Hinz, Andreas; Jedamzick, Johanna; Herbring, Valentina; Fischbach, Hanna; Hartmann, Jessica; Parcej, David; Koch, Joachim; Tampé, Robert
2014-11-28
Antigen presentation to cytotoxic T lymphocytes via major histocompatibility complex class I (MHC I) molecules depends on the heterodimeric transporter associated with antigen processing (TAP). For efficient antigen supply to MHC I molecules in the ER, TAP assembles a macromolecular peptide-loading complex (PLC) by recruiting tapasin. In evolution, TAP appeared together with effector cells of adaptive immunity at the transition from jawless to jawed vertebrates and diversified further within the jawed vertebrates. Here, we compared TAP function and interaction with tapasin of a range of species within two classes of jawed vertebrates. We found that avian and mammalian TAP1 and TAP2 form heterodimeric complexes across taxa. Moreover, the extra N-terminal domain TMD0 of mammalian TAP1 and TAP2 as well as avian TAP2 recruits tapasin. Strikingly, however, only TAP1 and TAP2 from the same taxon can form a functional heterodimeric translocation complex. These data demonstrate that the dimerization interface between TAP1 and TAP2 and the tapasin docking sites for PLC assembly are conserved in evolution, whereas elements of antigen translocation diverged later in evolution and are thus taxon specific. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
ABC transporters and immunity: mechanism of self-defense.
Hinz, Andreas; Tampé, Robert
2012-06-26
The transporter associated with antigen processing (TAP) is a prototype of an asymmetric ATP-binding cassette (ABC) transporter, which uses ATP binding and hydrolysis to translocate peptides from the cytosol to the lumen of the endoplasmic reticulum (ER). Here, we review molecular details of peptide binding and ATP binding and hydrolysis as well as the resulting allosteric cross-talk between the nucleotide-binding domains and the transmembrane domains that drive translocation of the solute across the ER membrane. We also discuss the general molecular architecture of ABC transporters and demonstrate the importance of structural and functional studies for a better understanding of the role of the noncanonical site of asymmetric ABC transporters. Several aspects of peptide binding and specificity illustrate details of peptide translocation by TAP. Furthermore, this ABC transporter forms the central part of the major histocompatibility complex class I (MHC I) peptide-loading machinery. Hence, TAP is confronted with a number of viral factors, which prevent antigen translocation and MHC I loading in virally infected cells. We review how these viral factors have been used as molecular tools to decipher mechanistic aspects of solute translocation and discuss how they can help in the structural analysis of TAP.
Grossmann, Nina; Vakkasoglu, Ahmet S.; Hulpke, Sabine; ...
2014-11-07
The ATP-binding cassette (ABC) transporter associated with antigen processing (TAP) participates in immune surveillance by moving proteasomal products into the endoplasmic reticulum (ER) lumen for major histocompatibility complex class I loading and cell surface presentation to cytotoxic T cells. Here we delineate the mechanistic basis for antigen translocation. Notably, TAP works as a molecular diode, translocating peptide substrates against the gradient in a strict unidirectional way. We reveal the importance of the D-loop at the dimer interface of the two nucleotide-binding domains (NBDs) in coupling substrate translocation with ATP hydrolysis and defining transport vectoriality. Substitution of the converved aspartate, whichmore » coordinates the ATP-binding site, decreases NBD dimerization affinity and turns the unidirectional primary active pump into a passive bidirectional nucleotide-gated facilitator. Thus, ATP hydrolysis is not required for translocation per se, but is essential for both active and unidirectional transport. As a result, our data provide detailed mechanistic insight into how heterodimeric ABC exporters operate.« less
Lorente, Elena; García, Ruth; Mir, Carmen; Barriga, Alejandro; Lemonnier, François A.; Ramos, Manuel; López, Daniel
2012-01-01
The transporter associated with antigen processing (TAP) translocates the viral proteolytic peptides generated by the proteasome and other proteases in the cytosol to the endoplasmic reticulum lumen. There, they complex with nascent human leukocyte antigen (HLA) class I molecules, which are subsequently recognized by the CD8+ lymphocyte cellular response. However, individuals with nonfunctional TAP complexes or tumor or infected cells with blocked TAP molecules are able to present HLA class I ligands generated by TAP-independent processing pathways. Herein, using a TAP-independent polyclonal vaccinia virus-polyspecific CD8+ T cell line, two conserved vaccinia-derived TAP-independent HLA-B*0702 epitopes were identified. The presentation of these epitopes in normal cells occurs via complex antigen-processing pathways involving the proteasome and/or different subsets of metalloproteinases (amino-, carboxy-, and endoproteases), which were blocked in infected cells with specific chemical inhibitors. These data support the hypothesis that the abundant cellular proteolytic systems contribute to the supply of peptides recognized by the antiviral cellular immune response, thereby facilitating immunosurveillance. These data may explain why TAP-deficient individuals live normal life spans without any increased susceptibility to viral infections. PMID:22298786
Vaccination and the TAP-independent antigen processing pathways.
López, Daniel; Lorente, Elena; Barriga, Alejandro; Johnstone, Carolina; Mir, Carmen
2013-09-01
The cytotoxic CD8(+) T lymphocyte-mediated cellular response is important for the elimination of virus-infected cells and requires the prior recognition of short viral peptide antigens previously translocated to the endoplasmic reticulum by the transporter associated with antigen processing (TAP). However, individuals with nonfunctional TAP complexes or infected cells with TAP molecules blocked by specific viral proteins, such as the cowpoxvirus, a component of the first source of early empirical vaccination against smallpox, are still able to present several HLA class I ligands generated by the TAP-independent antigen processing pathways to specific cytotoxic CD8(+) T lymphocytes. Currently, bioterrorism and emerging infectious diseases have renewed interest in poxviruses. Recent works that have identified HLA class I ligands and epitopes in virus-infected TAP-deficient cells have implications for the study of both the effectiveness of early empirical vaccination and the analysis of HLA class I antigen processing in TAP-deficient subjects.
Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47.
Ahn, K; Meyer, T H; Uebel, S; Sempé, P; Djaballah, H; Yang, Y; Peterson, P A; Früh, K; Tampé, R
1996-01-01
The immediate early protein ICP47 of herpes simplex virus (HSV) inhibits the transporter for antigen processing (TAP)-mediated translocation of antigen-derived peptides across the endoplasmic reticulum (ER) membrane. This interference prevents assembly of peptides with class I MHC molecules in the ER and ultimately recognition of HSV-infected cells by cytotoxic T-lymphocytes, potentially leading to immune evasion of the virus. Here, we demonstrate that recombinant, purified ICP47 containing a hexahistidine tag inhibits peptide import into microsomes of insect cells expressing human TAP, whereas inhibition of peptide transport by murine TAP was much less effective. This finding indicates an intrinsic species-specificity of ICP47 and suggests that no additional proteins interacting specifically with either ICP47 or TAP are required for inhibition of peptide transport. Since neither purified nor induced ICP47 inhibited photocrosslinking of 8-azido-ATP to TAP1 and TAP2 it seems that ICP47 does not prevent ATP from binding to TAP. By contrast, peptide binding was completely blocked by ICP47 as shown both by photoaffinity crosslinking of peptides to TAP and peptide binding to microsomes from TAP-transfected insect cells. Competition experiments indicated that ICP47 binds to human TAP with a higher affinity (50 nM) than peptides whereas the affinity to murine TAP was 100-fold lower. Our data suggest that ICP47 prevents peptides from being translocated by blocking their binding to the substrate-binding site of TAP. Images PMID:8670825
The Rab-binding Profiles of Bacterial Virulence Factors during Infection*
So, Ernest C.; Schroeder, Gunnar N.; Carson, Danielle; Mattheis, Corinna; Mousnier, Aurélie; Broncel, Malgorzata; Tate, Edward W.; Frankel, Gad
2016-01-01
Legionella pneumophila, the causative agent of Legionnaire's disease, uses its type IV secretion system to translocate over 300 effector proteins into host cells. These effectors subvert host cell signaling pathways to ensure bacterial proliferation. Despite their importance for pathogenesis, the roles of most of the effectors are yet to be characterized. Key to understanding the function of effectors is the identification of host proteins they bind during infection. We previously developed a novel tandem-affinity purification (TAP) approach using hexahistidine and BirA-specific biotinylation tags for isolating translocated effector complexes from infected cells whose composition were subsequently deciphered by mass spectrometry. Here we further advanced the workflow for the TAP approach and determined the infection-dependent interactomes of the effectors SidM and LidA, which were previously reported to promiscuously bind multiple Rab GTPases in vitro. In this study we defined a stringent subset of Rab GTPases targeted by SidM and LidA during infection, comprising of Rab1A, 1B, 6, and 10; in addition, LidA targets Rab14 and 18. Taken together, this study illustrates the power of this approach to profile the intracellular interactomes of bacterial effectors during infection. PMID:26755725
The Rab-binding Profiles of Bacterial Virulence Factors during Infection.
So, Ernest C; Schroeder, Gunnar N; Carson, Danielle; Mattheis, Corinna; Mousnier, Aurélie; Broncel, Malgorzata; Tate, Edward W; Frankel, Gad
2016-03-11
Legionella pneumophila, the causative agent of Legionnaire's disease, uses its type IV secretion system to translocate over 300 effector proteins into host cells. These effectors subvert host cell signaling pathways to ensure bacterial proliferation. Despite their importance for pathogenesis, the roles of most of the effectors are yet to be characterized. Key to understanding the function of effectors is the identification of host proteins they bind during infection. We previously developed a novel tandem-affinity purification (TAP) approach using hexahistidine and BirA-specific biotinylation tags for isolating translocated effector complexes from infected cells whose composition were subsequently deciphered by mass spectrometry. Here we further advanced the workflow for the TAP approach and determined the infection-dependent interactomes of the effectors SidM and LidA, which were previously reported to promiscuously bind multiple Rab GTPases in vitro. In this study we defined a stringent subset of Rab GTPases targeted by SidM and LidA during infection, comprising of Rab1A, 1B, 6, and 10; in addition, LidA targets Rab14 and 18. Taken together, this study illustrates the power of this approach to profile the intracellular interactomes of bacterial effectors during infection. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Calapez, Alexandre; Pereira, Henrique M.; Calado, Angelo; Braga, José; Rino, José; Carvalho, Célia; Tavanez, João Paulo; Wahle, Elmar; Rosa, Agostinho C.; Carmo-Fonseca, Maria
2002-01-01
fAter being released from transcription sites, messenger ribonucleoprotein particles (mRNPs) must reach the nuclear pore complexes in order to be translocated to the cytoplasm. Whether the intranuclear movement of mRNPs results largely from Brownian motion or involves molecular motors remains unknown. Here we have used quantitative photobleaching techniques to monitor the intranuclear mobility of protein components of mRNPs tagged with GFP. The results show that the diffusion coefficients of the poly(A)-binding protein II (PABP2) and the export factor TAP are significantly reduced when these proteins are bound to mRNP complexes, as compared with nonbound proteins. The data further show that the mobility of wild-type PABP2 and TAP, but not of a point mutant variant of PABP2 that fails to bind to RNA, is significantly reduced when cells are ATP depleted or incubated at 22°C. Energy depletion has only minor effects on the intranuclear mobility of a 2,000-kD dextran (which corresponds approximately in size to 40S mRNP particles), suggesting that the reduced mobility of PABP2 and TAP is not caused by a general alteration of the nuclear environment. Taken together, the data suggest that the mobility of mRNPs in the living cell nucleus involves a combination of passive diffusion and ATP-dependent processes. PMID:12473688
2012-01-01
Background Mycoplasma gallisepticum is a major poultry pathogen and causes severe economic loss to the poultry industry. In mycoplasmas lipoproteins are abundant on the membrane surface and play a critical role in interactions with the host, but tools for exploring their molecular biology are limited. Results In this study we examined whether the alkaline phosphatase gene (phoA ) from Escherichia coli could be used as a reporter in mycoplasmas. The promoter region from the gene for elongation factor Tu (ltuf) and the signal and acylation sequences from the vlhA 1.1 gene, both from Mycoplasma gallisepticum , together with the coding region of phoA , were assembled in the transposon-containing plasmid pISM2062.2 (pTAP) to enable expression of alkaline phosphatase (AP) as a recombinant lipoprotein. The transposon was used to transform M. gallisepticum strain S6. As a control, a plasmid containing a similar construct, but lacking the signal and acylation sequences, was also produced (pTP) and also introduced into M. gallisepticum . Using a colorimetric substrate for detection of alkaline phosphatase activity, it was possible to detect transformed M. gallisepticum . The level of transcription of phoA in organisms transformed with pTP was lower than in those transformed with pTAP, and alkaline phosphatase was not detected by immunoblotting or enzymatic assays in pTP transformants, eventhough alkaline phosphatase expression could be readily detected by both assays in pTAP transformants. Alkaline phosphatase was shown to be located in the hydrophobic fraction of transformed mycoplasmas following Triton X-114 partitioning and in the membrane fraction after differential fractionation. Trypsin proteolysis confirmed its surface exposure. The inclusion of the VlhA lipoprotein signal sequence in pTAP enabled translocation of PhoA and acylation of the amino terminal cysteine moiety, as confirmed by the effect of treatment with globomycin and radiolabelling studies with [14 C]palmitate. PhoA could be identified by mass-spectrometry after separation by two-dimensional electrophoresis. Conclusion This is the first study to express PhoA as a lipoprotein in mycoplasmas. The pTAP plasmid will facilitate investigations of lipoproteins and protein translocation across the cell membrane in mycoplasmas, and the ease of detection of these transformants makes this vector system suitable for the simultaneous screening and detection of cloned genes expressed as membrane proteins in mycoplasmas. PMID:22770122
Human Cytomegalovirus UL18 Utilizes US6 for Evading the NK and T-Cell Responses
Kim, Youngkyun; Park, Boyoun; Cho, Sunglim; Shin, Jinwook; Cho, Kwangmin; Jun, Youngsoo; Ahn, Kwangseog
2008-01-01
Human cytomegalovirus (HCMV) US6 glycoprotein inhibits TAP function, resulting in down-regulation of MHC class I molecules at the cell surface. Cells lacking MHC class I molecules are susceptible to NK cell lysis. HCMV expresses UL18, a MHC class I homolog that functions as a surrogate to prevent host cell lysis. Despite a high level of sequence and structural homology between UL18 and MHC class I molecules, surface expression of MHC class I, but not UL18, is down regulated by US6. Here, we describe a mechanism of action by which HCMV UL18 avoids attack by the self-derived TAP inhibitor US6. UL18 abrogates US6 inhibition of ATP binding by TAP and, thereby, restores TAP-mediated peptide translocation. In addition, UL18 together with US6 interferes with the physical association between MHC class I molecules and TAP that is required for optimal peptide loading. Thus, regardless of the recovery of TAP function, surface expression of MHC class I molecules remains decreased. UL18 represents a unique immune evasion protein that has evolved to evade both the NK and the T cell immune responses. PMID:18688275
Molecular Pathways for Immune Recognition of Preproinsulin Signal Peptide in Type 1 Diabetes.
Kronenberg-Versteeg, Deborah; Eichmann, Martin; Russell, Mark A; de Ru, Arnoud; Hehn, Beate; Yusuf, Norkhairin; van Veelen, Peter A; Richardson, Sarah J; Morgan, Noel G; Lemberg, Marius K; Peakman, Mark
2018-04-01
The signal peptide region of preproinsulin (PPI) contains epitopes targeted by HLA-A-restricted (HLA-A0201, A2402) cytotoxic T cells as part of the pathogenesis of β-cell destruction in type 1 diabetes. We extended the discovery of the PPI epitope to disease-associated HLA-B*1801 and HLA-B*3906 (risk) and HLA-A*1101 and HLA-B*3801 (protective) alleles, revealing that four of six alleles present epitopes derived from the signal peptide region. During cotranslational translocation of PPI, its signal peptide is cleaved and retained within the endoplasmic reticulum (ER) membrane, implying it is processed for immune recognition outside of the canonical proteasome-directed pathway. Using in vitro translocation assays with specific inhibitors and gene knockout in PPI-expressing target cells, we show that PPI signal peptide antigen processing requires signal peptide peptidase (SPP). The intramembrane protease SPP generates cytoplasm-proximal epitopes, which are transporter associated with antigen processing (TAP), ER-luminal epitopes, which are TAP independent, each presented by different HLA class I molecules and N-terminal trimmed by ER aminopeptidase 1 for optimal presentation. In vivo, TAP expression is significantly upregulated and correlated with HLA class I hyperexpression in insulin-containing islets of patients with type 1 diabetes. Thus, PPI signal peptide epitopes are processed by SPP and loaded for HLA-guided immune recognition via pathways that are enhanced during disease pathogenesis. © 2018 by the American Diabetes Association.
Lloret, Juan; Sancho, Juan; Pu, Minhao; Gasulla, Ivana; Yvind, Kresten; Sales, Salvador; Capmany, José
2011-06-20
A complex-valued multi-tap tunable microwave photonic filter based on single silicon-on-insulator microring resonator is presented. The degree of tunability of the approach involving two, three and four taps is theoretical and experimentally characterized, respectively. The constraints of exploiting the optical phase transfer function of a microring resonator aiming at implementing complex-valued multi-tap filtering schemes are also reported. The trade-off between the degree of tunability without changing the free spectral range and the number of taps is studied in-depth. Different window based scenarios are evaluated for improving the filter performance in terms of the side-lobe level.
Complexity Matching Effects in Bimanual and Interpersonal Syncopated Finger Tapping
Coey, Charles A.; Washburn, Auriel; Hassebrock, Justin; Richardson, Michael J.
2016-01-01
The current study was designed to investigate complexity matching during syncopated behavioral coordination. Participants either tapped in (bimanual) syncopation using their two hands, or tapped in (interpersonal) syncopation with a partner, with each participant using one of their hands. The time series of inter-tap intervals (ITI) from each hand were submitted to fractal analysis, as well as to short-term and multi-timescale cross-correlation analyses. The results demonstrated that the fractal scaling of one hand’s ITI was strongly correlated to that of the other hand, and this complexity matching effect was stronger in the bimanual condition than in the interpersonal condition. Moreover, the degree of complexity matching was predicted by the strength of short-term cross-correlation and the stability of the asynchrony between the two tapping series. These results suggest that complexity matching is not specific to the inphase synchronization tasks used in past research, but is a general result of coordination between complex systems. PMID:26840612
P32/TAP, a cellular protein that interacts with EBNA-1 of Epstein-Barr virus.
Wang, Y; Finan, J E; Middeldorp, J M; Hayward, S D
1997-09-15
The Epstein-Barr virus (EBV) EBNA-1 protein has a central role in the maintenance of a latent EBV infection and is the only virus-encoded protein expressed in all EBV-associated tumors. EBNA-1 is required for replication of the episomal form of the latent viral genome and transactivates the latency C and LMP-1 promoters. The mechanisms by which EBNA-1 performs these functions are not known. Here we describe the cloning, expression, and characterization of a cellular protein, P32/TAP, which strongly interacts with EBNA-1. We show that P32/TAP is expressed at high levels in Raji cells and is synthesized as a proprotein of 282 amino acids (aa) that is posttranslationally processed by a two-step cleavage process to yield a mature protein of 209 aa. It has been previously reported that P32/TAP is expressed on the cell surface. Our transient expression assays detected full-length P32/TAP (1-282 aa) in the cytoplasm while mature P32/TAP protein localized to the nucleus. Three lines of evidence support P32/TAP interaction with EBNA-1. First, in the yeast two-hybrid system we mapped two interactive N-terminal regions of EBNA-1, aa 40-60 and aa 325-376, each of which contains arginine-glycine repeats. These regions interact with the C-terminal half of P32/TAP. Second, the full-length cytoplasmic P32/TAP protein can translocate nuclear EBNA-1 into the cytoplasm. Third, P32/TAP co-immunoprecipitated with EBNA-1. We have confirmed that a Gal4 fusion protein containing the C-terminal region of P32/TAP (aa 244-282) transactivates expression from a reporter containing upstream Gal4-binding sites. Deletion of the P32/TAP interactive regions of EBNA-1 severely diminished EBNA-1 transactivation of FRTKCAT in transient expression assays. Our data suggest that interaction with P32/TAP may contribute to EBNA-1-mediated transactivation. Copyright 1997 Academic Press.
A gatekeeper chaperone complex directs translocator secretion during Type Three Secretion
Archuleta, Tara L.; Spiller, Benjamin W.; Kubori, Tomoko
2014-11-06
Many Gram-negative bacteria use Type Three Secretion Systems (T3SS) to deliver effector proteins into host cells. These protein delivery machines are composed of cytosolic components that recognize substrates and generate the force needed for translocation, the secretion conduit, formed by a needle complex and associated membrane spanning basal body, and translocators that form the pore in the target cell. A defined order of secretion in which needle component proteins are secreted first, followed by translocators, and finally effectors, is necessary for this system to be effective. While the secreted effectors vary significantly between organisms, the ~20 individual protein components thatmore » form the T3SS are conserved in many pathogenic bacteria. One such conserved protein, referred to as either a plug or gatekeeper, is necessary to prevent unregulated effector release and to allow efficient translocator secretion. The mechanism by which translocator secretion is promoted while effector release is inhibited by gatekeepers is unknown. We present the structure of the Chlamydial gatekeeper, CopN, bound to a translocator-specific chaperone. The structure identifies a previously unknown interface between gatekeepers and translocator chaperones and reveals that in the gatekeeper-chaperone complex the canonical translocator-binding groove is free to bind translocators. Thus, structure-based mutagenesis of the homologous complex in Shigella reveals that the gatekeeper-chaperone-translocator complex is essential for translocator secretion and for the ordered secretion of translocators prior to effectors.« less
Estalayo-Adrián, S; Garnir, K; Moucheron, C
2018-01-04
Ru II polyazaaromatic complexes have been studied with the aim of developing molecular tools for DNA and oligonucleotides. In this context, Ru II -TAP (TAP = 1,4,5,8-tetraazaphenanthrene) complexes have been developed as specific photoreagents targeting the genetic material. The advantage of such compounds is due to the formation of photo-addition products between the Ru-TAP complex and the biomolecule, originating from a photo-induced electron transfer process that takes place between the excited Ru-TAP complex and guanine (G) bases of DNA. This photo-addition has been more recently extended to amino acids in view of applications involving peptides, such as inhibition or photocontrol of proteins. More particularly, tryptophan (Trp) and Trp-containing peptides are also able to be photo-oxidized by Ru II -TAP complexes, leading to the formation of photo-addition products. This mini review focuses on recent advances in the search for Ru II polyazaaromatic photo-oxidizing complexes of interest as molecular tools and photoreagents for Trp-containing peptides and proteins. Different possible future directions in this field are also discussed.
Gene duplication and fragmentation in the zebra finch major histocompatibility complex.
Balakrishnan, Christopher N; Ekblom, Robert; Völker, Martin; Westerdahl, Helena; Godinez, Ricardo; Kotkiewicz, Holly; Burt, David W; Graves, Tina; Griffin, Darren K; Warren, Wesley C; Edwards, Scott V
2010-04-01
Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the history of the MHC in birds, and highlight striking differences in MHC structure and organization among avian lineages.
Sagues, Mikel; García Olcina, Raimundo; Loayssa, Alayn; Sales, Salvador; Capmany, José
2008-01-07
We propose a novel scheme to implement tunable multi-tap complex coefficient filters based on optical single sideband modulation and narrow band optical filtering. A four tap filter is experimentally demonstrated to highlight the enhanced tuning performance provided by complex coefficients. Optical processing is performed by the use of a cascade of four phase-shifted fiber Bragg gratings specifically fabricated for this purpose.
Akgoz, Muslum; Kalyanaraman, Vani; Gautam, N.
2008-01-01
On activation of a receptor the G protein βγ complex translocates away from the receptor on the plasma membrane to the Golgi complex. The rate of translocation is influenced by the type of γ subunit associated with the G protein. Complementary approaches — imaging living cells expressing fluorescent protein tagged G proteins and assaying reconstituted receptors and G proteins in vitro — were used to identify mechanisms at the basis of the translocation process. Translocation of Gβγ containing mutant γ subunits with altered prenyl moieties showed that the differences in the prenyl moieties were not sufficient to explain the differential effects of geranylgeranylated γ5 and farnesylated γ11 on the translocation process. The translocation properties of Gβγ were altered dramatically by mutating the C terminal tail region of the γ subunit. The translocation characteristics of these mutants suggest that after receptor activation, Gβγ retains contact with a receptor through the γ subunit C terminal domain and that differential interaction of the activated receptor with this domain controls Gβγ translocation from the plasma membrane. PMID:16517125
Advanced analysis of finger-tapping performance: a preliminary study.
Barut, Cağatay; Kızıltan, Erhan; Gelir, Ethem; Köktürk, Fürüzan
2013-06-01
The finger-tapping test is a commonly employed quantitative assessment tool used to measure motor performance in the upper extremities. This task is a complex motion that is affected by external stimuli, mood and health status. The complexity of this task is difficult to explain with a single average intertap-interval value (time difference between successive tappings) which only provides general information and neglects the temporal effects of the aforementioned factors. This study evaluated the time course of average intertap-interval values and the patterns of variation in both the right and left hands of right-handed subjects using a computer-based finger-tapping system. Cross sectional study. Thirty eight male individuals aged between 20 and 28 years (Mean±SD = 22.24±1.65) participated in the study. Participants were asked to perform single-finger-tapping test for 10 seconds of test period. Only the results of right-handed (RH) 35 participants were considered in this study. The test records the time of tapping and saves data as the time difference between successive tappings for further analysis. The average number of tappings and the temporal fluctuation patterns of the intertap-intervals were calculated and compared. The variations in the intertap-interval were evaluated with the best curve fit method. An average tapping speed or tapping rate can reliably be defined for a single-finger tapping test by analysing the graphically presented data of the number of tappings within the test period. However, a different presentation of the same data, namely the intertap-interval values, shows temporal variation as the number of tapping increases. Curve fitting applications indicate that the variation has a biphasic nature. The measures obtained in this study reflect the complex nature of the finger-tapping task and are suggested to provide reliable information regarding hand performance. Moreover, the equation reflects both the variations in and the general patterns associated with the task.
Vasiljev, Andreja; Ahting, Uwe; Nargang, Frank E; Go, Nancy E; Habib, Shukry J; Kozany, Christian; Panneels, Valérie; Sinning, Irmgard; Prokisch, Holger; Neupert, Walter; Nussberger, Stephan; Rapaport, Doron
2004-03-01
Precursor proteins of the solute carrier family and of channel forming Tim components are imported into mitochondria in two main steps. First, they are translocated through the TOM complex in the outer membrane, a process assisted by the Tim9/Tim10 complex. They are passed on to the TIM22 complex, which facilitates their insertion into the inner membrane. In the present study, we have analyzed the function of the Tim9/Tim10 complex in the translocation of substrates across the outer membrane of mitochondria. The purified TOM core complex was reconstituted into lipid vesicles in which purified Tim9/Tim10 complex was entrapped. The precursor of the ADP/ATP carrier (AAC) was found to be translocated across the membrane of such lipid vesicles. Thus, these components are sufficient for translocation of AAC precursor across the outer membrane. Peptide libraries covering various substrate proteins were used to identify segments that are bound by Tim9/Tim10 complex upon translocation through the TOM complex. The patterns of binding sites on the substrate proteins suggest a mechanism by which portions of membrane-spanning segments together with flanking hydrophilic segments are recognized and bound by the Tim9/Tim10 complex as they emerge from the TOM complex into the intermembrane space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koley, Sandip; Adhya, Samit, E-mail: nilugrandson@gmail.com
Highlights: •A tRNA translocating complex was assembled from purified proteins. •The complex translocates tRNA at a membrane potential of ∼60 mV. •Translocation requires Cys and His residues in the Fe–S center of RIC6 subunit. -- Abstract: Very little is known about how nucleic acids are translocated across membranes. The multi-subunit RNA Import Complex (RIC) from mitochondria of the kinetoplastid protozoon Leishmania tropica induces translocation of tRNAs across artificial or natural membranes, but the nature of the translocation pore remains unknown. We show that subunits RIC6 and RIC9 assemble on the membrane in presence of subunit RIC4A to form complex R3.more » Atomic Force Microscopy of R3 revealed particles with an asymmetric surface groove of ∼20 nm rim diameter and ∼1 nm depth. R3 induced translocation of tRNA into liposomes when the pH of the medium was lowered to ∼6 in the absence of ATP. R3-mediated tRNA translocation could also be induced at neutral pH by a K{sup +} diffusion potential with an optimum of 60–70 mV. Point mutations in the Cys{sub 2}–His{sub 2} Fe-binding motif of RIC6, which is homologous to the respiratory Complex III Fe–S protein, abrogated import induced by low pH but not by K{sup +} diffusion potential. These results indicate that the R3 complex forms a pore that is gated by a proton-generated membrane potential and that the Fe–S binding region of RIC6 has a role in proton translocation. The tRNA import complex of L. tropica thus contains a novel macromolecular channel distinct from the mitochondrial protein import pore that is apparently involved in tRNA import in some species.« less
33 CFR 165.1710 - Port Valdez and Valdez Narrows, Valdez, Alaska-security zones.
Code of Federal Regulations, 2010 CFR
2010-07-01
... following areas are security zones: (1) Trans-Alaska Pipeline (TAPS) Valdez Terminal complex (Terminal), Valdez, Alaska and TAPS tank vessels. All waters enclosed within a line beginning on the southern... TAPS tank vessel maneuvering to approach, moor, unmoor or depart the TAPS Terminal or transiting...
Isolation of viral ribonucleoprotein complexes from infected cells by tandem affinity purification.
Mayer, Daniel; Baginsky, Sacha; Schwemmle, Martin
2005-11-01
The biochemical purification and analysis of viral ribonucleoprotein complexes (RNPs) of negative-strand RNA viruses is hampered by the lack of suitable tags that facilitate specific enrichment of these complexes. We therefore tested whether fusion of the tandem-affinity-purification (TAP) tag to the main component of viral RNPs, the nucleoprotein, might allow the isolation of these RNPs from cells. We constitutively expressed TAP-tagged nucleoprotein of Borna disease virus (BDV) in cells persistently infected with this virus. The TAP-tagged bait was efficiently incorporated into viral RNPs, did not interfere with BDV replication and was also packaged into viral particles. Native purification of the tagged protein complexes from BDV-infected cells by two consecutive affinity columns resulted in the isolation of several viral proteins, which were identified by MS analysis as the matrix protein, the two forms of the nucleoprotein and the phosphoprotein. In addition to the viral proteins, RT-PCR analysis revealed the presence of viral genomic RNA. Introduction of further protease cleavage sites within the TAP-tag significantly increased the purification yield. These results demonstrate that purification of TAP-tagged viral RNPs is possible and efficient, and may therefore provide new avenues for biochemical and functional studies of these complexes.
Baglieri, Jacopo; Beck, Daniel; Vasisht, Nishi; Smith, Corinne J.; Robinson, Colin
2012-01-01
The twin-arginine translocation (Tat) system transports folded proteins across bacterial and plant thylakoid membranes. Most current models for the translocation mechanism propose the coalescence of a substrate-binding TatABC complex with a separate TatA complex. In Escherichia coli, TatA complexes are widely believed to form the translocation pore, and the size variation of TatA has been linked to the transport of differently sized substrates. Here, we show that the TatA paralog TatE can substitute for TatA and support translocation of Tat substrates including AmiA, AmiC, and TorA. However, TatE is found as much smaller, discrete complexes. Gel filtration and blue native electrophoresis suggest sizes between ∼50 and 110 kDa, and single-particle processing of electron micrographs gives size estimates of 70–90 kDa. Three-dimensional models of the two principal TatE complexes show estimated diameters of 6–8 nm and potential clefts or channels of up to 2.5 nm diameter. The ability of TatE to support translocation of the 90-kDa TorA protein suggests alternative translocation models in which single TatA/E complexes do not contribute the bulk of the translocation channel. The homogeneity of both the TatABC and the TatE complexes further suggests that a discrete Tat translocase can translocate a variety of substrates, presumably through the use of a flexible channel. The presence and possible significance of double- or triple-ring TatE forms is discussed. PMID:22190680
Dahl, Joseph M; Wang, Hongyun; Lázaro, José M; Salas, Margarita; Lieberman, Kate R
2014-03-07
The Φ29 DNA polymerase (DNAP) is a processive B-family replicative DNAP. Fluctuations between the pre-translocation and post-translocation states can be quantified from ionic current traces, when individual Φ29 DNAP-DNA complexes are held atop a nanopore in an electric field. Based upon crystal structures of the Φ29 DNAP-DNA binary complex and the Φ29 DNAP-DNA-dNTP ternary complex, residues Tyr-226 and Tyr-390 in the polymerase active site were implicated in the structural basis of translocation. Here, we have examined the dynamics of translocation and substrate binding in complexes formed with the Y226F and Y390F mutants. The Y226F mutation diminished the forward and reverse rates of translocation, increased the affinity for dNTP in the post-translocation state by decreasing the dNTP dissociation rate, and increased the affinity for pyrophosphate in the pre-translocation state. The Y390F mutation significantly decreased the affinity for dNTP in the post-translocation state by decreasing the association rate ∼2-fold and increasing the dissociation rate ∼10-fold, implicating this as a mechanism by which this mutation impedes DNA synthesis. The Y390F dissociation rate increase is suppressed when complexes are examined in the presence of Mn(2+) rather than Mg(2+). The same effects of the Y226F or Y390F mutations were observed in the background of the D12A/D66A mutations, located in the exonuclease active site, ∼30 Å from the polymerase active site. Although translocation rates were unaffected in the D12A/D66A mutant, these exonuclease site mutations caused a decrease in the dNTP dissociation rate, suggesting that they perturb Φ29 DNAP interdomain architecture.
A fluorescence assay for peptide translocation into mitochondria.
Martinez-Caballero, Sonia; Peixoto, Pablo M V; Kinnally, Kathleen W; Campo, María Luisa
2007-03-01
Translocation of the presequence is an early event in import of preproteins across the mitochondrial inner membrane by the TIM23 complex. Import of signal peptides, whose sequences mimic mitochondrial import presequences, was measured using a novel, qualitative, fluorescence assay in about 1h. This peptide assay was used in conjunction with classical protein import analyses and electrophysiological approaches to examine the mechanisms underlying the functional effects of depleting two TIM23 complex components. Tim23p forms, at least in part, the pore of this complex while Tim44p forms part of the translocation motor. Depletion of Tim23p eliminates TIM23 channel activity, which interferes with both peptide and preprotein translocation. In contrast, depletion of Tim44p disrupts preprotein but not peptide translocation, which has no effect on TIM23 channel activity. Two conclusions were made. First, this fluorescence peptide assay was validated as two different mutants were accurately identified. Hence, this assay could provide a rapid means of screening mutants to identify those that fail an initial step in import, i.e., translocation of the presequence. Second, translocation of signal peptides required normal channel activity and disruption of the presequence translocase-associated motor complex did not modify TIM23 channel activity nor prevent presequence translocation.
ERIC Educational Resources Information Center
West, Colleen N.
2005-01-01
Rhythm tap is sweeping the nation as an outlet for self-expression. Also known as "jazz tap" or "percussive tap," this art form's dominant focus is musicality, improvisation, simple-to-complex rhythms, and new styles. It reaches beyond technique and serves as an outlet for self-expression, independence, and spontaneity. Rhythm tap incorporates an…
Soylu, Firat; Newman, Sharlene D
2016-02-01
Fingers are used as canonical representations for numbers across cultures. In previous imaging studies, it was shown that arithmetic processing activates neural resources that are known to participate in finger movements. Additionally, in one dual-task study, it was shown that anatomically ordered finger tapping disrupts addition and subtraction more than multiplication, possibly due to a long-lasting effect of early finger counting experiences on the neural correlates and organization of addition and subtraction processes. How arithmetic task difficulty and tapping complexity affect the concurrent performance is still unclear. If early finger counting experiences have bearing on the neural correlates of arithmetic in adults, then one would expect anatomically and non-anatomically ordered tapping to have different interference effects, given that finger counting is usually anatomically ordered. To unravel these issues, we studied how (1) arithmetic task difficulty and (2) the complexity of the finger tapping sequence (anatomical vs. non-anatomical ordering) affect concurrent performance and use of key neural circuits using a mixed block/event-related dual-task fMRI design with adult participants. The results suggest that complexity of the tapping sequence modulates interference on addition, and that one-digit addition (fact retrieval), compared to two-digit addition (calculation), is more affected from anatomically ordered tapping. The region-of-interest analysis showed higher left angular gyrus BOLD response for one-digit compared to two-digit addition, and in no-tapping conditions than dual tapping conditions. The results support a specific association between addition fact retrieval and anatomically ordered finger movements in adults, possibly due to finger counting strategies that deploy anatomically ordered finger movements early in the development.
Gene duplication and fragmentation in the zebra finch major histocompatibility complex
2010-01-01
Background Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. Results The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. Conclusion The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the history of the MHC in birds, and highlight striking differences in MHC structure and organization among avian lineages. PMID:20359332
Li, Jinmei; Yan, Gonghong; Liu, Sichi; Jiang, Tong; Zhong, Mingming; Yuan, Wenjie; Chen, Shaoxian; Zheng, Yin; Jiang, Yong; Jiang, Yu
2017-12-01
In yeast target of rapamycin complex 1 (TORC1) and Tap42-associated phosphatases regulate expression of genes involved in nitrogen limitation response and the nitrogen discrimination pathway. However, it remains unclear whether TORC1 and the phosphatases are required for sensing nitrogen conditions. Utilizing temperature sensitive mutants of tor2 and tap42, we examined the role of TORC1 and Tap42 in nuclear entry of Gln3, a key transcription factor in yeast nitrogen metabolism, in response to changes in nitrogen conditions. Our data show that TORC1 is essential for Gln3 nuclear entry upon nitrogen limitation and downshift in nitrogen quality. However, Tap42-associated phosphatases are required only under nitrogen limitation condition. In cells grown in poor nitrogen medium, the nitrogen permease reactivator kinase (Npr1) inhibits TORC1 activity and alters its association with Tap42, rendering Tap42-associated phosphatases unresponsive to nitrogen limitation. These findings demonstrate a direct role for TORC1 and Tap42-associated phosphatases in sensing nitrogen conditions and unveil an Npr1-dependent mechanism that controls TORC1 and the phosphatases in response to changes in nitrogen quality. © 2017 John Wiley & Sons Ltd.
Azpiazu, Inaki; Akgoz, Muslum; Kalyanaraman, Vani; Gautam, N.
2008-01-01
G protein activation by Gi/Go coupling M2 muscarinic receptors, Gq coupling M3 receptors and Gs coupling β2 adrenergic receptors causes rapid reversible translocation of the G protein γ11 subunit from the plasma membrane to the Golgi complex. Co-translocation of the β1 subunit suggests that γ11 translocates as a βγ complex. Pertussis toxin ADP ribosylation of the αi subunit type or substitution of the C terminal domain of αo with the corresponding region of αs inhibits γ11 translocation demonstrating that α subunit interaction with a receptor and its activation are requirements for the translocation. The rate of γ11 translocation is sensitive to the rate of activation of the G protein α subunit. α subunit types that show high receptor activated rates of guanine nucleotide exchange in vitro support high rates of γ11 translocation compared to α subunit types that have a relatively lower rate of guanine nucleotide exchange. The results suggest that the receptor induced translocation of γ11 is controlled by the rate of cycling of the G protein through active and inactive forms. They also demonstrate that imaging of γ11 translocation can be used as a non-invasive tool to measure the relative activities of wild type or mutant receptor and α subunit types in a live cell. PMID:16242307
The Legionella IcmS-IcmW protein complex is important for Dot/Icm-mediated protein translocation.
Ninio, Shira; Zuckman-Cholon, Deborah M; Cambronne, Eric D; Roy, Craig R
2005-02-01
The intracellular pathogen Legionella pneumophila can infect and replicate within macrophages of a human host. To establish infection, Legionella require the Dot/Icm secretion system to inject protein substrates directly into the host cell cytoplasm. The mechanism by which substrate proteins are engaged and translocated by the Dot/Icm system is not well understood. Here we show that two cytosolic components of the Dot/Icm secretion machinery, the proteins IcmS and IcmW, play an important role in substrate translocation. Biochemical analysis indicates that IcmS and IcmW form a stable protein complex. In Legionella, the IcmW protein is rapidly degraded in the absence of the IcmS protein. Substrate proteins translocated into mammalian host cells by the Dot/Icm system were identified using the IcmW protein as bait in a yeast two-hybrid screen. It was determined that the IcmS-IcmW complex interacts with these substrates and plays an important role in translocation of these proteins into mammalian cells. These data are consistent with the IcmS-IcmW complex being involved in the recognition and Dot/Icm-dependent translocation of substrate proteins during Legionella infection of host cells.
Active remodelling of the TIM23 complex during translocation of preproteins into mitochondria.
Popov-Celeketić, Dusan; Mapa, Koyeli; Neupert, Walter; Mokranjac, Dejana
2008-05-21
The TIM23 (translocase of the mitochondrial inner membrane) complex mediates translocation of preproteins across and their insertion into the mitochondrial inner membrane. How the translocase mediates sorting of preproteins into the two different subcompartments is poorly understood. In particular, it is not clear whether association of two operationally defined parts of the translocase, the membrane-integrated part and the import motor, depends on the activity state of the translocase. We established conditions to in vivo trap the TIM23 complex in different translocation modes. Membrane-integrated part of the complex and import motor were always found in one complex irrespective of whether an arrested preprotein was present or not. Instead, we detected different conformations of the complex in response to the presence and, importantly, the type of preprotein being translocated. Two non-essential subunits of the complex, Tim21 and Pam17, modulate its activity in an antagonistic manner. Our data demonstrate that the TIM23 complex acts as a single structural and functional entity that is actively remodelled to sort preproteins into different mitochondrial subcompartments.
Active remodelling of the TIM23 complex during translocation of preproteins into mitochondria
Popov-Čeleketić, Dus̆an; Mapa, Koyeli; Neupert, Walter; Mokranjac, Dejana
2008-01-01
The TIM23 (translocase of the mitochondrial inner membrane) complex mediates translocation of preproteins across and their insertion into the mitochondrial inner membrane. How the translocase mediates sorting of preproteins into the two different subcompartments is poorly understood. In particular, it is not clear whether association of two operationally defined parts of the translocase, the membrane-integrated part and the import motor, depends on the activity state of the translocase. We established conditions to in vivo trap the TIM23 complex in different translocation modes. Membrane-integrated part of the complex and import motor were always found in one complex irrespective of whether an arrested preprotein was present or not. Instead, we detected different conformations of the complex in response to the presence and, importantly, the type of preprotein being translocated. Two non-essential subunits of the complex, Tim21 and Pam17, modulate its activity in an antagonistic manner. Our data demonstrate that the TIM23 complex acts as a single structural and functional entity that is actively remodelled to sort preproteins into different mitochondrial subcompartments. PMID:18418384
Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana
2015-12-29
The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins.
Ullal-Gupta, Sangeeta; Hannon, Erin E.; Snyder, Joel S.
2014-01-01
Musical meters vary considerably across cultures, yet relatively little is known about how culture-specific experience influences metrical processing. In Experiment 1, we compared American and Indian listeners' synchronous tapping to slow sequences. Inter-tone intervals contained silence or to-be-ignored rhythms that were designed to induce a simple meter (familiar to Americans and Indians) or a complex meter (familiar only to Indians). A subset of trials contained an abrupt switch from one rhythm to another to assess the disruptive effects of contradicting the initially implied meter. In the unfilled condition, both groups tapped earlier than the target and showed large tap-tone asynchronies (measured in relative phase). When inter-tone intervals were filled with simple-meter rhythms, American listeners tapped later than targets, but their asynchronies were smaller and declined more rapidly. Likewise, asynchronies rose sharply following a switch away from simple-meter but not from complex-meter rhythm. By contrast, Indian listeners performed similarly across all rhythm types, with asynchronies rapidly declining over the course of complex- and simple-meter trials. For these listeners, a switch from either simple or complex meter increased asynchronies. Experiment 2 tested American listeners but doubled the duration of the synchronization phase prior to (and after) the switch. Here, compared with simple meters, complex-meter rhythms elicited larger asynchronies that declined at a slower rate, however, asynchronies increased after the switch for all conditions. Our results provide evidence that ease of meter processing depends to a great extent on the amount of experience with specific meters. PMID:25075514
Lau, Julia B; Stork, Simone; Moog, Daniel; Sommer, Maik S; Maier, Uwe G
2015-05-01
Nuclear-encoded pre-proteins being imported into complex plastids of red algal origin have to cross up to five membranes. Thereby, transport across the second outermost or periplastidal membrane (PPM) is facilitated by SELMA (symbiont-specific ERAD-like machinery), an endoplasmic reticulum-associated degradation (ERAD)-derived machinery. Core components of SELMA are enzymes involved in ubiquitination (E1-E3), a Cdc48 ATPase complex and Derlin proteins. These components are present in all investigated organisms with four membrane-bound complex plastids of red algal origin, suggesting a ubiquitin-dependent translocation process of substrates mechanistically similar to the process of retro-translocation in ERAD. Even if, according to the current model, translocation via SELMA does not end up in the classical poly-ubiquitination, transient mono-/oligo-ubiquitination of pre-proteins might be required for the mechanism of translocation. We investigated the import mechanism of SELMA and were able to show that protein transport across the PPM depends on lysines in the N-terminal but not in the C-terminal part of pre-proteins. These lysines are predicted to be targets of ubiquitination during the translocation process. As proteins lacking the N-terminal lysines get stuck in the PPM, a 'frozen intermediate' of the translocation process could be envisioned and initially characterized. © 2015 John Wiley & Sons Ltd.
Elucidating the structure and function of S100 proteins in membranes
NASA Astrophysics Data System (ADS)
Valenzuela, Stella M.; Berkahn, Mark; Martin, Donald K.; Huynh, Thuan; Yang, Zheng; Geczy, Carolyn L.
2006-01-01
S100 proteins are important Ca 2+-binding proteins involved in vital cellular functions including the modulation of cell growth, migration and differentiation, regulation of intracellular signal transduction/phosphorylation pathways, energy metabolism, cytoskeletal interactions and modulation of ion channels. Furthermore, they are implicated in oncogenesis and numerous other disease states. Three S100 proteins: S100A8, S100A9 and S100A12 are constitutively expressed in neutrophils and monocytes. At low levels of intracellular Ca 2+, S100A8 and S100A9 are located predominantly in the cytosol but when Ca 2+ concentrations are elevated as a consequence of activation, they translocate to membranes and complex with cytoskeletal components such as vimentin. The functions of S100A8 and S100A9 at the plasma membrane remain unclear. A possible role may be the regulation of ion channel proteins. The current study uses the techniques of Atomic Force Microscopy and production of artificial lipid membranes in the form of liposomes to investigate possible mechanisms for the insertion of these proteins into membranes in order to elucidate their structure and stoichiometry in the transmembrane state. We have successfully imaged the liposomes as a lipid bilayer, the S100A8/A9 protein complex in solution and the S100A8/A9 complex associating with lipid, using tapping-mode atomic force microscopy, in buffer.
Amyot, Whitney M.; deJesus, Dennise
2013-01-01
Legionella pneumophila uses the Icm/Dot type 4B secretion system (T4BSS) to deliver translocated protein substrates to the host cell, promoting replication vacuole formation. The conformational state of the translocated substrates within the bacterial cell is unknown, so we sought to determine if folded substrates could be translocated via this system. Fusions of L. pneumophila Icm/Dot-translocated substrates (IDTS) to dihydrofolate reductase (DHFR) or ubiquitin (Ub), small proteins known to fold rapidly, resulted in proteins with low translocation efficiencies. The folded moieties did not cause increased aggregation of the IDTS and did not impede interaction with the adaptor protein complex IcmS/IcmW, which is thought to form a soluble complex that promotes translocation. The translocation defect was alleviated with a Ub moiety harboring mutations known to destabilize its structure, indicating that unfolded proteins are preferred substrates. Real-time analysis of translocation, following movement during the first 30 min after bacterial contact with host cells, revealed that the folded moiety caused a kinetic defect in IDTS translocation. Expression of an IDTS fused to a folded moiety interfered with the translocation of other IDTS, consistent with it causing a blockage of the translocation channel. Furthermore, the folded protein fusions also interfered with intracellular growth, consistent with inefficient or impaired translocation of proteins critical for L. pneumophila intracellular growth. These studies indicate that substrates of the Icm/Dot T4SS are translocated to the host cytosol in an unfolded conformation and that folded proteins are stalled within the translocation channel, impairing the function of the secretion system. PMID:23798536
Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana
2015-01-01
The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins. DOI: http://dx.doi.org/10.7554/eLife.11897.001 PMID:26714107
Most Uv-Induced Reciprocal Translocations in SORDARIA MACROSPORA Occur in or near Centromere Regions
Leblon, G.; Zickler, D.; Lebilcot, S.
1986-01-01
In fungi, translocations can be identified and classified by the patterns of ascospore abortion in asci from crosses of rearrangement x normal sequence. Previous studies of UV-induced rearrangements in Sordaria macrospora revealed that a major class (called type III) appeared to be reciprocal translocations that were anomalous in producing an unexpected class of asci with four aborted ascospores in bbbbaaaa linear sequence (b = black; a = abortive). The present study shows that the anomalous type III rearrangements are, in fact, reciprocal translocations having both breakpoints within or adjacent to centromeres and that bbbbaaaa asci result from 3:1 disjunction from the translocation quadrivalent.—Electron microscopic observations of synaptonemal complexes enable centromeres to be visualized. Lengths of synaptonemal complexes lateral elements in translocation quadrivalents accurately reflect chromosome arm lengths, enabling breakpoints to be located reliably in centromere regions. All genetic data are consistent with the behavior expected of translocations with breakpoints at centromeres.—Two-thirds of the UV-induced reciprocal translocations are of this type. Certain centromere regions are involved preferentially. Among 73 type-III translocations, there were but 13 of the 21 possible chromosome combinations and 20 of the 42 possible combinations of chromosome arms. PMID:17246312
Leblon, G; Zickler, D; Lebilcot, S
1986-02-01
In fungi, translocations can be identified and classified by the patterns of ascospore abortion in asci from crosses of rearrangement x normal sequence. Previous studies of UV-induced rearrangements in Sordaria macrospora revealed that a major class (called type III) appeared to be reciprocal translocations that were anomalous in producing an unexpected class of asci with four aborted ascospores in bbbbaaaa linear sequence (b = black; a = abortive). The present study shows that the anomalous type III rearrangements are, in fact, reciprocal translocations having both breakpoints within or adjacent to centromeres and that bbbbaaaa asci result from 3:1 disjunction from the translocation quadrivalent.-Electron microscopic observations of synaptonemal complexes enable centromeres to be visualized. Lengths of synaptonemal complexes lateral elements in translocation quadrivalents accurately reflect chromosome arm lengths, enabling breakpoints to be located reliably in centromere regions. All genetic data are consistent with the behavior expected of translocations with breakpoints at centromeres.-Two-thirds of the UV-induced reciprocal translocations are of this type. Certain centromere regions are involved preferentially. Among 73 type-III translocations, there were but 13 of the 21 possible chromosome combinations and 20 of the 42 possible combinations of chromosome arms.
Ebrahimi, Mehregan; Ebrahimie, Esmaeil; Bull, C Michael
2015-08-01
The high number of failures is one reason why translocation is often not recommended. Considering how behavior changes during translocations may improve translocation success. To derive decision-tree models for species' translocation, we used data on the short-term responses of an endangered Australian skink in 5 simulated translocations with different release conditions. We used 4 different decision-tree algorithms (decision tree, decision-tree parallel, decision stump, and random forest) with 4 different criteria (gain ratio, information gain, gini index, and accuracy) to investigate how environmental and behavioral parameters may affect the success of a translocation. We assumed behavioral changes that increased dispersal away from a release site would reduce translocation success. The trees became more complex when we included all behavioral parameters as attributes, but these trees yielded more detailed information about why and how dispersal occurred. According to these complex trees, there were positive associations between some behavioral parameters, such as fight and dispersal, that showed there was a higher chance, for example, of dispersal among lizards that fought than among those that did not fight. Decision trees based on parameters related to release conditions were easier to understand and could be used by managers to make translocation decisions under different circumstances. © 2015 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Desiraju, Naveen Kumar; Doclo, Simon; Wolff, Tobias
2017-12-01
Acoustic echo cancellation (AEC) is a key speech enhancement technology in speech communication and voice-enabled devices. AEC systems employ adaptive filters to estimate the acoustic echo paths between the loudspeakers and the microphone(s). In applications involving surround sound, the computational complexity of an AEC system may become demanding due to the multiple loudspeaker channels and the necessity of using long filters in reverberant environments. In order to reduce the computational complexity, the approach of partially updating the AEC filters is considered in this paper. In particular, we investigate tap selection schemes which exploit the sparsity present in the loudspeaker channels for partially updating subband AEC filters. The potential for exploiting signal sparsity across three dimensions, namely time, frequency, and channels, is analyzed. A thorough analysis of different state-of-the-art tap selection schemes is performed and insights about their limitations are gained. A novel tap selection scheme is proposed which overcomes these limitations by exploiting signal sparsity while not ignoring any filters for update in the different subbands and channels. Extensive simulation results using both artificial as well as real-world multichannel signals show that the proposed tap selection scheme outperforms state-of-the-art tap selection schemes in terms of echo cancellation performance. In addition, it yields almost identical echo cancellation performance as compared to updating all filter taps at a significantly reduced computational cost.
van Endert, P M; Lopez, M T; Patel, S D; Monaco, J J; McDevitt, H O
1992-01-01
Recently, two subunits of a large cytosolic protease and two putative peptide transporter proteins were found to be encoded by genes within the class II region of the major histocompatibility complex (MHC). These genes have been suggested to be involved in the processing of antigenic proteins for presentation by MHC class I molecules. Because of the high degree of polymorphism in MHC genes, and previous evidence for both functional and polypeptide sequence polymorphism in the proteins encoded by the antigen-processing genes, we tested DNA from 27 consanguineous human cell lines for genomic polymorphism by restriction fragment length polymorphism (RFLP) analysis. These studies demonstrate a strong linkage disequilibrium between TAP1 and LMP2 RFLPs. Moreover, RFLPs, as well as a polymorphic stop codon in the telomeric TAP2 gene, appear to be in linkage disequilibrium with HLA-DR alleles and RFLPs in the HLA-DO gene. A high rate of recombination, however, seems to occur in the center of the complex, between the TAP1 and TAP2 genes. Images PMID:1360671
Zeng, Z; Clark, S M; Mathies, R A; Glazer, A N
1997-10-01
High-resolution capillary electrophoresis sizing of preformed complexes of bis-intercalating fluorescent dyes with double-stranded DNA has been demonstrated using hydroxyethylcellulose and 3-[tris-(hydroxymethyl) methylamino]-1-propanesulfonic acid-tetrapentylammonium (Taps-NPe+4) buffers (S. M. Clark and R. A. Mathies, Anal. Chem. 69, 1355-1363, 1997). Such capillary electrophoresis separations were unattainable in conventional buffers containing other cations such as Tris+, Na+, and NH+4. We report here the behavior of preformed double-stranded DNA-dye complexes on agarose slab gel electrophoresis in 40 mM Taps-NPe+4, 1 mM H2EDTA, pH 8.2. Upon electrophoresis in this buffer (a) complexes formed at DNA base pairs:dye ratios ranging from 100:1 to 5:1 show the same mobility; (b) the half-lives of DNA-dye complexes with monointercalators are two- to threefold longer than those in commonly used Tris buffers; (c) there is little dye transfer between labeled and unlabeled DNA molecules; and (d) precise two-color sizing of preformed restriction fragment-dye complexes with fluorescent bisintercalators is achieved.
Peeters, B W M M; Ruigt, G S F; Craighead, M; Kitchener, P
2008-12-01
Glucocorticoid agonists bind to cytoplasmic glucocorticoid receptors (GRs) and subsequently translocate as an agonist-GR complex into the nucleus. In the nucleus the complex regulates the transcription of target genes. A number of GR antagonists (RU486, progesterone, RU40555) have also been shown to induce receptor translocation. These compounds should be regarded as partial agonists. For the nonselective progesterone receptor antagonists, RTI3021-012 and RTI3021-022, it was shown that GR antagonism is possible without the induction of GR translocation. In the present studies, the new GR antagonist, ORG 34517, was investigated for its potential to induce GR translocation and to antagonize corticosterone-induced GR translocation in the AtT20 (mouse pituitary) cell line. ORG 34517 was compared to RU486. In contrast to RU486, ORG 34517 (at doses up to 3 x 10(-7) M) did not induce GR translocation, but was able to block corticosterone (3 x 10(-8) M) induced GR translocation. ORG 34517 can be regarded as a true competitive GR antagonist without partial agonistic activities.
Translocation-coupled DNA cleavage by the Type ISP restriction-modification enzymes
Chand, Mahesh Kumar; Nirwan, Neha; Diffin, Fiona M.; van Aelst, Kara; Kulkarni, Manasi; Pernstich, Christian; Szczelkun, Mark D.; Saikrishnan, Kayarat
2015-01-01
Endonucleolytic double-strand DNA break production requires separate strand cleavage events. Although catalytic mechanisms for simple dimeric endonucleases are available, there are many complex nuclease machines which are poorly understood in comparison. Here we studied the single polypeptide Type ISP restriction-modification (RM) enzymes, which cleave random DNA between distant target sites when two enzymes collide following convergent ATP-driven translocation. We report the 2.7 Angstroms resolution X-ray crystal structure of a Type ISP enzyme-DNA complex, revealing that both the helicase-like ATPase and nuclease are unexpectedly located upstream of the direction of translocation, inconsistent with simple nuclease domain-dimerization. Using single-molecule and biochemical techniques, we demonstrate that each ATPase remodels its DNA-protein complex and translocates along DNA without looping it, leading to a collision complex where the nuclease domains are distal. Sequencing of single cleavage events suggests a previously undescribed endonuclease model, where multiple, stochastic strand nicking events combine to produce DNA scission. PMID:26389736
Lorente, Elena; Infantes, Susana; Abia, David; Barnea, Eilon; Beer, Ilan; García, Ruth; Lasala, Fátima; Jiménez, Mercedes; Mir, Carmen; Morreale, Antonio; Admon, Arie; López, Daniel
2012-10-12
The transporter associated with antigen processing (TAP) enables the flow of viral peptides generated in the cytosol by the proteasome and other proteases to the endoplasmic reticulum, where they complex with nascent human leukocyte antigen (HLA) class I. Later, these peptide-HLA class I complexes can be recognized by CD8(+) lymphocytes. Cancerous cells and infected cells in which TAP is blocked, as well as individuals with unusable TAP complexes, are able to present peptides on HLA class I by generating them through TAP-independent processing pathways. Here, we identify a physiologically processed HLA-E ligand derived from the D8L protein in TAP-deficient vaccinia virus-infected cells. This natural high affinity HLA-E class I ligand uses alternative interactions to the anchor motifs previously described to be presented on nonclassical HLA class I molecules. This octameric peptide was also presented on HLA-Cw1 with similar binding affinity on both classical and nonclassical class I molecules. In addition, this viral peptide inhibits HLA-E-mediated cytolysis by natural killer cells. Comparison between the amino acid sequences of the presenting HLA-E and HLA-Cw1 alleles revealed a shared structural motif in both HLA class molecules, which could be related to their observed similar cross-reactivity affinities. This motif consists of several residues located on the floor of the peptide-binding site. These data expand the role of HLA-E as an antigen-presenting molecule.
PREDICTIVE MODELING OF ACOUSTIC SIGNALS FROM THERMOACOUSTIC POWER SENSORS (TAPS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumm, Christopher M.; Vipperman, Jeffrey S.
