loose, S; Boyko, S; Dunscombe, P
1996-01-15
Off-line, computer-aided prescription (simulator) and treatment (portal) image registration using chamfer matching has been implemented on PC based viewing station. The purposes of this study were (a) to evaluate the performance of interactive anatomy and field edge extraction and subsequent registration, and (b) to compare observer's perceptions of field accuracy with measured discrepancies following anatomical registration. Prescription-treatment image pairs for 48 different patients were examined in this study. Digital prescription images were produced with the aid of a television camera and a digital frame grabber, while the treatment images were obtained directly from an on-line portal imaging system. To facilitate perception of low contrast anatomical detail, on-line portal images were enhanced with selective adaptive histogram equalization prior to extraction of anatomical edges. Following interactive extraction of anatomical and field border information by an experienced observer, the identified anatomy was registered using chamfer matching. The degree of conformity between the prescription and treatment fields was quantified using several parameters, which included relative prescription field coverage and overcoverage, as well as the translational and rotational displacements as measured by chamfer matching applied to the boundaries of the two fields. These quantitative measures were compared with subjective evaluations made by four radiation oncologists. All the images in this series that included a range of the most commonly seen treatment sites were registered and the conformity parameters were found. The mean treatment/prescription field coverage and overcoverage were approximately 95 and 7%, respectively before registration. The mean translational displacement in the transverse and cranio-caudal directions were 2.9 and 3.4 mm, respectively. The mean rotational displacement was approximately 2 degrees. For all four oncologists, the portals classified as unacceptable, in terms of the field placement, exhibited significantly higher (p < 0.03) translational errors in the transverse direction. The field coverages were significantly lower (p < 0.05) and the translational errors in the cranio-caudal direction were significantly higher (p < 0.05) for the portals rated as unacceptable by two of the oncologists. From the parameters that were used to quantify the degree of conformity between the prescription and treatment fields, the translational error in the transverse direction correlated best with the oncologists' assessments on the field placement. Field coverage and translational error in the cranio-caudal direction correlated well with assessments of only two out of the four participating oncologists. This can be explained by the fact that for the majority of treatment sites included in the study the positioning of field borders was more critical for the transverse direction. A conclusion for the design of future quantitative and automated on-line portal verification systems is that they will have to model different perceived significances of different types of localization errors intrinsic to oncologist evaluation of portal images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mori, Shinichiro, E-mail: shinshin@nirs.go.jp; Karube, Masataka; Shirai, Toshiyuki
Purpose: Having implemented amplitude-based respiratory gating for scanned carbon-ion beam therapy, we sought to evaluate its effect on positional accuracy and throughput. Methods and Materials: A total of 10 patients with tumors of the lung and liver participated in the first clinical trials at our center. Treatment planning was conducted with 4-dimensional computed tomography (4DCT) under free-breathing conditions. The planning target volume (PTV) was calculated by adding a 2- to 3-mm setup margin outside the clinical target volume (CTV) within the gating window. The treatment beam was on when the CTV was within the PTV. Tumor position was detected inmore » real time with a markerless tumor tracking system using paired x-ray fluoroscopic imaging units. Results: The patient setup error (mean ± SD) was 1.1 ± 1.2 mm/0.6 ± 0.4°. The mean internal gating accuracy (95% confidence interval [CI]) was 0.5 mm. If external gating had been applied to this treatment, the mean gating accuracy (95% CI) would have been 4.1 mm. The fluoroscopic radiation doses (mean ± SD) were 23.7 ± 21.8 mGy per beam and less than 487.5 mGy total throughout the treatment course. The setup, preparation, and irradiation times (mean ± SD) were 8.9 ± 8.2 min, 9.5 ± 4.6 min, and 4.0 ± 2.4 min, respectively. The treatment room occupation time was 36.7 ± 67.5 min. Conclusions: Internal gating had a much higher accuracy than external gating. By the addition of a setup margin of 2 to 3 mm, internal gating positional error was less than 2.2 mm at 95% CI.« less
Isospin Breaking Corrections to the HVP with Domain Wall Fermions
NASA Astrophysics Data System (ADS)
Boyle, Peter; Guelpers, Vera; Harrison, James; Juettner, Andreas; Lehner, Christoph; Portelli, Antonin; Sachrajda, Christopher
2018-03-01
We present results for the QED and strong isospin breaking corrections to the hadronic vacuum polarization using Nf = 2 + 1 Domain Wall fermions. QED is included in an electro-quenched setup using two different methods, a stochastic and a perturbative approach. Results and statistical errors from both methods are directly compared with each other.
To image analysis in computed tomography
NASA Astrophysics Data System (ADS)
Chukalina, Marina; Nikolaev, Dmitry; Ingacheva, Anastasia; Buzmakov, Alexey; Yakimchuk, Ivan; Asadchikov, Victor
2017-03-01
The presence of errors in tomographic image may lead to misdiagnosis when computed tomography (CT) is used in medicine, or the wrong decision about parameters of technological processes when CT is used in the industrial applications. Two main reasons produce these errors. First, the errors occur on the step corresponding to the measurement, e.g. incorrect calibration and estimation of geometric parameters of the set-up. The second reason is the nature of the tomography reconstruction step. At the stage a mathematical model to calculate the projection data is created. Applied optimization and regularization methods along with their numerical implementations of the method chosen have their own specific errors. Nowadays, a lot of research teams try to analyze these errors and construct the relations between error sources. In this paper, we do not analyze the nature of the final error, but present a new approach for the calculation of its distribution in the reconstructed volume. We hope that the visualization of the error distribution will allow experts to clarify the medical report impression or expert summary given by them after analyzing of CT results. To illustrate the efficiency of the proposed approach we present both the simulation and real data processing results.
Hutchinson, Alison M; Sales, Anne E; Brotto, Vanessa; Bucknall, Tracey K
2015-05-19
Health professionals strive to deliver high-quality care in an inherently complex and error-prone environment. Underreporting of medical errors challenges attempts to understand causative factors and impedes efforts to implement preventive strategies. Audit with feedback is a knowledge translation strategy that has potential to modify health professionals' medical error reporting behaviour. However, evidence regarding which aspects of this complex, multi-dimensional intervention work best is lacking. The aims of the Safe Medication Audit Reporting Translation (SMART) study are to: 1. Implement and refine a reporting mechanism to feed audit data on medication errors back to nurses 2. Test the feedback reporting mechanism to determine its utility and effect 3. Identify characteristics of organisational context associated with error reporting in response to feedback A quasi-experimental design, incorporating two pairs of matched wards at an acute care hospital, is used. Randomisation occurs at the ward level; one ward from each pair is randomised to receive the intervention. A key stakeholder reference group informs the design and delivery of the feedback intervention. Nurses on the intervention wards receive the feedback intervention (feedback of analysed audit data) on a quarterly basis for 12 months. Data for the feedback intervention come from medication documentation point-prevalence audits and weekly reports on routinely collected medication error data. Weekly reports on these data are obtained for the control wards. A controlled interrupted time series analysis is used to evaluate the effect of the feedback intervention. Self-report data are also collected from nurses on all four wards at baseline and at completion of the intervention to elicit their perceptions of the work context. Additionally, following each feedback cycle, nurses on the intervention wards are invited to complete a survey to evaluate the feedback and to establish their intentions to change their reporting behaviour. To assess sustainability of the intervention, at 6 months following completion of the intervention a point-prevalence chart audit is undertaken and a report of routinely collected medication errors for the previous 6 months is obtained. This intervention will have wider application for delivery of feedback to promote behaviour change for other areas of preventable error and adverse events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teboh, Forbang R; Agee, M; Rowe, L
2014-06-01
Purpose: Immobilization devices combine rigid patient fixation as well as comfort and play a key role providing the stability required for accurate radiation delivery. In the setup step, couch re-positioning needed to align the patient is derived via registration of acquired versus reference image. For subsequent fractions, replicating the initial setup should yield identical alignment errors when compared to the reference. This is not always the case and further couch re-positioning can be needed. An important quality assurance measure is to set couch tolerances beyond which additional investigations are needed. The purpose of this work was to study the inter-fractionmore » couch changes needed to re-align the patient and the intra-fraction stability of the alignment as a guide to establish the couch tolerances. Methods: Data from twelve patients treated on the Accuray CyberKnife (CK) system for fractionated intracranial radiotherapy and immobilized with Aquaplast RT, U-frame, F-Head-Support (Qfix, PA, USA) was used. Each fraction involved image acquisitions and registration with the reference to re-align the patient. The absolute couch position corresponding to the approved setup alignment was recorded per fraction. Intra-fraction set-up corrections were recorded throughout the treatment. Results: The average approved setup alignment was 0.03±0.28mm, 0.15±0.22mm, 0.06±0.31mm in the L/R, A/P, S/I directions respectively and 0.00±0.35degrees, 0.03±0.32degrees, 0.08±0.45degrees for roll, pitch and yaw respectively. The inter-fraction reproducibility of the couch position was 6.65mm, 10.55mm, and 4.77mm in the L/R, A/P and S/I directions respectively and 0.82degrees, 0.71degrees for roll and pitch respectively. Intra-fraction monitoring showed small average errors of 0.21±0.21mm, 0.00±0.08mm, 0.23±0.22mm in the L/R, A/P, S/I directions respectively and 0.03±0.12degrees, 0.04±0.25degrees, and 0.13±0.15degrees in the roll, pitch and yaw respectively. Conclusion: The inter-fraction reproducibility should serve as a guide to couch tolerances, specific to a site and immobilization. More patients need to be included to make general conclusions.« less
Tracking and characterizing the head motion of unanaesthetized rats in positron emission tomography
Kyme, Andre; Meikle, Steven; Baldock, Clive; Fulton, Roger
2012-01-01
Positron emission tomography (PET) is an important in vivo molecular imaging technique for translational research. Imaging unanaesthetized rats using motion-compensated PET avoids the confounding impact of anaesthetic drugs and enables animals to be imaged during normal or evoked behaviour. However, there is little published data on the nature of rat head motion to inform the design of suitable marker-based motion-tracking set-ups for brain imaging—specifically, set-ups that afford close to uninterrupted tracking. We performed a systematic study of rat head motion parameters for unanaesthetized tube-bound and freely moving rats with a view to designing suitable motion-tracking set-ups in each case. For tube-bound rats, using a single appropriately placed binocular tracker, uninterrupted tracking was possible greater than 95 per cent of the time. For freely moving rats, simulations and measurements of a live subject indicated that two opposed binocular trackers are sufficient (less than 10% interruption to tracking) for a wide variety of behaviour types. We conclude that reliable tracking of head pose can be achieved with marker-based optical-motion-tracking systems for both tube-bound and freely moving rats undergoing PET studies without sedation. PMID:22718992
NASA Technical Reports Server (NTRS)
Prive, Nikki C.; Errico, Ronald M.
2013-01-01
A series of experiments that explore the roles of model and initial condition error in numerical weather prediction are performed using an observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO). The use of an OSSE allows the analysis and forecast errors to be explicitly calculated, and different hypothetical observing networks can be tested with ease. In these experiments, both a full global OSSE framework and an 'identical twin' OSSE setup are utilized to compare the behavior of the data assimilation system and evolution of forecast skill with and without model error. The initial condition error is manipulated by varying the distribution and quality of the observing network and the magnitude of observation errors. The results show that model error has a strong impact on both the quality of the analysis field and the evolution of forecast skill, including both systematic and unsystematic model error components. With a realistic observing network, the analysis state retains a significant quantity of error due to systematic model error. If errors of the analysis state are minimized, model error acts to rapidly degrade forecast skill during the first 24-48 hours of forward integration. In the presence of model error, the impact of observation errors on forecast skill is small, but in the absence of model error, observation errors cause a substantial degradation of the skill of medium range forecasts.
Trofimov, Alexei; Unkelbach, Jan; DeLaney, Thomas F; Bortfeld, Thomas
2012-01-01
Dose-volume histograms (DVH) are the most common tool used in the appraisal of the quality of a clinical treatment plan. However, when delivery uncertainties are present, the DVH may not always accurately describe the dose distribution actually delivered to the patient. We present a method, based on DVH formalism, to visualize the variability in the expected dosimetric outcome of a treatment plan. For a case of chordoma of the cervical spine, we compared 2 intensity modulated proton therapy plans. Treatment plan A was optimized based on dosimetric objectives alone (ie, desired target coverage, normal tissue tolerance). Plan B was created employing a published probabilistic optimization method that considered the uncertainties in patient setup and proton range in tissue. Dose distributions and DVH for both plans were calculated for the nominal delivery scenario, as well as for scenarios representing deviations from the nominal setup, and a systematic error in the estimate of range in tissue. The histograms from various scenarios were combined to create DVH bands to illustrate possible deviations from the nominal plan for the expected magnitude of setup and range errors. In the nominal scenario, the DVH from plan A showed superior dose coverage, higher dose homogeneity within the target, and improved sparing of the adjacent critical structure. However, when the dose distributions and DVH from plans A and B were recalculated for different error scenarios (eg, proton range underestimation by 3 mm), the plan quality, reflected by DVH, deteriorated significantly for plan A, while plan B was only minimally affected. In the DVH-band representation, plan A produced wider bands, reflecting its higher vulnerability to delivery errors, and uncertainty in the dosimetric outcome. The results illustrate that comparison of DVH for the nominal scenario alone does not provide any information about the relative sensitivity of dosimetric outcome to delivery uncertainties. Thus, such comparison may be misleading and may result in the selection of an inferior plan for delivery to a patient. A better-informed decision can be made if additional information about possible dosimetric variability is presented; for example, in the form of DVH bands. Copyright © 2012 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
A Robust and Affordable Table Indexing Approach for Multi-isocenter Dosimetrically Matched Fields.
Yu, Amy; Fahimian, Benjamin; Million, Lynn; Hsu, Annie
2017-05-23
Purpose Radiotherapy treatment planning of extended volume typically necessitates the utilization of multiple field isocenters and abutting dosimetrically matched fields in order to enable coverage beyond the field size limits. A common example includes total lymphoid irradiation (TLI) treatments, which are conventionally planned using dosimetric matching of the mantle, para-aortic/spleen, and pelvic fields. Due to the large irradiated volume and system limitations, such as field size and couch extension, a combination of couch shifts and sliding of patients are necessary to be correctly executed for accurate delivery of the plan. However, shifting of patients presents a substantial safety issue and has been shown to be prone to errors ranging from minor deviations to geometrical misses warranting a medical event. To address this complex setup and mitigate the safety issues relating to delivery, a practical technique for couch indexing of TLI treatments has been developed and evaluated through a retrospective analysis of couch position. Methods The indexing technique is based on the modification of the commonly available slide board to enable indexing of the patient position. Modifications include notching to enable coupling with indexing bars, and the addition of a headrest used to fixate the head of the patient relative to the slide board. For the clinical setup, a Varian Exact Couch TM (Varian Medical Systems, Inc, Palo Alto, CA) was utilized. Two groups of patients were treated: 20 patients with table indexing and 10 patients without. The standard deviations (SDs) of the couch positions in longitudinal, lateral, and vertical directions through the entire treatment cycle for each patient were calculated and differences in both groups were analyzed with Student's t-test. Results The longitudinal direction showed the largest improvement. In the non-indexed group, the positioning SD ranged from 2.0 to 7.9 cm. With the indexing device, the positioning SD was reduced to a range of 0.4 to 1.3 cm (p < 0.05 with 95% confidence level). The lateral positioning was slightly improved (p < 0.05 with 95% confidence level), while no improvement was observed in the vertical direction. Conclusions The conventional matched field TLI treatment is error-prone to geometrical setup error. The feasibility of full indexing TLI treatments was validated and shown to result in a significant reduction of positioning and shifting errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S; Suh, T; Park, S
2015-06-15
Purpose: The dose-related effects of patient setup errors on biophysical indices were evaluated for conventional wedge (CW) and field-in-field (FIF) whole breast irradiation techniques. Methods: The treatment plans for 10 patients receiving whole left breast irradiation were retrospectively selected. Radiobiological and physical effects caused by dose variations were evaluated by shifting the isocenters and gantry angles of the treatment plans. Dose-volume histograms of the planning target volume (PTV), heart, and lungs were generated, and conformity index (CI), homogeneity index (HI), tumor control probability (TCP), and normal tissue complication probability (NTCP) were determined. Results: For “isocenter shift plan” with posterior direction,more » the D95 of the PTV decreased by approximately 15% and the TCP of the PTV decreased by approximately 50% for the FIF technique and by 40% for the CW; however, the NTCPs of the lungs and heart increased by about 13% and 1%, respectively, for both techniques. Increasing the gantry angle decreased the TCPs of the PTV by 24.4% (CW) and by 34% (FIF). The NTCPs for the two techniques differed by only 3%. In case of CW, the CIs and HIs were much higher than that of the FIF in all cases. It had a significant difference between two techniques (p<0.01). According to our results, however, the FIF had more sensitive response by set up errors rather than CW in bio-physical aspects. Conclusions: The radiobiological-based analysis can detect significant dosimetric errors then, can provide a practical patient quality assurance method to guide the radiobiological and physical effects.« less
Influence of Additive and Multiplicative Structure and Direction of Comparison on the Reversal Error
ERIC Educational Resources Information Center
González-Calero, José Antonio; Arnau, David; Laserna-Belenguer, Belén
2015-01-01
An empirical study has been carried out to evaluate the potential of word order matching and static comparison as explanatory models of reversal error. Data was collected from 214 undergraduate students who translated a set of additive and multiplicative comparisons expressed in Spanish into algebraic language. In these multiplicative comparisons…
Lu, Chen; Zhao, Xiaodan; Kawamura, Ryo
2017-01-01
Frictional drag force on an object in Stokes flow follows a linear relationship with the velocity of translation and a translational drag coefficient. This drag coefficient is related to the size, shape, and orientation of the object. For rod-like objects, analytical solutions of the drag coefficients have been proposed based on three rough approximations of the rod geometry, namely the bead model, ellipsoid model, and cylinder model. These theories all agree that translational drag coefficients of rod-like objects are functions of the rod length and aspect ratio, but differ among one another on the correction factor terms in the equations. By tracking the displacement of the particles through stationary fluids of calibrated viscosity in magnetic tweezers setup, we experimentally measured the drag coefficients of micron-sized beads and their bead-chain formations with chain length of 2 to 27. We verified our methodology with analytical solutions of dimers of two touching beads, and compared our measured drag coefficient values of rod-like objects with theoretical calculations. Our comparison reveals several analytical solutions that used more appropriate approximation and derived formulae that agree with our measurement better. PMID:29145447
Optical truss and retroreflector modeling for picometer laser metrology
NASA Astrophysics Data System (ADS)
Hines, Braden E.
1993-09-01
Space-based astrometric interferometer concepts typically have a requirement for the measurement of the internal dimensions of the instrument to accuracies in the picometer range. While this level of resolution has already been achieved for certain special types of laser gauges, techniques for picometer-level accuracy need to be developed to enable all the various kinds of laser gauges needed for space-based interferometers. Systematic errors due to retroreflector imperfections become important as soon as the retroreflector is allowed to either translate in position or articulate in angle away from its nominal zero-point. Also, when combining several laser interferometers to form a three-dimensional laser gauge (a laser optical truss), systematic errors due to imperfect knowledge of the truss geometry are important as the retroreflector translates away from its nominal zero-point. In order to assess the astrometric performance of a proposed instrument, it is necessary to determine how the effects of an imperfect laser metrology system impact the astrometric accuracy. This paper show the development of an error propagation model from errors in the 1-D metrology measurements through the impact on the overall astrometric accuracy for OSI. Simulations are then presented based on this development which were used to define a multiplier which determines the 1-D metrology accuracy required to produce a given amount of fringe position error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.
1993-04-01
The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associatedmore » with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.« less
Distance measurement using frequency scanning interferometry with mode-hoped laser
NASA Astrophysics Data System (ADS)
Medhat, M.; Sobee, M.; Hussein, H. M.; Terra, O.
2016-06-01
In this paper, frequency scanning interferometry is implemented to measure distances up to 5 m absolutely. The setup consists of a Michelson interferometer, an external cavity tunable diode laser, and an ultra-low expansion (ULE) Fabry-Pérot (FP) cavity to measure the frequency scanning range. The distance is measured by acquiring simultaneously the interference fringes from, the Michelson and the FP interferometers, while scanning the laser frequency. An online fringe processing technique is developed to calculate the distance from the fringe ratio while removing the parts result from the laser mode-hops without significantly affecting the measurement accuracy. This fringe processing method enables accurate distance measurements up to 5 m with measurements repeatability ±3.9×10-6 L. An accurate translation stage is used to find the FP cavity free-spectral-range and therefore allow accurate measurement. Finally, the setup is applied for the short distance calibration of a laser distance meter (LDM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamezawa, H; Fujimoto General Hospital, Miyakonojo, Miyazaki; Arimura, H
Purpose: To investigate the possibility of exposure dose reduction of the cone-beam computed tomography (CBCT) in an image guided patient positioning system by using 6 noise suppression filters. Methods: First, a reference dose (RD) and low-dose (LD)-CBCT (X-ray volume imaging system, Elekta Co.) images were acquired with a reference dose of 86.2 mGy (weighted CT dose index: CTDIw) and various low doses of 1.4 to 43.1 mGy, respectively. Second, an automated rigid registration for three axes was performed for estimating setup errors between a planning CT image and the LD-CBCT images, which were processed by 6 noise suppression filters, i.e.,more » averaging filter (AF), median filter (MF), Gaussian filter (GF), bilateral filter (BF), edge preserving smoothing filter (EPF) and adaptive partial median filter (AMF). Third, residual errors representing the patient positioning accuracy were calculated as an Euclidean distance between the setup error vectors estimated using the LD-CBCT image and RD-CBCT image. Finally, the relationships between the residual error and CTDIw were obtained for 6 noise suppression filters, and then the CTDIw for LD-CBCT images processed by the noise suppression filters were measured at the same residual error, which was obtained with the RD-CBCT. This approach was applied to an anthropomorphic pelvic phantom and two cancer patients. Results: For the phantom, the exposure dose could be reduced from 61% (GF) to 78% (AMF) by applying the noise suppression filters to the CBCT images. The exposure dose in a prostate cancer case could be reduced from 8% (AF) to 61% (AMF), and the exposure dose in a lung cancer case could be reduced from 9% (AF) to 37% (AMF). Conclusion: Using noise suppression filters, particularly an adaptive partial median filter, could be feasible to decrease the additional exposure dose to patients in image guided patient positioning systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayler, E; Harrison, A; Eldredge-Hindy, H
Purpose: and Leipzig applicators (VLAs) are single-channel brachytherapy surface applicators used to treat skin lesions up to 2cm diameter. Source dwell times can be calculated and entered manually after clinical set-up or ultrasound. This procedure differs dramatically from CT-based planning; the novelty and unfamiliarity could lead to severe errors. To build layers of safety and ensure quality, a multidisciplinary team created a protocol and applied Failure Modes and Effects Analysis (FMEA) to the clinical procedure for HDR VLA skin treatments. Methods: team including physicists, physicians, nurses, therapists, residents, and administration developed a clinical procedure for VLA treatment. The procedure wasmore » evaluated using FMEA. Failure modes were identified and scored by severity, occurrence, and detection. The clinical procedure was revised to address high-scoring process nodes. Results: Several key components were added to the clinical procedure to minimize risk probability numbers (RPN): -Treatments are reviewed at weekly QA rounds, where physicians discuss diagnosis, prescription, applicator selection, and set-up. Peer review reduces the likelihood of an inappropriate treatment regime. -A template for HDR skin treatments was established in the clinical EMR system to standardize treatment instructions. This reduces the chances of miscommunication between the physician and planning physicist, and increases the detectability of an error during the physics second check. -A screen check was implemented during the second check to increase detectability of an error. -To reduce error probability, the treatment plan worksheet was designed to display plan parameters in a format visually similar to the treatment console display. This facilitates data entry and verification. -VLAs are color-coded and labeled to match the EMR prescriptions, which simplifies in-room selection and verification. Conclusion: Multidisciplinary planning and FMEA increased delectability and reduced error probability during VLA HDR Brachytherapy. This clinical model may be useful to institutions implementing similar procedures.« less
Kubota, Yoshiki; Hayashi, Hayato; Abe, Satoshi; Souda, Saki; Okada, Ryosuke; Ishii, Takayoshi; Tashiro, Mutsumi; Torikoshi, Masami; Kanai, Tatsuaki; Ohno, Tatsuya; Nakano, Takashi
2018-03-01
We developed a system for calculating patient positional displacement between digital radiography images (DRs) and digitally reconstructed radiography images (DRRs) to reduce patient radiation exposure, minimize individual differences between radiological technologists in patient positioning, and decrease positioning time. The accuracy of this system at five sites was evaluated with clinical data from cancer patients. The dependence of calculation accuracy on the size of the region of interest (ROI) and initial position was evaluated for clinical use. For a preliminary verification, treatment planning and positioning data from eight setup patterns using a head and neck phantom were evaluated. Following this, data from 50 patients with prostate, lung, head and neck, liver, or pancreatic cancer (n = 10 each) were evaluated. Root mean square errors (RMSEs) between the results calculated by our system and the reference positions were assessed. The reference positions were manually determined by two radiological technologists to best-matching positions with orthogonal DRs and DRRs in six axial directions. The ROI size dependence was evaluated by comparing RMSEs for three different ROI sizes. Additionally, dependence on initial position parameters was evaluated by comparing RMSEs for four position patterns. For the phantom study, the average (± standard deviation) translation error was 0.17 ± 0.05, rotation error was 0.17 ± 0.07, and ΔD was 0.14 ± 0.05. Using the optimal ROI size for each patient site, all cases of prostate, lung, and head and neck cancer with initial position parameters of 10 mm or under were acceptable in our tolerance. However, only four liver cancer cases and three pancreatic cancer cases were acceptable, because of low-reproducibility regions in the ROIs. Our system has clinical practicality for prostate, lung, and head and neck cancer cases. Additionally, our findings suggest ROI size dependence in some cases. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Geometric validation of MV topograms for patient localization on TomoTherapy
NASA Astrophysics Data System (ADS)
Blanco Kiely, Janid P.; White, Benjamin M.; Low, Daniel A.; Qi, Sharon X.
2016-01-01
Our goal was to geometrically validate the use of mega-voltage orthogonal scout images (MV topograms) as a fast and low-dose alternative to mega-voltage computed tomography (MVCT) for daily patient localization on the TomoTherapy system. To achieve this, anthropomorphic head and pelvis phantoms were imaged on a 16-slice kilo-voltage computed tomography (kVCT) scanner to synthesize kilo-voltage digitally reconstructed topograms (kV-DRT) in the Tomotherapy detector geometry. MV topograms were generated for couch speeds of 1-4 cm s-1 in 1 cm s-1 increments with static gantry angles in the anterior-posterior and left-lateral directions. Phantoms were rigidly translated in the anterior-posterior (AP), superior-inferior (SI), and lateral (LAT) directions to simulate potential setup errors. Image quality improvement was demonstrated by estimating the noise level in the unenhanced and enhanced MV topograms using a principle component analysis-based noise level estimation algorithm. Average noise levels for the head phantom were reduced by 2.53 HU (AP) and 0.18 HU (LAT). The pelvis phantom exhibited average noise level reduction of 1.98 HU (AP) and 0.48 HU (LAT). Mattes Mutual Information rigid registration was used to register enhanced MV topograms with corresponding kV-DRT. Registration results were compared to the known rigid displacements, which assessed the MV topogram localization’s sensitivity to daily positioning errors. Reduced noise levels in the MV topograms enhanced the registration results so that registration errors were <1 mm. The unenhanced head MV topograms had discrepancies <2.1 mm and the pelvis topograms had discrepancies <2.7 mm. Result were found to be consistent regardless of couch speed. In total, 64.7% of the head phantom MV topograms and 60.0% of the pelvis phantom MV topograms exactly measured the phantom offsets. These consistencies demonstrated the potential for daily patient positioning using MV topogram pairs in the context bony-anatomy based procedures such as total marrow irradiation, total body irradiation, and cranial spinal irradiation.