2016-06-30
Thermoacoustic Power Sensor (TAPS) technology offers the potential for self-powered, wireless measurement of nuclear reactor core operating conditions. TAPS are based on thermoacoustic engines, which harness thermal energy from fission reactions to generate acoustic waves by virtue of gas motion through a porous stack of thermally nonconductive material. TAPS can be placed in the core, where they generate acoustic waves whose frequency and amplitude are proportional to the local temperature and radiation flux, respectively. TAPS acoustic signals are not measured directly at the TAPS; rather, they propagate wirelessly from an individual TAPS through the reactor, and ultimately to a low-powermore » receiver network on the vessel’s exterior. In order to rely on TAPS as primary instrumentation, reactor-specific models which account for geometric/acoustic complexities in the signal propagation environment must be used to predict the amplitude and frequency of TAPS signals at receiver locations. The reactor state may then be derived by comparing receiver signals to the reference levels established by predictive modeling. In this paper, we develop and experimentally benchmark a methodology for predictive modeling of the signals generated by a TAPS system, with the intent of subsequently extending these efforts to modeling of TAPS in a liquid sodium environmen« less
Tripathi, Arati; Mandon, Elisabet C; Gilmore, Reid; Rapoport, Tom A
2017-05-12
The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, we report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, Arati; Mandon, Elisabet C.; Gilmore, Reid
The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, wemore » report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1.« less
Saini, Deepak Kumar; Kalyanaraman, Vani; Chisari, Mariangela; Gautam, Narasimhan
2008-01-01
The present model of G protein activation by G protein-coupled receptors exclusively localizes their activation and function to the plasma membrane (PM). Observation of the spatiotemporal response of G protein subunits in a living cell to receptor activation showed that 6 of the 12 members of the G protein γ subunit family translocate specifically from the PM to endomembranes. The γ subunits translocate as βγ complexes, whereas the α subunit is retained on the PM. Depending on the γ subunit, translocation occurs predominantly to the Golgi complex or the endoplasmic reticulum. The rate of translocation also varies with the γ subunit type. Different γ subunits, thus, confer distinct spatiotemporal properties to translocation. A striking relationship exists between the amino acid sequences of various γ subunits and their translocation properties. γ subunits with similar translocation properties are more closely related to each other. Consistent with this relationship, introducing residues conserved in translocating subunits into a non-translocating subunit results in a gain of function. Inhibitors of vesicle-mediated trafficking and palmitoylation suggest that translocation is diffusion-mediated and controlled by acylation similar to the shuttling of G protein subunits (Chisari, M., Saini, D. K., Kalyanaraman, V., and Gautam, N. (2007) J. Biol. Chem. 282, 24092–24098). These results suggest that the continual testing of cytosolic surfaces of cell membranes by G protein subunits facilitates an activated cell surface receptor to direct potentially active G protein βγ subunits to intracellular membranes. PMID:17581822
Li, Li; Chen, Xiaodan; Shi, Lu; Wang, Chuanjing; Fu, Bing; Qiu, Tianhang; Cui, Suxia
2017-01-01
After a long-term adaptation to desert environment, the perennial aquatic plant Phragmites communis has evolved a desert-dune ecotype. The desert-dune ecotype (DR) of Phragmites communis showed significant differences in water activity and protein distribution compared to its sympatric swamp ecotype (SR). Many proteins that were located in the soluble fraction of SR translocated to the insoluble fraction of DR, suggesting that membrane-associated proteins were greatly reinforced in DR. The unknown phenomenon in plant stress physiology was defined as a proteome translocation response. Quantitative 2D-DIGE technology highlighted these 'bound' proteins in DR. Fifty-eight kinds of proteins were identified as candidates of the translocated proteome in Phragmites . The majority were chloroplast proteins. Unexpectedly, Rubisco was the most abundant protein sequestered by DR. Rubisco activase, various chaperons and 2-cysteine peroxiredoxin were major components in the translocation response. Conformational change was assumed to be the main reason for the Rubisco translocation due to no primary sequence difference between DR and SR. The addition of reductant in extraction process partially reversed the translocation response, implying that intracellular redox status plays a role in the translocation response of the proteome. The finding emphasizes the realistic significance of the membrane-association of biomolecule for plant long-term adaptation to complex stress conditions.
Role of the import motor in insertion of transmembrane segments by the mitochondrial TIM23 complex.
Popov-Čeleketić, Dušan; Waegemann, Karin; Mapa, Koyeli; Neupert, Walter; Mokranjac, Dejana
2011-06-01
The TIM23 complex mediates translocation of proteins across, and their lateral insertion into, the mitochondrial inner membrane. Translocation of proteins requires both the membrane-embedded core of the complex and its ATP-dependent import motor. Insertion of some proteins, however, occurs in the absence of ATP, questioning the need for the import motor during lateral insertion. We show here that the import motor associates with laterally inserted proteins even when its ATPase activity is not required. Furthermore, our results suggest a role for the import motor in lateral insertion. Thus, the import motor is involved in ATP-dependent translocation and ATP-independent lateral insertion.
Role of the import motor in insertion of transmembrane segments by the mitochondrial TIM23 complex
Popov-Čeleketić, Dušan; Waegemann, Karin; Mapa, Koyeli; Neupert, Walter; Mokranjac, Dejana
2011-01-01
The TIM23 complex mediates translocation of proteins across, and their lateral insertion into, the mitochondrial inner membrane. Translocation of proteins requires both the membrane-embedded core of the complex and its ATP-dependent import motor. Insertion of some proteins, however, occurs in the absence of ATP, questioning the need for the import motor during lateral insertion. We show here that the import motor associates with laterally inserted proteins even when its ATPase activity is not required. Furthermore, our results suggest a role for the import motor in lateral insertion. Thus, the import motor is involved in ATP-dependent translocation and ATP-independent lateral insertion. PMID:21546912
Lower extremity kinetics in tap dance.
Mayers, Lester; Bronner, Shaw; Agraharasamakulam, Sujani; Ojofeitimi, Sheyi
2010-01-01
Tap dance is a unique performing art utilizing the lower extremities as percussion instruments. In a previous study these authors reported decreased injury prevalence among tap dancers compared to other dance and sports participants. No biomechanical analyses of tap dance exist to explain this finding. The purpose of the current pilot study was to provide a preliminary overview of normative peak kinetic and kinematic data, based on the hypothesis that tap dance generates relatively low ground reaction forces and joint forces and moments. Six professional tap dancers performed four common tap dance sequences that produced data captured by the use of a force platform and a five-camera motion analysis system. The mean vertical ground reaction force for all sequences was found to be 2.06+/-0.55 BW. Mean peak sagittal, frontal, and transverse plane joint moments (hip, knee, and ankle) ranged from 0.07 to 2.62 N.m/kg. These small ground reaction forces and joint forces and moments support our hypothesis, and may explain the relatively low injury incidence in tap dancers. Nevertheless, the analysis is highly complex, and other factors remain to be studied and clarified.
Arginine methylation of REF/ALY promotes efficient handover of mRNA to TAP/NXF1
Hung, Ming-Lung; Hautbergue, Guillaume M.; Snijders, Ambrosius P. L.; Dickman, Mark J.; Wilson, Stuart A.
2010-01-01
The REF/ALY mRNA export adaptor binds TAP/NXF1 via an arginine-rich region, which overlaps with its RNA-binding domain. When TAP binds a REF:RNA complex, it triggers transfer of the RNA from REF to TAP. Here, we have examined the effects of arginine methylation on the activities of the REF protein in mRNA export. We have mapped the arginine methylation sites of REF using mass spectrometry and find that several arginines within the TAP and RNA binding domains are methylated in vivo. However, arginine methylation has no effect on the REF:TAP interaction. Instead, arginine methylation reduces the RNA-binding activity of REF in vitro and in vivo. The reduced RNA-binding activity of REF in its methylated state is essential for efficient displacement of RNA from REF by TAP in vivo. Therefore, arginine methylation fine-tunes the RNA-binding activity of REF such that the RNA–protein interaction can be readily disrupted by export factors further down the pathway. PMID:20129943
Huang, Hsiu-Chen; Lee, Chung-Pei; Liu, Hui-Kang; Chang, Ming-Fu; Lai, Yu-Heng; Lee, Yu-Ching; Huang, Cheng
2016-12-09
Hepatitis delta virus (HDV) is a satellite virus of hepatitis B virus (HBV). HDV genome encodes two forms of hepatitis delta antigen (HDAg), small HDAg (HDAg-S), which is required for viral replication, and large HDAg (HDAg-L), which is essential for viral assembly. HDAg-L is identical to HDAg-S except that it bears a 19-amino acid extension at the C terminus. Both HDAgs contain a nuclear localization signal (NLS), but only HDAg-L contains a CRM1-independent nuclear export signal at its C terminus. The nuclear export activity of HDAg-L is important for HDV particle formation. However, the mechanisms of HDAg-L-mediated nuclear export of HDV ribonucleoprotein are not clear. In this study, the host cellular RNA export complex TAP-Aly was found to form a complex with HDAg-L, but not with an export-defective HDAg-L mutant, in which Pro 205 was replaced by Ala. HDAg-L was found to colocalize with TAP and Aly in the nucleus. The C-terminal domain of HDAg-L was shown to directly interact with the N terminus of TAP, whereas an HDAg-L mutant lacking the NLS failed to interact with full-length TAP. In addition, small hairpin RNA-mediated down-regulation of TAP or Aly reduced nuclear export of HDAg-L and assembly of HDV virions. Furthermore, a peptide, TAT-HDAg-L(198-210), containing the 10-amino acid TAT peptide and HDAg-L(198-210), inhibited the interaction between HDAg-L and TAP and blocked HDV virion assembly and secretion. These data demonstrate that formation and release of HDV particles are mediated by TAP and Aly. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Vambutas, Andrea; Bonagura, Vincent R.; Steinberg, Bettie M.
2000-01-01
Recurrent respiratory papillomatosis (RRP) is an insidious disease caused by human papillomavirus (HPV) infection. It is characterized by a variable clinical course that can include frequent disease recurrence, significant morbidity, and occasional mortality. The mechanisms responsible for the variability in the clinical course and the persistence of latent HPV infection remain unknown. Effective T-cell-mediated clearance of HPV-infected cells may be defective in patients with RRP, leading to recurrent disease and failure to suppress latent HPV reactivation. This study describes the down-regulation of the transporter associated with antigen presentation (TAP-1) and the major histocompatibility complex (MHC) class I protein expression in laryngeal papilloma tissue biopsies and cell culture of primary explants. There was a statistically significant correlation between reduction of TAP-1 expression in biopsy tissues and rapid recurrence of disease. Patients with RRP had less frequent recurrence if their papillomas expressed TAP-1 at levels close to that of normal tissue, compared with those with very low expression of TAP-1, who had frequent recurrence (32 versus 5 weeks to the next surgical intervention). These findings suggest that HPV may evade immune recognition by down-regulating class I MHC cell surface expression via decreased TAP-1 levels. Expression of TAP-1 could be used for prognostic evaluation of disease severity. Gamma interferon was able to restore class I MHC expression at the surfaces of laryngeal papilloma cells in culture. This up-regulation of class I MHC antigen at the cell surface potentially allows the infected cell to become a target for the immune system again. This finding provides some promise for nonsurgical treatment of laryngeal papillomas. PMID:10618282
Forejt, J; Gregorová, S; Goetz, P
1981-01-01
Analysis of the chromosome behaviour at pachytene has been performed by means of the silver staining technique visualizing the synaptonemal complexes (SCs) in male mice heterozygous for the male-sterile translocations T(5;12)31Hm T(16;17)43H and T(7;19)145H, respectively. the T(9;17)138Ca male heterozygotes and T43H/T43H homozygous males were used as fertile controls. The sterile mice displayed a high frequency (about 60%) of pachytene spermatocytes with autosomal translocation configuration located in close vicinity of the XY pair. The dense round body (XAB), normally located near the X-chromosome axis in fertile males, exhibited abnormal affinity to translocation configuration in the sterile translocation heterozygotes. The incomplete synapsis of autosomes involved in translocation configuration was observed in more than 70% of the pachytene spermatocytes with the male-sterile translocations but less than 20% of the cells from T138Ca fertile male.s. A hypothesis relating the spermatogenic arrest of carriers of male-sterile rearrangements to the presumed interference with X chromosome inactivation in male meiosis is discussed.
Panter, Michaela S; Jain, Ankur; Leonhardt, Ralf M; Ha, Taekjip; Cresswell, Peter
2012-09-07
Although the human peptide-loading complex (PLC) is required for optimal major histocompatibility complex class I (MHC I) antigen presentation, its composition is still incompletely understood. The ratio of the transporter associated with antigen processing (TAP) and MHC I to tapasin, which is responsible for MHC I recruitment and peptide binding optimization, is particularly critical for modeling of the PLC. Here, we characterized the stoichiometry of the human PLC using both biophysical and biochemical approaches. By means of single-molecule pulldown (SiMPull), we determined a TAP/tapasin ratio of 1:2, consistent with previous studies of insect-cell microsomes, rat-human chimeric cells, and HeLa cells expressing truncated TAP subunits. We also report that the tapasin/MHC I ratio varies, with the PLC population comprising both 2:1 and 2:2 complexes, based on mutational and co-precipitation studies. The MHC I-saturated PLC may be particularly prevalent among peptide-selective alleles, such as HLA-C4. Additionally, MHC I association with the PLC increases when its peptide supply is reduced by inhibiting the proteasome or by blocking TAP-mediated peptide transport using viral inhibitors. Taken together, our results indicate that the composition of the human PLC varies under normal conditions and dynamically adapts to alterations in peptide supply that may arise during viral infection. These findings improve our understanding of the quality control of MHC I peptide loading and may aid the structural and functional modeling of the human PLC.
Ishida, Hisashi; Matsumoto, Atsushi
2014-01-01
To understand the mechanism of reverse tRNA translocation in the ribosome, all-atom molecular dynamics simulations of the ribosome-tRNAs-mRNA-EFG complex were performed. The complex at the post-translocational state was directed towards the translocational and pre-translocational states by fitting the complex into cryo-EM density maps. Between a series of the fitting simulations, umbrella sampling simulations were performed to obtain the free-energy landscape. Multistep structural changes, such as a ratchet-like motion and rotation of the head of the small subunit were observed. The free-energy landscape showed that there were two main free-energy barriers: one between the post-translocational and intermediate states, and the other between the pre-translocational and intermediate states. The former corresponded to a clockwise rotation, which was coupled to the movement of P-tRNA over the P/E-gate made of G1338, A1339 and A790 in the small subunit. The latter corresponded to an anticlockwise rotation of the head, which was coupled to the location of the two tRNAs in the hybrid state. This indicates that the coupled motion of the head rotation and tRNA translocation plays an important role in opening and closing of the P/E-gate during the ratchet-like movement in the ribosome. Conformational change of EF-G was interpreted to be the result of the combination of the external motion by L12 around an axis passing near the sarcin-ricin loop, and internal hinge-bending motion. These motions contributed to the movement of domain IV of EF-G to maintain its interaction with A/P-tRNA. PMID:24999999
Ishida, Hisashi; Matsumoto, Atsushi
2014-01-01
To understand the mechanism of reverse tRNA translocation in the ribosome, all-atom molecular dynamics simulations of the ribosome-tRNAs-mRNA-EFG complex were performed. The complex at the post-translocational state was directed towards the translocational and pre-translocational states by fitting the complex into cryo-EM density maps. Between a series of the fitting simulations, umbrella sampling simulations were performed to obtain the free-energy landscape. Multistep structural changes, such as a ratchet-like motion and rotation of the head of the small subunit were observed. The free-energy landscape showed that there were two main free-energy barriers: one between the post-translocational and intermediate states, and the other between the pre-translocational and intermediate states. The former corresponded to a clockwise rotation, which was coupled to the movement of P-tRNA over the P/E-gate made of G1338, A1339 and A790 in the small subunit. The latter corresponded to an anticlockwise rotation of the head, which was coupled to the location of the two tRNAs in the hybrid state. This indicates that the coupled motion of the head rotation and tRNA translocation plays an important role in opening and closing of the P/E-gate during the ratchet-like movement in the ribosome. Conformational change of EF-G was interpreted to be the result of the combination of the external motion by L12 around an axis passing near the sarcin-ricin loop, and internal hinge-bending motion. These motions contributed to the movement of domain IV of EF-G to maintain its interaction with A/P-tRNA.
DOD Weapon Systems Software Management Study. Appendix D. Undersea and Landbased Systems
1975-06-01
unassigned, but reserved to satisfy growth requirements. 4. The peripheral equipment group ( PEG ) of the Central Com- puter Complex configuration consists of...Execution Time in /jsec - 32.768 m sec- Subframe (0j 8192KS- Taps Attitude Loop (SS, LC) 3350 Quid Srv, X 1260 ■5280- Self Test -29i2...o 8192 MS- Taps © -8192 MS- Attitude Loop 3350 -5170- Taps Self Test -3022- Average Test Utilization Program /jsec Airborne Self
Yang, Jin-Young; Lee, Eun-Sook; Kim, Se-Chul; Cha, So-Yang; Kim, Sung-Tek; Lee, Man-Ho; Han, Sun-Hee; Park, Young-Sang
2013-01-01
From May to June 2012, a waterborne outbreak of 124 cases of cryptosporidiosis occurred in the plumbing systems of an older high-rise apartment complex in Seoul, Republic of Korea. The residents of this apartment complex had symptoms of watery diarrhea and vomiting. Tap water samples in the apartment complex and its adjacent buildings were collected and tested for 57 parameters under the Korean Drinking Water Standards and for additional 11 microbiological parameters. The microbiological parameters included total colony counts, Clostridium perfringens, Enterococcus, fecal streptococcus, Salmonella, Shigella, Pseudomonas aeruginosa, Cryptosporidium oocysts, Giardia cysts, total culturable viruses, and Norovirus. While the tap water samples of the adjacent buildings complied with the Korean Drinking Water Standards for all parameters, fecal bacteria and Cryptosporidium oocysts were detected in the tap water samples of the outbreak apartment complex. It turned out that the agent of the disease was Cryptosporidium parvum. The drinking water was polluted with sewage from a septic tank in the apartment complex. To remove C. parvum oocysts, we conducted physical processes of cleaning the water storage tanks, flushing the indoor pipes, and replacing old pipes with new ones. Finally we restored the clean drinking water to the apartment complex after identification of no oocysts. PMID:24039290
Cho, Eun-Joo; Yang, Jin-Young; Lee, Eun-Sook; Kim, Se-Chul; Cha, So-Yang; Kim, Sung-Tek; Lee, Man-Ho; Han, Sun-Hee; Park, Young-Sang
2013-08-01
From May to June 2012, a waterborne outbreak of 124 cases of cryptosporidiosis occurred in the plumbing systems of an older high-rise apartment complex in Seoul, Republic of Korea. The residents of this apartment complex had symptoms of watery diarrhea and vomiting. Tap water samples in the apartment complex and its adjacent buildings were collected and tested for 57 parameters under the Korean Drinking Water Standards and for additional 11 microbiological parameters. The microbiological parameters included total colony counts, Clostridium perfringens, Enterococcus, fecal streptococcus, Salmonella, Shigella, Pseudomonas aeruginosa, Cryptosporidium oocysts, Giardia cysts, total culturable viruses, and Norovirus. While the tap water samples of the adjacent buildings complied with the Korean Drinking Water Standards for all parameters, fecal bacteria and Cryptosporidium oocysts were detected in the tap water samples of the outbreak apartment complex. It turned out that the agent of the disease was Cryptosporidium parvum. The drinking water was polluted with sewage from a septic tank in the apartment complex. To remove C. parvum oocysts, we conducted physical processes of cleaning the water storage tanks, flushing the indoor pipes, and replacing old pipes with new ones. Finally we restored the clean drinking water to the apartment complex after identification of no oocysts.
Shin, Jae Yen; Lopez-Garrido, Javier; Lee, Sang-Hyuk; ...
2015-05-07
SpoIIIE is a membrane-anchored DNA translocase that localizes to the septal midpoint to mediate chromosome translocation and membrane fission during Bacillus subtilis sporulation. Here we use cell-specific protein degradation and quantitative photoactivated localization microscopy in strains with a thick sporulation septum to investigate the architecture and function of the SpoIIIE DNA translocation complex in vivo. We were able to visualize SpoIIIE complexes with approximately equal numbers of molecules in the mother cell and the forespore. Cell-specific protein degradation showed that only the mother cell complex is required to translocate DNA into the forespore, whereas degradation in either cell reverses membranemore » fission. Our data suggest that SpoIIIE assembles a coaxially paired channel for each chromosome arm comprised of one hexamer in each cell to maintain membrane fission during DNA translocation. We show that SpoIIIE can operate, in principle, as a bi-directional motor that exports DNA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Jae Yen; Lopez-Garrido, Javier; Lee, Sang-Hyuk
SpoIIIE is a membrane-anchored DNA translocase that localizes to the septal midpoint to mediate chromosome translocation and membrane fission during Bacillus subtilis sporulation. Here we use cell-specific protein degradation and quantitative photoactivated localization microscopy in strains with a thick sporulation septum to investigate the architecture and function of the SpoIIIE DNA translocation complex in vivo. We were able to visualize SpoIIIE complexes with approximately equal numbers of molecules in the mother cell and the forespore. Cell-specific protein degradation showed that only the mother cell complex is required to translocate DNA into the forespore, whereas degradation in either cell reverses membranemore » fission. Our data suggest that SpoIIIE assembles a coaxially paired channel for each chromosome arm comprised of one hexamer in each cell to maintain membrane fission during DNA translocation. We show that SpoIIIE can operate, in principle, as a bi-directional motor that exports DNA.« less
Li, Li; Chen, Xiaodan; Shi, Lu; Wang, Chuanjing; Fu, Bing; Qiu, Tianhang; Cui, Suxia
2017-01-01
After a long-term adaptation to desert environment, the perennial aquatic plant Phragmites communis has evolved a desert-dune ecotype. The desert-dune ecotype (DR) of Phragmites communis showed significant differences in water activity and protein distribution compared to its sympatric swamp ecotype (SR). Many proteins that were located in the soluble fraction of SR translocated to the insoluble fraction of DR, suggesting that membrane-associated proteins were greatly reinforced in DR. The unknown phenomenon in plant stress physiology was defined as a proteome translocation response. Quantitative 2D-DIGE technology highlighted these ‘bound’ proteins in DR. Fifty-eight kinds of proteins were identified as candidates of the translocated proteome in Phragmites. The majority were chloroplast proteins. Unexpectedly, Rubisco was the most abundant protein sequestered by DR. Rubisco activase, various chaperons and 2-cysteine peroxiredoxin were major components in the translocation response. Conformational change was assumed to be the main reason for the Rubisco translocation due to no primary sequence difference between DR and SR. The addition of reductant in extraction process partially reversed the translocation response, implying that intracellular redox status plays a role in the translocation response of the proteome. The finding emphasizes the realistic significance of the membrane-association of biomolecule for plant long-term adaptation to complex stress conditions. PMID:28450873
Stoichiometry for binding and transport by the twin arginine translocation system.
Celedon, Jose M; Cline, Kenneth
2012-05-14
Twin arginine translocation (Tat) systems transport large folded proteins across sealed membranes. Tat systems accomplish this feat with three membrane components organized in two complexes. In thylakoid membranes, cpTatC and Hcf106 comprise a large receptor complex containing an estimated eight cpTatC-Hcf106 pairs. Protein transport occurs when Tha4 joins the receptor complex as an oligomer of uncertain size that is thought to form the protein-conducting structure. Here, binding analyses with intact membranes or purified complexes indicate that each receptor complex could bind eight precursor proteins. Kinetic analysis of translocation showed that each precursor-bound site was independently functional for transport, and, with sufficient Tha4, all sites were concurrently active for transport. Tha4 titration determined that ∼26 Tha4 protomers were required for transport of each OE17 (oxygen-evolving complex subunit of 17 kD) precursor protein. Our results suggest that, when fully saturated with precursor proteins and Tha4, the Tat translocase is an ∼2.2-megadalton complex that can individually transport eight precursor proteins or cooperatively transport multimeric precursors.
Persistence of radiation-induced chromosome aberrations in a long-term cell culture.
Duran, Assumpta; Barquinero, Joan Francesc; Caballín, María Rosa; Ribas, Montserrat; Barrios, Leonardo
2009-04-01
The aim of the present study was to evaluate the persistence of chromosome aberrations induced by X rays. FISH painting and mFISH techniques were applied to long-term cultures of irradiated cells. With painting, at 2 Gy the frequency of apparently simple translocations remained almost invariable during all the culture, whereas at 4 Gy a rapid decline was observed between the first and the second samples, followed by a slight decrease until the end of the culture. Apparently simple dicentrics and complex aberrations disappeared after the first sample at 2 and 4 Gy. By mFISH, at 2 Gy the frequency of complete plus one-way translocations remained invariable between the first and last sample, but at 4 Gy a 60% decline was observed. True incomplete simple translocations disappeared at 2 and 4 Gy, indicating that incompleteness could be a factor to consider when the persistence of translocations is analyzed. The analysis by mFISH showed that the frequency of complex aberrations and their complexity increased with dose and tended to disappear in the last sample. Our results indicate that the influence of dose on the decrease in the frequency of simple translocations with time postirradiation cannot be fully explained by the disappearance of true incomplete translocations and complex aberrations. The chromosome involvement was random for radiation-induced exchange aberrations and non-random for total aberrations. Chromosome 7 showed the highest deviations from expected, being less and more involved than expected in the first and last samples, respectively. Some preferential chromosome-chromosome associations were observed, including a coincidence with a cluster from radiogenic chromosome aberrations described in other studies.
FISH analysis in the derivation of a 12, 15, 21 complex chromosomal rearrangement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, C.K.; Muscolino, D.; Baird, N.
Cytogenetic analysis was performed for a couple referred for recurrent pregnancy loss. Routine GTG banded studies revealed a 46,XY karyotype for the husband, but in the woman, an apparently balanced complex rearrangement involving chromosomes 12, 15, and 21 was detected. The 46,XX,t(12;15)(q13.3;q23),t(12;21)(q21;q11.2) karyotype is the consequence of 2 translocation events resulting in 3 rearranged chromosomes: (1) a derivative 12 arising from the exchange of the short arms of 12 and 21; (2) a derivative chromosome 15 consisting of segments of the long arms of chromosomes 12 and 15; and (3) a complex derivative chromosome 21 which includes the short armmore » and centromere of 21, and portions of the long arms of both chromosomes 12 and 15. Because the 12;21 translocation occurred at the centromeric region on both chromosomes, it was not possible to cytogenetically differentiate the derivative chromosomes 12 and 21. To clarify this issue, fluorescence in situ hybridization (FISH) was performed utilizing a 13/21 alpha-satellite probe. The location of the FITC signal clearly indicated a chromosome 21 centromere present on the derivative containing portions of all three chromosomes. A family history of spontaneous fetal losses suggested the possibility of a familial translocation. However, the likelihood of transmission of such a complex set of translocations is low, leading to the hypothesis that only one of the translocations was inherited with the second a de novo event in this individual. Karyotype analysis of both parents revealed no cytogenetic anomalies. Therefore, the extremely unusual occurrence of two independent translocations involving 3 chromosomes arose de novo in this patient.« less
Cooperation of TOM and TIM23 complexes during translocation of proteins into mitochondria.
Waegemann, Karin; Popov-Čeleketić, Dušan; Neupert, Walter; Azem, Abdussalam; Mokranjac, Dejana
2015-03-13
Translocation of the majority of mitochondrial proteins from the cytosol into mitochondria requires the cooperation of TOM and TIM23 complexes in the outer and inner mitochondrial membranes. The molecular mechanisms underlying this cooperation remain largely unknown. Here, we present biochemical and genetic evidence that at least two contacts from the side of the TIM23 complex play an important role in TOM-TIM23 cooperation in vivo. Tim50, likely through its very C-terminal segment, interacts with Tom22. This interaction is stimulated by translocating proteins and is independent of any other TOM-TIM23 contact known so far. Furthermore, the exposure of Tim23 on the mitochondrial surface depends not only on its interaction with Tim50 but also on the dynamics of the TOM complex. Destabilization of the individual contacts reduces the efficiency of import of proteins into mitochondria and destabilization of both contacts simultaneously is not tolerated by yeast cells. We conclude that an intricate and coordinated network of protein-protein interactions involving primarily Tim50 and also Tim23 is required for efficient translocation of proteins across both mitochondrial membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Burke, Christopher S; Byrne, Aisling; Keyes, Tia E
2018-06-06
Exploiting NF-κB transcription factor peptide conjugation, a Ru(II)-bis-tap complex (tap = 1,4,5,8-tetraazaphenanthrene) was targeted specifically to the nuclei of live HeLa and CHO cells for the first time. DNA binding of the complex within the nucleus of live cells was evident from gradual extinction of the metal complex luminescence after it had crossed the nuclear envelope, attributed to guanine quenching of the ruthenium emission via photoinduced electron transfer. Resonance Raman imaging confirmed that the complex remained in the nucleus after emission is extinguished. In the dark and under imaging conditions the cells remain viable, but efficient cellular destruction was induced with precise spatiotemporal control by applying higher irradiation intensities to selected cells. Solution studies indicate that the peptide conjugated complex associates strongly with calf thymus DNA ex-cellulo and gel electrophoresis confirmed that the peptide conjugate is capable of singlet oxygen independent photodamage to plasmid DNA. This indicates that the observed efficient cellular destruction likely operates via direct DNA oxidation by photoinduced electron transfer between guanine and the precision targeted Ru(II)-tap probe. The discrete targeting of polyazaaromatic complexes to the cell nucleus and confirmation that they are photocytotoxic after nuclear delivery is an important step toward their application in cellular phototherapy.
Interactional synchrony in chimpanzees: Examination through a finger-tapping experiment.
Yu, Lira; Tomonaga, Masaki
2015-05-11
Humans often unconsciously coordinate behaviour with that of others in daily life. This interpersonal coordination, including mimicry and interactional synchrony, has been suggested to play a fundamental role in social interaction. If this coordinative behavior is socially adaptive, it may be shared with other highly social animal species. The current study targeted chimpanzees, which phylogenetically are the closest living relatives of humans and live in complex social groups, and examined whether interactional synchrony would emerge in pairs of chimpanzees when auditory information about a partner's movement was provided. A finger-tapping task was introduced via touch panels to elicit repetitive and rhythmic movement from each chimpanzee. We found that one of four chimpanzees produced significant changes in both tapping tempo and timing of the tapping relative to its partner's tap when auditory sounds were provided. Although the current results may have limitations in generalizing to chimpanzees as a species, we suggest that a finger-tapping task is one potential method to investigate interactional synchrony in chimpanzees under a laboratory setup.
Translocation by T7 RNA polymerase: a sensitively poised Brownian ratchet.
Guo, Qing; Sousa, Rui
2006-04-21
Studies of halted T7 RNA polymerase (T7RNAP) elongation complexes (ECs) or of T7RNAP transcription against roadblocks due to DNA-bound proteins indicate that T7RNAP translocates via a passive Brownian ratchet mechanism. Crystal structures of T7RNAP ECs suggest that translocation involves an active power-stroke. However, neither solution studies of halted or slowed T7RNAP ECs, nor crystal structures of static complexes, are necessarily relevant to how T7RNAP translocates during rapid elongation. A recent single molecule study of actively elongating T7RNAPs provides support for the Brownian ratchet mechanism. Here, we obtain additional evidence for the existence of a Brownian ratchet during active T7RNAP elongation by showing that both rapidly elongating and halted complexes are equally sensitive to pyrophosphate. Using chemical nucleases tethered to the polymerase we achieve sub-ångström resolution in measuring the average position of halted T7RNAP ECs and find that the positional equilibrium of the EC is sensitively poised between pre-translocated and post-translocated states. This may be important in maximizing the sensitivity of the polymerase to sequences that cause pausing or termination. We also confirm that a crystallographically observed disorder to order transition in a loop formed by residues 589-612 also occurs in solution and is coupled to pyrophosphate or NTP release. This transition allows the loop to make interactions with the DNA that help stabilize the laterally mobile, ligand-free EC against dissociation.
A two-step recognition of signal sequences determines the translocation efficiency of proteins.
Belin, D; Bost, S; Vassalli, J D; Strub, K
1996-01-01
The cytosolic and secreted, N-glycosylated, forms of plasminogen activator inhibitor-2 (PAI-2) are generated by facultative translocation. To study the molecular events that result in the bi-topological distribution of proteins, we determined in vitro the capacities of several signal sequences to bind the signal recognition particle (SRP) during targeting, and to promote vectorial transport of murine PAI-2 (mPAI-2). Interestingly, the six signal sequences we compared (mPAI-2 and three mutated derivatives thereof, ovalbumin and preprolactin) were found to have the differential activities in the two events. For example, the mPAI-2 signal sequence first binds SRP with moderate efficiency and secondly promotes the vectorial transport of only a fraction of the SRP-bound nascent chains. Our results provide evidence that the translocation efficiency of proteins can be controlled by the recognition of their signal sequences at two steps: during SRP-mediated targeting and during formation of a committed translocation complex. This second recognition may occur at several time points during the insertion/translocation step. In conclusion, signal sequences have a more complex structure than previously anticipated, allowing for multiple and independent interactions with the translocation machinery. Images PMID:8599930
A two-step recognition of signal sequences determines the translocation efficiency of proteins.
Belin, D; Bost, S; Vassalli, J D; Strub, K
1996-02-01
The cytosolic and secreted, N-glycosylated, forms of plasminogen activator inhibitor-2 (PAI-2) are generated by facultative translocation. To study the molecular events that result in the bi-topological distribution of proteins, we determined in vitro the capacities of several signal sequences to bind the signal recognition particle (SRP) during targeting, and to promote vectorial transport of murine PAI-2 (mPAI-2). Interestingly, the six signal sequences we compared (mPAI-2 and three mutated derivatives thereof, ovalbumin and preprolactin) were found to have the differential activities in the two events. For example, the mPAI-2 signal sequence first binds SRP with moderate efficiency and secondly promotes the vectorial transport of only a fraction of the SRP-bound nascent chains. Our results provide evidence that the translocation efficiency of proteins can be controlled by the recognition of their signal sequences at two steps: during SRP-mediated targeting and during formation of a committed translocation complex. This second recognition may occur at several time points during the insertion/translocation step. In conclusion, signal sequences have a more complex structure than previously anticipated, allowing for multiple and independent interactions with the translocation machinery.
Analyzing the molecular mechanism of lipoprotein localization in Brucella
Goolab, Shivani; Roth, Robyn L.; van Heerden, Henriette; Crampton, Michael C.
2015-01-01
Bacterial lipoproteins possess diverse structure and functionality, ranging from bacterial physiology to pathogenic processes. As such many lipoproteins, originating from Brucella are exploited as potential vaccines to countermeasure brucellosis infection in the host. These membrane proteins are translocated from the cytoplasm to the cell membrane where they are anchored peripherally by a multifaceted targeting mechanism. Although much research has focused on the identification and classification of Brucella lipoproteins and their potential use as vaccine candidates for the treatment of Brucellosis, the underlying route for the translocation of these lipoproteins to the outer surface of the Brucella (and other pathogens) outer membrane (OM) remains mostly unknown. This is partly due to the complexity of the organism and evasive tactics used to escape the host immune system, the variation in biological structure and activity of lipoproteins, combined with the complex nature of the translocation machinery. The biosynthetic pathway of Brucella lipoproteins involves a distinct secretion system aiding translocation from the cytoplasm, where they are modified by lipidation, sorted by the lipoprotein localization machinery pathway and thereafter equipped for export to the OM. Surface localized lipoproteins in Brucella may employ a lipoprotein flippase or the β-barrel assembly complex for translocation. This review provides an overview of the characterized Brucella OM proteins that form part of the OM, including a handful of other characterized bacterial lipoproteins and their mechanisms of translocation. Lipoprotein localization pathways in gram negative bacteria will be used as a model to identify gaps in Brucella lipoprotein localization and infer a potential pathway. Of particular interest are the dual topology lipoproteins identified in Escherichia coli and Haemophilus influenza. The localization and topology of these lipoproteins from other gram negative bacteria are well characterized and may be useful to infer a solution to better understand the translocation process in Brucella. PMID:26579096
De Gregori, M; Ciccone, R; Magini, P; Pramparo, T; Gimelli, S; Messa, J; Novara, F; Vetro, A; Rossi, E; Maraschio, P; Bonaglia, M C; Anichini, C; Ferrero, G B; Silengo, M; Fazzi, E; Zatterale, A; Fischetto, R; Previderé, C; Belli, S; Turci, A; Calabrese, G; Bernardi, F; Meneghelli, E; Riegel, M; Rocchi, M; SGuerneri; Lalatta, F; Zelante, L; Romano, C; Fichera, Ma; Mattina, T; Arrigo, G; Zollino, M; Giglio, S; Lonardo, F; Bonfante, A; Ferlini, A; Cifuentes, F; Van Esch, H; Backx, L; Schinzel, A; Vermeesch, J R; Zuffardi, O
2007-01-01
Using array comparative genome hybridisation (CGH) 41 de novo reciprocal translocations and 18 de novo complex chromosome rearrangements (CCRs) were screened. All cases had been interpreted as “balanced” by conventional cytogenetics. In all, 27 cases of reciprocal translocations were detected in patients with an abnormal phenotype, and after array CGH analysis, 11 were found to be unbalanced. Thus 40% (11 of 27) of patients with a “chromosomal phenotype” and an apparently balanced translocation were in fact unbalanced, and 18% (5 of 27) of the reciprocal translocations were instead complex rearrangements with >3 breakpoints. Fourteen fetuses with de novo, apparently balanced translocations, all but two with normal ultrasound findings, were also analysed and all were found to be normal using array CGH. Thirteen CCRs were detected in patients with abnormal phenotypes, two in women who had experienced repeated spontaneous abortions and three in fetuses. Sixteen patients were found to have unbalanced mutations, with up to 4 deletions. These results suggest that genome‐wide array CGH may be advisable in all carriers of “balanced” CCRs. The parental origin of the deletions was investigated in 5 reciprocal translocations and 11 CCRs; all were found to be paternal. Using customised platforms in seven cases of CCRs, the deletion breakpoints were narrowed down to regions of a few hundred base pairs in length. No susceptibility motifs were associated with the imbalances. These results show that the phenotypic abnormalities of apparently balanced de novo CCRs are mainly due to cryptic deletions and that spermatogenesis is more prone to generate multiple chaotic chromosome imbalances and reciprocal translocations than oogenesis. PMID:17766364
Finger-tapping motion analysis in cervical myelopathy by magnetic-sensor tapping device.
Miwa, Toshitada; Hosono, Noboru; Mukai, Yoshihiro; Makino, Takahiro; Kandori, Akihiko; Fuji, Takeshi
2013-08-01
Case-control study. The purpose of this study is to determine finger motion of patients with cervical myelopathy during finger-tapping cycles. A major symptom of patients with compressive cervical myelopathy is finger clumsiness. Therefore, understanding finger motion is prerequisite in assessing the severity of myelopathy. The popular grip-and-release test evaluates only the number of motion cycles, which is insufficient to fully describe complex finger motion. Forty-three patients with cervical myelopathy and 41 healthy controls tapped their index fingers against their thumbs as rapidly as possible for 30 seconds and the motion was recorded by a magnetic-sensor coil attached to the nail surface. Output signals were stored in a computer, which automatically calculated tapping frequency, distance moved, ratio of opening/closing velocity and the SD of the tapping interval. The SD of the tapping interval was significantly greater and all other measures were significantly smaller in patients with cervical myelopathy, than in healthy controls. All indices significantly improved after surgical decompression of the cervical spine. Distance moved (Pearson correlation coefficient: r=0.590, P<0.001) and the SD of the tapping interval (r=-0.451; P=0.002) were significantly correlated with the Japanese Orthopedic Association score (neurological scale). The quantitative evaluation of finger paralysis was performed by this tapping device. Speed and regularity in repetitive motion of fingers were correlated with the severity of cervical myelopathy.
Selectivity Mechanism of the Nuclear Pore Complex Characterized by Single Cargo Tracking
Lowe, Alan R.; Siegel, Jake J.; Kalab, Petr; Siu, Merek; Weis, Karsten; Liphardt, Jan T.
2010-01-01
The Nuclear Pore Complex (NPC) mediates all exchange between the cytoplasm and the nucleus. Small molecules can passively diffuse through the NPC, while larger cargos require transport receptors to translocate1. How the NPC facilitates the translocation of transport receptor/cargo complexes remains unclear. Here, we track single protein-functionalized Quantum Dot (QD) cargos as they translocate the NPC. Import proceeds by successive sub-steps comprising cargo capture, filtering and translocation, and release into the nucleus. The majority of QDs are rejected at one of these steps and return to the cytoplasm including very large cargos that abort at a size-selective barrier. Cargo movement in the central channel is subdiffusive and cargos that can bind more transport receptors diffuse more freely. Without Ran, cargos still explore the entire NPC, but have a markedly reduced probability of exit into the nucleus, suggesting that NPC entry and exit steps are not equivalent and that the pore is functionally asymmetric to importing cargos. The overall selectivity of the NPC appears to arise from the cumulative action of multiple reversible sub-steps and a final irreversible exit step. PMID:20811366
Crystallographic snapshot of cellulose synthesis and membrane translocation.
Morgan, Jacob L W; Strumillo, Joanna; Zimmer, Jochen
2013-01-10
Cellulose, the most abundant biological macromolecule, is an extracellular, linear polymer of glucose molecules. It represents an essential component of plant cell walls but is also found in algae and bacteria. In bacteria, cellulose production frequently correlates with the formation of biofilms, a sessile, multicellular growth form. Cellulose synthesis and transport across the inner bacterial membrane is mediated by a complex of the membrane-integrated catalytic BcsA subunit and the membrane-anchored, periplasmic BcsB protein. Here we present the crystal structure of a complex of BcsA and BcsB from Rhodobacter sphaeroides containing a translocating polysaccharide. The structure of the BcsA-BcsB translocation intermediate reveals the architecture of the cellulose synthase, demonstrates how BcsA forms a cellulose-conducting channel, and suggests a model for the coupling of cellulose synthesis and translocation in which the nascent polysaccharide is extended by one glucose molecule at a time.
Dalla Bella, Simone; Sowiński, Jakub
2015-03-16
A set of behavioral tasks for assessing perceptual and sensorimotor timing abilities in the general population (i.e., non-musicians) is presented here with the goal of uncovering rhythm disorders, such as beat deafness. Beat deafness is characterized by poor performance in perceiving durations in auditory rhythmic patterns or poor synchronization of movement with auditory rhythms (e.g., with musical beats). These tasks include the synchronization of finger tapping to the beat of simple and complex auditory stimuli and the detection of rhythmic irregularities (anisochrony detection task) embedded in the same stimuli. These tests, which are easy to administer, include an assessment of both perceptual and sensorimotor timing abilities under different conditions (e.g., beat rates and types of auditory material) and are based on the same auditory stimuli, ranging from a simple metronome to a complex musical excerpt. The analysis of synchronized tapping data is performed with circular statistics, which provide reliable measures of synchronization accuracy (e.g., the difference between the timing of the taps and the timing of the pacing stimuli) and consistency. Circular statistics on tapping data are particularly well-suited for detecting individual differences in the general population. Synchronized tapping and anisochrony detection are sensitive measures for identifying profiles of rhythm disorders and have been used with success to uncover cases of poor synchronization with spared perceptual timing. This systematic assessment of perceptual and sensorimotor timing can be extended to populations of patients with brain damage, neurodegenerative diseases (e.g., Parkinson's disease), and developmental disorders (e.g., Attention Deficit Hyperactivity Disorder).
Structure of the membrane domain of respiratory complex I.
Efremov, Rouslan G; Sazanov, Leonid A
2011-08-07
Complex I is the first and largest enzyme of the respiratory chain, coupling electron transfer between NADH and ubiquinone to the translocation of four protons across the membrane. It has a central role in cellular energy production and has been implicated in many human neurodegenerative diseases. The L-shaped enzyme consists of hydrophilic and membrane domains. Previously, we determined the structure of the hydrophilic domain. Here we report the crystal structure of the Esherichia coli complex I membrane domain at 3.0 Å resolution. It includes six subunits, NuoL, NuoM, NuoN, NuoA, NuoJ and NuoK, with 55 transmembrane helices. The fold of the homologous antiporter-like subunits L, M and N is novel, with two inverted structural repeats of five transmembrane helices arranged, unusually, face-to-back. Each repeat includes a discontinuous transmembrane helix and forms half of a channel across the membrane. A network of conserved polar residues connects the two half-channels, completing the proton translocation pathway. Unexpectedly, lysines rather than carboxylate residues act as the main elements of the proton pump in these subunits. The fourth probable proton-translocation channel is at the interface of subunits N, K, J and A. The structure indicates that proton translocation in complex I, uniquely, involves coordinated conformational changes in six symmetrical structural elements.
Zankl, H; Weiss, A F; Zang, K D
1975-12-23
The recently detected reciprocal translocations in chronic myeloic leucemia (CML) and Burkitt's lymphoma (BL) made it necessary to clarify if meningiomas really show the described monosomy 22 or also a translocation. In 10 out of 12 meningiomas a total or partial translocation of the missing chromosome 22 to another chromosome could be ruled out by fluorescence banding analysis. Two meningiomas showed marker chromosomes of such a complex composition that it was impossible to decide if a 22 translocation was present or not. From these results it was concluded that meningioma cells, in contrast to CML and BL, show almost regularly a loss of a definitive part of their genome.
Ren, Tianheng; Li, Zhi; Yan, Benju; Tan, Feiquan; Tang, Zongxiang; Fu, Shulan; Yang, Manyu; Ren, Zhenglong
2016-12-01
Complex chromosome rearrangements (CCRs) are defined as structural abnormalities involving more than two chromosome breaks, coupled with exchanges of chromosomal segments. Information on CCRs in plants is limited. In the present study, a plant (26-4) harboring translocation chromosomes 1RS.1BL and 4RS.4DL was selected from a double monosomic (1R and 4R) addition line, which was derived from the hybrid between wheat cultivar MY11 and a Chinese local rye variety. The genome of the plant with double alien translocation chromosomes in the monosomic form showed more instability than that harboring a single translocation. The CCRs involving chromosomes 1RS.1BL and 3B, which were generated de novo in this plant, showed double monosomic translocation chromosomes. A new CCR line with balanced reciprocal translocations 1RS.3BL and 3BS.1BL was developed, which presented normal morphological traits of wheat and underwent rapid growth in the field. A new 1RS.1BL translocation line was also selected from the progeny of plant 26-4. The CCRs and simple 1RS.1BL translocation lines showed significant improvement in grain yield, number of spikes per square meter, kernel number per spike, and resistance to stripe rust and powdery mildew. The CCR line exhibited better agronomic traits and adult plant resistance in the field than its sister line, which harbored a simple 1RS.1BL translocation. The CCRs are remarkable genetic resources for crop improvement.
Structural characterization of ribosome recruitment and translocation by type IV IRES.
Murray, Jason; Savva, Christos G; Shin, Byung-Sik; Dever, Thomas E; Ramakrishnan, V; Fernández, Israel S
2016-05-09
Viral mRNA sequences with a type IV IRES are able to initiate translation without any host initiation factors. Initial recruitment of the small ribosomal subunit as well as two translocation steps before the first peptidyl transfer are essential for the initiation of translation by these mRNAs. Using electron cryomicroscopy (cryo-EM) we have structurally characterized at high resolution how the Cricket Paralysis Virus Internal Ribosomal Entry Site (CrPV-IRES) binds the small ribosomal subunit (40S) and the translocation intermediate stabilized by elongation factor 2 (eEF2). The CrPV-IRES restricts tvhe otherwise flexible 40S head to a conformation compatible with binding the large ribosomal subunit (60S). Once the 60S is recruited, the binary CrPV-IRES/80S complex oscillates between canonical and rotated states (Fernández et al., 2014; Koh et al., 2014), as seen for pre-translocation complexes with tRNAs. Elongation factor eEF2 with a GTP analog stabilizes the ribosome-IRES complex in a rotated state with an extra ~3 degrees of rotation. Key residues in domain IV of eEF2 interact with pseudoknot I (PKI) of the CrPV-IRES stabilizing it in a conformation reminiscent of a hybrid tRNA state. The structure explains how diphthamide, a eukaryotic and archaeal specific post-translational modification of a histidine residue of eEF2, is involved in translocation.
Ramrath, David J. F.; Lancaster, Laura; Sprink, Thiemo; Mielke, Thorsten; Loerke, Justus; Noller, Harry F.; Spahn, Christian M. T.
2013-01-01
During protein synthesis, coupled translocation of messenger RNAs (mRNA) and transfer RNAs (tRNA) through the ribosome takes place following formation of each peptide bond. The reaction is facilitated by large-scale conformational changes within the ribosomal complex and catalyzed by elongtion factor G (EF-G). Previous structural analysis of the interaction of EF-G with the ribosome used either model complexes containing no tRNA or only a single tRNA, or complexes where EF-G was directly bound to ribosomes in the posttranslocational state. Here, we present a multiparticle cryo-EM reconstruction of a translocation intermediate containing two tRNAs trapped in transit, bound in chimeric intrasubunit ap/P and pe/E hybrid states. The downstream ap/P-tRNA is contacted by domain IV of EF-G and P-site elements within the 30S subunit body, whereas the upstream pe/E-tRNA maintains tight interactions with P-site elements of the swiveled 30S head. Remarkably, a tight compaction of the tRNA pair can be seen in this state. The translocational intermediate presented here represents a previously missing link in understanding the mechanism of translocation, revealing that the ribosome uses two distinct molecular ratchets, involving both intra- and intersubunit rotational movements, to drive the synchronous movement of tRNAs and mRNA. PMID:24324168
Detection of a complex translocation using fluorescent in situ hybridization (FISH)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosen, B.A.; Abuelo, D.N.; Mark, H.F.
1994-09-01
The use of fluorescent in situ hybridization (FISH) allowed the detection of a complex 3-way translocation in a patient with multiple congenital malformations and mental retardation. The patient was a 10-year-old girl with mental retardation, seizures, repaired cleft palate, esotropia, epicanthal folds, broad nasal bridge, upward slanting palpebral fissures, single transverse palmar crease, brachydactyly, hypoplastic nails, ectrodactyly between the third and fourth right toes, and hypoplasia of the left third toe. Chromosome analysis performed at birth was reported as normal. We performed high resolution banding analysis which revealed an apparently balanced translocation between chromosomes 2 and 9. However, because ofmore » her multiple abnormalities, further studies were ordered. Fluorescent in situ hybridization (FISH) using chromosome painting probes revealed a karyotype of 46,XX,t(2;8;9) (2pter{yields}q31::8q21.2{yields}8qter; 8pter{yields}q21.2::2q31{yields}q34::9q34{yields}qter; 9pter{yields}q34::2q34{yields}qter). The 3-way translocation appears to be de novo, as neither parent is a translocation carrier. This case illustrates the importance of using FISH to further investigate cases of apparently balanced translocations in the presence of phenotypic abnormalities and/or mental retardation.« less
Liu, Michael A; Morris, Paraskevi; Reeves, Peter R
2018-06-10
The Wzx flippase is a critical component of the O-antigen biosynthesis pathway, being responsible for the translocation of oligosaccharide O units across the inner membrane in Gram-negative bacteria. Recent studies have shown that Wzx has a strong preference for its cognate O unit, but the types of O-unit structural variance that a given Wzx can accommodate are poorly understood. In this study, we identified two Yersinia pseudotuberculosis Wzx that can distinguish between different terminal dideoxyhexose sugars on a common O-unit main-chain, despite both being able to translocate several other structurally-divergent O units. We also identified other Y. pseudotuberculosis Wzx that can translocate a structurally divergent foreign O unit with high efficiency, and thus exhibit an apparently relaxed substrate preference. It now appears that Wzx substrate preference is more complex than previously suggested, and that not all O-unit residues are equally important determinants of translocation efficiency. We propose a new "Structure-Specific Triggering" model in which Wzx translocation proceeds at a low level for a wide variety of substrates, with high-frequency translocation only being triggered by Wzx interacting with one or more preferred O-unit structural elements found on its cognate O unit(s). © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
KPNB1 mediates PER/CRY nuclear translocation and circadian clock function.
Lee, Yool; Jang, A Reum; Francey, Lauren J; Sehgal, Amita; Hogenesch, John B
2015-08-29
Regulated nuclear translocation of the PER/CRY repressor complex is critical for negative feedback regulation of the circadian clock of mammals. However, the precise molecular mechanism is not fully understood. Here, we report that KPNB1, an importin β component of the ncRNA repressor of nuclear factor of activated T cells (NRON) ribonucleoprotein complex, mediates nuclear translocation and repressor function of the PER/CRY complex. RNAi depletion of KPNB1 traps the PER/CRY complex in the cytoplasm by blocking nuclear entry of PER proteins in human cells. KPNB1 interacts mainly with PER proteins and directs PER/CRY nuclear transport in a circadian fashion. Interestingly, KPNB1 regulates the PER/CRY nuclear entry and repressor function, independently of importin α, its classical partner. Moreover, inducible inhibition of the conserved Drosophila importin β in lateral neurons abolishes behavioral rhythms in flies. Collectively, these data show that KPNB1 is required for timely nuclear import of PER/CRY in the negative feedback regulation of the circadian clock.
Variation in dual-task performance reveals late initiation of speech planning in turn-taking.
Sjerps, Matthias J; Meyer, Antje S
2015-03-01
The smooth transitions between turns in natural conversation suggest that speakers often begin to plan their utterances while listening to their interlocutor. The presented study investigates whether this is indeed the case and, if so, when utterance planning begins. Two hypotheses were contrasted: that speakers begin to plan their turn as soon as possible (in our experiments less than a second after the onset of the interlocutor's turn), or that they do so close to the end of the interlocutor's turn. Turn-taking was combined with a finger tapping task to measure variations in cognitive load. We assumed that the onset of speech planning in addition to listening would be accompanied by deterioration in tapping performance. Two picture description experiments were conducted. In both experiments there were three conditions: (1) Tapping and Speaking, where participants tapped a complex pattern while taking over turns from a pre-recorded speaker, (2) Tapping and Listening, where participants carried out the tapping task while overhearing two pre-recorded speakers, and (3) Speaking Only, where participants took over turns as in the Tapping and Speaking condition but without tapping. The experiments differed in the amount of tapping training the participants received at the beginning of the session. In Experiment 2, the participants' eye-movements were recorded in addition to their speech and tapping. Analyses of the participants' tapping performance and eye movements showed that they initiated the cognitively demanding aspects of speech planning only shortly before the end of the turn of the preceding speaker. We argue that this is a smart planning strategy, which may be the speakers' default in many everyday situations. Copyright © 2014 Elsevier B.V. All rights reserved.
TAP, a novel T cell-activating protein involved in the stimulation of MHC-restricted T lymphocytes
1986-01-01
Five mAbs have been generated and used to characterize TAP (T cell activating protein) a novel, functional murine T cell membrane antigen. The TAP molecule is a 12-kD protein that is synthesized by T cells. By antibody crossblocking, it appears to be closely associated with a 16- kD protein on the T cell membrane also identified with a novel mAb. These molecules are clearly distinct from the major well-characterized murine T cell antigens previously described. Antibody binding to TAP can result in the activation of MHC-restricted, antigen-specific inducer T cell hybridomas that is equivalent in magnitude to maximal antigen or lectin stimulation. This is a direct effect of soluble antibody and does not require accessory cells or other factors. The activating anti-TAP mAbs are also mitogenic for normal heterogeneous T lymphocytes in the presence of accessory cells or IL-1. In addition, these antibodies are observed to modulate specific immune stimulation. Thus, the activating anti-TAP mAbs synergise with antigen-specific stimulation of T cells, while a nonactivating anti-TAP mAb inhibits antigen driven activation. These observations suggest that the TAP molecule may participate in physiologic T cell activation. The possible relationship of TAP to known physiologic triggering structures, the T3- T cell receptor complex, is considered. TAP is expressed on 70% of peripheral T cells and therefore defines a major T cell subset, making it perhaps the first example of a murine subset-specific activating protein. PMID:2418146
Nowrousian, Minou; Cebula, Patricia
2005-01-01
Background The filamentous fungus Sordaria macrospora forms complex three-dimensional fruiting bodies called perithecia that protect the developing ascospores and ensure their proper discharge. In previous microarray analyses, several genes have been identified that are downregulated in sterile mutants compared to the wild type. Among these genes was tap1 (transcript associated with perithecial development), a gene encoding a putative lectin homolog. Results Analysis of tap1 transcript levels in the wild type under conditions allowing only vegetative growth compared to conditions that lead to fruiting body development showed that tap1 is not only downregulated in developmental mutants but is also upregulated in the wild type during fruiting body development. We have cloned and sequenced a 3.2 kb fragment of genomic DNA containing the tap1 open reading frame and adjoining sequences. The genomic region comprising tap1 is syntenic to its homologous region in the closely related filamentous fungus Neurospora crassa. To determine whether tap1 is involved in fruiting body development in S. macrospora, a knockout construct was generated in which the tap1 open reading frame was replaced by the hygromycin B resistance gene hph under the control of fungal regulatory regions. Transformation of the S. macrospora wild type with this construct resulted in a tap1 deletion strain where tap1 had been replaced by the hph cassette. The knockout strain displayed no phenotypic differences under conditions of vegetative growth and sexual development when compared to the wild type. Double mutants carrying the Δtap1 allele in several developmental mutant backgrounds were phenotypically similar to the corresponding developmental mutant strains. Conclusion The tap1 transcript is strongly upregulated during sexual development in S. macrospora; however, analysis of a tap1 knockout strain shows that tap1 is not essential for fruiting body formation in S. macrospora. PMID:16266439
Role of Plastid Protein Phosphatase TAP38 in LHCII Dephosphorylation and Thylakoid Electron Flow
Pribil, Mathias; Pesaresi, Paolo; Hertle, Alexander; Barbato, Roberto; Leister, Dario
2010-01-01
Short-term changes in illumination elicit alterations in thylakoid protein phosphorylation and reorganization of the photosynthetic machinery. Phosphorylation of LHCII, the light-harvesting complex of photosystem II, facilitates its relocation to photosystem I and permits excitation energy redistribution between the photosystems (state transitions). The protein kinase STN7 is required for LHCII phosphorylation and state transitions in the flowering plant Arabidopsis thaliana. LHCII phosphorylation is reversible, but extensive efforts to identify the protein phosphatase(s) that dephosphorylate LHCII have been unsuccessful. Here, we show that the thylakoid-associated phosphatase TAP38 is required for LHCII dephosphorylation and for the transition from state 2 to state 1 in A. thaliana. In tap38 mutants, thylakoid electron flow is enhanced, resulting in more rapid growth under constant low-light regimes. TAP38 gene overexpression markedly decreases LHCII phosphorylation and inhibits state 1→2 transition, thus mimicking the stn7 phenotype. Furthermore, the recombinant TAP38 protein is able, in an in vitro assay, to directly dephosphorylate LHCII. The dependence of LHCII dephosphorylation upon TAP38 dosage, together with the in vitro TAP38-mediated dephosphorylation of LHCII, suggests that TAP38 directly acts on LHCII. Although reversible phosphorylation of LHCII and state transitions are crucial for plant fitness under natural light conditions, LHCII hyperphosphorylation associated with an arrest of photosynthesis in state 2 due to inactivation of TAP38 improves photosynthetic performance and plant growth under state 2-favoring light conditions. PMID:20126264
Tic20 forms a channel independent of Tic110 in chloroplasts
2011-01-01
Background The Tic complex (Translocon at the inner envelope membrane of chloroplasts) mediates the translocation of nuclear encoded chloroplast proteins across the inner envelope membrane. Tic110 forms one prominent protein translocation channel. Additionally, Tic20, another subunit of the complex, was proposed to form a protein import channel - either together with or independent of Tic110. However, no experimental evidence for Tic20 channel activity has been provided so far. Results We performed a comprehensive biochemical and electrophysiological study to characterize Tic20 in more detail and to gain a deeper insight into its potential role in protein import into chloroplasts. Firstly, we compared transcript and protein levels of Tic20 and Tic110 in both Pisum sativum and Arabidopsis thaliana. We found the Tic20 protein to be generally less abundant, which was particularly pronounced in Arabidopsis. Secondly, we demonstrated that Tic20 forms a complex larger than 700 kilodalton in the inner envelope membrane, which is clearly separate from Tic110, migrating as a dimer at about 250 kilodalton. Thirdly, we defined the topology of Tic20 in the inner envelope, and found its N- and C-termini to be oriented towards the stromal side. Finally, we successfully reconstituted overexpressed and purified full-length Tic20 into liposomes. Using these Tic20-proteoliposomes, we could demonstrate for the first time that Tic20 can independently form a cation selective channel in vitro. Conclusions The presented data provide first biochemical evidence to the notion that Tic20 can act as a channel protein within the chloroplast import translocon complex. However, the very low abundance of Tic20 in the inner envelope membranes indicates that it cannot form a major protein translocation channel. Furthermore, the independent complex formation of Tic20 and Tic110 argues against a joint channel formation. Thus, based on the observed channel activity of Tic20 in proteoliposomes, we speculate that the chloroplast inner envelope contains multiple (at least two) translocation channels: Tic110 as the general translocation pore, whereas Tic20 could be responsible for translocation of a special subset of proteins. PMID:21961525
Hung, Siu Chun; Gottesman, Max E.