TH-AB-201-07: Filmless Treatment Localization QA for the CyberKnife System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gersh, J; Spectrum Medical Physics, LLC, Greenville, SC; Noll, M
Purpose: Accuray recommends daily evaluation of the treatment localization and delivery systems (TLS/TDS) of the CyberKnife. The vendor-provided solution is a Winston-Lutz-type test that evaluates film shadows from an orthogonal beam pair (known as AQA). Since film-based techniques are inherently inefficient and potentially inconsistent and uncertain, this study explores a method which provides a comparable test with greater efficiency, consistency, and certainty. This test uses the QAStereoChecker (QASC, Standard Imaging, Inc., Middleton, WI), a high-resolution flat-panel detector with coupled fiducial markers for automated alignment. Fiducial tracking is used to achieve high translational and rotational position accuracy. Methods: A plan ismore » generated delivering five circular beams, with varying orientation and angular incidence. Several numeric quantities are calculated for each beam: eccentricity, centroid location, area, major-axis length, minor-axis length, and orientation angle. Baseline values were acquired and repeatability of baselines analyzed. Next, errors were induced in the path calibration of the CK, and the test repeated. A correlative study was performed between the induced errors and quantities measured using the QASC. Based on vendor recommendations, this test should be able to detect a TLS/TDS offset of 0.5mm. Results: Centroid shifts correlated well with induced plane-perpendicular offsets (p < 0.01). Induced vertical shifts correlated best with the absolute average deviation of eccentricities (p < 0.05). The values of these metrics which correlated with the threshold of 0.5mm induced deviation were used as individual pass/fail criteria. These were then used to evaluate induced offsets which shifted the CK in all axes (a clinically-realistic offset), with a total offset of 0.5mm. This test provided high and specificity and sensitivity. Conclusion: From setup to analysis, this filmless TLS/TDS test requires 4 minutes, as opposed to 15–20 minutes for film-based methods. The techniques introduced can potentially isolate errors in individual joints of the CK robot. Spectrum Medical Physics, LLC of Greenville, SC has a consulting contract with Standard Imaging of Middleton, WI.« less
Muller, Bart; Hofbauer, Marcus; Rahnemai-Azar, Amir Ata; Wolf, Megan; Araki, Daisuke; Hoshino, Yuichi; Araujo, Paulo; Debski, Richard E; Irrgang, James J; Fu, Freddie H; Musahl, Volker
2016-01-01
The pivot shift test is a commonly used clinical examination by orthopedic surgeons to evaluate knee function following injury. However, the test can only be graded subjectively by the examiner. Therefore, the purpose of this study is to develop software for a computer tablet to quantify anterior translation of the lateral knee compartment during the pivot shift test. Based on the simple image analysis method, software for a computer tablet was developed with the following primary design constraint - the software should be easy to use in a clinical setting and it should not slow down an outpatient visit. Translation of the lateral compartment of the intact knee was 2.0 ± 0.2 mm and for the anterior cruciate ligament-deficient knee was 8.9 ± 0.9 mm (p < 0.001). Intra-tester (ICC range = 0.913 to 0.999) and inter-tester (ICC = 0.949) reliability were excellent for the repeatability assessments. Overall, the average percent error of measuring simulated translation of the lateral knee compartment with the tablet parallel to the monitor increased from 2.8% at 50 cm distance to 7.7% at 200 cm. Deviation from the parallel position of the tablet did not have a significant effect until a tablet angle of 45°. Average percent error during anterior translation of the lateral knee compartment of 6mm was 2.2% compared to 6.2% for 2 mm of translation. The software provides reliable, objective, and quantitative data on translation of the lateral knee compartment during the pivot shift test and meets the design constraints posed by the clinical setting.
Measurement-device-independent quantum key distribution for Scarani-Acin-Ribordy-Gisin 04 protocol
Mizutani, Akihiro; Tamaki, Kiyoshi; Ikuta, Rikizo; Yamamoto, Takashi; Imoto, Nobuyuki
2014-01-01
The measurement-device-independent quantum key distribution (MDI QKD) was proposed to make BB84 completely free from any side-channel in detectors. Like in prepare & measure QKD, the use of other protocols in MDI setting would be advantageous in some practical situations. In this paper, we consider SARG04 protocol in MDI setting. The prepare & measure SARG04 is proven to be able to generate a key up to two-photon emission events. In MDI setting we show that the key generation is possible from the event with single or two-photon emission by a party and single-photon emission by the other party, but the two-photon emission event by both parties cannot contribute to the key generation. On the contrary to prepare & measure SARG04 protocol where the experimental setup is exactly the same as BB84, the measurement setup for SARG04 in MDI setting cannot be the same as that for BB84 since the measurement setup for BB84 in MDI setting induces too many bit errors. To overcome this problem, we propose two alternative experimental setups, and we simulate the resulting key rate. Our study highlights the requirements that MDI QKD poses on us regarding with the implementation of a variety of QKD protocols. PMID:24913431
NASA Astrophysics Data System (ADS)
Sandri, P.
2017-12-01
The paper describes the alignment technique developed for the wavefront error measurement of ellipsoidal mirrors presenting a central hole. The achievement of a good alignment with a classic setup at the finite conjugates when mirrors are uncoated cannot be based on the identification and materialization at naked eye of the retro-reflected spot by the mirror under test as the intensity of the retro-reflected spot results to be ≈1E-3 of the intensity of the injected laser beam of the interferometer. We present the technique developed for the achievement of an accurate alignment in the setup at the finite conjugate even in condition of low intensity based on the use of an autocollimator adjustable in focus position and a small polished flat surface on the rear side of the mirror. The technique for the alignment has successfully been used for the optical test of the concave ellipsoidal mirrors of the METIS coronagraph of the ESA Solar Orbiter mission. The presented method results to be advantageous in terms of precision and of time saving also when the mirrors are reflective coated and integrated into their mechanical hardware.
Is ExacTrac x-ray system an alternative to CBCT for positioning patients with head and neck cancers?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clemente, Stefania; Chiumento, Costanza; Fiorentino, Alba
Purpose: To evaluate the usefulness of a six-degrees-of freedom (6D) correction using ExacTrac robotics system in patients with head-and-neck (HN) cancer receiving radiation therapy.Methods: Local setup accuracy was analyzed for 12 patients undergoing intensity-modulated radiation therapy (IMRT). Patient position was imaged daily upon two different protocols, cone-beam computed tomography (CBCT), and ExacTrac (ET) images correction. Setup data from either approach were compared in terms of both residual errors after correction and punctual displacement of selected regions of interest (Mandible, C2, and C6 vertebral bodies).Results: On average, both protocols achieved reasonably low residual errors after initial correction. The observed differences inmore » shift vectors between the two protocols showed that CBCT tends to weight more C2 and C6 at the expense of the mandible, while ET tends to average more differences among the different ROIs.Conclusions: CBCT, even without 6D correction capabilities, seems preferable to ET for better consistent alignment and the capability to see soft tissues. Therefore, in our experience, CBCT represents a benchmark for positioning head and neck cancer patients.« less
Short-Range Six-Axis Interferometer Controlled Positioning for Scanning Probe Microscopy
Lazar, Josef; Klapetek, Petr; Valtr, Miroslav; Hrabina, Jan; Buchta, Zdenek; Cip, Onrej; Cizek, Martin; Oulehla, Jindrich; Sery, Mojmir
2014-01-01
We present a design of a nanometrology measuring setup which is a part of the national standard instrumentation for nanometrology operated by the Czech Metrology Institute (CMI) in Brno, Czech Republic. The system employs a full six-axis interferometric position measurement of the sample holder consisting of six independent interferometers. Here we report on description of alignment issues and accurate adjustment of orthogonality of the measuring axes. Consequently, suppression of cosine errors and reduction of sensitivity to Abbe offset is achieved through full control in all six degrees of freedom. Due to the geometric configuration including a wide basis of the two units measuring in y-direction and the three measuring in z-direction the angle resolution of the whole setup is minimize to tens of nanoradians. Moreover, the servo-control of all six degrees of freedom allows to keep guidance errors below 100 nrad. This small range system is based on a commercial nanopositioning stage driven by piezoelectric transducers with the range (200 × 200 × 10) μm. Thermally compensated miniature interferometric units with fiber-optic light delivery and integrated homodyne detection system were developed especially for this system and serve as sensors for othogonality alignment. PMID:24451463
Kobler, Jan-Philipp; Schoppe, Michael; Lexow, G Jakob; Rau, Thomas S; Majdani, Omid; Kahrs, Lüder A; Ortmaier, Tobias
2014-11-01
Minimally invasive cochlear implantation is a surgical technique which requires drilling a canal from the mastoid surface toward the basal turn of the cochlea. The choice of an appropriate drilling strategy is hypothesized to have significant influence on the achievable targeting accuracy. Therefore, a method is presented to analyze the contribution of the drilling process and drilling tool to the targeting error isolated from other error sources. The experimental setup to evaluate the borehole accuracy comprises a drill handpiece attached to a linear slide as well as a highly accurate coordinate measuring machine (CMM). Based on the specific requirements of the minimally invasive cochlear access, three drilling strategies, mainly characterized by different drill tools, are derived. The strategies are evaluated by drilling into synthetic temporal bone substitutes containing air-filled cavities to simulate mastoid cells. Deviations from the desired drill trajectories are determined based on measurements using the CMM. Using the experimental setup, a total of 144 holes were drilled for accuracy evaluation. Errors resulting from the drilling process depend on the specific geometry of the tool as well as the angle at which the drill contacts the bone surface. Furthermore, there is a risk of the drill bit deflecting due to synthetic mastoid cells. A single-flute gun drill combined with a pilot drill of the same diameter provided the best results for simulated minimally invasive cochlear implantation, based on an experimental method that may be used for testing further drilling process improvements.
A framework for multi-criteria assessment of model enhancements
NASA Astrophysics Data System (ADS)
Francke, Till; Foerster, Saskia; Brosinsky, Arlena; Delgado, José; Güntner, Andreas; López-Tarazón, José A.; Bronstert, Axel
2016-04-01
Modellers are often faced with unsatisfactory model performance for a specific setup of a hydrological model. In these cases, the modeller may try to improve the setup by addressing selected causes for the model errors (i.e. data errors, structural errors). This leads to adding certain "model enhancements" (MEs), e.g. climate data based on more monitoring stations, improved calibration data, modifications in process formulations. However, deciding on which MEs to implement remains a matter of expert knowledge, guided by some sensitivity analysis at best. When multiple MEs have been implemented, a resulting improvement in model performance is not easily attributed, especially when considering different aspects of this improvement (e.g. better performance dynamics vs. reduced bias). In this study we present an approach for comparing the effect of multiple MEs in the face of multiple improvement aspects. A stepwise selection approach and structured plots help in addressing the multidimensionality of the problem. The approach is applied to a case study, which employs the meso-scale hydrosedimentological model WASA-SED for a sub-humid catchment. The results suggest that the effect of the MEs is quite diverse, with some MEs (e.g. augmented rainfall data) cause improvements for almost all aspects, while the effect of other MEs is restricted to few aspects or even deteriorate some. These specific results may not be generalizable. However, we suggest that based on studies like this, identifying the most promising MEs to implement may be facilitated.
NASA Astrophysics Data System (ADS)
Tucker, Emerson; Fotouhi, Javad; Unberath, Mathias; Lee, Sing Chun; Fuerst, Bernhard; Johnson, Alex; Armand, Mehran; Osgood, Greg M.; Navab, Nassir
2018-03-01
Pre-operative CT data is available for several orthopedic and trauma interventions, and is mainly used to identify injuries and plan the surgical procedure. In this work we propose an intuitive augmented reality environment allowing visualization of pre-operative data during the intervention, with an overlay of the optical information from the surgical site. The pre-operative CT volume is first registered to the patient by acquiring a single C-arm X-ray image and using 3D/2D intensity-based registration. Next, we use an RGBD sensor on the C-arm to fuse the optical information of the surgical site with patient pre-operative medical data and provide an augmented reality environment. The 3D/2D registration of the pre- and intra-operative data allows us to maintain a correct visualization each time the C-arm is repositioned or the patient moves. An overall mean target registration error (mTRE) and standard deviation of 5.24 +/- 3.09 mm was measured averaged over 19 C-arm poses. The proposed solution enables the surgeon to visualize pre-operative data overlaid with information from the surgical site (e.g. surgeon's hands, surgical tools, etc.) for any C-arm pose, and negates issues of line-of-sight and long setup times, which are present in commercially available systems.
A Vision-Based Self-Calibration Method for Robotic Visual Inspection Systems
Yin, Shibin; Ren, Yongjie; Zhu, Jigui; Yang, Shourui; Ye, Shenghua
2013-01-01
A vision-based robot self-calibration method is proposed in this paper to evaluate the kinematic parameter errors of a robot using a visual sensor mounted on its end-effector. This approach could be performed in the industrial field without external, expensive apparatus or an elaborate setup. A robot Tool Center Point (TCP) is defined in the structural model of a line-structured laser sensor, and aligned to a reference point fixed in the robot workspace. A mathematical model is established to formulate the misalignment errors with kinematic parameter errors and TCP position errors. Based on the fixed point constraints, the kinematic parameter errors and TCP position errors are identified with an iterative algorithm. Compared to the conventional methods, this proposed method eliminates the need for a robot-based-frame and hand-to-eye calibrations, shortens the error propagation chain, and makes the calibration process more accurate and convenient. A validation experiment is performed on an ABB IRB2400 robot. An optimal configuration on the number and distribution of fixed points in the robot workspace is obtained based on the experimental results. Comparative experiments reveal that there is a significant improvement of the measuring accuracy of the robotic visual inspection system. PMID:24300597
A two-factor error model for quantitative steganalysis
NASA Astrophysics Data System (ADS)
Böhme, Rainer; Ker, Andrew D.
2006-02-01
Quantitative steganalysis refers to the exercise not only of detecting the presence of hidden stego messages in carrier objects, but also of estimating the secret message length. This problem is well studied, with many detectors proposed but only a sparse analysis of errors in the estimators. A deep understanding of the error model, however, is a fundamental requirement for the assessment and comparison of different detection methods. This paper presents a rationale for a two-factor model for sources of error in quantitative steganalysis, and shows evidence from a dedicated large-scale nested experimental set-up with a total of more than 200 million attacks. Apart from general findings about the distribution functions found in both classes of errors, their respective weight is determined, and implications for statistical hypothesis tests in benchmarking scenarios or regression analyses are demonstrated. The results are based on a rigorous comparison of five different detection methods under many different external conditions, such as size of the carrier, previous JPEG compression, and colour channel selection. We include analyses demonstrating the effects of local variance and cover saturation on the different sources of error, as well as presenting the case for a relative bias model for between-image error.
Systems, methods and apparatus for verification of knowledge-based systems
NASA Technical Reports Server (NTRS)
Rash, James L. (Inventor); Gracinin, Denis (Inventor); Erickson, John D. (Inventor); Rouff, Christopher A. (Inventor); Hinchey, Michael G. (Inventor)
2010-01-01
Systems, methods and apparatus are provided through which in some embodiments, domain knowledge is translated into a knowledge-based system. In some embodiments, a formal specification is derived from rules of a knowledge-based system, the formal specification is analyzed, and flaws in the formal specification are used to identify and correct errors in the domain knowledge, from which a knowledge-based system is translated.
ERIC Educational Resources Information Center
LoCoco, Veronica Gonzalez-Mena
Three methods for second language data collection are compared: free composition, picture description and translation. The comparison is based on percentage of errors in a grammatical category and in a source category. Most results obtained from the free compositions and picture descriptions tended to be similar. Greater variation was found for…
Placidi, Lorenzo; Azario, Luigi; Mattiucci, Gian Carlo; Greco, Francesca; Damiani, Andrea; Mantini, Giovanna; Frascino, Vincenzo; Piermattei, Angelo; Valentini, Vincenzo; Balducci, Mario
2015-01-01
The purpose of this study was to investigate the magnitude and dosimetric relevance of translational and rotational shifts on IGRT prostate volumetric‐modulated arc therapy (VMAT) using Protura six degrees of freedom (DOF) Robotic Patient Positioning System. Patients with cT3aN0M0 prostate cancer, treated with VMAT simultaneous integrated boost (VMAT‐SIB), were enrolled. PTV2 was obtained adding 0.7 cm margin to seminal vesicles base (CTV2), while PTV1 adding to prostate (CTV1) 0.7 cm margin in all directions, except 1.2 cm, as caudal margin. A daily CBCT was acquired before dose delivery. The translational and rotational displacements were corrected through Protura Robotic Couch, collected and applied to the simulation CT to obtain a translated CT (tCT) and a rototranslated CT (rtCT) on which we recalculated the initial treatment plan (TP). We analyzed the correlation between dosimetric coverage, organs at risk (OAR) sparing, and translational or rotational displacements. The dosimetric impact of a rototranslational correction was calculated. From October 2012 to September 2013, a total of 263 CBCT scans from 12 patients were collected. Translational shifts were <5mm in 81% of patients and the rotational shifts were <2∘ in 93% of patient scans. The dosimetric analysis was performed on 172 CBCT scans and calculating 344 VMAT‐TP. Two significant linear correlations were observed between yaw and the V20 femoral heads and between pitch rotation and V50 rectum (p<0.001); rototranslational correction seems to impact more on PTV2 than on PTV1, especially when margins are reduced. Rotational errors are of dosimetric significance in sparing OAR and in target coverage. This is relevant for femoral heads and rectum because of major distance from isocenter, and for seminal vesicles because of irregular shape. No correlation was observed between translational and rotational errors. A study considering the intrafractional error and the deformable registration is ongoing. PACS number: 87.55.de PMID:26699314
Quantifying and correcting motion artifacts in MRI
NASA Astrophysics Data System (ADS)
Bones, Philip J.; Maclaren, Julian R.; Millane, Rick P.; Watts, Richard
2006-08-01
Patient motion during magnetic resonance imaging (MRI) can produce significant artifacts in a reconstructed image. Since measurements are made in the spatial frequency domain ('k-space'), rigid-body translational motion results in phase errors in the data samples while rotation causes location errors. A method is presented to detect and correct these errors via a modified sampling strategy, thereby achieving more accurate image reconstruction. The strategy involves sampling vertical and horizontal strips alternately in k-space and employs phase correlation within the overlapping segments to estimate translational motion. An extension, also based on correlation, is employed to estimate rotational motion. Results from simulations with computer-generated phantoms suggest that the algorithm is robust up to realistic noise levels. The work is being extended to physical phantoms. Provided that a reference image is available and the object is of limited extent, it is shown that a measure related to the amount of energy outside the support can be used to objectively compare the severity of motion-induced artifacts.
Murugesan, Yahini Prabha; Alsadoon, Abeer; Manoranjan, Paul; Prasad, P W C
2018-06-01
Augmented reality-based surgeries have not been successfully implemented in oral and maxillofacial areas due to limitations in geometric accuracy and image registration. This paper aims to improve the accuracy and depth perception of the augmented video. The proposed system consists of a rotational matrix and translation vector algorithm to reduce the geometric error and improve the depth perception by including 2 stereo cameras and a translucent mirror in the operating room. The results on the mandible/maxilla area show that the new algorithm improves the video accuracy by 0.30-0.40 mm (in terms of overlay error) and the processing rate to 10-13 frames/s compared to 7-10 frames/s in existing systems. The depth perception increased by 90-100 mm. The proposed system concentrates on reducing the geometric error. Thus, this study provides an acceptable range of accuracy with a shorter operating time, which provides surgeons with a smooth surgical flow. Copyright © 2018 John Wiley & Sons, Ltd.
Automatic co-registration of 3D multi-sensor point clouds
NASA Astrophysics Data System (ADS)
Persad, Ravi Ancil; Armenakis, Costas
2017-08-01
We propose an approach for the automatic coarse alignment of 3D point clouds which have been acquired from various platforms. The method is based on 2D keypoint matching performed on height map images of the point clouds. Initially, a multi-scale wavelet keypoint detector is applied, followed by adaptive non-maxima suppression. A scale, rotation and translation-invariant descriptor is then computed for all keypoints. The descriptor is built using the log-polar mapping of Gabor filter derivatives in combination with the so-called Rapid Transform. In the final step, source and target height map keypoint correspondences are determined using a bi-directional nearest neighbour similarity check, together with a threshold-free modified-RANSAC. Experiments with urban and non-urban scenes are presented and results show scale errors ranging from 0.01 to 0.03, 3D rotation errors in the order of 0.2° to 0.3° and 3D translation errors from 0.09 m to 1.1 m.