1997-01-01
Bacteriophage HK022 Nun protein blocks transcription elongation by Escherichia coli RNA polymerase in vitro without dissociating the transcription complex. Nun is active on complexes located at any template site tested. Ultimately, only the 3′-OH terminal nucleotide of the nascent transcript in an arrested complex can turn over; it is removed by pyrophosphate and restored with NTPs. This suggests that Nun inhibits the translocation of RNA polymerase without abolishing its catalytic activities. Unlike spontaneously arrested complexes, Nun-arrested complexes cannot be reactivated by transcription factor GreB. The various complexes show distinct patterns of nucleotide incorporation and pyrophosphorolysis before or after treatment with Nun, suggesting that the configuration of RNAP, transcript, and template DNA is different in each complex. PMID:9334329
Nowrousian, Minou; Cebula, Patricia
2005-11-03
The filamentous fungus Sordaria macrospora forms complex three-dimensional fruiting bodies called perithecia that protect the developing ascospores and ensure their proper discharge. In previous microarray analyses, several genes have been identified that are downregulated in sterile mutants compared to the wild type. Among these genes was tap1 (transcript associated with perithecial development), a gene encoding a putative lectin homolog. Analysis of tap1 transcript levels in the wild type under conditions allowing only vegetative growth compared to conditions that lead to fruiting body development showed that tap1 is not only downregulated in developmental mutants but is also upregulated in the wild type during fruiting body development. We have cloned and sequenced a 3.2 kb fragment of genomic DNA containing the tap1 open reading frame and adjoining sequences. The genomic region comprising tap1 is syntenic to its homologous region in the closely related filamentous fungus Neurospora crassa. To determine whether tap1 is involved in fruiting body development in S. macrospora, a knockout construct was generated in which the tap1 open reading frame was replaced by the hygromycin B resistance gene hph under the control of fungal regulatory regions. Transformation of the S. macrospora wild type with this construct resulted in a tap1 deletion strain where tap1 had been replaced by the hph cassette. The knockout strain displayed no phenotypic differences under conditions of vegetative growth and sexual development when compared to the wild type. Double mutants carrying the Deltatap1 allele in several developmental mutant backgrounds were phenotypically similar to the corresponding developmental mutant strains. The tap1 transcript is strongly upregulated during sexual development in S. macrospora; however, analysis of a tap1 knockout strain shows that tap1 is not essential for fruiting body formation in S. macrospora.
Refiners Switch to RFG Complex Model
1998-01-01
On January 1, 1998, domestic and foreign refineries and importers must stop using the "simple" model and begin using the "complex" model to calculate emissions of volatile organic compounds (VOC), toxic air pollutants (TAP), and nitrogen oxides (NOx) from motor gasoline. The primary differences between application of the two models is that some refineries may have to meet stricter standards for the sulfur and olefin content of the reformulated gasoline (RFG) they produce and all refineries will now be held accountable for NOx emissions. Requirements for calculating emissions from conventional gasoline under the anti-dumping rule similarly change for exhaust TAP and NOx. However, the change to the complex model is not expected to result in an increase in the price premium for RFG or constrain supplies.
Li, Yifeng; Franklin, Sarah; Zhang, Michael J; Vondriska, Thomas M
2011-01-01
Tandem affinity purification (TAP) is a generic approach for the purification of protein complexes. The key advantage of TAP is the engineering of dual affinity tags that, when attached to the protein of interest, allow purification of the target protein along with its binding partners through two consecutive purification steps. The tandem tag used in the original method consists of two IgG-binding units of protein A from Staphylococcus aureus (ProtA) and the calmodulin-binding peptide (CBP), and it allows for recovery of 20–30% of the bait protein in yeast. When applied to higher eukaryotes, however, this classical TAP tag suffers from low yields. To improve protein recovery in systems other than yeast, we describe herein the development of a three-tag system comprised of CBP, streptavidin-binding peptide (SBP) and hexa-histidine. We illustrate the application of this approach for the purification of human Bruton's tyrosine kinase (Btk), which results in highly efficient binding and elution of bait protein in both purification steps (>50% recovery). Combined with mass spectrometry for protein identification, this TAP strategy facilitated the first nonbiased analysis of Btk interacting proteins. The high efficiency of the SBP-His6 purification allows for efficient recovery of protein complexes formed with a target protein of interest from a small amount of starting material, enhancing the ability to detect low abundance and transient interactions in eukaryotic cell systems. PMID:21080425
Traffic Aware Planner (TAP) Flight Evaluation
NASA Technical Reports Server (NTRS)
Maris, John M.; Haynes, Mark A.; Wing, David J.; Burke, Kelly A.; Henderson, Jeff; Woods, Sharon E.
2014-01-01
NASA's Traffic Aware Planner (TAP) is a cockpit decision support tool that has the potential to achieve significant fuel and time savings when it is embedded in the data-rich Next Generation Air Transportation System (NextGen) airspace. To address a key step towards the operational deployment of TAP and the NASA concept of Traffic Aware Strategic Aircrew Requests (TASAR), a system evaluation was conducted in a representative flight environment in November, 2013. Numerous challenges were overcome to achieve this goal, including the porting of the foundational Autonomous Operations Planner (AOP) software from its original simulation-based, avionics-embedded environment to an Electronic Flight Bag (EFB) platform. A flight-test aircraft was modified to host the EFB, the TAP application, an Automatic Dependent Surveillance Broadcast (ADS-B) processor, and a satellite broadband datalink. Nine Evaluation Pilots conducted 26 hours of TAP assessments using four route profiles in the complex eastern and north-eastern United States airspace. Extensive avionics and video data were collected, supplemented by comprehensive inflight and post-flight questionnaires. TAP was verified to function properly in the live avionics and ADS-B environment, characterized by recorded data dropouts, latency, and ADS-B message fluctuations. Twelve TAP-generated optimization requests were submitted to ATC, of which nine were approved, and all of which resulted in fuel and/or time savings. Analysis of subjective workload data indicated that pilot interaction with TAP during flight operations did not induce additional cognitive loading. Additionally, analyses of post-flight questionnaire data showed that the pilots perceived TAP to be useful, understandable, intuitive, and easy to use. All program objectives were met, and the next phase of TAP development and evaluations with partner airlines is in planning for 2015.
Zhu, Shaotong; Vik, Steven B
2015-08-21
Complex I (NADH:ubiquinone oxidoreductase) is a multisubunit, membrane-bound enzyme of the respiratory chain. The energy from NADH oxidation in the peripheral region of the enzyme is used to drive proton translocation across the membrane. One of the integral membrane subunits, nuoL in Escherichia coli, has an unusual lateral helix of ∼75 residues that lies parallel to the membrane surface and has been proposed to play a mechanical role as a piston during proton translocation (Efremov, R. G., Baradaran, R., and Sazanov, L. A. (2010) Nature 465, 441-445). To test this hypothesis we have introduced 11 pairs of cysteine residues into Complex I; in each pair one is in the lateral helix, and the other is in a nearby region of subunit N, M, or L. The double mutants were treated with Cu(2+) ions or with bi-functional methanethiosulfonate reagents to catalyze cross-link formation in membrane vesicles. The yields of cross-linked products were typically 50-90%, as judged by immunoblotting, but in no case did the activity of Complex I decrease by >10-20%, as indicated by deamino-NADH oxidase activity or rates of proton translocation. In contrast, several pairs of cysteine residues introduced at other interfaces of N:M and M:L subunits led to significant loss of activity, in particular, in the region of residue Glu-144 of subunit M. The results do not support the hypothesis that the lateral helix of subunit L functions like a piston, but rather, they suggest that conformational changes might be transmitted more directly through the functional residues of the proton translocation apparatus. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Evolution of AF6-RAS association and its implications in mixed-lineage leukemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Matthew J.; Ottoni, Elizabeth; Ishiyama, Noboru
Elucidation of activation mechanisms governing protein fusions is essential for therapeutic development. MLL undergoes rearrangement with numerous partners, including a recurrent translocation fusing the epigenetic regulator to a cytoplasmic RAS effector, AF6/afadin. We show here that AF6 employs a non-canonical, evolutionarily conserved α-helix to bind RAS, unique to AF6 and the classical RASSF effectors. Further, all patients with MLL-AF6 translocations express fusion proteins missing only this helix from AF6, resulting in exposure of hydrophobic residues that induce dimerization. We provide evidence that oligomerization is the dominant mechanism driving oncogenesis from rare MLL translocation partners and employ our mechanistic understanding ofmore » MLL-AF6 to examine how dimers induce leukemia. Proteomic data resolve association of dimerized MLL with gene expression modulators, and inhibiting dimerization disrupts formation of these complexes while completely abrogating leukemogenesis in mice. Oncogenic gene translocations are thus selected under pressure from protein structure/function, underscoring the complex nature of chromosomal rearrangements.« less
Fatty acid transport and transporters in muscle are critically regulated by Akt2.
Jain, Swati S; Luiken, Joost J F P; Snook, Laelie A; Han, Xiao Xia; Holloway, Graham P; Glatz, Jan F C; Bonen, Arend
2015-09-14
Muscle contains various fatty acid transporters (CD36, FABPpm, FATP1, FATP4). Physiological stimuli (insulin, contraction) induce the translocation of all four transporters to the sarcolemma to enhance fatty acid uptake similarly to glucose uptake stimulation via glucose transporter-4 (GLUT4) translocation. Akt2 mediates insulin-induced, but not contraction-induced, GLUT4 translocation, but its role in muscle fatty acid transporter translocation is unknown. In muscle from Akt2-knockout mice, we observed that Akt2 is critically involved in both insulin-induced and contraction-induced fatty acid transport and translocation of fatty acid translocase/CD36 (CD36) and FATP1, but not of translocation of fatty acid-binding protein (FABPpm) and FATP4. Instead, Akt2 mediates intracellular retention of both latter transporters. Collectively, our observations reveal novel complexities in signaling mechanisms regulating the translocation of fatty acid transporters in muscle. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Dynein Separately Partners with NDE1 and Dynactin To Orchestrate T Cell Focused Secretion.
Nath, Shubhankar; Christian, Laura; Tan, Sarah Youngsun; Ki, Sanghee; Ehrlich, Lauren I R; Poenie, Martin
2016-09-15
Helper and cytotoxic T cells accomplish focused secretion through the movement of vesicles toward the microtubule organizing center (MTOC) and translocation of the MTOC to the target contact site. In this study, using Jurkat cells and OT-I TCR transgenic primary murine CTLs, we show that the dynein-binding proteins nuclear distribution E homolog 1 (NDE1) and dynactin (as represented by p150(Glued)) form mutually exclusive complexes with dynein, exhibit nonoverlapping distributions in target-stimulated cells, and mediate different transport events. When Jurkat cells expressing a dominant negative form of NDE1 (NDE1-enhanced GFP fusion) were activated by Staphylococcus enterotoxin E-coated Raji cells, NDE1 and dynein failed to accumulate at the immunological synapse (IS) and MTOC translocation was inhibited. Knockdown of NDE1 in Jurkat cells or primary mouse CTLs also inhibited MTOC translocation and CTL-mediated killing. In contrast to NDE1, knockdown of p150(Glued), which depleted the alternative dynein/dynactin complex, resulted in impaired accumulation of CTLA4 and granzyme B-containing intracellular vesicles at the IS, whereas MTOC translocation was not affected. Depletion of p150(Glued) in CTLs also inhibited CTL-mediated lysis. We conclude that the NDE1/Lissencephaly 1 and dynactin complexes separately mediate two key components of T cell-focused secretion, namely translocation of the MTOC and lytic granules to the IS, respectively. Copyright © 2016 by The American Association of Immunologists, Inc.
Structural characterization of ribosome recruitment and translocation by type IV IRES
Murray, Jason; Savva, Christos G; Shin, Byung-Sik; Dever, Thomas E; Ramakrishnan, V; Fernández, Israel S
2016-01-01
Viral mRNA sequences with a type IV IRES are able to initiate translation without any host initiation factors. Initial recruitment of the small ribosomal subunit as well as two translocation steps before the first peptidyl transfer are essential for the initiation of translation by these mRNAs. Using electron cryomicroscopy (cryo-EM) we have structurally characterized at high resolution how the Cricket Paralysis Virus Internal Ribosomal Entry Site (CrPV-IRES) binds the small ribosomal subunit (40S) and the translocation intermediate stabilized by elongation factor 2 (eEF2). The CrPV-IRES restricts the otherwise flexible 40S head to a conformation compatible with binding the large ribosomal subunit (60S). Once the 60S is recruited, the binary CrPV-IRES/80S complex oscillates between canonical and rotated states (Fernández et al., 2014; Koh et al., 2014), as seen for pre-translocation complexes with tRNAs. Elongation factor eEF2 with a GTP analog stabilizes the ribosome-IRES complex in a rotated state with an extra ~3 degrees of rotation. Key residues in domain IV of eEF2 interact with pseudoknot I (PKI) of the CrPV-IRES stabilizing it in a conformation reminiscent of a hybrid tRNA state. The structure explains how diphthamide, a eukaryotic and archaeal specific post-translational modification of a histidine residue of eEF2, is involved in translocation. DOI: http://dx.doi.org/10.7554/eLife.13567.001 PMID:27159451
Wilson, Kris; Webster, Scott P; Iredale, John P; Zheng, Xiaozhong; Homer, Natalie Z; Pham, Nhan T; Auer, Manfred; Mole, Damian J
2017-12-15
The assessment of drug-target engagement for determining the efficacy of a compound inside cells remains challenging, particularly for difficult target proteins. Existing techniques are more suited to soluble protein targets. Difficult target proteins include those with challenging in vitro solubility, stability or purification properties that preclude target isolation. Here, we report a novel technique that measures intracellular compound-target complex formation, as well as cellular permeability, specificity and cytotoxicity-the toxicity-affinity-permeability-selectivity (TAPS) technique. The TAPS assay is exemplified here using human kynurenine 3-monooxygenase (KMO), a challenging intracellular membrane protein target of significant current interest. TAPS confirmed target binding of known KMO inhibitors inside cells. We conclude that the TAPS assay can be used to facilitate intracellular hit validation on most, if not all intracellular drug targets.
NASA Astrophysics Data System (ADS)
Wilson, Kris; Webster, Scott P.; Iredale, John P.; Zheng, Xiaozhong; Homer, Natalie Z.; Pham, Nhan T.; Auer, Manfred; Mole, Damian J.
2018-01-01
The assessment of drug-target engagement for determining the efficacy of a compound inside cells remains challenging, particularly for difficult target proteins. Existing techniques are more suited to soluble protein targets. Difficult target proteins include those with challenging in vitro solubility, stability or purification properties that preclude target isolation. Here, we report a novel technique that measures intracellular compound-target complex formation, as well as cellular permeability, specificity and cytotoxicity-the toxicity-affinity-permeability-selectivity (TAPS) technique. The TAPS assay is exemplified here using human kynurenine 3-monooxygenase (KMO), a challenging intracellular membrane protein target of significant current interest. TAPS confirmed target binding of known KMO inhibitors inside cells. We conclude that the TAPS assay can be used to facilitate intracellular hit validation on most, if not all intracellular drug targets.
Ribosomal Translocation: One Step Closer to the Molecular Mechanism
Shoji, Shinichiro; Walker, Sarah E.; Fredrick, Kurt
2010-01-01
Protein synthesis occurs in ribosomes, the targets of numerous antibiotics. How these large and complex machines read and move along mRNA have proven to be challenging questions. In this Review, we focus on translocation, the last step of the elongation cycle in which movement of tRNA and mRNA is catalyzed by elongation factor G. Translocation entails large-scale movements of the tRNAs and conformational changes in the ribosome that require numerous tertiary contacts to be disrupted and reformed. We highlight recent progress toward elucidating the molecular basis of translocation and how various antibiotics influence tRNA–mRNA movement. PMID:19173642
Nuclear Import of β-Dystroglycan Is Facilitated by Ezrin-Mediated Cytoskeleton Reorganization
Vásquez-Limeta, Alejandra; Wagstaff, Kylie M.; Ortega, Arturo; Crouch, Dorothy H.; Jans, David A.; Cisneros, Bulmaro
2014-01-01
The β-dystroglycan (β-DG) protein has the ability to target to multiple sites in eukaryotic cells, being a member of diverse protein assemblies including the transmembranal dystrophin-associated complex, and a nuclear envelope-localised complex that contains emerin and lamins A/C and B1. We noted that the importin α2/β1-recognised nuclear localization signal (NLS) of β-DG is also a binding site for the cytoskeletal-interacting protein ezrin, and set out to determine whether ezrin binding might modulate β-DG nuclear translocation for the first time. Unexpectedly, we found that ezrin enhances rather than inhibits β-DG nuclear translocation in C2C12 myoblasts. Both overexpression of a phosphomimetic activated ezrin variant (Ez-T567D) and activation of endogenous ezrin through stimulation of the Rho pathway resulted in both formation of actin-rich surface protrusions and significantly increased nuclear translocation of β-DG as shown by quantitative microscopy and subcellular fractionation/Western analysis. In contrast, overexpression of a nonphosphorylatable inactive ezrin variant (Ez-T567A) or inhibition of Rho signaling, decreased nuclear translocation of β-DG concomitant with a lack of cell surface protrusions. Further, a role for the actin cytoskeleton in ezrin enhancement of β-DG nuclear translocation was implicated by the observation that an ezrin variant lacking its actin-binding domain failed to enhance nuclear translocation of β-DG, while disruption of the actin cytoskeleton led to a reduction in β-DG nuclear localization. Finally, we show that ezrin-mediated cytoskeletal reorganization enhances nuclear translocation of the cytoplasmic but not the transmembranal fraction of β-DG. This is the first study showing that cytoskeleton reorganization can modulate nuclear translocation of β-DG, with the implication that β-DG can respond to cytoskeleton-driven changes in cell morphology by translocating from the cytoplasm to the nucleus to orchestrate nuclear processes in response to the functional requirements of the cell. PMID:24599031
The super elongation complex (SEC) and MLL in development and disease
Smith, Edwin; Lin, Chengqi; Shilatifard, Ali
2011-01-01
Transcriptional regulation at the level of elongation is vital for the control of gene expression and metazoan development. The mixed lineage leukemia (MLL) protein and its Drosophila homolog, Trithorax, which exist within COMPASS (complex of proteins associated with Set1)-like complexes, are master regulators of development. They are required for proper homeotic gene expression, in part through methylation of histone H3 on Lys 4. In humans, the MLL gene is involved in a large number of chromosomal translocations that create chimeric proteins, fusing the N terminus of MLL to several proteins that share little sequence similarity. Several frequent translocation partners of MLL were found recently to coexist in a super elongation complex (SEC) that includes known transcription elongation factors such as eleven-nineteen lysine-rich leukemia (ELL) and P-TEFb. Importantly, the SEC is required for HOX gene expression in leukemic cells, suggesting that chromosomal translocations involving MLL could lead to the overexpression of HOX and other genes through the involvement of the SEC. Here, we review the normal developmental roles of MLL and the SEC, and how MLL fusion proteins can mediate leukemogenesis. PMID:21460034
Lau, Julia B; Stork, Simone; Moog, Daniel; Schulz, Julian; Maier, Uwe G
2016-04-01
Most secondary plastids of red algal origin are surrounded by four membranes and nucleus-encoded plastid proteins have to traverse these barriers. Translocation across the second outermost plastid membrane, the periplastidal membrane (PPM), is facilitated by a ERAD-(ER-associated degradation) derived machinery termed SELMA (symbiont-specific ERAD-like machinery). In the last years, important subunits of this translocator have been identified, which clearly imply compositional similarities between SELMA and ERAD. Here we investigated, via protein-protein interaction studies, if the composition of SELMA is comparable to the known ERAD complex. As a result, our data suggest that the membrane proteins of SELMA, the derlin proteins, are linked to the soluble sCdc48 complex via the UBX protein sUBX. This is similar to the ERAD machinery whereas the additional SELMA components, sPUB und a second Cdc48 copy might indicate the influence of functional constraints in developing a translocation machinery from ERAD-related factors. In addition, we show for the first time that a rhomboid protease is a central interaction partner of the membrane proteins of the SELMA system in complex plastids. © 2015 John Wiley & Sons Ltd.
Smad Acetylation: A New Level of Regulation in TGF-Beta Signaling
2007-07-01
of Smad2 and Smad3 , resulting in their oligomerization with the common mediator Smad4 (10-11). This Smad2/ Smad3 /Smad4 complex can then translocate...Smad2 and Smad3 , enabling oligomerization with Smad4 and translocation of the entire Smad complex into the nucleus. Once in the nucleus, the...performed prior to DOD funding determined that Smad2 but not Smad3 is efficiently acetylated in a p300 depend manner both in in vivo and in vitro models
HIV-1 Rev protein specifies the viral RNA export pathway by suppressing TAP/NXF1 recruitment
Taniguchi, Ichiro; Mabuchi, Naoto; Ohno, Mutsuhito
2014-01-01
Nuclear RNA export pathways in eukaryotes are often linked to the fate of a given RNA. Therefore, the choice of export pathway should be well-controlled to avoid an unfavorable effect on gene expression. Although some RNAs could be exported by more than one pathway, little is known about how the choice is regulated. This issue is highlighted when the human immunodeficiency virus type 1 (HIV-1) Rev protein induces the export of singly spliced and unspliced HIV-1 transcripts. How these RNAs are exported is not well understood because such transcripts should have the possibility of utilizing CRM1-dependent export via Rev or cellular TAP/NXF1-dependent export via the transcription/export (TREX) complex, or both. Here we found that Rev suppressed TAP/NXF1-dependent export of model RNA substrates that recapitulated viral transcripts. In this effect, Rev interacted with the cap-binding complex and inhibited the recruitment of the TREX complex. Thus, Rev controls the identity of the factor occupying the cap-proximal region that determines the RNA export pathway. This ribonucleoprotein remodeling activity of Rev may favor viral gene expression. PMID:24753416
Tian, Xiaolin; Zhu, Mingwei; Li, Long; Wu, Chunlai
2013-01-01
Genetic screens conducted using Drosophila melanogaster (fruit fly) have made numerous milestone discoveries in the advance of biological sciences. However, the use of biochemical screens aimed at extending the knowledge gained from genetic analysis was explored only recently. Here we describe a method to purify the protein complex that associates with any protein of interest from adult fly heads. This method takes advantage of the Drosophila GAL4/UAS system to express a bait protein fused with a Tandem Affinity Purification (TAP) tag in fly neurons in vivo, and then implements two rounds of purification using a TAP procedure similar to the one originally established in yeast1 to purify the interacting protein complex. At the end of this procedure, a mixture of multiple protein complexes is obtained whose molecular identities can be determined by mass spectrometry. Validation of the candidate proteins will benefit from the resource and ease of performing loss-of-function studies in flies. Similar approaches can be applied to other fly tissues. We believe that the combination of genetic manipulations and this proteomic approach in the fly model system holds tremendous potential for tackling fundamental problems in the field of neurobiology and beyond. PMID:24335807
Nuclear translocation of proteins and the effect of phosphatidic acid.
Yao, Hongyan; Wang, Geliang; Wang, Xuemin
2014-01-01
Transport of proteins containing a nuclear localization signal (NLS) into the nucleus is mediated by nuclear transport receptors called importins, typically dimmers of a cargo-binding α-subunit and a β-subunit that mediates translocation through the nuclear pore complexes (NPCs). However, how proteins without canonical NLS move into the nucleus is not well understood. Recent results indicate that phospholipids, such as phosphatidic acid, play important roles in the intracellular translocation of proteins between the nucleus and cytoplasm.
Nuclear translocation of proteins and the effect of phosphatidic acid
Yao, Hongyan; Wang, Geliang; Wang, Xuemin
2014-01-01
Transport of proteins containing a nuclear localization signal (NLS) into the nucleus is mediated by nuclear transport receptors called importins, typically dimmers of a cargo-binding α-subunit and a β-subunit that mediates translocation through the nuclear pore complexes (NPCs). However, how proteins without canonical NLS move into the nucleus is not well understood. Recent results indicate that phospholipids, such as phosphatidic acid, play important roles in the intracellular translocation of proteins between the nucleus and cytoplasm. PMID:25482760
Stengel, Anna; Benz, J Philipp; Buchanan, Bob B; Soll, Jürgen; Bölter, Bettina
2009-11-01
The import of nuclear-encoded preproteins is necessary to maintain chloroplast function. The recognition and transfer of most precursor proteins across the chloroplast envelopes are facilitated by two membrane-inserted protein complexes, the translocons of the chloroplast outer and inner envelope (Toc and Tic complexes, respectively). Several signals have been invoked to regulate the import of preproteins. In our study, we were interested in redox-based import regulation mediated by two signals: regulation based on thiols and on the metabolic NADP+/NADPH ratio. We sought to identify the proteins participating in the regulation of these transport pathways and to characterize the preprotein subgroups whose import is redox-dependent. Our results provide evidence that the formation and reduction of disulfide bridges in the Toc receptors and Toc translocation channel have a strong influence on import yield of all tested preproteins that depend on the Toc complex for translocation. Furthermore, the metabolic NADP+/NADPH ratio influences not only the composition of the Tic complex, but also the import efficiency of most, but not all, preproteins tested. Thus, several Tic subcomplexes appear to participate in the translocation of different preprotein subgroups, and the redox-active components of these complexes likely play a role in regulating transport.
What's Wrong with the Tap? Examining Perceptions of Tap Water and Bottled Water at Purdue University
NASA Astrophysics Data System (ADS)
Saylor, Amber; Prokopy, Linda Stalker; Amberg, Shannon
2011-09-01
The environmental impacts of bottled water prompted us to explore drinking water choices at Purdue University, located in West Lafayette, IN. A random sample of 2,045 Purdue University students, staff, and faculty was invited to participate in an online survey. The survey assessed current behaviors as well as perceived barriers and benefits to drinking tap water versus bottled water. 677 surveys were completed for a response rate of 33.1%. We then conducted qualitative interviews with a purposive sample of university undergraduates ( n = 21) to obtain contextual insights into the survey results and the beliefs of individuals with a variety of drinking water preferences. This study revealed that women drink disproportionately more bottled water then men while undergraduate students drink more than graduate students, staff and faculty. The study also uncovered a widespread belief that recycling eliminates the environmental impacts of bottled water. Important barriers to drinking tap water at Purdue include: perceived risks from tap water and the perceived safety of bottled water, preferring the taste of bottled water, and the convenience of drinking bottled water. The qualitative interviews revealed that drinking water choices can be influenced by several factors—especially whether individuals trust tap water to be clean—but involve varying levels of complexity. The implications of these results for social marketing strategies to promote tap water are discussed.
Saylor, Amber; Prokopy, Linda Stalker; Amberg, Shannon
2011-09-01
The environmental impacts of bottled water prompted us to explore drinking water choices at Purdue University, located in West Lafayette, IN. A random sample of 2,045 Purdue University students, staff, and faculty was invited to participate in an online survey. The survey assessed current behaviors as well as perceived barriers and benefits to drinking tap water versus bottled water. 677 surveys were completed for a response rate of 33.1%. We then conducted qualitative interviews with a purposive sample of university undergraduates (n = 21) to obtain contextual insights into the survey results and the beliefs of individuals with a variety of drinking water preferences. This study revealed that women drink disproportionately more bottled water then men while undergraduate students drink more than graduate students, staff and faculty. The study also uncovered a widespread belief that recycling eliminates the environmental impacts of bottled water. Important barriers to drinking tap water at Purdue include: perceived risks from tap water and the perceived safety of bottled water, preferring the taste of bottled water, and the convenience of drinking bottled water. The qualitative interviews revealed that drinking water choices can be influenced by several factors-especially whether individuals trust tap water to be clean-but involve varying levels of complexity. The implications of these results for social marketing strategies to promote tap water are discussed.
Richebourg, Steven; Eclache, Virginie; Perot, Christine; Portnoi, Marie-France; Van den Akker, Jacqueline; Terré, Christine; Maareck, Odile; Soenen, Valérie; Viguié, Franck; Laï, Jean-Luc; Andrieux, Joris; Corm, Sélim; Roche-Lestienne, Catherine
2008-04-15
Many published studies have indicated that various mechanisms could be involved in the genesis of variant chronic myelogeneous leukemia (CML) translocations. These are mainly one-step or two-step mechanisms, associated or not with deletions adjacent to the translocation junction on der(9) or der(22) chromosomes (or both). Based on the mechanism of genesis, it has been suggested that the complexity may affect the occurrence of ABL1 and BCR deletions (either or both), or may be associated with the CML disease course, and thus could determine the response to imatinib therapy. Through a retrospective molecular cytogenetic study of 41 CML patients with variant Philadelphia chromosome (Ph), we explored the genesis of these variant rearrangements and analyzed the correlation with deletion status and imatinib efficiency. Our results confirmed that the one-step mechanism is the most frequent, evidenced in 30 of 41 patients (73%); 3 patients demonstrated other more complex multistep events and 8 patients (19.5%) harbored ABL1 or BCR deletions that are not significantly associated with the complexity of translocation genesis. We also found no association between one-step, two-step, or multistep mechanisms and the response to imatinib therapy.
McKibbin, Craig; Mares, Alina; Piacenti, Michela; Williams, Helen; Roboti, Peristera; Puumalainen, Marjo; Callan, Anna C.; Lesiak-Mieczkowska, Karolina; Linder, Stig; Harant, Hanna; High, Stephen; Flitsch, Sabine L.; Whitehead, Roger C.; Swanton, Eileithyia
2011-01-01
Selective small-molecule inhibitors represent powerful tools for the dissection of complex biological processes. ESI (eeyarestatin I) is a novel modulator of ER (endoplasmic reticulum) function. In the present study, we show that in addition to acutely inhibiting ERAD (ER-associated degradation), ESI causes production of mislocalized polypeptides that are ubiquitinated and degraded. Unexpectedly, our results suggest that these non-translocated polypeptides promote activation of the UPR (unfolded protein response), and indeed we can recapitulate UPR activation with an alternative and quite distinct inhibitor of ER translocation. These results suggest that the accumulation of non-translocated proteins in the cytosol may represent a novel mechanism that contributes to UPR activation. PMID:22145777
Activation of Elongation Factor G by Phosphate Analogues
Salsi, Enea; Farah, Elie
2016-01-01
EF-G is a universally conserved translational GTPase that promotes the translocation of tRNA and mRNA through the ribosome. EF-G binds to the ribosome in a GTP-bound form and subsequently catalyzes GTP hydrolysis. The contribution of the ribosome-stimulated GTP hydrolysis by EF-G to tRNA/mRNA translocation remains debated. Here, we show that while EF-G•GDP does not stably bind to the ribosome and induce translocation, EFG• GDP in complex with phosphate group analogues BeF3− and AlF4− promotes the translocation of tRNA and mRNA. Furthermore, the rates of mRNA translocation induced by EF-G in the presence of GTP and a non-hydrolysable analogue of GTP, GDP•BeF3−are similar. Our results are consistent with the model suggesting that GTP hydrolysis is not directly coupled to mRNA/tRNA translocation. Hence, GTP binding is required to induce the activated, translocation-competent conformation of EF-G while GTP hydrolysis triggers EF-G release from the ribosome. PMID:27063503
Hashimi, Hassan; Zíková, Alena; Panigrahi, Aswini K.; Stuart, Kenneth D.; Lukeš, Julius
2008-01-01
The uridine insertion/deletion RNA editing of kinetoplastid mitochondrial transcripts is performed by complex machinery involving a number of proteins and multiple protein complexes. Here we describe the effect of silencing of TbRGG1 gene by RNA interference on RNA editing in procyclic stage of Trypanosoma brucei. TbRGG1 is an essential protein for cell growth, the absence of which results in an overall decline of edited mRNAs, while the levels of never-edited RNAs remain unaltered. Repression of TbRGG1 expression has no effect on the 20S editosome and MRP1/2 complex. TAP-tag purification of TbRGG1 coisolated a novel multiprotein complex, and its association was further verified by TAP-tag analyses of two other components of the complex. TbRGG1 interaction with this complex appears to be mediated by RNA. Our results suggest that the TbRGG1 protein functions in stabilizing edited RNAs or editing efficiency and that the associated novel complex may have a role in mitochondrial RNA metabolism. We provisionally name it putative mitochondrial RNA-binding complex 1 (put-MRB complex 1). PMID:18369185
Stable isotope ratios of tap water in the contiguous United States
NASA Astrophysics Data System (ADS)
Bowen, Gabriel J.; Ehleringer, James R.; Chesson, Lesley A.; Stange, Erik; Cerling, Thure E.
2007-03-01
Understanding links between water consumers and climatological (precipitation) sources is essential for developing strategies to ensure the long-term sustainability of water supplies. In pursing this understanding a need exists for tools to study and monitor complex human-hydrological systems that involve high levels of spatial connectivity and supply problems that are regional, rather than local, in nature. Here we report the first national-level survey of stable isotope ratios in tap water, including spatially and temporally explicit samples from a large number of cities and towns across the contiguous United States. We show that intra-annual ranges of tap water isotope ratios are relatively small (e.g., <10‰ for δ2H) at most sites. In contrast, spatial variation in tap water isotope ratios is very large, spanning ranges of 163‰ for δ2H and 23.6‰ for δ18O. The spatial distribution of tap water isotope ratios at the national level is similar to that of stable isotope ratios of precipitation. At the regional level, however, pervasive differences between tap water and precipitation isotope ratios can be attributed to hydrological factors in the water source to consumer chain. These patterns highlight the potential for monitoring of tap water isotope ratios to contribute to the study of regional water supply stability and provide warning signals for impending water resource changes. We present the first published maps of predicted tap water isotope ratios for the contiguous United States, which will be useful in guiding future research on human-hydrological systems and as a tool for applied forensics and traceability studies.
Calton, Christine M; Bronnimann, Matthew P; Manson, Ariana R; Li, Shuaizhi; Chapman, Janice A; Suarez-Berumen, Marcela; Williamson, Tatum R; Molugu, Sudheer K; Bernal, Ricardo A; Campos, Samuel K
2017-05-01
The human papillomavirus type 16 (HPV16) L2 protein acts as a chaperone to ensure that the viral genome (vDNA) traffics from endosomes to the trans-Golgi network (TGN) and eventually the nucleus, where HPV replication occurs. En route to the nucleus, the L2/vDNA complex must translocate across limiting intracellular membranes. The details of this critical process remain poorly characterized. We have developed a system based on subcellular compartmentalization of the enzyme BirA and its cognate substrate to detect membrane translocation of L2-BirA from incoming virions. We find that L2 translocation requires transport to the TGN and is strictly dependent on entry into mitosis, coinciding with mitotic entry in synchronized cells. Cell cycle arrest causes retention of L2/vDNA at the TGN; only release and progression past G2/M enables translocation across the limiting membrane and subsequent infection. Microscopy of EdU-labeled vDNA reveals a rapid and dramatic shift in vDNA localization during early mitosis. At late G2/early prophase vDNA egresses from the TGN to a pericentriolar location, accumulating there through prometaphase where it begins to associate with condensed chromosomes. By metaphase and throughout anaphase the vDNA is seen bound to the mitotic chromosomes, ensuring distribution into both daughter nuclei. Mutations in a newly defined chromatin binding region of L2 potently blocked translocation, suggesting that translocation is dependent on chromatin binding during prometaphase. This represents the first time a virus has been shown to functionally couple the penetration of limiting membranes to cellular mitosis, explaining in part the tropism of HPV for mitotic basal keratinocytes.
Forty years of temporal analysis of products
Morgan, K.; Maguire, N.; Fushimi, R.; ...
2017-05-16
Detailed understanding of mechanisms and reaction kinetics are required in order to develop and optimize catalysts and catalytic processes. While steady state investigations are known to give a global view of the catalytic system, transient studies are invaluable since they can provide more detailed insight into elementary steps. For almost thirty years temporal analysis of products (TAP) has been successfully utilized for transient studies of gas phase heterogeneous catalysis, and there have been a number of advances in instrumentation and numerical modeling methods in that time. In the current work, the range of available TAP apparatus will be discussed whilemore » detailed explanations of the types of TAP experiment, the information that can be determined from these experiments and the analysis methods are also included. TAP is a complex methodology and is often viewed as a niche specialty. Here, part of the intention of this work is to highlight the significant contributions TAP can make to catalytic research, while also discussing the issues which will make TAP more relevant and approachable to a wider segment of the catalytic research community. With this in mind, an outlook is also disclosed for the technique in terms of what is needed to revitalize the field and make it more applicable to the recent advances in catalyst characterization (e.g. operando modes).« less
Forty years of temporal analysis of products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, K.; Maguire, N.; Fushimi, R.
Detailed understanding of mechanisms and reaction kinetics are required in order to develop and optimize catalysts and catalytic processes. While steady state investigations are known to give a global view of the catalytic system, transient studies are invaluable since they can provide more detailed insight into elementary steps. For almost thirty years temporal analysis of products (TAP) has been successfully utilized for transient studies of gas phase heterogeneous catalysis, and there have been a number of advances in instrumentation and numerical modeling methods in that time. In the current work, the range of available TAP apparatus will be discussed whilemore » detailed explanations of the types of TAP experiment, the information that can be determined from these experiments and the analysis methods are also included. TAP is a complex methodology and is often viewed as a niche specialty. Here, part of the intention of this work is to highlight the significant contributions TAP can make to catalytic research, while also discussing the issues which will make TAP more relevant and approachable to a wider segment of the catalytic research community. With this in mind, an outlook is also disclosed for the technique in terms of what is needed to revitalize the field and make it more applicable to the recent advances in catalyst characterization (e.g. operando modes).« less
Chi, Feng; Bo, Tao; Wu, Chun-Hua; Jong, Ambrose; Huang, Sheng-He
2012-01-01
IbeA-induced NF-κB signaling through its primary receptor vimentin as well as its co-receptor PSF is required for meningitic E. coli K1 penetration and leukocyte transmigration across the blood-brain barrier (BBB), which are the hallmarks of bacterial meningitis. However, it is unknown how vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB, which are required for bacteria-mediated pathogenicities. IbeA-induced E. coli K1 invasion, polymorphonuclear leukocyte (PMN) transmigration and IKK/NF-κB activation are blocked by Caffeic acid phenethyl ester (CAPE), an inhibitor of NF-κB. IKKα/β phosphorylation is blocked by ERK inhibitors. Co-immunoprecipitation analysis shows that vimentin forms a complex with IκB, NF-κB and tubulins in the resting cells. A dissociation of this complex and a simultaneous association of PSF with NF-κB could be induced by IbeA in a time-dependent manner. The head domain of vimentin is required for the complex formation. Two cytoskeletal components, vimentin filaments and microtubules, contribute to the regulation of NF-κB. SiRNA-mediated knockdown studies demonstrate that IKKα/β phosphorylation is completely abolished in HBMECs lacking vimentin and PSF. Phosphorylation of ERK and nuclear translocation of NF-κB are entirely dependent on PSF. These findings suggest that vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB activation. PSF is essential for translocation of NF-κB and ERK to the nucleus. These findings reveal previously unappreciated facets of the IbeA-binding proteins. Cooperative contributions of vimentin and PSF to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB may represent a new paradigm in pathogen-induced signal transduction and lead to the development of novel strategies for the prevention and treatment of bacterial meningitis.
Tandem Affinity Purification of Protein Complexes from Eukaryotic Cells.
Ma, Zheng; Fung, Victor; D'Orso, Iván
2017-01-26
The purification of active protein-protein and protein-nucleic acid complexes is crucial for the characterization of enzymatic activities and de novo identification of novel subunits and post-translational modifications. Bacterial systems allow for the expression and purification of a wide variety of single polypeptides and protein complexes. However, this system does not enable the purification of protein subunits that contain post-translational modifications (e.g., phosphorylation and acetylation), and the identification of novel regulatory subunits that are only present/expressed in the eukaryotic system. Here, we provide a detailed description of a novel, robust, and efficient tandem affinity purification (TAP) method using STREP- and FLAG-tagged proteins that facilitates the purification of protein complexes with transiently or stably expressed epitope-tagged proteins from eukaryotic cells. This protocol can be applied to characterize protein complex functionality, to discover post-translational modifications on complex subunits, and to identify novel regulatory complex components by mass spectrometry. Notably, this TAP method can be applied to study protein complexes formed by eukaryotic or pathogenic (viral and bacterial) components, thus yielding a wide array of downstream experimental opportunities. We propose that researchers working with protein complexes could utilize this approach in many different ways.
A comparison of damage profiling of automated tap testers on aircraft CFRP panel
NASA Astrophysics Data System (ADS)
Mohd Aris, K. D.; Shariff, M. F.; Abd Latif, B. R.; Mohd Haris, M. Y.; Baidzawi, I. J.
2017-12-01
The use of composite materials nevertheless is getting more prominent. The combination of reinforcing fibers and matrices will produce the desired strength orientation, tailorability and not to mention the complex shape that is hard to form on metallic structure. The weight percentage of composite materials used in aerospace, civil, marine etc. has increased tremendously. Since composite are stacked together, the possibility of delamination and/disbond defects are highly present either in the monolithic or sandwich structures. Tap test is the cheapest form of nondestructive test to identify the presence of this damage. However, its inconsistency and wide area of coverage can reduce its effectivity since it is carried out manually. The indigenous automated tap tester known as KETOK was used to detect the damage due to trapped voids and air pockets. The mechanism of detection is through controlling the tapping on the surface automatically at a constant rate. Another manual tap tester RD-3 from Wichitech Industries Inc. was used as reference. The acquired data was translated into damage profiling and both results were compared. The results have shown that the indigenous automated tester can profile the damage better when compared with the existing tap tester. As a conclusion, the indigenous automated tap tester has a potential to be used as an IN-SITU damage detection tool to detect delamination and disbond damage on composite panel. However, more conclusive tests need to be done in order to make the unit available to conventional users.
Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harada, Y.; Li, H.; Li, Hua
2009-04-28
Oligosaccharyltransferase (OT) transfers high mannose-type glycans to the nascent polypeptides that are translated by the membrane-bound ribosome and translocated into the lumen of the endoplasmic reticulum through the Sec61 translocon complex. In this article, we show that purified ribosomes and OT can form a binary complex with a stoichiometry of {approx}1 to 1 in the presence of detergent. We present evidence that OT may bind to the large ribosomal subunit near the site where nascent polypeptides exit. We further show that OT and the Sec61 complex can simultaneously bind to ribosomes in vitro. Based on existing data and our findings,more » we propose that cotranslational translocation and N-glycosylation of nascent polypeptides are mediated by a ternary supramolecular complex consisting of OT, the Sec61 complex, and ribosomes.« less
Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site
Harada, Yoichiro; Li, Hua; Li, Huilin; Lennarz, William J.
2009-01-01
Oligosaccharyltransferase (OT) transfers high mannose-type glycans to the nascent polypeptides that are translated by the membrane-bound ribosome and translocated into the lumen of the endoplasmic reticulum through the Sec61 translocon complex. In this article, we show that purified ribosomes and OT can form a binary complex with a stoichiometry of ≈1 to 1 in the presence of detergent. We present evidence that OT may bind to the large ribosomal subunit near the site where nascent polypeptides exit. We further show that OT and the Sec61 complex can simultaneously bind to ribosomes in vitro. Based on existing data and our findings, we propose that cotranslational translocation and N-glycosylation of nascent polypeptides are mediated by a ternary supramolecular complex consisting of OT, the Sec61 complex, and ribosomes. PMID:19365066
Wide-Band Monolithic Acoustoelectric Memory Correlators.
1982-11-01
piezoelectric and non- earlier analysis of thin- oxide varactors . The new analysis ex- conducting. Tapped structures which satisfy this criterion are plains...for tapped LiNbO3/metal- oxide - important realization. The logical consequence is that only silicon [26] structures is, in fact, not applicable here. It...Clarke, "The GaAs SAW depletion layer of’ the diode array. A more complex structure, diode storage correlalor," in 1980 Ultrasonics Synp. Proc., pp a GaAs
Ensslen, Silke; Marquardt, Yvonne; Czaja, Katharina; Joussen, Sylvia; Beer, Daniel; Abele, Rupert; Plewnia, Gabriele; Tampé, Robert; Merk, Hans F.; Hermanns, Heike M.; Baron, Jens M.
2016-01-01
Introduction Interferon alpha (IFNα) is routinely used in the clinical practice for adjuvant systemic melanoma therapy. Understanding the molecular mechanism of IFNα effects and prediction of response in the IFNα therapy regime allows initiation and continuation of IFNα treatment for responder and exclusion of non-responder to avoid therapy inefficacy and side-effects. The transporter protein associated with antigen processing-1 (TAP1) is part of the MHC class I peptide-loading complex, and important for antigen presentation in tumor and antigen presenting cells. In the context of personalized medicine, we address this potential biomarker TAP1 as a target of IFNα signalling. Results We could show that IFNα upregulates TAP1 expression in peripheral blood mononuclear cells (PBMCs) of patients with malignant melanoma receiving adjuvant high-dose immunotherapy. IFNα also induced expression of TAP1 in mouse blood and tumor tissue and suppressed the formation of melanoma metastasis in an in vivo B16 tumor model. Besides its expression, TAP binding affinity and transport activity is induced by IFNα in human monocytic THP1 cells. Furthermore, our data revealed that IFNα clearly activates phosphorylation of STAT1 and STAT3 in THP1 and A375 melanoma cells. Inhibition of Janus kinases abrogates the IFNα-induced TAP1 expression. These results suggest that the JAK/STAT pathway is a crucial mediator for TAP1 expression elicited by IFNα treatment. Conclusion We suppose that silencing of TAP1 expression provides tumor cells with a mechanism to escape cytotoxic T-lymphocyte recognition. The observed benefit of IFNα treatment could be mediated by the shown dual effect of TAP1 upregulation in antigen presenting cells on the one hand, and of TAP1 upregulation in ‘silent’ metastatic melanoma cells on the other hand. In conclusion, this work contributes to a better understanding of the mode of action of IFNα which is essential to identify markers to predict, assess and monitor therapeutic response of IFNα treatment in the future. PMID:26735690
Levy, Morris; Levin, Donald A.
1975-01-01
Genic heterozygosity and variation were studied in the permanent translocation heterozygotes Oenothera biennis I, Oe. biennis II, Oe. biennis III, Oe. strigosa, Oe. parviflora I, Oe. parviflora II, and in the related bivalent formers Oe. argillicola and Oe. hookeri. From variation at 20 enzyme loci, we find that translocation heterozygosity for the entire chromosome complex is accompanied by only moderate levels of genic heterozygosity: 2.8% in Oe. strigosa, 9.5% in Oe. biennis and 14.9% in Oe. parviflora. Inbred garden strains of Oe. argillicola exhibited 8% heterozygosity; neither garden nor wild strains of Oe. hookeri displayed heterozygosity and only a single allozyme genotype was found. The mean number of alleles per locus is only 1.30 in Oe. strigosa, 1.40 in Oe. biennis, and 1.55 in Oe. parviflora, compared to 1.40 in Oe. argillicola. Clearly, the ability to accumulate and/or retain heterozygosity and variability has not been accompanied by extraordinary levels of either. Clinal variation is evident at some loci in each ring-former. A given translocation complex may vary geographically in its allozymic constitution. From gene frequencies, Oe. biennis I, II, and III, Oe. strigosa and Oe. hookeri are judged to be very closely related, whereas Oe. argillicola seems quite remote; Oe. parviflora is intermediate to the two phylads. Gene frequencies also suggest that Oe. argillicola diverged from the Euoenothera progenitor about 1,000,000 years ago, whereas most of the remaining evolution in the complex has occurred within the last 150,000 years. PMID:17248680
Walker, J T; Jhutty, A; Parks, S; Willis, C; Copley, V; Turton, J F; Hoffman, P N; Bennett, A M
2014-01-01
In December 2011 and early 2012 four neonates died from Pseudomonas aeruginosa bacteraemia in hospitals in Northern Ireland. To assess whether P. aeruginosa was associated with the neonatal unit taps and whether waterborne isolates were consistent with patient isolates. Thirty taps and eight flow straighteners from the relevant hospitals were categorized and dismantled into 494 components and assessed for aerobic colony and P. aeruginosa counts using non-selective and selective agars. P. aeruginosa isolates were typed by variable number tandem repeat (VNTR) analysis. Selected tap components were subjected to epifluorescence and scanning electron microscopy to visualize biofilm. The highest P. aeruginosa counts were from the flow straighteners, metal support collars and the tap bodies surrounding these two components. Complex flow straighteners had a significantly higher P. aeruginosa count than other types of flow straighteners (P < 0.05). Highest aerobic colony counts were associated with integrated mixers and solenoids (P < 0.05), but there was not a strong correlation (r = 0.33) between the aerobic colony counts and P. aeruginosa counts. Representative P. aeruginosa tap isolates from two hospital neonatal units had VNTR profiles consistent with strains from the tap water and infected neonates. P. aeruginosa was predominantly found in biofilms in flow straighteners and associated components in the tap outlets and was a possible source of the infections observed. Healthcare providers should be aware that water outlets can be a source of P. aeruginosa contamination and should take steps to reduce such contamination, monitor it and have strategies to minimize risk to susceptible patients. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Translocation pathway of protein substrates in ClpAP protease
Ishikawa, Takashi; Beuron, Fabienne; Kessel, Martin; Wickner, Sue; Maurizi, Michael R.; Steven, Alasdair C.
2001-01-01
Intracellular protein degradation, which must be tightly controlled to protect normal proteins, is carried out by ATP-dependent proteases. These multicomponent enzymes have chaperone-like ATPases that recognize and unfold protein substrates and deliver them to the proteinase components for digestion. In ClpAP, hexameric rings of the ClpA ATPase stack axially on either face of the ClpP proteinase, which consists of two apposed heptameric rings. We have used cryoelectron microscopy to characterize interactions of ClpAP with the model substrate, bacteriophage P1 protein, RepA. In complexes stabilized by ATPγS, which bind but do not process substrate, RepA dimers are seen at near-axial sites on the distal surface of ClpA. On ATP addition, RepA is translocated through ≈150 Å into the digestion chamber inside ClpP. Little change is observed in ClpAP, implying that translocation proceeds without major reorganization of the ClpA hexamer. When translocation is observed in complexes containing a ClpP mutant whose digestion chamber is already occupied by unprocessed propeptides, a small increase in density is observed within ClpP, and RepA-associated density is also seen at other axial sites. These sites appear to represent intermediate points on the translocation pathway, at which segments of unfolded RepA subunits transiently accumulate en route to the digestion chamber. PMID:11287666
Cukras, Anthony R; Southworth, Daniel R; Brunelle, Julie L; Culver, Gloria M; Green, Rachel
2003-08-01
Translocation of the mRNA:tRNA complex through the ribosome is promoted by elongation factor G (EF-G) during the translation cycle. Previous studies established that modification of ribosomal proteins with thiol-specific reagents promotes this event in the absence of EF-G. Here we identify two small subunit interface proteins S12 and S13 that are essential for maintenance of a pretranslocation state. Omission of these proteins using in vitro reconstitution procedures yields ribosomal particles that translate in the absence of enzymatic factors. Conversely, replacement of cysteine residues in these two proteins yields ribosomal particles that are refractive to stimulation with thiol-modifying reagents. These data support a model where S12 and S13 function as control elements for the more ancient rRNA- and tRNA-driven movements of translocation.
Structural basis for the unfolding of anthrax lethal factor by protective antigen oligomers
Feld, Geoffrey K.; Thoren, Katie L.; Kintzer, Alexander F.; Sterling, Harry J.; Tang, Iok I.; Greenberg, Shoshana G.; Williams, Evan R.; Krantz, Bryan A.
2011-01-01
The protein transporter, anthrax lethal toxin, is comprised of protective antigen (PA), a transmembrane translocase, and lethal factor (LF), a cytotoxic enzyme. Following assembly into holotoxin complexes, PA forms an oligomeric channel that unfolds LF and translocates it into the host cell. We report the crystal structure of the core of a lethal toxin complex to 3.1-Å resolution; the structure contains a PA octamer bound to four LF PA-binding domains (LFN). The first α helix and β strand of each LFN unfold and dock into a deep amphipathic cleft on the surface of the PA octamer, which we call the α clamp. The α clamp possesses nonspecific polypeptide binding activity and is functionally relevant to efficient holotoxin assembly, PA octamer formation, and LF unfolding and translocation. This structure provides insight on the mechanism of translocation-coupled protein unfolding. PMID:21037566
Mahendran, Kozhinjampara R; Lamichhane, Usha; Romero-Ruiz, Mercedes; Nussberger, Stephan; Winterhalter, Mathias
2013-01-03
The TOM protein complex facilitates the transfer of nearly all mitochondrial preproteins across outer mitochondrial membranes. Here we characterized the effect of temperature on facilitated translocation of a mitochondrial presequence peptide pF1β. Ion current fluctuations analysis through single TOM channels revealed thermodynamic and kinetic parameters of substrate binding and allowed determining the energy profile of peptide translocation. The activation energy for the on-rate and off-rate of the presequence peptide into the TOM complex was symmetric with respect to the electric field and estimated to be about 15 and 22 kT per peptide. These values are above that expected for free diffusion of ions in water (6 kT) and reflect the stronger interaction in the channel. Both values are in the range for typical enzyme kinetics and suggest one process without involving large conformational changes within the channel protein.
Martínez, Jimena H; Fuentes, Federico; Vanasco, Virginia; Alvarez, Silvia; Alaimo, Agustina; Cassina, Adriana; Coluccio Leskow, Federico; Velazquez, Francisco
2018-08-01
α-synuclein is involved in both familial and sporadic Parkinson's disease. Although its interaction with mitochondria has been well documented, several aspects remains unknown or under debate such as the specific sub-mitochondrial localization or the dynamics of the interaction. It has been suggested that α-synuclein could only interact with ER-associated mitochondria. The vast use of model systems and experimental conditions makes difficult to compare results and extract definitive conclusions. Here we tackle this by analyzing, in a simplified system, the interaction between purified α-synuclein and isolated rat brain mitochondria. This work shows that wild type α-synuclein interacts with isolated mitochondria and translocates into the mitochondrial matrix. This interaction and the irreversibility of α-synuclein translocation depend on incubation time and α-synuclein concentration. FRET experiments show that α-synuclein localizes close to components of the TOM complex suggesting a passive transport of α-synuclein through the outer membrane. In addition, α-synuclein binding alters mitochondrial function at the level of Complex I leading to a decrease in ATP synthesis and an increase of ROS production. Copyright © 2018. Published by Elsevier Inc.
Ozaki, Toshinori; Nakamura, Mizuyo; Ogata, Takehiro; Sang, Meijie; Yoda, Hiroyuki; Hiraoka, Kiriko; Sang, Meixiang; Shimozato, Osamu
2016-11-01
Recently, we have described that siRNA-mediated silencing of runt-related transcription factor 2 (RUNX2) improves anti-cancer drug gemcitabine (GEM) sensitivity of p53-deficient human pancreatic cancer AsPC-1 cells through the augmentation of p53 family TAp63-dependent cell death pathway. In this manuscript, we have extended our study to p53-mutated human pancreatic cancer Panc-1 cells. According to our present results, knockdown of mutant p53 alone had a marginal effect on GEM-mediated cell death of Panc-1 cells. We then sought to deplete RUNX2 using siRNA in Panc-1 cells and examined its effect on GEM sensitivity. Under our experimental conditions, RUNX2 knockdown caused a significant enhancement of GEM sensitivity of Panc-1 cells. Notably, GEM-mediated induction of TAp63 but not of TAp73 was further stimulated in RUNX2-depleted Panc-1 cells, indicating that, like AsPC-1 cells, TAp63 might play a pivotal role in the regulation of GEM sensitivity of Panc-1 cells. Consistent with this notion, forced expression of TAp63α in Panc-1 cells promoted cell cycle arrest and/or cell death, and massively increased luciferase activities driven by TAp63-target gene promoters such as p21WAF1 and NOXA. In addition, immunoprecipitation experiments indicated that RUNX2 forms a complex with TAp63 in Panc-1 cells. Taken together, our current observations strongly suggest that depletion of RUNX2 enhances the cytotoxic effect of GEM on p53-mutated Panc-1 cells through the stimulation of TAp63-dependent cell death pathway even in the presence of a large amount of pro-oncogenic mutant p53, and might provide an attractive strategy to treat pancreatic cancer patients with p53 mutations.
Ozaki, Toshinori; Nakamura, Mizuyo; Ogata, Takehiro; Sang, Meijie; Yoda, Hiroyuki; Hiraoka, Kiriko; Sang, Meixiang; Shimozato, Osamu
2016-01-01
Recently, we have described that siRNA-mediated silencing of runt-related transcription factor 2 (RUNX2) improves anti-cancer drug gemcitabine (GEM) sensitivity of p53-deficient human pancreatic cancer AsPC-1 cells through the augmentation of p53 family TAp63-dependent cell death pathway. In this manuscript, we have extended our study to p53-mutated human pancreatic cancer Panc-1 cells. According to our present results, knockdown of mutant p53 alone had a marginal effect on GEM-mediated cell death of Panc-1 cells. We then sought to deplete RUNX2 using siRNA in Panc-1 cells and examined its effect on GEM sensitivity. Under our experimental conditions, RUNX2 knockdown caused a significant enhancement of GEM sensitivity of Panc-1 cells. Notably, GEM-mediated induction of TAp63 but not of TAp73 was further stimulated in RUNX2-depleted Panc-1 cells, indicating that, like AsPC-1 cells, TAp63 might play a pivotal role in the regulation of GEM sensitivity of Panc-1 cells. Consistent with this notion, forced expression of TAp63α in Panc-1 cells promoted cell cycle arrest and/or cell death, and massively increased luciferase activities driven by TAp63-target gene promoters such as p21WAF1 and NOXA. In addition, immunoprecipitation experiments indicated that RUNX2 forms a complex with TAp63 in Panc-1 cells. Taken together, our current observations strongly suggest that depletion of RUNX2 enhances the cytotoxic effect of GEM on p53-mutated Panc-1 cells through the stimulation of TAp63-dependent cell death pathway even in the presence of a large amount of pro-oncogenic mutant p53, and might provide an attractive strategy to treat pancreatic cancer patients with p53 mutations. PMID:27713122
du Plessis, Lindie; Jacobson, Sandra W; Molteno, Christopher D; Robertson, Frances C; Peterson, Bradley S; Jacobson, Joseph L; Meintjes, Ernesta M
2015-01-01
Classical eyeblink conditioning (EBC), an elemental form of learning, is among the most sensitive indicators of fetal alcohol spectrum disorders. The cerebellum plays a key role in maintaining timed movements with millisecond accuracy required for EBC. Functional MRI (fMRI) was used to identify cerebellar regions that mediate timing in healthy controls and the degree to which these areas are also recruited in children with prenatal alcohol exposure. fMRI data were acquired during an auditory rhythmic/non-rhythmic finger tapping task. We present results for 17 children with fetal alcohol syndrome (FAS) or partial FAS, 17 heavily exposed (HE) nonsyndromal children and 16 non- or minimally exposed controls. Controls showed greater cerebellar blood oxygen level dependent (BOLD) activation in right crus I, vermis IV-VI, and right lobule VI during rhythmic than non-rhythmic finger tapping. The alcohol-exposed children showed smaller activation increases during rhythmic tapping in right crus I than the control children and the most severely affected children with either FAS or PFAS showed smaller increases in vermis IV-V. Higher levels of maternal alcohol intake per occasion during pregnancy were associated with reduced activation increases during rhythmic tapping in all four regions associated with rhythmic tapping in controls. The four cerebellar areas activated by the controls more during rhythmic than non-rhythmic tapping have been implicated in the production of timed responses in several previous studies. These data provide evidence linking binge-like drinking during pregnancy to poorer function in cerebellar regions involved in timing and somatosensory processing needed for complex tasks requiring precise timing.
Assembly of the MHC I peptide-loading complex determined by a conserved ionic lock-switch
Blees, Andreas; Reichel, Katrin; Trowitzsch, Simon; Fisette, Olivier; Bock, Christoph; Abele, Rupert; Hummer, Gerhard; Schäfer, Lars V.; Tampé, Robert
2015-01-01
Salt bridges in lipid bilayers play a decisive role in the dynamic assembly and downstream signaling of the natural killer and T-cell receptors. Here, we describe the identification of an inter-subunit salt bridge in the membrane within yet another key component of the immune system, the peptide-loading complex (PLC). The PLC regulates cell surface presentation of self-antigens and antigenic peptides via molecules of the major histocompatibility complex class I. We demonstrate that a single salt bridge in the membrane between the transporter associated with antigen processing TAP and the MHC I-specific chaperone tapasin is essential for the assembly of the PLC and for efficient MHC I antigen presentation. Molecular modeling and all-atom molecular dynamics simulations suggest an ionic lock-switch mechanism for the binding of TAP to tapasin, in which an unfavorable uncompensated charge in the ER-membrane is prevented through complex formation. Our findings not only deepen the understanding of the interaction network within the PLC, but also provide evidence for a general interaction principle of dynamic multiprotein membrane complexes in immunity. PMID:26611325
Pyruvate dehydrogenase complex (PDC) export from the mitochondrial matrix.