MEMS deformable mirror for wavefront correction of large telescopes
NASA Astrophysics Data System (ADS)
Manhart, Sigmund; Vdovin, Gleb; Collings, Neil; Sodnik, Zoran; Nikolov, Susanne; Hupfer, Werner
2017-11-01
A 50 mm diameter membrane mirror was designed and manufactured at TU Delft. It is made from bulk silicon by micromachining - a technology primarily used for micro-electromechanical systems (MEMS). The mirror unit is equipped with 39 actuator electrodes and can be electrostatically deformed to correct wavefront errors in optical imaging systems. Performance tests on the deformable mirror were carried out at Astrium GmbH using a breadboard setup with a wavefront sensor and a closed-loop control system. It was found that the deformable membrane mirror is well suited for correction of low order wavefront errors as they must be expected in lightweighted space telescopes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matney, J; Lian, J; Chera, B
2015-06-15
Introduction: Geometric uncertainties in daily patient setup can lead to variations in the planned dose, especially when using highly conformal techniques such as helical Tomotherapy. To account for the potential effect of geometric uncertainty, our clinical practice is to expand critical structures by 3mm expansion into planning risk volumes (PRV). The PRV concept assumes the spatial dose cloud is insensitive to patient positioning. However, no tools currently exist to determine if a Tomotherapy plan is robust to the effects of daily setup variation. We objectively quantified the impact of geometric uncertainties on the 3D doses to critical normal tissues duringmore » helical Tomotherapy. Methods: Using a Matlab-based program created and validated by Accuray (Madison, WI), the planned Tomotherapy delivery sinogram recalculated dose on shifted CT datasets. Ten head and neck patients were selected for analysis. To simulate setup uncertainty, the patient anatomy was shifted ±3mm in the longitudinal, lateral and vertical axes. For each potential shift, the recalculated doses to various critical normal tissues were compared to the doses delivered to the PRV in the original plan Results: 18 shifted scenarios created from Tomotherapy plans for three patients with head and neck cancers were analyzed. For all simulated setup errors, the maximum doses to the brainstem, spinal cord, parotids and cochlea were no greater than 0.6Gy of the respective original PRV maximum. Despite 3mm setup shifts, the minimum dose delivered to 95% of the CTVs and PTVs were always within 0.4Gy of the original plan. Conclusions: For head and neck sites treated with Tomotherapy, the use of a 3mm PRV expansion provide a reasonable estimate of the dosimetric effects of 3mm setup uncertainties. Similarly, target coverage appears minimally effected by a 3mm setup uncertainty. Data from a larger number of patients will be presented. Future work will include other anatomical sites.« less
SU-F-P-23: Setup Uncertainties for the Lung Stereotactic Body Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Q; Vigneri, P; Madu, C
2016-06-15
Purpose: The Exactrack X-ray system with six degree-of-freedom (6DoF) adjustment ability can be used for setup of lung stereotactic body radiation therapy. The setup uncertainties from ExacTrack 6D system were analyzed. Methods: The Exactrack X-ray 6D image guided radiotherapy system is used in our clinic. The system is an integration of 2 subsystems: (1): an infrared based optical position system and (2) a radiography kV x-ray imaging system. The infrared system monitors reflective body markers on the patient’s skin to assistant in the initial setup. The radiographic kV devices were used for patient positions verification and adjustment. The position verificationmore » was made by fusing the radiographs with the digitally reconstructed radiograph (DRR) images generated by simulation CT images using 6DoF fusion algorithms. Those results were recorded in our system. Gaussian functions were used to fit the data. Results: For 37 lung SBRT patients, the image registration results for the initial setup by using surface markers and for the verifications, were measured. The results were analyzed for 143 treatments. The mean values for the lateral, longitudinal, vertical directions were 0.1, 0.3 and 0.3mm, respectively. The standard deviations for the lateral, longitudinal and vertical directions were 0.62, 0.78 and 0.75mm respectively. The mean values for the rotations around lateral, longitudinal and vertical directions were 0.1, 0.2 and 0.4 degrees respectively, with standard deviations of 0.36, 0.34, and 0.42 degrees. Conclusion: The setup uncertainties for the lung SBRT cases by using Exactrack 6D system were analyzed. The standard deviations of the setup errors were within 1mm for all three directions, and the standard deviations for rotations were within 0.5 degree.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Youngjun; Li, Ruijiang; Na, Yong Hum
2014-12-15
Purpose: 3D optical surface imaging has been applied to patient positioning in radiation therapy (RT). The optical patient positioning system is advantageous over conventional method using cone-beam computed tomography (CBCT) in that it is radiation free, frameless, and is capable of real-time monitoring. While the conventional radiographic method uses volumetric registration, the optical system uses surface matching for patient alignment. The relative accuracy of these two methods has not yet been sufficiently investigated. This study aims to investigate the theoretical accuracy of the surface registration based on a simulation study using patient data. Methods: This study compares the relative accuracymore » of surface and volumetric registration in head-and-neck RT. The authors examined 26 patient data sets, each consisting of planning CT data acquired before treatment and patient setup CBCT data acquired at the time of treatment. As input data of surface registration, patient’s skin surfaces were created by contouring patient skin from planning CT and treatment CBCT. Surface registration was performed using the iterative closest points algorithm by point–plane closest, which minimizes the normal distance between source points and target surfaces. Six degrees of freedom (three translations and three rotations) were used in both surface and volumetric registrations and the results were compared. The accuracy of each method was estimated by digital phantom tests. Results: Based on the results of 26 patients, the authors found that the average and maximum root-mean-square translation deviation between the surface and volumetric registrations were 2.7 and 5.2 mm, respectively. The residual error of the surface registration was calculated to have an average of 0.9 mm and a maximum of 1.7 mm. Conclusions: Surface registration may lead to results different from those of the conventional volumetric registration. Only limited accuracy can be achieved for patient positioning with an approach based solely on surface information.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, H; Chetty, I; Wen, N
Purpose: Determine systematic deviations between 2D/3D and 3D/3D image registrations with six degrees of freedom (6DOF) for various imaging modalities and registration algorithms on the Varian Edge Linac. Methods: The 6DOF systematic errors were assessed by comparing automated 2D/3D (kV/MV vs. CT) with 3D/3D (CBCT vs. CT) image registrations from different imaging pairs, CT slice thicknesses, couch angles, similarity measures, etc., using a Rando head and a pelvic phantom. The 2D/3D image registration accuracy was evaluated at different treatment sites (intra-cranial and extra-cranial) by statistically analyzing 2D/3D pre-treatment verification against 3D/3D localization of 192 Stereotactic Radiosurgery/Stereotactic Body Radiation Therapy treatmentmore » fractions for 88 patients. Results: The systematic errors of 2D/3D image registration using kV-kV, MV-kV and MV-MV image pairs using 0.8 mm slice thickness CT images were within 0.3 mm and 0.3° for translations and rotations with a 95% confidence interval (CI). No significant difference between 2D/3D and 3D/3D image registrations (P>0.05) was observed for target localization at various CT slice thicknesses ranging from 0.8 to 3 mm. Couch angles (30, 45, 60 degree) did not impact the accuracy of 2D/3D image registration. Using pattern intensity with content image filtering was recommended for 2D/3D image registration to achieve the best accuracy. For the patient study, translational error was within 2 mm and rotational error was within 0.6 degrees in terms of 95% CI for 2D/3D image registration. For intra-cranial sites, means and std. deviations of translational errors were −0.2±0.7, 0.04±0.5, 0.1±0.4 mm for LNG, LAT, VRT directions, respectively. For extra-cranial sites, means and std. deviations of translational errors were - 0.04±1, 0.2±1, 0.1±1 mm for LNG, LAT, VRT directions, respectively. 2D/3D image registration uncertainties for intra-cranial and extra-cranial sites were comparable. Conclusion: The Varian Edge radiosurgery 6DOF-based system, can perform 2D/3D image registration with high accuracy for target localization in image-guided stereotactic radiosurgery. The work was supported by a Research Scholar Grant, RSG-15-137-01-CCE from the American Cancer Society.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, B; GLA University, Mathura, UP; Manikandan, A
2016-06-15
Purpose: Six dimensional positional shifts (translational and rotational) determined by a volumetric imaging system were mathematically combined and incorporated as simple translational shifts and the resultant impact on dose characteristics was studied. Methods: Thirty patients who underwent either single fraction (12 Gy) or five fractions (5 Gy per fraction) stereotactic treatments were included in this study. They were immobilized using a double layered thermoplastic mask from BrainLAB. Isocenter matching was done using infrared marker of ExacTrac. An initial cone beam CT (CBCT) gave positional shifts in 6-dimensions that were applied through 6-D motion enabled couch. A verification CBCT was donemore » following corrections before treatment. These 6-D positional shifts determined at each imaging session from the first CBCT were mathematically combined to give three simple translational shifts. Doses were recalculated in the patient matrix with these positional errors present by moving the whole image dataset. Doses were also recalculated after second CBCT with only residual errors present. PTV dose statistics were compared. Results: For the approved plans V100%(PTV), V100%(GTV), D95%(PTV), D95%(GTV), D1%(PTV) and D1%(GTV) were 96.2±3.0%, 98.2±1.4%, 102%±1.7%, 103±1.2%, 107.9±8.9% and 109.3±7.5% of prescription dose respectively. With the positional errors present (after 1st CBCT) the corresponding values were 86.7±4.9%, 91.3±2.9%, 89.6±4.2%, 95.9±3.7%, 108.3±9.9% and 108.6±4.5%. Post-correction (after 2nd CBCT) with only residual errors present, values were 94.5±5.7%, 97.3±2.9%, 99.3%±3.2%, 102%±2.1%, 107.6±8.5% and 109.0±7.6% respectively. Significant and nominal OAR dose variation was observed between pre- and post-table corrections. Conclusion: Positional errors significantly affect PTV dose statistics. They need to be corrected before delivery of stereotactic treatments although the magnitude of dose changes can vary from patient-to-patient depending on the tumor location. As expected after the table corrections, residual errors result in insignificant dose deviations. For frameless stereotactic treatments having a six-dimensional motion enabled couch is highly recommended to reduce quantum of dose deviations.« less
Haliasos, N; Rezajooi, K; O'neill, K S; Van Dellen, J; Hudovsky, Anita; Nouraei, Sar
2010-04-01
Clinical coding is the translation of documented clinical activities during an admission to a codified language. Healthcare Resource Groupings (HRGs) are derived from coding data and are used to calculate payment to hospitals in England, Wales and Scotland and to conduct national audit and benchmarking exercises. Coding is an error-prone process and an understanding of its accuracy within neurosurgery is critical for financial, organizational and clinical governance purposes. We undertook a multidisciplinary audit of neurosurgical clinical coding accuracy. Neurosurgeons trained in coding assessed the accuracy of 386 patient episodes. Where clinicians felt a coding error was present, the case was discussed with an experienced clinical coder. Concordance between the initial coder-only clinical coding and the final clinician-coder multidisciplinary coding was assessed. At least one coding error occurred in 71/386 patients (18.4%). There were 36 diagnosis and 93 procedure errors and in 40 cases, the initial HRG changed (10.4%). Financially, this translated to pound111 revenue-loss per patient episode and projected to pound171,452 of annual loss to the department. 85% of all coding errors were due to accumulation of coding changes that occurred only once in the whole data set. Neurosurgical clinical coding is error-prone. This is financially disadvantageous and with the coding data being the source of comparisons within and between departments, coding inaccuracies paint a distorted picture of departmental activity and subspecialism in audit and benchmarking. Clinical engagement improves accuracy and is encouraged within a clinical governance framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Jeff, E-mail: jmeye3@utsouthwestern.ed; Bluett, Jaques; Amos, Richard
Purpose: Conventional proton therapy with passively scattered beams is used to treat a number of tumor sites, including prostate cancer. Spot scanning proton therapy is a treatment delivery means that improves conformal coverage of the clinical target volume (CTV). Placement of individual spots within a target is dependent on traversed tissue density. Errors in patient alignment perturb dose distributions. Moreover, there is a need for a rational planning approach that can mitigate the dosimetric effect of random alignment errors. We propose a treatment planning approach and then analyze the consequences of various simulated alignment errors on prostate treatments. Methods andmore » Materials: Ten control patients with localized prostate cancer underwent treatment planning for spot scanning proton therapy. After delineation of the clinical target volume, a scanning target volume (STV) was created to guide dose coverage. Errors in patient alignment in two axes (rotational and yaw) as well as translational errors in the anteroposterior direction were then simulated, and dose to the CTV and normal tissues were reanalyzed. Results: Coverage of the CTV remained high even in the setting of extreme rotational and yaw misalignments. Changes in the rectum and bladder V45 and V70 were similarly minimal, except in the case of translational errors, where, as a result of opposed lateral beam arrangements, much larger dosimetric perturbations were observed. Conclusions: The concept of the STV as applied to spot scanning radiation therapy and as presented in this report leads to robust coverage of the CTV even in the setting of extreme patient misalignments.« less
Sensitivity analysis of periodic errors in heterodyne interferometry
NASA Astrophysics Data System (ADS)
Ganguly, Vasishta; Kim, Nam Ho; Kim, Hyo Soo; Schmitz, Tony
2011-03-01
Periodic errors in heterodyne displacement measuring interferometry occur due to frequency mixing in the interferometer. These nonlinearities are typically characterized as first- and second-order periodic errors which cause a cyclical (non-cumulative) variation in the reported displacement about the true value. This study implements an existing analytical periodic error model in order to identify sensitivities of the first- and second-order periodic errors to the input parameters, including rotational misalignments of the polarizing beam splitter and mixing polarizer, non-orthogonality of the two laser frequencies, ellipticity in the polarizations of the two laser beams, and different transmission coefficients in the polarizing beam splitter. A local sensitivity analysis is first conducted to examine the sensitivities of the periodic errors with respect to each input parameter about the nominal input values. Next, a variance-based approach is used to study the global sensitivities of the periodic errors by calculating the Sobol' sensitivity indices using Monte Carlo simulation. The effect of variation in the input uncertainty on the computed sensitivity indices is examined. It is seen that the first-order periodic error is highly sensitive to non-orthogonality of the two linearly polarized laser frequencies, while the second-order error is most sensitive to the rotational misalignment between the laser beams and the polarizing beam splitter. A particle swarm optimization technique is finally used to predict the possible setup imperfections based on experimentally generated values for periodic errors.
NASA Astrophysics Data System (ADS)
Guha, Daipayan; Jakubovic, Raphael; Gupta, Shaurya; Yang, Victor X. D.
2017-02-01
Computer-assisted navigation (CAN) may guide spinal surgeries, reliably reducing screw breach rates. Definitions of screw breach, if reported, vary widely across studies. Absolute quantitative error is theoretically a more precise and generalizable metric of navigation accuracy, but has been computed variably and reported in fewer than 25% of clinical studies of CAN-guided pedicle screw accuracy. We reviewed a prospectively-collected series of 209 pedicle screws placed with CAN guidance to characterize the correlation between clinical pedicle screw accuracy, based on postoperative imaging, and absolute quantitative navigation accuracy. We found that acceptable screw accuracy was achieved for significantly fewer screws based on 2mm grade vs. Heary grade, particularly in the lumbar spine. Inter-rater agreement was good for the Heary classification and moderate for the 2mm grade, significantly greater among radiologists than surgeon raters. Mean absolute translational/angular accuracies were 1.75mm/3.13° and 1.20mm/3.64° in the axial and sagittal planes, respectively. There was no correlation between clinical and absolute navigation accuracy, in part because surgeons appear to compensate for perceived translational navigation error by adjusting screw medialization angle. Future studies of navigation accuracy should therefore report absolute translational and angular errors. Clinical screw grades based on post-operative imaging, if reported, may be more reliable if performed in multiple by radiologist raters.
Quantum-classical boundary for precision optical phase estimation
NASA Astrophysics Data System (ADS)
Birchall, Patrick M.; O'Brien, Jeremy L.; Matthews, Jonathan C. F.; Cable, Hugo
2017-12-01
Understanding the fundamental limits on the precision to which an optical phase can be estimated is of key interest for many investigative techniques utilized across science and technology. We study the estimation of a fixed optical phase shift due to a sample which has an associated optical loss, and compare phase estimation strategies using classical and nonclassical probe states. These comparisons are based on the attainable (quantum) Fisher information calculated per number of photons absorbed or scattered by the sample throughout the sensing process. We find that for a given number of incident photons upon the unknown phase, nonclassical techniques in principle provide less than a 20 % reduction in root-mean-square error (RMSE) in comparison with ideal classical techniques in multipass optical setups. Using classical techniques in a different optical setup that we analyze, which incorporates additional stages of interference during the sensing process, the achievable reduction in RMSE afforded by nonclassical techniques falls to only ≃4 % . We explain how these conclusions change when nonclassical techniques are compared to classical probe states in nonideal multipass optical setups, with additional photon losses due to the measurement apparatus.
Tao, Qian; Milles, Julien; VAN Huls VAN Taxis, Carine; Lamb, Hildo J; Reiber, Johan H C; Zeppenfeld, Katja; VAN DER Geest, Rob J
2012-01-01
Integration of preprocedural delayed enhanced magnetic resonance imaging (DE-MRI) with electroanatomical voltage mapping (EAVM) may provide additional high-resolution substrate information for catheter ablation of scar-related ventricular tachycardias (VT). Accurate and fast image integration of DE-MRI with EAVM is desirable for MR-guided ablation. Twenty-six VT patients with large transmural scar underwent catheter ablation and preprocedural DE-MRI. With different registration models and EAVM input, 3 image integration methods were evaluated and compared to the commercial registration module CartoMerge. The performance was evaluated both in terms of distance measure that describes surface matching, and correlation measure that describes actual scar correspondence. Compared to CartoMerge, the method that uses the translation-and-rotation model and high-density EAVM input resulted in a registration error of 4.32±0.69 mm as compared to 4.84 ± 1.07 (P <0.05); the method that uses the translation model and high-density EAVM input resulted in a registration error of 4.60 ± 0.65 mm (P = NS); and the method that uses the translation model and a single anatomical landmark input resulted in a registration error of 6.58 ± 1.63 mm (P < 0.05). No significant difference in scar correlation was observed between all 3 methods and CartoMerge (P = NS). During VT ablation procedures, accurate integration of EAVM and DE-MRI can be achieved using a translation registration model and a single anatomical landmark. This model allows for image integration in minimal mapping time and is likely to reduce fluoroscopy time and increase procedure efficacy. © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Šiaudinytė, Lauryna; Molnar, Gabor; Köning, Rainer; Flügge, Jens
2018-05-01
Industrial application versatility of interferometric encoders increases the urge to measure several degrees of freedom. A novel grating interferometer containing a commercially available, minimized Michelson interferometer and three fibre-fed measurement heads is presented in this paper. Moreover, the arrangement is designed for simultaneous displacement measurements in two perpendicular planes. In the proposed setup, beam splitters are located in the fibre heads, therefore the grating is separated from the light source and the photo detector, which influence measurement results by generated heat. The operating principle of the proposed system as well as error sources influencing measurement results are discussed in this paper. Further, the benefits and shortcomings of the setup are presented. A simple Littrow-configuration-based design leads to a compact-size interferometric encoder suitable for multidimensional measurements.
Plant proteomics in India and Nepal: current status and challenges ahead.
Deswal, Renu; Gupta, Ravi; Dogra, Vivek; Singh, Raksha; Abat, Jasmeet Kaur; Sarkar, Abhijit; Mishra, Yogesh; Rai, Vandana; Sreenivasulu, Yelam; Amalraj, Ramesh Sundar; Raorane, Manish; Chaudhary, Ram Prasad; Kohli, Ajay; Giri, Ashok Prabhakar; Chakraborty, Niranjan; Zargar, Sajad Majeed; Agrawal, Vishwanath Prasad; Agrawal, Ganesh Kumar; Job, Dominique; Renaut, Jenny; Rakwal, Randeep
2013-10-01
Plant proteomics has made tremendous contributions in understanding the complex processes of plant biology. Here, its current status in India and Nepal is discussed. Gel-based proteomics is predominantly utilized on crops and non-crops to analyze majorly abiotic (49 %) and biotic (18 %) stress, development (11 %) and post-translational modifications (7 %). Rice is the most explored system (36 %) with major focus on abiotic mainly dehydration (36 %) stress. In spite of expensive proteomics setup and scarcity of trained workforce, output in form of publications is encouraging. To boost plant proteomics in India and Nepal, researchers have discussed ground level issues among themselves and with the International Plant Proteomics Organization (INPPO) to act in priority on concerns like food security. Active collaboration may help in translating this knowledge to fruitful applications.
Why a simulation system doesn`t match the plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, R.
1998-03-01
Process simulations, or mathematical models, are widely used by plant engineers and planners to obtain a better understanding of a particular process. These simulations are used to answer questions such as how can feed rate be increased, how can yields be improved, how can energy consumption be decreased, or how should the available independent variables be set to maximize profit? Although current process simulations are greatly improved over those of the `70s and `80s, there are many reasons why a process simulation doesn`t match the plant. Understanding these reasons can assist in using simulations to maximum advantage. The reasons simulationsmore » do not match the plant may be placed in three main categories: simulation effects or inherent error, sampling and analysis effects of measurement error, and misapplication effects or set-up error.« less
Experimental implementation of the Bacon-Shor code with 10 entangled photons
NASA Astrophysics Data System (ADS)
Gimeno-Segovia, Mercedes; Sanders, Barry C.
The number of qubits that can be effectively controlled in quantum experiments is growing, reaching a regime where small quantum error-correcting codes can be tested. The Bacon-Shor code is a simple quantum code that protects against the effect of an arbitrary single-qubit error. In this work, we propose an experimental implementation of said code in a post-selected linear optical setup, similar to the recently reported 10-photon GHZ generation experiment. In the procedure we propose, an arbitrary state is encoded into the protected Shor code subspace, and after undergoing a controlled single-qubit error, is successfully decoded. BCS appreciates financial support from Alberta Innovates, NSERC, China's 1000 Talent Plan and the Institute for Quantum Information and Matter, which is an NSF Physics Frontiers Center(NSF Grant PHY-1125565) with support of the Moore Foundation(GBMF-2644).
Managing numerical errors in random sequential adsorption
NASA Astrophysics Data System (ADS)
Cieśla, Michał; Nowak, Aleksandra
2016-09-01
Aim of this study is to examine the influence of a finite surface size and a finite simulation time on a packing fraction estimated using random sequential adsorption simulations. The goal of particular interest is providing hints on simulation setup to achieve desired level of accuracy. The analysis is based on properties of saturated random packing of disks on continuous and flat surfaces of different sizes.
The Effect of Defense Contracting Requirements on Just-In-Time Implementation
1988-12-01
and purchasing efforts negatively impacted. The role of I11 contract uncertainty was weakest and had mixed effects. Difficult negotiations prior to...they recommend differs somewhat. Shingo stresses the use of setup reduction and layout changes early in his sequence with production leveling occurring...consciousness toward quality improvement, and use of foolproof mechanisms to prevent errors), higher level government quality standards stress separate
Balter, James M; Antonuk, Larry E
2008-01-01
In-room radiography is not a new concept for image-guided radiation therapy. Rapid advances in technology, however, have made this positioning method convenient, and thus radiograph-based positioning has propagated widely. The paradigms for quality assurance of radiograph-based positioning include imager performance, systems integration, infrastructure, procedure documentation and testing, and support for positioning strategy implementation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keeling, V; Jin, H; Hossain, S
2015-06-15
Purpose: To evaluate patient setup accuracy and quantify individual and cumulative positioning uncertainties associated with different hardware and software components of the stereotactic radiotherapy (SRS/SRT) with the frameless-6D-ExacTrac system. Methods: A statistical model was used to evaluate positioning uncertainties of the different components of SRS/SRT treatment with the BrainLAB 6D-ExacTrac system using the positioning shifts of 35 patients having cranial lesions (49 total lesions treated in 1, 3, 5 fractions). All these patients were immobilized with rigid head-and-neck masks, simulated with BrainLAB-localizer and planned with iPlan treatment planning system. Infrared imaging (IR) was used initially to setup patients. Then, stereoscopicmore » x-ray images (XC) were acquired and registered to corresponding digitally-reconstructed-radiographs using bony-anatomy matching to calculate 6D-translational and rotational shifts. When the shifts were within tolerance (0.7mm and 1°), treatment was initiated. Otherwise corrections were applied and additional x-rays were acquired (XV) to verify that patient position was within tolerance. Results: The uncertainties from the mask, localizer, IR-frame, x-ray imaging, MV and kV isocentricity were quantified individually. Mask uncertainty (Translational: Lateral, Longitudinal, Vertical; Rotational: Pitch, Roll, Yaw) was the largest and varied with patients in the range (−1.05−1.50mm, −5.06–3.57mm, −5.51−3.49mm; −1.40−2.40°, −1.24−1.74°, and −2.43−1.90°) obtained from mean of XC shifts for each patient. Setup uncertainty in IR positioning (0.88,2.12,1.40mm, and 0.64,0.83,0.96°) was extracted from standard-deviation of XC. Systematic uncertainties of the localizer (−0.03,−0.01,0.03mm, and −0.03,0.00,−0.01°) and frame (0.18,0.25,−1.27mm,−0.32,0.18, and 0.47°) were extracted from means of all XV setups and mean of all XC distributions, respectively. Uncertainties in isocentricity of the MV radiotherapy machine were (0.27,0.24,0.34mm) and kV-imager (0.15,−0.4,0.21mm). Conclusion: A statistical model was developed to evaluate the individual and cumulative systematic and random uncertainties induced by the different hardware and software components of the 6D-ExacTrac-system. The immobilization mask was associated with the largest positioning uncertainty.« less
NASA Astrophysics Data System (ADS)
Bhattacharyya, Kaustuve; den Boef, Arie; Noot, Marc; Adam, Omer; Grzela, Grzegorz; Fuchs, Andreas; Jak, Martin; Liao, Sax; Chang, Ken; Couraudon, Vincent; Su, Eason; Tzeng, Wilson; Wang, Cathy; Fouquet, Christophe; Huang, Guo-Tsai; Chen, Kai-Hsiung; Wang, Y. C.; Cheng, Kevin; Ke, Chih-Ming; Terng, L. G.
2017-03-01
The optical coupling between gratings in diffraction-based overlay triggers a swing-curve1,6 like response of the target's signal contrast and overlay sensitivity through measurement wavelengths and polarizations. This means there are distinct measurement recipes (wavelength and polarization combinations) for a given target where signal contrast and overlay sensitivity are located at the optimal parts of the swing-curve that can provide accurate and robust measurements. Some of these optimal recipes can be the ideal choices of settings for production. The user has to stay away from the non-optimal recipe choices (that are located on the undesirable parts of the swing-curve) to avoid possibilities to make overlay measurement error that can be sometimes (depending on the amount of asymmetry and stack) in the order of several "nm". To accurately identify these optimum operating areas of the swing-curve during an experimental setup, one needs to have full-flexibility in wavelength and polarization choices. In this technical publication, a diffraction-based overlay (DBO) measurement tool with many choices of wavelengths and polarizations is utilized on advanced production stacks to study swing-curves. Results show that depending on the stack and the presence of asymmetry, the swing behavior can significantly vary and a solid procedure is needed to identify a recipe during setup that is robust against variations in stack and grating asymmetry. An approach is discussed on how to use this knowledge of swing-curve to identify recipe that is not only accurate at setup, but also robust over the wafer, and wafer-to-wafer. KPIs are reported in run-time to ensure the quality / accuracy of the reading (basically acting as an error bar to overlay measurement).
Wetmore, Douglas; Goldberg, Andrew; Gandhi, Nishant; Spivack, John; McCormick, Patrick; DeMaria, Samuel
2016-10-01
Anaesthesiologists work in a high stress, high consequence environment in which missed steps in preparation may lead to medical errors and potential patient harm. The pre-anaesthetic induction period has been identified as a time in which medical errors can occur. The Anesthesia Patient Safety Foundation has developed a Pre-Anesthetic Induction Patient Safety (PIPS) checklist. We conducted this study to test the effectiveness of this checklist, when embedded in our institutional Anesthesia Information Management System (AIMS), on resident performance in a simulated environment. Using a randomised, controlled, observer-blinded design, we compared performance of anaesthesiology residents in a simulated operating room under production pressure using a checklist in completing a thorough pre-anaesthetic induction evaluation and setup with that of residents with no checklist. The checklist was embedded in the simulated operating room's electronic medical record. Data for 38 anaesthesiology residents shows a statistically significant difference in performance in pre-anaesthetic setup and evaluation as scored by blinded raters (maximum score 22 points), with the checklist group performing better by 7.8 points (p<0.01). The effects of gender and year of residency on total score were not significant. Simulation duration (time to anaesthetic agent administration) was increased significantly by the use of the checklist. Required use of a pre-induction checklist improves anaesthesiology resident performance in a simulated environment. The PIPS checklist as an integrated part of a departmental AIMS warrant further investigation as a quality measure. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Y; Macq, B; Bondar, L
Purpose: To quantify the accuracy in predicting the Bragg peak position using simulated in-room measurements of prompt gamma (PG) emissions for realistic treatment error scenarios that combine several sources of errors. Methods: Prompt gamma measurements by a knife-edge slit camera were simulated using an experimentally validated analytical simulation tool. Simulations were performed, for 143 treatment error scenarios, on an anthropomorphic phantom and a pencil beam scanning plan for nasal cavity. Three types of errors were considered: translation along each axis, rotation around each axis, and CT-calibration errors with magnitude ranging respectively, between −3 and 3 mm, −5 and 5 degrees,more » and between −5 and +5%. We investigated the correlation between the Bragg peak (BP) shift and the horizontal shift of PG profiles. The shifts were calculated between the planned (reference) position and the position by the error scenario. The prediction error for one spot was calculated as the absolute difference between the PG profile shift and the BP shift. Results: The PG shift was significantly and strongly correlated with the BP shift for 92% of the cases (p<0.0001, Pearson correlation coefficient R>0.8). Moderate but significant correlations were obtained for all cases that considered only CT-calibration errors and for 1 case that combined translation and CT-errors (p<0.0001, R ranged between 0.61 and 0.8). The average prediction errors for the simulated scenarios ranged between 0.08±0.07 and 1.67±1.3 mm (grand mean 0.66±0.76 mm). The prediction error was moderately correlated with the value of the BP shift (p=0, R=0.64). For the simulated scenarios the average BP shift ranged between −8±6.5 mm and 3±1.1 mm. Scenarios that considered combinations of the largest treatment errors were associated with large BP shifts. Conclusion: Simulations of in-room measurements demonstrate that prompt gamma profiles provide reliable estimation of the Bragg peak position for complex error scenarios. Yafei Xing and Luiza Bondar are funded by BEWARE grants from the Walloon Region. The work presents simulations results for a prompt gamma camera prototype developed by IBA.« less
A rate-controlled teleoperator task with simulated transport delays
NASA Technical Reports Server (NTRS)
Pennington, J. E.
1983-01-01
A teleoperator-system simulation was used to examine the effects of two control modes (joint-by-joint and resolved-rate), a proximity-display method, and time delays (up to 2 sec) on the control of a five-degree-of-freedom manipulator performing a probe-in-hole alignment task. Four subjects used proportional rotational control and discrete (on-off) translation control with computer-generated visual displays. The proximity display enabled subjects to separate rotational errors from displacement (translation) errors; thus, when the proximity display was used with resolved-rate control, the simulated task was trivial. The time required to perform the simulated task increased linearly with time delay, but time delays had no effect on alignment accuracy. Based on the results of this simulation, several future studies are recommended.
Entropy of space-time outcome in a movement speed-accuracy task.
Hsieh, Tsung-Yu; Pacheco, Matheus Maia; Newell, Karl M
2015-12-01
The experiment reported was set-up to investigate the space-time entropy of movement outcome as a function of a range of spatial (10, 20 and 30 cm) and temporal (250-2500 ms) criteria in a discrete aiming task. The variability and information entropy of the movement spatial and temporal errors considered separately increased and decreased on the respective dimension as a function of an increment of movement velocity. However, the joint space-time entropy was lowest when the relative contribution of spatial and temporal task criteria was comparable (i.e., mid-range of space-time constraints), and it increased with a greater trade-off between spatial or temporal task demands, revealing a U-shaped function across space-time task criteria. The traditional speed-accuracy functions of spatial error and temporal error considered independently mapped to this joint space-time U-shaped entropy function. The trade-off in movement tasks with joint space-time criteria is between spatial error and timing error, rather than movement speed and accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.
Digital implementation of a laser frequency stabilisation technique in the telecommunications band
NASA Astrophysics Data System (ADS)
Jivan, Pritesh; van Brakel, Adriaan; Manuel, Rodolfo Martínez; Grobler, Michael
2016-02-01
Laser frequency stabilisation in the telecommunications band was realised using the Pound-Drever-Hall (PDH) error signal. The transmission spectrum of the Fabry-Perot cavity was used as opposed to the traditionally used reflected spectrum. A comparison was done using an analogue as well as a digitally implemented system. This study forms part of an initial step towards developing a portable optical time and frequency standard. The frequency discriminator used in the experimental setup was a fibre-based Fabry-Perot etalon. The phase sensitive system made use of the optical heterodyne technique to detect changes in the phase of the system. A lock-in amplifier was used to filter and mix the input signals to generate the error signal. This error signal may then be used to generate a control signal via a PID controller. An error signal was realised at a wavelength of 1556 nm which correlates to an optical frequency of 1.926 THz. An implementation of the analogue PDH technique yielded an error signal with a bandwidth of 6.134 GHz, while a digital implementation yielded a bandwidth of 5.774 GHz.