Ng, Fanny; Tang, Bor Luen
2014-01-01
Studies on mitochondria protein import had revealed in detail molecular mechanisms of how peptides and proteins could be selectively targeted and translocated across membrane bound organelles. The opposite process of mitochondrial export, while known to occur in various aspects of cellular physiology and pathology, is less well understood. Two very recent reports have indicated that a large mitochondrial matrix protein complex, the pyruvate dehydrogenase complex (PDC) (or its component subunits), could be exported to the lysosomes and the nucleus, respectively. In the case of the latter, evidence was presented to suggest that the entire complex of 8-10 MDa could translocate in its entirety from the mitochondrial matrix to the nucleus upon mitogenic or stress stimuli. We discuss these findings in perspective to what is currently known about the processes of transport in and out of the mitochondrion.
Detection and characterization of protein interactions in vivo by a simple live-cell imaging method.
Gallego, Oriol; Specht, Tanja; Brach, Thorsten; Kumar, Arun; Gavin, Anne-Claude; Kaksonen, Marko
2013-01-01
Over the last decades there has been an explosion of new methodologies to study protein complexes. However, most of the approaches currently used are based on in vitro assays (e.g. nuclear magnetic resonance, X-ray, electron microscopy, isothermal titration calorimetry etc). The accurate measurement of parameters that define protein complexes in a physiological context has been largely limited due to technical constrains. Here, we present PICT (Protein interactions from Imaging of Complexes after Translocation), a new method that provides a simple fluorescence microscopy readout for the study of protein complexes in living cells. We take advantage of the inducible dimerization of FK506-binding protein (FKBP) and FKBP-rapamycin binding (FRB) domain to translocate protein assemblies to membrane associated anchoring platforms in yeast. In this assay, GFP-tagged prey proteins interacting with the FRB-tagged bait will co-translocate to the FKBP-tagged anchor sites upon addition of rapamycin. The interactions are thus encoded into localization changes and can be detected by fluorescence live-cell imaging under different physiological conditions or upon perturbations. PICT can be automated for high-throughput studies and can be used to quantify dissociation rates of protein complexes in vivo. In this work we have used PICT to analyze protein-protein interactions from three biological pathways in the yeast Saccharomyces cerevisiae: Mitogen-activated protein kinase cascade (Ste5-Ste11-Ste50), exocytosis (exocyst complex) and endocytosis (Ede1-Syp1).
Hainan, Lan; Huilin, Liu; Khan, Mahamad; Xin, Zheng; YuJiang, Yang; Hui, Zhang; Naiquan, Yao
2018-06-08
Traditional views suggest that growth hormone and the growth hormone receptor (GH/GHR complex) exert their functions only on the plasma membrane. This paradigm, however, has been challenged by recent new findings that the GH/GHR complex could translocate into cell nuclei where they could still exhibit important physiological functions. We also reported the nuclear localization of porcine GH/GHR and their potential functions in porcine hepatocytes. However, the basic path of pGH/GHR's nuclear translocation remains unclear. Combining previous research results and our current findings, we proposed two basic routes of pGH/GHR's nuclear transportation as follows: 1) after pGH binding to GHR, pGH/GHR enters into the cytoplasm though clathrin- or caveolin-mediated endocytosis, then the pGH/GHR complex enters into early endosomes (Rab5-positive), and the endosome carries the GH/GHR complex to the endoplasmic reticulum (ER). After endosome docking on the ER, the endosome starts fission, and the pGH/GHR complex enters into the ER lumen. Then the pGH/GHR complex transports into the cytoplasm, possibly by the ERAD pathway. Subsequently, the pGH/GHR complex interacts with IMPα/β, which, in turn, mediates GH/GHR nuclear localization; 2) pGH binds with the GHR on the cell membrane and, subsequently, pGH/GHR internalizes into the cell and enters into the endosome (this endosome may belong to a class of endosomes called envelope-associated endosomes (NAE)). Then, the endosome carries the pGH/GHR to the nuclear membrane. After docking on the nuclear membrane, the pGH/GHR complex fuses with the nuclear membrane and then enters into the cell nucleus. Copyright © 2018 Elsevier Inc. All rights reserved.
Asif, Muhammad; Hussain, Abrar; Rasool, Mahmood
2016-01-01
The t(9;22)(q34;q11) translocation is present in 90–95% of patients with chronic myeloid leukemia (CML). Variant complex translocations have been observed in 5–8% of CML patients, in which a third chromosome other than (9;22) is involved. Imatinib mesylate is the first line breakpoint cluster region-Abelson gene (BCR/ABL)-targeted oral therapy for CML, and may produce a complete response in 70–80% of CML patients in the chronic phase. In the present study, a bone marrow sample was used for conventional cytogenetic analysis, and the fluorescence in situ hybridization (FISH) test was used for BCR/ABL gene detection. A hematological analysis was also performed to determine the white blood cell (WBC) count, red blood cell count, hemoglobin levels, packed and mean cell volumes, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration and platelet values of the patient. The hematological analysis of the patient indicated the increased WBC of 186.5×103 cells/µl, and decreased hemoglobin levels of 11.1 g/dl. The FISH test revealed that 67% cells demonstrated BCR/ABL gene translocation. The patient was treated with 400 mg imatinib mesylate daily, and was monitored at various intervals over a 6-month period. The present study reports the rare case of a patient that demonstrates a three-way Philadelphia chromosome-positive translocation involving 46XY,t(9;11;22)(q34;p15;q11)[10], alongside CML in the chronic phase. The translocation was analyzed using cytogenetic and FISH tests. PMID:27602125
At the Frontier; RXLR Effectors Crossing the Phytophthora-Host Interface.
Bouwmeester, Klaas; Meijer, Harold J G; Govers, Francine
2011-01-01
Plants are constantly beset by pathogenic organisms. To successfully infect their hosts, plant pathogens secrete effector proteins, many of which are translocated to the inside of the host cell where they manipulate normal physiological processes and undermine host defense. The way by which effectors cross the frontier to reach the inside of the host cell varies among different classes of pathogens. For oomycete plant pathogens - like the potato late blight pathogen Phytophthora infestans - it has been shown that effector translocation to the host cell cytoplasm is dependent on conserved amino acid motifs that are present in the N-terminal part of effector proteins. One of these motifs, known as the RXLR motif, has a strong resemblance with a host translocation motif found in effectors secreted by Plasmodium species. These malaria parasites, that reside inside specialized vacuoles in red blood cells, make use of a specific protein translocation complex to export effectors from the vacuole into the red blood cell. Whether or not also oomycete RXLR effectors require a translocation complex to cross the frontier is still under investigation. For one P. infestans RXLR effector named IPI-O we have found a potential host target that could play a role in establishing the first contact between this effector and the host cell. This membrane spanning lectin receptor kinase, LecRK-I.9, interacts with IPI-O via the tripeptide RGD that overlaps with the RXLR motif. In animals, RGD is a well-known cell adhesion motif; it binds to integrins, which are membrane receptors that regulate many cellular processes and which can be hijacked by pathogens for either effector translocation or pathogen entry into host cells.
Electrostatic control of DNA intersegmental translocation by the ETS transcription factor ETV6.
Vo, Tam; Wang, Shuo; Poon, Gregory M K; Wilson, W David
2017-08-11
To find their DNA target sites in complex solution environments containing excess heterogeneous DNA, sequence-specific DNA-binding proteins execute various translocation mechanisms known collectively as facilitated diffusion. For proteins harboring a single DNA contact surface, long-range translocation occurs by jumping between widely spaced DNA segments. We have configured biosensor-based surface plasmon resonance to directly measure the affinity and kinetics of this intersegmental jumping by the ETS-family transcription factor ETS variant 6 (ETV6). To isolate intersegmental target binding in a functionally defined manner, we pre-equilibrated ETV6 with excess salmon sperm DNA, a heterogeneous polymer, before exposing the nonspecifically bound protein to immobilized oligomeric DNA harboring a high-affinity ETV6 site. In this way, the mechanism of ETV6-target association could be toggled electrostatically through varying NaCl concentration in the bulk solution. Direct measurements of association and dissociation kinetics of the site-specific complex indicated that 1) freely diffusive binding by ETV6 proceeds through a nonspecific-like intermediate, 2) intersegmental jumping is rate-limited by dissociation from the nonspecific polymer, and 3) dissociation of the specific complex is independent of the history of complex formation. These results show that target searches by proteins with an ETS domain, such as ETV6, whose single DNA-binding domain cannot contact both source and destination sites simultaneously, are nonetheless strongly modulated by intersegmental jumping in heterogeneous site environments. Our findings establish biosensors as a general technique for directly and specifically measuring target site search by DNA-binding proteins via intersegmental translocation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Observing cellulose biosynthesis and membrane translocation in crystallo
Morgan, Jacob L.W.; McNamara, Joshua T.; Fischer, Michael; Rich, Jamie; Chen, Hong-Ming; Withers, Stephen G.; Zimmer, Jochen
2016-01-01
Many biopolymers, including polysaccharides, must be translocated across at least one membrane to reach their site of biological function. Cellulose is a linear glucose polymer synthesized and secreted by a membrane-integrated cellulose synthase. In crystallo enzymology with the catalytically-active bacterial cellulose synthase BcsA-B complex reveals structural snapshots of a complete cellulose biosynthesis cycle, from substrate binding to polymer translocation. Substrate and product-bound structures of BcsA provide the basis for substrate recognition and demonstrate the stepwise elongation of cellulose. Furthermore, the structural snapshots show that BcsA translocates cellulose via a ratcheting mechanism involving a “finger helix” that contacts the polymer's terminal glucose. Cooperating with BcsA's gating loop, the finger helix moves ‘up’ and ‘down’ in response to substrate binding and polymer elongation, respectively, thereby pushing the elongated polymer into BcsA’s transmembrane channel. This mechanism is validated experimentally by tethering BcsA's finger helix, which inhibits polymer translocation but not elongation. PMID:26958837
Wu, Chun-Hua; Jong, Ambrose; Huang, Sheng-He
2012-01-01
Background IbeA-induced NF-κB signaling through its primary receptor vimentin as well as its co-receptor PSF is required for meningitic E. coli K1 penetration and leukocyte transmigration across the blood-brain barrier (BBB), which are the hallmarks of bacterial meningitis. However, it is unknown how vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB, which are required for bacteria-mediated pathogenicities. Methodology/Principal Findings IbeA-induced E. coli K1 invasion, polymorphonuclear leukocyte (PMN) transmigration and IKK/NF-κB activation are blocked by Caffeic acid phenethyl ester (CAPE), an inhibitor of NF-κB. IKKα/β phosphorylation is blocked by ERK inhibitors. Co-immunoprecipitation analysis shows that vimentin forms a complex with IκB, NF-κB and tubulins in the resting cells. A dissociation of this complex and a simultaneous association of PSF with NF-κB could be induced by IbeA in a time-dependent manner. The head domain of vimentin is required for the complex formation. Two cytoskeletal components, vimentin filaments and microtubules, contribute to the regulation of NF-κB. SiRNA-mediated knockdown studies demonstrate that IKKα/β phosphorylation is completely abolished in HBMECs lacking vimentin and PSF. Phosphorylation of ERK and nuclear translocation of NF-κB are entirely dependent on PSF. These findings suggest that vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB activation. PSF is essential for translocation of NF-κB and ERK to the nucleus. Conclusion/Significance These findings reveal previously unappreciated facets of the IbeA-binding proteins. Cooperative contributions of vimentin and PSF to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB may represent a new paradigm in pathogen-induced signal transduction and lead to the development of novel strategies for the prevention and treatment of bacterial meningitis. PMID:22536447
Complexity as a Reflection of the Dimensionality of a Task.
ERIC Educational Resources Information Center
Spilsbury, Georgina
1992-01-01
The hypothesis that a task that increases in complexity (increasing its correlation with a central measure of intelligence) does so by increasing its dimensionality by tapping individual differences or another variable was supported by findings from 46 adults aged 20-70 years performing a mental counting task. (SLD)
Ruano-Gallego, David; Álvarez, Beatriz; Fernández, Luis Ángel
2015-09-18
Bacterial pathogens containing type III protein secretion systems (T3SS) assemble large needle-like protein complexes in the bacterial envelope, called injectisomes, for translocation of protein effectors into host cells. The application of these "molecular syringes" for the injection of proteins into mammalian cells is hindered by their structural and genomic complexity, requiring multiple polypeptides encoded along with effectors in various transcriptional units (TUs) with intricate regulation. In this work, we have rationally designed the controlled expression of the filamentous injectisomes found in enteropathogenic Escherichia coli (EPEC) in the nonpathogenic strain E. coli K-12. All structural components of EPEC injectisomes, encoded in a genomic island called the locus of enterocyte effacement (LEE), were engineered in five TUs (eLEEs) excluding effectors, promoters and transcriptional regulators. These eLEEs were placed under the control of the IPTG-inducible promoter Ptac and integrated into specific chromosomal sites of E. coli K-12 using a marker-less strategy. The resulting strain, named synthetic injector E. coli (SIEC), assembles filamentous injectisomes similar to those in EPEC. SIEC injectisomes form pores in the host plasma membrane and are able to translocate T3-substrate proteins (e.g., translocated intimin receptor, Tir) into the cytoplasm of HeLa cells reproducing the phenotypes of intimate attachment and polymerization of actin-pedestals elicited by EPEC bacteria. Hence, SIEC strain allows the controlled expression of functional filamentous injectisomes for efficient translocation of proteins with T3S-signals into mammalian cells.
Wright, David J; Spurgin, Lewis G; Collar, Nigel J; Komdeur, Jan; Burke, Terry; Richardson, David S
2014-05-01
Translocations are an increasingly common tool in conservation. The maintenance of genetic diversity through translocation is critical for both the short- and long-term persistence of populations and species. However, the relative spatio-temporal impacts of translocations on neutral and functional genetic diversity, and how this affects genetic structure among the conserved populations overall, have received little investigation. We compared the impact of translocating different numbers of founders on both microsatellite and major histocompatibility complex (MHC) class I diversity over a 23-year period in the Seychelles warbler (Acrocephalus sechellensis). We found low and stable microsatellite and MHC diversity in the source population and evidence for only a limited loss of either type of diversity in the four new populations. However, we found evidence of significant, but low to moderate, genetic differentiation between populations, with those populations established with fewer founders clustering separately. Stochastic genetic capture (as opposed to subsequent drift) was the main determinant of translocated population diversity. Furthermore, a strong correlation between microsatellite and MHC differentiation suggested that neutral processes outweighed selection in shaping MHC diversity in the new populations. These data provide important insights into how to optimize the use of translocation as a conservation tool. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Wright, David J; Spurgin, Lewis G; Collar, Nigel J; Komdeur, Jan; Burke, Terry; Richardson, David S
2014-01-01
Translocations are an increasingly common tool in conservation. The maintenance of genetic diversity through translocation is critical for both the short- and long-term persistence of populations and species. However, the relative spatio-temporal impacts of translocations on neutral and functional genetic diversity, and how this affects genetic structure among the conserved populations overall, have received little investigation. We compared the impact of translocating different numbers of founders on both microsatellite and major histocompatibility complex (MHC) class I diversity over a 23-year period in the Seychelles warbler (Acrocephalus sechellensis). We found low and stable microsatellite and MHC diversity in the source population and evidence for only a limited loss of either type of diversity in the four new populations. However, we found evidence of significant, but low to moderate, genetic differentiation between populations, with those populations established with fewer founders clustering separately. Stochastic genetic capture (as opposed to subsequent drift) was the main determinant of translocated population diversity. Furthermore, a strong correlation between microsatellite and MHC differentiation suggested that neutral processes outweighed selection in shaping MHC diversity in the new populations. These data provide important insights into how to optimize the use of translocation as a conservation tool. PMID:24689851
Chara, Osvaldo; Borges, Augusto; Milhiet, Pierre-Emmanuel; Nöllmann, Marcelo; Cattoni, Diego I
2018-03-27
Transport of cellular cargo by molecular motors requires directionality to ensure proper biological functioning. During sporulation in Bacillus subtilis, directionality of chromosome transport is mediated by the interaction between the membrane-bound DNA translocase SpoIIIE and specific octameric sequences (SRS). Whether SRS regulate directionality by recruiting and orienting SpoIIIE or by simply catalyzing its translocation activity is still unclear. By using atomic force microscopy and single-round fast kinetics translocation assays we determined the localization and dynamics of diffusing and translocating SpoIIIE complexes on DNA with or without SRS. Our findings combined with mathematical modelling revealed that SpoIIIE directionality is not regulated by protein recruitment to SRS but rather by a fine-tuned balance among the rates governing SpoIIIE-DNA interactions and the probability of starting translocation modulated by SRS. Additionally, we found that SpoIIIE can start translocation from non-specific DNA, providing an alternative active search mechanism for SRS located beyond the exploratory length defined by 1D diffusion. These findings are relevant in vivo in the context of chromosome transport through an open channel, where SpoIIIE can rapidly explore DNA while directionality is modulated by the probability of translocation initiation upon interaction with SRS versus non-specific DNA.
2012-01-01
Background During elongation, multi-subunit RNA polymerases (RNAPs) cycle between phosphodiester bond formation and nucleic acid translocation. In the conformation associated with catalysis, the mobile “trigger loop” of the catalytic subunit closes on the nucleoside triphosphate (NTP) substrate. Closing of the trigger loop is expected to exclude water from the active site, and dehydration may contribute to catalysis and fidelity. In the absence of a NTP substrate in the active site, the trigger loop opens, which may enable translocation. Another notable structural element of the RNAP catalytic center is the “bridge helix” that separates the active site from downstream DNA. The bridge helix may participate in translocation by bending against the RNA/DNA hybrid to induce RNAP forward movement and to vacate the active site for the next NTP loading. The transition between catalytic and translocation conformations of RNAP is not evident from static crystallographic snapshots in which macromolecular motions may be restrained by crystal packing. Results All atom molecular dynamics simulations of Thermus thermophilus (Tt) RNAP reveal flexible hinges, located within the two helices at the base of the trigger loop, and two glycine hinges clustered near the N-terminal end of the bridge helix. As simulation progresses, these hinges adopt distinct conformations in the closed and open trigger loop structures. A number of residues (described as “switch” residues) trade atomic contacts (ion pairs or hydrogen bonds) in response to changes in hinge orientation. In vivo phenotypes and in vitro activities rendered by mutations in the hinge and switch residues in Saccharomyces cerevisiae (Sc) RNAP II support the importance of conformational changes predicted from simulations in catalysis and translocation. During simulation, the elongation complex with an open trigger loop spontaneously translocates forward relative to the elongation complex with a closed trigger loop. Conclusions Switching between catalytic and translocating RNAP forms involves closing and opening of the trigger loop and long-range conformational changes in the atomic contacts of amino acid side chains, some located at a considerable distance from the trigger loop and active site. Trigger loop closing appears to support chemistry and the fidelity of RNA synthesis. Trigger loop opening and limited bridge helix bending appears to promote forward nucleic acid translocation. PMID:22676913
[Using Molecular Simulations to Understand Complex Nanoscale Dynamic Phenomena in Polymer Solutions
NASA Technical Reports Server (NTRS)
Smith, Grant
2004-01-01
The first half of the project concentrated on molecular simulation studies of the translocation of model molecules for single-stranded DNA through a nanosized pore. This has resulted in the publication, Translocation of a polymer chain across a nanopore: A Brownian dynamics simulation study, by Pu Tian and Grant D. Smith, JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 21 1 DECEMBER 2003, which is attached to this report. In this work we carried out Brownian dynamics simulation studies of the translocation of single polymer chains across a nanosized pore under the driving of an applied field (chemical potential gradient) designed to mimic an electrostatic field. The translocation process can be either dominated by the entropic barrier resulted from restricted motion of flexible polymer chains or by applied forces (or chemical gradient). We focused on the latter case in our studies. Calculation of radius of gyration of the translocating chain at the two opposite sides of the wall shows that the polymer chains are not in equilibrium during the translocation process. Despite this fact, our results show that the one-dimensional diffusion and the nucleation model provide an excellent description of the dependence of average translocation time on the chemical potential gradients, the polymer chain length and the solvent viscosity. In good agreement with experimental results and theoretical predictions, the translocation time distribution of our simple model shows strong non-Gaussian characteristics. It is observed that even for this simple tube-like pore geometry, more than one peak of translocation time distribution can be generated for proper pore diameter and applied field strengths. Both repulsive Weeks-Chandler-Anderson and attractive Lennard-Jones polymer-nanopore interaction were studied. Attraction facilitates the translocation process by shortening the total translocation time and dramatically improve the capturing of polymer chain. The width of the translocation time distribution was found to decrease with increasing temperature, increasing field strength, and decreasing pore diameter.
Uchida, Shusaku; Teubner, Brett J W; Hevi, Charles; Hara, Kumiko; Kobayashi, Ayumi; Dave, Rutu M; Shintaku, Tatsushi; Jaikhan, Pattaporn; Yamagata, Hirotaka; Suzuki, Takayoshi; Watanabe, Yoshifumi; Zakharenko, Stanislav S; Shumyatsky, Gleb P
2017-01-10
Memory is formed by synapse-to-nucleus communication that leads to regulation of gene transcription, but the identity and organizational logic of signaling pathways involved in this communication remain unclear. Here we find that the transcription cofactor CRTC1 is a critical determinant of sustained gene transcription and memory strength in the hippocampus. Following associative learning, synaptically localized CRTC1 is translocated to the nucleus and regulates Fgf1b transcription in an activity-dependent manner. After both weak and strong training, the HDAC3-N-CoR corepressor complex leaves the Fgf1b promoter and a complex involving the translocated CRTC1, phosphorylated CREB, and histone acetyltransferase CBP induces transient transcription. Strong training later substitutes KAT5 for CBP, a process that is dependent on CRTC1, but not on CREB phosphorylation. This in turn leads to long-lasting Fgf1b transcription and memory enhancement. Thus, memory strength relies on activity-dependent changes in chromatin and temporal regulation of gene transcription on specific CREB/CRTC1 gene targets. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Noda, Natsumi; Awais, Raheela; Sutton, Robert; Awais, Muhammad; Ozawa, Takeaki
2017-12-01
Intracellular protein translocation plays a pivotal role in regulating complex biological processes, including cell death. The tumor suppressor p53 is a transcription factor activated by DNA damage and oxidative stress that also translocates from the cytosol into the mitochondrial matrix to facilitate necrotic cell death. However, specific inhibitors of p53 mitochondrial translocation are largely unknown. To explore the inhibitors of p53, we developed a bioluminescent probe to monitor p53 translocation from cytosol to mitochondria using luciferase fragment complementation assays. The probe is composed of a novel pair of luciferase fragments, the N-terminus of green click beetle luciferase CBG68 (CBGN) and multiple-complement luciferase fragment (McLuc1). The combination of luciferase fragments showed significant luminescence intensity and high signal-to-background ratio. When the p53 connected with McLuc1 translocates from cytosol into mitochondrial matrix, CBGN in mitochondrial matrix enables to complement with McLuc1, resulting in the restoration of the luminescence. The luminescence intensity was significantly increased under hydrogen peroxide-induced oxidative stress following the complementation of CBGN and McLuc1. Pifithrin-μ, a selective inhibitor of p53 mitochondrial translocation, prevented the mitochondrial translocation of the p53 probe in a concentration-dependent manner. Furthermore, the high luminescence intensity made it easier to visualize the p53 translocation at a single cell level under a bioluminescence microscope. This p53 mitochondrial translocation assay is a new tool for high-throughput screening to identify novel p53 inhibitors, which could be developed as drugs to treat diseases in which necrotic cell death is a major contributor. © 2017 Wiley Periodicals, Inc.
Role of the α clamp in the protein translocation mechanism of anthrax toxin
Brown, Michael J.; Thoren, Katie L.; Krantz, Bryan A.
2015-01-01
Membrane-embedded molecular machines are utilized to move water-soluble proteins across these barriers. Anthrax toxin forms one such machine through the self-assembly of its three component proteins—protective antigen (PA), lethal factor (LF), and edema factor (EF). Upon endocytosis into host cells, acidification of the endosome induces PA to form a membrane-inserted channel, which unfolds LF and EF and translocates them into the host cytosol. Translocation is driven by the proton motive force, comprised of the chemical potential, the proton-gradient (ΔpH), and the membrane potential (ΔΨ). A crystal structure of the lethal toxin core complex revealed an “α clamp” structure that binds to substrate helices nonspecifically. Here we test the hypothesis that through the recognition of unfolding helical structure the α clamp can accelerate the rate of translocation. We produced a synthetic PA mutant in which an α helix was crosslinked into the α clamp to block its function. This synthetic construct impairs translocation by raising a yet uncharacterized translocation barrier shown to be much less force dependent than the known unfolding barrier. We also report that the α clamp more stably binds substrates that can form helices than those, such as polyproline, that cannot. Hence the α clamp recognizes substrates by a general shape-complementarity mechanism. Substrates that are incapable of forming compact secondary structure (due to the introduction of a polyproline track) are severely deficient for translocation. Therefore, the α clamp and its recognition of helical structure in the translocating substrate play key roles in the molecular mechanism of protein translocation. PMID:26344833
Lim, Jae Kyu; Mayer, Florian; Kang, Sung Gyun; Müller, Volker
2014-01-01
Thermococcus onnurineus NA1 is known to grow by the anaerobic oxidation of formate to CO2 and H2, a reaction that operates near thermodynamic equilibrium. Here we demonstrate that this reaction is coupled to ATP synthesis by a transmembrane ion current. Formate oxidation leads to H+ translocation across the cytoplasmic membrane that then drives Na+ translocation. The ion-translocating electron transfer system is rather simple, consisting of only a formate dehydrogenase module, a membrane-bound hydrogenase module, and a multisubunit Na+/H+ antiporter module. The electrochemical Na+ gradient established then drives ATP synthesis. These data give a mechanistic explanation for chemiosmotic energy conservation coupled to formate oxidation to CO2 and H2. Because it is discussed that the membrane-bound hydrogenase with the Na+/H+ antiporter module are ancestors of complex I of mitochondrial and bacterial electron transport these data also shed light on the evolution of ion transport in complex I-like electron transport chains. PMID:25049407
Lim, Jae Kyu; Mayer, Florian; Kang, Sung Gyun; Müller, Volker
2014-08-05
Thermococcus onnurineus NA1 is known to grow by the anaerobic oxidation of formate to CO2 and H2, a reaction that operates near thermodynamic equilibrium. Here we demonstrate that this reaction is coupled to ATP synthesis by a transmembrane ion current. Formate oxidation leads to H(+) translocation across the cytoplasmic membrane that then drives Na(+) translocation. The ion-translocating electron transfer system is rather simple, consisting of only a formate dehydrogenase module, a membrane-bound hydrogenase module, and a multisubunit Na(+)/H(+) antiporter module. The electrochemical Na(+) gradient established then drives ATP synthesis. These data give a mechanistic explanation for chemiosmotic energy conservation coupled to formate oxidation to CO2 and H2. Because it is discussed that the membrane-bound hydrogenase with the Na(+)/H(+) antiporter module are ancestors of complex I of mitochondrial and bacterial electron transport these data also shed light on the evolution of ion transport in complex I-like electron transport chains.
Wilhelmsson, Per K I; Mühlich, Cornelia; Ullrich, Kristian K
2017-01-01
Abstract Plant genomes encode many lineage-specific, unique transcription factors. Expansion of such gene families has been previously found to coincide with the evolution of morphological complexity, although comparative analyses have been hampered by severe sampling bias. Here, we make use of the recently increased availability of plant genomes. We have updated and expanded previous rule sets for domain-based classification of transcription associated proteins (TAPs), comprising transcription factors and transcriptional regulators. The genome-wide annotation of these protein families has been analyzed and made available via the novel TAPscan web interface. We find that many TAP families previously thought to be specific for land plants actually evolved in streptophyte (charophyte) algae; 26 out of 36 TAP family gains are inferred to have occurred in the common ancestor of the Streptophyta (uniting the land plants—Embryophyta—with their closest algal relatives). In contrast, expansions of TAP families were found to occur throughout streptophyte evolution. 17 out of 76 expansion events were found to be common to all land plants and thus probably evolved concomitant with the water-to-land-transition. PMID:29216360
Fermi surface interconnectivity and topology in Weyl fermion semimetals TaAs, TaP, NbAs, and NbP
Lee, Chi-Cheng; Xu, Su-Yang; Huang, Shin-Ming; ...
2015-12-01
The family of binary compounds including TaAs, TaP, NbAs, and NbP was recently discovered as the first realization of Weyl semimetals. In order to develop a comprehensive description of the charge carriers in these Weyl semimetals, we performed detailed and systematic electronic band structure calculations which reveal the nature of Fermi surfaces and their complex interconnectivity in TaAs, TaP, NbAs, and NbP. In conclusion, our work reports a comparative and comprehensive study of Fermi surface topology and band structure details of all known members of the Weyl semimetal family and hence provides the fundamental knowledge for realizing the many predictedmore » exotic topological quantum physics of Weyl semimetals based on the TaAs class of materials.« less
Ham, Byung-Kook; Brandom, Jeri L.; Xoconostle-Cázares, Beatriz; Ringgold, Vanessa; Lough, Tony J.; Lucas, William J.
2009-01-01
RNA binding proteins (RBPs) are integral components of ribonucleoprotein (RNP) complexes and play a central role in RNA processing. In plants, some RBPs function in a non-cell-autonomous manner. The angiosperm phloem translocation stream contains a unique population of RBPs, but little is known regarding the nature of the proteins and mRNA species that constitute phloem-mobile RNP complexes. Here, we identified and characterized a 50-kD pumpkin (Cucurbita maxima cv Big Max) phloem RNA binding protein (RBP50) that is evolutionarily related to animal polypyrimidine tract binding proteins. In situ hybridization studies indicated a high level of RBP50 transcripts in companion cells, while immunolocalization experiments detected RBP50 in both companion cells and sieve elements. A comparison of the levels of RBP50 present in vascular bundles and phloem sap indicated that this protein is highly enriched in the phloem sap. Heterografting experiments confirmed that RBP50 is translocated from source to sink tissues. Collectively, these findings established that RBP50 functions as a non-cell-autonomous RBP. Protein overlay, coimmunoprecipitation, and cross-linking experiments identified the phloem proteins and mRNA species that constitute RBP50-based RNP complexes. Gel mobility-shift assays demonstrated that specificity, with respect to the bound mRNA, is established by the polypyrimidine tract binding motifs within such transcripts. We present a model for RBP50-based RNP complexes within the pumpkin phloem translocation stream. PMID:19122103
Cornu, Jean-Yves; Deinlein, Ulrich; Höreth, Stephan; Braun, Manuel; Schmidt, Holger; Weber, Michael; Persson, Daniel P; Husted, Søren; Schjoerring, Jan K; Clemens, Stephan
2015-04-01
Elevated nicotianamine synthesis in roots of Arabidopsis halleri has been established as a zinc (Zn) hyperaccumulation factor. The main objective of this study was to elucidate the mechanism of nicotianamine-dependent root-to-shoot translocation of metals. Metal tolerance and accumulation in wild-type (WT) and AhNAS2-RNA interference (RNAi) plants were analysed. Xylem exudates were subjected to speciation analysis and metabolite profiling. Suppression of root nicotianamine synthesis had no effect on Zn and cadmium (Cd) tolerance but rendered plants nickel (Ni)-hypersensitive. It also led to a reduction of Zn root-to-shoot translocation, yet had the opposite effect on Ni mobility, even though both metals form coordination complexes of similar stability with nicotianamine. Xylem Zn concentrations were positively, yet nonstoichiometrically, correlated with nicotianamine concentrations. Two fractions containing Zn coordination complexes were detected in WT xylem. One of them was strongly reduced in AhNAS2-suppressed plants and coeluted with (67) Zn-labelled organic acid complexes. Organic acid concentrations were not responsive to nicotianamine concentrations and sufficiently high to account for complexing the coordinated Zn. We propose a key role for nicotianamine in controlling the efficiency of Zn xylem loading and thereby the formation of Zn coordination complexes with organic acids, which are the main Zn ligands in the xylem but are not rate-limiting for Zn translocation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Jadeja, Shahnawaz D; Mansuri, Mohmmad Shoab; Singh, Mala; Dwivedi, Mitesh; Laddha, Naresh C; Begum, Rasheedunnisa
2017-01-01
Autoimmunity has been implicated in the destruction of melanocytes from vitiligo skin. Major histocompatibility complex (MHC) class-II linked genes proteasome subunit beta 8 (PSMB8) and transporter associated with antigen processing 1 (TAP1), involved in antigen processing and presentation have been reported to be associated with several autoimmune diseases including vitiligo. To explore PSMB8 rs2071464 and TAP1 rs1135216 single nucleotide polymorphisms and to estimate the expression of PSMB8 and TAP1 in patients with vitiligo and unaffected controls from Gujarat. PSMB8 rs2071464 polymorphism was genotyped using polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP) and TAP1 rs1135216 polymorphism was genotyped by amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) in 378 patients with vitiligo and 509 controls. Transcript levels of PSMB8 and TAP1 were measured in the PBMCs of 91 patients and 96 controls by using qPCR. Protein levels of PSMB8 were also determined by Western blot analysis. The frequency of 'TT' genotype of PSMB8 polymorphism was significantly lowered in patients with generalized and active vitiligo (p = 0.019 and p = 0.005) as compared to controls suggesting its association with the activity of the disease. However, TAP1 polymorphism was not associated with vitiligo susceptibility. A significant decrease in expression of PSMB8 at both transcript level (p = 0.002) as well as protein level (p = 0.0460) was observed in vitiligo patients as compared to controls. No significant difference was observed between patients and controls for TAP1 transcripts (p = 0.553). Interestingly, individuals with the susceptible CC genotype of PSMB8 polymorphism showed significantly reduced PSMB8 transcript level as compared to that of CT and TT genotypes (p = 0.009 and p = 0.003 respectively). PSMB8 rs2071464 was associated with generalized and active vitiligo from Gujarat whereas TAP1 rs1135216 showed no association. The down-regulation of PSMB8 in patients with risk genotype 'CC' advocates the vital role of PSMB8 in the autoimmune basis of vitiligo.
Complex genetic patterns in closely related colonizing invasive species
Anthropogenic activities frequently result in both rapidly changing environments and translocation of species from their native ranges (i.e., biological invasions). Empirical studies suggest that many factors associated with these changes can lead to complex genetic patterns, par...
Almeida, Daniela; Maldonado, Emanuel; Vasconcelos, Vitor; Antunes, Agostinho
2015-01-01
Mitochondrial protein-coding genes (mt genes) encode subunits forming complexes of crucial cellular pathways, including those involved in the vital process of oxidative phosphorylation (OXPHOS). Despite the vital role of the mitochondrial genome (mt genome) in the survival of organisms, little is known with respect to its adaptive implications within marine invertebrates. The molluscan Class Cephalopoda is represented by a marine group of species known to occupy contrasting environments ranging from the intertidal to the deep sea, having distinct metabolic requirements, varied body shapes and highly advanced visual and nervous systems that make them highly competitive and successful worldwide predators. Thus, cephalopods are valuable models for testing natural selection acting on their mitochondrial subunits (mt subunits). Here, we used concatenated mt genes from 17 fully sequenced mt genomes of diverse cephalopod species to generate a robust mitochondrial phylogeny for the Class Cephalopoda. We followed an integrative approach considering several branches of interest–covering cephalopods with distinct morphologies, metabolic rates and habitats–to identify sites under positive selection and localize them in the respective protein alignment and/or tridimensional structure of the mt subunits. Our results revealed significant adaptive variation in several mt subunits involved in the energy production pathway of cephalopods: ND5 and ND6 from Complex I, CYTB from Complex III, COX2 and COX3 from Complex IV, and in ATP8 from Complex V. Furthermore, we identified relevant sites involved in protein-interactions, lining proton translocation channels, as well as disease/deficiencies related sites in the aforementioned complexes. A particular case, revealed by this study, is the involvement of some positively selected sites, found in Octopoda lineage in lining proton translocation channels (site 74 from ND5) and in interactions between subunits (site 507 from ND5) of Complex I. PMID:26285039
Structural dynamics of the MecA-ClpC complex: a type II AAA+ protein unfolding machine.
Liu, Jing; Mei, Ziqing; Li, Ningning; Qi, Yutao; Xu, Yanji; Shi, Yigong; Wang, Feng; Lei, Jianlin; Gao, Ning
2013-06-14
The MecA-ClpC complex is a bacterial type II AAA(+) molecular machine responsible for regulated unfolding of substrates, such as transcription factors ComK and ComS, and targeting them to ClpP for degradation. The six subunits of the MecA-ClpC complex form a closed barrel-like structure, featured with three stacked rings and a hollow passage, where substrates are threaded and translocated through successive pores. Although the general concepts of how polypeptides are unfolded and translocated by internal pore loops of AAA(+) proteins have long been conceived, the detailed mechanistic model remains elusive. With cryoelectron microscopy, we captured four different structures of the MecA-ClpC complexes. These complexes differ in the nucleotide binding states of the two AAA(+) rings and therefore might presumably reflect distinctive, representative snapshots from a dynamic unfolding cycle of this hexameric complex. Structural analysis reveals that nucleotide binding and hydrolysis modulate the hexameric complex in a number of ways, including the opening of the N-terminal ring, the axial and radial positions of pore loops, the compactness of the C-terminal ring, as well as the relative rotation between the two nucleotide-binding domain rings. More importantly, our structural and biochemical data indicate there is an active allosteric communication between the two AAA(+) rings and suggest that concerted actions of the two AAA(+) rings are required for the efficiency of the substrate unfolding and translocation. These findings provide important mechanistic insights into the dynamic cycle of the MecA-ClpC unfoldase and especially lay a foundation toward the complete understanding of the structural dynamics of the general type II AAA(+) hexamers.
Multiperspective smFRET reveals rate-determining late intermediates of ribosomal translocation.
Wasserman, Michael R; Alejo, Jose L; Altman, Roger B; Blanchard, Scott C
2016-04-01
Directional translocation of the ribosome through the mRNA open reading frame is a critical determinant of translational fidelity. This process entails a complex interplay of large-scale conformational changes within the actively translating particle, which together coordinate the movement of tRNA and mRNA substrates with respect to the large and small ribosomal subunits. Using pre-steady state, single-molecule fluorescence resonance energy transfer imaging, we tracked the nature and timing of these conformational events within the Escherichia coli ribosome from five structural perspectives. Our investigations revealed direct evidence of structurally and kinetically distinct late intermediates during substrate movement, whose resolution determines the rate of translocation. These steps involve intramolecular events within the EF-G-GDP-bound ribosome, including exaggerated, reversible fluctuations of the small-subunit head domain, which ultimately facilitate peptidyl-tRNA's movement into its final post-translocation position.
Multi-perspective smFRET reveals rate-determining late intermediates of ribosomal translocation
Wasserman, Michael R.; Alejo, Jose L.; Altman, Roger B.; Blanchard, Scott C.
2016-01-01
Directional translocation of the ribosome through the messenger RNA open reading frame is a critical determinant of translational fidelity. This process entails a complex interplay of large-scale conformational changes within the actively translating particle, which together coordinate the movement of transfer and messenger RNA substrates with respect to the large and small ribosomal subunits. Using pre-steady state, single-molecule fluorescence resonance energy transfer imaging, we have tracked the nature and timing of these conformational events within the Escherichia coli ribosome from five structural perspectives. Our investigations reveal direct evidence of structurally and kinetically distinct, late intermediates during substrate movement, whose resolution is rate-determining to the translocation mechanism. These steps involve intra-molecular events within the EFG(GDP)-bound ribosome, including exaggerated, reversible fluctuations of the small subunit head domain, which ultimately facilitate peptidyl-tRNA’s movement into its final post-translocation position. PMID:26926435
A cryptic translocation leading to NUP98-PHF23 fusion in AML.
Ning, Yi
2016-12-01
Chromosome translocations leading to gene fusions have emerged as important oncogenic drivers of various types of malignancies. Detection and characterization of these fusion genes not only help diagnosis and management of specific malignancies, but also contribute to our understanding of the genetic basis and pathogenesis of these diseases. NUP98 gene encodes a 98 kDa nucleoporin, which is a component of the nuclear pore complex that mediates transport of mRNA and proteins between the nucleus and the cytoplasm. Due to its participation in translocations leading to the formation of fusion with at least 29 different partner genes, NUP98 is considered one of the most promiscuous fusion genes in hematologic malignancies. We discuss our identification and characterization of a NUP98-PHF23 fusion from a cryptic translocation in patients with acute myeloid leukemia (AML). Copyright © 2016 Elsevier Ltd. All rights reserved.
Magnacca, Adriana; Persiconi, Irene; Nurzia, Elisa; Caristi, Silvana; Meloni, Francesca; Barnaba, Vincenzo; Paladini, Fabiana; Raimondo, Domenico; Fiorillo, Maria Teresa; Sorrentino, Rosa
2012-08-31
Nascent HLA-class I molecules are stabilized by proteasome-derived peptides in the ER and the new complexes proceed to the cell surface through the post-ER vesicles. It has been shown, however, that less stable complexes can exchange peptides in the Trans Golgi Network (TGN). HLA-B27 are the most studied HLA-class I molecules due to their association with Ankylosing Spondylitis (AS). Chimeric proteins driven by TAT of HIV have been exploited by us to deliver viral epitopes, whose cross-presentation by the HLA-B27 molecules was proteasome and TAP-independent and not restricted to Antigen-Presenting Cells (APC). Here, using these chimeric proteins as epitope suppliers, we compared with each other and with the HLA-A2 molecules, the two HLA-B*2705 and B*2709 alleles differing at residue 116 (D116H) and differentially associated with AS. We found that the antigen presentation by the two HLA-B27 molecules was proteasome-, TAP-, and APC-independent whereas the presentation by the HLA-A2 molecules required proteasome, TAP and professional APC. Assuming that such difference could be due to the unpaired, highly reactive Cys-67 distinguishing the HLA-B27 molecules, C67S mutants in HLA-B*2705 and B*2709 and V67C mutant in HLA-A*0201 were also analyzed. The results showed that this mutation did not influence the HLA-A2-restricted antigen presentation while it drastically affected the HLA-B27-restricted presentation with, however, remarkable differences between B*2705 and B*2709. The data, together with the occurrence on the cell surface of unfolded molecules in the case of C67S-B*2705 mutant but not in that of C67S-B*2709 mutant, indicates that Cys-67 has a more critical role in stabilizing the B*2705 rather than the B*2709 complexes.
Magnacca, Adriana; Persiconi, Irene; Nurzia, Elisa; Caristi, Silvana; Meloni, Francesca; Barnaba, Vincenzo; Paladini, Fabiana; Raimondo, Domenico; Fiorillo, Maria Teresa; Sorrentino, Rosa
2012-01-01
Nascent HLA-class I molecules are stabilized by proteasome-derived peptides in the ER and the new complexes proceed to the cell surface through the post-ER vesicles. It has been shown, however, that less stable complexes can exchange peptides in the Trans Golgi Network (TGN). HLA-B27 are the most studied HLA-class I molecules due to their association with Ankylosing Spondylitis (AS). Chimeric proteins driven by TAT of HIV have been exploited by us to deliver viral epitopes, whose cross-presentation by the HLA-B27 molecules was proteasome and TAP-independent and not restricted to Antigen-Presenting Cells (APC). Here, using these chimeric proteins as epitope suppliers, we compared with each other and with the HLA-A2 molecules, the two HLA-B*2705 and B*2709 alleles differing at residue 116 (D116H) and differentially associated with AS. We found that the antigen presentation by the two HLA-B27 molecules was proteasome-, TAP-, and APC-independent whereas the presentation by the HLA-A2 molecules required proteasome, TAP and professional APC. Assuming that such difference could be due to the unpaired, highly reactive Cys-67 distinguishing the HLA-B27 molecules, C67S mutants in HLA-B*2705 and B*2709 and V67C mutant in HLA-A*0201 were also analyzed. The results showed that this mutation did not influence the HLA-A2-restricted antigen presentation while it drastically affected the HLA-B27-restricted presentation with, however, remarkable differences between B*2705 and B*2709. The data, together with the occurrence on the cell surface of unfolded molecules in the case of C67S-B*2705 mutant but not in that of C67S-B*2709 mutant, indicates that Cys-67 has a more critical role in stabilizing the B*2705 rather than the B*2709 complexes. PMID:22807446
The Unexplored Mechanisms and Regulatory Functions of Ribosomal Translocation
NASA Astrophysics Data System (ADS)
Alejo, Jose Luis
In every cell, protein synthesis is carried out by the ribosome, a complex macromolecular RNA-protein assembly. Decades of structural and kinetic studies have increased our understanding of ribosome initiation, decoding, translocation and termination. Yet, the underlying mechanism of these fundamental processes has yet to be fully delineated. Hence, the molecular basis of regulation remains obscure. Here, single-molecule fluorescence methods are applied to decipher the mechanism and regulatory roles of the multi-step process of directional substrate translocation on the ribosome that accompanies every round of protein synthesis. In Chapter 1, single-molecule fluorescence resonance energy transfer (smFRET) is introduced as a tool for studying bacterial ribosome translocation. Chapter 2 details the experimental methods. In Chapter 3, the elongation factor G(EF-G)-catalyzed movement of substrates through the ribosome is examined from several perspectives or signals reporting on various degrees of freedom of ribosome dynamics. Two ribosomal states interconvert in the presence of EF-G(GDP), displaying novel head domain motions, until relocking takes place. In Chapter 4, in order to test if the mentioned fluctuations leading to relocking are correlated to the engagement of the P-site by the peptidyl-tRNA, the translocation of miscoded tRNAs is studied. Severe defects in the relocking stages of translocation reveal the correlation between this new stage of translocation and P-site tRNA engagement.
Miscoding-induced stalling of substrate translocation on the bacterial ribosome.
Alejo, Jose L; Blanchard, Scott C
2017-10-10
Directional transit of the ribosome along the messenger RNA (mRNA) template is a key determinant of the rate and processivity of protein synthesis. Imaging of the multistep translocation mechanism using single-molecule FRET has led to the hypothesis that substrate movements relative to the ribosome resolve through relatively long-lived late intermediates wherein peptidyl-tRNA enters the P site of the small ribosomal subunit via reversible, swivel-like motions of the small subunit head domain within the elongation factor G (GDP)-bound ribosome complex. Consistent with translocation being rate-limited by recognition and productive engagement of peptidyl-tRNA within the P site, we now show that base-pairing mismatches between the peptidyl-tRNA anticodon and the mRNA codon dramatically delay this rate-limiting, intramolecular process. This unexpected relationship between aminoacyl-tRNA decoding and translocation suggests that miscoding antibiotics may impact protein synthesis by impairing the recognition of peptidyl-tRNA in the small subunit P site during EF-G-catalyzed translocation. Strikingly, we show that elongation factor P (EF-P), traditionally known to alleviate ribosome stalling at polyproline motifs, can efficiently rescue translocation defects arising from miscoding. These findings help reveal the nature and origin of the rate-limiting steps in substrate translocation on the bacterial ribosome and indicate that EF-P can aid in resuming translation elongation stalled by miscoding errors.
Miscoding-induced stalling of substrate translocation on the bacterial ribosome
Alejo, Jose L.; Blanchard, Scott C.
2017-01-01
Directional transit of the ribosome along the messenger RNA (mRNA) template is a key determinant of the rate and processivity of protein synthesis. Imaging of the multistep translocation mechanism using single-molecule FRET has led to the hypothesis that substrate movements relative to the ribosome resolve through relatively long-lived late intermediates wherein peptidyl-tRNA enters the P site of the small ribosomal subunit via reversible, swivel-like motions of the small subunit head domain within the elongation factor G (GDP)-bound ribosome complex. Consistent with translocation being rate-limited by recognition and productive engagement of peptidyl-tRNA within the P site, we now show that base-pairing mismatches between the peptidyl-tRNA anticodon and the mRNA codon dramatically delay this rate-limiting, intramolecular process. This unexpected relationship between aminoacyl-tRNA decoding and translocation suggests that miscoding antibiotics may impact protein synthesis by impairing the recognition of peptidyl-tRNA in the small subunit P site during EF-G–catalyzed translocation. Strikingly, we show that elongation factor P (EF-P), traditionally known to alleviate ribosome stalling at polyproline motifs, can efficiently rescue translocation defects arising from miscoding. These findings help reveal the nature and origin of the rate-limiting steps in substrate translocation on the bacterial ribosome and indicate that EF-P can aid in resuming translation elongation stalled by miscoding errors. PMID:28973849
Sun, Min; Long, Juan; Yi, Yuxin; Xia, Wei
2017-10-28
Insulin-like growth factor-binding protein (IGFBP)-5 is a secreted protein that binds to IGFs and modulates IGF actions, as well as regulates cell proliferation, migration, and apoptosis independent of IGF. Proper cellular localization is critical for the effective function of most signaling molecules. In previous studies, we have shown that the nuclear IGFBP-5 comes from ER-cytosol retro-translocation. In this study, we further investigated the pathway mediating IGFBP-5 nuclear import after it retro-translocation. Importin-α5 was identified as an IGFBP-5-interacting protein with a yeast two-hybrid system, and its interaction with IGFBP-5 was further confirmed by GST pull down and co-immunoprecipitation. Binding affinity of IGFBP-5 and importins were determined by surface plasmon resonance (IGFBP-5/importin-β: K D =2.44e-7, IGFBP-5/importin-α5: K D =3.4e-7). Blocking the importin-α5/importin-β nuclear import pathway using SiRNA or dominant negative impotin-β dramatically inhibited IGFBP-5-EGFP nuclear import, though importin-α5 overexpress does not affect IGFBP-5 nuclear import. Furthermore, nuclear IGFBP-5 was quantified using luciferase report assay. When deleted the IGFBP-5 nuclear localization sequence (NLS), IGFBP-5 ΔNLS loss the ability to translocate into the nucleus and accumulation of IGFBP-5 ΔNLS was visualized in the cytosol. Altogether, our findings provide a substantially evidence showed that the IGFBP-5 nuclear import is mediated by importin-α/importin-β complex, and NLS is critical domain in IGFBP-5 nuclear translocation.
Cell Surface Translocation of Annexin A2 Facilitates Glutamate-induced Extracellular Proteolysis*
Valapala, Mallika; Maji, Sayantan; Borejdo, Julian; Vishwanatha, Jamboor K.
2014-01-01
Glutamate-induced elevation in intracellular Ca2+ has been implicated in excitotoxic cell death. Neurons respond to increased glutamate levels by activating an extracellular proteolytic cascade involving the components of the plasmin-plasminogen system. AnxA2 is a Ca2+-dependent phospholipid binding protein and serves as an extracellular proteolytic center by recruiting the tissue plasminogen activator and plasminogen and mediating the localized generation of plasmin. Ratiometric Ca2+ imaging and time-lapse confocal microscopy demonstrated glutamate-induced Ca2+ influx. We showed that glutamate translocated both endogenous and AnxA2-GFP to the cell surface in a process dependent on the activity of the NMDA receptor. Glutamate-induced translocation of AnxA2 is dependent on the phosphorylation of tyrosine 23 at the N terminus, and mutation of tyrosine 23 to a non-phosphomimetic variant inhibits the translocation process. The cell surface-translocated AnxA2 forms an active plasmin-generating complex, and this activity can be neutralized by a hexapeptide directed against the N terminus. These results suggest an involvement of AnxA2 in potentiating glutamate-induced cell death processes. PMID:24742684
Stimulant Paste Preparation and Bark Streak Tapping Technique for Pine Oleoresin Extraction.
Füller, Thanise Nogueira; de Lima, Júlio César; de Costa, Fernanda; Rodrigues-Corrêa, Kelly C S; Fett-Neto, Arthur G
2016-01-01
Tapping technique comprises the extraction of pine oleoresin, a non-wood forest product consisting of a complex mixture of mono, sesqui, and diterpenes biosynthesized and exuded as a defense response to wounding. Oleoresin is used to produce gum rosin, turpentine, and their multiple derivatives. Oleoresin yield and quality are objects of interest in pine tree biotechnology, both in terms of environmental and genetic control. Monitoring these parameters in individual trees grown in the field provides a means to examine the control of terpene production in resin canals, as well as the identification of genetic-based differences in resinosis. A typical method of tapping involves the removal of bark and application of a chemical stimulant on the wounded area. Here we describe the methods for preparing the resin-stimulant paste with different adjuvants, as well as the bark streaking process in adult pine trees.
Carter, Ian; Foster, Jim; Lock, Leigh
2017-03-01
We provide an overview of terrestrial animal translocations carried out for conservation purposes in Britain, summarising what has been achieved in recent decades and discussing the issues raised by this approach to conservation. In the last 40 years, at least nine species have been reintroduced following extinction in Britain (or at least one country within Britain), including five birds, one mammal, one amphibian and two invertebrates. Many more species have been translocated within Britain to establish additional populations in order to improve conservation status. We discuss the guidelines and protocols used to assess translocation projects in Britain, notably the IUCN guidelines, most recently revised in 2013. We also discuss the likely use of species translocations in future and suggest that, in our increasingly fragmented landscapes, they will have an important role to play in conservation restoration, especially for animals with limited mobility. Moving species around is a complex undertaking and our understanding of the inherent risks involved, including the risks from disease, has improved significantly in recent years. Conservation translocations should be considered in the context of species recovery targets and high standards should be maintained so that disease risks and other potentially negative impacts are minimised.
Autism Spectrum Disorder in a Girl with a De Novo X;19 Balanced Translocation
Baruffi, Marcelo Razera; de Souza, Deise Helena; Bicudo da Silva, Rosana Aparecida; Ramos, Ester Silveira; Moretti-Ferreira, Danilo
2012-01-01
Balanced X-autosome translocations are rare, and female carriers are a clinically heterogeneous group of patients, with phenotypically normal women, history of recurrent miscarriage, gonadal dysfunction, X-linked disorders or congenital abnormalities, and/or developmental delay. We investigated a patient with a de novo X;19 translocation. The six-year-old girl has been evaluated due to hyperactivity, social interaction impairment, stereotypic and repetitive use of language with echolalia, failure to follow parents/caretakers orders, inconsolable outbursts, and persistent preoccupation with parts of objects. The girl has normal cognitive function. Her measurements are within normal range, and no other abnormalities were found during physical, neurological, or dysmorphological examinations. Conventional cytogenetic analysis showed a de novo balanced translocation, with the karyotype 46,X,t(X;19)(p21.2;q13.4). Replication banding showed a clear preference for inactivation of the normal X chromosome. The translocation was confirmed by FISH and Spectral Karyotyping (SKY). Although abnormal phenotypes associated with de novo balanced chromosomal rearrangements may be the result of disruption of a gene at one of the breakpoints, submicroscopic deletion or duplication, or a position effect, X; autosomal translocations are associated with additional unique risk factors including X-linked disorders, functional autosomal monosomy, or functional X chromosome disomy resulting from the complex X-inactivation process. PMID:23074688
Salat, Daniela; Winkler, Anja; Urlaub, Henning; Gessler, Manfred
2015-01-01
The Hey protein family, comprising Hey1, Hey2 and HeyL in mammals, conveys Notch signals in many cell types. The helix-loop-helix (HLH) domain as well as the Orange domain, mediate homo- and heterodimerization of these transcription factors. Although distinct interaction partners have been identified so far, their physiological relevance for Hey functions is still largely unclear. Using a tandem affinity purification approach and mass spectrometry analysis we identified members of an ubiquitin E3-ligase complex consisting of FBXO45, PAM and SKP1 as novel Hey1 associated proteins. There is a direct interaction between Hey1 and FBXO45, whereas FBXO45 is needed to mediate indirect Hey1 binding to SKP1. Expression of Hey1 induces translocation of FBXO45 and PAM into the nucleus. Hey1 is a short-lived protein that is degraded by the proteasome, but there is no evidence for FBXO45-dependent ubiquitination of Hey1. On the contrary, Hey1 mediated nuclear translocation of FBXO45 and its associated ubiquitin ligase complex may extend its spectrum to additional nuclear targets triggering their ubiquitination. This suggests a novel mechanism of action for Hey bHLH factors.
BCL2 oncogene translocation is mediated by a chi-like consensus
1992-01-01
Examination of 64 translocations involving the major breakpoint region (mbr) of the BCL2 oncogene and the immunoglobulin heavy chain locus identified three short (14, 16, and 18 bp) segments within the mbr at which translocations occurred with very high frequency. Each of these clusters was associated with a 15-bp region of sequence homology, the principal one containing an octamer related to chi, the procaryotic activator of recombination. The presence of short deletions and N nucleotide additions at the breakpoints, as well as involvement of JH and DH coding regions, suggested that these sequences served as signals capable of interacting with the VDJ recombinase complex, even though no homology with the traditional heptamer/spacer/nonamer (IgRSS) existed. Furthermore, the BCL2 signal sequences were employed in a bidirectional fashion and could mediate recombination of one mbr region with another. Segments homologous to the BCL2 signal sequences flanked individual members of the XP family of diversity gene segments, which were themselves highly overrepresented in the reciprocal products (18q-) of BCL2 translocation. We propose that the chi-like signal sequences of BCL2 represent a distinct class of recognition sites for the recombinase complex, responsible for initiating interactions between regions of DNA separated by great distances, and that BCL2 translocation begins by a recombination event between mbr and DXP chi signals. Since recombinant joints containing chi, not IgRSS, occur in brain cells expressing RAG-1 (Matsuoka, M., F. Nagawa, K. Okazaki, L. Kingsbury, K. Yoshida, U. Muller, D. T. Larue, J. A. Winer, and H. Sakano. 1991. Science [Wash. DC]. 254:81; reference 1), we further suggest that the product of this gene could mediate both BCL2 translocation and the first step of normal DJ assembly through the creation of chi joints, rather than signal or coding joints. PMID:1588282
Stark, Batia; Jeison, Marta; Glaser-Gabay, Leticia; Bar-Am, Irit; Mardoukh, Jacques; Ash, Shifra; Atias, Dina; Stein, Jerry; Zaizov, Rina; Yaniv, Isaac
2003-07-18
Conventional cytogenetic, molecular cytogenic and genetic methods disclosed a broad spectrum of genetic abnormalities leading to gain and loss of chromosomal segments in advanced stage neuroblastoma (NBL). Specific correlation between the genetic findings could delineate distinct genetic pathways, of which the biology and prognostic significance is as yet undetermined. Using spectral karyotyping (SKY) and fluorescence in situ hybridization (FISH) on metaphases from 16 patients with advanced stage NBL, it was possible to explore the whole spectrum of rearrangement within complex karyotypes and to detect hidden recurrent translocations. All translocations were unbalanced. The most prevalent recurrent unbalanced translocations resulted in 17q gain in 12 patients (75%), 11q loss in nine patients (56%), and 1p deletion/imbalance in eight patients (50%). The most frequent recurrent translocation was der(11)t(11;17) in six patients. Three cytogenetic pathways could be delineated. The first, with six patients, was characterized by the unbalanced translocation der(11)t(11;17), detected only by SKY, resulting in the concomitant 17q gain and 11q loss. No MYCN amplification or 1p deletion (except one patient with 1p imbalance) were found, while 3p deletion, and complex karyotypes were common. The second subgroup, with four patients, had 17q gain and 1p deletion, and in two patients 11q loss, that was apparent only by FISH. 1p deletion occurred through der(1)t(1;17) or del(1p). The third subgroup of four patients was characterized by MYCN amplification with 17q gain and 1p deletion, very rarely with 11q loss (one patient) through a translocation with a non-17q partner. The SKY subclassifications were in accordance with the findings reported by molecular genetic techniques, and may indicate that distinct oncogenes and suppressor genes are involved in the der(11)t(11;17) pathway of advanced stage NBL.
Klotz, K H; Benz, R
1993-01-01
Stationary and kinetic experiments were performed on lipid bilayer membranes to study the mechanism of iodine- and bromine-mediated halide transport in detail. The stationary conductance data suggested that four different 1:1 complexes between I2 and Br2 and the halides I- and Br- were responsible for the observed conductance increase by iodine and bromine (I3-, I2Br-, Br2I-, and Br3-). Charge pulse experiments allowed the further elucidation of the transport mechanism. Only two of three exponential voltage relaxations predicted by the Läuger model could be resolved under all experimental conditions. This means that either the heterogeneous complexation reactions kR (association) and kD (dissociation) were too fast to be resolved or that the neutral carriers were always in equilibrium within the membrane. Experiments at different carrier and halide concentrations suggested that the translocation of the neutral carrier is much faster than the other processes involved in carrier-mediated ion transport. The model was modified accordingly. From the charge pulse data at different halide concentrations, the translocation rate constant of the complexed carriers, kAS, the dissociation constant, kD, and the total surface concentration of charged carriers, NAS, could be evaluated from one single charge pulse experiment. The association rate of the complex, kR, could be obtained in some cases from the plot of the stationary conductance data as a function of the halide concentration in the aqueous phase. The translocation rate constant, kAS, of the different complexes is a function of the image force and of the Born charging energy. It increases 5000-fold from Br3- to I3- because of an enlarged ion radius. PMID:8312500
Hwangbo, Cheol; Park, Juhee; Lee, Jeong-Hyung
2011-09-23
The integrin-linked kinase (ILK)-PINCH1-α-parvin (IPP) complex functions as a signaling platform for integrins that modulates various cellular processes. ILK functions as a central adaptor for the assembly of IPP complex. We report here that mda-9/syntenin, a positive regulator of cancer metastasis, regulates the activation of Akt (also known as protein kinase B) by facilitating ILK adaptor function during adhesion to type I collagen (COL-I) in human breast cancer cells. COL-I stimulation induced the phosphorylation and plasma membrane translocation of Akt. Inhibition of mda-9/syntenin or expression of mutant ILK (E359K) significantly blocked the translocation of both ILK and Akt to the plasma membrane. mda-9/syntenin associated with ILK, and this association was increased at the plasma membrane by COL-I stimulation. Knockdown of mda-9/syntenin impaired COL-I-induced association of ILK with Akt and plasma membrane targeting of ILK-Akt complex. These results demonstrated that mda-9/syntenin regulates the activation of Akt by controlling the plasma membrane targeting of Akt via a mechanism that facilitates the association of Akt with ILK at the plasma membrane during adhesion to COL-I. On a striking note, inhibition of mda-9/syntenin impaired COL-I-induced plasma membrane translocation of the IPP complex and assembly of integrin β1-IPP signaling complexes. Thus, our study defines the role of mda-9/syntenin in ILK adaptor function and describes a new mechanism of mda-9/syntenin for regulation of cell migration.
Sun, Jie-Jie; Lan, Jiang-Feng; Shi, Xiu-Zhen; Yang, Ming-Chong; Niu, Guo-Juan; Ding, Ding; Zhao, Xiao-Fan; Yu, Xiao-Qiang; Wang, Jin-Xing
2016-01-01
The Toll signaling pathway plays an important role in the innate immunity of Drosophila melanogaster and mammals. The activation and termination of Toll signaling are finely regulated in these animals. Although the primary components of the Toll pathway were identified in shrimp, the functions and regulation of the pathway are seldom studied. We first demonstrated that the Toll signaling pathway plays a central role in host defense against Staphylococcus aureus by regulating expression of antimicrobial peptides in shrimp. We then found that β-arrestins negatively regulate Toll signaling in two different ways. β-Arrestins interact with the C-terminal PEST domain of Cactus through the arrestin-N domain, and Cactus interacts with the RHD domain of Dorsal via the ankyrin repeats domain, forming a heterotrimeric complex of β-arrestin·Cactus·Dorsal, with Cactus as the bridge. This complex prevents Cactus phosphorylation and degradation, as well as Dorsal translocation into the nucleus, thus inhibiting activation of the Toll signaling pathway. β-Arrestins also interact with non-phosphorylated ERK (extracellular signal-regulated protein kinase) through the arrestin-C domain to inhibit ERK phosphorylation, which affects Dorsal translocation into the nucleus and phosphorylation of Dorsal at Ser276 that impairs Dorsal transcriptional activity. Our study suggests that β-arrestins negatively regulate the Toll signaling pathway by preventing Dorsal translocation and inhibiting Dorsal phosphorylation and transcriptional activity. PMID:26846853
Asif, Muhammad; Jamal, Mohammad Sarwar; Khan, Abdul Rehman; Naseer, Muhammad Imran; Hussain, Abrar; Choudhry, Hani; Malik, Arif; Khan, Shahida Aziz; Mahmoud, Maged Mostafa; Ali, Ashraf; Iram, Saima; Kamran, Kashif; Iqbal, Asim; Abduljaleel, Zainularifeen; Pushparaj, Peter Natesan; Rasool, Mahmood
2016-01-01
Philadelphia (Ph) chromosome (9;22)(q34;q11) is well established in more than 90% of chronic myeloid leukemia (CML) patients, and the remaining 5–8% of CML patients show variant and complex translocations, with the involvement of third, fourth, or fifth chromosome other than 9;22. However, in very rare cases, the fourth chromosome is involved. Here, we found a novel case of four-way Ph+ chromosome translocation involving 46,XY,t(4;9;19;22)(q25:q34;p13.3;q11.2) with CML in the chronic phase. Complete blood cell count of the CML patient was carried out to obtain total leukocytes count, hemoglobin, and platelets. Fluorescence in situ hybridization technique was used for the identification of BCR–ABL fusion gene, and cytogenetic test for the confirmation of Ph (9;22)(q34;q11) and the mechanism of variant translocation in the bone marrow. The patient is successfully treated with a dose of 400 mg/day imatinib mesylate (Gleevec). We observed a significant decrease in white blood cell count of 11.7 × 109/L after 48-month follow-up. Patient started feeling better generally. There was a reduction in the swelling of the body, fatigue, and anxiety. PMID:27303656
Spontaneous bimanual independence during parallel tapping and sawing.
Starke, Sandra Dorothee; Baber, Chris
2017-01-01
The performance of complex polyrhythms-rhythms where the left and right hand move at different rates-is usually the province of highly trained individuals. However, studies in which hand movement is guided haptically show that even novices can perform polyrhythms with no or only brief training. In this study, we investigated whether novices are able to tap with one hand by matching different rates of a metronome while sawing with the other hand. This experiment was based on the assumption that saw movement is controlled consistently at a predictable rate without the need for paying primary attention to it. It would follow that consciously matching different stipulated metronome rates with the other hand would result in the spontaneous performance of polyrhythms. Six experimental conditions were randomised: single handed tapping and sawing as well as four bimanual conditions with expected ratios of 1:1 (performed with and without matching a metronome) as well as 3:4 and 4:3 (performed matching a metronome). Results showed that participants executed the saw movement at a consistent cycle duration of 0.44 [0.20] s to 0.51 [0.19] s across single and bimanual conditions, with no significant effect of the condition on the cycle duration (p = 0.315). Similarly, free tapping was executed at a cycle duration of 0.48 [0.22] s. In the bimanual conditions, we found that for a ratio of 4:3 (4 taps against 3 sawing cycles per measure), the observed and predicted ratio of 0.75 were not significantly different (p = 0.369), supporting our hypothesis of the spontaneous adoption of polyrhythms. However, for a ratio of 3:4 (3 taps against 4 sawing cycles per measure), the observed and predicted ratio differed (p = 0.016), with a trend towards synchronisation. Our findings show that bimanual independence when performing complex polyrhythms can in principle be achieved if the movement of one hand can be performed without paying much-if any-attention to it. In this paradigm, small rhythmic arm movements are possibly driven by an intrinsic timing which leads to spontaneous convergence on a cycle duration of around 0.5 s, while the movement of the other hand can be controlled consciously to occur at desired rates.
Spontaneous bimanual independence during parallel tapping and sawing
Baber, Chris
2017-01-01
The performance of complex polyrhythms—rhythms where the left and right hand move at different rates—is usually the province of highly trained individuals. However, studies in which hand movement is guided haptically show that even novices can perform polyrhythms with no or only brief training. In this study, we investigated whether novices are able to tap with one hand by matching different rates of a metronome while sawing with the other hand. This experiment was based on the assumption that saw movement is controlled consistently at a predictable rate without the need for paying primary attention to it. It would follow that consciously matching different stipulated metronome rates with the other hand would result in the spontaneous performance of polyrhythms. Six experimental conditions were randomised: single handed tapping and sawing as well as four bimanual conditions with expected ratios of 1:1 (performed with and without matching a metronome) as well as 3:4 and 4:3 (performed matching a metronome). Results showed that participants executed the saw movement at a consistent cycle duration of 0.44 [0.20] s to 0.51 [0.19] s across single and bimanual conditions, with no significant effect of the condition on the cycle duration (p = 0.315). Similarly, free tapping was executed at a cycle duration of 0.48 [0.22] s. In the bimanual conditions, we found that for a ratio of 4:3 (4 taps against 3 sawing cycles per measure), the observed and predicted ratio of 0.75 were not significantly different (p = 0.369), supporting our hypothesis of the spontaneous adoption of polyrhythms. However, for a ratio of 3:4 (3 taps against 4 sawing cycles per measure), the observed and predicted ratio differed (p = 0.016), with a trend towards synchronisation. Our findings show that bimanual independence when performing complex polyrhythms can in principle be achieved if the movement of one hand can be performed without paying much—if any—attention to it. In this paradigm, small rhythmic arm movements are possibly driven by an intrinsic timing which leads to spontaneous convergence on a cycle duration of around 0.5 s, while the movement of the other hand can be controlled consciously to occur at desired rates. PMID:28542581
Zhang, Hongyan; Yang, Liquan; Zhou, Bingjiang; Liu, Weimin; Ge, Jiechao; Wu, Jiasheng; Wang, Ying; Wang, Pengfei
2013-09-15
An ultrasensitive and selective detection of mercury (II) was investigated using a laser scanning confocal imaging-surface plasmon resonance system (LSCI-SPR). The detection limit was as low as 0.01ng/ml for Hg(2+) ions in ultrapure and tap water based on a T-rich, single-stranded DNA (ssDNA)-modified gold film, which can be individually manipulated using specific T-Hg(2+)-T complex formation. The quenching intensity of the fluorescence images for rhodamine-labeled ssDNA fitted well with the changes in SPR. The changes varied with the Hg(2+) ion concentration, which is unaffected by the presence of other metal ions. The coefficients obtained for ultrapure and tap water were 0.99902 and 0.99512, respectively, for the linear part over a range of 0.01-100ng/ml. The results show that the double-effect sensor has potential for practical applications with ultra sensitivity and selectivity, especially in online or real-time monitoring of Hg(2+) ions pollution in tap water with the further improvement of portable LSCI-SPR instrument. Copyright © 2013 Elsevier B.V. All rights reserved.
Coordinated Voltage Control of Transformer Taps on account of Hierarchical Structure in Power System
NASA Astrophysics Data System (ADS)
Nakachi, Yoshiki; Kato, Satoshi; Ukai, Hiroyuki
Participation of distributed generators (DG), such as wind turbines, co-generation system etc., is natural trend from ecological point of view and will increase more and more. The outputs of these DGs mainly depend on weather condition but don't correspond to the changes of electrical load demand necessarily. On the other hand, due to the deregulation of electric power market, the power flow in power system will uncertainly vary with several power transactions. Thus, complex power flow by DGs or transactions will cause the voltage deviation. It will be difficult to sustain the voltage quality by using the conventional voltage/reactive power control in near future. In this paper, in order to avoid such a voltage deviation and to decrease the frequency of transformer tap actions, the coordinated voltage control scheme of transformer taps on account of hierarchical structure in power system is proposed. In the proposed scheme, integral of voltage deviation at each layer bus is applied to decide the timing of each transformer tap action. It is confirmed by some numerical simulations that the proposed scheme is able to respond to every conditions on voltage deviation.
Yip, C M; Brader, M L; Frank, B H; DeFelippis, M R; Ward, M D
2000-01-01
Crystallographic studies of insulin-protamine complexes, such as neutral protamine Hagedorn (NPH) insulin, have been hampered by high crystal solvent content, small crystal dimensions, and extensive disorder in the protamine molecules. We report herein in situ tapping mode atomic force microscopy (TMAFM) studies of crystalline neutral protamine Lys(B28)Pro(B29) (NPL), a complex of Lys(B28)Pro(B29) insulin, in which the C-terminal prolyl and lysyl residues of human insulin are inverted, and protamine that is used as an intermediate time-action therapy for treating insulin-dependent diabetes. Tapping mode AFM performed at 6 degrees C on bipyramidally tipped tetragonal rod-shaped NPL crystals revealed large micron-sized islands separated by 44-A tall steps. Lattice images obtained by in situ TMAFM phase and height imaging on these islands were consistent with the arrangement of individual insulin-protamine complexes on the P4(1)2(1)2 (110) crystal plane of NPH, based on a low-resolution x-ray diffraction structure of NPH, arguing that the NPH and NPL insulins are isostructural. Superposition of the height and phase images indicated that tip-sample adhesion was larger in the interstices between NPL complexes in the (110) crystal plane than over the individual complexes. These results demonstrate the utility of low-temperature TMAFM height and phase imaging for the structural characterization of biomolecular complexes. PMID:10620310
Lin, Ping-Yuan; Liu, Hung-Jen; Chang, Ching-Dong; Chen, Yo-Chia; Chang, Chi-I; Shih, Wen-Ling
2015-04-01
In this study the mechanism of avian reovirus (ARV) S1133-induced pathogenesis was investigated, with a focus on the contribution of ER stress to apoptosis. Our results showed that upregulation of the ER stress response protein, as well as caspase-3 activation, occurred in ARV S1133-infected cultured cells and in SPF White Leghorn chicks organs. Upon infection, Bim was translocated specifically to the ER, but not mitochondria, in the middle to late infectious stages. In addition, ARV S1133 induced JNK phosphorylation and promoted JNK-Bim complex formation, which correlated with the Bim translocation and apoptosis induction that was observed at the same time point. Knockdown of BiP/GRP78 by siRNA and inhibition of BiP/GRP78 using EGCG both abolished the formation of the JNK-Bim complex, caspase-3 activation, and subsequent apoptosis induction by ARV S1133 efficiently. These results suggest that BiP/GRP78 played critical roles and works upstream of JNK-Bim in response to the ARV S1133-mediated apoptosis process.
Kang, Jin Young; Olinares, Paul Dominic B; Chen, James; Campbell, Elizabeth A; Mustaev, Arkady; Chait, Brian T; Gottesman, Max E; Darst, Seth A
2017-01-01
Coliphage HK022 Nun blocks superinfection by coliphage λ by stalling RNA polymerase (RNAP) translocation specifically on λ DNA. To provide a structural framework to understand how Nun blocks RNAP translocation, we determined structures of Escherichia coli RNAP ternary elongation complexes (TECs) with and without Nun by single-particle cryo-electron microscopy. Nun fits tightly into the TEC by taking advantage of gaps between the RNAP and the nucleic acids. The C-terminal segment of Nun interacts with the RNAP β and β’ subunits inside the RNAP active site cleft as well as with nearly every element of the nucleic acid scaffold, essentially crosslinking the RNAP and the nucleic acids to prevent translocation, a mechanism supported by the effects of Nun amino acid substitutions. The nature of Nun interactions inside the RNAP active site cleft suggests that RNAP clamp opening is required for Nun to establish its interactions, explaining why Nun acts on paused TECs. DOI: http://dx.doi.org/10.7554/eLife.25478.001 PMID:28318486
Channel crossing: how are proteins shipped across the bacterial plasma membrane?
Collinson, Ian; Corey, Robin A; Allen, William J
2015-10-05
The structure of the first protein-conducting channel was determined more than a decade ago. Today, we are still puzzled by the outstanding problem of protein translocation--the dynamic mechanism underlying the consignment of proteins across and into membranes. This review is an attempt to summarize and understand the energy transducing capabilities of protein-translocating machines, with emphasis on bacterial systems: how polypeptides make headway against the lipid bilayer and how the process is coupled to the free energy associated with ATP hydrolysis and the transmembrane protein motive force. In order to explore how cargo is driven across the membrane, the known structures of the protein-translocation machines are set out against the background of the historic literature, and in the light of experiments conducted in their wake. The paper will focus on the bacterial general secretory (Sec) pathway (SecY-complex), and its eukaryotic counterpart (Sec61-complex), which ferry proteins across the membrane in an unfolded state, as well as the unrelated Tat system that assembles bespoke channels for the export of folded proteins. © 2015 The Authors.
Brownian dynamics of a protein-polymer chain complex in a solid-state nanopore
NASA Astrophysics Data System (ADS)
Wells, Craig C.; Melnikov, Dmitriy V.; Gracheva, Maria E.
2017-08-01
We study the movement of a polymer attached to a large protein inside a nanopore in a thin silicon dioxide membrane submerged in an electrolyte solution. We use Brownian dynamics to describe the motion of a negatively charged polymer chain of varying lengths attached to a neutral protein modeled as a spherical bead with a radius larger than that of the nanopore, allowing the chain to thread the nanopore but preventing it from translocating. The motion of the protein-polymer complex within the pore is also compared to that of a freely translocating polymer. Our results show that the free polymer's standard deviations in the direction normal to the pore axis is greater than that of the protein-polymer complex. We find that restrictions imposed by the protein, bias, and neighboring chain segments aid in controlling the position of the chain in the pore. Understanding the behavior of the protein-polymer chain complex may lead to methods that improve molecule identification by increasing the resolution of ionic current measurements.
Brownian dynamics of a protein-polymer chain complex in a solid-state nanopore.
Wells, Craig C; Melnikov, Dmitriy V; Gracheva, Maria E
2017-08-07
We study the movement of a polymer attached to a large protein inside a nanopore in a thin silicon dioxide membrane submerged in an electrolyte solution. We use Brownian dynamics to describe the motion of a negatively charged polymer chain of varying lengths attached to a neutral protein modeled as a spherical bead with a radius larger than that of the nanopore, allowing the chain to thread the nanopore but preventing it from translocating. The motion of the protein-polymer complex within the pore is also compared to that of a freely translocating polymer. Our results show that the free polymer's standard deviations in the direction normal to the pore axis is greater than that of the protein-polymer complex. We find that restrictions imposed by the protein, bias, and neighboring chain segments aid in controlling the position of the chain in the pore. Understanding the behavior of the protein-polymer chain complex may lead to methods that improve molecule identification by increasing the resolution of ionic current measurements.
Adam, Philip R; Barta, Michael L; Dickenson, Nicholas E
2017-01-01
In vitro characterization of type III secretion system (T3SS) translocator proteins has proven challenging due to complex purification schemes and their hydrophobic nature that often requires detergents to provide protein solubility and stability. Here, we provide experimental details for several techniques that overcome these hurdles, allowing for the direct characterization of the Shigella translocator protein IpaB with respect to phospholipid membrane interaction. The techniques specifically discussed in this chapter include membrane interaction/liposome flotation, liposome sensitive fluorescence quenching, and protein-mediated liposome disruption assays. These assays have provided valuable insight into the role of IpaB in T3SS-mediated phospholipid membrane interactions by Shigella and should readily extend to other members of this important class of proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano, Hiroyuki; Peck, Grantley R.; Blachon, Stephanie
Insulin increases glucose transport in fat and muscle cells by stimulating the exocytosis of specialized vesicles containing the glucose transporter GLUT4. This process, which is referred to as GLUT4 translocation, increases the amount of GLUT4 at the cell surface. Previous studies have provided evidence that insulin signaling increases the amount of Rab10-GTP in the GLUT4 vesicles and that GLUT4 translocation requires the exocyst, a complex that functions in the tethering of vesicles to the plasma membrane, leading to exocytosis. In the present study we show that Rab10 in its GTP form binds to Exoc6 and Exoc6b, which are the twomore » highly homologous isotypes of an exocyst subunit, that both isotypes are found in 3T3-L1 adipocytes, and that knockdown of Exoc6, Exoc6b, or both inhibits GLUT4 translocation in 3T3-L1 adipocytes. These results suggest that the association of Rab10-GTP with Exoc6/6b is a molecular link between insulin signaling and the exocytic machinery in GLUT4 translocation. - Highlights: • Insulin stimulates the fusion of vesicles containing GLUT4 with the plasma membrane. • This requires vesicular Rab10-GTP and the exocyst plasma membrane tethering complex. • We find that Rab10-GTP associates with the Exoc6 subunit of the exocyst. • We find that knockdown of Exoc6 inhibits fusion of GLUT4 vesicles with the membrane. • The interaction of Rab10-GTP with Exoc6 potentially links signaling to exocytosis.« less
Performance Evaluation of Membrane-Based Septic Tank and Its Reuse Potential for Irrigating Crops.
Khalid, Mehwish; Hashmi, Imran; Khan, Sher Jamal
2017-08-01
Membrane technology, being the most emerging wastewater treatment option, has gained substantial importance with the massive objective of the reuse potential of wastewater. Keeping this in view, the present study was conducted with the rationale to evaluate the performance efficiency of membrane-based septic tank (MBST), and its reuse perspective for irrigating crops. The septic tank was designed by submerging a woven fiber microfiltration membrane module to treat domestic wastewater. Three crops Triticum aestivum (wheat), Coriandrum sativum (coriander), and Mentha arvensis (mint) were selected to be irrigated with treated MBST effluent, untreated wastewater, and tap water (as a control) for comparative growth analysis. Two pathogenic strains, Escherichia coli and Salmonella sp. were selected as reference microbes and their translocation rate was observed in root, shoot, and leaves. Upon maturity, the roots, shoots, and leaves of the above-mentioned plants were aseptically removed for microbiological analysis. Strains were analyzed, using analytical profile index and PCR analysis. Maximum removal efficiencies for MBST in terms of chemical oxygen demand (COD), turbidity, nutrients deduction (phosphorus), and indicator bacteria (Escherichia coli) were found to be 73, 96, 48, and 88%, respectively. Significant bacterial load reduction (p < 0.001) in terms of E. coli (3.8 log CFU/100 mL) and helminths (2 eggs/L) was observed in treated water. High plant yield was observed when irrigated with treated water as compared to tap water, as minimal nutrient removal (48%) was recorded in treated water, with the germination percentage of 88.8%.
Atomic model for the dimeric FO region of mitochondrial ATP synthase.
Guo, Hui; Bueler, Stephanie A; Rubinstein, John L
2017-11-17
Mitochondrial adenosine triphosphate (ATP) synthase produces the majority of ATP in eukaryotic cells, and its dimerization is necessary to create the inner membrane folds, or cristae, characteristic of mitochondria. Proton translocation through the membrane-embedded F O region turns the rotor that drives ATP synthesis in the soluble F 1 region. Although crystal structures of the F 1 region have illustrated how this rotation leads to ATP synthesis, understanding how proton translocation produces the rotation has been impeded by the lack of an experimental atomic model for the F O region. Using cryo-electron microscopy, we determined the structure of the dimeric F O complex from Saccharomyces cerevisiae at a resolution of 3.6 angstroms. The structure clarifies how the protons travel through the complex, how the complex dimerizes, and how the dimers bend the membrane to produce cristae. Copyright © 2017, American Association for the Advancement of Science.
1994-01-01
The expression of class I major histocompatibility complex antigens on the surface of cells transformed by adenovirus 12 (Ad12) is generally very low, and correlates with the high oncogenicity of this virus. In primary embryonal fibroblasts from transgenic mice that express both endogenous H-2 genes and a miniature swine class I gene (PD1), Ad12- mediated transformation results in suppression of cell surface expression of all class I antigens. Although class I mRNA levels of PD1 and H-2Db are similar to those in nonvirally transformed cells, recognition of newly synthesized class I molecules by a panel of monoclonal antibodies is impaired, presumably as a result of inefficient assembly and transport of the class I molecules. Class I expression can be partially induced by culturing cells at 26 degrees C, or by coculture of cells with class I binding peptides at 37 degrees C. Analysis of steady state mRNA levels of the TAP1 and TAP2 transporter genes for Ad12-transformed cell lines revealed that they both are significantly reduced, TAP2 by about 100-fold and TAP1 by 5-10-fold. Reconstitution of PD1 and H-2Db, but not H-2Kb, expression is achieved in an Ad12-transformed cell line by stable transfection with a TAP2, but not a TAP1, expression construct. From these data it may be concluded that suppressed expression of peptide transporter genes, especially TAP2, in Ad12-transformed cells inhibits cell surface expression of class I molecules. The failure to fully reconstitute H- 2Db and H-2Kb expression indicates that additional factors are involved in controlling class I gene expression in Ad12-transformed cells. Nevertheless, these results suggest that suppression of peptide transporter genes might be an important mechanism whereby virus- transformed cells escape immune recognition in vivo. PMID:7519239
Effects of task complexity on rhythmic reproduction performance in adults.
Iannarilli, Flora; Vannozzi, Giuseppe; Iosa, Marco; Pesce, Caterina; Capranica, Laura
2013-02-01
The aim of the present study was to investigate the effect of task complexity on the capability to reproduce rhythmic patterns. Sedentary musically illiterate individuals (age: 34.8±4.2 yrs; M±SD) were administered a rhythmic test including three rhythmic patterns to be reproduced by means of finger-tapping, foot-tapping and walking. For the quantification of subjects' ability in the reproduction of rhythmic patterns, qualitative and quantitative parameters were submitted to analysis. A stereophotogrammetric system was used to reconstruct and evaluate individual performances. The findings indicated a good internal stability of the rhythmic reproduction, suggesting that the present experimental design is suitable to discriminate the participants' rhythmic ability. Qualitative aspects of rhythmic reproduction (i.e., speed of execution and temporal ratios between events) varied as a function of the perceptual-motor requirements of the rhythmic reproduction task, with larger reproduction deviations in the walking task. Copyright © 2013 Elsevier B.V. All rights reserved.
Hardware-efficient implementation of digital FIR filter using fast first-order moment algorithm
NASA Astrophysics Data System (ADS)
Cao, Li; Liu, Jianguo; Xiong, Jun; Zhang, Jing
2018-03-01
As the digital finite impulse response (FIR) filter can be transformed into the shift-add form of multiple small-sized firstorder moments, based on the existing fast first-order moment algorithm, this paper presents a novel multiplier-less structure to calculate any number of sequential filtering results in parallel. The theoretical analysis on its hardware and time-complexities reveals that by appropriately setting the degree of parallelism and the decomposition factor of a fixed word width, the proposed structure may achieve better area-time efficiency than the existing two-dimensional (2-D) memoryless-based filter. To evaluate the performance concretely, the proposed designs for different taps along with the existing 2-D memoryless-based filters, are synthesized by Synopsys Design Compiler with 0.18-μm SMIC library. The comparisons show that the proposed design has less area-time complexity and power consumption when the number of filter taps is larger than 48.
NASA Astrophysics Data System (ADS)
Anawe, P. A. L.; Fayomi, O. S. I.; Ayoola, A. A.; Popoola, A. P. I.
2018-06-01
The effect of SnO2/SiO2 nano particle dispersant on the performance characteristic of complex zinc multi-doped composite coating produced through electrodeposition is studied. The degradation behaviour in term of wear and chemical corrosion activities were considered as a major factor in service. The wear mass loss was carried out with the help of reciprocating tester. The electrochemical corrosion characteristics were investigated using linear polarization technique in 3.5% simulated sodium chloride media. The outcome of the analysis shows that the developed coating was seen to provide a sound anti wear characteristics in its multidoped state. The corrosion resistance properties were observed to be massive compared to the binary based sample. It is expected that this characteristic will impact on the performance life span of storage tap in oil and gas.
Suorsa, Marjaana; Rantala, Marjaana; Aro, Eva-Mari
2015-01-01
Photosystem II (PSII) core and light-harvesting complex II (LHCII) proteins in plant chloroplasts undergo reversible phosphorylation upon changes in light intensity (being under control of redox-regulated STN7 and STN8 kinases and TAP38/PPH1 and PSII core phosphatases). Shift of plants from growth light to high light results in an increase of PSII core phosphorylation, whereas LHCII phosphorylation concomitantly decreases. Exactly the opposite takes place when plants are shifted to lower light intensity. Despite distinct changes occurring in thylakoid protein phosphorylation upon light intensity changes, the excitation balance between PSII and photosystem I remains unchanged. This differs drastically from the canonical-state transition model induced by artificial states 1 and 2 lights that concomitantly either dephosphorylate or phosphorylate, respectively, both the PSII core and LHCII phosphoproteins. Analysis of the kinase and phosphatase mutants revealed that TAP38/PPH1 phosphatase is crucial in preventing state transition upon increase in light intensity. Indeed, tap38/pph1 mutant revealed strong concomitant phosphorylation of both the PSII core and LHCII proteins upon transfer to high light, thus resembling the wild type under state 2 light. Coordinated function of thylakoid protein kinases and phosphatases is shown to secure balanced excitation energy for both photosystems by preventing state transitions upon changes in light intensity. Moreover, PROTON GRADIENT REGULATION5 (PGR5) is required for proper regulation of thylakoid protein kinases and phosphatases, and the pgr5 mutant mimics phenotypes of tap38/pph1. This shows that there is a close cooperation between the redox- and proton gradient-dependent regulatory mechanisms for proper function of the photosynthetic machinery. PMID:25902812
Jadeja, Shahnawaz D.; Mansuri, Mohmmad Shoab; Singh, Mala; Dwivedi, Mitesh; Laddha, Naresh C.
2017-01-01
Background Autoimmunity has been implicated in the destruction of melanocytes from vitiligo skin. Major histocompatibility complex (MHC) class-II linked genes proteasome subunit beta 8 (PSMB8) and transporter associated with antigen processing 1 (TAP1), involved in antigen processing and presentation have been reported to be associated with several autoimmune diseases including vitiligo. Objectives To explore PSMB8 rs2071464 and TAP1 rs1135216 single nucleotide polymorphisms and to estimate the expression of PSMB8 and TAP1 in patients with vitiligo and unaffected controls from Gujarat. Methods PSMB8 rs2071464 polymorphism was genotyped using polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP) and TAP1 rs1135216 polymorphism was genotyped by amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) in 378 patients with vitiligo and 509 controls. Transcript levels of PSMB8 and TAP1 were measured in the PBMCs of 91 patients and 96 controls by using qPCR. Protein levels of PSMB8 were also determined by Western blot analysis. Results The frequency of ‘TT’ genotype of PSMB8 polymorphism was significantly lowered in patients with generalized and active vitiligo (p = 0.019 and p = 0.005) as compared to controls suggesting its association with the activity of the disease. However, TAP1 polymorphism was not associated with vitiligo susceptibility. A significant decrease in expression of PSMB8 at both transcript level (p = 0.002) as well as protein level (p = 0.0460) was observed in vitiligo patients as compared to controls. No significant difference was observed between patients and controls for TAP1 transcripts (p = 0.553). Interestingly, individuals with the susceptible CC genotype of PSMB8 polymorphism showed significantly reduced PSMB8 transcript level as compared to that of CT and TT genotypes (p = 0.009 and p = 0.003 respectively). Conclusions PSMB8 rs2071464 was associated with generalized and active vitiligo from Gujarat whereas TAP1 rs1135216 showed no association. The down-regulation of PSMB8 in patients with risk genotype ‘CC’ advocates the vital role of PSMB8 in the autoimmune basis of vitiligo. PMID:28700671
Lucero, Cynthia A; Cohen, Adam L; Trevino, Ingrid; Rupp, Angela Hammer; Harris, Michelle; Forkan-Kelly, Sinead; Noble-Wang, Judith; Jensen, Bette; Shams, Alicia; Arduino, Matthew J; LiPuma, John J; Gerber, Susan I; Srinivasan, Arjun
2011-11-01
We investigated a cluster of Burkholderia cepacia complex colonization in ventilated pediatric patients. Isolates from 15 patients, 2 sink drains, and several ventilator components were found to belong to a single B cenocepacia clone. Hospital tap water used during oral and tracheostomy care was identified as the most likely mechanism for transmission. Published by Mosby, Inc.
Sun, Jiying; Shi, Lin; Kinomura, Aiko; Fukuto, Atsuhiko; Horikoshi, Yasunori; Oma, Yukako; Harata, Masahiko; Ikura, Masae; Ikura, Tsuyoshi; Kanaar, Roland
2018-01-01
Chromosomal translocations are hallmarks of various types of cancers and leukemias. However, the molecular mechanisms of chromosome translocations remain largely unknown. The ataxia-telangiectasia mutated (ATM) protein, a DNA damage signaling regulator, facilitates DNA repair to prevent chromosome abnormalities. Previously, we showed that ATM deficiency led to the 11q23 chromosome translocation, the most frequent chromosome abnormalities in secondary leukemia. Here, we show that ARP8, a subunit of the INO80 chromatin remodeling complex, is phosphorylated after etoposide treatment. The etoposide-induced phosphorylation of ARP8 is regulated by ATM and ATR, and attenuates its interaction with INO80. The ATM-regulated phosphorylation of ARP8 reduces the excessive loading of INO80 and RAD51 onto the breakpoint cluster region. These findings suggest that the phosphorylation of ARP8, regulated by ATM, plays an important role in maintaining the fidelity of DNA repair to prevent the etoposide-induced 11q23 abnormalities. PMID:29759113
Translocations as Experiments in the Ecological Resilience of an Asocial Mega-Herbivore
Linklater, Wayne L.; Gedir, Jay V.; Law, Peter R.; Swaisgood, Ron R.; Adcock, Keryn; du Preez, Pierre; Knight, Michael H.; Kerley, Graham I. H.
2012-01-01
Species translocations are remarkable experiments in evolutionary ecology, and increasingly critical to biodiversity conservation. Elaborate socio-ecological hypotheses for translocation success, based on theoretical fitness relationships, are untested and lead to complex uncertainty rather than parsimonious solutions. We used an extraordinary 89 reintroduction and 102 restocking events releasing 682 black rhinoceros (Diceros bicornis) to 81 reserves in southern Africa (1981–2005) to test the influence of interacting socio-ecological and individual characters on post-release survival. We predicted that the socio-ecological context should feature more prominently after restocking than reintroduction because released rhinoceros interact with resident conspecifics. Instead, an interaction between release cohort size and habitat quality explained reintroduction success but only individuals' ages explained restocking outcomes. Achieving translocation success for many species may not be as complicated as theory suggests. Black rhino, and similarly asocial generalist herbivores without substantial predators, are likely to be resilient to ecological challenges and robust candidates for crisis management in a changing world. PMID:22295100
Translocations as experiments in the ecological resilience of an asocial mega-herbivore.
Linklater, Wayne L; Gedir, Jay V; Law, Peter R; Swaisgood, Ron R; Adcock, Keryn; du Preez, Pierre; Knight, Michael H; Kerley, Graham I H
2012-01-01
Species translocations are remarkable experiments in evolutionary ecology, and increasingly critical to biodiversity conservation. Elaborate socio-ecological hypotheses for translocation success, based on theoretical fitness relationships, are untested and lead to complex uncertainty rather than parsimonious solutions. We used an extraordinary 89 reintroduction and 102 restocking events releasing 682 black rhinoceros (Diceros bicornis) to 81 reserves in southern Africa (1981-2005) to test the influence of interacting socio-ecological and individual characters on post-release survival. We predicted that the socio-ecological context should feature more prominently after restocking than reintroduction because released rhinoceros interact with resident conspecifics. Instead, an interaction between release cohort size and habitat quality explained reintroduction success but only individuals' ages explained restocking outcomes. Achieving translocation success for many species may not be as complicated as theory suggests. Black rhino, and similarly asocial generalist herbivores without substantial predators, are likely to be resilient to ecological challenges and robust candidates for crisis management in a changing world.
Sun, Jiying; Shi, Lin; Kinomura, Aiko; Fukuto, Atsuhiko; Horikoshi, Yasunori; Oma, Yukako; Harata, Masahiko; Ikura, Masae; Ikura, Tsuyoshi; Kanaar, Roland; Tashiro, Satoshi
2018-05-08
Chromosomal translocations are hallmarks of various types of cancers and leukemias. However, the molecular mechanisms of chromosome translocations remain largely unknown. The ataxia-telangiectasia mutated (ATM) protein, a DNA damage signaling regulator, facilitates DNA repair to prevent chromosome abnormalities. Previously, we showed that ATM deficiency led to the 11q23 chromosome translocation, the most frequent chromosome abnormalities in secondary leukemia. Here, we show that ARP8, a subunit of the INO80 chromatin remodeling complex, is phosphorylated after etoposide treatment. The etoposide-induced phosphorylation of ARP8 is regulated by ATM and ATR, and attenuates its interaction with INO80. The ATM-regulated phosphorylation of ARP8 reduces the excessive loading of INO80 and RAD51 onto the breakpoint cluster region. These findings suggest that the phosphorylation of ARP8, regulated by ATM, plays an important role in maintaining the fidelity of DNA repair to prevent the etoposide-induced 11q23 abnormalities. © 2018, Sun et al.
Monshausen, Michaela; Gehring, Niels H; Kosik, Kenneth S
2004-01-01
Members of the Staufen family of RNA-binding proteins are highly conserved cytoplasmic RNA transporters associated with RNA granules. staufen2 is specifically expressed in neurons where the delivery of RNA to dendrites is thought to have a role in plasticity. We found that Staufen2 interacts with the nuclear pore protein p62, with the RNA export protein Tap and with the exon-exon junction complex (EJC) proteins Y14-Mago. The interaction of Staufen2 with the Y14-Mago heterodimer seems to represent a highly conserved complex as the same proteins are involved in the Staufen-mediated localization of oskar mRNA in Drosophila oocytes. A pool of Staufen2 is present in neuronal nuclei and colocalizes to a large degree with p62 and partly with Tap, Y14, and Mago. We suggest a model whereby a set of conserved genes in the oskar mRNA export pathway may be recruited to direct a dendritic destination for mRNAs originating as a Staufen2 nuclear complex.
O'Neill, Patrick R; Karunarathne, W K Ajith; Kalyanaraman, Vani; Silvius, John R; Gautam, N
2012-12-18
Activation of G-protein heterotrimers by receptors at the plasma membrane stimulates βγ-complex dissociation from the α-subunit and translocation to internal membranes. This intermembrane movement of lipid-modified proteins is a fundamental but poorly understood feature of cell signaling. The differential translocation of G-protein βγ-subunit types provides a valuable experimental model to examine the movement of signaling proteins between membranes in a living cell. We used live cell imaging, mathematical modeling, and in vitro measurements of lipidated fluorescent peptide dissociation from vesicles to determine the mechanistic basis of the intermembrane movement and identify the interactions responsible for differential translocation kinetics in this family of evolutionarily conserved proteins. We found that the reversible translocation is mediated by the limited affinity of the βγ-subunits for membranes. The differential kinetics of the βγ-subunit types are determined by variations among a set of basic and hydrophobic residues in the γ-subunit types. G-protein signaling thus leverages the wide variation in membrane dissociation rates among different γ-subunit types to differentially control βγ-translocation kinetics in response to receptor activation. The conservation of primary structures of γ-subunits across mammalian species suggests that there can be evolutionary selection for primary structures that confer specific membrane-binding affinities and consequent rates of intermembrane movement.
Spontaneous Tl(I)-to-Tl(III) oxidation in dynamic heterobimetallic Hg(II)/Tl(I) porphyrin complexes.
Ndoyom, Victoria; Fusaro, Luca; Roisnel, Thierry; Le Gac, Stéphane; Boitrel, Bernard
2016-01-11
Strapped heterobimetallic Hg(II)/Tl(I) porphyrin complexes, with both metal ions bridged by the N-core in a dynamic way, undergo spontaneous Tl(I)-to-Tl(III) oxidation leading to a mono-Tl(III) complex and a mixed valence Tl(I)/Tl(III) bimetallic complex. It provides a new opportunity to tune metal ion translocations in bimetallic porphyrin systems.
Evidence for glycoprotein transport into complex plastids.
Peschke, Madeleine; Moog, Daniel; Klingl, Andreas; Maier, Uwe G; Hempel, Franziska
2013-06-25
Diatoms are microalgae that possess so-called "complex plastids," which evolved by secondary endosymbiosis and are surrounded by four membranes. Thus, in contrast to primary plastids, which are surrounded by only two membranes, nucleus-encoded proteins of complex plastids face additional barriers, i.e., during evolution, mechanisms had to evolve to transport preproteins across all four membranes. This study reveals that there exist glycoproteins not only in primary but also in complex plastids, making transport issues even more complicated, as most translocation machineries are not believed to be able to transport bulky proteins. We show that plastidal reporter proteins with artificial N-glycosylation sites are indeed glycosylated during transport into the complex plastid of the diatom Phaeodactylum tricornutum. Additionally, we identified five endogenous glycoproteins, which are transported into different compartments of the complex plastid. These proteins get N-glycosylated during transport across the outermost plastid membrane and thereafter are transported across the second, third, and fourth plastid membranes in the case of stromal proteins. The results of this study provide insights into the evolutionary pressure on translocation mechanisms and pose unique questions on the operating mode of well-known transport machineries like the translocons of the outer/inner chloroplast membranes (Toc/Tic).
USDA-ARS?s Scientific Manuscript database
Understanding the potential for invasive spread is an important consideration for novel agricultural species that may be translocated or introduced into new regions. However, estimating invasion risks remains a challenging problem, particularly in the context of real, complex landscapes. There is ...
Si, H; Lu, H; Yang, X; Mattox, A; Jang, M; Bian, Y; Sano, E; Viadiu, H; Yan, B; Yau, C; Ng, S; Lee, S K; Romano, R-A; Davis, S; Walker, R L; Xiao, W; Sun, H; Wei, L; Sinha, S; Benz, C C; Stuart, J M; Meltzer, P S; Van Waes, C; Chen, Z
2016-11-03
The Cancer Genome Atlas (TCGA) network study of 12 cancer types (PanCancer 12) revealed frequent mutation of TP53, and amplification and expression of related TP63 isoform ΔNp63 in squamous cancers. Further, aberrant expression of inflammatory genes and TP53/p63/p73 targets were detected in the PanCancer 12 project, reminiscent of gene programs comodulated by cREL/ΔNp63/TAp73 transcription factors we uncovered in head and neck squamous cell carcinomas (HNSCCs). However, how inflammatory gene signatures and cREL/p63/p73 targets are comodulated genome wide is unclear. Here, we examined how the inflammatory factor tumor necrosis factor-α (TNF-α) broadly modulates redistribution of cREL with ΔNp63α/TAp73 complexes and signatures genome wide in the HNSCC model UM-SCC46 using chromatin immunoprecipitation sequencing (ChIP-seq). TNF-α enhanced genome-wide co-occupancy of cREL with ΔNp63α on TP53/p63 sites, while unexpectedly promoting redistribution of TAp73 from TP53 to activator protein-1 (AP-1) sites. cREL, ΔNp63α and TAp73 binding and oligomerization on NF-κB-, TP53- or AP-1-specific sequences were independently validated by ChIP-qPCR (quantitative PCR), oligonucleotide-binding assays and analytical ultracentrifugation. Function of the binding activity was confirmed using TP53-, AP-1- and NF-κB-specific REs or p21, SERPINE1 and IL-6 promoter luciferase reporter activities. Concurrently, TNF-α regulated a broad gene network with cobinding activities for cREL, ΔNp63α and TAp73 observed upon array profiling and reverse transcription-PCR. Overlapping target gene signatures were observed in squamous cancer subsets and in inflamed skin of transgenic mice overexpressing ΔNp63α. Furthermore, multiple target genes identified in this study were linked to TP63 and TP73 activity and increased gene expression in large squamous cancer samples from PanCancer 12 TCGA by CircleMap. PARADIGM inferred pathway analysis revealed the network connection of TP63 and NF-κB complexes through an AP-1 hub, further supporting our findings. Thus, inflammatory cytokine TNF-α mediates genome-wide redistribution of the cREL/p63/p73, and AP-1 interactome, to diminish TAp73 tumor suppressor function and reciprocally activate NF-κB and AP-1 gene programs implicated in malignancy.
Interaction of Arrestin with Enolase1 in Photoreceptors
Bolch, Susan; Dugger, Donald R.; Li, Jian; Esquenazi, Isi; Arendt, Anatol; Benzenhafer, Del; McDowell, J. Hugh
2011-01-01
Purpose. Arrestin is in disequilibrium in photoreceptors, translocating between inner and outer segments in response to light. The purpose of this project was to identify the cellular component with which arrestin associates in the dark-adapted retina. Methods. Retinas were cross-linked with 2.5 mM dithiobis(succinimidylpropionate) (DSP), and arrestin-containing complexes purified by anion-exchange chromatography. Tandem mass spectrometric analysis was used to identify the protein components in the complex. Enolase localization in photoreceptors was assessed by immunohistochemistry. Confirmation of interacting components was performed using immunoprecipitation and surface plasmon resonance (SPR). Enolase activity was also assessed in the presence of arrestin1. Results. In retinas treated with DSP, arrestin cross-linked in a 125-kDa complex. The principal components of this complex were arrestin1 and enolase1. Both arrestin1 and -4 were pulled down with enolase1 when enolase1 was immunoprecipitated. In the dark-adapted retina, enolase1 co-localized with arrestin1 in the inner segments and outer nuclear layer, but remained in the inner segments when arrestin1 translocated in response to light adaptation. SPR of purified arrestin1 and enolase1 demonstrated direct binding between arrestin1 and enolase1. Arrestin1 modulated the catalytic activity of enolase1, slowing it by as much as 24%. Conclusions. The results show that in the dark-adapted retina, arrestin1 and -4 interact with enolase1. The SPR data show that the interaction between arrestin1 and enolase1 was direct, not requiring a third element to form the complex. Arrestin1 slowed the catalytic activity of enolase1, suggesting that light-driven translocation of arrestin1 may modulate the metabolic activity of photoreceptors. PMID:21051714
Interaction of arrestin with enolase1 in photoreceptors.
Smith, W Clay; Bolch, Susan; Dugger, Donald R; Li, Jian; Esquenazi, Isi; Arendt, Anatol; Benzenhafer, Del; McDowell, J Hugh
2011-03-01
Arrestin is in disequilibrium in photoreceptors, translocating between inner and outer segments in response to light. The purpose of this project was to identify the cellular component with which arrestin associates in the dark-adapted retina. Retinas were cross-linked with 2.5 mM dithiobis(succinimidylpropionate) (DSP), and arrestin-containing complexes purified by anion-exchange chromatography. Tandem mass spectrometric analysis was used to identify the protein components in the complex. Enolase localization in photoreceptors was assessed by immunohistochemistry. Confirmation of interacting components was performed using immunoprecipitation and surface plasmon resonance (SPR). Enolase activity was also assessed in the presence of arrestin1. In retinas treated with DSP, arrestin cross-linked in a 125-kDa complex. The principal components of this complex were arrestin1 and enolase1. Both arrestin1 and -4 were pulled down with enolase1 when enolase1 was immunoprecipitated. In the dark-adapted retina, enolase1 co-localized with arrestin1 in the inner segments and outer nuclear layer, but remained in the inner segments when arrestin1 translocated in response to light adaptation. SPR of purified arrestin1 and enolase1 demonstrated direct binding between arrestin1 and enolase1. Arrestin1 modulated the catalytic activity of enolase1, slowing it by as much as 24%. The results show that in the dark-adapted retina, arrestin1 and -4 interact with enolase1. The SPR data show that the interaction between arrestin1 and enolase1 was direct, not requiring a third element to form the complex. Arrestin1 slowed the catalytic activity of enolase1, suggesting that light-driven translocation of arrestin1 may modulate the metabolic activity of photoreceptors.
Dicker, Frank; Schnittger, Susanne; Haferlach, Torsten; Kern, Wolfgang; Schoch, Claudia
2006-11-01
Compared with fluorescence in situ hybridization (FISH), conventional metaphase cytogenetics play only a minor prognostic role in chronic lymphocytic leukemia (CLL) so far, due to technical problems resulting from limited proliferation of CLL cells in vitro. Here, we present a simple method for in vitro stimulation of CLL cells that overcomes this limitation. In our unselected patient population, 125 of 132 cases could be successfully stimulated for metaphase generation by culture with the immunostimulatory CpG-oligonucleotide DSP30 plus interleukin 2. Of 125 cases, 101 showed chromosomal aberrations. The aberration rate is comparable to the rate detected by parallel interphase FISH. In 47 patients, conventional cytogenetics detected additional aberrations not detected by FISH analysis. A complex aberrant karyotype, defined as one having at least 3 aberrations, was detected in 30 of 125 patients, compared with only one such case as defined by FISH. Conventional cytogenetics frequently detected balanced and unbalanced translocations. A significant correlation of the poor-prognosis unmutated IgV(H) status with unbalanced translocations and of the likewise poor-prognosis CD38 expression to balanced translocations and complex aberrant karyotype was found. We demonstrate that FISH analysis underestimates the complexity of chromosomal aberrations in CLL. Therefore, conventional cytogenetics may define subgroups of patients with high risk of progression.
Reciprocal translocation of small numbers of inbred individuals rescues immunogenetic diversity.
Grueber, Catherine E; Sutton, Jolene T; Heber, Sol; Briskie, James V; Jamieson, Ian G; Robertson, Bruce C
2017-05-01
Genetic rescue can reduce inbreeding depression and increase fitness of small populations, even when the donor populations are highly inbred. In a recent experiment involving two inbred island populations of the New Zealand South Island robin, Petroica australis, reciprocal translocations improved microsatellite diversity and individual fitness. While microsatellite loci may reflect patterns of genome-wide diversity, they generally do not indicate the specific genetic regions responsible for increased fitness. We tested the effectiveness of this reciprocal translocation for rescuing diversity of two immunogenetic regions: Toll-like receptor (TLR) and major histocompatibility complex (MHC) genes. We found that the relatively small number of migrants (seven and ten per island) effectively brought the characteristic TLR gene diversity of each source population into the recipient population. However, when migrants transmitted TLR alleles that were already present at high frequency in the recipient population, it was possible for offspring of mixed heritage to have decreased gene diversity compared to recipient population diversity prior to translocation. In contrast to TLRs, we did not observe substantial changes in MHC allelic diversity following translocation, with limited evidence of a decrease in differentiation, perhaps because most MHC alleles were observed at both sites prior to the translocation. Overall, we conclude that small numbers of migrants may successfully restore the diversity of immunogenetic loci with few alleles, but that translocating larger numbers of animals would provide additional opportunity for the genetic rescue of highly polymorphic immunity regions, such as the MHC, even when the source population is inbred. © 2017 John Wiley & Sons Ltd.
Schleiermacher, Gudrun; Bourdeaut, Franck; Combaret, Valérie; Picrron, Gaelle; Raynal, Virginie; Aurias, Alain; Ribeiro, Agnes; Janoueix-Lerosey, Isabelle; Delattre, Olivier
2005-05-05
In neuroblastoma, the most frequent genetic alterations are unbalanced translocations involving chromosome 17. To gain insights into these rearrangements, we have characterized a previously identified der(1)t(1;17) of the CLB-Bar cell line. The 17q breakpoint was mapped by FISH. Subsequently, a rearranged fragment was identified by Southern analysis, cloned in a lambda vector and sequenced. The chromosome rearrangement is more complex than expected due to the presence of an interstitial 4p telomeric sequence between chromosome 1p and 17q. Three different genes, which may play a role in neuroblastoma development, are disrupted by the translocation breakpoints. Indeed, the 3'UTR of the PIP5K2B gene on chromosome 17q is directly fused to the (TTAGGG)n repeat of the chromosome 4p telomere, and the (1;4) fusion disrupts the MACF1 (microtubule-actin crosslinking factor 1) and POLN genes, respectively. Interestingly, the (1;4) fusion was present at diagnosis and at relapse, whereas the (4;17) fusion was detected at relapse only, leading to a secondary 17q gain confirmed by array CGH therefore indicating that 17q gain may not be a primary event in neuroblastoma. Finally, screening of a panel of neuroblastoma cell lines identified interstitial telomeric sequences in three other cases, suggesting that this may be a recurrent mechanism leading to unbalanced translocations in neuroblastoma.
Role of membrane contact sites in protein import into mitochondria
Horvath, Susanne E; Rampelt, Heike; Oeljeklaus, Silke; Warscheid, Bettina; van der Laan, Martin; Pfanner, Nikolaus
2015-01-01
Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long-standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence-carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture. PMID:25514890
Minakata, Daisuke; Sato, Kazuya; Ikeda, Takashi; Toda, Yumiko; Ito, Shoko; Mashima, Kiyomi; Umino, Kento; Nakano, Hirofumi; Yamasaki, Ryoko; Morita, Kaoru; Kawasaki, Yasufumi; Sugimoto, Miyuki; Yamamoto, Chihiro; Ashizawa, Masahiro; Hatano, Kaoru; Oh, Iekuni; Fujiwara, Shin-Ichiro; Ohmine, Ken; Kawata, Hirotoshi; Muroi, Kazuo; Miura, Ikuo; Kanda, Yoshinobu
2018-01-01
Double-hit lymphoma (DHL) is defined as lymphoma with concurrent BCL2 and MYC translocations. While the most common histological subtype of DHL is diffuse large B-cell lymphoma, the present patient had leukemic follicular lymphoma (FL). A 52-year-old man was admitted to our hospital due to general fatigue and cervical and inguinal lymph node swelling. The patient was leukemic and the pathological diagnosis of the inguinal lymph node was FL grade 1. Chromosomal analysis revealed a complex karyotype including a rare three-way translocation t(8;14;18)(q24;q32;q21) involving the BCL2, MYC, and IGH genes. Based on a combination of fluorescence in situ hybridization (FISH), using BCL2, MYC and IGH, and spectral karyotyping (SKY), the karyotype was interpreted as being the result of a multistep mechanism in which the precursor B-cell gained t(14;18) in the bone marrow and acquired a translocation between der(14)t(14;18) and chromosome 8 in the germinal center, resulting in t(8;14;18). The pathological diagnosis was consistently FL, not only at presentation but even after a second relapse. The patient responded well to standard chemotherapies but relapsed after a short remission. This patient is a unique case of leukemic DH-FL with t(8;14;18) that remained in FL even at a second relapse. Copyright © 2017 Elsevier Inc. All rights reserved.
Tenzer, S; Peters, B; Bulik, S; Schoor, O; Lemmel, C; Schatz, M M; Kloetzel, P-M; Rammensee, H-G; Schild, H; Holzhütter, H-G
2005-05-01
Epitopes presented by major histocompatibility complex (MHC) class I molecules are selected by a multi-step process. Here we present the first computational prediction of this process based on in vitro experiments characterizing proteasomal cleavage, transport by the transporter associated with antigen processing (TAP) and MHC class I binding. Our novel prediction method for proteasomal cleavages outperforms existing methods when tested on in vitro cleavage data. The analysis of our predictions for a new dataset consisting of 390 endogenously processed MHC class I ligands from cells with known proteasome composition shows that the immunological advantage of switching from constitutive to immunoproteasomes is mainly to suppress the creation of peptides in the cytosol that TAP cannot transport. Furthermore, we show that proteasomes are unlikely to generate MHC class I ligands with a C-terminal lysine residue, suggesting processing of these ligands by a different protease that may be tripeptidyl-peptidase II (TPPII).
Two-Dimensional Neutronic and Fuel Cycle Analysis of the Transatomic Power Molten Salt Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betzler, Benjamin R.; Powers, Jeffrey J.; Worrall, Andrew
2017-01-15
This status report presents the results from the first phase of the collaboration between Transatomic Power Corporation (TAP) and Oak Ridge National Laboratory (ORNL) to provide neutronic and fuel cycle analysis of the TAP core design through the Department of Energy Gateway for Accelerated Innovation in Nuclear, Nuclear Energy Voucher program. The TAP design is a molten salt reactor using movable moderator rods to shift the neutron spectrum in the core from mostly epithermal at beginning of life to thermal at end of life. Additional developments in the ChemTriton modeling and simulation tool provide the critical moderator-to-fuel ratio searches andmore » time-dependent parameters necessary to simulate the continuously changing physics in this complex system. Results from simulations with these tools show agreement with TAP-calculated performance metrics for core lifetime, discharge burnup, and salt volume fraction, verifying the viability of reducing actinide waste production with this design. Additional analyses of time step sizes, mass feed rates and enrichments, and isotopic removals provide additional information to make informed design decisions. This work further demonstrates capabilities of ORNL modeling and simulation tools for analysis of molten salt reactor designs and strongly positions this effort for the upcoming three-dimensional core analysis.« less
Scharoun, S M; Bryden, P J; Otipkova, Z; Musalek, M; Lejcarova, A
2013-11-01
Attention-deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed neurobehavioural disorder. Characterized by recurring problems with impulsiveness and inattention in combination with hyperactivity, motor impairments have also been well documented in the literature. The aim of this study was to compare the fine and gross motor skills of male and female children with ADHD and their neurotypical counterparts within seven skill assessments. This included three fine motor tasks: (1) spiral tracing, (2) dot filling, (3) tweezers and beads; and four gross motor tasks: (1) twistbox, (2) foot tapping, (3) small plate finger tapping, and (4) large plate finger tapping. It was hypothesized that children with ADHD would display poorer motor skills in comparison to neurotypical controls in both fine and gross motor assessments. However, statistically significant differences between the groups only emerged in four of the seven tasks (spiral tracing, dot filling, tweezers and beads and foot tapping). In line with previous findings, the complexity underlying upper limb tasks solidified the divide in performance between children with ADHD and their neurotypical counterparts. In light of similar research, impairments in lower limb motor skill were also observed. Future research is required to further delineate trends in motor difficulties in ADHD, while further investigating the underlying mechanisms of impairment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Continuum Mechanical and Computational Aspects of Material Behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fried, Eliot
2015-02-11
Fluid flows are typically classified as laminar or turbulent. While the glassy, regular flow of water from a slightly opened tap is laminar, the sinuous, irregular flow of water from a fully opened tap is turbulent. In a laminar flow, the velocity and other relevant fields are deterministic functions of position and time. Photos taken at different times, no matter how far removed, of steady laminar flow from a tap will be identical. In a turbulent flow, the velocity and other relevant fields manifest complex spatial and temporal fluctuations. A video of steady turbulent flow from a tap will exhibitmore » a constantly changing pattern and many length and time scales. In nature and technology, laminar flows are more the exception than the rule. Fluvial, oceanic, pyroclastic, atmospheric, and interstellar flows are generally turbulent, as are the flows of blood through the left ventricle and air in the lungs. Flows around land, sea, and air vehicles and through pipelines, heating, cooling, and ventilation systems are generally turbulent, as are most flows involved in industrial processing, combustion, chemical reactions, and crystal growth. Over the past year, a significant portion of our research activity has focused on numerical studies of Navier-Stokes-αβ model and extensions thereof. Our results regarding these and other approaches to turbulence modeling are described below.« less
Griersmith, Thérèse H; Fung, Alison M; Walker, Susan P
2014-12-01
Monochorionic twins as part of a high order multiple pregnancy can be an unintended consequence of the increasingly common practice of blastocyst transfer for couples requiring in vitro fertilisation (IVF) for infertility. Dichorionic triamniotic (DCTA) triplets is the most common presentation, and these pregnancies are particularly high risk because of the additional risks associated with monochorionicity. Surveillance for twin-to-twin transfusion syndrome, including twin anemia polycythemia sequence, may be more difficult, and any intervention to treat the monochorionic pair needs to balance the proposed benefits against the risks posed to the unaffected singleton. Counseling of families with DCTA triplets is therefore complex. Here, we report a case of DCTA triplets, where the pregnancy was complicated by threatened preterm labour, and twin anemia polycythemia sequence (TAPS) was later diagnosed at 28 weeks. The TAPS was managed with a single intraperitoneal transfusion, enabling safe prolongation of the pregnancy for over 2 weeks until recurrence of TAPS and preterm labour supervened. Postnatal TAPS was confirmed, and all three infants were later discharged home at term corrected age, and were normal at follow-up. This case highlights that in utero therapy has an important role in multiple pregnancies of mixed chorionicity, and can achieve safe prolongation of pregnancy at critical gestations.
Hande, M Prakash; Azizova, Tamara V; Burak, Ludmilla E; Khokhryakov, Valentin F; Geard, Charles R; Brenner, David J
2005-09-01
Long-lived, sensitive, and specific biomarkers of particular mutagenic agents are much sought after and potentially have broad applications in the fields of cancer biology, epidemiology, and prevention. Many clastogens induce a spectrum of chromosome aberrations, and some of them can be exploited as biomarkers of exposure. Densely ionizing radiation, for example, alpha particle radiation (from radon or plutonium) and neutron radiation, preferentially induces complex chromosome aberrations, which can be detected by the 24-color multifluor fluorescence in situ hybridization (mFISH) technique. We report the detection and quantification of stable complex chromosome aberrations in lymphocytes of healthy former nuclear-weapons workers, who were exposed many years ago to plutonium, gamma rays, or both, at the Mayak weapons complex in Russia. We analyzed peripheral-blood lymphocytes from these individuals for the presence of persistent complex chromosome aberrations. A significantly elevated frequency of complex chromosome translocations was detected in the highly exposed plutonium workers but not in the group exposed only to high doses of gamma radiation. No such differences were found for simple chromosomal aberrations. The results suggest that stable complex chromosomal translocations represent a long-lived, quantitative, low-background biomarker of densely ionizing radiation for human populations exposed many years ago. (c) 2005 Wiley-Liss, Inc.