ERIC Educational Resources Information Center
Nuruzzaman, Mohammed; Islam, A. B. M. Shafiqul; Shuchi, Israt Jahan
2018-01-01
The present study investigates the writing errors of ninety Saudi non-English major undergraduate students of different proficiency levels from three faculties, who studied English as a foundation course at the English Language Center in the College of Languages &Translation at King Khalid University, Saudi Arabia in the academic year 2016-17.…
ERIC Educational Resources Information Center
Al Karazoun, Ghada Abdelmajid
2016-01-01
This study investigated some linguistic errors committed by Jordanian EFL undergraduate students when translating news headlines in Jordanian newspapers from Arabic to English and vice versa. The data of the study was collected through a test composed of (30) English news headlines and (30) Arabic ones covering various areas of news occurring in a…
Roghani, Taybeh; Khalkhali Zavieh, Minoo; Rahimi, Abbas; Talebian, Saeed; Manshadi, Farideh Dehghan; Akbarzadeh Baghban, Alireza; King, Nicole; Katzman, Wendy
2018-01-25
The purpose of this study was to investigate the intra-rater reliability and validity of a designed load cell setup for the measurement of back extensor muscle force and endurance. The study sample included 19 older women with hyperkyphosis, mean age 67.0 ± 5.0 years, and 14 older women without hyperkyphosis, mean age 63.0 ± 6.0 years. Maximum back extensor force and endurance were measured in a sitting position with a designed load cell setup. Tests were performed by the same examiner on two separate days within a 72-hour interval. The intra-rater reliability of the measurements was analyzed using intraclass correlation coefficient (ICC), standard errors of measurement (SEM), and minimal detectable change (MDC). The validity of the setup was determined using Pearson correlation analysis and independent t-test. Using our designed load cell, the values of ICC indicated very high reliability of force measurement (hyperkyphosis group: 0.96, normal group: 0.97) and high reliability of endurance measurement (hyperkyphosis group: 0.82, normal group: 0.89). For all tests, the values of SEM and MDC were low in both groups. A significant correlation between two documented forces (load cell force and target force) and significant differences in the muscle force and endurance among the two groups were found. The measurements of static back muscle force and endurance are reliable and valid with our designed setup in older women with and without hyperkyphosis.
Effect of Finite Computational Domain on Turbulence Scaling Law in Both Physical and Spectral Spaces
NASA Technical Reports Server (NTRS)
Hou, Thomas Y.; Wu, Xiao-Hui; Chen, Shiyi; Zhou, Ye
1998-01-01
The well-known translation between the power law of energy spectrum and that of the correlation function or the second order structure function has been widely used in analyzing random data. Here, we show that the translation is valid only in proper scaling regimes. The regimes of valid translation are different for the correlation function and the structure function. Indeed, they do not overlap. Furthermore, in practice, the power laws exist only for a finite range of scales. We show that this finite range makes the translation inexact even in the proper scaling regime. The error depends on the scaling exponent. The current findings are applicable to data analysis in fluid turbulence and other stochastic systems.
Bathymetric surveying with GPS and heave, pitch, and roll compensation
Work, P.A.; Hansen, M.; Rogers, W.E.
1998-01-01
Field and laboratory tests of a shipborne hydrographic survey system were conducted. The system consists of two 12-channel GPS receivers (one on-board, one fixed on shore), a digital acoustic fathometer, and a digital heave-pitch-roll (HPR) recorder. Laboratory tests of the HPR recorder and fathometer are documented. Results of field tests of the isolated GPS system and then of the entire suite of instruments are presented. A method for data reduction is developed to account for vertical errors introduced by roll and pitch of the survey vessel, which can be substantial (decimeters). The GPS vertical position data are found to be reliable to 2-3 cm and the fathometer to 5 cm in the laboratory. The field test of the complete system in shallow water (<2 m) indicates absolute vertical accuracy of 10-20 cm. Much of this error is attributed to the fathometer. Careful surveying and equipment setup can minimize systematic error and yield much smaller average errors.
An analysis of temperature-induced errors for an ultrasound distance measuring system. M. S. Thesis
NASA Technical Reports Server (NTRS)
Wenger, David Paul
1991-01-01
The presentation of research is provided in the following five chapters. Chapter 2 presents the necessary background information and definitions for general work with ultrasound and acoustics. It also discusses the basis for errors in the slant range measurements. Chapter 3 presents a method of problem solution and an analysis of the sensitivity of the equations to slant range measurement errors. It also presents various methods by which the error in the slant range measurements can be reduced to improve overall measurement accuracy. Chapter 4 provides a description of a type of experiment used to test the analytical solution and provides a discussion of its results. Chapter 5 discusses the setup of a prototype collision avoidance system, discusses its accuracy, and demonstrates various methods of improving the accuracy along with the improvements' ramifications. Finally, Chapter 6 provides a summary of the work and a discussion of conclusions drawn from it. Additionally, suggestions for further research are made to improve upon what has been presented here.
NASA Astrophysics Data System (ADS)
Zehe, E.; Klaus, J.
2011-12-01
Rapid flow in connected preferential flow paths is crucial for fast transport of water and solutes through soils, especially at tile drained field sites. The present study tests whether an explicit treatment of worm burrows is feasible for modeling water flow, bromide and pesticide transport in structured heterogeneous soils with a 2-dimensional Richards based model. The essence is to represent worm burrows as morphologically connected paths of low flow resistance and low retention capacity in the spatially highly resolved model domain. The underlying extensive database to test this approach was collected during an irrigation experiment, which investigated transport of bromide and the herbicide Isoproturon at a 900 sqm tile drained field site. In a first step we investigated whether the inherent uncertainty in key data causes equifinality i.e. whether there are several spatial model setups that reproduce tile drain event discharge in an acceptable manner. We found a considerable equifinality in the spatial setup of the model, when key parameters such as the area density of worm burrows and the maximum volumetric water flows inside these macropores were varied within the ranges of either our measurement errors or measurements reported in the literature. Thirteen model runs yielded a Nash-Sutcliffe coefficient of more than 0.9. Also, the flow volumes were in good accordance and peak timing errors where less than or equal to 20 min. In the second step we investigated thus whether this "equifinality" in spatial model setups may be reduced when including the bromide tracer data into the model falsification process. We simulated transport of bromide for the 13 spatial model setups, which performed best with respect to reproduce tile drain event discharge, without any further calibration. Four of this 13 model setups allowed to model bromide transport within fixed limits of acceptability. Parameter uncertainty and equifinality could thus be reduced. Thirdly, we selected one of those four setups for simulating transport of Isoproturon, which was applied the day before the irrigation experiment, and tested different parameter combinations to characterise adsorption according to the footprint data base. Simulations could, however, only reproduce the observed event based leaching behaviour, when we allowed for retardation coefficients that were very close to one. This finding is consistent with observations various field observations. We conclude: a) A realistic representation of dominating structures and their topology is of key importance for predicting preferential water and mass flows at tile drained hillslopes. b) Parameter uncertainty and equifinality could be reduced, but a system inherent equifinality in a 2-dimensional Richards based model has to be accepted.
A new unified approach to determine geocentre motion using space geodetic and GRACE gravity data
NASA Astrophysics Data System (ADS)
Wu, Xiaoping; Kusche, Jürgen; Landerer, Felix W.
2017-06-01
Geocentre motion between the centre-of-mass of the Earth system and the centre-of-figure of the solid Earth surface is a critical signature of degree-1 components of global surface mass transport process that includes sea level rise, ice mass imbalance and continental-scale hydrological change. To complement GRACE data for complete-spectrum mass transport monitoring, geocentre motion needs to be measured accurately. However, current methods of geodetic translational approach and global inversions of various combinations of geodetic deformation, simulated ocean bottom pressure and GRACE data contain substantial biases and systematic errors. Here, we demonstrate a new and more reliable unified approach to geocentre motion determination using a recently formed satellite laser ranging based geocentric displacement time-series of an expanded geodetic network of all four space geodetic techniques and GRACE gravity data. The unified approach exploits both translational and deformational signatures of the displacement data, while the addition of GRACE's near global coverage significantly reduces biases found in the translational approach and spectral aliasing errors in the inversion.
Noncontact 3-D Speckle Contrast Diffuse Correlation Tomography of Tissue Blood Flow Distribution.
Huang, Chong; Irwin, Daniel; Zhao, Mingjun; Shang, Yu; Agochukwu, Nneamaka; Wong, Lesley; Yu, Guoqiang
2017-10-01
Recent advancements in near-infrared diffuse correlation techniques and instrumentation have opened the path for versatile deep tissue microvasculature blood flow imaging systems. Despite this progress there remains a need for a completely noncontact, noninvasive device with high translatability from small/testing (animal) to large/target (human) subjects with trivial application on both. Accordingly, we discuss our newly developed setup which meets this demand, termed noncontact speckle contrast diffuse correlation tomography (nc_scDCT). The nc_scDCT provides fast, continuous, portable, noninvasive, and inexpensive acquisition of 3-D tomographic deep (up to 10 mm) tissue blood flow distributions with straightforward design and customization. The features presented include a finite-element-method implementation for incorporating complex tissue boundaries, fully noncontact hardware for avoiding tissue compression and interactions, rapid data collection with a diffuse speckle contrast method, reflectance-based design promoting experimental translation, extensibility to related techniques, and robust adjustable source and detector patterns and density for high resolution measurement with flexible regions of interest enabling unique application-specific setups. Validation is shown in the detection and characterization of both high and low contrasts in flow relative to the background using tissue phantoms with a pump-connected tube (high) and phantom spheres (low). Furthermore, in vivo validation of extracting spatiotemporal 3-D blood flow distributions and hyperemic response during forearm cuff occlusion is demonstrated. Finally, the success of instrument feasibility in clinical use is examined through the intraoperative imaging of mastectomy skin flap.
Estimating Bias Error Distributions
NASA Technical Reports Server (NTRS)
Liu, Tian-Shu; Finley, Tom D.
2001-01-01
This paper formulates the general methodology for estimating the bias error distribution of a device in a measuring domain from less accurate measurements when a minimal number of standard values (typically two values) are available. A new perspective is that the bias error distribution can be found as a solution of an intrinsic functional equation in a domain. Based on this theory, the scaling- and translation-based methods for determining the bias error distribution arc developed. These methods are virtually applicable to any device as long as the bias error distribution of the device can be sufficiently described by a power series (a polynomial) or a Fourier series in a domain. These methods have been validated through computational simulations and laboratory calibration experiments for a number of different devices.
Haworth, Annette; Kearvell, Rachel; Greer, Peter B; Hooton, Ben; Denham, James W; Lamb, David; Duchesne, Gillian; Murray, Judy; Joseph, David
2009-03-01
A multi-centre clinical trial for prostate cancer patients provided an opportunity to introduce conformal radiotherapy with dose escalation. To verify adequate treatment accuracy prior to patient recruitment, centres submitted details of a set-up accuracy study (SUAS). We report the results of the SUAS, the variation in clinical practice and the strategies used to help centres improve treatment accuracy. The SUAS required each of the 24 participating centres to collect data on at least 10 pelvic patients imaged on a minimum of 20 occasions. Software was provided for data collection and analysis. Support to centres was provided through educational lectures, the trial quality assurance team and an information booklet. Only two centres had recently carried out a SUAS prior to the trial opening. Systematic errors were generally smaller than those previously reported in the literature. The questionnaire identified many differences in patient set-up protocols. As a result of participating in this QA activity more than 65% of centres improved their treatment delivery accuracy. Conducting a pre-trial SUAS has led to improvement in treatment delivery accuracy in many centres. Treatment techniques and set-up accuracy varied greatly, demonstrating a need to ensure an on-going awareness for such studies in future trials and with the introduction of dose escalation or new technologies.
Force estimation from OCT volumes using 3D CNNs.
Gessert, Nils; Beringhoff, Jens; Otte, Christoph; Schlaefer, Alexander
2018-07-01
Estimating the interaction forces of instruments and tissue is of interest, particularly to provide haptic feedback during robot-assisted minimally invasive interventions. Different approaches based on external and integrated force sensors have been proposed. These are hampered by friction, sensor size, and sterilizability. We investigate a novel approach to estimate the force vector directly from optical coherence tomography image volumes. We introduce a novel Siamese 3D CNN architecture. The network takes an undeformed reference volume and a deformed sample volume as an input and outputs the three components of the force vector. We employ a deep residual architecture with bottlenecks for increased efficiency. We compare the Siamese approach to methods using difference volumes and two-dimensional projections. Data were generated using a robotic setup to obtain ground-truth force vectors for silicon tissue phantoms as well as porcine tissue. Our method achieves a mean average error of [Formula: see text] when estimating the force vector. Our novel Siamese 3D CNN architecture outperforms single-path methods that achieve a mean average error of [Formula: see text]. Moreover, the use of volume data leads to significantly higher performance compared to processing only surface information which achieves a mean average error of [Formula: see text]. Based on the tissue dataset, our methods shows good generalization in between different subjects. We propose a novel image-based force estimation method using optical coherence tomography. We illustrate that capturing the deformation of subsurface structures substantially improves force estimation. Our approach can provide accurate force estimates in surgical setups when using intraoperative optical coherence tomography.
Intergration of system identification and robust controller designs for flexible structures in space
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Lew, Jiann-Shiun
1990-01-01
An approach is developed using experimental data to identify a reduced-order model and its model error for a robust controller design. There are three steps involved in the approach. First, an approximately balanced model is identified using the Eigensystem Realization Algorithm, which is an identification algorithm. Second, the model error is calculated and described in frequency domain in terms of the H(infinity) norm. Third, a pole placement technique in combination with a H(infinity) control method is applied to design a controller for the considered system. A set experimental data from an existing setup, namely the Mini-Mast system, is used to illustrate and verify the approach.
Adaptive reduction of constitutive model-form error using a posteriori error estimation techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, Joseph E.; Brown, Judith Alice
In engineering practice, models are typically kept as simple as possible for ease of setup and use, computational efficiency, maintenance, and overall reduced complexity to achieve robustness. In solid mechanics, a simple and efficient constitutive model may be favored over one that is more predictive, but is difficult to parameterize, is computationally expensive, or is simply not available within a simulation tool. In order to quantify the modeling error due to the choice of a relatively simple and less predictive constitutive model, we adopt the use of a posteriori model-form error-estimation techniques. Based on local error indicators in the energymore » norm, an algorithm is developed for reducing the modeling error by spatially adapting the material parameters in the simpler constitutive model. The resulting material parameters are not material properties per se, but depend on the given boundary-value problem. As a first step to the more general nonlinear case, we focus here on linear elasticity in which the “complex” constitutive model is general anisotropic elasticity and the chosen simpler model is isotropic elasticity. As a result, the algorithm for adaptive error reduction is demonstrated using two examples: (1) A transversely-isotropic plate with hole subjected to tension, and (2) a transversely-isotropic tube with two side holes subjected to torsion.« less
Adaptive reduction of constitutive model-form error using a posteriori error estimation techniques
Bishop, Joseph E.; Brown, Judith Alice
2018-06-15
In engineering practice, models are typically kept as simple as possible for ease of setup and use, computational efficiency, maintenance, and overall reduced complexity to achieve robustness. In solid mechanics, a simple and efficient constitutive model may be favored over one that is more predictive, but is difficult to parameterize, is computationally expensive, or is simply not available within a simulation tool. In order to quantify the modeling error due to the choice of a relatively simple and less predictive constitutive model, we adopt the use of a posteriori model-form error-estimation techniques. Based on local error indicators in the energymore » norm, an algorithm is developed for reducing the modeling error by spatially adapting the material parameters in the simpler constitutive model. The resulting material parameters are not material properties per se, but depend on the given boundary-value problem. As a first step to the more general nonlinear case, we focus here on linear elasticity in which the “complex” constitutive model is general anisotropic elasticity and the chosen simpler model is isotropic elasticity. As a result, the algorithm for adaptive error reduction is demonstrated using two examples: (1) A transversely-isotropic plate with hole subjected to tension, and (2) a transversely-isotropic tube with two side holes subjected to torsion.« less
Effectiveness of base-of-skull immobilization system in a compact proton therapy setting.
Shafai-Erfani, Ghazal; Willoughby, Twyla; Ramakrishna, Naren; Meeks, Sanford; Kelly, Patrick; Zeidan, Omar
2018-05-01
The purpose of this study was to investigate daily repositioning accuracy by analyzing inter- and intra-fractional uncertainties associated with patients treated for intracranial or base of skull tumors in a compact proton therapy system with 6 degrees of freedom (DOF) robotic couch and a thermoplastic head mask indexed to a base of skull (BoS) frame. Daily orthogonal kV alignment images at setup position before and after daily treatments were analyzed for 33 patients. The system was composed of a new type of thermoplastic mask, a bite block, and carbon-fiber BoS couch-top insert specifically designed for proton therapy treatments. The correctional shifts in robotic treatment table with 6 DOF were evaluated and recorded based on over 1500 planar kV image pairs. Correctional shifts for patients with and without bite blocks were compared. Systematic and random errors were evaluated for all 6 DOF coordinates available for daily vector corrections. Uncertainties associated with geometrical errors and their sources, in addition to robustness analysis of various combinations of immobilization components were presented. Analysis of 644 fractions including patients with and without a bite block shows that the BoS immobilization system is capable of maintaining intra-fraction localization with submillimeter accuracy (in nearly 83%, 86%, 95% of cases along SI, LAT, and PA, respectively) in translational coordinates and subdegree precision (in 98.85%, 98.85%, and 96.4% of cases for roll, pitch, and yaw respectively) in rotational coordinates. The system overall fares better in intra-fraction localization precision compared to previously reported particle therapy immobilization systems. The use of a mask-attached type bite block has marginal impact on inter- or intra-fraction uncertainties compared to no bite block. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Lin, Michael Y; Catalano, Paul; Dennerlein, Jack T
2016-06-01
The aim of this study was to determine user self-selected setup for both sitting and standing computer workstations and identify major differences. No current ergonomic setup guideline for standing computer workstations is available. Twenty adult participants completed four 45-min sessions of simulated office computer work with an adjustable sit-stand computer workstation. Placement and relative position of all workstation components, including a cordless mouse, a cordless keyboard, a height-adjustable desk, and a 22-inch monitor mounted on a mechanical-assisted arm were recorded during the four sessions, which alternated between sitting and standing for each session. Participants were interrupted four times within each session, and the workstation was "reset" to extreme locations. Participants were instructed to adjust the location to achieve the most comfortable arrangement and to make as many adjustments during the session to achieve this goal. Overall, users placed the keyboard closer to their body (sternum), set desk height lower than their elbow, and set the monitor lower relative to their eyes with a greater upward tilt while standing compared to sitting. During the 45-min sessions, the number of adjustments participants made became smaller and over the four sessions was consistent, suggesting the psychophysical protocol was effective and consistent. Users preferred different workstation setups for sitting and standing computer workstations. Therefore, future setup guidelines and principles for standing computer workstations may not be simply translated from those for sitting. These results can serve as the first step toward making recommendations to establish ergonomic guidelines for standing computer workstation arrangement. © 2016, Human Factors and Ergonomics Society.
Zhu, Jian; Bai, Tong; Gu, Jiabing; Sun, Ziwen; Wei, Yumei; Li, Baosheng; Yin, Yong
2018-04-27
To evaluate the effect of pretreatment megavoltage computed tomographic (MVCT) scan methodology on setup verification and adaptive dose calculation in helical TomoTherapy. Both anthropomorphic heterogeneous chest and pelvic phantoms were planned with virtual targets by TomoTherapy Physicist Station and were scanned with TomoTherapy megavoltage image-guided radiotherapy (IGRT) system consisted of six groups of options: three different acquisition pitches (APs) of 'fine', 'normal' and 'coarse' were implemented by multiplying 2 different corresponding reconstruction intervals (RIs). In order to mimic patient setup variations, each phantom was shifted 5 mm away manually in three orthogonal directions respectively. The effect of MVCT scan options was analyzed in image quality (CT number and noise), adaptive dose calculation deviations and positional correction variations. MVCT scanning time with pitch of 'fine' was approximately twice of 'normal' and 3 times more than 'coarse' setting, all which will not be affected by different RIs. MVCT with different APs delivered almost identical CT numbers and image noise inside 7 selected regions with various densities. DVH curves from adaptive dose calculation with serial MVCT images acquired by varied pitches overlapped together, where as there are no significant difference in all p values of intercept & slope of emulational spinal cord (p = 0.761 & 0.277), heart (p = 0.984 & 0.978), lungs (p = 0.992 & 0.980), soft tissue (p = 0.319 & 0.951) and bony structures (p = 0.960 & 0.929) between the most elaborated and the roughest serials of MVCT. Furthermore, gamma index analysis shown that, compared to the dose distribution calculated on MVCT of 'fine', only 0.2% or 1.1% of the points analyzed on MVCT of 'normal' or 'coarse' do not meet the defined gamma criterion. On chest phantom, all registration errors larger than 1 mm appeared at superior-inferior axis, which cannot be avoided with the smallest AP and RI. On pelvic phantom, craniocaudal errors are much smaller than chest, however, AP of 'coarse' presents larger registration errors which can be reduced from 2.90 mm to 0.22 mm by registration technique of 'full image'. AP of 'coarse' with RI of 6 mm is recommended in adaptive radiotherapy (ART) planning to provide craniocaudal longer and faster MVCT scan, while registration technique of 'full image' should be used to avoid large residual error. Considering the trade-off between IGRT and ART, AP of 'normal' with RI of 2 mm was highly recommended in daily practice.
NASA Technical Reports Server (NTRS)
Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.
2016-01-01
The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) plate scale measurements made using a Pseudo-Nonredundant Mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated andor rotated across the exit pupil of the system.Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the uncertainties of the wavefront error maps.
NASA Technical Reports Server (NTRS)
Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.
2016-01-01
The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES) test chamber. In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing, and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) F-number and pupil-distortion measurements made using a pseudo-nonredundant mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated and/or rotated across the exit pupil of the system. Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the uncertainties of the wavefront-error maps.
NASA Astrophysics Data System (ADS)
Gholipour Peyvandi, R.; Islami Rad, S. Z.
2017-12-01
The determination of the volume fraction percentage of the different phases flowing in vessels using transmission gamma rays is a conventional method in petroleum and oil industries. In some cases, with access only to the one side of the vessels, attention was drawn toward backscattered gamma rays as a desirable choice. In this research, the volume fraction percentage was measured precisely in water-gasoil-air three-phase flows by using the backscatter gamma ray technique andthe multilayer perceptron (MLP) neural network. The volume fraction determination in three-phase flows requires two gamma radioactive sources or a dual-energy source (with different energies) while in this study, we used just a 137Cs source (with the single energy) and a NaI detector to analyze backscattered gamma rays. The experimental set-up provides the required data for training and testing the network. Using the presented method, the volume fraction was predicted with a mean relative error percentage less than 6.47%. Also, the root mean square error was calculated as 1.60. The presented set-up is applicable in some industries with limited access. Also, using this technique, the cost, radiation safety and shielding requirements are minimized toward the other proposed methods.
Vidovic, Luka; Majaron, Boris
2014-02-01
Diffuse reflectance spectra (DRS) of biological samples are commonly measured using an integrating sphere (IS). To account for the incident light spectrum, measurement begins by placing a highly reflective white standard against the IS sample opening and collecting the reflected light. After replacing the white standard with the test sample of interest, DRS of the latter is determined as the ratio of the two values at each involved wavelength. However, such a substitution may alter the fluence rate inside the IS. This leads to distortion of measured DRS, which is known as single-beam substitution error (SBSE). Barring the use of more complex experimental setups, the literature states that only approximate corrections of the SBSE are possible, e.g., by using look-up tables generated with calibrated low-reflectivity standards. We present a practical method for elimination of SBSE when using IS equipped with an additional reference port. Two additional measurements performed at this port enable a rigorous elimination of SBSE. Our experimental characterization of SBSE is replicated by theoretical derivation. This offers an alternative possibility of computational removal of SBSE based on advance characterization of a specific DRS setup. The influence of SBSE on quantitative analysis of DRS is illustrated in one application example.
Experiments on robot-assisted navigated drilling and milling of bones for pedicle screw placement.
Ortmaier, T; Weiss, H; Döbele, S; Schreiber, U
2006-12-01
This article presents experimental results for robot-assisted navigated drilling and milling for pedicle screw placement. The preliminary study was carried out in order to gain first insights into positioning accuracies and machining forces during hands-on robotic spine surgery. Additionally, the results formed the basis for the development of a new robot for surgery. A simplified anatomical model is used to derive the accuracy requirements. The experimental set-up consists of a navigation system and an impedance-controlled light-weight robot holding the surgical instrument. The navigation system is used to position the surgical instrument and to compensate for pose errors during machining. Holes are drilled in artificial bone and bovine spine. A quantitative comparison of the drill-hole diameters was achieved using a computer. The interaction forces and pose errors are discussed with respect to the chosen machining technology and control parameters. Within the technological boundaries of the experimental set-up, it is shown that the accuracy requirements can be met and that milling is superior to drilling. It is expected that robot assisted navigated surgery helps to improve the reliability of surgical procedures. Further experiments are necessary to take the whole workflow into account. Copyright 2006 John Wiley & Sons, Ltd.
MS-READ: Quantitative measurement of amino acid incorporation.
Mohler, Kyle; Aerni, Hans-Rudolf; Gassaway, Brandon; Ling, Jiqiang; Ibba, Michael; Rinehart, Jesse
2017-11-01
Ribosomal protein synthesis results in the genetically programmed incorporation of amino acids into a growing polypeptide chain. Faithful amino acid incorporation that accurately reflects the genetic code is critical to the structure and function of proteins as well as overall proteome integrity. Errors in protein synthesis are generally detrimental to cellular processes yet emerging evidence suggest that proteome diversity generated through mistranslation may be beneficial under certain conditions. Cumulative translational error rates have been determined at the organismal level, however codon specific error rates and the spectrum of misincorporation errors from system to system remain largely unexplored. In particular, until recently technical challenges have limited the ability to detect and quantify comparatively rare amino acid misincorporation events, which occur orders of magnitude less frequently than canonical amino acid incorporation events. We now describe a technique for the quantitative analysis of amino acid incorporation that provides the sensitivity necessary to detect mistranslation events during translation of a single codon at frequencies as low as 1 in 10,000 for all 20 proteinogenic amino acids, as well as non-proteinogenic and modified amino acids. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.
Two-dimensional straightness measurement based on optical knife-edge sensing
NASA Astrophysics Data System (ADS)
Wang, Chen; Zhong, Fenghe; Ellis, Jonathan D.
2017-09-01
Straightness error is a parasitic translation along a perpendicular direction to the primary displacement axis of a linear stage. The parasitic translations could be coupled into other primary displacement directions of a multi-axis platform. Hence, its measurement and compensation are critical in precision multi-axis metrology, calibration, and manufacturing. This paper presents a two-dimensional (2D) straightness measurement configuration based on 2D optical knife-edge sensing, which is simple, light-weight, compact, and easy to align. It applies a 2D optical knife-edge to manipulate the diffraction pattern sensed by a quadrant photodetector, whose output voltages could derive 2D straightness errors after a calibration process. This paper analyzes the physical model of the configuration and performs simulations and experiments to study the system sensitivity, measurement nonlinearity, and error sources. The results demonstrate that the proposed configuration has higher sensitivity and insensitive to beam's vibration, compared with the conventional configurations without using the knife-edge, and could achieve ±0.25 μ m within a ±40 μ m measurement range along a 40 mm primary axial motion.
Consistency of gene starts among Burkholderia genomes
2011-01-01
Background Evolutionary divergence in the position of the translational start site among orthologous genes can have significant functional impacts. Divergence can alter the translation rate, degradation rate, subcellular location, and function of the encoded proteins. Results Existing Genbank gene maps for Burkholderia genomes suggest that extensive divergence has occurred--53% of ortholog sets based on Genbank gene maps had inconsistent gene start sites. However, most of these inconsistencies appear to be gene-calling errors. Evolutionary divergence was the most plausible explanation for only 17% of the ortholog sets. Correcting probable errors in the Genbank gene maps decreased the percentage of ortholog sets with inconsistent starts by 68%, increased the percentage of ortholog sets with extractable upstream intergenic regions by 32%, increased the sequence similarity of intergenic regions and predicted proteins, and increased the number of proteins with identifiable signal peptides. Conclusions Our findings highlight an emerging problem in comparative genomics: single-digit percent errors in gene predictions can lead to double-digit percentages of inconsistent ortholog sets. The work demonstrates a simple approach to evaluate and improve the quality of gene maps. PMID:21342528
Eaton, Catherine Torrington
2015-11-01
This article explores the theoretical and empirical relationships between cognitive factors and residual speech errors (RSEs). Definitions of relevant cognitive domains are provided, as well as examples of formal and informal tasks that may be appropriate in assessment. Although studies to date have been limited in number and scope, basic research suggests that cognitive flexibility, short- and long-term memory, and self-monitoring may be areas of weakness in this population. Preliminary evidence has not supported a relationship between inhibitory control, attention, and RSEs; however, further studies that control variables such as language ability and temperament are warranted. Previous translational research has examined the effects of self-monitoring training on residual speech errors. Although results have been mixed, some findings suggest that children with RSEs may benefit from the inclusion of this training. The article closes with a discussion of clinical frameworks that target cognitive skills, including self-monitoring and attention, as a means of facilitating speech sound change. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
MIMO equalization with adaptive step size for few-mode fiber transmission systems.
van Uden, Roy G H; Okonkwo, Chigo M; Sleiffer, Vincent A J M; de Waardt, Hugo; Koonen, Antonius M J
2014-01-13
Optical multiple-input multiple-output (MIMO) transmission systems generally employ minimum mean squared error time or frequency domain equalizers. Using an experimental 3-mode dual polarization coherent transmission setup, we show that the convergence time of the MMSE time domain equalizer (TDE) and frequency domain equalizer (FDE) can be reduced by approximately 50% and 30%, respectively. The criterion used to estimate the system convergence time is the time it takes for the MIMO equalizer to reach an average output error which is within a margin of 5% of the average output error after 50,000 symbols. The convergence reduction difference between the TDE and FDE is attributed to the limited maximum step size for stable convergence of the frequency domain equalizer. The adaptive step size requires a small overhead in the form of a lookup table. It is highlighted that the convergence time reduction is achieved without sacrificing optical signal-to-noise ratio performance.
Zi, Fei; Wu, Xuejian; Zhong, Weicheng; Parker, Richard H; Yu, Chenghui; Budker, Simon; Lu, Xuanhui; Müller, Holger
2017-04-01
We present a hybrid laser frequency stabilization method combining modulation transfer spectroscopy (MTS) and frequency modulation spectroscopy (FMS) for the cesium D2 transition. In a typical pump-probe setup, the error signal is a combination of the DC-coupled MTS error signal and the AC-coupled FMS error signal. This combines the long-term stability of the former with the high signal-to-noise ratio of the latter. In addition, we enhance the long-term frequency stability with laser intensity stabilization. By measuring the frequency difference between two independent hybrid spectroscopies, we investigate the short-and long-term stability. We find a long-term stability of 7.8 kHz characterized by a standard deviation of the beating frequency drift over the course of 10 h and a short-term stability of 1.9 kHz characterized by an Allan deviation of that at 2 s of integration time.
Observation of non-classical correlations in sequential measurements of photon polarization
NASA Astrophysics Data System (ADS)
Suzuki, Yutaro; Iinuma, Masataka; Hofmann, Holger F.
2016-10-01
A sequential measurement of two non-commuting quantum observables results in a joint probability distribution for all output combinations that can be explained in terms of an initial joint quasi-probability of the non-commuting observables, modified by the resolution errors and back-action of the initial measurement. Here, we show that the error statistics of a sequential measurement of photon polarization performed at different measurement strengths can be described consistently by an imaginary correlation between the statistics of resolution and back-action. The experimental setup was designed to realize variable strength measurements with well-controlled imaginary correlation between the statistical errors caused by the initial measurement of diagonal polarizations, followed by a precise measurement of the horizontal/vertical polarization. We perform the experimental characterization of an elliptically polarized input state and show that the same complex joint probability distribution is obtained at any measurement strength.
NeuPAT: an intranet database supporting translational research in neuroblastic tumors.
Villamón, Eva; Piqueras, Marta; Meseguer, Javier; Blanquer, Ignacio; Berbegall, Ana P; Tadeo, Irene; Hernández, Vicente; Navarro, Samuel; Noguera, Rosa
2013-03-01
Translational research in oncology is directed mainly towards establishing a better risk stratification and searching for appropriate therapeutic targets. This research generates a tremendous amount of complex clinical and biological data needing speedy and effective management. The authors describe the design, implementation and early experiences of a computer-aided system for the integration and management of data for neuroblastoma patients. NeuPAT facilitates clinical and translational research, minimizes the workload in consolidating the information, reduces errors and increases correlation of data through extensive coding. This design can also be applied to other tumor types. Copyright © 2012 Elsevier Ltd. All rights reserved.
Large aluminium convex mirror for the cryo-optical test of the Planck primary reflector
NASA Astrophysics Data System (ADS)
Gloesener, P.; Flébus, C.; Cola, M.; Roose, S.; Stockman, Y.; de Chambure, D.
2017-11-01
In the frame of the PLANCK mission telescope development, it is requested to measure the reflector changes of the surface figure error (SFE) with respect to the best ellipsoid, between 293 K and 50 K, with 1 μm RMS accuracy. To achieve this, Infra Red interferometry has been selected and a dedicated thermo mechanical set-up has been constructed. In order to realise the test set-up for this reflector, a large aluminium convex mirror with radius of 19500 mm has been manufactured. The mirror has to operate in a cryogenic environment lower than 30 K, and has a contribution to the RMS WFE with less than 1 μm between room temperature and cryogenic temperature. This paper summarises the design, manufacturing and characterisation of this mirror, showing it has fulfilled its requirements.
NASA Astrophysics Data System (ADS)
Jacobsen, M. K.; Liu, W.; Li, B.
2012-09-01
In this paper, a high pressure setup is presented for performing simultaneous measurements of Seebeck coefficient and thermal diffusivity in multianvil apparatus for the purpose of enhancing the study of transport phenomena. Procedures for the derivation of Seebeck coefficient and thermal diffusivity/conductivity, as well as their associated sources of errors, are presented in detail, using results obtained on the filled skutterudite, Ce0.8Fe3CoSb12, up to 12 GPa at ambient temperature. Together with recent resistivity and sound velocity measurements in the same apparatus, these developments not only provide the necessary data for a self-consistent and complete characterization of the figure of merit of thermoelectric materials under pressure, but also serve as an important tool for furthering our knowledge of the dynamics and interplay between these transport phenomena.
Jacobsen, M K; Liu, W; Li, B
2012-09-01
In this paper, a high pressure setup is presented for performing simultaneous measurements of Seebeck coefficient and thermal diffusivity in multianvil apparatus for the purpose of enhancing the study of transport phenomena. Procedures for the derivation of Seebeck coefficient and thermal diffusivity/conductivity, as well as their associated sources of errors, are presented in detail, using results obtained on the filled skutterudite, Ce(0.8)Fe(3)CoSb(12,) up to 12 GPa at ambient temperature. Together with recent resistivity and sound velocity measurements in the same apparatus, these developments not only provide the necessary data for a self-consistent and complete characterization of the figure of merit of thermoelectric materials under pressure, but also serve as an important tool for furthering our knowledge of the dynamics and interplay between these transport phenomena.
Elongation measurement using 1-dimensional image correlation method
NASA Astrophysics Data System (ADS)
Phongwisit, Phachara; Kamoldilok, Surachart; Buranasiri, Prathan
2016-11-01
Aim of this paper was to study, setup, and calibrate an elongation measurement by using 1- Dimensional Image Correlation method (1-DIC). To confirm our method and setup correctness, we need calibration with other methods. In this paper, we used a small spring as a sample to find a result in terms of spring constant. With a fundamental of Image Correlation method, images of formed and deformed samples were compared to understand the difference between deformed process. By comparing the location of reference point on both image's pixel, the spring's elongation were calculated. Then, the results have been compared with the spring constants, which were found from Hooke's law. The percentage of 5 percent error has been found. This DIC method, then, would be applied to measure the elongation of some different kinds of small fiber samples.
Hogan, Bernie; Melville, Joshua R.; Philips, Gregory Lee; Janulis, Patrick; Contractor, Noshir; Mustanski, Brian S.; Birkett, Michelle
2016-01-01
While much social network data exists online, key network metrics for high-risk populations must still be captured through self-report. This practice has suffered from numerous limitations in workflow and response burden. However, advances in technology, network drawing libraries and databases are making interactive network drawing increasingly feasible. We describe the translation of an analog-based technique for capturing personal networks into a digital framework termed netCanvas that addresses many existing shortcomings such as: 1) complex data entry; 2) extensive interviewer intervention and field setup; 3) difficulties in data reuse; and 4) a lack of dynamic visualizations. We test this implementation within a health behavior study of a high-risk and difficult-to-reach population. We provide a within–subjects comparison between paper and touchscreens. We assert that touchscreen-based social network capture is now a viable alternative for highly sensitive data and social network data entry tasks. PMID:28018995
NASA Astrophysics Data System (ADS)
Payne, Owen R.; Vandewater, Luke A.; Ung, Chandarin; Moss, Scott D.
2015-04-01
In this paper, a self-powered wireless sensor node utilising ambient vibrations for power is described. The device consists of a vibration energy harvester, power management system, microcontroller, accelerometer, RF transmitter/receiver and external LED indicators. The vibration energy harvester is adapted from a previously reported hybrid rotary-translational device and uses a pair of copper coil transducers to convert the mechanical energy of a magnetic sphere into usable electricity. The device requires less than 0.8 mW of power to operate continuously in its present setup (with LED indicators off) while measuring acceleration at a sample rate of 200 Hz, with the power source providing 39.7 mW of power from 500 mg excitations at 5.5 Hz. When usable input energy is removed, the device will continue to transmit data for more than 5 minutes.
Hogan, Bernie; Melville, Joshua R; Philips, Gregory Lee; Janulis, Patrick; Contractor, Noshir; Mustanski, Brian S; Birkett, Michelle
2016-05-01
While much social network data exists online, key network metrics for high-risk populations must still be captured through self-report. This practice has suffered from numerous limitations in workflow and response burden. However, advances in technology, network drawing libraries and databases are making interactive network drawing increasingly feasible. We describe the translation of an analog-based technique for capturing personal networks into a digital framework termed netCanvas that addresses many existing shortcomings such as: 1) complex data entry; 2) extensive interviewer intervention and field setup; 3) difficulties in data reuse; and 4) a lack of dynamic visualizations. We test this implementation within a health behavior study of a high-risk and difficult-to-reach population. We provide a within-subjects comparison between paper and touchscreens. We assert that touchscreen-based social network capture is now a viable alternative for highly sensitive data and social network data entry tasks.
Practical Guide for Ascidian Microinjection: Phallusia mammillata.
Yasuo, Hitoyoshi; McDougall, Alex
2018-01-01
Phallusia mammillata has recently emerged as a new ascidian model. Its unique characteristics, including the optical transparency of eggs and embryos and efficient translation of exogenously introduced mRNA in eggs, make the Phallusia system suitable for fluorescent protein (FP)-based imaging approaches. In addition, genomic and transcriptomic resources are readily available for this ascidian species, facilitating functional gene studies. Microinjection is probably the most versatile technique for introducing exogenous molecules such as plasmids, mRNAs, and proteins into ascidian eggs/embryos. However, it is not practiced widely within the community; presumably, because the system is rather laborious to set up and it requires practice. Here, we describe in as much detail as possible two microinjection methods that we use daily in the laboratory: one based on an inverted microscope and the other on a stereomicroscope. Along the stepwise description of system setup and injection procedure, we provide practical tips in the hope that this chapter might be a useful guide for introducing or improving a microinjection setup.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarroll, R; Rubinstein, A; Kingsley, C
Purpose: New small-animal irradiators include extremely precise IGRT capabilities. However, mouse immobilization and localization remains a challenge. In particular, unlike week-to-week translational displacements, rotational changes in positioning are not easily corrected for in subject setup. Using two methods of setup, we aim to quantify week-to-week rotational variation in mice for the purpose of IGRT planning in small animal studies. Methods: Ten mice were imaged weekly using breath-hold CBCT (X-RAD 225 Cx), with the mouse positioned in a half-pipe support, providing 40 scans. A second group of two mice were positioned in a 3D printed immobilization device, which was created usingmore » a CT from a similarly shaped mouse, providing 10 scans. For each mouse, the first image was taken to be the reference image. Subsequent CT images were then rigidly registered, based on bony anatomy. Rotations in the axial (roll), sagittal (pitch), and coronal (yaw) planes were recorded and used to quantify variation in angular setup. Results: For the mice imaged in the half pipe, average magnitude of roll was found to be 5.4±4.6° (range: −12.9:18.86°), of pitch 1.6±1.3° (range: −1.4:4.7°), and of yaw 1.9±1.5° (range −5.4:1.1°). For the mice imaged in the printed setup; average magnitude of roll was found to be 0.64±0.6° (range: −2.1:1.0°), of pitch 0.6±0.4° (range: 0.0:1.3°), and of yaw 0.2±0.1° (range: 0.0:0.4°). The printed setup provided reduction in roll, pitch, and yaw by 88, 62, and 90 percent, respectively. Conclusion: For the typical setup routine, roll in mouse position is the dominant source of rotational variation. However, when a printed device was used, drastic improvements in mouse immobilization were seen. This work provides a promising foundation for mouse immobilization, required for full scale small animal IGRT. Currently, we are making improvements to allo±w the use of a similar system for MR, PET, and bioluminescence.« less
Receiver concepts for data transmission at 10 microns
NASA Astrophysics Data System (ADS)
Scholtz, A. L.; Philipp, H. K.; Leeb, W. R.
1984-05-01
Receivers for digitally modulated CO2 laser signals are compared. Incoherent heterodyne receivers and coherent homodyne setups, including the linear phase locked loop (PLL) receiver, the low intermediate frequency translation loop, and the Costas loop receiver were studied. Experiments covered the homodyne systems, emphasizing the linear PLL receiver. Reliable phase lock of the receiver is achieved at carrier levels as low as 3 nW. Reception of signals phase shift keyed with a data rate of up to 150 Mbit/sec is demonstrated at subnanowatt sideband power levels.
Kuhn, Claus-D
2016-05-01
tRNAs undergo multiple conformational changes during the translation cycle that are required for tRNA translocation and proper communication between the ribosome and translation factors. Recent structural data on how destabilized tRNAs utilize the CCA-adding enzyme to proofread themselves put a spotlight on tRNA flexibility beyond the translation cycle. In analogy to tRNA surveillance, this review finds that other processes also exploit versatile tRNA folding to achieve, amongst others, specific aminoacylation, translational regulation by riboswitches or a block of bacterial translation. tRNA flexibility is thereby not restricted to the hinges utilized during translation. In contrast, the flexibility of tRNA is distributed all over its L-shape and is actively exploited by the tRNA-interacting partners to discriminate one tRNA from another. Since the majority of tRNA modifications also modulate tRNA flexibility it seems that cells devote enormous resources to tightly sense and regulate tRNA structure. This is likely required for error-free protein synthesis. © 2016 WILEY Periodicals, Inc.
Implementation of an experimental fault-tolerant memory system
NASA Technical Reports Server (NTRS)
Carter, W. C.; Mccarthy, C. E.
1976-01-01
The experimental fault-tolerant memory system described in this paper has been designed to enable the modular addition of spares, to validate the theoretical fault-secure and self-testing properties of the translator/corrector, to provide a basis for experiments using the new testing and correction processes for recovery, and to determine the practicality of such systems. The hardware design and implementation are described, together with methods of fault insertion. The hardware/software interface, including a restricted single error correction/double error detection (SEC/DED) code, is specified. Procedures are carefully described which, (1) test for specified physical faults, (2) ensure that single error corrections are not miscorrections due to triple faults, and (3) enable recovery from double errors.
NASA Astrophysics Data System (ADS)
Krupka, M.; Kalal, M.; Dostal, J.; Dudzak, R.; Juha, L.
2017-08-01
Classical interferometry became widely used method of active optical diagnostics. Its more advanced version, allowing reconstruction of three sets of data from just one especially designed interferogram (so called complex interferogram) was developed in the past and became known as complex interferometry. Along with the phase shift, which can be also retrieved using classical interferometry, the amplitude modifications of the probing part of the diagnostic beam caused by the object under study (to be called the signal amplitude) as well as the contrast of the interference fringes can be retrieved using the complex interferometry approach. In order to partially compensate for errors in the reconstruction due to imperfections in the diagnostic beam intensity structure as well as for errors caused by a non-ideal optical setup of the interferometer itself (including the quality of its optical components), a reference interferogram can be put to a good use. This method of interferogram analysis of experimental data has been successfully implemented in practice. However, in majority of interferometer setups (especially in the case of the ones employing the wavefront division) the probe and the reference part of the diagnostic beam would feature different intensity distributions over their respective cross sections. This introduces additional error into the reconstruction of the signal amplitude and the fringe contrast, which cannot be resolved using the reference interferogram only. In order to deal with this error it was found that additional separately recorded images of the intensity distribution of the probe and the reference part of the diagnostic beam (with no signal present) are needed. For the best results a sufficient shot-to-shot stability of the whole diagnostic system is required. In this paper, efficiency of the complex interferometry approach for obtaining the highest possible accuracy of the signal amplitude reconstruction is verified using the computer generated complex and reference interferograms containing artificially introduced intensity variations in the probe and the reference part of the diagnostic beam. These sets of data are subsequently analyzed and the errors of the signal amplitude reconstruction are evaluated.
On the predictivity of pore-scale simulations: Estimating uncertainties with multilevel Monte Carlo
NASA Astrophysics Data System (ADS)
Icardi, Matteo; Boccardo, Gianluca; Tempone, Raúl
2016-09-01
A fast method with tunable accuracy is proposed to estimate errors and uncertainties in pore-scale and Digital Rock Physics (DRP) problems. The overall predictivity of these studies can be, in fact, hindered by many factors including sample heterogeneity, computational and imaging limitations, model inadequacy and not perfectly known physical parameters. The typical objective of pore-scale studies is the estimation of macroscopic effective parameters such as permeability, effective diffusivity and hydrodynamic dispersion. However, these are often non-deterministic quantities (i.e., results obtained for specific pore-scale sample and setup are not totally reproducible by another ;equivalent; sample and setup). The stochastic nature can arise due to the multi-scale heterogeneity, the computational and experimental limitations in considering large samples, and the complexity of the physical models. These approximations, in fact, introduce an error that, being dependent on a large number of complex factors, can be modeled as random. We propose a general simulation tool, based on multilevel Monte Carlo, that can reduce drastically the computational cost needed for computing accurate statistics of effective parameters and other quantities of interest, under any of these random errors. This is, to our knowledge, the first attempt to include Uncertainty Quantification (UQ) in pore-scale physics and simulation. The method can also provide estimates of the discretization error and it is tested on three-dimensional transport problems in heterogeneous materials, where the sampling procedure is done by generation algorithms able to reproduce realistic consolidated and unconsolidated random sphere and ellipsoid packings and arrangements. A totally automatic workflow is developed in an open-source code [1], that include rigid body physics and random packing algorithms, unstructured mesh discretization, finite volume solvers, extrapolation and post-processing techniques. The proposed method can be efficiently used in many porous media applications for problems such as stochastic homogenization/upscaling, propagation of uncertainty from microscopic fluid and rock properties to macro-scale parameters, robust estimation of Representative Elementary Volume size for arbitrary physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamora, D; Moirano, J; Kanal, K
Purpose: A fundamental measure performed during an annual physics CT evaluation confirms that system displayed CTDIvol nearly matches the independently measured value in phantom. For wide-beam (z-direction) CT scanners, AAPM Report 111 defined an ideal measurement method; however, the method often lacks practicality. The purpose of this preliminary study is to develop a set of conversion factors for a wide-beam CT scanner, relating the CTDIvol measured with a conventional setup (single CTDI phantom) versus the AAPM Report 111 approach (three abutting CTDI phantoms). Methods: For both the body CTDI and head CTDI, two acquisition setups were used: A) conventional singlemore » phantom and B) triple phantom. Of primary concern were the larger nominal beam widths for which a standard CTDI phantom setup would not provide adequate scatter conditions. Nominal beam width (160 or 120 mm) and kVp (100, 120, 140) were modulated based on the underlying clinical protocol. Exposure measurements were taken using a CT pencil ion chamber in the center and 12 o’clock position, and CTDIvol was calculated with ‘nT’ limited to 100 mm. A conversion factor (CF) was calculated as the ratio of CTDIvol measured in setup B versus setup A. Results: For body CTDI, the CF ranged from 1.04 up to 1.10, indicating a 4–10% difference between usage of one and three phantoms. For a nominal beam width of 160 mm, the CF did vary with selected kVp. For head CTDI at nominal beam widths of 120 and 160 mm, the CF was 1.00 and 1.05, respectively, independent of the kVp used (100, 120, and 140). Conclusions: A clear understanding of the manufacturer method of estimating the displayed CTDIvol is important when interpreting annual test results, as the acquisition setup may lead to an error of up to 10%. With appropriately defined CF, single phantom use is feasible.« less
Impacts of wave-induced circulation in the surf zone on wave setup
NASA Astrophysics Data System (ADS)
Guérin, Thomas; Bertin, Xavier; Coulombier, Thibault; de Bakker, Anouk
2018-03-01
Wave setup corresponds to the increase in mean water level along the coast associated with the breaking of short-waves and is of key importance for coastal dynamics, as it contributes to storm surges and the generation of undertows. Although overall well explained by the divergence of the momentum flux associated with short waves in the surf zone, several studies reported substantial underestimations along the coastline. This paper investigates the impacts of the wave-induced circulation that takes place in the surf zone on wave setup, based on the analysis of 3D modelling results. A 3D phase-averaged modelling system using a vortex force formalism is applied to hindcast an unpublished field experiment, carried out at a dissipative beach under moderate to very energetic wave conditions (Hm 0 = 6m at breaking and Tp = 22s). When using an adaptive wave breaking parameterisation based on the beach slope, model predictions for water levels, short waves and undertows improved by about 30%, with errors reducing to 0.10 m, 0.10 m and 0.09 m/s, respectively. The analysis of model results suggests a very limited impact of the vertical circulation on wave setup at this dissipative beach. When extending this analysis to idealized simulations for different beach slopes ranging from 0.01 to 0.05, it shows that the contribution of the vertical circulation (horizontal and vertical advection and vertical viscosity terms) becomes more and more relevant as the beach slope increases. In contrast, for a given beach slope, the wave height at the breaking point has a limited impact on the relative contribution of the vertical circulation on the wave setup. For a slope of 0.05, the contribution of the terms associated with the vertical circulation accounts for up to 17% (i.e. a 20% increase) of the total setup at the shoreline, which provides a new explanation for the underestimations reported in previously published studies.