Tic40, a membrane-anchored co-chaperone homolog in the chloroplast protein translocon
Chou, Ming-Lun; Fitzpatrick, Lynda M.; Tu, Shuh-Long; Budziszewski, Gregory; Potter-Lewis, Sharon; Akita, Mitsuru; Levin, Joshua Z.; Keegstra, Kenneth; Li, Hsou-min
2003-01-01
The function of Tic40 during chloroplast protein import was investigated. Tic40 is an inner envelope membrane protein with a large hydrophilic domain located in the stroma. Arabidopsis null mutants of the atTic40 gene were very pale green and grew slowly but were not seedling lethal. Isolated mutant chloroplasts imported precursor proteins at a lower rate than wild-type chloroplasts. Mutant chloroplasts were normal in allowing binding of precursor proteins. However, during subsequent translocation across the inner membrane, fewer precursors were translocated and more precursors were released from the mutant chloroplasts. Cross-linking experiments demonstrated that Tic40 was part of the translocon complex and functioned at the same stage of import as Tic110 and Hsp93, a member of the Hsp100 family of molecular chaperones. Tertiary structure prediction and immunological studies indicated that the C-terminal portion of Tic40 contains a TPR domain followed by a domain with sequence similarity to co-chaperones Sti1p/Hop and Hip. We propose that Tic40 functions as a co-chaperone in the stromal chaperone complex that facilitates protein translocation across the inner membrane. PMID:12805212
Structure-based nuclear import mechanism of histones H3 and H4 mediated by Kap123
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Sojin; Yoon, Jungmin; Kim, Hanseong
Kap123, a major karyopherin protein of budding yeast, recognizes the nuclear localization signals (NLSs) of cytoplasmic histones H3 and H4 and translocates them into the nucleus during DNA replication. Mechanistic questions include H3- and H4-NLS redundancy toward Kap123 and the role of the conserved diacetylation of cytoplasmic H4 (K5ac and K12ac) in Kap123-mediated histone nuclear translocation. Here, we report crystal structures of full-length Kluyveromyces lactis Kap123 alone and in complex with H3- and H4-NLSs. Structures reveal the unique feature of Kap123 that possesses two discrete lysine-binding pockets for NLS recognition. Structural comparison illustrates that H3- and H4-NLSs share at leastmore » one of two lysine-binding pockets, suggesting that H3- and H4-NLSs are mutually exclusive. Additionally, acetylation of key lysine residues at NLS, particularly H4-NLS diacetylation, weakens the interaction with Kap123. These data support that cytoplasmic histone H4 diacetylation weakens the Kap123-H4-NLS interaction thereby facilitating histone Kap123-H3-dependent H3:H4/Asf1 complex nuclear translocation.« less
Wang, ShuTing; Dong, Qin; Wang, ZhaoLong
2017-11-01
Organic acids play an important role in cadmium availability, uptake, translocation, and detoxification. A sand culture experiment was designed to investigate the effects of citric acid on Cd uptake, translocation, and accumulation in tall fescue and Kentucky bluegrass. The results showed that two grass species presented different Cd chemical forms, organic acid components and amount in roots. The dormant Cd accumulated in roots of tall fescue was the pectate- and protein- integrated form, which contributed by 84.85%. However, in Kentucky bluegrass, the pectate- and protein- integrated Cd was only contributed by 35.78%, and the higher proportion of Cd form was the water soluble Cd-organic acid complexes. In tall fescue, citric acid dramatically enhanced 2.8 fold of Cd uptake, 3 fold of root Cd accumulation, and 2.3 fold of shoot Cd accumulation. In Kentucky bluegrass, citric acid promoted Cd accumulation in roots, but significantly decreased Cd accumulation in shoots. These results suggested that the enhancements of citric acid on Cd uptake, translocation, and accumulation in tall fescue was associated with its promotion of organic acids and the water soluble Cd-organic acid complexes in roots. Copyright © 2017 Elsevier Inc. All rights reserved.
Gutiérrez-Sanz, Oscar; Forbrig, Enrico; Batista, Ana P; Pereira, Manuela M; Salewski, Johannes; Mroginski, Maria A; Götz, Robert; De Lacey, Antonio L; Kozuch, Jacek; Zebger, Ingo
2018-05-22
Respiratory complex I (CpI) is a key player in the way organisms obtain energy, being an energy transducer, which couples nicotinamide adenine dinucleotide (NADH)/quinone oxidoreduction with proton translocation by a mechanism that remains elusive so far. In this work, we monitored the function of CpI in a biomimetic, supported lipid membrane system assembled on a 4-aminothiophenol (4-ATP) self-assembled monolayer by surface-enhanced infrared absorption spectroscopy. 4-ATP serves not only as a linker molecule to a nanostructured gold surface but also as pH sensor, as indicated by concomitant density functional theory calculations. In this way, we were able to monitor NADH/quinone oxidoreduction-induced transmembrane proton translocation via the protonation state of 4-ATP, depending on the net orientation of CpI molecules induced by two complementary approaches. An associated change of the amide I/amide II band intensity ratio indicates conformational modifications upon catalysis which may involve movements of transmembrane helices or other secondary structural elements, as suggested in the literature [ Di Luca , Proc. Natl. Acad. Sci. U.S.A. , 2017 , 114 , E6314 - E6321 ].
Tanaka, K; Popp, S; Fischer, C; Van Kaick, G; Kamada, N; Cremer, T; Cremer, C
1996-07-01
Chromosomal translocations in peripheral lymphocytes of three healthy Hiroshima atomic (A)-bomb survivors, as well as three Thorotrast patients and two non-irradiated age-matched control persons from the German Thorotrast study were studied by two- and three-colour fluorescence in situ hybridization (chromosome painting) with various combinations of whole chromosome composite probes, including chromosomes 1, 2, 3, 4, 6, 7, 8, 9 and 12. Translocation frequencies detected by chromosome painting in cells of the A-bomb survivors were compared with results obtained by G-banding. A direct comparison was made, i.e. only those cells with simple translocations or complex aberrations detected by G-banding were taken into consideration which in principle could be detected also with the respective painting combination. The statistical analysis revealed no significant differences from a 1:1 relationship between the frequencies of aberrant cells obtained by both methods. The use of genomic translocation frequencies estimated from subsets of chromosomes for biological dosimetry is discussed in the light of evidence that chromosomes occupy distinct territories and are variably arranged in human lymphocyte nuclei. This territorial organization of interphase chromosomes implies that translocations will be restricted to chromatin located at the periphery of adjacent chromosome territories.
Hrabal, V; Nekulová, M; Nenutil, R; Holčaková, J; Coates, P J; Vojtěšek, B
2017-01-01
PLA (proximity ligation assay) can be used for detection of protein-protein interactions in situ directly in cells and tissues. Due to its high sensitivity and specificity it is useful for detection, localization and quantification of protein complexes with single molecule resolution. One of the mechanisms of mutated p53 gain of function is formation of proten-protein complexes with other members of p53 family - p63 and p73. These interactions influences chemosensitivity and invasivity of cancer cells and this is why these complexes are potential targets of anti-cancer therapy. The aim of this work is to detect p53/p63/p73 interactions in situ in tumour cells and tumour tissue using PLA method. Unique in-house antibodies for specific detection of p63 and p73 isoforms were developed and characterized. Potein complexes were detected using PLA in established cell lines SVK14, HCC1806 and FaDu and in paraffin sections of colorectal carcinoma tissue. Cell lines were also processed to paraffin blocks. p53/T-antigen and ΔNp63/T-antigen protein complexes were detected in SVK14 cells using PLA. Interactions of ΔNp63 and TAp73 isoforms were found in HCC1806 cell line with endogenous expression of these proteins. In FaDu cell line mut-p53/TAp73 complex was localized but not mut-p53/ΔNp63 complex. p53 tetramer was detected directly in colorectal cancer tissue. During development of PLA method for detection of protein complexes between p53 family members we detected interactions of p53 and p63 with T-antigen and mut-p53 and ΔNp63 with TAp73 tumour suppressor in tumour cell lines and p53 tetramers in paraffin sections of colorectal cancer tissue. PLA will be further used for detection of p53/p63, p53/p73 and p63/p73 interactions in tumour tissues and it could be also used for screening of compounds that can block formation of p53/p63/p73 protein complexes.Key words: p53 protein family - protein interaction mapping - immunofluorescence This work was supported by MEYS - NPS I - LO1413. The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.Submitted: 13. 3. 2017Accepted: 26. 3. 2017.
Kodama, Kentaro; Furuyama, Nobuhiro; Inamura, Tetsunari
2015-01-01
Finger-tapping experiments were conducted to examine whether the dynamics of intrapersonal and interpersonal coordination systems can be described equally by the Haken—Kelso—Bunz model, which describes inter-limb coordination dynamics. This article reports the results of finger-tapping experiments conducted in both systems. Two within-subject factors were investigated: the phase mode and the number of fingers. In the intrapersonal experiment (Experiment 1), the participants were asked to tap, paced by a gradually hastening auditory metronome, looking at their fingers moving, using the index finger in the two finger condition, or the index and middle finger in the four-finger condition. In the interpersonal experiment (Experiment 2), pairs of participants performed the task while each participant used the outside hand, tapping with the index finger in the two finger condition, or the index and middle finger in the four-finger condition. Some results did not agree with the HKB model predictions. First, from Experiment 1, no significant difference was observed in the movement stability between the in-phase and anti-phase modes in the two finger condition. Second, from Experiment 2, no significant difference was found in the movement stability between the in-phase and anti-phase mode in the four-finger condition. From these findings, different coordination dynamics were inferred between intrapersonal and interpersonal coordination systems against prediction from the previous studies. Results were discussed according to differences between intrapersonal and interpersonal coordination systems in the availability of perceptual information and the complexity in the interaction between limbs derived from a nested structure. PMID:26070119
Manual asymmetries in bimanual isochronous tapping tasks in children.
Faria, Inês; Diniz, Ana; Barreiros, João
2017-01-01
Tapping tasks have been investigated throughout the years, with variations in features such as the complexity of the task, the use of one or both hands, the employ of auditory or visual stimuli, and the characteristics of the subjects. The evaluation of lateral asymmetries in tapping tasks in children offers an insight into the structure of rhythmic movements and handedness at early stages of development. The current study aims to investigate the ability of children (aged six and seven years-old) to maintain a rhythm, in a bimanual tapping task at two different target frequencies, as well as the manual asymmetries displayed while doing so. The analyzed data in this work are the series of the time intervals between successive taps. We suggest several profiles of behavior, regarding the overall performance of children in both tempo conditions. We also propose a new method of quantifying the variability of the performance and the asymmetry of the hands, based on ellipses placed on scatter plots of the non-dominant-dominant series versus the dominant-non-dominant series. We then use running correlations to identify changes of coordination tendencies over time. The main results show that variability is larger in the task with the longer target interval. Furthermore, most children evidence lateral asymmetries, but in general they show the capacity to maintain the mean of consecutive intertap intervals of both hands close to the target interval. Finally, we try to interpret our findings in the light of existing models and timing modes. Copyright © 2016 Elsevier B.V. All rights reserved.
An investigation of fMRI time series stationarity during motor sequence learning foot tapping tasks.
Muhei-aldin, Othman; VanSwearingen, Jessie; Karim, Helmet; Huppert, Theodore; Sparto, Patrick J; Erickson, Kirk I; Sejdić, Ervin
2014-04-30
Understanding complex brain networks using functional magnetic resonance imaging (fMRI) is of great interest to clinical and scientific communities. To utilize advanced analysis methods such as graph theory for these investigations, the stationarity of fMRI time series needs to be understood as it has important implications on the choice of appropriate approaches for the analysis of complex brain networks. In this paper, we investigated the stationarity of fMRI time series acquired from twelve healthy participants while they performed a motor (foot tapping sequence) learning task. Since prior studies have documented that learning is associated with systematic changes in brain activation, a sequence learning task is an optimal paradigm to assess the degree of non-stationarity in fMRI time-series in clinically relevant brain areas. We predicted that brain regions involved in a "learning network" would demonstrate non-stationarity and may violate assumptions associated with some advanced analysis approaches. Six blocks of learning, and six control blocks of a foot tapping sequence were performed in a fixed order. The reverse arrangement test was utilized to investigate the time series stationarity. Our analysis showed some non-stationary signals with a time varying first moment as a major source of non-stationarity. We also demonstrated a decreased number of non-stationarities in the third block as a result of priming and repetition. Most of the current literature does not examine stationarity prior to processing. The implication of our findings is that future investigations analyzing complex brain networks should utilize approaches robust to non-stationarities, as graph-theoretical approaches can be sensitive to non-stationarities present in data. Copyright © 2014 Elsevier B.V. All rights reserved.
Molecular pathways: transcription factories and chromosomal translocations.
Osborne, Cameron S
2014-01-15
The mammalian nucleus is a highly complex structure that carries out a diverse range of functions such as DNA replication, cell division, RNA processing, and nuclear export/import. Many of these activities occur at discrete subcompartments that intersect with specific regions of the genome. Over the past few decades, evidence has accumulated to suggest that RNA transcription also occurs in specialized sites, called transcription factories, that may influence how the genome is organized. There may be certain efficiency benefits to cluster transcriptional activity in this way. However, the clustering of genes at transcription factories may have consequences for genome stability, and increase the susceptibility to recurrent chromosomal translocations that lead to cancer. The relationships between genome organization, transcription, and chromosomal translocation formation will have important implications in understanding the causes of therapy-related cancers. ©2013 AACR.
Wang, Zhiqiong; Zen, Wen; Meng, Fankai; Xin, Xing; Luo, Li; Sun, Hanying; Zhou, Jianfeng; Huang, Lifang
2015-01-01
Chronic myeloid leukemia (CML) is most frequently observed in middle-aged individuals. In most patients, normal marrow cells are replaced by cells with an abnormal G-group chromosome, the Philadelphia (Ph) chromosome. The Ph chromosome that is characterized by the translocation (9;22) (q34;q11) is noted in 90-95% of patients diagnosed with CML. Studies have also shown that CML can be associated with various other cytogenetic abnormalities, with 5-10% of these cases showing complex translocation involving another chromosome in addition to the Ph chromosome. Here, we report the case of a Ph(+) CML patient with an inserted karyotype who presented clinically in the chronic phase but with atypical features. This case highlights the significance of cytogenetic abnormalities on the prognosis in CML.
Chromosomal Translocations in Black Flies (Diptera: Simuliidae)-Facilitators of Adaptive Radiation?
Adler, Peter H; Yadamsuren, Oyunchuluun; Procunier, William S
2016-01-01
A macrogenomic investigation of a Holarctic clade of black flies-the Simulium cholodkovskii lineage-provided a platform to explore the implications of a unique, synapomorphic whole-arm interchange in the evolution of black flies. Nearly 60 structural rearrangements were discovered in the polytene complement of the lineage, including 15 common to all 138 analyzed individuals, relative to the central sequence for the entire subgenus Simulium. Three species were represented, of which two Palearctic entities (Simulium cholodkovskii and S. decimatum) were sympatric; an absence of hybrids confirmed their reproductive isolation. A third (Nearctic) entity had nonhomologous sex chromosomes, relative to the other species, and is considered a separate species, for which the name Simulium nigricoxum is revalidated. A cytophylogeny is inferred and indicates that the two Palearctic taxa are sister species and these, in turn, are the sister group of the Nearctic species. The rise of the S. cholodkovskii lineage encompassed complex chromosomal and genomic restructuring phenomena associated with speciation in black flies, viz. expression of one and the same rearrangement as polymorphic, fixed, or sex linked in different species; taxon-specific differentiation of sex chromosomes; and reciprocal translocation of chromosome arms. The translocation is hypothesized to have occurred early in male spermatogonia, with the translocated chromosomal complement being transmitted to the X- and Y-bearing sperm during spermatogenesis, resulting in alternate disjunction of viable F1 translocation heterozygotes and the eventual formation of more viable and selectable F2 translocation homozygous progeny. Of 11 or 12 independently derived whole-arm interchanges known in the family Simuliidae, at least six are associated with subsequent speciation events, suggesting a facilitating role of translocations in adaptive radiations. The findings are discussed in the context of potential structural and functional interactions for future genomic research.
Kirchhoff, Christian; Ebert, Matthias; Jahn, Dieter; Cypionka, Heribert
2018-01-01
Dinoroseobacter shibae is an aerobic anoxygenic phototroph and able to utilize light energy to support its aerobic energy metabolism. Since the cells can also grow anaerobically with nitrate and nitrite as terminal electron acceptor, we were interested in how the cells profit from photosynthesis during denitrification and what the steps of chemiosmotic energy conservation are. Therefore, we conducted proton translocation experiments and compared O 2 - , NO 3 - , and NO 2 - respiration during different light regimes and in the dark. We used wild type cells and transposon mutants with knocked-out nitrate- and nitrite- reductase genes ( napA and nirS ), as well as a mutant ( ppsR ) impaired in bacteriochlorophyll a synthesis. Light had a positive impact on proton translocation, independent of the type of terminal electron acceptor present. In the absence of an electron acceptor, however, light did not stimulate proton translocation. The light-driven add-on to proton translocation was about 1.4 H + /e - for O 2 respiration and about 1.1 H + /e - for NO 3 - and NO 2 - . We could see that the chemiosmotic energy conservation during aerobic respiration involved proton translocation, mediated by the NADH dehydrogenase, the cytochrome bc 1 complex, and the cytochrome c oxidase. During denitrification the last proton translocation step of the electron transport was missing, resulting in a lower H + /e - ratio during anoxia. Furthermore, we studied the type of light-harvesting and found that the cells were able to channel light from the green-blue spectrum most efficiently, while red light has only minor impact. This fits well with the depth profiles for D. shibae abundance in the ocean and the penetration depth of light with different wavelengths into the water column.
Dynamics of mTORC1 activation in response to amino acids
Manifava, Maria; Smith, Matthew; Rotondo, Sergio; Walker, Simon; Niewczas, Izabella; Zoncu, Roberto; Clark, Jonathan; Ktistakis, Nicholas T
2016-01-01
Amino acids are essential activators of mTORC1 via a complex containing RAG GTPases, RAGULATOR and the vacuolar ATPase. Sensing of amino acids causes translocation of mTORC1 to lysosomes, an obligate step for activation. To examine the spatial and temporal dynamics of this translocation, we used live imaging of the mTORC1 component RAPTOR and a cell permeant fluorescent analogue of di-leucine methyl ester. Translocation to lysosomes is a transient event, occurring within 2 min of aa addition and peaking within 5 min. It is temporally coupled with fluorescent leucine appearance in lysosomes and is sustained in comparison to aa stimulation. Sestrin2 and the vacuolar ATPase are negative and positive regulators of mTORC1 activity in our experimental system. Of note, phosphorylation of canonical mTORC1 targets is delayed compared to lysosomal translocation suggesting a dynamic and transient passage of mTORC1 from the lysosomal surface before targetting its substrates elsewhere. DOI: http://dx.doi.org/10.7554/eLife.19960.001 PMID:27725083
Tapping Resources in Municipal Solid Waste
ERIC Educational Resources Information Center
Blum, S. L.
1976-01-01
Municipal solid waste disposal is becoming complex as costs, wastes, and environmental restrictions increase. Recovery and recycling of materials presents problems of financing, ownership, and operation, technology, and marketing. Energy and materials recovery offers long-term economic and environmental incentives in terms of growing shortages and…
Landmine detection using two-tapped joint orthogonal matching pursuits
NASA Astrophysics Data System (ADS)
Goldberg, Sean; Glenn, Taylor; Wilson, Joseph N.; Gader, Paul D.
2012-06-01
Joint Orthogonal Matching Pursuits (JOMP) is used here in the context of landmine detection using data obtained from an electromagnetic induction (EMI) sensor. The response from an object containing metal can be decomposed into a discrete spectrum of relaxation frequencies (DSRF) from which we construct a dictionary. A greedy iterative algorithm is proposed for computing successive residuals of a signal by subtracting away the highest matching dictionary element at each step. The nal condence of a particular signal is a combination of the reciprocal of this residual and the mean of the complex component. A two-tap approach comparing signals on opposite sides of the geometric location of the sensor is examined and found to produce better classication. It is found that using only a single pursuit does a comparable job, reducing complexity and allowing for real-time implementation in automated target recognition systems. JOMP is particularly highlighted in comparison with a previous EMI detection algorithm known as String Match.
Arapulisamy, Obulakshmi; Mannangatti, Padmanabhan; Jayanthi, Lankupalle D.
2013-01-01
Neurokinin-1 receptor (NK1R) mediates down-regulation of human norepinephrine (NE) transporter (hNET) via protein kinase C (PKC). However, native NET regulation by NK1R and the mechanism by which NK1R targets NET among other potential effectors are unknown. Effect of NK1R activation on native NET regulation and NET/NK1R interaction were studied using rat brain synaptosomes expressing native NET and NK1R as well as human placental trophoblast (HTR) cells coexpressing WT-hNET or NK1R/PKC-resistant hNET-T258A,S259A double mutant (NET-DM) and hNK1R. The selective NK1R agonist, GR73632, and Substance-P (SP) inhibited NE transport and reduced plasma membrane expression of NET and NK1R. Pretreatment with the NK1R antagonist, EMEND (aprepitant) prevented these NK1R-mediated effects. Immunoprecipitation experiments showed that NET forms stable complexes with NK1R. In HTR cells, combined biotinylation and immunoprecipitation studies revealed plasma membrane localization of NET·NK1R complexes. Receptor activation resulted in the internalization of NET·NK1R complexes. Lipid raft and immunoprecipitation analyses revealed the presence of NET·NK1R complexes exclusively in non-raft membrane fractions under basal/unstimulated conditions. However, NK1R activation led to translocation of NET·NK1R complexes to raft-rich membrane fractions. Importantly, PKCα was found in association with raft-localized NET following SP treatment. Similar to WT-NET, PKC-resistant NET-DM was found in association with NK1R exclusively in non-raft fractions. However, SP treatment failed to translocate NET-DM·NK1R complexes from non-raft fractions to raft fractions. Collectively, these results suggest that NK1R forms physical complexes with NET and that the receptor-mediated Thr258 + Ser259 motif-dependent translocation of NET·NK1R complexes into raft-rich microdomains facilitates NET/NK1R interaction with PKCα to coordinate spatially restricted NET regulation. PMID:23979140
Arapulisamy, Obulakshmi; Mannangatti, Padmanabhan; Jayanthi, Lankupalle D
2013-10-04
Neurokinin-1 receptor (NK1R) mediates down-regulation of human norepinephrine (NE) transporter (hNET) via protein kinase C (PKC). However, native NET regulation by NK1R and the mechanism by which NK1R targets NET among other potential effectors are unknown. Effect of NK1R activation on native NET regulation and NET/NK1R interaction were studied using rat brain synaptosomes expressing native NET and NK1R as well as human placental trophoblast (HTR) cells coexpressing WT-hNET or NK1R/PKC-resistant hNET-T258A,S259A double mutant (NET-DM) and hNK1R. The selective NK1R agonist, GR73632, and Substance-P (SP) inhibited NE transport and reduced plasma membrane expression of NET and NK1R. Pretreatment with the NK1R antagonist, EMEND (aprepitant) prevented these NK1R-mediated effects. Immunoprecipitation experiments showed that NET forms stable complexes with NK1R. In HTR cells, combined biotinylation and immunoprecipitation studies revealed plasma membrane localization of NET·NK1R complexes. Receptor activation resulted in the internalization of NET·NK1R complexes. Lipid raft and immunoprecipitation analyses revealed the presence of NET·NK1R complexes exclusively in non-raft membrane fractions under basal/unstimulated conditions. However, NK1R activation led to translocation of NET·NK1R complexes to raft-rich membrane fractions. Importantly, PKCα was found in association with raft-localized NET following SP treatment. Similar to WT-NET, PKC-resistant NET-DM was found in association with NK1R exclusively in non-raft fractions. However, SP treatment failed to translocate NET-DM·NK1R complexes from non-raft fractions to raft fractions. Collectively, these results suggest that NK1R forms physical complexes with NET and that the receptor-mediated Thr(258) + Ser(259) motif-dependent translocation of NET·NK1R complexes into raft-rich microdomains facilitates NET/NK1R interaction with PKCα to coordinate spatially restricted NET regulation.
Lemskaya, Natalya A.; Serdyukova, Natalya A.; O’Brien, Patricia C. M.; Kovalskaya, Julia M.; Smorkatcheva, Antonina V.; Golenishchev, Feodor N.; Perelman, Polina L.; Trifonov, Vladimir A.; Ferguson-Smith, Malcolm A.; Yang, Fengtang; Graphodatsky, Alexander S.
2016-01-01
The generic status of Lasiopodomys and its division into subgenera Lasiopodomys (L. mandarinus, L. brandtii) and Stenocranius (L. gregalis, L. raddei) are not generally accepted because of contradictions between the morphological and molecular data. To obtain cytogenetic evidence for the Lasiopodomys genus and its subgenera and to test the autosome to sex chromosome translocation hypothesis of sex chromosome complex origin in L. mandarinus proposed previously, we hybridized chromosome painting probes from the field vole (Microtus agrestis, MAG) and the Arctic lemming (Dicrostonyx torquatus, DTO) onto the metaphases of a female Mandarin vole (L. mandarinus, 2n = 47) and a male Brandt's vole (L. brandtii, 2n = 34). In addition, we hybridized Arctic lemming painting probes onto chromosomes of a female narrow-headed vole (L. gregalis, 2n = 36). Cross-species painting revealed three cytogenetic signatures (MAG12/18, 17a/19, and 22/24) that could validate the genus Lasiopodomys and indicate the evolutionary affinity of L. gregalis to the genus. Moreover, all three species retained the associations MAG1bc/17b and 2/8a detected previously in karyotypes of all arvicolins studied. The associations MAG2a/8a/19b, 8b/21, 9b/23, 11/13b, 12b/18, 17a/19a, and 5 fissions of ancestral segments appear to be characteristic for the subgenus Lasiopodomys. We also validated the autosome to sex chromosome translocation hypothesis on the origin of complex sex chromosomes in L. mandarinus. Two translocations of autosomes onto the ancestral X chromosome in L. mandarinus led to a complex of neo-X1, neo-X2, and neo-X3 elements. Our results demonstrate that genus Lasiopodomys represents a striking example of rapid chromosome evolution involving both autosomes and sex chromosomes. Multiple reshuffling events including Robertsonian fusions, chromosomal fissions, inversions and heterochromatin expansion have led to the formation of modern species karyotypes in a very short time, about 2.4 MY. PMID:27936177
Protein import into complex plastids: Cellular organization of higher complexity.
Maier, Uwe G; Zauner, Stefan; Hempel, Franziska
2015-01-01
Many protists with high ecological and medical relevance harbor plastids surrounded by four membranes. Thus, nucleus-encoded proteins of these complex plastids have to traverse these barriers. Here we report on the identification of the protein translocators located in two of the plastid surrounding membranes and present recent findings on the mechanisms of protein import into the plastids of diatoms. Copyright © 2015 Elsevier GmbH. All rights reserved.
Ma, Xianyue; Cline, Kenneth
2013-03-01
Twin arginine translocation (Tat) systems of thylakoid and bacterial membranes transport folded proteins using the proton gradient as the sole energy source. Tat substrates have hydrophobic signal peptides with an essential twin arginine (RR) recognition motif. The multispanning cpTatC plays a central role in Tat operation: It binds the signal peptide, directs translocase assembly, and may facilitate translocation. An in vitro assay with pea (Pisum sativum) chloroplasts was developed to conduct mutagenesis and analysis of cpTatC functions. Ala scanning mutagenesis identified mutants defective in substrate binding and receptor complex assembly. Mutations in the N terminus (S1) and first stromal loop (S2) caused specific defects in signal peptide recognition. Cys matching between substrate and imported cpTatC confirmed that S1 and S2 directly and specifically bind the RR proximal region of the signal peptide. Mutations in four lumen-proximal regions of cpTatC were defective in receptor complex assembly. Copurification and Cys matching analyses suggest that several of the lumen proximal regions may be important for cpTatC-cpTatC interactions. Surprisingly, RR binding domains of adjacent cpTatCs directed strong cpTatC-cpTatC cross-linking. This suggests clustering of binding sites on the multivalent receptor complex and explains the ability of Tat to transport cross-linked multimers. Transport of substrate proteins cross-linked to the signal peptide binding site tentatively identified mutants impaired in the translocation step.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frampton, Gabriel; Coufal, Monique; Li, Huang
The endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) have opposing effects on cholangiocarcinoma growth. Implicated in cancer, Notch signaling requires the {gamma}-secretase complex for activation. The aims of this study were to determine if the opposing effects of endocannabinoids depend on the differential activation of the Notch receptors and to demonstrate that the differential activation of these receptors are due to presenilin 1 containing- and presenilin 2 containing-{gamma}-secretase complexes. Mz-ChA-1 cells were treated with AEA or 2-AG. Notch receptor expression, activation, and nuclear translocation were determined. Specific roles for Notch 1 and 2 on cannabinoid-induced effects were determined by transient transfectionmore » of Notch 1 or 2 shRNA vectors before stimulation with AEA or 2-AG. Expression of presenilin 1 and 2 was determined after AEA or 2-AG treatment, and the involvement of presenilin 1 and 2 in the cannabinoid-induced effects was demonstrated in cell lines with low presenilin 1 or 2 expression. Antiproliferative effects of AEA required increased Notch 1 mRNA, activation, and nuclear translocation, whereas the growth-promoting effects induced by 2-AG required increased Notch 2 mRNA expression, activation, and nuclear translocation. AEA increased presenilin 1 expression and recruitment into the {gamma}-secretase complex, whereas 2-AG increased expression and recruitment of presenilin 2. The development of novel therapeutic strategies aimed at modulating the endocannabinoid system or mimicking the mode of action of AEA on Notch signaling pathways would prove beneficial for cholangiocarcinoma management.« less
Cytosolic Extract Induces Tir Translocation and Pedestals in EPEC-Infected Red Blood Cells
Swimm, Alyson I; Kalman, Daniel
2008-01-01
Enteropathogenic Escherichia coli (EPEC) are deadly contaminants in water and food, and induce protrusion of actin-filled membranous pedestals beneath themselves upon attachment to intestinal epithelia. Pedestal formation requires clustering of Tir and subsequent recruitment of cellular tyrosine kinases including Abl, Arg, and Etk as well as signaling molecules Nck, N-WASP, and Arp2/3 complex. We have developed a cytosolic extract-based cellular system that recapitulates actin pedestal formation in permeabilized red blood cells (RBC) infected with EPEC. RBC support attachment of EPEC and translocation of virulence factors, but not pedestal formation. We show here that extract induces a rapid Ca++-dependent release of Tir from the EPEC Type III secretion system, and that cytoplasmic factor(s) present in the extract facilitate translocation of Tir into the RBC plasma membrane. We show that Abl and related kinases in the extract phosphorylate Tir and that actin polymerization can be reconstituted in infected RBC following addition of cytosolic extract. Reconstitution requires the bacterial virulence factors Tir and intimin, and phosphorylation of Tir on tyrosine residue 474 results in the recruitment of Nck, N-WASP, and Arp2/3 complex beneath attached bacteria at sites of actin polymerization. Together these data describe a biochemical system for dissection of host components that mediate Type III secretion and the mechanisms by which complexes of proteins are recruited to discrete sites within the plasma membrane to initiate localized actin polymerization and morphological changes. PMID:18208322
Evaluation of triple antibiotic paste removal by different irrigation procedures.
Berkhoff, Julie A; Chen, Paul B; Teixeira, Fabricio B; Diogenes, Anibal
2014-08-01
Regenerative endodontics aims to re-establish a functional pulp-dentin complex. First, the root canal system is disinfected primarily by irrigants and medicaments. Triple antibiotic paste (TAP), a commonly used intracanal medicament, has been shown to be directly toxic to stem cells at concentrations greater than 0.1 g/mL. Thus, its complete removal is a crucial step in regenerative endodontic procedures. We hypothesized that currently used irrigation techniques do not completely remove TAP from root canal system. TAP was radiolabeled by the incorporation of I(125), and calcium hydroxide (Ultracal; Ultradent, South Jordan, UT) was radiolabeled with Ca(45). The intracanal medicaments were placed into standardized human root segments and incubated for 28 days at 37°C. Then, canals were irrigated with EndoActivator (Dentsply, Tulsa, OK), passive ultrasonic irrigation, EndoVac (SybronEndo, Coppell, TX), or a syringe/Max-i-Probe needle (Dentsply Rinn, Elgin, IL) using a standardized irrigation protocol in a closed system. Radioactivity levels (counts per minute values) were measured for each tooth before and after the irrigation protocols. Furthermore, the canals were sequentially enlarged and dentin samples collected and evaluated for radioactivity. Data were analyzed with analysis of variance and Bonferroni post hoc testing (P < .05). Approximately 88% of the TAP was retained in the root canal system regardless of the irrigation technique used (no difference among groups). Furthermore, approximately 50% of the radiolabeled TAP was present circumferentially up to 350 μm within the dentin. Conversely, up to 98% of the radiolabeled intracanal calcium hydroxide was removed, and most residual medicament was found present in the initial 50 μm of dentin. Current irrigation techniques do not effectively remove TAP from root canal systems, possibly because of its penetration and binding into dentin. However, calcium hydroxide is effectively removed with significant less residual presence. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Experimental Study on Environment Friendly Tap Hole Clay for Blast Furnace
NASA Astrophysics Data System (ADS)
Siva kumar, R.; Mohammed, Raffi; Srinivasa Rao, K.
2018-03-01
Blast furnace (BF) is the best possible route of iron production available. Blast furnace is a high pressure vessel where iron ore is melted and liquid iron is produced. The liquid iron is tapped through the hole in Blast Furnace called tap hole. The tapped liquid metal flowing through the tap hole is plugged using a clay called tap hole clay. Tap hole clay (THC) is a unshaped refractory used to plug the tap hole. The tap hole clay extruded through the tap hole using a gun. The tap hole clay is designed to expand and plug the tap hole. The tap hole filled with clay is drilled using drill bit and the hole made through the tap hole to tap the liquid metal accumulated inside the furnace. The number of plugging and drilling varies depending on the volume of the furnace. The tap hole clay need to have certain properties to avoid problems during plugging and drilling. In the present paper tap hole clay properties in industrial use was tested and studied. The problems were identified related to tap hole clay manufacturing. Experiments were conducted in lab scale to solve the identified problems. The present composition was modified with experimental results. The properties of the modified tap hole clay were found suitable and useful for blast furnace operation with lab scale experimental results.
The regulation mechanisms of AhR by molecular chaperone complex.
Kudo, Ikuru; Hosaka, Miki; Haga, Asami; Tsuji, Noriko; Nagata, Yuhtaroh; Okada, Hirotaka; Fukuda, Kana; Kakizaki, Yuka; Okamoto, Tomoya; Grave, Ewa; Itoh, Hideaki
2018-03-01
The AhR, so called the dioxin receptor, is a member of the nuclear receptor superfamily. The ligand-free AhR forms a cytosolic protein complex with the molecular chaperone HSP90, co-chaperone p23, and XAP2 in the cytoplasm. Following ligand binding like 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), the AhR translocates into the nucleus. Although it has been reported that HSP90 regulates the translocation of the AhR to the nucleus, the precise activation mechanisms of the AhR have not yet been fully understood. AhR consists of the N-terminal bHLH domain containing NLS and NES, the middle PAS domain and the C-terminal transactivation domain. The PAS domain is familiar as a ligand and HSP90 binding domain. In this study, we focused on the bHLH domain that was thought to be a HSP90 binding domain. We investigated the binding properties of bHLH to HSP90. We analyzed the direct interaction of bHLH with HSP90, p23 and XAP2 using purified proteins. We found that not only the PAS domain but also the bHLH domain bound to HSP90. The bHLH domain forms complex with HSP90, p23 and XAP2. We also determined the bHLH binding domain was HSP90 N-domain. The bHLH domain makes a complex with HSP90, p23 and XAP2 via the HSP90 N-domain. Although the NLS is closed in the absence of a ligand, the structure of AhR will be changed in the presence of a ligand, which leads to NLS open, result in the nuclear translocation of AhR.
Networked Professional Learning: Relating the Formal and the Informal
ERIC Educational Resources Information Center
Vaessen, Matthieu; van den Beemt, Antoine; de Laat, Maarten
2014-01-01
The increasing complexity of the workplace environment requires teachers and professionals in general to tap into their social networks, inside and outside circles of direct colleagues and collaborators, for finding appropriate knowledge and expertise. This collective process of sharing and constructing knowledge can be considered "networked…
Spontaneous bacterial peritonitis
Koulaouzidis, Anastasios; Bhat, Shivaram; Saeed, Athar A
2009-01-01
Since its initial description in 1964, research has transformed spontaneous bacterial peritonitis (SBP) from a feared disease (with reported mortality of 90%) to a treatable complication of decompensated cirrhosis, albeit with steady prevalence and a high recurrence rate. Bacterial translocation, the key mechanism in the pathogenesis of SBP, is only possible because of the concurrent failure of defensive mechanisms in cirrhosis. Variants of SBP should be treated. Leucocyte esterase reagent strips have managed to shorten the ‘tap-to-shot’ time, while future studies should look into their combined use with ascitic fluid pH. Third generation cephalosporins are the antibiotic of choice because they have a number of advantages. Renal dysfunction has been shown to be an independent predictor of mortality in patients with SBP. Albumin is felt to reduce the risk of renal impairment by improving effective intravascular volume, and by helping to bind pro-inflammatory molecules. Following a single episode of SBP, patients should have long-term antibiotic prophylaxis and be considered for liver transplantation. PMID:19266595
Yoon, Ji Young; An, Doo Ri; Yoon, Hye Jin; Kim, Hyoun Sook; Lee, Sang Jae; Im, Ha Na; Jang, Jun Young; Suh, Se Won
2013-11-01
One of the virulence factors produced by Streptococcus pyogenes is β-NAD(+) glycohydrolase (SPN). S. pyogenes injects SPN into the cytosol of an infected host cell using the cytolysin-mediated translocation pathway. As SPN is toxic to bacterial cells themselves, S. pyogenes possesses the ifs gene that encodes an endogenous inhibitor for SPN (IFS). IFS is localized intracellularly and forms a complex with SPN. This intracellular complex must be dissociated during export through the cell envelope. To provide a structural basis for understanding the interactions between SPN and IFS, the complex was overexpressed between the mature SPN (residues 38-451) and the full-length IFS (residues 1-161), but it could not be crystallized. Therefore, limited proteolysis was used to isolate a crystallizable SPNct-IFS complex, which consists of the SPN C-terminal domain (SPNct; residues 193-451) and the full-length IFS. Its crystal structure has been determined by single anomalous diffraction and the model refined at 1.70 Å resolution. Interestingly, our high-resolution structure of the complex reveals that the interface between SPNct and IFS is highly rich in water molecules and many of the interactions are water-mediated. The wet interface may facilitate the dissociation of the complex for translocation across the cell envelope.
Madrid, Antonio; Madinabeitia-Mancebo, Elena; Cudeiro, Javier; Arias, Pablo
2018-06-19
The central drive to the muscle reduces when muscle force wanes during sustained MVC, and this is generally considered the neurophysiological footprint of central fatigue. The question is if force loss and the failure of central drive to the muscle are responsible mechanisms of fatigue induced by un-resisted repetitive movements. In various experimental blocks, we validated a 3D-printed hand-fixation system permitting the execution of finger-tapping and maximal voluntary contractions (MVC). Subsequently, we checked the suitability of the system to test the level of central drive to the muscle and developed an algorithm to test it at the MVC force plateau. Our main results show that the maximum rate of finger-tapping dropped at 30 s, while the excitability of inhibitory M1-intracortical circuits and corticospinal excitability increased (all by approximately 15%). Furthermore, values obtained immediately after finger-tapping showed that MVC force and the level of central drive to the muscle remained unchanged. Our data suggest that force and central drive to the muscle are not determinants of fatigue induced by short-lasting un-resisted repetitive finger movements, even in the presence of increased inhibition of the motor cortex. According to literature, this profile might be different in longer-lasting, more complex and/or resisted repetitive movements.
Emelyanov, Alexander V.; Rabbani, Joshua; Mehta, Monika; Vershilova, Elena; Keogh, Michael C.
2014-01-01
Nuclear DNA in the male gamete of sexually reproducing animals is organized as sperm chromatin compacted primarily by sperm-specific protamines. Fertilization leads to sperm chromatin remodeling, during which protamines are expelled and replaced by histones. Despite our increased understanding of the factors that mediate nucleosome assembly in the nascent male pronucleus, the machinery for protamine removal remains largely unknown. Here we identify four Drosophila protamine chaperones that mediate the dissociation of protamine–DNA complexes: NAP-1, NLP, and nucleophosmin are previously characterized histone chaperones, and TAP/p32 has no known function in chromatin metabolism. We show that TAP/p32 is required for the removal of Drosophila protamine B in vitro, whereas NAP-1, NLP, and Nph share roles in the removal of protamine A. Embryos from P32-null females show defective formation of the male pronucleus in vivo. TAP/p32, similar to NAP-1, NLP, and Nph, facilitates nucleosome assembly in vitro and is therefore a histone chaperone. Furthermore, mutants of P32, Nlp, and Nph exhibit synthetic-lethal genetic interactions. In summary, we identified factors mediating protamine removal from DNA and reconstituted in a defined system the process of sperm chromatin remodeling that exchanges protamines for histones to form the nucleosome-based chromatin characteristic of somatic cells. PMID:25228646
Zilio, Nicola; Boddy, Michael N
2017-03-01
The tandem affinity purification (TAP) method uses an epitope that contains two different affinity purification tags separated by a site-specific protease site to isolate a protein rapidly and easily. Proteins purified via the TAP tag are eluted under mild conditions, allowing them to be used for structural and biochemical analyses. The original TAP tag contains a calmodulin-binding peptide and the IgG-binding domain from protein A separated by a tobacco etch virus (TEV) protease cleavage site. After capturing the Protein A epitope on an IgG resin, bound proteins are released by incubation with the TEV protease and then isolated on a calmodulin matrix in the presence of calcium; elution from this resin is achieved by chelating calcium with EGTA. However, because the robustness of the calmodulin-binding step in this procedure is highly variable, we replaced the calmodulin-binding peptide with three copies of the FLAG epitope, (3× FLAG)-TEV-Protein A, which can be isolated using an anti-FLAG resin. Elution from this matrix is achieved in the presence of an excess of a 3× FLAG peptide. In addition to allowing proteins to be released under mild conditions, elution by the 3× FLAG peptide adds an extra layer of specificity to the TAP procedure, because it liberates only FLAG-tagged proteins. © 2017 Cold Spring Harbor Laboratory Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Sean; Dewan, Leslie; Massie, Mark
This report presents results from a collaboration between Transatomic Power Corporation (TAP) and Oak Ridge National Laboratory (ORNL) to provide neutronic and fuel cycle analysis of the TAP core design through the Department of Energy Gateway for Accelerated Innovation in Nuclear (GAIN) Nuclear Energy Voucher program. The TAP concept is a molten salt reactor using configurable zirconium hydride moderator rod assemblies to shift the neutron spectrum in the core from mostly epithermal at beginning of life to thermal at end of life. Additional developments in the ChemTriton modeling and simulation tool provide the critical moderator-to-fuel ratio searches and time-dependent parametersmore » necessary to simulate the continuously changing physics in this complex system. The implementation of continuous-energy Monte Carlo transport and depletion tools in ChemTriton provide for full-core three-dimensional modeling and simulation. Results from simulations with these tools show agreement with TAP-calculated performance metrics for core lifetime, discharge burnup, and salt volume fraction, verifying the viability of reducing actinide waste production with this concept. Additional analyses of mass feed rates and enrichments, isotopic removals, tritium generation, core power distribution, core vessel helium generation, moderator rod heat deposition, and reactivity coeffcients provide additional information to make informed design decisions. This work demonstrates capabilities of ORNL modeling and simulation tools for neutronic and fuel cycle analysis of molten salt reactor concepts.« less
Crystallization of the Na+-translocating NADH:quinone oxidoreductase from Vibrio cholerae
Casutt, Marco S.; Wendelspiess, Severin; Steuber, Julia; Fritz, Günter
2010-01-01
The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from the human pathogen Vibrio cholerae couples the exergonic oxidation of NADH by membrane-bound quinone to Na+ translocation across the membrane. Na+-NQR consists of six different subunits (NqrA–NqrF) and contains a [2Fe–2S] cluster, a noncovalently bound FAD, a noncovalently bound riboflavin, two covalently bound FMNs and potentially Q8 as cofactors. Initial crystallization of the entire Na+-NQR complex was achieved by the sitting-drop method using a nanolitre dispenser. Optimization of the crystallization conditions yielded flat yellow-coloured crystals with dimensions of up to 200 × 80 × 20 µm. The crystals diffracted to 4.0 Å resolution and belonged to space group P21, with unit-cell parameters a = 94, b = 146, c = 105 Å, α = γ = 90, β = 111°. PMID:21139223
Translocation in Polytrichum commune (Bryophyta) I. Conduction and allocation of photoassimilates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, R.J.; Schiele, E.M.; Scheirer, D.C.
1988-02-01
Leafy stems and connecting underground rhizomes of Polytrichum commune Hedw. contain leptome tissues similar in structure to phloem. Isolated stems in clonal groupings were pulse labelled with {sup 14}CO{sub 2}. Labelled sugar, mostly sucrose, glucose, and fructose, appeared in the pulse labelled stems 30 min after treatment. A small amount (3.3%) of labelled sugar was transported to neighboring stems. Silver grain deposition in microautoradiographs of interconnecting rhizomes occurred predominantly over leptome tissues. Increased amounts of translocated radioactivity appeared in starch and cell wall polysaccharide pools one week and six weeks after treatment. These results (1) indicate that transport of photoassimilatemore » occurs through the leptome of perennating rhizomes, (2) demonstrate that translocated carbon is subsequently utilized or stored, and (3) raise important questions about the significance of long distance transport in the life strategy of this complex clonal moss.« less
Scher, Deanna P; Kelly, James E; Huset, Carin A; Barry, Kitrina M; Hoffbeck, Richard W; Yingling, Virginia L; Messing, Rita B
2018-04-01
The decades-long disposal of manufacturing waste containing perfluoroalkyl substances (PFAS) in landfills resulted in contamination of groundwater serving as the drinking water supply for the eastern Twin Cities metropolitan region. While measures were taken to reduce the levels of PFAS in the drinking water, questions remained about possible non-drinking water pathways of exposure in these communities. The Minnesota Department of Health (MDH) investigated whether PFAS in water used for yard and garden irrigation results in elevated concentrations of PFAS in soil and home-grown produce. In 2010, samples of outdoor tap water, garden soil, and garden produce were collected at homes impacted by the contamination and analyzed for several PFAS. Perfluorobutanoic acid (PFBA) was the primary PFAS present in water, followed by perfluoropentanoic acid (PFPeA). Although PFBA, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) were present in 100% of soil samples at higher concentrations compared to other PFAS, only PFBA was readily translocated to plants. Significant determinants of PFBA concentration in produce were the amount of PFBA applied to the garden via watering and the type of produce tested. Results from this real-world study are consistent with experimental findings that short-chain PFAS have the highest potential to translocate to and bioaccumulate in edible plants. These findings are globally relevant, as short-chain PFAS serve as commercial substitutes for longer-chain compounds and are increasingly detected in water due to their relatively high solubility and mobility. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cotton, Allison M.; Chen, Chih-Yu; Lam, Lucia L.; Wasserman, Wyeth W.; Kobor, Michael S.; Brown, Carolyn J.
2014-01-01
X-chromosome inactivation results in dosage equivalence between the X chromosome in males and females; however, over 15% of human X-linked genes escape silencing and these genes are enriched on the evolutionarily younger short arm of the X chromosome. The spread of inactivation onto translocated autosomal material allows the study of inactivation without the confounding evolutionary history of the X chromosome. The heterogeneity and reduced extent of silencing on autosomes are evidence for the importance of DNA elements underlying the spread of silencing. We have assessed DNA methylation in six unbalanced X-autosome translocations using the Illumina Infinium HumanMethylation450 array. Two to 42% of translocated autosomal genes showed this mark of silencing, with the highest degree of inactivation observed for trisomic autosomal regions. Generally, the extent of silencing was greatest close to the translocation breakpoint; however, silencing was detected well over 100 kb into the autosomal DNA. Alu elements were found to be enriched at autosomal genes that escaped from inactivation while L1s were enriched at subject genes. In cells without the translocation, there was enrichment of heterochromatic features such as EZH2 and H3K27me3 for those genes that become silenced when translocated, suggesting that underlying chromatin structure predisposes genes towards silencing. Additionally, the analysis of topological domains indicated physical clustering of autosomal genes of common inactivation status. Overall, our analysis indicated a complex interaction between DNA sequence, chromatin features and the three-dimensional structure of the chromosome. PMID:24158853
Window-Based Channel Impulse Response Prediction for Time-Varying Ultra-Wideband Channels.
Al-Samman, A M; Azmi, M H; Rahman, T A; Khan, I; Hindia, M N; Fattouh, A
2016-01-01
This work proposes channel impulse response (CIR) prediction for time-varying ultra-wideband (UWB) channels by exploiting the fast movement of channel taps within delay bins. Considering the sparsity of UWB channels, we introduce a window-based CIR (WB-CIR) to approximate the high temporal resolutions of UWB channels. A recursive least square (RLS) algorithm is adopted to predict the time evolution of the WB-CIR. For predicting the future WB-CIR tap of window wk, three RLS filter coefficients are computed from the observed WB-CIRs of the left wk-1, the current wk and the right wk+1 windows. The filter coefficient with the lowest RLS error is used to predict the future WB-CIR tap. To evaluate our proposed prediction method, UWB CIRs are collected through measurement campaigns in outdoor environments considering line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Under similar computational complexity, our proposed method provides an improvement in prediction errors of approximately 80% for LOS and 63% for NLOS scenarios compared with a conventional method.
Window-Based Channel Impulse Response Prediction for Time-Varying Ultra-Wideband Channels
Al-Samman, A. M.; Azmi, M. H.; Rahman, T. A.; Khan, I.; Hindia, M. N.; Fattouh, A.
2016-01-01
This work proposes channel impulse response (CIR) prediction for time-varying ultra-wideband (UWB) channels by exploiting the fast movement of channel taps within delay bins. Considering the sparsity of UWB channels, we introduce a window-based CIR (WB-CIR) to approximate the high temporal resolutions of UWB channels. A recursive least square (RLS) algorithm is adopted to predict the time evolution of the WB-CIR. For predicting the future WB-CIR tap of window wk, three RLS filter coefficients are computed from the observed WB-CIRs of the left wk−1, the current wk and the right wk+1 windows. The filter coefficient with the lowest RLS error is used to predict the future WB-CIR tap. To evaluate our proposed prediction method, UWB CIRs are collected through measurement campaigns in outdoor environments considering line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Under similar computational complexity, our proposed method provides an improvement in prediction errors of approximately 80% for LOS and 63% for NLOS scenarios compared with a conventional method. PMID:27992445
Soares, Emilie; Schwartz, Annie; Nollmann, Marcello; Margeat, Emmanuel; Boudvillain, Marc
2014-08-01
Rho is a ring-shaped, ATP-dependent RNA helicase/translocase that dissociates transcriptional complexes in bacteria. How RNA recognition is coupled to ATP hydrolysis and translocation in Rho is unclear. Here, we develop and use a new combinatorial approach, called time-resolved Nucleotide Analog Interference Probing (trNAIP), to unmask RNA molecular determinants of catalytic Rho function. We identify a regulatory step in the translocation cycle involving recruitment of the 2'-hydroxyl group of the incoming 3'-RNA nucleotide by a Rho subunit. We propose that this step arises from the intrinsic weakness of one of the subunit interfaces caused by asymmetric, split-ring arrangement of primary RNA tethers around the Rho hexamer. Translocation is at highest stake every seventh nucleotide when the weak interface engages the incoming 3'-RNA nucleotide or breaks, depending on RNA threading constraints in the Rho pore. This substrate-governed, 'test to run' iterative mechanism offers a new perspective on how a ring-translocase may function or be regulated. It also illustrates the interest and versatility of the new trNAIP methodology to unveil the molecular mechanisms of complex RNA-based systems. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Vuković, Lela; Chipot, Christophe; Makino, Debora L; Conti, Elena; Schulten, Klaus
2016-03-30
Recent experimental studies revealed structural details of 3' to 5' degradation of RNA molecules, performed by the exosome complex. ssRNA is channeled through its multisubunit ring-like core into the active site tunnel of its key exonuclease subunit Rrp44, which acts both as an enzyme and a motor. Even in isolation, Rrp44 can pull and sequentially cleave RNA nucleotides, one at a time, without any external energy input and release a final 3-5 nucleotide long product. Using molecular dynamics simulations, we identify the main factors that control these processes. Our free energy calculations reveal that RNA transfer from solution into the active site of Rrp44 is highly favorable, but dependent on the length of the RNA strand. While RNA strands formed by 5 nucleotides or more correspond to a decreasing free energy along the translocation coordinate toward the cleavage site, a 4-nucleotide RNA experiences a free energy barrier along the same direction, potentially leading to incomplete cleavage of ssRNA and the release of short (3-5) nucleotide products. We provide new insight into how Rrp44 catalyzes a localized enzymatic reaction and performs an action distributed over several RNA nucleotides, leading eventually to the translocation of whole RNA segments into the position suitable for cleavage.
Kainov, Denis E; Pirttimaa, Markus; Tuma, Roman; Butcher, Sarah J; Thomas, George J; Bamford, Dennis H; Makeyev, Eugene V
2003-11-28
Genomes of complex viruses have been demonstrated, in many cases, to be packaged into preformed empty capsids (procapsids). This reaction is performed by molecular motors translocating nucleic acid against the concentration gradient at the expense of NTP hydrolysis. At present, the molecular mechanisms of packaging remain elusive due to the complex nature of packaging motors. In the case of the double-stranded RNA bacteriophage phi 6 from the Cystoviridae family, packaging of single-stranded genomic precursors requires a hexameric NTPase, P4. In the present study, the purified P4 proteins from two other cystoviruses, phi 8 and phi 13, were characterized and compared with phi 6 P4. All three proteins are hexameric, single-stranded RNA-stimulated NTPases with alpha/beta folds. Using a direct motor assay, we found that phi 8 and phi 13 P4 hexamers translocate 5' to 3' along ssRNA, whereas the analogous activity of phi 6 P4 requires association with the procapsid. This difference is explained by the intrinsically high affinity of phi 8 and phi 13 P4s for nucleic acids. The unidirectional translocation results in RNA helicase activity. Thus, P4 proteins of Cystoviridae exhibit extensive similarity to hexameric helicases and are simple models for studying viral packaging motor mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitagawa, Yukiko; Department of Oral and Maxillofacial Surgery II, Osaka University, Osaka 565-0871; Kameoka, Masanori
2008-03-30
The transfection of human cells with siRNA against adapter-related protein complex 2 alpha 1 subunit (AP2{alpha}) was revealed to significantly up-regulate the replication of human immunodeficiency virus type 1 (HIV-1). This effect was confirmed by cell infection with vesicular stomatitis virus G protein-pseudotyped HIV-1 as well as CXCR4-tropic and CCR5-tropic HIV-1. Viral adsorption, viral entry and reverse transcription processes were not affected by cell transfection with siRNA against AP2{alpha}. In contrast, viral nuclear translocation as well as the integration process was significantly up-regulated in cells transfected with siRNA against AP2{alpha}. Confocal fluorescence microscopy revealed that a subpopulation of AP2{alpha} wasmore » not only localized in the cytoplasm but was also partly co-localized with lamin B, importin {beta} and Nup153, implying that AP2{alpha} negatively regulates HIV-1 replication in the process of nuclear translocation of viral DNA in the cytoplasm or the perinuclear region. We propose that AP2{alpha} may be a novel target for disrupting HIV-1 replication in the early stage of the viral life cycle.« less
Kasahara, Kohji; Kaneda, Mizuho; Miki, Toshiaki; Iida, Kazuko; Sekino-Suzuki, Naoko; Kawashima, Ikuo; Suzuki, Hidenori; Shimonaka, Motoyuki; Arai, Morio; Ohno-Iwashita, Yoshiko; Kojima, Soichi; Abe, Mitsuhiro; Kobayashi, Toshihide; Okazaki, Toshiro; Souri, Masayoshi; Ichinose, Akitada; Yamamoto, Naomasa
2013-11-07
Membrane rafts are spatially and functionally heterogenous in the cell membrane. We observed that lysenin-positive sphingomyelin (SM)-rich rafts are identified histochemically in the central region of adhered platelets where fibrin and myosin are colocalized on activation by thrombin. The clot retraction of SM-depleted platelets from SM synthase knockout mouse was delayed significantly, suggesting that platelet SM-rich rafts are involved in clot retraction. We found that fibrin converted by thrombin translocated immediately in platelet detergent-resistant membrane (DRM) rafts but that from Glanzmann's thrombasthenic platelets failed. The fibrinogen γ-chain C-terminal (residues 144-411) fusion protein translocated to platelet DRM rafts on thrombin activation, but its mutant that was replaced by A398A399 at factor XIII crosslinking sites (Q398Q399) was inhibited. Furthermore, fibrin translocation to DRM rafts was impaired in factor XIII A subunit-deficient mouse platelets, which show impaired clot retraction. In the cytoplasm, myosin translocated concomitantly with fibrin translocation into the DRM raft of thrombin-stimulated platelets. Furthermore, the disruption of SM-rich rafts by methyl-β-cyclodextrin impaired myosin activation and clot retraction. Thus, we propose that clot retraction takes place in SM-rich rafts where a fibrin-αIIbβ3-myosin complex is formed as a primary axis to promote platelet contraction.
Lan, H N; Hong, P; Li, R N; Shan, A S; Zheng, X
2017-10-01
The phenomenon of nuclear translocation of growth hormone receptor (GHR) in human, rat, and fish has been reported. To date, this phenomenon has not been described in a domestic animal (such as pig). In addition, the molecular mechanisms of GHR nuclear translocation have not been thoroughly elucidated. To this end, porcine hepatocytes were isolated and used as a cell model. We observed that porcine growth hormone (pGH) can induce porcine GHR's nuclear localization in porcine hepatocytes. Subsequently, the dynamics of pGH-induced pGHR's nuclear localization were analyzed and demonstrated that pGHR's nuclear localization occurs in a time-dependent manner. Next, we explored the mechanism of pGHR nuclear localization using different pGHR ligands, and we demonstrated that pGHR's nuclear translocation is GH(s)-dependent. We also observed that pGHR translocates into cell nuclei in a pGH dimerization-dependent fashion, whereas further experiments indicated that IMPα/β is involved in the nuclear translocation of the pGH-pGHR dimer. The pGH-pGHR dimer may form a pGH-GHR-JAK2 multiple complex in cell nuclei, which would suggest that similar to its function in the cell membrane, the nuclear-localized pGH-pGHR dimer might still have the ability to signal. Copyright © 2017 Elsevier Inc. All rights reserved.
Immediate Effect of Alcohol on Voice Tremor Parameters and Speech Motor Control
ERIC Educational Resources Information Center
Krishnan, Gayathri; Ghosh, Vipin
2017-01-01
The complex neuro-muscular interplay of speech subsystems is susceptible to alcohol intoxication. Published reports have studied language formulation and fundamental frequency measures pre- and post-intoxication. This study aimed at tapping the speech motor control measure using rate, consistency, and accuracy measures of diadochokinesis and…
THE SYNTHESIS OF LEAD PYROPHOSPHATE, PB2P2O7, IN WATER
Polyphosphates are used in the drinking water to prevent the precipitation of cations such as calcium and iron. The possible negative impact of using polyphosphates is the undesirable complexation of lead which could result in elevated lead levels in consumer’s tap water. Altho...
Specifying and Refining a Complex Measurement Model.
ERIC Educational Resources Information Center
Levy, Roy; Mislevy, Robert J.
This paper aims to describe a Bayesian approach to modeling and estimating cognitive models both in terms of statistical machinery and actual instrument development. Such a method taps the knowledge of experts to provide initial estimates for the probabilistic relationships among the variables in a multivariate latent variable model and refines…
Anthrax toxin-induced rupture of artificial lipid bilayer membranes
NASA Astrophysics Data System (ADS)
Nablo, Brian J.; Panchal, Rekha G.; Bavari, Sina; Nguyen, Tam L.; Gussio, Rick; Ribot, Wil; Friedlander, Art; Chabot, Donald; Reiner, Joseph E.; Robertson, Joseph W. F.; Balijepalli, Arvind; Halverson, Kelly M.; Kasianowicz, John J.
2013-08-01
We demonstrate experimentally that anthrax toxin complexes rupture artificial lipid bilayer membranes when isolated from the blood of infected animals. When the solution pH is temporally acidified to mimic that process in endosomes, recombinant anthrax toxin forms an irreversibly bound complex, which also destabilizes membranes. The results suggest an alternative mechanism for the translocation of anthrax toxin into the cytoplasm.