Extremal Optimization for estimation of the error threshold in topological subsystem codes at T = 0
NASA Astrophysics Data System (ADS)
Millán-Otoya, Jorge E.; Boettcher, Stefan
2014-03-01
Quantum decoherence is a problem that arises in implementations of quantum computing proposals. Topological subsystem codes (TSC) have been suggested as a way to overcome decoherence. These offer a higher optimal error tolerance when compared to typical error-correcting algorithms. A TSC has been translated into a planar Ising spin-glass with constrained bimodal three-spin couplings. This spin-glass has been considered at finite temperature to determine the phase boundary between the unstable phase and the stable phase, where error recovery is possible.[1] We approach the study of the error threshold problem by exploring ground states of this spin-glass with the Extremal Optimization algorithm (EO).[2] EO has proven to be a effective heuristic to explore ground state configurations of glassy spin-systems.[3
SU-F-T-92: Clinical Benefit for Breast and Chest Wall Setup in Using a Breast Board
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, S; Miyamoto, C; Serratore, D
Purpose: To validate benefit of using a breast board (BB) by analyzing the geometry and dosimetry changes of the regions of interest (ROIs) between CT scans with and without BB. Methods: Seven patients, two chest walls (CW) and five breasts, use BB at CT simulation and no BB at diagnostic CT were included. By using deformable image registration software (Velocity AI), diagnostic CT and planning CT were rigidly co-registered according to the thoracic cage at the target. The heart and the target were then deformedly matched and the contours of the planned ROIs were transferred to the diagnostic CT. Whichmore » were brought back to the planning CT data set though the initial rigid co-registration in order to keep the deformed ROIs redefined in the diagnostic CT. Anatomic shifts and volume changes of a ROI beyond the rigid translation were recorded and dosimetry changes to ROIs were compared with recalculated DVHs. Results: Patient setup without the BB had small but systematic heart shifts superiorly by ∼5 mm. Torso rotations in two cases moved the heart in opposite directions by ∼10 mm. The breast target volume, shape, and locations were significantly changed with arm extension over the head but not in cases with the arm extended laterally. Breast setup without BB could increase the mean dose to the heart and the maximal dose to the anterior ventricle wall by 1.1 and 6.7 Gy, respectively. Conclusion: A method for evaluation of breast setup technique is introduced and applied for patients. Results of systematic heart displacement without using the BB and the potential increase of heart doses encourage us to further investigate the current trend of not using a BB for easy setup and CT scans. Using a BB would likely increase patient sag during prolonged IMRT and real-time patient position monitoring is clinically desired.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, M; Kim, T; Kang, S
Purpose: The purpose of this work is to develop a new patient set-up monitoring system using force sensing resistor (FSR) sensors that can confirm pressure of contact surface and evaluate its feasibility. Methods: In this study, we focused on develop the patient set-up monitoring system to compensate for the limitation of existing optical based monitoring system, so the developed system can inform motion in the radiation therapy. The set-up monitoring system was designed consisting of sensor units (FSR sensor), signal conditioning devices (USB cable/interface electronics), a control PC, and a developed analysis software. The sensor unit was made by attachingmore » FSR sensor and dispersing pressure sponge to prevent error which is caused by concentrating specific point. Measured signal from the FSR sensor was sampled to arduino mega 2560 microcontroller, transferred to control PC by using serial communication. The measured data went through normalization process. The normalized data was displayed through the developed graphic user interface (GUI) software. The software was designed to display a single sensor unit intensity (maximum 16 sensors) and display 2D pressure distribution (using 16 sensors) according to the purpose. Results: Changes of pressure value according to motion was confirmed by the developed set-up monitoring system. Very small movement such as little physical change in appearance can be confirmed using a single unit and using 2D pressure distribution. Also, the set-up monitoring system can observe in real time. Conclusion: In this study, we developed the new set-up monitoring system using FSR sensor. Especially, we expect that the new set-up monitoring system is suitable for motion monitoring of blind area that is hard to confirm existing optical system and compensate existing optical based monitoring system. As a further study, an integrated system will be constructed through correlation of existing optical monitoring system. This work was supported by the Industrial R&D program of MOTIE/KEIT. [10048997, Development of the core technology for integrated therapy devices based on real-time MRI guided tumor tracking] and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, A; Foster, J; Chu, W
2015-06-15
Purpose: Many cancer centers treat colorectal patients in the prone position on a belly board to minimize dose to the small bowel. That may potentially Result in patient setup instability with corresponding impact on dose delivery accuracy for highly conformal techniques such as IMRT/VMAT. Two aims of this work are 1) to investigate setup accuracy of rectum patients treated in the prone position on a belly board using CBCT and 2) to evaluate dosimetric impact on bladder and small bowel of treating rectum patients in supine vs. prone position. Methods: For the setup accuracy study, 10 patients were selected. Weeklymore » CBCTs were acquired and matched to bone. The CBCT-determined shifts were recorded. For the dosimetric study, 7 prone-setup patients and 7 supine-setup patients were randomly selected from our clinical database. Various clinically relevant dose volume histogram values were recorded for the small bowel and bladder. Results: The CBCT-determined rotational shifts had a wide variation. For the dataset acquired at the time of this writing, the ranges of rotational setup errors for pitch, roll, and yaw were [−3.6° 4.7°], [−4.3° 3.2°], and [−1.4° 1.4°]. For the dosimetric study: the small bowel V(45Gy) and mean dose for the prone position was 5.6±12.1% and 18.4±6.2Gy (ranges indicate standard deviations); for the supine position the corresponding dose values were 12.9±15.8% and 24.7±8.8Gy. For the bladder, the V(30Gy) and mean dose for prone position were 68.7±12.7% and 38.4±3.3Gy; for supine position these dose values were 77.1±13.7% and 40.7±3.1Gy. Conclusion: There is evidence of significant rotational instability in the prone position. The OAR dosimetry study indicates that there are some patients that may still benefit from the prone position, though many patients can be safely treated supine.« less
Reducing the overlay metrology sensitivity to perturbations of the measurement stack
NASA Astrophysics Data System (ADS)
Zhou, Yue; Park, DeNeil; Gutjahr, Karsten; Gottipati, Abhishek; Vuong, Tam; Bae, Sung Yong; Stokes, Nicholas; Jiang, Aiqin; Hsu, Po Ya; O'Mahony, Mark; Donini, Andrea; Visser, Bart; de Ruiter, Chris; Grzela, Grzegorz; van der Laan, Hans; Jak, Martin; Izikson, Pavel; Morgan, Stephen
2017-03-01
Overlay metrology setup today faces a continuously changing landscape of process steps. During Diffraction Based Overlay (DBO) metrology setup, many different metrology target designs are evaluated in order to cover the full process window. The standard method for overlay metrology setup consists of single-wafer optimization in which the performance of all available metrology targets is evaluated. Without the availability of external reference data or multiwafer measurements it is hard to predict the metrology accuracy and robustness against process variations which naturally occur from wafer-to-wafer and lot-to-lot. In this paper, the capabilities of the Holistic Metrology Qualification (HMQ) setup flow are outlined, in particular with respect to overlay metrology accuracy and process robustness. The significance of robustness and its impact on overlay measurements is discussed using multiple examples. Measurement differences caused by slight stack variations across the target area, called grating imbalance, are shown to cause significant errors in the overlay calculation in case the recipe and target have not been selected properly. To this point, an overlay sensitivity check on perturbations of the measurement stack is presented for improvement of the overlay metrology setup flow. An extensive analysis on Key Performance Indicators (KPIs) from HMQ recipe optimization is performed on µDBO measurements of product wafers. The key parameters describing the sensitivity to perturbations of the measurement stack are based on an intra-target analysis. Using advanced image analysis, which is only possible for image plane detection of μDBO instead of pupil plane detection of DBO, the process robustness performance of a recipe can be determined. Intra-target analysis can be applied for a wide range of applications, independent of layers and devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Presles, Benoît, E-mail: benoit.presles@creatis.insa-lyon.fr; Rit, Simon; Sarrut, David
2014-12-15
Purpose: The aim of the present work is to propose and evaluate registration algorithms of three-dimensional (3D) transabdominal (TA) ultrasound (US) images to setup postprostatectomy patients during radiation therapy. Methods: Three registration methods have been developed and evaluated to register a reference 3D-TA-US image acquired during the planning CT session and a 3D-TA-US image acquired before each treatment session. The first method (method A) uses only gray value information, whereas the second one (method B) uses only gradient information. The third one (method C) combines both sets of information. All methods restrict the comparison to a region of interest computedmore » from the dilated reference positioning volume drawn on the reference image and use mutual information as a similarity measure. The considered geometric transformations are translations and have been optimized by using the adaptive stochastic gradient descent algorithm. Validation has been carried out using manual registration by three operators of the same set of image pairs as the algorithms. Sixty-two treatment US images of seven patients irradiated after a prostatectomy have been registered to their corresponding reference US image. The reference registration has been defined as the average of the manual registration values. Registration error has been calculated by subtracting the reference registration from the algorithm result. For each session, the method has been considered a failure if the registration error was above both the interoperator variability of the session and a global threshold of 3.0 mm. Results: All proposed registration algorithms have no systematic bias. Method B leads to the best results with mean errors of −0.6, 0.7, and −0.2 mm in left–right (LR), superior–inferior (SI), and anterior–posterior (AP) directions, respectively. With this method, the standard deviations of the mean error are of 1.7, 2.4, and 2.6 mm in LR, SI, and AP directions, respectively. The latter are inferior to the interoperator registration variabilities which are of 2.5, 2.5, and 3.5 mm in LR, SI, and AP directions, respectively. Failures occur in 5%, 18%, and 10% of cases in LR, SI, and AP directions, respectively. 69% of the sessions have no failure. Conclusions: Results of the best proposed registration algorithm of 3D-TA-US images for postprostatectomy treatment have no bias and are in the same variability range as manual registration. As the algorithm requires a short computation time, it could be used in clinical practice provided that a visual review is performed.« less
Fabrication of ф 160 mm convex hyperbolic mirror for remote sensing instrument
NASA Astrophysics Data System (ADS)
Kuo, Ching-Hsiang; Yu, Zong-Ru; Ho, Cheng-Fang; Hsu, Wei-Yao; Chen, Fong-Zhi
2012-10-01
In this study, efficient polishing processes with inspection procedures for a large convex hyperbolic mirror of Cassegrain optical system are presented. The polishing process combines the techniques of conventional lapping and CNC polishing. We apply the conventional spherical lapping process to quickly remove the sub-surface damage (SSD) layer caused by grinding process and to get the accurate radius of best-fit sphere (BFS) of aspheric surface with fine surface texture simultaneously. Thus the removed material for aspherization process can be minimized and the polishing time for SSD removal can also be reduced substantially. The inspection procedure was carried out by using phase shift interferometer with CGH and stitching technique. To acquire the real surface form error of each sub aperture, the wavefront errors of the reference flat and CGH flat due to gravity effect of the vertical setup are calibrated in advance. Subsequently, we stitch 10 calibrated sub-aperture surface form errors to establish the whole irregularity of the mirror in 160 mm diameter for correction polishing. The final result of the In this study, efficient polishing processes with inspection procedures for a large convex hyperbolic mirror of Cassegrain optical system are presented. The polishing process combines the techniques of conventional lapping and CNC polishing. We apply the conventional spherical lapping process to quickly remove the sub-surface damage (SSD) layer caused by grinding process and to get the accurate radius of best-fit sphere (BFS) of aspheric surface with fine surface texture simultaneously. Thus the removed material for aspherization process can be minimized and the polishing time for SSD removal can also be reduced substantially. The inspection procedure was carried out by using phase shift interferometer with CGH and stitching technique. To acquire the real surface form error of each sub aperture, the wavefront errors of the reference flat and CGH flat due to gravity effect of the vertical setup are calibrated in advance. Subsequently, we stitch 10 calibrated sub-aperture surface form errors to establish the whole irregularity of the mirror in 160 mm diameter for correction polishing. The final result of the Fabrication of ф160 mm Convex Hyperbolic Mirror for Remote Sensing Instrument160 mm convex hyperbolic mirror is 0.15 μm PV and 17.9 nm RMS.160 mm convex hyperbolic mirror is 0.15 μm PV and 17.9 nm RMS.
Tehrani, Joubin Nasehi; O'Brien, Ricky T; Poulsen, Per Rugaard; Keall, Paul
2013-12-07
Previous studies have shown that during cancer radiotherapy a small translation or rotation of the tumor can lead to errors in dose delivery. Current best practice in radiotherapy accounts for tumor translations, but is unable to address rotation due to a lack of a reliable real-time estimate. We have developed a method based on the iterative closest point (ICP) algorithm that can compute rotation from kilovoltage x-ray images acquired during radiation treatment delivery. A total of 11 748 kilovoltage (kV) images acquired from ten patients (one fraction for each patient) were used to evaluate our tumor rotation algorithm. For each kV image, the three dimensional coordinates of three fiducial markers inside the prostate were calculated. The three dimensional coordinates were used as input to the ICP algorithm to calculate the real-time tumor rotation and translation around three axes. The results show that the root mean square error was improved for real-time calculation of tumor displacement from a mean of 0.97 mm with the stand alone translation to a mean of 0.16 mm by adding real-time rotation and translation displacement with the ICP algorithm. The standard deviation (SD) of rotation for the ten patients was 2.3°, 0.89° and 0.72° for rotation around the right-left (RL), anterior-posterior (AP) and superior-inferior (SI) directions respectively. The correlation between all six degrees of freedom showed that the highest correlation belonged to the AP and SI translation with a correlation of 0.67. The second highest correlation in our study was between the rotation around RL and rotation around AP, with a correlation of -0.33. Our real-time algorithm for calculation of rotation also confirms previous studies that have shown the maximum SD belongs to AP translation and rotation around RL. ICP is a reliable and fast algorithm for estimating real-time tumor rotation which could create a pathway to investigational clinical treatment studies requiring real-time measurement and adaptation to tumor rotation.
NASA Astrophysics Data System (ADS)
Nasehi Tehrani, Joubin; O'Brien, Ricky T.; Rugaard Poulsen, Per; Keall, Paul
2013-12-01
Previous studies have shown that during cancer radiotherapy a small translation or rotation of the tumor can lead to errors in dose delivery. Current best practice in radiotherapy accounts for tumor translations, but is unable to address rotation due to a lack of a reliable real-time estimate. We have developed a method based on the iterative closest point (ICP) algorithm that can compute rotation from kilovoltage x-ray images acquired during radiation treatment delivery. A total of 11 748 kilovoltage (kV) images acquired from ten patients (one fraction for each patient) were used to evaluate our tumor rotation algorithm. For each kV image, the three dimensional coordinates of three fiducial markers inside the prostate were calculated. The three dimensional coordinates were used as input to the ICP algorithm to calculate the real-time tumor rotation and translation around three axes. The results show that the root mean square error was improved for real-time calculation of tumor displacement from a mean of 0.97 mm with the stand alone translation to a mean of 0.16 mm by adding real-time rotation and translation displacement with the ICP algorithm. The standard deviation (SD) of rotation for the ten patients was 2.3°, 0.89° and 0.72° for rotation around the right-left (RL), anterior-posterior (AP) and superior-inferior (SI) directions respectively. The correlation between all six degrees of freedom showed that the highest correlation belonged to the AP and SI translation with a correlation of 0.67. The second highest correlation in our study was between the rotation around RL and rotation around AP, with a correlation of -0.33. Our real-time algorithm for calculation of rotation also confirms previous studies that have shown the maximum SD belongs to AP translation and rotation around RL. ICP is a reliable and fast algorithm for estimating real-time tumor rotation which could create a pathway to investigational clinical treatment studies requiring real-time measurement and adaptation to tumor rotation.
Human Perception of Ambiguous Inertial Motion Cues
NASA Technical Reports Server (NTRS)
Zhang, Guan-Lu
2010-01-01
Human daily activities on Earth involve motions that elicit both tilt and translation components of the head (i.e. gazing and locomotion). With otolith cues alone, tilt and translation can be ambiguous since both motions can potentially displace the otolithic membrane by the same magnitude and direction. Transitions between gravity environments (i.e. Earth, microgravity and lunar) have demonstrated to alter the functions of the vestibular system and exacerbate the ambiguity between tilt and translational motion cues. Symptoms of motion sickness and spatial disorientation can impair human performances during critical mission phases. Specifically, Space Shuttle landing records show that particular cases of tilt-translation illusions have impaired the performance of seasoned commanders. This sensorimotor condition is one of many operational risks that may have dire implications on future human space exploration missions. The neural strategy with which the human central nervous system distinguishes ambiguous inertial motion cues remains the subject of intense research. A prevailing theory in the neuroscience field proposes that the human brain is able to formulate a neural internal model of ambiguous motion cues such that tilt and translation components can be perceptually decomposed in order to elicit the appropriate bodily response. The present work uses this theory, known as the GIF resolution hypothesis, as the framework for experimental hypothesis. Specifically, two novel motion paradigms are employed to validate the neural capacity of ambiguous inertial motion decomposition in ground-based human subjects. The experimental setup involves the Tilt-Translation Sled at Neuroscience Laboratory of NASA JSC. This two degree-of-freedom motion system is able to tilt subjects in the pitch plane and translate the subject along the fore-aft axis. Perception data will be gathered through subject verbal reports. Preliminary analysis of perceptual data does not indicate that the GIF resolution hypothesis is completely valid for non-rotational periodic motions. Additionally, human perception of translation is impaired without visual or spatial reference. The performance of ground-base subjects in estimating tilt after brief training is comparable with that of crewmembers without training.
Biaxial Anisotropic Material Development and Characterization using Rectangular to Square Waveguide
2015-03-26
holder 68 Figure 29. Measurement Setup with Test port cables and Network Analyzer VNA and the waveguide adapters are torqued to specification with...calibrated torque wrenches and waveguide flanges are aligned using precision alignment pins. A TRL calibration is performed prior to measuring the sample as...set to 0.0001. This enables the Frequency domain solver to refine the mesh until the tolerance is achieved. Tightening the error tolerance results in
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalapurakal, John A., E-mail: j-kalapurakal@northwestern.edu; Zafirovski, Aleksandar; Smith, Jeffery
Purpose: This report describes the value of a voluntary error reporting system and the impact of a series of quality assurance (QA) measures including checklists and timeouts on reported error rates in patients receiving radiation therapy. Methods and Materials: A voluntary error reporting system was instituted with the goal of recording errors, analyzing their clinical impact, and guiding the implementation of targeted QA measures. In response to errors committed in relation to treatment of the wrong patient, wrong treatment site, and wrong dose, a novel initiative involving the use of checklists and timeouts for all staff was implemented. The impactmore » of these and other QA initiatives was analyzed. Results: From 2001 to 2011, a total of 256 errors in 139 patients after 284,810 external radiation treatments (0.09% per treatment) were recorded in our voluntary error database. The incidence of errors related to patient/tumor site, treatment planning/data transfer, and patient setup/treatment delivery was 9%, 40.2%, and 50.8%, respectively. The compliance rate for the checklists and timeouts initiative was 97% (P<.001). These and other QA measures resulted in a significant reduction in many categories of errors. The introduction of checklists and timeouts has been successful in eliminating errors related to wrong patient, wrong site, and wrong dose. Conclusions: A comprehensive QA program that regularly monitors staff compliance together with a robust voluntary error reporting system can reduce or eliminate errors that could result in serious patient injury. We recommend the adoption of these relatively simple QA initiatives including the use of checklists and timeouts for all staff to improve the safety of patients undergoing radiation therapy in the modern era.« less
Effects of monetary reward and punishment on information checking behaviour: An eye-tracking study.
Li, Simon Y W; Cox, Anna L; Or, Calvin; Blandford, Ann
2018-07-01
The aim of the present study was to investigate the effect of error consequence, as reward or punishment, on individuals' checking behaviour following data entry. This study comprised two eye-tracking experiments that replicate and extend the investigation of Li et al. (2016) into the effect of monetary reward and punishment on data-entry performance. The first experiment adopted the same experimental setup as Li et al. (2016) but additionally used an eye tracker. The experiment validated Li et al. (2016) finding that, when compared to no error consequence, both reward and punishment led to improved data-entry performance in terms of reducing errors, and that no performance difference was found between reward and punishment. The second experiment extended the earlier study by associating error consequence to each individual trial by providing immediate performance feedback to participants. It was found that gradual increment (i.e. reward feedback) also led to significantly more accurate performance than no error consequence. It is unclear whether gradual increment is more effective than gradual decrement because of the small sample size tested. However, this study reasserts the effectiveness of reward on data-entry performance. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Khallaf, Haitham S.; Elfiqi, Abdulaziz E.; Shalaby, Hossam M. H.; Sampei, Seiichi; Obayya, Salah S. A.
2018-06-01
We investigate the performance of hybrid L-ary quadrature-amplitude modulation-multi-pulse pulse-position modulation (LQAM-MPPM) techniques over exponentiated Weibull (EW) fading free-space optical (FSO) channel, considering both weather and pointing-error effects. Upper bound and approximate-tight upper bound expressions for the bit-error rate (BER) of LQAM-MPPM techniques over EW FSO channels are obtained, taking into account the effects of fog, beam divergence, and pointing-error. Setup block diagram for both the transmitter and receiver of the LQAM-MPPM/FSO system are introduced and illustrated. The BER expressions are evaluated numerically and the results reveal that LQAM-MPPM technique outperforms ordinary LQAM and MPPM schemes under different fading levels and weather conditions. Furthermore, the effect of modulation-index is investigated and it turned out that a modulation-index greater than 0.4 is required in order to optimize the system performance. Finally, the effect of pointing-error introduces a great power penalty on the LQAM-MPPM system performance. Specifically, at a BER of 10-9, pointing-error introduces power penalties of about 45 and 28 dB for receiver aperture sizes of DR = 50 and 200 mm, respectively.
Positioning accuracy in a registration-free CT-based navigation system
NASA Astrophysics Data System (ADS)
Brandenberger, D.; Birkfellner, W.; Baumann, B.; Messmer, P.; Huegli, R. W.; Regazzoni, P.; Jacob, A. L.
2007-12-01
In order to maintain overall navigation accuracy established by a calibration procedure in our CT-based registration-free navigation system, the CT scanner has to repeatedly generate identical volume images of a target at the same coordinates. We tested the positioning accuracy of the prototype of an advanced workplace for image-guided surgery (AWIGS) which features an operating table capable of direct patient transfer into a CT scanner. Volume images (N = 154) of a specialized phantom were analysed for translational shifting after various table translations. Variables included added weight and phantom position on the table. The navigation system's calibration accuracy was determined (bias 2.1 mm, precision ± 0.7 mm, N = 12). In repeated use, a bias of 3.0 mm and a precision of ± 0.9 mm (N = 10) were maintainable. Instances of translational image shifting were related to the table-to-CT scanner docking mechanism. A distance scaling error when altering the table's height was detected. Initial prototype problems visible in our study causing systematic errors were resolved by repeated system calibrations between interventions. We conclude that the accuracy achieved is sufficient for a wide range of clinical applications in surgery and interventional radiology.
Translation position determination in ptychographic coherent diffraction imaging.
Zhang, Fucai; Peterson, Isaac; Vila-Comamala, Joan; Diaz, Ana; Berenguer, Felisa; Bean, Richard; Chen, Bo; Menzel, Andreas; Robinson, Ian K; Rodenburg, John M
2013-06-03
Accurate knowledge of translation positions is essential in ptychography to achieve a good image quality and the diffraction limited resolution. We propose a method to retrieve and correct position errors during the image reconstruction iterations. Sub-pixel position accuracy after refinement is shown to be achievable within several tens of iterations. Simulation and experimental results for both optical and X-ray wavelengths are given. The method improves both the quality of the retrieved object image and relaxes the position accuracy requirement while acquiring the diffraction patterns.
Calibrating page sized Gafchromic EBT3 films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crijns, W.; Maes, F.; Heide, U. A. van der
2013-01-15
Purpose: The purpose is the development of a novel calibration method for dosimetry with Gafchromic EBT3 films. The method should be applicable for pretreatment verification of volumetric modulated arc, and intensity modulated radiotherapy. Because the exposed area on film can be large for such treatments, lateral scan errors must be taken into account. The correction for the lateral scan effect is obtained from the calibration data itself. Methods: In this work, the film measurements were modeled using their relative scan values (Transmittance, T). Inside the transmittance domain a linear combination and a parabolic lateral scan correction described the observed transmittancemore » values. The linear combination model, combined a monomer transmittance state (T{sub 0}) and a polymer transmittance state (T{sub {infinity}}) of the film. The dose domain was associated with the observed effects in the transmittance domain through a rational calibration function. On the calibration film only simple static fields were applied and page sized films were used for calibration and measurements (treatment verification). Four different calibration setups were considered and compared with respect to dose estimation accuracy. The first (I) used a calibration table from 32 regions of interest (ROIs) spread on 4 calibration films, the second (II) used 16 ROIs spread on 2 calibration films, the third (III), and fourth (IV) used 8 ROIs spread on a single calibration film. The calibration tables of the setups I, II, and IV contained eight dose levels delivered to different positions on the films, while for setup III only four dose levels were applied. Validation was performed by irradiating film strips with known doses at two different time points over the course of a week. Accuracy of the dose response and the lateral effect correction was estimated using the dose difference and the root mean squared error (RMSE), respectively. Results: A calibration based on two films was the optimal balance between cost effectiveness and dosimetric accuracy. The validation resulted in dose errors of 1%-2% for the two different time points, with a maximal absolute dose error around 0.05 Gy. The lateral correction reduced the RMSE values on the sides of the film to the RMSE values at the center of the film. Conclusions: EBT3 Gafchromic films were calibrated for large field dosimetry with a limited number of page sized films and simple static calibration fields. The transmittance was modeled as a linear combination of two transmittance states, and associated with dose using a rational calibration function. Additionally, the lateral scan effect was resolved in the calibration function itself. This allows the use of page sized films. Only two calibration films were required to estimate both the dose and the lateral response. The calibration films were used over the course of a week, with residual dose errors Less-Than-Or-Slanted-Equal-To 2% or Less-Than-Or-Slanted-Equal-To 0.05 Gy.« less
Quantum stopwatch: how to store time in a quantum memory.
Yang, Yuxiang; Chiribella, Giulio; Hayashi, Masahito
2018-05-01
Quantum mechanics imposes a fundamental trade-off between the accuracy of time measurements and the size of the systems used as clocks. When the measurements of different time intervals are combined, the errors due to the finite clock size accumulate, resulting in an overall inaccuracy that grows with the complexity of the set-up. Here, we introduce a method that, in principle, eludes the accumulation of errors by coherently transferring information from a quantum clock to a quantum memory of the smallest possible size. Our method could be used to measure the total duration of a sequence of events with enhanced accuracy, and to reduce the amount of quantum communication needed to stabilize clocks in a quantum network.
NASA Astrophysics Data System (ADS)
Wu, D.; Lin, J. C.; Oda, T.; Ye, X.; Lauvaux, T.; Yang, E. G.; Kort, E. A.
2017-12-01
Urban regions are large emitters of CO2 whose emission inventories are still associated with large uncertainties. Therefore, a strong need exists to better quantify emissions from megacities using a top-down approach. Satellites — e.g., the Orbiting Carbon Observatory 2 (OCO-2), provide a platform for monitoring spatiotemporal column CO2 concentrations (XCO2). In this study, we present a Lagrangian receptor-oriented model framework and evaluate "model-retrieved" XCO2 by comparing against OCO-2-retrieved XCO2, for three megacities/regions (Riyadh, Cairo and Pearl River Delta). OCO-2 soundings indicate pronounced XCO2 enhancements (dXCO2) when crossing Riyadh, which are successfully captured by our model with a slight latitude shift. From this model framework, we can identify and compare the relative contributions of dXCO2 resulted from anthropogenic emission versus biospheric fluxes. In addition, to impose constraints on emissions for Riyadh through inversion methods, three uncertainties sources are addressed in this study, including 1) transport errors, 2) receptor and model setups in atmospheric models, and 3) urban emission uncertainties. For 1), we calculate transport errors by adding a wind error component to randomize particle distributions. For 2), a set of sensitivity tests using bootstrap method is performed to describe proper ways to setup receptors in Lagrangian models. For 3), both emission uncertainties from the Fossil Fuel Data Assimilation System (FFDAS) and the spread among three emission inventories are used to approximate an overall fractional uncertainty in modeled anthropogenic signal (dXCO2.anthro). Lastly, we investigate the definition of background (clean) XCO2 for megacities from retrieved XCO2 by means of statistical tools and our model framework.
Accuracy of UTE-MRI-based patient setup for brain cancer radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yingli; Cao, Minsong; Kaprealian, Tania
2016-01-15
Purpose: Radiation therapy simulations solely based on MRI have advantages compared to CT-based approaches. One feature readily available from computed tomography (CT) that would need to be reproduced with MR is the ability to compute digitally reconstructed radiographs (DRRs) for comparison against on-board radiographs commonly used for patient positioning. In this study, the authors generate MR-based bone images using a single ultrashort echo time (UTE) pulse sequence and quantify their 3D and 2D image registration accuracy to CT and radiographic images for treatments in the cranium. Methods: Seven brain cancer patients were scanned at 1.5 T using a radial UTEmore » sequence. The sequence acquired two images at two different echo times. The two images were processed using an in-house software to generate the UTE bone images. The resultant bone images were rigidly registered to simulation CT data and the registration error was determined using manually annotated landmarks as references. DRRs were created based on UTE-MRI and registered to simulated on-board images (OBIs) and actual clinical 2D oblique images from ExacTrac™. Results: UTE-MRI resulted in well visualized cranial, facial, and vertebral bones that quantitatively matched the bones in the CT images with geometric measurement errors of less than 1 mm. The registration error between DRRs generated from 3D UTE-MRI and the simulated 2D OBIs or the clinical oblique x-ray images was also less than 1 mm for all patients. Conclusions: UTE-MRI-based DRRs appear to be promising for daily patient setup of brain cancer radiotherapy with kV on-board imaging.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velec, Michael, E-mail: michael.velec@rmp.uhn.on.ca; Institute of Medical Science, University of Toronto, Toronto, ON; Moseley, Joanne L.
2012-07-15
Purpose: To investigate the accumulated dose deviations to tumors and normal tissues in liver stereotactic body radiotherapy (SBRT) and investigate their geometric causes. Methods and Materials: Thirty previously treated liver cancer patients were retrospectively evaluated. Stereotactic body radiotherapy was planned on the static exhale CT for 27-60 Gy in 6 fractions, and patients were treated in free-breathing with daily cone-beam CT guidance. Biomechanical model-based deformable image registration accumulated dose over both the planning four-dimensional (4D) CT (predicted breathing dose) and also over each fraction's respiratory-correlated cone-beam CT (accumulated treatment dose). The contribution of different geometric errors to changes between themore » accumulated and predicted breathing dose were quantified. Results: Twenty-one patients (70%) had accumulated dose deviations relative to the planned static prescription dose >5%, ranging from -15% to 5% in tumors and -42% to 8% in normal tissues. Sixteen patients (53%) still had deviations relative to the 4D CT-predicted dose, which were similar in magnitude. Thirty-two tissues in these 16 patients had deviations >5% relative to the 4D CT-predicted dose, and residual setup errors (n = 17) were most often the largest cause of the deviations, followed by deformations (n = 8) and breathing variations (n = 7). Conclusion: The majority of patients had accumulated dose deviations >5% relative to the static plan. Significant deviations relative to the predicted breathing dose still occurred in more than half the patients, commonly owing to residual setup errors. Accumulated SBRT dose may be warranted to pursue further dose escalation, adaptive SBRT, and aid in correlation with clinical outcomes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, S.; Jark, W.; Takacs, P.Z.
1995-02-01
Metrology requirements for optical components for third generation synchrotron sources are taxing the state-of-the-art in manufacturing technology. We have investigated a number of effect sources in a commercial figure measurement instrument, the Long Trace Profiler II (LTP II), and have demonstrated that, with some simple modifications, we can significantly reduce the effect of error sources and improve the accuracy and reliability of the measurement. By keeping the optical head stationary and moving a penta prism along the translation stage, the stability of the optical system is greatly improved, and the remaining error signals can be corrected by a simple referencemore » beam subtraction. We illustrate the performance of the modified system by investigating the distortion produced by gravity on a typical synchrotron mirror and demonstrate the repeatability of the instrument despite relaxed tolerances on the translation stage.« less
McClure, Kimberley A; McGuire, Katherine L; Chapan, Denis M
2018-05-07
Policy on officer-involved shootings is critically reviewed and errors in applying scientific knowledge identified. Identifying and evaluating the most relevant science to a field-based problem is challenging. Law enforcement administrators with a clear understanding of valid science and application are in a better position to utilize scientific knowledge for the benefit of their organizations and officers. A recommended framework is proposed for considering the validity of science and its application. Valid science emerges via hypothesis testing, replication, extension and marked by peer review, known error rates, and general acceptance in its field of origin. Valid application of behavioral science requires an understanding of the methodology employed, measures used, and participants recruited to determine whether the science is ready for application. Fostering a science-practitioner partnership and an organizational culture that embraces quality, empirically based policy, and practices improves science-to-practice translation. © 2018 American Academy of Forensic Sciences.
Szymanski, Eric S; Kimsey, Isaac J; Al-Hashimi, Hashim M
2017-03-29
The replicative and translational machinery utilizes the unique geometry of canonical G·C and A·T/U Watson-Crick base pairs to discriminate against DNA and RNA mismatches in order to ensure high fidelity replication, transcription, and translation. There is growing evidence that spontaneous errors occur when mismatches adopt a Watson-Crick-like geometry through tautomerization and/or ionization of the bases. Studies employing NMR relaxation dispersion recently showed that wobble dG·dT and rG·rU mismatches in DNA and RNA duplexes transiently form tautomeric and anionic species with probabilities (≈0.01-0.40%) that are in concordance with replicative and translational errors. Although computational studies indicate that these exceptionally short-lived and low-abundance species form Watson-Crick-like base pairs, their conformation could not be directly deduced from the experimental data, and alternative pairing geometries could not be ruled out. Here, we report direct NMR evidence that the transient tautomeric and anionic species form hydrogen-bonded Watson-Crick-like base pairs. A guanine-to-inosine substitution, which selectively knocks out a Watson-Crick-type (G)N2H 2 ···O2(T) hydrogen bond, significantly destabilized the transient tautomeric and anionic species, as assessed by lack of any detectable chemical exchange by imino nitrogen rotating frame spin relaxation (R 1ρ ) experiments. An 15 N R 1ρ NMR experiment targeting the amino nitrogen of guanine (dG-N2) provides direct evidence for Watson-Crick (G)N2H 2 ···O2(T) hydrogen bonding in the transient tautomeric state. The strategy presented in this work can be generally applied to examine hydrogen-bonding patterns in nucleic acid transient states including in other tautomeric and anionic species that are postulated to play roles in replication and translational errors.
Zanotti-Fregonara, Paolo; Liow, Jeih-San; Comtat, Claude; Zoghbi, Sami S; Zhang, Yi; Pike, Victor W; Fujita, Masahiro; Innis, Robert B
2012-09-01
Image-derived input function (IDIF) from carotid arteries is an elegant alternative to full arterial blood sampling for brain PET studies. However, a recent study using blood-free IDIFs found that this method is particularly vulnerable to patient motion. The present study used both simulated and clinical [11C](R)-rolipram data to assess the robustness of a blood-based IDIF method (a method that is ultimately normalized with blood samples) with regard to motion artifacts. The impact of motion on the accuracy of IDIF was first assessed with an analytical simulation of a high-resolution research tomograph using a numerical phantom of the human brain, equipped with internal carotids. Different degrees of translational (from 1 to 20 mm) and rotational (from 1 to 15°) motions were tested. The impact of motion was then tested on the high-resolution research tomograph dynamic scans of three healthy volunteers, reconstructed with and without an online motion correction system. IDIFs and Logan-distribution volume (VT) values derived from simulated and clinical scans with motion were compared with those obtained from the scans with motion correction. In the phantom scans, the difference in the area under the curve (AUC) for the carotid time-activity curves was up to 19% for rotations and up to 66% for translations compared with the motionless simulation. However, for the final IDIFs, which were fitted to blood samples, the AUC difference was 11% for rotations and 8% for translations. Logan-VT errors were always less than 10%, except for the maximum translation of 20 mm, in which the error was 18%. Errors in the clinical scans without motion correction appeared to be minor, with differences in AUC and Logan-VT always less than 10% compared with scans with motion correction. When a blood-based IDIF method is used for neurological PET studies, the motion of the patient affects IDIF estimation and kinetic modeling only minimally.
A translator and simulator for the Burroughs D machine
NASA Technical Reports Server (NTRS)
Roberts, J.
1972-01-01
The D Machine is described as a small user microprogrammable computer designed to be a versatile building block for such diverse functions as: disk file controllers, I/O controllers, and emulators. TRANSLANG is an ALGOL-like language, which allows D Machine users to write microprograms in an English-like format as opposed to creating binary bit pattern maps. The TRANSLANG translator parses TRANSLANG programs into D Machine microinstruction bit patterns which can be executed on the D Machine simulator. In addition to simulation and translation, the two programs also offer several debugging tools, such as: a full set of diagnostic error messages, register dumps, simulated memory dumps, traces on instructions and groups of instructions, and breakpoints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teke, T
Purpose: To present and validate a set of quality control tests for trajectory treatment delivery using synchronized dynamic couch (translation and rotation), MLC and collimator motion. Methods: The quality control tests are based on the Picket fence test, which consist of 5 narrow band 2mm width spaced at 2.5cm intervals, and adds progressively synchronized dynamic motions. The tests were exposed on GafChromic EBT3 films. The first test is a regular (no motion and MLC static while beam is on) Picket Fence test used as baseline. The second test includes simultaneous collimator and couch rotation, each stripe corresponding to a differentmore » rotation speed. Errors in these tests were introduced (0.5 degree and 1 degree error in rotation synchronization) to assess the error sensitivity of this test. The second test is similar to the regular Picket Fence but now including dynamic MLC motion and couch translation (including acceleration during delivery) while the beam is on. Finally in the third test, which is a combination of the first and second test, the Picket Fence pattern is delivered using synchronized collimator and couch rotation and synchronized dynamic MLC and couch translation including acceleration. Films were analyzed with FilmQA Pro. Results: The distance between the peaks in the dose profile where measured (18.5cm away from the isocentre in the inplane direction where non synchronized rotation would have the largest effect) and compared to the regular Picket Fence tests. For well synchronized motions distances between peaks where between 24.9–25.4 mm identical to the regular Picket Fence test. This range increased to 24.4–26.4mm and 23.4–26.4mm for 0.5 degree and 1 degree error respectively. The amplitude also decreased up to 15% when errors are introduced. Conclusion: We demonstrated that the Roucoulette tests can be used as a quality control tests for trajectory treatment delivery using synchronized dynamic motion.« less
Translational and Rotational Diffusion in Water in the Gigapascal Range
NASA Astrophysics Data System (ADS)
Bove, L. E.; Klotz, S.; Strässle, Th.; Koza, M.; Teixeira, J.; Saitta, A. M.
2013-11-01
First measurements of the self-dynamics of liquid water in the GPa range are reported. The GPa range has here become accessible through a new setup for the Paris-Edinburgh press specially conceived for quasielastic neutron scattering studies. A direct measurement of both the translational and rotational diffusion coefficients of water along the 400 K isotherm up to 3 GPa, corresponding to the melting point of ice VII, is provided and compared with molecular dynamics simulations. The translational diffusion is observed to strongly decrease with pressure, though its variation slows down for pressures higher than 1 GPa and decouples from that of the shear viscosity. The rotational diffusion turns out to be insensitive to pressure. Through comparison with structural data and molecular dynamics simulations, we show that this is a consequence of the rigidity of the first neighbors shell and of the invariance of the number of hydrogen bonds of a water molecule under high pressure. These results show the inadequacy of the Stokes-Einstein-Debye equations to predict the self-diffusive behavior of water at high temperature and high pressure, and challenge the usual description of hot dense water behaving as a simple liquid.
A computer-controlled apparatus for micrometric drop deposition at liquid surfaces
NASA Astrophysics Data System (ADS)
Peña-Polo, Franklin; Trujillo, Leonardo; Sigalotti, Leonardo Di G.
2010-05-01
A low-cost, automated apparatus has been used to perform micrometric deposition of small pendant drops onto a quiet liquid surface. The approach of the drop to the surface is obtained by means of discrete, micron-scale translations in order to achieve deposition at adiabatically zero velocity. This process is not only widely used in scientific investigations in fluid mechanics and thermal sciences but also in engineering and biomedical applications. The apparatus has been designed to produce accurate deposition onto the surface and minimize the vibrations induced in the drop by the movement of the capillary tip. Calibration tests of the apparatus have shown that a descent of the drop by discrete translational steps of ˜5.6 μm and duration of 150-200 ms is sufficient to minimize its penetration depth into the liquid when it touches the surface layer and reduce to a level of noise the vibrations transmitted to it by the translation of the dispenser. Different settings of the experimental setup can be easily implemented for use in a variety of other applications, including deposition onto solid surfaces, surface tension measurements of pendant drops, and wire bonding in microelectronics.
NASA Astrophysics Data System (ADS)
Schuldt, T.; Gohlke, M.; Kögel, H.; Spannagel, R.; Peters, A.; Johann, U.; Weise, D.; Braxmaier, C.
2012-05-01
A high-sensitivity heterodyne interferometer implementing differential wavefront sensing for tilt measurement was developed over the last few years. With this setup, using an aluminium breadboard and compact optical mounts with a beam height of 2 cm, noise levels less than 5 pm Hz-1/2 in translation and less than 10 nrad Hz-1/2 in tilt measurement, both for frequencies above 10-2 Hz, have been demonstrated. Here, a new, compact and ruggedized interferometer setup utilizing a baseplate made of Zerodur, a thermally and mechanically highly stable glass ceramic with a coefficient of thermal expansion (CTE) of 2 × 10-8 K-1, is presented. The optical components are fixed to the baseplate using a specifically developed, easy-to-handle, assembly-integration technology based on a space-qualified two-component epoxy. While developed as a prototype for future applications aboard satellite space missions (such as Laser Interferometer Space Antenna), the interferometer is used in laboratory experiments for dilatometry and surface metrology. A first dilatometer setup with a demonstrated accuracy of 10-7 K-1 in CTE measurement was realized. As it was seen that the accuracy is limited by the dimensional stability of the sample tube support, a new setup was developed utilizing Zerodur as structural material for the sample tube support. In another activity, the interferometer is used for characterization of high-quality mirror surfaces at the picometre level and for high-accuracy two-dimensional surface characterization in a prototype for industrial applications. In this paper, the corresponding designs, their realizations and first measurements of both applications in dilatometry and surface metrology are presented.
Using GPU parallelization to perform realistic simulations of the LPCTrap experiments
NASA Astrophysics Data System (ADS)
Fabian, X.; Mauger, F.; Quéméner, G.; Velten, Ph.; Ban, G.; Couratin, C.; Delahaye, P.; Durand, D.; Fabre, B.; Finlay, P.; Fléchard, X.; Liénard, E.; Méry, A.; Naviliat-Cuncic, O.; Pons, B.; Porobic, T.; Severijns, N.; Thomas, J. C.
2015-11-01
The LPCTrap setup is a sensitive tool to measure the β - ν angular correlation coefficient, a β ν , which can yield the mixing ratio ρ of a β decay transition. The latter enables the extraction of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element V u d . In such a measurement, the most relevant observable is the energy distribution of the recoiling daughter nuclei following the nuclear β decay, which is obtained using a time-of-flight technique. In order to maximize the precision, one can reduce the systematic errors through a thorough simulation of the whole set-up, especially with a correct model of the trapped ion cloud. This paper presents such a simulation package and focuses on the ion cloud features; particular attention is therefore paid to realistic descriptions of trapping field dynamics, buffer gas cooling and the N-body space charge effects.
External cavity diode laser setup with two interference filters
NASA Astrophysics Data System (ADS)
Martin, Alexander; Baus, Patrick; Birkl, Gerhard
2016-12-01
We present an external cavity diode laser setup using two identical, commercially available interference filters operated in the blue wavelength range around 450 nm. The combination of the two filters decreases the transmission width, while increasing the edge steepness without a significant reduction in peak transmittance. Due to the broad spectral transmission of these interference filters compared to the internal mode spacing of blue laser diodes, an additional locking scheme, based on Hänsch-Couillaud locking to a cavity, has been added to improve the stability. The laser is stabilized to a line in the tellurium spectrum via saturation spectroscopy, and single-frequency operation for a duration of two days is demonstrated by monitoring the error signal of the lock and the piezo drive compensating the length change of the external resonator due to air pressure variations. Additionally, transmission curves of the filters and the spectra of a sample of diodes are given.
Physics, ballistics, and psychology: a history of the chronoscope in/as context, 1845-1890.
Schmidgen, Henning
2005-02-01
In Wilhelm Wundt's (1832-1920) Leipzig laboratory and at numerous other research sites, the chronoscope was used to conduct reaction time experiments. The author argues that the history of the chronoscope is the history not of an instrument but of an experimental setup. This setup was initially devised by the English physicist and instrument maker Charles Wheatstone (1802-1875) in the early 1840s. Shortly thereafter, it was improved by the German clockmaker and mechanic Matthäus Hipp (1813-1893). In the 1850s, the chronoscope was introduced to ballistic research. In the early 1860s, Neuchâtel astronomer Adolphe Hirsch (1830-1901) applied it to the problem of physiological time. The extensions and variations of chronoscope use within the contexts of ballistics, physiology, and psychology presented special challenges. These challenges were met with specific attempts to reduce the errors in chronoscopic experiments on shooting stands and in the psychological laboratory.
The Adiabatic Theorem and Linear Response Theory for Extended Quantum Systems
NASA Astrophysics Data System (ADS)
Bachmann, Sven; De Roeck, Wojciech; Fraas, Martin
2018-03-01
The adiabatic theorem refers to a setup where an evolution equation contains a time-dependent parameter whose change is very slow, measured by a vanishing parameter ɛ. Under suitable assumptions the solution of the time-inhomogenous equation stays close to an instantaneous fixpoint. In the present paper, we prove an adiabatic theorem with an error bound that is independent of the number of degrees of freedom. Our setup is that of quantum spin systems where the manifold of ground states is separated from the rest of the spectrum by a spectral gap. One important application is the proof of the validity of linear response theory for such extended, genuinely interacting systems. In general, this is a long-standing mathematical problem, which can be solved in the present particular case of a gapped system, relevant e.g. for the integer quantum Hall effect.
Magnetostriction measurement by four probe method
NASA Astrophysics Data System (ADS)
Dange, S. N.; Radha, S.
2018-04-01
The present paper describes the design and setting up of an indigenouslydevelopedmagnetostriction(MS) measurement setup using four probe method atroom temperature.A standard strain gauge is pasted with a special glue on the sample and its change in resistance with applied magnetic field is measured using KeithleyNanovoltmeter and Current source. An electromagnet with field upto 1.2 tesla is used to source the magnetic field. The sample is placed between the magnet poles using self designed and developed wooden probe stand, capable of moving in three mutually perpendicular directions. The nanovoltmeter and current source are interfaced with PC using RS232 serial interface. A software has been developed in for logging and processing of data. Proper optimization of measurement has been done through software to reduce the noise due to thermal emf and electromagnetic induction. The data acquired for some standard magnetic samples are presented. The sensitivity of the setup is 1microstrain with an error in measurement upto 5%.
NASA Astrophysics Data System (ADS)
Liu, Yonghuai; Rodrigues, Marcos A.
2000-03-01
This paper describes research on the application of machine vision techniques to a real time automatic inspection task of air filter components in a manufacturing line. A novel calibration algorithm is proposed based on a special camera setup where defective items would show a large calibration error. The algorithm makes full use of rigid constraints derived from the analysis of geometrical properties of reflected correspondence vectors which have been synthesized into a single coordinate frame and provides a closed form solution to the estimation of all parameters. For a comparative study of performance, we also developed another algorithm based on this special camera setup using epipolar geometry. A number of experiments using synthetic data have shown that the proposed algorithm is generally more accurate and robust than the epipolar geometry based algorithm and that the geometric properties of reflected correspondence vectors provide effective constraints to the calibration of rigid body transformations.
Dimensional synthesis of a 3-DOF parallel manipulator with full circle rotation
NASA Astrophysics Data System (ADS)
Ni, Yanbing; Wu, Nan; Zhong, Xueyong; Zhang, Biao
2015-07-01
Parallel robots are widely used in the academic and industrial fields. In spite of the numerous achievements in the design and dimensional synthesis of the low-mobility parallel robots, few research efforts are directed towards the asymmetric 3-DOF parallel robots whose end-effector can realize 2 translational and 1 rotational(2T1R) motion. In order to develop a manipulator with the capability of full circle rotation to enlarge the workspace, a new 2T1R parallel mechanism is proposed. The modeling approach and kinematic analysis of this proposed mechanism are investigated. Using the method of vector analysis, the inverse kinematic equations are established. This is followed by a vigorous proof that this mechanism attains an annular workspace through its circular rotation and 2 dimensional translations. Taking the first order perturbation of the kinematic equations, the error Jacobian matrix which represents the mapping relationship between the error sources of geometric parameters and the end-effector position errors is derived. With consideration of the constraint conditions of pressure angles and feasible workspace, the dimensional synthesis is conducted with a goal to minimize the global comprehensive performance index. The dimension parameters making the mechanism to have optimal error mapping and kinematic performance are obtained through the optimization algorithm. All these research achievements lay the foundation for the prototype building of such kind of parallel robots.
Influence of the number of elongated fiducial markers on the localization accuracy of the prostate
NASA Astrophysics Data System (ADS)
de Boer, Johan; de Bois, Josien; van Herk, Marcel; Sonke, Jan-Jakob
2012-10-01
Implanting fiducial markers for localization purposes has become an accepted practice in radiotherapy for prostate cancer. While many correction strategies correct for translations only, advanced correction protocols also require knowledge of the rotation of the prostate. For this purpose, typically, three or more markers are implanted. Elongated fiducial markers provide more information about their orientation than traditional round or cylindrical markers. Potentially, fewer markers are required. In this study, we evaluate the effect of the number of elongated markers on the localization accuracy of the prostate. To quantify the localization error, we developed a model that estimates, at arbitrary locations in the prostate, the registration error caused by translational and rotational uncertainties of the marker registration. Every combination of one, two and three markers was analysed for a group of 24 patients. The average registration errors at the prostate surface were 0.3-0.8 mm and 0.4-1 mm for registrations on, respectively, three markers and two markers located on different sides of the prostate. Substantial registration errors (2.0-2.2 mm) occurred at the prostate surface contralateral to the markers when two markers were implanted on the same side of the prostate or only one marker was used. In conclusion, there is no benefit in using three elongated markers: two markers accurately localize the prostate if they are implanted at some distance from each other.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwa, Stefan L.S., E-mail: s.kwa@erasmusmc.nl; Al-Mamgani, Abrahim; Osman, Sarah O.S.
2015-09-01
Purpose: The purpose of this study was to verify clinical target volume–planning target volume (CTV-PTV) margins in single vocal cord irradiation (SVCI) of T1a larynx tumors and characterize inter- and intrafraction target motion. Methods and Materials: For 42 patients, a single vocal cord was irradiated using intensity modulated radiation therapy at a total dose of 58.1 Gy (16 fractions × 3.63 Gy). A daily cone beam computed tomography (CBCT) scan was performed to online correct the setup of the thyroid cartilage after patient positioning with in-room lasers (interfraction motion correction). To monitor intrafraction motion, CBCT scans were also acquired just after patient repositioning and aftermore » dose delivery. A mixed online-offline setup correction protocol (“O2 protocol”) was designed to compensate for both inter- and intrafraction motion. Results: Observed interfraction, systematic (Σ), and random (σ) setup errors in left-right (LR), craniocaudal (CC), and anteroposterior (AP) directions were 0.9, 2.0, and 1.1 mm and 1.0, 1.6, and 1.0 mm, respectively. After correction of these errors, the following intrafraction movements derived from the CBCT acquired after dose delivery were: Σ = 0.4, 1.3, and 0.7 mm, and σ = 0.8, 1.4, and 0.8 mm. More than half of the patients showed a systematic non-zero intrafraction shift in target position, (ie, the mean intrafraction displacement over the treatment fractions was statistically significantly different from zero; P<.05). With the applied CTV-PTV margins (for most patients 3, 5, and 3 mm in LR, CC, and AP directions, respectively), the minimum CTV dose, estimated from the target displacements observed in the last CBCT, was at least 94% of the prescribed dose for all patients and more than 98% for most patients (37 of 42). The proposed O2 protocol could effectively reduce the systematic intrafraction errors observed after dose delivery to almost zero (Σ = 0.1, 0.2, 0.2 mm). Conclusions: With adequate image guidance and CTV-PTV margins in LR, CC, and AP directions of 3, 5, and 3 mm, respectively, excellent target coverage in SVCI could be ensured.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voort, Sebastian van der; Section of Nuclear Energy and Radiation Applications, Department of Radiation, Science and Technology, Delft University of Technology, Delft; Water, Steven van de
Purpose: We aimed to derive a “robustness recipe” giving the range robustness (RR) and setup robustness (SR) settings (ie, the error values) that ensure adequate clinical target volume (CTV) coverage in oropharyngeal cancer patients for given gaussian distributions of systematic setup, random setup, and range errors (characterized by standard deviations of Σ, σ, and ρ, respectively) when used in minimax worst-case robust intensity modulated proton therapy (IMPT) optimization. Methods and Materials: For the analysis, contoured computed tomography (CT) scans of 9 unilateral and 9 bilateral patients were used. An IMPT plan was considered robust if, for at least 98% of themore » simulated fractionated treatments, 98% of the CTV received 95% or more of the prescribed dose. For fast assessment of the CTV coverage for given error distributions (ie, different values of Σ, σ, and ρ), polynomial chaos methods were used. Separate recipes were derived for the unilateral and bilateral cases using one patient from each group, and all 18 patients were included in the validation of the recipes. Results: Treatment plans for bilateral cases are intrinsically more robust than those for unilateral cases. The required RR only depends on the ρ, and SR can be fitted by second-order polynomials in Σ and σ. The formulas for the derived robustness recipes are as follows: Unilateral patients need SR = −0.15Σ{sup 2} + 0.27σ{sup 2} + 1.85Σ − 0.06σ + 1.22 and RR=3% for ρ = 1% and ρ = 2%; bilateral patients need SR = −0.07Σ{sup 2} + 0.19σ{sup 2} + 1.34Σ − 0.07σ + 1.17 and RR=3% and 4% for ρ = 1% and 2%, respectively. For the recipe validation, 2 plans were generated for each of the 18 patients corresponding to Σ = σ = 1.5 mm and ρ = 0% and 2%. Thirty-four plans had adequate CTV coverage in 98% or more of the simulated fractionated treatments; the remaining 2 had adequate coverage in 97.8% and 97.9%. Conclusions: Robustness recipes were derived that can be used in minimax robust optimization of IMPT treatment plans to ensure adequate CTV coverage for oropharyngeal cancer patients.« less
Li, Ruijiang; Fahimian, Benjamin P; Xing, Lei
2011-07-01
Monoscopic x-ray imaging with on-board kV devices is an attractive approach for real-time image guidance in modern radiation therapy such as VMAT or IMRT, but it falls short in providing reliable information along the direction of imaging x-ray. By effectively taking consideration of projection data at prior times and/or angles through a Bayesian formalism, the authors develop an algorithm for real-time and full 3D tumor localization with a single x-ray imager during treatment delivery. First, a prior probability density function is constructed using the 2D tumor locations on the projection images acquired during patient setup. Whenever an x-ray image is acquired during the treatment delivery, the corresponding 2D tumor location on the imager is used to update the likelihood function. The unresolved third dimension is obtained by maximizing the posterior probability distribution. The algorithm can also be used in a retrospective fashion when all the projection images during the treatment delivery are used for 3D localization purposes. The algorithm does not involve complex optimization of any model parameter and therefore can be used in a "plug-and-play" fashion. The authors validated the algorithm using (1) simulated 3D linear and elliptic motion and (2) 3D tumor motion trajectories of a lung and a pancreas patient reproduced by a physical phantom. Continuous kV images were acquired over a full gantry rotation with the Varian TrueBeam on-board imaging system. Three scenarios were considered: fluoroscopic setup, cone beam CT setup, and retrospective analysis. For the simulation study, the RMS 3D localization error is 1.2 and 2.4 mm for the linear and elliptic motions, respectively. For the phantom experiments, the 3D localization error is < 1 mm on average and < 1.5 mm at 95th percentile in the lung and pancreas cases for all three scenarios. The difference in 3D localization error for different scenarios is small and is not statistically significant. The proposed algorithm eliminates the need for any population based model parameters in monoscopic image guided radiotherapy and allows accurate and real-time 3D tumor localization on current standard LINACs with a single x-ray imager.
Steeden, Jennifer A; Muthurangu, Vivek
2015-04-01
1) To validate an R-R interval averaged golden angle spiral phase contrast magnetic resonance (RAGS PCMR) sequence against conventional cine PCMR for assessment of renal blood flow (RBF) in normal volunteers; and 2) To investigate the effects of motion and heart rate on the accuracy of flow measurements using an in silico simulation. In 20 healthy volunteers RAGS (∼6 sec breath-hold) and respiratory-navigated cine (∼5 min) PCMR were performed in both renal arteries to assess RBF. A simulation of RAGS PCMR was used to assess the effect of heart rate (30-105 bpm), vessel expandability (0-150%) and translational motion (x1.0-4.0) on the accuracy of RBF measurements. There was good agreement between RAGS and cine PCMR in the volunteer study (bias: 0.01 L/min, limits of agreement: -0.04 to +0.06 L/min, P = 0.0001). The simulation demonstrated a positive linear relationship between heart rate and error (r = 0.9894, P < 0.0001), a negative linear relationship between vessel expansion and error (r = -0.9484, P < 0.0001), and a nonlinear, heart rate-dependent relationship between vessel translation and error. We have demonstrated that RAGS PCMR accurately measures RBF in vivo. However, the simulation reveals limitations in this technique at extreme heart rates (<40 bpm, >100 bpm), or when there is significant motion (vessel expandability: >80%, vessel translation: >x2.2). © 2014 Wiley Periodicals, Inc.