Casutt, Marco S.; Huber, Tamara; Brunisholz, René; Tao, Minli; Fritz, Günter; Steuber, Julia
2010-01-01
The sodium ion-translocating NADH:quinone oxidoreductase (Na+-NQR) from the human pathogen Vibrio cholerae is a respiratory membrane protein complex that couples the oxidation of NADH to the transport of Na+ across the bacterial membrane. The Na+-NQR comprises the six subunits NqrABCDEF, but the stoichiometry and arrangement of these subunits are unknown. Redox-active cofactors are FAD and a 2Fe-2S cluster on NqrF, covalently attached FMNs on NqrB and NqrC, and riboflavin and ubiquinone-8 with unknown localization in the complex. By analyzing the cofactor content and NADH oxidation activity of subcomplexes of the Na+-NQR lacking individual subunits, the riboflavin cofactor was unequivocally assigned to the membrane-bound NqrB subunit. Quantitative analysis of the N-terminal amino acids of the holo-complex revealed that NqrB is present in a single copy in the holo-complex. It is concluded that the hydrophobic NqrB harbors one riboflavin in addition to its covalently attached FMN. The catalytic role of two flavins in subunit NqrB during the reduction of ubiquinone to ubiquinol by the Na+-NQR is discussed. PMID:20558724
Human structural variation: mechanisms of chromosome rearrangements
Weckselblatt, Brooke; Rudd, M. Katharine
2015-01-01
Chromosome structural variation (SV) is a normal part of variation in the human genome, but some classes of SV can cause neurodevelopmental disorders. Analysis of the DNA sequence at SV breakpoints can reveal mutational mechanisms and risk factors for chromosome rearrangement. Large-scale SV breakpoint studies have become possible recently owing to advances in next-generation sequencing (NGS) including whole-genome sequencing (WGS). These findings have shed light on complex forms of SV such as triplications, inverted duplications, insertional translocations, and chromothripsis. Sequence-level breakpoint data resolve SV structure and determine how genes are disrupted, fused, and/or misregulated by breakpoints. Recent improvements in breakpoint sequencing have also revealed non-allelic homologous recombination (NAHR) between paralogous long interspersed nuclear element (LINE) or human endogenous retrovirus (HERV) repeats as a cause of deletions, duplications, and translocations. This review covers the genomic organization of simple and complex constitutional SVs, as well as the molecular mechanisms of their formation. PMID:26209074
Górecki, Kamil; Hägerhäll, Cecilia; Drakenberg, Torbjörn
2014-01-15
(23)Na nuclear magnetic resonance (NMR) has previously been used to monitor Na(+) translocation across membranes in gram-negative bacteria and in various other organelles and liposomes using a membrane-impermeable shift reagent to resolve the signals resulting from internal and external Na(+). In this work, the (23)Na NMR method was adapted for measurements of internal Na(+) concentration in the gram-positive bacterium Bacillus subtilis, with the aim of assessing the Na(+) translocation activity of the Mrp (multiple resistance and pH) antiporter complex, a member of the cation proton antiporter-3 (CPA-3) family. The sodium-sensitive growth phenotype observed in a B. subtilis strain with the gene encoding MrpA deleted could indeed be correlated to the inability of this strain to maintain a lower internal Na(+) concentration than an external one. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Luo, Liqiang; Shen, Yating; Liu, Jian; Zeng, Yuan
2016-08-01
The Pb species play a key role in its translocation in biogeochemical cycles. Soils, sediments and plants were collected from farmlands around Pb mines, and the Pb species in them was identified by X-ray absorption near-edge structure spectrometry. In soils, Pb5(PO4)3Cl and Pb3(PO4)2 were detected, and in sediments, Pb-fulvic acids (FAs) complex was identified. A Pb complex with FA fragments was also detected in celery samples. We found that (1) different Pb species were present in soils and sediments; (2) the Pb species in celery, which was grown in sediments, was different from the species present in duckweed, which grew in water; and (3) a Pb-FA-like compound was present in celery roots. The newly identified Pb species, the Pb-FA-like compound, may play a key role in Pb tolerance and translocation within plants.
Phosphorylation-regulated Binding of RNA Polymerase II to Fibrous Polymers of Low Complexity Domains
Xiang, Siheng; Wu, Leeju; Theodoropoulos, Pano; Mirzaei, Hamid; Han, Tina; Xie, Shanhai; Corden, Jeffry L.; McKnight, Steven L.
2014-01-01
SUMMARY The low complexity (LC) domains of the products of the fused in sarcoma (FUS), Ewings sarcoma (EWS) and TAF15 genes are translocated onto a variety of different DNA-binding domains and thereby assist in driving the formation of cancerous cells. In the context of the translocated fusion proteins, these LC sequences function as transcriptional activation domains. Here we show that polymeric fibers formed from these LC domains directly bind the C-terminal domain (CTD) of RNA polymerase II in a manner reversible by phosphorylation of the iterated, heptad repeats of the CTD. Mutational analysis indicates that the degree of binding between the CTD and the LC domain polymers correlates with the strength of transcriptional activation. These studies offer a simple means of conceptualizing how RNA polymerase II is recruited to active genes in its unphosphorylated state, and released for elongation following phosphorylation of the CTD. PMID:24267890
Neuropsychological Investigation of Motor Impairments in Autism
Duffield, Tyler; Trontel, Haley; Bigler, Erin D.; Froehlich, Alyson; Prigge, Molly B.; Travers, Brittany; Green, Ryan R.; Cariello, Annahir N.; Cooperrider, Jason; Nielsen, Jared; Alexander, Andrew; Anderson, Jeffrey; Fletcher, P. Thomas; Lange, Nicholas; Zielinski, Brandon; Lainhart, Janet
2013-01-01
It is unclear how standardized neuropsychological measures of motor function relate to brain volumes of motor regions in autism spectrum disorder (ASD). An all male sample composed of 59 ASD and 30 controls (ages 5–33 years) completed three measures of motor function: strength of grip (SOG), finger tapping test (FTT), and grooved peg-board test (GPT). Likewise, all participants underwent magnetic resonance imaging with region of interest (ROI) volumes obtained to include the following regions: motor cortex (pre-central gyrus), somatosensory cortex (post-central gyrus), thalamus, basal ganglia, cerebellum and caudal middle frontal gyrus. These traditional neuropsychological measures of motor function are assumed to differ in motor complexity with GPT requiring the most followed by FTT and SOG. Performance by ASD participants on the GPT and FTT differed significantly from controls, with the largest effect size differences observed on the more complex GPT task. Differences on the SOG task between the two groups were non-significant. Since more complex motor tasks tap more complex networks, poorer GPT performance by those with ASD may reflect less efficient motor networks. There was no gross pathology observed in classic motor areas of the brain in ASD, as region of interest (ROI) volumes did not differ, but FTT was negatively related to motor cortex volume in ASD. The results suggest a hierarchical motor disruption in ASD, with difficulties evident only in more complex tasks as well as a potential anomalous size-function relation in motor cortex in ASD. PMID:23985036
Praest, P; Luteijn, R D; Brak-Boer, I G J; Lanfermeijer, J; Hoelen, H; Ijgosse, L; Costa, A I; Gorham, R D; Lebbink, R J; Wiertz, E J H J
2018-06-04
Herpesviruses encode numerous immune evasion molecules that interfere with the immune system, particularly with certain stages in the MHC class I antigen presentation pathway. In this pathway, the transporter associated with antigen processing (TAP) is a frequent target of viral immune evasion strategies. This ER-resident transporter is composed of the proteins TAP1 and TAP2, and plays a crucial role in the loading of viral peptides onto MHC class I molecules. Several variants of TAP1 and TAP2 occur in the human population, some of which are linked to autoimmune disorders and susceptibility to infections. Here, we assessed the influence of naturally occurring TAP variants on peptide transport and MHC class I expression. In addition, we tested the inhibitory capacity of three viral immune evasion proteins, the TAP inhibitors US6 from human cytomegalovirus, ICP47 from herpes simplex virus type 1 and BNLF2a from Epstein-Barr virus, for a series of TAP1 and TAP2 variants. Our results suggest that these TAP polymorphisms have no or limited effect on peptide transport or MHC class I expression. Furthermore, our study indicates that the herpesvirus-encoded TAP inhibitors target a broad spectrum of TAP variants; inhibition of TAP is not affected by the naturally occurring polymorphisms of TAP tested in this study. Our findings suggest that the long-term coevolution of herpesviruses and their host did not result in selection of inhibitor-resistant TAP variants in the human population. Copyright © 2018. Published by Elsevier Ltd.
Tseng, Chia-Chen; Young, Yi-Ho
2016-01-01
This study compared bone-conducted vibration (BCV) cervical vestibular-evoked myogenic potentials (cVEMPs) via tapping at various skull sites in healthy subjects and patients with vestibular migraine (VM) to optimize stimulation conditions. Twenty healthy subjects underwent a series of cVEMP tests by BCV tapping via a minishaker at the Fz (forehead), Cz (vertex), and inion (occiput) sites in a randomized order of tapping sites. Another 20 VM patients were also enrolled in this study for comparison. All 20 healthy subjects had clear BCV cVEMPs when tapping at the inion (100%) or Cz (100%), but not at the Fz (75%). Mean p13 and n23 latencies from the Cz tapping were significantly longer than those from the Fz tapping, but not longer than those from the inion tapping. Unlike healthy subjects, tapping at the Cz (95%) elicited a significantly higher response rate of present cVEMPs than tapping at the inion (78%) in 20 VM patients (40 ears), because seven of nine VM ears with absent cVEMPs by inion tapping turned out to be present cVEMPs by Cz tapping. While both inion and Cz tapping elicited 100% response rate of cVEMPs for healthy individuals, Cz tapping had a higher response rate of cVEMPs than inion tapping for the VM group. In cases of total loss of saccular function, cVEMPs could not be activated by either inion or Cz tapping. However, if residual saccular function remains, Cz tapping may activate saccular afferents more efficiently than inion tapping.
Raghavan, Sathees C.; Hsieh, Chih-Lin; Lieber, Michael R.
2005-01-01
The t(14;18) chromosomal translocation is the most common translocation in human cancer, and it occurs in all follicular lymphomas. The 150-bp bcl-2 major breakpoint region (Mbr) on chromosome 18 is a fragile site, because it adopts a non-B DNA conformation that can be cleaved by the RAG complex. The non-B DNA structure and the chromosomal translocation can be recapitulated on intracellular human minichromosomes where immunoglobulin 12- and 23-signals are positioned downstream of the bcl-2 Mbr. Here we show that either of the two coding ends in these V(D)J recombination reactions can recombine with either of the two broken ends of the bcl-2 Mbr but that neither signal end can recombine with the Mbr. Moreover, we show that the rejoining is fully dependent on DNA ligase IV, indicating that the rejoining phase relies on the nonhomologous DNA end-joining pathway. These results permit us to formulate a complete model for the order and types of cleavage and rejoining events in the t(14;18) translocation. PMID:16024785
Chuzhanova, Nadia; Abeysinghe, Shaun S; Krawczak, Michael; Cooper, David N
2003-09-01
Translocations and gross deletions are responsible for a significant proportion of both cancer and inherited disease. Although such gene rearrangements are nonuniformly distributed in the human genome, the underlying mutational mechanisms remain unclear. We have studied the potential involvement of various types of repetitive sequence elements in the formation of secondary structure intermediates between the single-stranded DNA ends that recombine during rearrangements. Complexity analysis was used to assess the potential of these ends to form secondary structures, the maximum decrease in complexity consequent to a gross rearrangement being used as an indicator of the type of repeat and the specific DNA ends involved. A total of 175 pairs of deletion/translocation breakpoint junction sequences available from the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] were analyzed. Potential secondary structure was noted between the 5' flanking sequence of the first breakpoint and the 3' flanking sequence of the second breakpoint in 49% of rearrangements and between the 5' flanking sequence of the second breakpoint and the 3' flanking sequence of the first breakpoint in 36% of rearrangements. Inverted repeats, inversions of inverted repeats, and symmetric elements were found in association with gross rearrangements at approximately the same frequency. However, inverted repeats and inversions of inverted repeats accounted for the vast majority (83%) of deletions plus small insertions, symmetric elements for one-half of all antigen receptor-mediated translocations, while direct repeats appear only to be involved in mediating simple deletions. These findings extend our understanding of illegitimate recombination by highlighting the importance of secondary structure formation between single-stranded DNA ends at breakpoint junctions. Copyright 2003 Wiley-Liss, Inc.
Di Gregorio, Eleonora; Bianchi, Federico T.; Schiavi, Alfonso; Chiotto, Alessandra M.A.; Rolando, Marco; di Cantogno, Ludovica Verdun; Grosso, Enrico; Cavalieri, Simona; Calcia, Alessandro; Lacerenza, Daniela; Zuffardi, Orsetta; Retta, Saverio Francesco; Stevanin, Giovanni; Marelli, Cecilia; Durr, Alexandra; Forlani, Sylvie; Chelly, Jamel; Montarolo, Francesca; Tempia, Filippo; Beggs, Hilary E.; Reed, Robin; Squadrone, Stefania; Abete, Maria C.; Brussino, Alessandro; Ventura, Natascia; Di Cunto, Ferdinando; Brusco, Alfredo
2014-01-01
We identified a balanced de novo translocation involving chromosomes Xq25 and 8q24 in an eight year-old girl with a non-progressive form of congenital ataxia, cognitive impairment and cerebellar hypoplasia. Breakpoint definition showed that the promoter of the Protein Tyrosine Kinase 2 (PTK2, also known as Focal Adhesion Kinase, FAK) gene on chromosome 8q24.3 is translocated 2 kb upstream of the THO complex subunit 2 (THOC2) gene on chromosome Xq25. PTK2 is a well-known non-receptor tyrosine kinase whereas THOC2 encodes a component of the evolutionarily conserved multiprotein THO complex, involved in mRNA export from nucleus. The translocation generated a sterile fusion transcript under the control of the PTK2 promoter, affecting expression of both PTK2 and THOC2 genes. PTK2 is involved in cell adhesion and, in neurons, plays a role in axonal guidance, and neurite growth and attraction. However, PTK2 haploinsufficiency alone is unlikely to be associated with human disease. Therefore, we studied the role of THOC2 in the CNS using three models: 1) THOC2 ortholog knockout in C. elegans which produced functional defects in specific sensory neurons; 2) Thoc2 knockdown in primary rat hippocampal neurons which increased neurite extension; 3) Thoc2 knockdown in neuronal stem cells (LC1) which increased their in vitro growth rate without modifying apoptosis levels. We suggest that THOC2 can play specific roles in neuronal cells and, possibly in combination with PTK2 reduction, may affect normal neural network formation, leading to cognitive impairment and cerebellar congenital hypoplasia. PMID:23749989
Leng, Yan; Zhang, Jinyi; Badour, Karen; Arpaia, Enrico; Freeman, Spencer; Cheung, Pam; Siu, Michael; Siminovitch, Katherine
2005-01-25
WAVE2 is a member of the Wiskott-Aldrich syndrome protein family of cytoskeletal regulatory proteins shown to link Rac activation to actin remodeling via induction of Arp 2/3 activity. WAVE2 is thought to be regulated by its positioning in a macromolecular complex also containing the Abelson-(Abl) interactor-1 (Abi-1) adaptor, but the molecular basis and biologic relevance of WAVE2 inclusion in this complex are ill defined. Here we show that Abi-1 binding to WAVE2 is mediated by discrete motifs in the Abi-1 coiled-coil and WAVE2 WAVE-homology domains and increases markedly in conjunction with Abi-1-WAVE2 translocation and colocalization at the leading edge in B16F1 cells after fibronectin stimulation. Abi-1 also couples WAVE2 to Abl after cell stimulation, an interaction that triggers Abl membrane translocation with WAVE2, Abi-1, and activated Rac, as well as Abl-mediated tyrosine phosphorylation and WAVE2 activation. By contrast, mutation of tyrosine residue Y150, identified here as the major site of Abl-mediated WAVE2 tyrosine phosphorylation, as well as disruption of WAVE2-Abi-1 binding, impairs induction of WAVE2-driven actin polymerization and its membrane translocation in association with activated Rac. Similarly, WAVE2 tyrosine phosphorylation and induction of membrane actin rearrangement are abrogated in fibroblasts lacking the Abl family kinase. Together, these data reveal that Abi-1-mediated coupling of Abl to WAVE2 promotes Abl-evoked WAVE2 tyrosine phosphorylation required to link WAVE2 with activated Rac and with actin polymerization and remodeling at the cell periphery.
Shaulov, Lihi; Gershberg, Jenia; Deng, Wanyin; Finlay, B. Brett
2017-01-01
ABSTRACT The type III secretion system (T3SS) is a multiprotein complex that plays a central role in the virulence of many Gram-negative bacterial pathogens. To ensure that effector proteins are efficiently translocated into the host cell, bacteria must be able to sense their contact with the host cell. In this study, we found that EscP, which was previously shown to function as the ruler protein of the enteropathogenic Escherichia coli T3SS, is also involved in the switch from the secretion of translocator proteins to the secretion of effector proteins. In addition, we demonstrated that EscP can interact with the gatekeeper protein SepL and that the EscP-SepL complex dissociates upon a calcium concentration drop. We suggest a model in which bacterial contact with the host cell is accompanied by a drop in the calcium concentration that causes SepL-EscP complex dissociation and triggers the secretion of effector proteins. PMID:28049143
Hayama, Ryo; Sparks, Samuel; Hecht, Lee M.; Dutta, Kaushik; Karp, Jerome M.; Cabana, Christina M.; Rout, Michael P.; Cowburn, David
2018-01-01
Intrinsically disordered proteins (IDPs) play important roles in many biological systems. Given the vast conformational space that IDPs can explore, the thermodynamics of the interactions with their partners is closely linked to their biological functions. Intrinsically disordered regions of Phe–Gly nucleoporins (FG Nups) that contain multiple phenylalanine–glycine repeats are of particular interest, as their interactions with transport factors (TFs) underlie the paradoxically rapid yet also highly selective transport of macromolecules mediated by the nuclear pore complex. Here, we used NMR and isothermal titration calorimetry to thermodynamically characterize these multivalent interactions. These analyses revealed that a combination of low per-FG motif affinity and the enthalpy–entropy balance prevents high-avidity interaction between FG Nups and TFs, whereas the large number of FG motifs promotes frequent FG–TF contacts, resulting in enhanced selectivity. Our thermodynamic model underlines the importance of functional disorder of FG Nups. It helps explain the rapid and selective translocation of TFs through the nuclear pore complex and further expands our understanding of the mechanisms of “fuzzy” interactions involving IDPs. PMID:29374059
Pinto, Rute D; Pereira, Pedro J B; dos Santos, Nuno M S
2011-11-01
The transporters associated with antigen processing (TAP), play an important role in the MHC class I antigen presentation pathway. In this work, sea bass (Dicentrarchus labrax) TAP1 and TAP2 genes and transcripts were isolated and characterized. Only the TAP2 gene is structurally similar to its human orthologue. As other TAP molecules, sea bass TAP1 and TAP2 are formed by one N-terminal accessory domain, one core membrane-spanning domain and one canonical C-terminal nucleotide-binding domain. Homology modelling of the sea bass TAP dimer predicts that its quaternary structure is in accordance with that of other ABC transporters. Phylogenetic analysis segregates sea bass TAP1 and TAP2 into each subfamily cluster of transporters, placing them in the fish class and suggesting that the basic structure of these transport-associated proteins is evolutionarily conserved. Furthermore, the present data provides information that will enable more studies on the class I antigen presentation pathway in this important fish species. Copyright © 2011 Elsevier Ltd. All rights reserved.
Effects of aging on control of timing and force of finger tapping.
Sasaki, Hirokazu; Masumoto, Junya; Inui, Nobuyuki
2011-04-01
The present study examined whether the elderly produced a hastened or delayed tap with a negative or positive constant intertap interval error more frequently in self-paced tapping than in the stimulus-synchronized tapping for the 2 N target force at 2 or 4 Hz frequency. The analysis showed that, at both frequencies, the percentage of the delayed tap was larger in the self-paced tapping than in the stimulus-synchronized tapping, whereas the hastened tap showed the opposite result. At the 4 Hz frequency, all age groups had more variable intertap intervals during the self-paced tapping than during the stimulus-synchronized tapping, and the variability of the intertap intervals increased with age. Thus, although the increase in the frequency of delayed taps and variable intertap intervals in the self-paced tapping perhaps resulted from a dysfunction of movement timing in the basal ganglia with age, the decline in timing accuracy was somewhat improved by an auditory cue. The force variability of tapping at 4 Hz further increased with age, indicating an effect of aging on the control of force.
Peritoneal tap; Paracentesis; Ascites - abdominal tap; Cirrhosis - abdominal tap; Malignant ascites - abdominal tap ... abdominal cavity ( most often cancer of the ovaries ) Cirrhosis of the liver Damaged bowel Heart disease Infection ...
An estimation of finger-tapping rates and load capacities and the effects of various factors.
Ekşioğlu, Mahmut; İşeri, Ali
2015-06-01
The aim of this study was to estimate the finger-tapping rates and finger load capacities of eight fingers (excluding thumbs) for a healthy adult population and investigate the effects of various factors on tapping rate. Finger-tapping rate, the total number of finger taps per unit of time, can be used as a design parameter of various products and also as a psychomotor test for evaluating patients with neurologic problems. A 1-min tapping task was performed by 148 participants with maximum volitional tempo for each of eight fingers. For each of the tapping tasks, the participant with the corresponding finger tapped the associated key in the standard position on the home row of a conventional keyboard for touch typing. The index and middle fingers were the fastest fingers for both hands, and little fingers the slowest. All dominant-hand fingers, except little finger, had higher tapping rates than the fastest finger of the nondominant hand. Tapping rate decreased with age and smokers tapped faster than nonsmokers. Tapping duration and exercise had also significant effect on tapping rate. Normative data of tapping rates and load capacities of eight fingers were estimated for the adult population. In designs of psychomotor tests that require the use of tapping rate or finger load capacity data, the effects of finger, age, smoking, and tapping duration need to be taken into account. The findings can be used for ergonomic designs requiring finger-tapping capacity and also as a reference in psychomotor tests. © 2015, Human Factors and Ergonomics Society.
Spontaneous eye blinks are entrained by finger tapping.
Cong, D-K; Sharikadze, M; Staude, G; Deubel, H; Wolf, W
2010-02-01
We studied the mutual cross-talk between spontaneous eye blinks and continuous, self-paced unimanual and bimanual tapping. Both types of motor activities were analyzed with regard to their time-structure in synchronization-continuation tapping tasks which involved different task instructions, namely "standard" finger tapping (Experiment 1), "strong" tapping (Experiment 2) requiring more forceful finger movements, and "impulse-like" tapping (Experiment 3) where upward-downward finger movements had to be very fast. In a further control condition (Experiment 4), tapping was omitted altogether. The results revealed a prominent entrainment of spontaneous blink behavior by the manual tapping, with bimanual tapping being more effective than unimanual tapping, and with the "strong" and "impulse-like" tapping showing the largest effects on blink timing. Conversely, we found no significant effects of the tapping on the timing of the eye blinks across all experiments. The findings suggest a functional overlap of the motor control structures responsible for voluntary, rhythmic finger movements and eye blinking behavior.
Computerized measures of finger tapping: reliability, malingering and traumatic brain injury.
Hubel, Kerry A; Yund, E William; Herron, Timothy J; Woods, David L
2013-01-01
We analyzed computerized finger tapping metrics in four experiments. Experiment 1 showed tapping-rate differences associated with hand dominance, digits, sex, and fatigue that replicated those seen in a previous, large-scale community sample. Experiment 2 revealed test-retest correlations (r = .91) that exceeded those reported in previous tapping studies. Experiment 3 investigated subjects simulating symptoms of traumatic brain injury (TBI); 62% of malingering subjects produced abnormally slow tapping rates. A tapping-rate malingering index, based on rate-independent tapping patterns, provided confirmatory evidence of malingering in 48% of the subjects with abnormal tapping rates. Experiment 4 compared tapping in 24 patients with mild TBI (mTBI) and a matched control group; mTBI patients showed slowed tapping without evidence of malingering. Computerized finger tapping measures are reliable measures of motor speed, useful in detecting subjects performing with suboptimal effort, and are sensitive to motor abnormalities following mTBI.
2013-01-01
Background Protein translocation across membranes is a central process in all cells. In the past decades the molecular composition of the translocation systems in the membranes of the endoplasmic reticulum, peroxisomes, mitochondria and chloroplasts have been established based on the analysis of model organisms. Today, these results have to be transferred to other plant species. We bioinformatically determined the inventory of putative translocation factors in tomato (Solanum lycopersicum) by orthologue search and domain architecture analyses. In addition, we investigated the diversity of such systems by comparing our findings to the model organisms Saccharomyces cerevisiae, Arabidopsis thaliana and 12 other plant species. Results The literature search end up in a total of 130 translocation components in yeast and A. thaliana, which are either experimentally confirmed or homologous to experimentally confirmed factors. From our bioinformatic analysis (PGAP and OrthoMCL), we identified (co-)orthologues in plants, which in combination yielded 148 and 143 orthologues in A. thaliana and S. lycopersicum, respectively. Interestingly, we traced 82% overlap in findings from both approaches though we did not find any orthologues for 27% of the factors by either procedure. In turn, 29% of the factors displayed the presence of more than one (co-)orthologue in tomato. Moreover, our analysis revealed that the genomic composition of the translocation machineries in the bryophyte Physcomitrella patens resemble more to higher plants than to single celled green algae. The monocots (Z. mays and O. sativa) follow more or less a similar conservation pattern for encoding the translocon components. In contrast, a diverse pattern was observed in different eudicots. Conclusions The orthologue search shows in most cases a clear conservation of components of the translocation pathways/machineries. Only the Get-dependent integration of tail-anchored proteins seems to be distinct. Further, the complexity of the translocation pathway in terms of existing orthologues seems to vary among plant species. This might be the consequence of palaeoploidisation during evolution in plants; lineage specific whole genome duplications in Arabidopsis thaliana and triplications in Solanum lycopersicum. PMID:23506162
Anthrax toxin-induced rupture of artificial lipid bilayer membranes
Nablo, Brian J.; Panchal, Rekha G.; Bavari, Sina; Nguyen, Tam L.; Gussio, Rick; Ribot, Wil; Friedlander, Art; Chabot, Donald; Reiner, Joseph E.; Robertson, Joseph W. F.; Balijepalli, Arvind; Halverson, Kelly M.; Kasianowicz, John J.
2013-01-01
We demonstrate experimentally that anthrax toxin complexes rupture artificial lipid bilayer membranes when isolated from the blood of infected animals. When the solution pH is temporally acidified to mimic that process in endosomes, recombinant anthrax toxin forms an irreversibly bound complex, which also destabilizes membranes. The results suggest an alternative mechanism for the translocation of anthrax toxin into the cytoplasm. PMID:23947891
Rate and Timing Precision of Motor Coordination in Developmental Dyslexia.
ERIC Educational Resources Information Center
Wolff, Peter H.; And Others
1990-01-01
Adolescents and young adults with developmental dyslexia and matched normal and disabled controls were asked to tap in time to a metronome at three rates by moving the index fingers of both hands in unison, in rhythmical alternation, or in more complex bimanual patterns. Dyslexic subjects showed significant deficits on asynchronous, but not…
Thermodynamics in High Rhythms and Rhymes: Creative Ways of Knowing in Engineering
ERIC Educational Resources Information Center
Bairaktarova, Diana; Eodice, Michele
2017-01-01
Thermodynamics is a foundational course in nearly every engineering program. In a traditional classroom, instructors focus on the analysis of thermodynamic energy systems and their application to real world contexts. Because these complex systems can be difficult to understand, some instructors encourage students to tap into their creative side…
BIOMECHANICAL EVALUATION OF THE INFLUENCE OF CERVICAL SCREWS TAPPING AND DESIGN.
Silva, Patricia; Rosa, Rodrigo César; Shimano, Antonio Carlos; Albuquerque de Paula, Francisco José; Volpon, José Batista; Aparecido Defino, Helton Luiz
2009-01-01
To assess if the screw design (self-drilling/self-tapping) and the pilot hole tapping could affect the insertion torque and screw pullout strength of the screw used in anterior fixation of the cervical spine. Forty self-tapping screws and 20 self-drilling screws were inserted into 10 models of artificial bone and 10 cervical vertebrae of sheep. The studied parameters were the insertion torque and pullout strength. The following groups were created: Group I-self-tapping screw insertion after pilot hole drilling and tapping; Group II-self-tapping screw insertion after pilot hole drilling without tapping; Group III-self-drilling screw insertion without drilling and tapping. In Groups I and II, the pilot hole had 14.0 mm in depth and was made with a 3mmn drill, while tapping was made with a 4mm tap. The insertion torque was measured and the pullout test was performed. The comparison between groups was made considering the mean insertion torque and the maximum mean pullout strength with the variance analysis (ANOVA; p≤ 0.05). Previous drilling and tapping of pilot hole significantly decreased the insertion torque and the pullout strength. The insertion torque and pullout strength of self-drilling screws were significantly higher when compared to self-tapping screws inserted after pilot hole tapping.
Emelyanov, Alexander V; Rabbani, Joshua; Mehta, Monika; Vershilova, Elena; Keogh, Michael C; Fyodorov, Dmitry V
2014-09-15
Nuclear DNA in the male gamete of sexually reproducing animals is organized as sperm chromatin compacted primarily by sperm-specific protamines. Fertilization leads to sperm chromatin remodeling, during which protamines are expelled and replaced by histones. Despite our increased understanding of the factors that mediate nucleosome assembly in the nascent male pronucleus, the machinery for protamine removal remains largely unknown. Here we identify four Drosophila protamine chaperones that mediate the dissociation of protamine-DNA complexes: NAP-1, NLP, and nucleophosmin are previously characterized histone chaperones, and TAP/p32 has no known function in chromatin metabolism. We show that TAP/p32 is required for the removal of Drosophila protamine B in vitro, whereas NAP-1, NLP, and Nph share roles in the removal of protamine A. Embryos from P32-null females show defective formation of the male pronucleus in vivo. TAP/p32, similar to NAP-1, NLP, and Nph, facilitates nucleosome assembly in vitro and is therefore a histone chaperone. Furthermore, mutants of P32, Nlp, and Nph exhibit synthetic-lethal genetic interactions. In summary, we identified factors mediating protamine removal from DNA and reconstituted in a defined system the process of sperm chromatin remodeling that exchanges protamines for histones to form the nucleosome-based chromatin characteristic of somatic cells. © 2014 Emelyanov et al.; Published by Cold Spring Harbor Laboratory Press.
Rigoli, Lillian M.; Holman, Daniel; Spivey, Michael J.; Kello, Christopher T.
2014-01-01
When humans perform a response task or timing task repeatedly, fluctuations in measures of timing from one action to the next exhibit long-range correlations known as 1/f noise. The origins of 1/f noise in timing have been debated for over 20 years, with one common explanation serving as a default: humans are composed of physiological processes throughout the brain and body that operate over a wide range of timescales, and these processes combine to be expressed as a general source of 1/f noise. To test this explanation, the present study investigated the coupling vs. independence of 1/f noise in timing deviations, key-press durations, pupil dilations, and heartbeat intervals while tapping to an audiovisual metronome. All four dependent measures exhibited clear 1/f noise, regardless of whether tapping was synchronized or syncopated. 1/f spectra for timing deviations were found to match those for key-press durations on an individual basis, and 1/f spectra for pupil dilations matched those in heartbeat intervals. Results indicate a complex, multiscale relationship among 1/f noises arising from common sources, such as those arising from timing functions vs. those arising from autonomic nervous system (ANS) functions. Results also provide further evidence against the default hypothesis that 1/f noise in human timing is just the additive combination of processes throughout the brain and body. Our findings are better accommodated by theories of complexity matching that begin to formalize multiscale coordination as a foundation of human behavior. PMID:25309389
Norris, J S; Kohler, P O
1978-01-01
Two hamster cell lines have been isolated from androgen target tissue. The DDT1 cells derived from ductus deferens tissue exhibit a growth response to androgens, while the HVP cells derived from ventral prostate are androgen unresponsive. Both cell lines contain androgen receptors, that are similar when compared by kinetic methods, sedimentation velocity, chromatographic procedures or nuclear translocation ability. The forms of the high salt extracted nuclear receptors are indistinguishable chromatographically. Therefore, we postulate that the lesion preventing androgen induced growth in the HVP cell line is subseqent to nuclear translocation of the steroid receptor complex.
Time-Scale Modification of Complex Acoustic Signals in Noise
1994-02-04
of a response from a closing stapler . 15 6 Short-time processing of long waveforms. 16 7 Time-scale expansion (x 2) of sequence of transients using...filter bank/overlap- add. 17 8 Time-scale expansion (x2) of a closing stapler using filter bank/overlap-add. 18 9 Composite subband time-scale...INTRODUCTION Short-duration complex sounds, as from the closing of a stapler or the tapping of a drum stick, often consist of a series of brief
Cytochrome bc1 complexes of microorganisms.
Trumpower, B L
1990-01-01
The cytochrome bc1 complex is the most widely occurring electron transfer complex capable of energy transduction. Cytochrome bc1 complexes are found in the plasma membranes of phylogenetically diverse photosynthetic and respiring bacteria, and in the inner mitochondrial membrane of all eucaryotic cells. In all of these species the bc1 complex transfers electrons from a low-potential quinol to a higher-potential c-type cytochrome and links this electron transfer to proton translocation. Most bacteria also possess alternative pathways of quinol oxidation capable of circumventing the bc1 complex, but these pathways generally lack the energy-transducing, protontranslocating activity of the bc1 complex. All cytochrome bc1 complexes contain three electron transfer proteins which contain four redox prosthetic groups. These are cytochrome b, which contains two b heme groups that differ in their optical and thermodynamic properties; cytochrome c1, which contains a covalently bound c-type heme; and a 2Fe-2S iron-sulfur protein. The mechanism which links proton translocation to electron transfer through these proteins is the proton motive Q cycle, and this mechanism appears to be universal to all bc1 complexes. Experimentation is currently focused on understanding selected structure-function relationships prerequisite for these redox proteins to participate in the Q-cycle mechanism. The cytochrome bc1 complexes of mitochondria differ from those of bacteria, in that the former contain six to eight supernumerary polypeptides, in addition to the three redox proteins common to bacteria and mitochondria. These extra polypeptides are encoded in the nucleus and do not contain redox prosthetic groups. The functions of the supernumerary polypeptides of the mitochondrial bc1 complexes are generally not known and are being actively explored by genetically manipulating these proteins in Saccharomyces cerevisiae. Images PMID:2163487
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urbanus, Malene L.; Quaile, Andrew T.; Stogios, Peter J.
Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector–effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector–effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, tomore » query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila–translocated substrates. While capturing all known examples of effector–effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct—a hallmark of an emerging class of proteins called metaeffectors, or “effectors of effectors”. Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Here, metaeffectors, along with other, indirect, forms of effector–effector modulation, may be a common feature of many intracellular pathogens—with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell.« less
Doberenz, Claudia; Zorn, Michael; Falke, Dörte; Nannemann, David; Hunger, Doreen; Beyer, Lydia; Ihling, Christian H; Meiler, Jens; Sinz, Andrea; Sawers, R Gary
2014-07-29
The FNT (formate-nitrite transporters) form a superfamily of pentameric membrane channels that translocate monovalent anions across biological membranes. FocA (formate channel A) translocates formate bidirectionally but the mechanism underlying how translocation of formate is controlled and what governs substrate specificity remains unclear. Here we demonstrate that the normally soluble dimeric enzyme pyruvate formate-lyase (PflB), which is responsible for intracellular formate generation in enterobacteria and other microbes, interacts specifically with FocA. Association of PflB with the cytoplasmic membrane was shown to be FocA dependent and purified, Strep-tagged FocA specifically retrieved PflB from Escherichia coli crude extracts. Using a bacterial two-hybrid system, it could be shown that the N-terminus of FocA and the central domain of PflB were involved in the interaction. This finding was confirmed by chemical cross-linking experiments. Using constraints imposed by the amino acid residues identified in the cross-linking study, we provide for the first time a model for the FocA-PflB complex. The model suggests that the N-terminus of FocA is important for interaction with PflB. An in vivo assay developed to monitor changes in formate levels in the cytoplasm revealed the importance of the interaction with PflB for optimal translocation of formate by FocA. This system represents a paradigm for the control of activity of FNT channel proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.
Niculescu, L; Veiga-da-Cunha, M; Van Schaftingen, E
1997-01-01
In isolated hepatocytes in suspension, the effect of sorbitol but not that of fructose to increase the concentration of fructose 1-phosphate and to stimulate glucokinase was abolished by 2-hydroxymethyl-4-(4-N,N-dimethylamino-1-piperazino)-pyrimidine (SDI 158), an inhibitor of sorbitol dehydrogenase. In hepatocytes in primary culture, fructose was metabolized at approximately one-quarter of the rate of sorbitol, and was therefore much less potent than the polyol in increasing the concentration of fructose 1-phosphate and the translocation of glucokinase. In cultures, sorbitol, commercial mannitol, fructose, D-glyceraldehyde or high concentrations of glucose caused fructose 1-phosphate formation and glucokinase translocation in parallel. Commercial mannitol was contaminated by approx. 1% sorbitol, which accounted for its effects. The effects of sorbitol, fructose and elevated concentrations of glucose were partly inhibited by ethanol, glycerol and glucosamine. Mannoheptulose increased translocation without affecting fructose 1-phosphate concentration. Kinetic studies performed with recombinant human beta-cell glucokinase indicated that this sugar, in contrast with N-acetylglucosamine, binds to glucokinase competitively with the regulatory protein. All these observations indicate that translocation is promoted by agents that favour the dissociation of the glucokinase-regulatory-protein complex either by binding to the regulatory protein (fructose I-phosphate) or to glucokinase (glucose, mannoheptulose). They support the hypothesis that the regulatory protein of glucokinase acts as an anchor for this enzyme that slows down its release from digitonin-permeabilized cells. PMID:9003425
Niculescu, L; Veiga-da-Cunha, M; Van Schaftingen, E
1997-01-01
In isolated hepatocytes in suspension, the effect of sorbitol but not that of fructose to increase the concentration of fructose 1-phosphate and to stimulate glucokinase was abolished by 2-hydroxymethyl-4-(4-N,N-dimethylamino-1-piperazino)-pyrimidine (SDI 158), an inhibitor of sorbitol dehydrogenase. In hepatocytes in primary culture, fructose was metabolized at approximately one-quarter of the rate of sorbitol, and was therefore much less potent than the polyol in increasing the concentration of fructose 1-phosphate and the translocation of glucokinase. In cultures, sorbitol, commercial mannitol, fructose, D-glyceraldehyde or high concentrations of glucose caused fructose 1-phosphate formation and glucokinase translocation in parallel. Commercial mannitol was contaminated by approx. 1% sorbitol, which accounted for its effects. The effects of sorbitol, fructose and elevated concentrations of glucose were partly inhibited by ethanol, glycerol and glucosamine. Mannoheptulose increased translocation without affecting fructose 1-phosphate concentration. Kinetic studies performed with recombinant human beta-cell glucokinase indicated that this sugar, in contrast with N-acetylglucosamine, binds to glucokinase competitively with the regulatory protein. All these observations indicate that translocation is promoted by agents that favour the dissociation of the glucokinase-regulatory-protein complex either by binding to the regulatory protein (fructose I-phosphate) or to glucokinase (glucose, mannoheptulose). They support the hypothesis that the regulatory protein of glucokinase acts as an anchor for this enzyme that slows down its release from digitonin-permeabilized cells.
Urbanus, Malene L.; Quaile, Andrew T.; Stogios, Peter J.; ...
2016-12-16
Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector–effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector–effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, tomore » query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila–translocated substrates. While capturing all known examples of effector–effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct—a hallmark of an emerging class of proteins called metaeffectors, or “effectors of effectors”. Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Here, metaeffectors, along with other, indirect, forms of effector–effector modulation, may be a common feature of many intracellular pathogens—with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell.« less
Khang, Chang Hyun; Berruyer, Romain; Giraldo, Martha C; Kankanala, Prasanna; Park, Sook-Young; Czymmek, Kirk; Kang, Seogchan; Valent, Barbara
2010-04-01
Knowledge remains limited about how fungal pathogens that colonize living plant cells translocate effector proteins inside host cells to regulate cellular processes and neutralize defense responses. To cause the globally important rice blast disease, specialized invasive hyphae (IH) invade successive living rice (Oryza sativa) cells while enclosed in host-derived extrainvasive hyphal membrane. Using live-cell imaging, we identified a highly localized structure, the biotrophic interfacial complex (BIC), which accumulates fluorescently labeled effectors secreted by IH. In each newly entered rice cell, effectors were first secreted into BICs at the tips of the initially filamentous hyphae in the cell. These tip BICs were left behind beside the first-differentiated bulbous IH cells as the fungus continued to colonize the host cell. Fluorescence recovery after photobleaching experiments showed that the effector protein PWL2 (for prevents pathogenicity toward weeping lovegrass [Eragrostis curvula]) continued to accumulate in BICs after IH were growing elsewhere. PWL2 and BAS1 (for biotrophy-associated secreted protein 1), BIC-localized secreted proteins, were translocated into the rice cytoplasm. By contrast, BAS4, which uniformly outlines the IH, was not translocated into the host cytoplasm. Fluorescent PWL2 and BAS1 proteins that reached the rice cytoplasm moved into uninvaded neighbors, presumably preparing host cells before invasion. We report robust assays for elucidating the molecular mechanisms that underpin effector secretion into BICs, translocation to the rice cytoplasm, and cell-to-cell movement in rice.
Comparison of antral tap with endoscopically directed nasal culture.
Casiano, R R; Cohn, S; Villasuso, E; Brown, M; Memari, F; Barquist, E; Namias, N
2001-08-01
The diagnosis of acute bacterial rhinosinusitis continues to generate controversy in critically ill patients. The efficacy of endoscopically directed cultures in these patients is unknown. We compared antral tap (AT) with endoscopic tissue culture (ETC) of the osteomeatal complex in an intensive care unit (ICU) setting. Twenty patients admitted to a surgical/trauma ICU were evaluated by AT and ENB for the presence of rhinosinusitis. All patients had 1) a fever of unknown origin without resolution on empiric antibiotic therapy for > or =48 hrs; 2) other sources of fever ruled out; 3) computed tomography scan evidence of mucoperiosteal thickening +/- sinus air/fluid levels; and 4) attempt at conservative treatment with topical decongestants and removal of all nasal intubation. Microbiologic data were collected and analyzed for any statistical difference between groups. A total of 29 sides underwent simultaneous tap and endoscopically directed tissue culture. The mean age was 40 years (range, 23-77 y) with 85% being males. Fifteen of 20 (75%) patients in the AT group were culture-positive. Of the 49 isolates from the AT, 55% yielded Gram-negative bacilli (Acinetobacter sp. 37%) and 45% yielded Gram-positive cocci. The ETC group was culture-positive in 18 of 20 (90%) patients. Of the 52 isolates from the ETC, Gram-negative bacilli were found in 58% (Acinetobacter sp. 33%) and 42% yielded Gram-positive cocci. The ETCs were culture-positive in all but 1 patient with positive taps. There appeared to be a concordance between AT and ETC in 60% of the patients. In five instances (25%), results of the AT or ETC changed ICU management. Two patients ultimately required sinus surgery. Sinus taps and/or endoscopically directed tissue cultures led to a change in ICU care in 25% of ICU patients studied. In patients with fever of unknown origin and computed tomography evidence of sinusitis, an antral tap continues to provide important information concerning maxillary sinusitis. However, ETC may give as good a representation of the microbiology and secondary inflammatory changes responsible for bacterial ICU rhinosinusitis causing fever of unknown origin. Further study on a larger group of patients is needed.
2012-01-01
Background Status epilepticus induces subcellular changes that may lead to neuronal cell death in the hippocampus. However, the mechanism of seizure-induced neuronal cell death remains unclear. The mitochondrial uncoupling protein 2 (UCP2) is expressed in selected regions of the brain and is emerged as an endogenous neuroprotective molecule in many neurological disorders. We evaluated the neuroprotective role of UCP2 against seizure-induced hippocampal neuronal cell death under experimental status epilepticus. Methods In Sprague–Dawley rats, kainic acid (KA) was microinjected unilaterally into the hippocampal CA3 subfield to induce prolonged bilateral seizure activity. Oxidized protein level, translocation of Bcl-2, Bax and cytochrome c between cytosol and mitochondria, and expression of peroxisome proliferator-activated receptors γ (PPARγ) and UCP2 were examined in the hippocampal CA3 subfield following KA-induced status epilepticus. The effects of microinjection bilaterally into CA3 area of a PPARγ agonist, rosiglitazone or a PPARγ antagonist, GW9662 on UCP2 expression, induced superoxide anion (O2· -) production, oxidized protein level, mitochondrial respiratory chain enzyme activities, translocation of Bcl-2, Bax and cytochrome c, and DNA fragmentation in bilateral CA3 subfields were examined. Results Increased oxidized proteins and mitochondrial or cytosol translocation of Bax or cytochrome c in the hippocampal CA3 subfield was observed 3–48 h after experimental status epilepticus. Expression of PPARγ and UCP2 increased 12–48 h after KA-induced status epilepticus. Pretreatment with rosiglitazone increased UCP2 expression, reduced protein oxidation, O2· - overproduction and dysfunction of mitochondrial Complex I, hindered the translocation of Bax and cytochrome c, and reduced DNA fragmentation in the CA3 subfield. Pretreatment with GW9662 produced opposite effects. Conclusions Activation of PPARγ upregulated mitochondrial UCP2 expression, which decreased overproduction of reactive oxygen species, improved mitochondrial Complex I dysfunction, inhibited mitochondrial translocation of Bax and prevented cytosolic release of cytochrome c by stabilizing the mitochondrial transmembrane potential, leading to amelioration of apoptotic neuronal cell death in the hippocampus following status epilepticus. PMID:22849356
Podoprigora, G I; Kafarskaya, L I; Bainov, N A; Shkoporov, A N
2015-01-01
Bacterial translocation (BT) is both pathology and physiology phenomenon. In healthy newborns it accompanies the process of establishing the autochthonous intestinal microbiota and the host microbiome. In immunodeficiency it can be an aethio-pathogenetic link and a manifestation of infection or septic complications. The host colonization resistance to exogenous microbic colonizers is provided by gastrointestinal microbiota in concert with complex constitutional and adaptive defense mechanisms. BT may be result of barrier dysfunction and self-purification mechanisms involving the host myeloid cell phagocytic system and opsonins. Dynamic cell humoral response to microbial molecular patterns that occurs on the mucous membranes initiates receptorsignalingpathways and cascade ofreactions. Their vector and results are largely determined by cross-reactivity between microbiome and the host genome. Enterocyte barriers interacting with microbiota play leading role in providing adaptive, homeostatic and stress host reactivity. Microcirculatory ischemic tissue alterations and inflammatory reactions increase the intestinal barrier permeability and BT These processes a well as mechanisms for apoptotic cells and bacteria clearance are justified to be of prospective research interest. The inflammatory and related diseases caused by alteration and dysfunction of the intestinal barrier are reasonably considered as diseases of single origin. Maternal microbiota affects theformation of the innate immune system and the microbiota of the newborn, including intestinal commensal translocation during lactation. Deeper understanding of intestinal barrier mechanisms needs complex microbiological, immunological, pathophysiological, etc. investigations using adequate biomodels, including gnotobiotic animals.
Estimation method of finger tapping dynamics using simple magnetic detection system
NASA Astrophysics Data System (ADS)
Kandori, Akihiko; Sano, Yuko; Miyashita, Tsuyoshi; Okada, Yoshihisa; Irokawa, Masataka; Shima, Keisuke; Tsuji, Toshio; Yokoe, Masaru; Sakoda, Saburo
2010-05-01
We have developed the simple estimation method of a finger tapping dynamics model for investigating muscle resistance and stiffness during tapping movement in normal subjects. We measured finger tapping movements of 207 normal subjects using a magnetic finger tapping detection system. Each subject tapped two fingers in time with a metronome at 1, 2, 3, 4, and 5 Hz. The velocity and acceleration values for both the closing and opening tapping data were used to estimate a finger tapping dynamics model. Using the frequency response of the ratio of acceleration to velocity of the mechanical impedance parameters, we estimated the resistance (friction coefficient) and compliance (stiffness). We found two dynamics models for the maximum open position and tap position. In the maximum open position, the extensor muscle resistance was twice as high as the flexor muscle resistance and males had a higher spring constant. In the tap position, the flexor muscle resistance was much higher than the extensor muscle resistance. This indicates that the tapping dynamics in the maximum open position are controlled by the balance of extensor and flexor muscle friction resistances and the flexor stiffness, and the flexor friction resistance is the main component in the tap position. It can be concluded that our estimation method makes it possible to understand the tapping dynamics.
Estimation method of finger tapping dynamics using simple magnetic detection system.
Kandori, Akihiko; Sano, Yuko; Miyashita, Tsuyoshi; Okada, Yoshihisa; Irokawa, Masataka; Shima, Keisuke; Tsuji, Toshio; Yokoe, Masaru; Sakoda, Saburo
2010-05-01
We have developed the simple estimation method of a finger tapping dynamics model for investigating muscle resistance and stiffness during tapping movement in normal subjects. We measured finger tapping movements of 207 normal subjects using a magnetic finger tapping detection system. Each subject tapped two fingers in time with a metronome at 1, 2, 3, 4, and 5 Hz. The velocity and acceleration values for both the closing and opening tapping data were used to estimate a finger tapping dynamics model. Using the frequency response of the ratio of acceleration to velocity of the mechanical impedance parameters, we estimated the resistance (friction coefficient) and compliance (stiffness). We found two dynamics models for the maximum open position and tap position. In the maximum open position, the extensor muscle resistance was twice as high as the flexor muscle resistance and males had a higher spring constant. In the tap position, the flexor muscle resistance was much higher than the extensor muscle resistance. This indicates that the tapping dynamics in the maximum open position are controlled by the balance of extensor and flexor muscle friction resistances and the flexor stiffness, and the flexor friction resistance is the main component in the tap position. It can be concluded that our estimation method makes it possible to understand the tapping dynamics.
Pohl, Thomas; Uhlmann, Mareike; Kaufenstein, Miriam; Friedrich, Thorsten
2007-09-18
The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. The Escherichia coli complex I consists of 13 different subunits named NuoA-N (from NADH:ubiquinone oxidoreductase), that are coded by the genes of the nuo-operon. Genetic manipulation of the operon is difficult due to its enormous size. The enzymatic activity of variants is obscured by an alternative NADH dehydrogenase, and purification of the variants is hampered by their instability. To overcome these problems the entire E. coli nuo-operon was cloned and placed under control of the l-arabinose inducible promoter ParaBAD. The exposed N-terminus of subunit NuoF was chosen for engineering the complex with a hexahistidine-tag by lambda-Red-mediated recombineering. Overproduction of the complex from this construct in a strain which is devoid of any membrane-bound NADH dehydrogenase led to the assembly of a catalytically active complex causing the entire NADH oxidase activity of the cytoplasmic membranes. After solubilization with dodecyl maltoside the engineered complex binds to a Ni2+-iminodiacetic acid matrix allowing the purification of approximately 11 mg of complex I from 25 g of cells. The preparation is pure and monodisperse and comprises all known subunits and cofactors. It contains more lipids than earlier preparations due to the gentle and fast purification procedure. After reconstitution in proteoliposomes it couples the electron transfer with proton translocation in an inhibitor sensitive manner, thus meeting all prerequisites for structural and functional studies.
Zhong, Rong-Lin; Xu, Hong-Liang; Sun, Shi-Ling; Qiu, Yong-Qing; Zhao, Liang; Su, Zhong-Min
2013-09-28
An increasing number of chemists have focused on the investigations of two-electron/multicenter bond (2e/mc) that was first introduced to describe the structure of radical dimers. In this work, the dimerization of two isoelectronic radicals, triazaphenalenyl (TAP) and hexaazaphenalenyl (HAP) has been investigated in theory. Results show TAP2 is a stable dimer with stronger 2e/12c bond and larger interaction energy, while HAP2 is a less stable dimer with larger diradical character. Interestingly, the ultraviolet-visible absorption spectra suggest that the dimerization induces a longer wavelength absorption in visible area, which is dependent on the strength of dimerization. Significantly, the amplitude of second hyperpolarizability (γ(yyyy)) of HAP2 is 1.36 × 10(6) a.u. that is larger than 7.79 × 10(4) a.u. of TAP2 because of the larger diradical character of HAP2. Therefore, the results indicate that the strength of radical dimerization can be effectively detected by comparing the magnitude of third order non-linear optical response, which is beneficial for further theoretical and experimental studies on the properties of complexes formed by radical dimerization.
Jones, Andrew J Y; Blaza, James N; Varghese, Febin; Hirst, Judy
2017-03-24
Respiratory complex I couples electron transfer between NADH and ubiquinone to proton translocation across an energy-transducing membrane to support the proton-motive force that drives ATP synthesis. The proton-pumping stoichiometry of complex I ( i.e. the number of protons pumped for each two electrons transferred) underpins all mechanistic proposals. However, it remains controversial and has not been determined for any of the bacterial enzymes that are exploited as model systems for the mammalian enzyme. Here, we describe a simple method for determining the proton-pumping stoichiometry of complex I in inverted membrane vesicles under steady-state ADP-phosphorylating conditions. Our method exploits the rate of ATP synthesis, driven by oxidation of NADH or succinate with different sections of the respiratory chain engaged in catalysis as a proxy for the rate of proton translocation and determines the stoichiometry of complex I by reference to the known stoichiometries of complexes III and IV. Using vesicles prepared from mammalian mitochondria (from Bos taurus ) and from the bacterium Paracoccus denitrificans , we show that four protons are pumped for every two electrons transferred in both cases. By confirming the four-proton stoichiometry for mammalian complex I and, for the first time, demonstrating the same value for a bacterial complex, we establish the utility of P. denitrificans complex I as a model system for the mammalian enzyme. P. denitrificans is the first system described in which mutagenesis in any complex I core subunit may be combined with quantitative proton-pumping measurements for mechanistic studies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Li, Xiaoqing; Hu, Rui; Li, Ji; Tong, Xin; Diao, J. J.; Yu, Dapeng; Zhao, Qing
2016-10-01
Nanopore-based sensing technology is considered high-throughput and low-cost for single molecule detection, but solid-state nanopores have suffered from pore clogging issues. A simple Tween 20 coating method is applied to ensure long-term (several hours) non-sticky translocation of various types of bio-molecules through SiN nanopores in a wide pH range (4.0-13.0). We also emphasize the importance of choosing appropriate concentration of Tween 20 coating buffer for desired effect. By coating nanopores with a Tween 20 layer, we are able to differentiate between single-stranded DNA and double-stranded DNA, to identify drift-dominated domain for single-stranded DNA, to estimate BSA volume and to observe the shape of individual nucleosome translocation event without non-specific adsorption. The wide pH endurance from 4.0 to 13.0 and the broad types of detection analytes including nucleic acids, proteins, and biological complexes highlight the great application potential of Tween 20-coated solid-state nanopores.
A viral peptide for intracellular delivery
NASA Astrophysics Data System (ADS)
Falanga, Annarita; Tarallo, Rossella; Cantisani, Marco; Della Pepa, Maria Elena; Galdiero, Massimiliano; Galdiero, Stefania
2012-10-01
Biological membranes represent a critical hindrance for administering active molecules which are often unable to reach their designated intracellular target sites. In order to overcome this barrier-like behavior not easily circumvented by many pharmacologically-active molecules, synthetic transporters have been exploited to promote cellular uptake. Linking or complexing therapeutic molecules to peptides that can translocate through the cellular membranes could enhance their internal delivery, and consequently, a higher amount of active compound would reach the site of action. Use of cell penetrating peptides (CPPs) is one of the most promising strategy to efficiently translocate macromolecules through the plasma membrane, and have attracted a lot of attention. New translocating peptides are continuously described and in the present review, we will focus on viral derived peptides, and in particular a peptide (gH625) derived from the herpes simplex virus type 1 (HSV-1) glycoprotein H (gH) that has proved to be a useful delivery vehicle due to its intrinsic properties of inducing membrane perturbation.
Small Molecule Disrupts Abnormal Gene Fusion Associated with Leukemia | Center for Cancer Research
Rare chromosomal abnormalities, called chromosomal translocations, in which part of a chromosome breaks off and becomes attached to another chromosome, can result in the generation of chimeric proteins. These aberrant proteins have unpredictable, and sometimes harmful, functions, including uncontrolled cell growth that can lead to cancer. One type of translocation, in which a portion of the gene encoding nucleoporin 98 (NUP98)—one of about 50 proteins comprising the nuclear pore complex through which proteins are shuttled into and out of the nucleus—fuses with another gene, has been shown to result in improper histone modifications. These abnormalities alter the gene expression patterns of certain types of hematopoietic, or blood-forming, stem cells, resulting primarily in overexpression of the Hoxa7, Hoxa9,and Hoxa10 genes. NUP98 chromosomal translocations have been associated with many types of leukemia, including acute myeloid leukemia (AML), acute lymphoid leukemia (ALL), chronic myeloid leukemia in blast crisis (CML-bc), and myelodysplastic syndrome (MDS).
Mechanisms of DNA Packaging by Large Double-Stranded DNA Viruses
Rao, Venigalla B.; Feiss, Michael
2016-01-01
Translocation of viral double-stranded DNA (dsDNA) into the icosahedral prohead shell is catalyzed by TerL, a motor protein that has ATPase, endonuclease, and translocase activities. TerL, following endonucleolytic cleavage of immature viral DNA concatemer recognized by TerS, assembles into a pentameric ring motor on the prohead’s portal vertex and uses ATP hydrolysis energy for DNA translocation. TerL’s N-terminal ATPase is connected by a hinge to the C-terminal endonuclease. Inchworm models propose that modest domain motions accompanying ATP hydrolysis are amplified, through changes in electrostatic interactions, into larger movements of the C-terminal domain bound to DNA. In phage φ29, four of the five TerL subunits sequentially hydrolyze ATP, each powering translocation of 2.5 bp. After one viral genome is encapsidated, the internal pressure signals termination of packaging and ejection of the motor. Current focus is on the structures of packaging complexes and the dynamics of TerL during DNA packaging, endonuclease regulation, and motor mechanics. PMID:26958920
Binding and Translocation of Termination Factor Rho Studied at the Single-Molecule Level
Koslover, Daniel J.; Fazal, Furqan M.; Mooney, Rachel A.; Landick, Robert; Block, Steven M.
2012-01-01
Rho termination factor is an essential hexameric helicase responsible for terminating 20–50% of all mRNA synthesis in E. coli. We used single- molecule force spectroscopy to investigate Rho-RNA binding interactions at the Rho- utilization (rut) site of the ? tR1 terminator. Our results are consistent with Rho complexes adopting two states, one that binds 57 ±2 nucleotides of RNA across all six of the Rho primary binding sites, and another that binds 85 ±2 nucleotides at the six primary sites plus a single secondary site situated at the center of the hexamer. The single-molecule data serve to establish that Rho translocates 5′-to-3′ towards RNA polymerase (RNAP) by a tethered-tracking mechanism, looping out the intervening RNA between the rut site and RNAP. These findings lead to a general model for Rho binding and translocation, and establish a novel experimental approach that should facilitate additional single- molecule studies of RNA-binding proteins. PMID:22885804
Nanopore Force Spectroscopy of Aptamer–Ligand Complexes
Arnaut, Vera; Langecker, Martin; Simmel, Friedrich C.