Takemura, Akihiro; Ueda, Shinichi; Noto, Kimiya; Kurata, Yuichi; Shoji, Saori
2011-01-01
In this study, we proposed and evaluated a positional accuracy assessment method with two high-resolution digital cameras for add-on six-degrees-of-freedom radiotherapy (6D) couches. Two high resolution digital cameras (D5000, Nikon Co.) were used in this accuracy assessment method. These cameras were placed on two orthogonal axes of a linear accelerator (LINAC) coordinate system and focused on the isocenter of the LINAC. Pictures of a needle that was fixed on the 6D couch were taken by the cameras during couch motions of translation and rotation of each axis. The coordinates of the needle in the pictures were obtained using manual measurement, and the coordinate error of the needle was calculated. The accuracy of a HexaPOD evo (Elekta AB, Sweden) was evaluated using this method. All of the mean values of the X, Y, and Z coordinate errors in the translation tests were within ±0.1 mm. However, the standard deviation of the Z coordinate errors in the Z translation test was 0.24 mm, which is higher than the others. In the X rotation test, we found that the X coordinate of the rotational origin of the 6D couch was shifted. We proposed an accuracy assessment method for a 6D couch. The method was able to evaluate the accuracy of the motion of only the 6D couch and revealed the deviation of the origin of the couch rotation. This accuracy assessment method is effective for evaluating add-on 6D couch positioning.
Self-Interaction Error in Density Functional Theory: An Appraisal.
Bao, Junwei Lucas; Gagliardi, Laura; Truhlar, Donald G
2018-05-03
Self-interaction error (SIE) is considered to be one of the major sources of error in most approximate exchange-correlation functionals for Kohn-Sham density-functional theory (KS-DFT), and it is large with all local exchange-correlation functionals and with some hybrid functionals. In this work, we consider systems conventionally considered to be dominated by SIE. For these systems, we demonstrate that by using multiconfiguration pair-density functional theory (MC-PDFT), the error of a translated local density-functional approximation is significantly reduced (by a factor of 3) when using an MCSCF density and on-top density, as compared to using KS-DFT with the parent functional; the error in MC-PDFT with local on-top functionals is even lower than the error in some popular KS-DFT hybrid functionals. Density-functional theory, either in MC-PDFT form with local on-top functionals or in KS-DFT form with some functionals having 50% or more nonlocal exchange, has smaller errors for SIE-prone systems than does CASSCF, which has no SIE.
Johansson, Magnus; Zhang, Jingji; Ehrenberg, Måns
2012-01-03
Rapid and accurate translation of the genetic code into protein is fundamental to life. Yet due to lack of a suitable assay, little is known about the accuracy-determining parameters and their correlation with translational speed. Here, we develop such an assay, based on Mg(2+) concentration changes, to determine maximal accuracy limits for a complete set of single-mismatch codon-anticodon interactions. We found a simple, linear trade-off between efficiency of cognate codon reading and accuracy of tRNA selection. The maximal accuracy was highest for the second codon position and lowest for the third. The results rationalize the existence of proofreading in code reading and have implications for the understanding of tRNA modifications, as well as of translation error-modulating ribosomal mutations and antibiotics. Finally, the results bridge the gap between in vivo and in vitro translation and allow us to calibrate our test tube conditions to represent the environment inside the living cell.
Rotational degree-of-freedom synthesis: An optimised finite difference method for non-exact data
NASA Astrophysics Data System (ADS)
Gibbons, T. J.; Öztürk, E.; Sims, N. D.
2018-01-01
Measuring the rotational dynamic behaviour of a structure is important for many areas of dynamics such as passive vibration control, acoustics, and model updating. Specialist and dedicated equipment is often needed, unless the rotational degree-of-freedom is synthesised based upon translational data. However, this involves numerically differentiating the translational mode shapes to approximate the rotational modes, for example using a finite difference algorithm. A key challenge with this approach is choosing the measurement spacing between the data points, an issue which has often been overlooked in the published literature. The present contribution will for the first time prove that the use of a finite difference approach can be unstable when using non-exact measured data and a small measurement spacing, for beam-like structures. Then, a generalised analytical error analysis is used to propose an optimised measurement spacing, which balances the numerical error of the finite difference equation with the propagation error from the perturbed data. The approach is demonstrated using both numerical and experimental investigations. It is shown that by obtaining a small number of test measurements it is possible to optimise the measurement accuracy, without any further assumptions on the boundary conditions of the structure.
Fresnel diffraction by spherical obstacles
NASA Technical Reports Server (NTRS)
Hovenac, Edward A.
1989-01-01
Lommel functions were used to solve the Fresnel-Kirchhoff diffraction integral for the case of a spherical obstacle. Comparisons were made between Fresnel diffraction theory and Mie scattering theory. Fresnel theory is then compared to experimental data. Experiment and theory typically deviated from one another by less than 10 percent. A unique experimental setup using mercury spheres suspended in a viscous fluid significantly reduced optical noise. The major source of error was due to the Gaussian-shaped laser beam.
User's guide to Monte Carlo methods for evaluating path integrals
NASA Astrophysics Data System (ADS)
Westbroek, Marise J. E.; King, Peter R.; Vvedensky, Dimitri D.; Dürr, Stephan
2018-04-01
We give an introduction to the calculation of path integrals on a lattice, with the quantum harmonic oscillator as an example. In addition to providing an explicit computational setup and corresponding pseudocode, we pay particular attention to the existence of autocorrelations and the calculation of reliable errors. The over-relaxation technique is presented as a way to counter strong autocorrelations. The simulation methods can be extended to compute observables for path integrals in other settings.
Vertical high-precision Michelson wavemeter
NASA Astrophysics Data System (ADS)
Morales, A.; de Urquijo, J.; Mendoza, A.
1993-01-01
We have designed and tested a traveling, Michelson-type vertical wavemeter for the wavelength measurement of tunable continuous-wave lasers in the visible part of the spectrum. The interferometer has two movable corner cubes, suspending vertically from a driving setup resembling Atwood's machine. To reduce the fraction-of-fringe error, a vernier-type coincidence circuit was used. Although simple, this wavemeter has a relative precision of 3.2 parts in 109 for an overall fringe count of about 7×106.
Measurement of thermal conductivity and thermal diffusivity using a thermoelectric module
NASA Astrophysics Data System (ADS)
Beltrán-Pitarch, Braulio; Márquez-García, Lourdes; Min, Gao; García-Cañadas, Jorge
2017-04-01
A proof of concept of using a thermoelectric module to measure both thermal conductivity and thermal diffusivity of bulk disc samples at room temperature is demonstrated. The method involves the calculation of the integral area from an impedance spectrum, which empirically correlates with the thermal properties of the sample through an exponential relationship. This relationship was obtained employing different reference materials. The impedance spectroscopy measurements are performed in a very simple setup, comprising a thermoelectric module, which is soldered at its bottom side to a Cu block (heat sink) and thermally connected with the sample at its top side employing thermal grease. Random and systematic errors of the method were calculated for the thermal conductivity (18.6% and 10.9%, respectively) and thermal diffusivity (14.2% and 14.7%, respectively) employing a BCR724 standard reference material. Although errors are somewhat high, the technique could be useful for screening purposes or high-throughput measurements at its current state. This new method establishes a new application for thermoelectric modules as thermal properties sensors. It involves the use of a very simple setup in conjunction with a frequency response analyzer, which provides a low cost alternative to most of currently available apparatus in the market. In addition, impedance analyzers are reliable and widely spread equipment, which facilities the sometimes difficult access to thermal conductivity facilities.
Experimental data for the slug two-phase flow characteristics in horizontal pipeline.
Mohmmed, Abdalellah O; Nasif, Mohammad S; Al-Kayiem, Hussain H
2018-02-01
The data presented in this article were the basis for the study reported in the research articles entitled "Statistical assessment of experimental observation on the slug body length and slug translational velocity in a horizontal pipe" (Al-Kayiem et al., 2017) [1] which presents an experimental investigation of the slug velocity and slug body length for air-water tow phase flow in horizontal pipe. Here, in this article, the experimental set-up and the major instruments used for obtaining the computed data were explained in details. This data will be presented in the form of tables and videos.
Interferometric modulation of quantum cascade interactions
NASA Astrophysics Data System (ADS)
Cusumano, Stefano; Mari, Andrea; Giovannetti, Vittorio
2018-05-01
We consider many-body quantum systems dissipatively coupled by a cascade network, i.e., a setup in which interactions are mediated by unidirectional environmental modes propagating through a linear optical interferometer. In particular we are interested in the possibility of inducing different effective interactions by properly engineering an external dissipative network of beam splitters and phase shifters. In this work we first derive the general structure of the master equation for a symmetric class of translation-invariant cascade networks. Then we show how, by tuning the parameters of the interferometer, one can exploit interference effects to tailor a large variety of many-body interactions.
Engineers test STS-37 CETA electrical hand pedal cart in JSC MAIL Bldg 9A
NASA Technical Reports Server (NTRS)
1990-01-01
McDonnell Douglas engineers Noland Talley (left) and Gary Peters (center) and ILC-Dover engineer Richard Richard Smallcombe prepare test setup for the evaluation of the crew and equipment translation aid (CETA) electrical hand pedal cart in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Peters, wearing extravehicular mobility unit (EMU) boots and positioned in portable foot restraint (PFR), is suspended above CETA cart and track via harness to simulate weightlessness. CETA will be tested in orbit in the payload bay of Atlantis, Orbiter Vehicle (OV) 104, during STS-37.
An automatic dose verification system for adaptive radiotherapy for helical tomotherapy
NASA Astrophysics Data System (ADS)
Mo, Xiaohu; Chen, Mingli; Parnell, Donald; Olivera, Gustavo; Galmarini, Daniel; Lu, Weiguo
2014-03-01
Purpose: During a typical 5-7 week treatment of external beam radiotherapy, there are potential differences between planned patient's anatomy and positioning, such as patient weight loss, or treatment setup. The discrepancies between planned and delivered doses resulting from these differences could be significant, especially in IMRT where dose distributions tightly conforms to target volumes while avoiding organs-at-risk. We developed an automatic system to monitor delivered dose using daily imaging. Methods: For each treatment, a merged image is generated by registering the daily pre-treatment setup image and planning CT using treatment position information extracted from the Tomotherapy archive. The treatment dose is then computed on this merged image using our in-house convolution-superposition based dose calculator implemented on GPU. The deformation field between merged and planning CT is computed using the Morphon algorithm. The planning structures and treatment doses are subsequently warped for analysis and dose accumulation. All results are saved in DICOM format with private tags and organized in a database. Due to the overwhelming amount of information generated, a customizable tolerance system is used to flag potential treatment errors or significant anatomical changes. A web-based system and a DICOM-RT viewer were developed for reporting and reviewing the results. Results: More than 30 patients were analysed retrospectively. Our in-house dose calculator passed 97% gamma test evaluated with 2% dose difference and 2mm distance-to-agreement compared with Tomotherapy calculated dose, which is considered sufficient for adaptive radiotherapy purposes. Evaluation of the deformable registration through visual inspection showed acceptable and consistent results, except for cases with large or unrealistic deformation. Our automatic flagging system was able to catch significant patient setup errors or anatomical changes. Conclusions: We developed an automatic dose verification system that quantifies treatment doses, and provides necessary information for adaptive planning without impeding clinical workflows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueda, Yoshihiro, E-mail: ueda-yo@mc.pref.osaka.jp; Miyazaki, Masayoshi; Nishiyama, Kinji
2012-07-01
Purpose: To evaluate setup error and interfractional changes in tumor motion magnitude using an electric portal imaging device in cine mode (EPID cine) during the course of stereotactic body radiation therapy (SBRT) for non-small-cell lung cancer (NSCLC) and to calculate margins to compensate for these variations. Materials and Methods: Subjects were 28 patients with Stage I NSCLC who underwent SBRT. Respiratory-correlated four-dimensional computed tomography (4D-CT) at simulation was binned into 10 respiratory phases, which provided average intensity projection CT data sets (AIP). On 4D-CT, peak-to-peak motion of the tumor (M-4DCT) in the craniocaudal direction was assessed and the tumor centermore » (mean tumor position [MTP]) of the AIP (MTP-4DCT) was determined. At treatment, the tumor on cone beam CT was registered to that on AIP for patient setup. During three sessions of irradiation, peak-to-peak motion of the tumor (M-cine) and the mean tumor position (MTP-cine) were obtained using EPID cine and in-house software. Based on changes in tumor motion magnitude ( Increment M) and patient setup error ( Increment MTP), defined as differences between M-4DCT and M-cine and between MTP-4DCT and MTP-cine, a margin to compensate for these variations was calculated with Stroom's formula. Results: The means ({+-}standard deviation: SD) of M-4DCT and M-cine were 3.1 ({+-}3.4) and 4.0 ({+-}3.6) mm, respectively. The means ({+-}SD) of Increment M and Increment MTP were 0.9 ({+-}1.3) and 0.2 ({+-}2.4) mm, respectively. Internal target volume-planning target volume (ITV-PTV) margins to compensate for Increment M, Increment MTP, and both combined were 3.7, 5.2, and 6.4 mm, respectively. Conclusion: EPID cine is a useful modality for assessing interfractional variations of tumor motion. The ITV-PTV margins to compensate for these variations can be calculated.« less
SU-F-T-463: Light-Field Based Dynalog Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atwal, P; Ramaseshan, R
2016-06-15
Purpose: To independently verify leaf positions in so-called dynalog files for a Varian iX linac with a Millennium 120 MLC. This verification provides a measure of confidence that the files can be used directly as part of a more extensive intensity modulated radiation therapy / volumetric modulated arc therapy QA program. Methods: Initial testing used white paper placed at the collimator plane and a standard hand-held digital camera to image the light and shadow of a static MLC field through the paper. Known markings on the paper allow for image calibration. Noise reduction was attempted with removal of ‘inherent noise’more » from an open-field light image through the paper, but the method was found to be inconsequential. This is likely because the environment could not be controlled to the precision required for the sort of reproducible characterization of the quantum noise needed in order to meaningfully characterize and account for it. A multi-scale iterative edge detection algorithm was used for localizing the leaf ends. These were compared with the planned locations from the treatment console. Results: With a very basic setup, the image of the central bank A leaves 15–45, which are arguably the most important for beam modulation, differed from the planned location by [0.38±0.28] mm. Similarly, for bank B leaves 15–45 had a difference of [0.42±0.28] mm Conclusion: It should be possible to determine leaf position accurately with not much more than a modern hand-held camera and some software. This means we can have a periodic and independent verification of the dynalog file information. This is indicated by the precision already achieved using a basic setup and analysis methodology. Currently, work is being done to reduce imaging and setup errors, which will bring the leaf position error down further, and allow meaningful analysis over the full range of leaves.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balik, S; Weiss, E; Sleeman, W
Purpose: To evaluate the potential impact of several setup error correction strategies on a proposed image-guided adaptive radiotherapy strategy for locally advanced lung cancer. Methods: Daily 4D cone-beam CT and weekly 4D fan-beam CT images were acquired from 9 lung cancer patients undergoing concurrent chemoradiation therapy. Initial planning CT was deformably registered to daily CBCT images to generate synthetic treatment courses. An adaptive radiation therapy course was simulated using the weekly CT images with replanning twice and a hypofractionated, simultaneous integrated boost to a total dose of 66 Gy to the original PTV and either a 66 Gy (no boost)more » or 82 Gy (boost) dose to the boost PTV (ITV + 3mm) in 33 fractions with IMRT or VMAT. Lymph nodes (LN) were not boosted (prescribed to 66 Gy in both plans). Synthetic images were rigidly, bony (BN) or tumor and carina (TC), registered to the corresponding plan CT, dose was computed on these from adaptive replans (PLAN) and deformably accumulated back to the original planning CT. Cumulative D98% of CTV of PT (ITV for 82Gy) and LN, and normal tissue dose changes were analyzed. Results: Two patients were removed from the study due to large registration errors. For the remaining 7 patients, D98% for CTV-PT (ITV-PT for 82 Gy) and CTV-LN was within 1 Gy of PLAN for both 66 Gy and 82 Gy plans with both setup techniques. Overall, TC based setup provided better results, especially for LN coverage (p = 0.1 for 66Gy plan and p = 0.2 for 82 Gy plan, comparison of BN and TC), though not significant. Normal tissue dose constraints violated for some patients if constraint was barely achieved in PLAN. Conclusion: The hypofractionated adaptive strategy appears to be deliverable with soft tissue alignment for the evaluated margins and planning parameters. Research was supported by NIH P01CA116602.« less
Evaluation of analytical errors in a clinical chemistry laboratory: a 3 year experience.
Sakyi, As; Laing, Ef; Ephraim, Rk; Asibey, Of; Sadique, Ok
2015-01-01
Proficient laboratory service is the cornerstone of modern healthcare systems and has an impact on over 70% of medical decisions on admission, discharge, and medications. In recent years, there is an increasing awareness of the importance of errors in laboratory practice and their possible negative impact on patient outcomes. We retrospectively analyzed data spanning a period of 3 years on analytical errors observed in our laboratory. The data covered errors over the whole testing cycle including pre-, intra-, and post-analytical phases and discussed strategies pertinent to our settings to minimize their occurrence. We described the occurrence of pre-analytical, analytical and post-analytical errors observed at the Komfo Anokye Teaching Hospital clinical biochemistry laboratory during a 3-year period from January, 2010 to December, 2012. Data were analyzed with Graph Pad Prism 5(GraphPad Software Inc. CA USA). A total of 589,510 tests was performed on 188,503 outpatients and hospitalized patients. The overall error rate for the 3 years was 4.7% (27,520/58,950). Pre-analytical, analytical and post-analytical errors contributed 3.7% (2210/58,950), 0.1% (108/58,950), and 0.9% (512/58,950), respectively. The number of tests reduced significantly over the 3-year period, but this did not correspond with a reduction in the overall error rate (P = 0.90) along with the years. Analytical errors are embedded within our total process setup especially pre-analytical and post-analytical phases. Strategic measures including quality assessment programs for staff involved in pre-analytical processes should be intensified.
NASA Astrophysics Data System (ADS)
Jin, Tao; Shen, Lu; Ke, Youlong; Hou, Wenmei; Ju, Aisong; Yang, Wei; Luo, Jialin
2016-10-01
In order to achieve rapid measurement of larger travel translation stages' roll-angle error in industry and to study the roll characteristics, this paper designs a small roll-angle measurement system based on laser heterodyne interferometry technology, test and researched on the roll characteristics of ball screw linear translation stage to fill the blank of the market. The results show that: during the operation of the ball screw linear translation stage, the workbench's roll angle changes complexly, its value is not only changing with different positions, but also shows different levels of volatility, what's more, the volatility varies with the workbench's work speed . Because of the non uniform stiffness of ball screw, at the end of each movement, the elastic potential energy being stored from the working process should release slowly, and the workbench will cost a certain time to roll fluctuate before it achieves a stable tumbling again.
Lost in Translation: the Case for Integrated Testing
NASA Technical Reports Server (NTRS)
Young, Aaron
2017-01-01
The building of a spacecraft is complex and often involves multiple suppliers and companies that have their own designs and processes. Standards have been developed across the industries to reduce the chances for critical flight errors at the system level, but the spacecraft is still vulnerable to the introduction of critical errors during integration of these systems. Critical errors can occur at any time during the process and in many cases, human reliability analysis (HRA) identifies human error as a risk driver. Most programs have a test plan in place that is intended to catch these errors, but it is not uncommon for schedule and cost stress to result in less testing than initially planned. Therefore, integrated testing, or "testing as you fly," is essential as a final check on the design and assembly to catch any errors prior to the mission. This presentation will outline the unique benefits of integrated testing by catching critical flight errors that can otherwise go undetected, discuss HRA methods that are used to identify opportunities for human error, lessons learned and challenges over ownership of testing will be discussed.
NASA Astrophysics Data System (ADS)
Pieper, Michael; Manolakis, Dimitris; Truslow, Eric; Cooley, Thomas; Brueggeman, Michael; Jacobson, John; Weisner, Andrew
2017-08-01
Accurate estimation or retrieval of surface emissivity from long-wave infrared or thermal infrared (TIR) hyperspectral imaging data acquired by airborne or spaceborne sensors is necessary for many scientific and defense applications. This process consists of two interwoven steps: atmospheric compensation and temperature-emissivity separation (TES). The most widely used TES algorithms for hyperspectral imaging data assume that the emissivity spectra for solids are smooth compared to the atmospheric transmission function. We develop a model to explain and evaluate the performance of TES algorithms using a smoothing approach. Based on this model, we identify three sources of error: the smoothing error of the emissivity spectrum, the emissivity error from using the incorrect temperature, and the errors caused by sensor noise. For each TES smoothing technique, we analyze the bias and variability of the temperature errors, which translate to emissivity errors. The performance model explains how the errors interact to generate temperature errors. Since we assume exact knowledge of the atmosphere, the presented results provide an upper bound on the performance of TES algorithms based on the smoothness assumption.
Phase Retrieval System for Assessing Diamond Turning and Optical Surface Defects
NASA Technical Reports Server (NTRS)
Dean, Bruce; Maldonado, Alex; Bolcar, Matthew
2011-01-01
An optical design is presented for a measurement system used to assess the impact of surface errors originating from diamond turning artifacts. Diamond turning artifacts are common by-products of optical surface shaping using the diamond turning process (a diamond-tipped cutting tool used in a lathe configuration). Assessing and evaluating the errors imparted by diamond turning (including other surface errors attributed to optical manufacturing techniques) can be problematic and generally requires the use of an optical interferometer. Commercial interferometers can be expensive when compared to the simple optical setup developed here, which is used in combination with an image-based sensing technique (phase retrieval). Phase retrieval is a general term used in optics to describe the estimation of optical imperfections or aberrations. This turnkey system uses only image-based data and has minimal hardware requirements. The system is straightforward to set up, easy to align, and can provide nanometer accuracy on the measurement of optical surface defects.
NASA Astrophysics Data System (ADS)
Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang
2018-02-01
Coherent modulation imaging providing fast convergence speed and high resolution with single diffraction pattern is a promising technique to satisfy the urgent demands for on-line multiple parameter diagnostics with single setup in high power laser facilities (HPLF). However, the influence of noise on the final calculated parameters concerned has not been investigated yet. According to a series of simulations with twenty different sampling beams generated based on the practical parameters and performance of HPLF, the quantitative analysis based on statistical results was first investigated after considering five different error sources. We found the background noise of detector and high quantization error will seriously affect the final accuracy and different parameters have different sensitivity to different noise sources. The simulation results and the corresponding analysis provide the potential directions to further improve the final accuracy of parameter diagnostics which is critically important to its formal applications in the daily routines of HPLF.
Writing executable assertions to test flight software
NASA Technical Reports Server (NTRS)
Mahmood, A.; Andrews, D. M.; Mccluskey, E. J.
1984-01-01
An executable assertion is a logical statement about the variables or a block of code. If there is no error during execution, the assertion statement results in a true value. Executable assertions can be used for dynamic testing of software. They can be employed for validation during the design phase, and exception and error detection during the operation phase. The present investigation is concerned with the problem of writing executable assertions, taking into account the use of assertions for testing flight software. They can be employed for validation during the design phase, and for exception handling and error detection during the operation phase The digital flight control system and the flight control software are discussed. The considered system provides autopilot and flight director modes of operation for automatic and manual control of the aircraft during all phases of flight. Attention is given to techniques for writing and using assertions to test flight software, an experimental setup to test flight software, and language features to support efficient use of assertions.
Uncertainties in extracted parameters of a Gaussian emission line profile with continuum background.
Minin, Serge; Kamalabadi, Farzad
2009-12-20
We derive analytical equations for uncertainties in parameters extracted by nonlinear least-squares fitting of a Gaussian emission function with an unknown continuum background component in the presence of additive white Gaussian noise. The derivation is based on the inversion of the full curvature matrix (equivalent to Fisher information matrix) of the least-squares error, chi(2), in a four-variable fitting parameter space. The derived uncertainty formulas (equivalent to Cramer-Rao error bounds) are found to be in good agreement with the numerically computed uncertainties from a large ensemble of simulated measurements. The derived formulas can be used for estimating minimum achievable errors for a given signal-to-noise ratio and for investigating some aspects of measurement setup trade-offs and optimization. While the intended application is Fabry-Perot spectroscopy for wind and temperature measurements in the upper atmosphere, the derivation is generic and applicable to other spectroscopy problems with a Gaussian line shape.
Llorca, David F; Sotelo, Miguel A; Parra, Ignacio; Ocaña, Manuel; Bergasa, Luis M
2010-01-01
This paper presents an analytical study of the depth estimation error of a stereo vision-based pedestrian detection sensor for automotive applications such as pedestrian collision avoidance and/or mitigation. The sensor comprises two synchronized and calibrated low-cost cameras. Pedestrians are detected by combining a 3D clustering method with Support Vector Machine-based (SVM) classification. The influence of the sensor parameters in the stereo quantization errors is analyzed in detail providing a point of reference for choosing the sensor setup according to the application requirements. The sensor is then validated in real experiments. Collision avoidance maneuvers by steering are carried out by manual driving. A real time kinematic differential global positioning system (RTK-DGPS) is used to provide ground truth data corresponding to both the pedestrian and the host vehicle locations. The performed field test provided encouraging results and proved the validity of the proposed sensor for being used in the automotive sector towards applications such as autonomous pedestrian collision avoidance.
Flight-deck automation - Promises and problems
NASA Technical Reports Server (NTRS)
Wiener, E. L.; Curry, R. E.
1980-01-01
The paper analyzes the role of human factors in flight-deck automation, identifies problem areas, and suggests design guidelines. Flight-deck automation using microprocessor technology and display systems improves performance and safety while leading to a decrease in size, cost, and power consumption. On the other hand negative factors such as failure of automatic equipment, automation-induced error compounded by crew error, crew error in equipment set-up, failure to heed automatic alarms, and loss of proficiency must also be taken into account. Among the problem areas discussed are automation of control tasks, monitoring of complex systems, psychosocial aspects of automation, and alerting and warning systems. Guidelines are suggested for designing, utilising, and improving control and monitoring systems. Investigation into flight-deck automation systems is important as the knowledge gained can be applied to other systems such as air traffic control and nuclear power generation, but the many problems encountered with automated systems need to be analyzed and overcome in future research.
Llorca, David F.; Sotelo, Miguel A.; Parra, Ignacio; Ocaña, Manuel; Bergasa, Luis M.
2010-01-01
This paper presents an analytical study of the depth estimation error of a stereo vision-based pedestrian detection sensor for automotive applications such as pedestrian collision avoidance and/or mitigation. The sensor comprises two synchronized and calibrated low-cost cameras. Pedestrians are detected by combining a 3D clustering method with Support Vector Machine-based (SVM) classification. The influence of the sensor parameters in the stereo quantization errors is analyzed in detail providing a point of reference for choosing the sensor setup according to the application requirements. The sensor is then validated in real experiments. Collision avoidance maneuvers by steering are carried out by manual driving. A real time kinematic differential global positioning system (RTK-DGPS) is used to provide ground truth data corresponding to both the pedestrian and the host vehicle locations. The performed field test provided encouraging results and proved the validity of the proposed sensor for being used in the automotive sector towards applications such as autonomous pedestrian collision avoidance. PMID:22319323