2013-01-01
The stability of aptamer–ligand complexes is probed in nanopore-based dynamic force spectroscopy experiments. Specifically, the ATP-binding aptamer is investigated using a backward translocation technique, in which the molecules are initially pulled through an α-hemolysin nanopore from the cis to the trans side of a lipid bilayer membrane, allowed to refold and interact with their target, and then translocated back in the trans–cis direction. From these experiments, the distribution of bound and unbound complexes is determined, which in turn allows determination of the dissociation constant Kd ≈ 0.1 mM of the aptamer and of voltage-dependent unfolding rates. The experiments also reveal differences in binding of the aptamer to AMP, ADP, or ATP ligands. Investigation of an aptamer variant with a stabilized ATP-binding site indicates fast conformational switching of the original aptamer before ATP binding. Nanopore force spectroscopy is also used to study binding of the thrombin-binding aptamer to its target. To detect aptamer–target interactions in this case, the stability of the ligand-free aptamer—containing G-quadruplexes—is tuned via the potassium content of the buffer. Although the presence of thrombin was detected, limitations of the method for aptamers with strong secondary structures and complexes with nanomolar Kd were identified. PMID:24010663
Ohta, Yuko; McKinney, E Churchill; Criscitiello, Michael F; Flajnik, Martin F
2002-01-15
Cartilaginous fish (e.g., sharks) are derived from the oldest vertebrate ancestor having an adaptive immune system, and thus are key models for examining MHC evolution. Previously, family studies in two shark species showed that classical class I (UAA) and class II genes are genetically linked. In this study, we show that proteasome genes LMP2 and LMP7, shark-specific LMP7-like, and the TAP1/2 genes are linked to class I/II. Functional LMP7 and LMP7-like genes, as well as multiple LMP2 genes or gene fragments, are found only in some sharks, suggesting that different sets of peptides might be generated depending upon inherited MHC haplotypes. Cosmid clones bearing the MHC-linked classical class I genes were isolated and shown to contain proteasome gene fragments. A non-MHC-linked LMP7 gene also was identified on another cosmid, but only two exons of this gene were detected, closely linked to a class I pseudogene (UAA-NC2); this region probably resulted from a recent duplication and translocation from the functional MHC. Tight linkage of proteasome and class I genes, in comparison with gene organizations of other vertebrates, suggests a primordial MHC organization. Another nonclassical class I gene (UAA-NC1) was detected that is linked neither to MHC nor to UAA-NC2; its high level of sequence similarity to UAA suggests that UAA-NC1 also was recently derived from UAA and translocated from MHC. These data further support the principle of a primordial class I region with few class I genes. Finally, multiple paternities in one family were demonstrated, with potential segregation distortions.
Mora-Jensen, Mark Holten; Madeleine, Pascal; Hansen, Ernst Albin
2017-10-01
The present study analyzed (a) whether a recently reported phenomenon of repeated bout rate enhancement in finger tapping (i.e., a cumulating increase in freely chosen finger tapping frequency following submaximal muscle activation in the form of externally unloaded voluntary tapping) could be replicated and (b) the hypotheses that the faster tapping was accompanied by changed vertical displacement of the fingertip and changed peak force during tapping. Right-handed, healthy, and recreationally active individuals (n = 24) performed two 3-min index finger tapping bouts at freely chosen tapping frequency, separated by 10-min rest. The recently reported phenomenon of repeated bout rate enhancement was replicated. The faster tapping (8.8 ± 18.7 taps/min, corresponding to 6.0 ± 11.0%, p = .033) was accompanied by reduced vertical displacement (1.6 ± 2.9 mm, corresponding to 6.3 ± 14.9%, p = .012) of the fingertip. Concurrently, peak force was unchanged. The present study points at separate control mechanisms governing kinematics and kinetics during finger tapping.
Blue-light-activated phototropin2 trafficking from the cytoplasm to Golgi/post-Golgi vesicles.
Aggarwal, Chhavi; Banaś, Agnieszka Katarzyna; Kasprowicz-Maluśki, Anna; Borghetti, Carolina; Labuz, Justyna; Dobrucki, Jerzy; Gabryś, Halina
2014-07-01
Phototropins are plasma membrane-localized UVA/blue light photoreceptors which mediate phototropism, inhibition of primary hypocotyl elongation, leaf positioning, chloroplast movements, and stomatal opening. Blue light irradiation activates the C-terminal serine/threonine kinase domain of phototropin which autophosphorylates the receptor. Arabidopsis thaliana encodes two phototropins, phot1 and phot2. In response to blue light, phot1 moves from the plasma membrane into the cytosol and phot2 translocates to the Golgi complex. In this study the molecular mechanism and route of blue-light-induced phot2 trafficking are demonstrated. It is shown that Atphot2 behaves in a similar manner when expressed transiently under 35S or its native promoter. The phot2 kinase domain but not blue-light-mediated autophosphorylation is required for the receptor translocation. Using co-localization and western blotting, the receptor was shown to move from the cytoplasm to the Golgi complex, and then to the post-Golgi structures. The results were confirmed by brefeldin A (an inhibitor of the secretory pathway) which disrupted phot2 trafficking. An association was observed between phot2 and the light chain2 of clathrin via bimolecular fluorescence complementation. The fluorescence was observed at the plasma membrane. The results were confirmed using co-immunoprecipitation. However, tyrphostin23 (an inhibitor of clathrin-mediated endocytosis) and wortmannin (a suppressor of receptor endocytosis) were not able to block phot2 trafficking, indicating no involvement of receptor endocytosis in the formation of phot2 punctuate structures. Protein turnover studies indicated that the receptor was continuously degraded in both darkness and blue light. The degradation of phot2 proceeded via a transport route different from translocation to the Golgi complex. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Nakai, Masato
2015-09-01
Chloroplasts must import thousands of nuclear-encoded preproteins synthesized in the cytosol through two successive protein translocons at the outer and inner envelope membranes, termed TOC and TIC, respectively, to fulfill their complex physiological roles. The molecular identity of the TIC translocon had long remained controversial; two proteins, namely Tic20 and Tic110, had been proposed to be central to protein translocation across the inner envelope membrane. Tic40 also had long been considered to be another central player in this process. However, recently, a novel 1-megadalton complex consisting of Tic20, Tic56, Tic100, and Tic214 was identified at the chloroplast inner membrane of Arabidopsis and was demonstrated to constitute a general TIC translocon which functions in concert with the well-characterized TOC translocon. On the other hand, direct interaction between this novel TIC transport system and Tic110 or Tic40 was hardly observed. Consequently, the molecular model for protein translocation across the inner envelope membrane of chloroplasts might need to be extensively revised. In this review article, I intend to propose such alternative view regarding the TIC transport system in contradistinction to the classical view. I also would emphasize importance of reevaluation of previous works in terms of with what methods these classical Tic proteins such as Tic110 or Tic40 were picked up as TIC constituents at the very beginning as well as what actual evidence there were to support their direct and specific involvement in chloroplast protein import. This article is part of a Special Issue entitled: Chloroplast Biogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.
van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D.
2015-01-01
The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1–2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand breaks are introduced at random wherever two translocating enzymes form a so-called collision complex following long-range communication between a pair of target sites in inverted (head-to-head) repeat. Paradoxically, structural models for collision suggest that the nuclease domains are too far apart (>30 bp) to dimerise and produce a double-strand DNA break using just two strand-cleavage events. Here, we examined the organisation of different collision complexes and how these lead to nuclease activation. We mapped DNA cleavage when a translocating enzyme collides with a static enzyme bound to its site. By following communication between sites in both head-to-head and head-to-tail orientations, we could show that motor activity leads to activation of the nuclease domains via distant interactions of the helicase or MTase-TRD. Direct nuclease dimerization is not required. To help explain the observed cleavage patterns, we also used exonuclease footprinting to demonstrate that individual Type ISP domains can swing off the DNA. This study lends further support to a model where DNA breaks are generated by multiple random nicks due to mobility of a collision complex with an overall DNA-binding footprint of ∼30 bp. PMID:26507855
Discola, Karen F.; Förster, Andreas; Boulay, François; Simorre, Jean-Pierre; Attree, Ina; Dessen, Andréa; Job, Viviana
2014-01-01
The type III secretion system is a widespread apparatus used by pathogenic bacteria to inject effectors directly into the cytoplasm of eukaryotic cells. A key component of this highly conserved system is the translocon, a pore formed in the host membrane that is essential for toxins to bypass this last physical barrier. In Pseudomonas aeruginosa the translocon is composed of PopB and PopD, both of which before secretion are stabilized within the bacterial cytoplasm by a common chaperone, PcrH. In this work we characterize PopB, the major translocator, in both membrane-associated and PcrH-bound forms. By combining sucrose gradient centrifugation experiments, limited proteolysis, one-dimensional NMR, and β-lactamase reporter assays on eukaryotic cells, we show that PopB is stably inserted into bilayers with its flexible N-terminal domain and C-terminal tail exposed to the outside. In addition, we also report the crystal structure of the complex between PcrH and an N-terminal region of PopB (residues 51–59), which reveals that PopB lies within the concave face of PcrH, employing mostly backbone residues for contact. PcrH is thus the first chaperone whose structure has been solved in complex with both type III secretion systems translocators, revealing that both molecules employ the same surface for binding and excluding the possibility of formation of a ternary complex. The characterization of the major type III secretion system translocon component in both membrane-bound and chaperone-bound forms is a key step for the eventual development of antibacterials that block translocon assembly. PMID:24297169
Gaze entropy reflects surgical task load.
Di Stasi, Leandro L; Diaz-Piedra, Carolina; Rieiro, Héctor; Sánchez Carrión, José M; Martin Berrido, Mercedes; Olivares, Gonzalo; Catena, Andrés
2016-11-01
Task (over-)load imposed on surgeons is a main contributing factor to surgical errors. Recent research has shown that gaze metrics represent a valid and objective index to asses operator task load in non-surgical scenarios. Thus, gaze metrics have the potential to improve workplace safety by providing accurate measurements of task load variations. However, the direct relationship between gaze metrics and surgical task load has not been investigated yet. We studied the effects of surgical task complexity on the gaze metrics of surgical trainees. We recorded the eye movements of 18 surgical residents, using a mobile eye tracker system, during the performance of three high-fidelity virtual simulations of laparoscopic exercises of increasing complexity level: Clip Applying exercise, Cutting Big exercise, and Translocation of Objects exercise. We also measured performance accuracy and subjective rating of complexity. Gaze entropy and velocity linearly increased with increased task complexity: Visual exploration pattern became less stereotyped (i.e., more random) and faster during the more complex exercises. Residents performed better the Clip Applying exercise and the Cutting Big exercise than the Translocation of Objects exercise and their perceived task complexity differed accordingly. Our data show that gaze metrics are a valid and reliable surgical task load index. These findings have potential impacts to improve patient safety by providing accurate measurements of surgeon task (over-)load and might provide future indices to assess residents' learning curves, independently of expensive virtual simulators or time-consuming expert evaluation.
Research Says / Tap ELLs' Strengths to Spur Success
ERIC Educational Resources Information Center
Goodwin, Bryan; Hein, Heather
2016-01-01
On the surface, learning a second language may seem to be a simple one- to two-year undertaking. Research shows, however, that it's a far more complex endeavor. This article considers the depth of learning required to become academically proficient in a second language. For instance, language learners learn the basics of reading in a second…
ERIC Educational Resources Information Center
Chan, Jessica S.; Wade-Woolley, Lesly
2018-01-01
Background: This study was designed to extend our understanding of phonology and reading to include suprasegmental awareness using measures of prosodic awareness, which are complex tasks that tap into the rhythmic aspects of phonology. By requiring participants to access, reflect on and manipulate word stress, the prosodic awareness measures used…
The Emotional Impact of Traditional and New Media in Social Events
ERIC Educational Resources Information Center
Salcudean, Minodora; Muresan, Raluca
2017-01-01
In past times, media were the sole vector to reflect in their entire complexity the events surrounding major world tragedies. Nowadays, social media are an essential component of the media process and classical press channels are connected to the social networking flow, where they can find information and, at the same time, tap into the emotional…
1991-01-01
Foundation FYDP ......... Five Year Defense Plan FSI ............ Fog Stability Index 17 G G ................ gravity, giga- GISM ......... Gridded ...Global Circulation Model GOES-TAP GOES imagery processing & dissemination system GCS .......... grid course GOFS ........ Global Ocean Flux Study GD...Analysis Support System Complex Systems GRID .......... Global Resource Information Data -Base GEMAG ..... geomagnetic GRIST..... grazing-incidence solar
Coliphage HK022 Nun protein inhibits RNA polymerase translocation
Vitiello, Christal L.; Kireeva, Maria L.; Lubkowska, Lucyna; Kashlev, Mikhail; Gottesman, Max
2014-01-01
The Nun protein of coliphage HK022 arrests RNA polymerase (RNAP) in vivo and in vitro at pause sites distal to phage λ N-Utilization (nut) site RNA sequences. We tested the activity of Nun on ternary elongation complexes (TECs) assembled with templates lacking the λ nut sequence. We report that Nun stabilizes both translocation states of RNAP by restricting lateral movement of TEC along the DNA register. When Nun stabilized TEC in a pretranslocated register, immediately after NMP incorporation, it prevented binding of the next NTP and stimulated pyrophosphorolysis of the nascent transcript. In contrast, stabilization of TEC by Nun in a posttranslocated register allowed NTP binding and nucleotidyl transfer but inhibited pyrophosphorolysis and the next round of forward translocation. Nun binding to and action on the TEC requires a 9-bp RNA–DNA hybrid. We observed a Nun-dependent toe print upstream to the TEC. In addition, mutations in the RNAP β′ subunit near the upstream end of the transcription bubble suppress Nun binding and arrest. These results suggest that Nun interacts with RNAP near the 5′ edge of the RNA–DNA hybrid. By stabilizing translocation states through restriction of TEC lateral mobility, Nun represents a novel class of transcription arrest factors. PMID:24853501
Mechanical remodeling of normally sized mammalian cells under a gravity vector.
Zhang, Chen; Zhou, Lüwen; Zhang, Fan; Lü, Dongyuan; Li, Ning; Zheng, Lu; Xu, Yanhong; Li, Zhan; Sun, Shujin; Long, Mian
2017-02-01
Translocation of the dense nucleus along a gravity vector initiates mechanical remodeling of a cell, but the underlying mechanisms of cytoskeletal network and focal adhesion complex (FAC) reorganization in a mammalian cell remain unclear. We quantified the remodeling of an MC3T3-E1 cell placed in upward-, downward-, or edge-on-orientated substrate. Nucleus longitudinal translocation presents a high value in downward orientation at 24 h or in edge-on orientation at 72 h, which is consistent with orientation-dependent distribution of perinuclear actin stress fibers and vimentin cords. Redistribution of total FAC area and fractionized super mature adhesion number coordinates this dependence at short duration. This orientation-dependent remodeling is associated with nucleus flattering and lamin A/C phosphorylation. Actin depolymerization or Rho-associated protein kinase signaling inhibition abolishes the orientation dependence of nucleus translocation, whereas tubulin polymerization inhibition or vimentin disruption reserves the dependence. A biomechanical model is therefore proposed for integrating the mechanosensing of nucleus translocation with cytoskeletal remodeling and FAC reorganization induced by a gravity vector.-Zhang, C., Zhou, L., Zhang, F., Lü, D., Li, N., Zheng, L., Xu, Y., Li, Z., Sun, S., Long, M. Mechanical remodeling of normally sized mammalian cells under a gravity vector. © FASEB.
Sallard, Etienne; Spierer, Lucas; Ludwig, Catherine; Deiber, Marie-Pierre; Barral, Jérôme
2014-02-01
Deficits in the processing of sensory reafferences have been suggested as accounting for age-related decline in motor coordination. Whether sensory reafferences are accurately processed can be assessed based on the bimanual advantage in tapping: because of tapping with an additional hand increases kinesthetic reafferences, bimanual tapping is characterized by a reduced inter-tap interval variability than unimanual tapping. A suppression of the bimanual advantage would thus indicate a deficit in sensory reafference. We tested whether elderly indeed show a reduced bimanual advantage by measuring unimanual (UM) and bimanual (BM) self-paced tapping performance in groups of young (n = 29) and old (n = 27) healthy adults. Electroencephalogram was recorded to assess the underlying patterns of oscillatory activity, a neurophysiological mechanism advanced to support the integration of sensory reafferences. Behaviorally, there was a significant interaction between the factors tapping condition and age group at the level of the inter-tap interval variability, driven by a lower variability in BM than UM tapping in the young, but not in the elderly group. This result indicates that in self-paced tapping, the bimanual advantage is absent in elderly. Electrophysiological results revealed an interaction between tapping condition and age group on low beta band (14-20 Hz) activity. Beta activity varied depending on the tapping condition in the elderly but not in the young group. Source estimations localized this effect within left superior parietal and left occipital areas. We interpret our results in terms of engagement of different mechanisms in the elderly depending on the tapping mode: a 'kinesthetic' mechanism for UM and a 'visual imagery' mechanism for BM tapping movement.
Acanthamoeba keratitis: the role of domestic tap water contamination in the United Kingdom.
Kilvington, Simon; Gray, Trevor; Dart, John; Morlet, Nigel; Beeching, John R; Frazer, David G; Matheson, Melville
2004-01-01
The incidence of acanthamoeba keratitis (AK) in the UK is some 15 times that in the United States and seven times that in Holland. To investigate reasons for this higher frequency, a study of the role of domestic tap water as a potential source of AK was undertaken. Tap outlets from the homes of 27 patients with culture-proven AK were sampled and cultured for free-living amoebae (FLA). For all Acanthamoeba isolates, mitochondrial DNA (mtDNA) restriction fragment length polymorphisms (RFLPs) and cytochrome oxidase (cox 1/2) sequence typing was performed to determine the similarity between corneal and tap water isolates. FLA, including Acanthamoeba, were isolated from 24 (89%) of 27 homes, and the presence within the homes varied significantly with tap water temperature and location: 19 (76%) of 25 bathroom sink cold taps sampled compared with 6 (24%) of 25 hot and 9 (47%) of 19 kitchen cold taps compared with 3 (16%) of 19 of hot kitchen taps. Acanthamoeba were isolated from 8 (30%) of 27 homes (five bathroom sink cold taps, one cloakroom cold tap, one bath, and one bedroom sink mixer [hot/cold] taps). In six cases, identical Acanthamoeba mtDNA profiles were found for the clinical and home tap water isolates. In keeping with UK plumbing practice, 24 of 27 homes had internal roof water storage tanks to supply domestic taps, but the mains fed the kitchen cold tap. Water storage tanks promote colonization of domestic water with FLA, including Acanthamoeba, and hence increase the risk of AK. This accounts for the significantly greater incidence of AK in the UK and supports advice to avoid using tap water in contact lens care routines.
Roalf, David R; Rupert, Petra; Mechanic-Hamilton, Dawn; Brennan, Laura; Duda, John E; Weintraub, Daniel; Trojanowski, John Q; Wolk, David; Moberg, Paul J
2018-06-01
Fine motor impairments are common in neurodegenerative disorders, yet standardized, quantitative measurements of motor abilities are uncommonly used in neurological practice. Thus, understanding and comparing fine motor abilities across disorders have been limited. The current study compared differences in finger tapping, inter-tap interval, and variability in Alzheimer's disease (AD), Parkinson's disease (PD), mild cognitive impairment (MCI), and healthy older adults (HOA). Finger tapping was measured using a highly sensitive light-diode finger tapper. Total number of finger taps, inter-tap interval, and intra-individual variability (IIV) of finger tapping was measured and compared in AD (n = 131), PD (n = 63), MCI (n = 46), and HOA (n = 62), controlling for age and sex. All patient groups had fine motor impairments relative to HOA. AD and MCI groups produced fewer taps with longer inter-tap interval and higher IIV compared to HOA. The PD group, however, produced more taps with shorter inter-tap interval and higher IIV compared to HOA. Disease-specific changes in fine motor function occur in the most common neurodegenerative diseases. The findings suggest that alterations in finger tapping patterns are common in AD, MCI, and PD. In addition, the present results underscore the importance of motor dysfunction even in neurodegenerative disorders without primary motor symptoms.
Pflug, Anja; Gompf, Florian; Kell, Christian Alexander
2017-08-01
In bimanual multifrequency tapping, right-handers commonly use the right hand to tap the relatively higher rate and the left hand to tap the relatively lower rate. This could be due to hemispheric specializations for the processing of relative frequencies. An extension of the double-filtering-by-frequency theory to motor control proposes a left hemispheric specialization for the control of relatively high and a right hemispheric specialization for the control of relatively low tapping rates. We investigated timing variability and rhythmic accentuation in right handers tapping mono- and multifrequent bimanual rhythms to test the predictions of the double-filtering-by-frequency theory. Yet, hemispheric specializations for the processing of relative tapping rates could be masked by a left hemispheric dominance for the control of known sequences. Tapping was thus either performed in an overlearned quadruple meter (tap of the slow rhythm on the first auditory beat) or in a syncopated quadruple meter (tap of the slow rhythm on the fourth auditory beat). Independent of syncopation, the right hand outperformed the left hand in timing accuracy for fast tapping. A left hand timing benefit for slow tapping rates as predicted by the double-filtering-by-frequency theory was only found in the syncopated tapping group. This suggests a right hemisphere preference for the control of slow tapping rates when rhythms are not overlearned. Error rates indicate that overlearned rhythms represent hierarchically structured meters that are controlled by a single timer that could potentially reside in the left hemisphere. Copyright © 2017 Elsevier B.V. All rights reserved.
40 CFR 63.544 - Standards for process fugitive sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Smelting furnace and dryer charging hoppers, chutes, and skip hoists; (2) Smelting furnace lead taps, and molds during tapping; (3) Smelting furnace slag taps, and molds during tapping; (4) Refining kettles; (5) Dryer transition pieces; and (6) Agglomerating furnace product taps. (b) Process fugitive emission...
Schlattner, Uwe; Tokarska-Schlattner, Malgorzata; Rousseau, Denis; Boissan, Mathieu; Mannella, Carmen; Epand, Richard; Lacombe, Marie-Lise
2014-04-01
Historically, cellular trafficking of lipids has received much less attention than protein trafficking, mostly because its biological importance was underestimated, involved sorting and translocation mechanisms were not known, and analytical tools were limiting. This has changed during the last decade, and we discuss here some progress made in respect to mitochondria and the trafficking of phospholipids, in particular cardiolipin. Different membrane contact site or junction complexes and putative lipid transfer proteins for intra- and intermembrane lipid translocation have been described, involving mitochondrial inner and outer membrane, and the adjacent membranes of the endoplasmic reticulum. An image emerges how cardiolipin precursors, remodeling intermediates, mature cardiolipin and its oxidation products could migrate between membranes, and how this trafficking is involved in cardiolipin biosynthesis and cell signaling events. Particular emphasis in this review is given to mitochondrial nucleoside diphosphate kinase D and mitochondrial creatine kinases, which emerge to have roles in both, membrane junction formation and lipid transfer. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Structure of a Type-1 Secretion System ABC Transporter.
Morgan, Jacob L W; Acheson, Justin F; Zimmer, Jochen
2017-03-07
Type-1 secretion systems (T1SSs) represent a widespread mode of protein secretion across the cell envelope in Gram-negative bacteria. The T1SS is composed of an inner-membrane ABC transporter, a periplasmic membrane-fusion protein, and an outer-membrane porin. These three components assemble into a complex spanning both membranes and providing a conduit for the translocation of unfolded polypeptides. We show that ATP hydrolysis and assembly of the entire T1SS complex is necessary for protein secretion. Furthermore, we present a 3.15-Å crystal structure of AaPrtD, the ABC transporter found in the Aquifex aeolicus T1SS. The structure suggests a substrate entry window just above the transporter's nucleotide binding domains. In addition, highly kinked transmembrane helices, which frame a narrow channel not observed in canonical peptide transporters, are likely involved in substrate translocation. Overall, the AaPrtD structure supports a polypeptide transport mechanism distinct from alternating access. Copyright © 2017 Elsevier Ltd. All rights reserved.
Generation of a complete set of human telomeric band painting probes by chromosome microdissection.
Hu, Liang; Sham, Jonathan S T; Tjia, Wai Mui; Tan, Yue-qiu; Lu, Guang-xiu; Guan, Xin-Yuan
2004-02-01
Chromosomal rearrangements involving telomeric bands have been frequently detected in many malignancies and congenital diseases. To develop a useful tool to study chromosomal rearrangements within the telomeric band effectively and accurately, a whole set of telomeric band painting probes (TBP) has been generated by chromosome microdissection. The intensity and specificity of these TBPs have been tested by fluorescence in situ hybridization and all TBPs showed strong and specific signals to target regions. TBPs of 6q and 17p were successfully used to detect the loss of the terminal band of 6q in a hepatocellular carcinoma cell line and a complex translocation involving the 17p terminal band in a melanoma cell line. Meanwhile, the TBP of 21q was used to detect a de novo translocation, t(12;21), and the breakpoint at 21q was located at 21q22.2. Further application of these TBPs should greatly facilitate the cytogenetic analysis of complex chromosome rearrangements involving telomeric bands.
Thompson, Colin D Kinz; Sharma, Ajeet K; Frank, Joachim; Gonzalez, Ruben L; Chowdhury, Debashish
2015-08-27
At equilibrium, thermodynamic and kinetic information can be extracted from biomolecular energy landscapes by many techniques. However, while static, ensemble techniques yield thermodynamic data, often only dynamic, single-molecule techniques can yield the kinetic data that describe transition-state energy barriers. Here we present a generalized framework based upon dwell-time distributions that can be used to connect such static, ensemble techniques with dynamic, single-molecule techniques, and thus characterize energy landscapes to greater resolutions. We demonstrate the utility of this framework by applying it to cryogenic electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET) studies of the bacterial ribosomal pre-translocation complex. Among other benefits, application of this framework to these data explains why two transient, intermediate conformations of the pre-translocation complex, which are observed in a cryo-EM study, may not be observed in several smFRET studies.
Volkert, Sarah; Kohlmann, Alexander; Schnittger, Susanne; Kern, Wolfgang; Haferlach, Torsten; Haferlach, Claudia
2014-05-01
We analyzed 1,200 patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) harboring a 5q deletion in order to clarify whether the type of 5q loss is associated with other biological markers and prognosis. We investigated all patients by chromosome banding analysis, FISH with a probe for EGR1 (5q31) and, if necessary, to resolve complex karyotypes with 24-color-FISH. Moreover, 420 patients were analyzed for mutations in the TP53 gene. The patient cohort was subdivided based on type of 5q loss: Patients with interstitial deletions and patients with 5q loss due to unbalanced rearrangements or monosomy 5. Loss of the long arm of chromosome 5 due to an unbalanced rearrangement occurred more often in AML (286/627; 45.6%) than MDS (188/573; 32.8%; P < 0.001). In both entities, patients with 5q loss due to unbalanced translocations showed complex karyotypes more frequently (MDS: 179/188; 95.2% vs. 124/385; 32.2%; P < 0.001; AML: 274/286; 95.8% vs. 256/341; 75.1%; P < 0.001). Moreover, in MDS unbalanced 5q translocations were associated with clonal evolution (109/188; 58.0% vs. 124/385; 32.2%; P < 0.001), mutation of TP53 (64/67; 95.5% vs. 40/120; 40.0%; P < 0.001), and shorter survival (15.3 months vs. not reached; P < 0.001). In MDS, complex karyotype was an independent adverse prognostic factor (HR = 5.34; P = 0.032), whereas in AML presence of TP53 mutations was the strongest adverse prognostic factor (HR = 2.21; P = 0.026). In conclusion, in AML and MDS, loss of the long arm of chromosome 5 due to unbalanced translocations is associated with complex karyotype and in MDS, moreover, with clonal evolution, mutations in the TP53 gene and adverse prognosis. Copyright © 2014 Wiley Periodicals, Inc.
Computerized measures of finger tapping: effects of hand dominance, age, and sex.
Hubel, Kerry A; Reed, Bruce; Yund, E William; Herron, Timothy J; Woods, David L
2013-06-01
Computerized measures of digit tapping rate were obtained over 3 successive, 10-sec. periods in the right and left index fingers, from a community sample of 1,519 participants (ages 18 to 65 years; 607 men, 912 women). Differences between the dominant and non-dominant hands were found for tapping rate, movement initiation, and button down times, and the decline in tapping rate over the successive, 10-sec. periods. Declines were found in tapping rate in older participants in association with increased intertap variability. Men had higher tapping rates than women in all age ranges. The computerized finger tapping test is an efficient and precise measure of tapping speed and kinetics of potential utility in research and clinical studies of motor performance.
Brain activity during bilateral rapid alternate finger tapping measured with magnetoencephalography
NASA Astrophysics Data System (ADS)
Fukuda, Hiroshi; Odagaki, Masato; Hiwaki, Osamu; Kodabashi, Atsushi; Fujimoto, Toshiro
2009-04-01
Using magnetoencephalography (MEG), brain regions involved in an alternate bimanual tapping task by index fingers triggered with spontaneous timing were investigated. The tapping mode in which both index fingers moved simultaneously was interlaced during the task. The groups of the alternate tapping (AL mode) and the simultaneous tapping (SI mode) were extracted from the successive alternating taps with a histogram of intervals between the right and left index fingers. MEG signals in each mode were averaged separately before and after the tapping initiation of the dominant index finger. The activities of the contralateral sensorimotor cortex before and after the tapping initiation in the AL mode were larger than that in the SI mode. The result indicates that the activity of the contralateral sensorimotor cortex depends on the degree of achievement in the difficult motor task such as the voluntary alternate tapping movements.
Freely Chosen Index Finger Tapping Frequency Is Increased in Repeated Bouts of Tapping.
Hansen, Ernst Albin; Ebbesen, Brian Duborg; Dalsgaard, Ane; Mora-Jensen, Mark Holten; Rasmussen, Jakob
2015-01-01
Healthy individuals (n = 40) performed index finger tapping at freely chosen frequency during repeated bouts and before and after near-maximal muscle action consisting of 3 intense flexions of the index finger metacarpal phalangeal joint. One experiment showed, unexpectedly, that a bout of tapping increased the tapping frequency in the subsequent bout. Thus, a cumulating increase of 8.2 ± 5.4% (p < .001) occurred across 4 bouts, which were all separated by 10 min rest periods. Follow-up experiments revealed that tapping frequency was still increased in consecutive bouts when rest periods were extended to 20 min. Besides, near-maximal muscle activation, followed by 5 min rest, did not affect the tapping frequency. In conclusion, freely chosen tapping frequency was increased in repeated bouts of tapping, which were separated by 10-20 min rest periods. The observed phenomenon is suggested to be termed repeated bout rate enhancement.
Taniguchi, Seira; Peper, Ferdinand; Shimokawa, Tetsuya
2018-05-01
[Purpose] This study investigates two types of toe tapping, i.e., "closed," with both feet on the floor, and "open," in which the foot does not touch the ground, and evaluates their usefulness in combination with monitoring of muscle activity during toe tapping. [Subjects and Methods] The study enrolled 11 patients with Parkinson's disease (PD) and 9 controls (Controls). The tibialis anterior (TA) and gastrocnemius (GS) muscle activity during toe tapping was measured using surface electromyography. [Results] In closed tapping, the minima in GS activation with the first tap was significantly higher in patients with PD than in Controls. In open tapping, the coefficient of variation (CV) of local maxima in TA activation was significantly higher in patients with PD than in Controls. In both types of tapping, the CV of extrema in GS activities increased with disease duration, but this may be due to the long-term administration of Levodopa, which itself tends to cause excessive GS activities. [Conclusion] Closed tapping is suitable for the assessment of GS activity and can detect excessive activities, which is observed as visible movement. Open tapping, on the other hand, is suitable for assessment of TA activity.
Efficient Recreation of t(11;22) EWSR1-FLI1+ in Human Stem Cells Using CRISPR/Cas9.
Torres-Ruiz, Raul; Martinez-Lage, Marta; Martin, Maria C; Garcia, Aida; Bueno, Clara; Castaño, Julio; Ramirez, Juan C; Menendez, Pablo; Cigudosa, Juan C; Rodriguez-Perales, Sandra
2017-05-09
Efficient methodologies for recreating cancer-associated chromosome translocations are in high demand as tools for investigating how such events initiate cancer. The CRISPR/Cas9 system has been used to reconstruct the genetics of these complex rearrangements at native loci while maintaining the architecture and regulatory elements. However, the CRISPR system remains inefficient in human stem cells. Here, we compared three strategies aimed at enhancing the efficiency of the CRISPR-mediated t(11;22) translocation in human stem cells, including mesenchymal and induced pluripotent stem cells: (1) using end-joining DNA processing factors involved in repair mechanisms, or (2) ssODNs to guide the ligation of the double-strand break ends generated by CRISPR/Cas9; and (3) all-in-one plasmid or ribonucleoprotein complex-based approaches. We report that the generation of targeted t(11;22) is significantly increased by using a combination of ribonucleoprotein complexes and ssODNs. The CRISPR/Cas9-mediated generation of targeted t(11;22) in human stem cells opens up new avenues in modeling Ewing sarcoma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
FTAP: a Linux-based program for tapping and music experiments.
Finney, S A
2001-02-01
This paper describes FTAP, a flexible data collection system for tapping and music experiments. FTAP runs on standard PC hardware with the Linux operating system and can process input keystrokes and auditory output with reliable millisecond resolution. It uses standard MIDI devices for input and output and is particularly flexible in the area of auditory feedback manipulation. FTAP can run a wide variety of experiments, including synchronization/continuation tasks (Wing & Kristofferson, 1973), synchronization tasks combined with delayed auditory feedback (Aschersleben & Prinz, 1997), continuation tasks with isolated feedback perturbations (Wing, 1977), and complex alterations of feedback in music performance (Finney, 1997). Such experiments have often been implemented with custom hardware and software systems, but with FTAP they can be specified by a simple ASCII text parameter file. FTAP is available at no cost in source-code form.
NASA Astrophysics Data System (ADS)
Jameel, Yusuf; Brewer, Simon; Good, Stephen P.; Tipple, Brett J.; Ehleringer, James R.; Bowen, Gabriel J.
2016-08-01
Water extraction for anthropogenic use has become a major flux in the hydrological cycle. With increasing demand for water and challenges supplying it in the face of climate change, there is a pressing need to better understand connections between human populations, climate, water extraction, water use, and its impacts. To understand these connections, we collected and analyzed stable isotopic ratios of more than 800 urban tap water samples in a series of semiannual water surveys (spring and fall, 2013-2015) across the Salt Lake Valley (SLV) of northern Utah. Consistent with previous work, we found that mean tap water had a lower 2H and 18O concentration than local precipitation, highlighting the importance of nearby montane winter precipitation as source water for the region. However, we observed strong and structured spatiotemporal variation in tap water isotopic compositions across the region which we attribute to complex distribution systems, varying water management practices and multiple sources used across the valley. Water from different sources was not used uniformly throughout the area and we identified significant correlation between water source and demographic parameters including population and income. Isotopic mass balance indicated significant interannual and intra-annual variability in water losses within the distribution network due to evaporation from surface water resources supplying the SLV. Our results demonstrate the effectiveness of isotopes as an indicator of water management strategies and climate impacts within regional urban water systems, with potential utility for monitoring, regulation, forensic, and a range of water resource research.
Raafat, Nermin; Sadowski-Cron, Charlotte; Mengus, Chantal; Heberer, Michael; Spagnoli, Giulio C; Zajac, Paul
2012-09-01
Herpes simplex virus protein ICP47, encoded by US12 gene, strongly downregulates major histocompatibility complex (MHC) class-I antigen restricted presentation by blocking transporter associated with antigen processing (TAP) protein. To decrease viral vector antigenic immunodominance and MHC class-I driven clearance, we engineered recombinant vaccinia viruses (rVV) expressing ICP47 alone (rVV-US12) or together with endoplasmic reticulum (ER)-targeted Melan-A/MART-1(27-35) model tumor epitope (rVV-MUS12). In this study, we show that antigen presenting cells (APC), infected with rVV-US12, display a decreased ability to present TAP dependent MHC class-I restricted viral antigens to CD8+ T-cells. While HLA class-I cell surface expression is strongly downregulated, other important immune related molecules such as CD80, CD44 and, most importantly, MHC class-II are unaffected. Characterization of rVV-MUS12 infected cells demonstrates that over-expression of a TAP-independent peptide, partially compensates for ICP47 induced surface MHC class-I downregulation (30% vs. 70% respectively). Most importantly, in conditions where clearance of infected APC by virus-specific CTL represents a limiting factor, a significant enhancement of CTL responses to the tumor epitope can be detected in cultures stimulated with rVV-MUS12, as compared to those stimulated by rVV-MART alone. Such reagents could become of high relevance in multiple boost protocols required for cancer immunotherapy, to limit vector-specific responsiveness. Copyright © 2011 UICC.
Gompf, Florian; Pflug, Anja; Laufs, Helmut; Kell, Christian A
2017-01-01
Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Hengwen; Yang, Shana; Li, Jianhua
Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expressionmore » in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.« less
Structure of a eukaryotic SWEET transporter in a homotrimeric complex.
Tao, Yuyong; Cheung, Lily S; Li, Shuo; Eom, Joon-Seob; Chen, Li-Qing; Xu, Yan; Perry, Kay; Frommer, Wolf B; Feng, Liang
2015-11-12
Eukaryotes rely on efficient distribution of energy and carbon skeletons between organs in the form of sugars. Glucose in animals and sucrose in plants serve as the dominant distribution forms. Cellular sugar uptake and release require vesicular and/or plasma membrane transport proteins. Humans and plants use proteins from three superfamilies for sugar translocation: the major facilitator superfamily (MFS), the sodium solute symporter family (SSF; only in the animal kingdom), and SWEETs. SWEETs carry mono- and disaccharides across vacuolar or plasma membranes. Plant SWEETs play key roles in sugar translocation between compartments, cells, and organs, notably in nectar secretion, phloem loading for long distance translocation, pollen nutrition, and seed filling. Plant SWEETs cause pathogen susceptibility possibly by sugar leakage from infected cells. The vacuolar Arabidopsis thaliana AtSWEET2 sequesters sugars in root vacuoles; loss-of-function mutants show increased susceptibility to Pythium infection. Here we show that its orthologue, the vacuolar glucose transporter OsSWEET2b from rice (Oryza sativa), consists of an asymmetrical pair of triple-helix bundles, connected by an inversion linker transmembrane helix (TM4) to create the translocation pathway. Structural and biochemical analyses show OsSWEET2b in an apparent inward (cytosolic) open state forming homomeric trimers. TM4 tightly interacts with the first triple-helix bundle within a protomer and mediates key contacts among protomers. Structure-guided mutagenesis of the close paralogue SWEET1 from Arabidopsis identified key residues in substrate translocation and protomer crosstalk. Insights into the structure-function relationship of SWEETs are valuable for understanding the transport mechanism of eukaryotic SWEETs and may be useful for engineering sugar flux.
Urbanus, Malene L; Quaile, Andrew T; Stogios, Peter J; Morar, Mariya; Rao, Chitong; Di Leo, Rosa; Evdokimova, Elena; Lam, Mandy; Oatway, Christina; Cuff, Marianne E; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw P; Taipale, Mikko; Savchenko, Alexei; Ensminger, Alexander W
2016-12-16
Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector-effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector-effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, to query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila-translocated substrates. While capturing all known examples of effector-effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct-a hallmark of an emerging class of proteins called metaeffectors, or "effectors of effectors". Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Metaeffectors, along with other, indirect, forms of effector-effector modulation, may be a common feature of many intracellular pathogens-with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.
Kesten, Dov; Horovitz-Fried, Miriam; Brutman-Barazani, Tamar; Sampson, Sanford R
2018-04-01
Insulin binding to its cell surface receptor (IR) activates a cascade of events leading to its biological effects. The Insulin-IR complex is rapidly internalized and then is either recycled back to the plasma membrane or sent to lysosomes for degradation. Although most of the receptor is recycled or degraded, a small amount may escape this pathway and migrate to the nucleus of the cell where it might be important in promulgation of receptor signals. In this study we explored the mechanism by which insulin induces IR translocation to the cell nucleus. Experiments were performed cultured L6 myoblasts, AML liver cells and 3T3-L1 adipocytes. Insulin treatment induced a rapid increase in nuclear IR protein levels within 2 to 5 min. Treatment with WGA, an inhibitor of nuclear import, reduced insulin-induced increases nuclear IR protein; IR was, however, translocated to a perinuclear location. Bioinformatics tools predicted a potential nuclear localization sequence (NLS) on IR. Immunofluorescence staining showed that a point mutation on the predicted NLS blocked insulin-induced IR nuclear translocation. In addition, blockade of nuclear IR activation in isolated nuclei by an IR blocking antibody abrogated insulin-induced increases in IR tyrosine phosphorylation and nuclear PKCδ levels. Furthermore, over expression of mutated IR reduced insulin-induced glucose uptake and PKB phosphorylation. When added to isolated nuclei, insulin induced IR phosphorylation but had no effect on nuclear IR protein levels. These results raise questions regarding the possible role of nuclear IR in IR signaling and insulin resistance. Copyright © 2018 Elsevier B.V. All rights reserved.
Genetic Variants in TAP Are Associated with High-Grade Cervical Neoplasia
Einstein, Mark H.; Leanza, Suzanne; Chiu, Lydia G.; Schlecht, Nicolas F.; Goldberg, Gary L.; Steinberg, Bettie M.; Burk, Robert D.
2018-01-01
Purpose The transporter associated with antigen processing (TAP) is essential in assembling MHC-I proteins. Human papillomavirus (HPV) evades immune recognition by decreasing class I MHC cell surface expression through down-regulation of TAP1 levels. Consistent with heterogeneity in MHC expression is the individual variability in clearing detectable HPV infections. Genetic polymorphisms in TAP genes may affect protein structure, function, and the ability to clear HPV infection. Experimental Design Case-control study of women with cervical intraepithelial neoplasia (CIN) II or III (n = 114) and women without high-grade CIN (n = 366). Five nonsynonymous single nucleotide polymorphisms (SNP) in TAP1 and TAP2 were genotyped using DNA collected in cervicovaginal lavage samples using microsphere array technology (Luminex ×MAP). HPV typing was done using a PCR-based system with MY09/MY11 primers. TAP1 and TAP2 SNPs were validated by direct sequencing. Results Differences in allele distribution between women with high-grade cervical neoplasia and women without was seen for TAP1 I333V (P = 0.02) and TAP1 D637G (p = 0.01).The odds ratios (OR) for CIN III were significantly lower among carriers of the TAP1 I333V polymorphism (OR, 0.28; 95% confidence interval, 0.1-0.8), and TAP1 D637G polymorphism (OR, 0.27; 95% confidence interval, 0.1-0.7). These associations remained significant even after restricting the evaluation to women who were positive for high-risk HPV types. Conclusions In addition to the down-regulation of MHC-1 by oncogenic HPV, HPV pathogenesis might be facilitated by polymorphisms in the TAP proteins. Identifying TAP polymorphisms may potentially be used to identify women less susceptible to progression to high-grade CIN and cervical cancer. PMID:19188174
Ahn, Chang Sook; Ahn, Hee-Kyung; Pai, Hyun-Sook
2015-01-01
Tap46, a regulatory subunit of protein phosphatase 2A (PP2A), plays an essential role in plant growth and development through a functional link with the Target of Rapamycin (TOR) signalling pathway. Here, we have characterized the molecular mechanisms behind a gain-of-function phenotype of Tap46 and its relationship with TOR to gain further insights into Tap46 function in plants. Constitutive overexpression of Tap46 in Arabidopsis resulted in overall growth stimulation with enlarged organs, such as leaves and siliques. Kinematic analysis of leaf growth revealed that increased cell size was mainly responsible for the leaf enlargement. Tap46 overexpression also enhanced seed size and viability under accelerated ageing conditions. Enhanced plant growth was also observed in dexamethasone (DEX)-inducible Tap46 overexpression Arabidopsis lines, accompanied by increased cellular activities of nitrate-assimilating enzymes. DEX-induced Tap46 overexpression and Tap46 RNAi resulted in increased and decreased phosphorylation of S6 kinase (S6K), respectively, which is a sensitive indicator of endogenous TOR activity, and Tap46 interacted with S6K in planta based on bimolecular fluorescence complementation and co-immunoprecipitation. Furthermore, inactivation of TOR by estradiol-inducible RNAi or rapamycin treatment decreased Tap46 protein levels, but increased PP2A catalytic subunit levels. Real-time quantitative PCR analysis revealed that Tap46 overexpression induced transcriptional modulation of genes involved in nitrogen metabolism, ribosome biogenesis, and lignin biosynthesis. These findings suggest that Tap46 modulates plant growth as a positive effector of the TOR signalling pathway and Tap46/PP2Ac protein abundance is regulated by TOR activity. PMID:25399018
Synergistic cooperation of MDM2 and E2F1 contributes to TAp73 transcriptional activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasim, Vivi, E-mail: vivikasim78@gmail.com; Huang, Can; Zhang, Jing
2014-07-04
Highlights: • MDM2 is a novel positive regulator of TAp73 transcriptional activity. • MDM2 colocalizes together and physically interacts with E2F1. • Synergistic cooperation of MDM2 and E2F1 is crucial for TAp73 transcription. • MDM2 regulates TAp73 transcriptional activity in a p53-independent manner. - Abstract: TAp73, a structural homologue of p53, plays an important role in tumorigenesis. E2F1 had been reported as a transcriptional regulator of TAp73, however, the detailed mechanism remains to be elucidated. Here we reported that MDM2-silencing reduced the activities of the TAp73 promoters and the endogenous TAp73 expression level significantly; while MDM2 overexpression upregulated them. Wemore » further revealed that the regulation of TAp73 transcriptional activity occurs as a synergistic effect of MDM2 and E2F1, most probably through their physical interaction in the nuclei. Furthermore, we also suggested that MDM2 might be involved in DNA damage-induced TAp73 transcriptional activity. Finally, we elucidated that MDM2-silencing reduced the proliferation rate of colon carcinoma cells regardless of the p53 status. Our data show a synergistic effect of MDM2 and E2F1 on TAp73 transcriptional activity, suggesting a novel regulation pathway of TAp73.« less
Narasimhulu, D M; Scharfman, L; Minkoff, H; George, B; Homel, P; Tyagaraj, K
2018-04-27
Injection of local anesthetic into the transversus abdominis plane (TAP block) decreases systemic morphine requirements after abdominal surgery. We compared intraoperative surgeon-administered TAP block (surgical TAP) to anesthesiologist-administered transcutaneous ultrasound-guided TAP block (conventional TAP) for post-cesarean analgesia. We hypothesized that surgical TAP blocks would take less time to perform than conventional TAP blocks. We performed a randomized trial, recruiting 41 women undergoing cesarean delivery under neuraxial anesthesia, assigning them to either surgical TAP block (n=20) or conventional TAP block (n=21). Time taken to perform the block was the primary outcome, while postoperative pain scores and 24-hour opioid requirements were secondary outcomes. Student's t-test was used to compare block time and Kruskal-Wallis test opioid consumption and pain-scores. Time taken to perform the block (2.4 vs 12.1 min, P <0.001), and time spent in the operating room after delivery (55.3 vs 77.9 min, P <0.001) were significantly less for surgical TAP. The 24 h morphine consumption (P=0.17) and postoperative pain scores at 4, 8, 24 and 48 h were not significantly different between the groups. Surgical TAP blocks are feasible and less time consuming than conventional TAP blocks, while providing comparable analgesia after cesarean delivery. Copyright © 2018 Elsevier Ltd. All rights reserved.
The Cutaneous Rabbit Revisited
ERIC Educational Resources Information Center
Flach, Rudiger; Haggard, Patrick
2006-01-01
In the cutaneous rabbit effect (CRE), a tactile event (so-called attractee tap) is mislocalized toward an adjacent attractor tap. The effect depends on the time interval between the taps. The authors delivered sequences of taps to the forearm and asked participants to report the location of one of the taps. The authors replicated the original CRE…
Sherrington, David
2010-03-13
This paper is concerned with complex macroscopic behaviour arising in many-body systems through the combinations of competitive interactions and disorder, even with simple ingredients at the microscopic level. It attempts to indicate and illustrate the richness that has arisen, in conceptual understanding, in methodology and in application, across a large range of scientific disciplines, together with a hint of some of the further opportunities that remain to be tapped. In doing so, it takes the perspective of physics and tries to show, albeit rather briefly, how physics has contributed and been stimulated.
Sherrington, David
2010-01-01
This paper is concerned with complex macroscopic behaviour arising in many-body systems through the combinations of competitive interactions and disorder, even with simple ingredients at the microscopic level. It attempts to indicate and illustrate the richness that has arisen, in conceptual understanding, in methodology and in application, across a large range of scientific disciplines, together with a hint of some of the further opportunities that remain to be tapped. In doing so, it takes the perspective of physics and tries to show, albeit rather briefly, how physics has contributed and been stimulated. PMID:20123753
Cross-cultural differences for three visual memory tasks in Brazilian children.
Santos, F H; Mello, C B; Bueno, O F A; Dellatolas, G
2005-10-01
Norms for three visual memory tasks, including Corsi's block tapping test and the BEM 144 complex figures and visual recognition, were developed for neuropsychological assessment in Brazilian children. The tasks were measured in 127 children ages 7 to 10 years from rural and urban areas of the States of São Paulo and Minas Gerais. Analysis indicated age-related but not sex-related differences. A cross-cultural effect was observed in relation to copying and recall of Complex pictures. Different performances between rural and urban children were noted.
Deschrijver, Eliane; Wiersema, Jan R; Brass, Marcel
2016-07-01
Action observation leads to a representation of both the motor aspect of an observed action (motor simulation) and its somatosensory consequences (action-based somatosensory simulation) in the observer's brain. In the current electroencephalography-study, we investigated the neuronal interplay of action-based somatosensory simulation and felt touch. We presented index or middle finger tapping movements of a human or a wooden hand, while simultaneously presenting 'tap-like' tactile sensations to either the corresponding or non-corresponding fingertip of the participant. We focused on an early stage of somatosensory processing [P50, N100 and N140 sensory evoked potentials (SEPs)] and on a later stage of higher-order processing (P3-complex). The results revealed an interaction effect of animacy and congruency in the early P50 SEP and an animacy effect in the N100/N140 SEPs. In the P3-complex, we found an interaction effect indicating that the influence of congruency was larger in the human than in the wooden hand. We argue that the P3-complex may reflect higher-order self-other distinction by signaling simulated action-based touch that does not match own tactile information. As such, the action-based somatosensory congruency paradigm might help understand higher-order social processes from a somatosensory point of view. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Chatzistergos, Panagiotis E; Sapkas, George; Kourkoulis, Stavros K
2010-04-20
The pullout strength of a typical pedicle screw was evaluated experimentally for different screw insertion techniques. OBJECTIVE.: To conclude whether the self-tapping insertion technique is indeed the optimum one for self-tapping screws, with respect to the pullout strength. It is reported in the literature that the size of the pilot-hole significantly influences the pullout strength of a self-tapping screw. In addition it is accepted that an optimum value of the diameter of the pilot-hole exists. For non self-tapping screw insertion it is reported that undertapping of the pilot-hole can increase its pullout strength. Finally it is known that in some cases orthopedic surgeons open the threaded holes, using another screw instead of a tap. A typical commercial self-tapping pedicle screw was inserted into blocks of Solid Rigid Polyurethane Foam (simulating osteoporotic cancellous bone), following different insertion techniques. The pullout force was measured according to the ASTM-F543-02 standard. The screw was inserted into previously prepared holes of different sizes, either threaded or cylindrical, to conclude whether an optimum size of the pilot-hole exists and whether tapping can increase the pullout strength. The case where the tapping is performed using another screw was also studied. For screw insertion with tapping, decreasing the outer radius of the threaded hole from 1.00 to 0.87 of the screw's outer radius increased the pullout force 9%. For insertion without tapping, decreasing the pilot-hole's diameter from 0.87 to 0.47 of the screw's outer diameter increased its pullout force 75%. Finally, tapping using another screw instead of a tap, gave results similar to those of conventional tapping. Undertapping of a pilot-hole either using a tap or another screw can increase the pullout strength of self-tapping pedicle screws.
Armah, Henry B; Parwani, Anil V; Surti, Urvashi; Bastacky, Sheldon I
2009-01-01
The recently recognized renal cell carcinomas (RCCs) associated with Xp11.2 translocations (TFE3 transcription factor gene fusions) are rare tumors predominantly reported in children. They comprise at least one-third of pediatric RCCs and only few adult cases have been reported. Here, we present a case of Xp11.2 translocation RCC in 26-year-old pregnant female. Her routine antenatal ultrasonography accidentally found a complex cystic right renal mass. Further radiologic studies revealed unilocular cyst with multiple mural nodules at inferior pole of right kidney, which was suspicious for RCC. She underwent right radical nephrectomy at 15 weeks gestation. Macroscopically, the cystic tumor was well encapsulated with multiple friable mural nodules on its inner surface. Microscopically, the tumor consisted of clear and eosinophilic/oncocytic voluminous cells arranged in papillary, trabecular, and nested/alveolar patterns. Occasional hyaline nodules and numerous psammoma bodies were present. Immunohistochemically, the tumor showed strong nuclear positivity for TFE3. Epithelial membrane antigen, CD10, and E-cadherin were strongly positive. Cytokeratin AE1/AE3, cytokeratin CAM-5.2, calveolin, and parvalbumin were moderately positive. Cytokeratin 7, renal cell carcinoma antigen, and colloidal iron were focally weakly positive. BerEP4 and carbonic anhydrase IX were negative. Cytogenetically, the tumor harbored a novel variant translocation involving chromosomes X and 19, t(X;19)(p11.2;q13.1). Interphase FISH analysis performed on cultured and uncultured tumor cells using a dual-color break-apart DNA probe within the BCL3 gene on 19q13.3 was negative for the BCL3 gene rearrangement. She received no adjuvant therapy, delivered a normal term baby five months later, and is alive without evidence of disease 27 months after diagnosis and surgery. Unlike most recently reported Xp11.2 translocation RCCs in adult patients with aggressive clinical course, this adult case occurring during pregnancy with a novel translocation involving chromosome 19 followed an indolent clinical course. PMID:19450277
Armah, Henry B; Parwani, Anil V; Surti, Urvashi; Bastacky, Sheldon I
2009-05-18
The recently recognized renal cell carcinomas (RCCs) associated with Xp11.2 translocations (TFE3 transcription factor gene fusions) are rare tumors predominantly reported in children. They comprise at least one-third of pediatric RCCs and only few adult cases have been reported. Here, we present a case of Xp11.2 translocation RCC in 26-year-old pregnant female. Her routine antenatal ultrasonography accidentally found a complex cystic right renal mass. Further radiologic studies revealed unilocular cyst with multiple mural nodules at inferior pole of right kidney, which was suspicious for RCC. She underwent right radical nephrectomy at 15 weeks gestation. Macroscopically, the cystic tumor was well encapsulated with multiple friable mural nodules on its inner surface. Microscopically, the tumor consisted of clear and eosinophilic/oncocytic voluminous cells arranged in papillary, trabecular, and nested/alveolar patterns. Occasional hyaline nodules and numerous psammoma bodies were present.Immunohistochemically, the tumor showed strong nuclear positivity for TFE3. Epithelial membrane antigen, CD10, and E-cadherin were strongly positive. Cytokeratin AE1/AE3, cytokeratin CAM-5.2, calveolin, and parvalbumin were moderately positive. Cytokeratin 7, renal cell carcinoma antigen, and colloidal iron were focally weakly positive. BerEP4 and carbonic anhydrase IX were negative. Cytogenetically, the tumor harbored a novel variant translocation involving chromosomes X and 19, t(X;19)(p11.2;q13.1). Interphase FISH analysis performed on cultured and uncultured tumor cells using a dual-color break-apart DNA probe within the BCL3 gene on 19q13.3 was negative for the BCL3 gene rearrangement. She received no adjuvant therapy, delivered a normal term baby five months later, and is alive without evidence of disease 27 months after diagnosis and surgery. Unlike most recently reported Xp11.2 translocation RCCs in adult patients with aggressive clinical course, this adult case occurring during pregnancy with a novel translocation involving chromosome 19 followed an indolent clinical course.
Temporal prediction abilities are mediated by motor effector and rhythmic expertise.
Manning, Fiona C; Harris, Jennifer; Schutz, Michael
2017-03-01
Motor synchronization is a critical part of musical performance and listening. Recently, motor control research has described how movements that contain more available degrees of freedom are more accurately timed. Previously, we demonstrated that stick tapping improves perception in a timing detection task, where percussionists greatly outperformed non-percussionists only when tapping along. Since most synchronization studies implement finger tapping to examine simple motor synchronization, here we completed a similar task where percussionists and non-percussionists synchronized using finger tapping; movement with fewer degrees of freedom than stick tapping. Percussionists and non-percussionists listened to an isochronous beat sequence and identified the timing of a probe tone. On half of the trials, they tapped along with their index finger, and on the other half of the trials, they listened without moving prior to making timing judgments. We found that both groups benefited from tapping overall. Interestingly, percussionists performed only marginally better than did non-percussionists when finger tapping and no different when listening alone, differing from past studies reporting highly superior timing abilities in percussionists. Additionally, we found that percussionist finger tapping was less variable and less asynchronous than was non-percussionist tapping. Moreover, in both groups finger tapping was more variable and more asynchronous than stick tapping in our previous study. This study demonstrates that the motor effector implemented in tapping studies affects not only synchronization abilities, but also subsequent prediction abilities. We discuss these findings in light of effector-specific training and degrees of freedom in motor timing, both of which impact timing abilities to different extents.
What is the risk of infecting a cerebrospinal fluid-diverting shunt with percutaneous tapping?
Spiegelman, Lindsey; Asija, Richa; Da Silva, Stephanie L; Krieger, Mark D; McComb, J Gordon
2014-10-01
Most CSF-diverting shunt systems have an access port that can be percutaneously tapped. Tapping the shunt can yield valuable information as to its function and whether an infection is present. The fear of causing a shunt infection by tapping may limit the physician's willingness to do so. The authors of this study investigate the risk of infecting a shunt secondary to percutaneous tapping. Following institutional review board approval, CSF specimens obtained from tapping an indwelling CSF-diverting shunt during the 2011 and 2012 calendar years were identified and matched with clinical information. A culture-positive CSF sample was defined as an infection. If results were equivocal, such as a broth-only-positive culture, a repeat CSF specimen was examined. The CSF was obtained by tapping the shunt access port with a 25-gauge butterfly needle after prepping the unshaven skin with chlorhexidine. During the study period, 266 children underwent 542 shunt taps. With 541 taps, no clinical evidence of a subsequent shunt infection was found. One child's CSF went from sterile to infected 11 days later; however, this patient had redness along the shunt tract at the time of the initial sterile tap. The risk of infection from tapping a shunt is remote if the procedure is done correctly.
Jazini, Ehsan; Petraglia, Carmen; Moldavsky, Mark; Tannous, Oliver; Weir, Tristan; Saifi, Comron; Elkassabany, Omar; Cai, Yiwei; Bucklen, Brandon; O'Brien, Joseph; Ludwig, Steven C
2017-04-01
Compromise of pedicle screw purchase is a concern in maintaining rigid spinal fixation, especially with osteoporosis. Little consistency exists among various tapping techniques. Pedicle screws are often prepared with taps of a smaller diameter, which can further exacerbate inconsistency. The objective of this study was to determine whether a mismatch between tap thread depth (D) and thread pitch (P) and screw D and P affects fixation when under-tapping in osteoporotic bone. This study is a polyurethane foam block biomechanical analysis. A foam block osteoporotic bone model was used to compare pullout strength of pedicle screws with a 5.3 nominal diameter tap of varying D's and P's. Blocks were sorted into seven groups: (1) probe only; (2) 0.5-mm D, 1.5-mm P tap; (3) 0.5-mm D, 2.0-mm P tap; (4) 0.75-mm D, 2.0-mm P tap; (5) 0.75-mm D, 2.5-mm P tap; (6) 0.75-mm D, 3.0-mm P tap; and (7) 1.0-mm D, 2.5-mm P tap. A pedicle screw, 6.5 mm in diameter and 40 mm in length, was inserted to a depth of 40 mm. Axial pullout testing was performed at a rate of 5 mm/min on 10 blocks from each group. No significant difference was noted between groups under axial pullout testing. The mode of failure in the probe-only group was block fracture, occurring in 50% of cases. Among the other six groups, only one screw failed because of block fracture. The other 59 failed because of screw pullout. In an osteoporotic bone model, changing the D or P of the tap has no statistically significant effect on axial pullout. Osteoporotic bone might render tap features marginal. Our findings indicate that changing the characteristics of the tap D and P does not help with pullout strength in an osteoporotic model. The high rate of fracture in the probe-only group might imply the potential benefit of tapping to prevent catastrophic failure of bone. Copyright © 2016 Elsevier Inc. All rights reserved.
Write for Your Life: Developing Digital Literacies and Writing Pedagogy in Teacher Education
ERIC Educational Resources Information Center
Collier, Shartriya; Foley, Brian; Moguel, David; Barnard, Ian
2013-01-01
The need for the effective development of digital literacies pervades every aspect of instruction in contemporary classrooms. As a result, teacher candidates must be equipped to draw upon a variety of literacies in order to tap into the complex social worlds of their future pupils. The Write for Your Life Project was designed to strengthen…
ERIC Educational Resources Information Center
Heyvaert, Mieke; Deleye, Maarten; Saenen, Lore; Van Dooren, Wim; Onghena, Patrick
2018-01-01
When studying a complex research phenomenon, a mixed methods design allows to answer a broader set of research questions and to tap into different aspects of this phenomenon, compared to a monomethod design. This paper reports on how a sequential equal status design (QUAN ? QUAL) was used to examine students' reasoning processes when solving…
Reinersmann, A; Haarmeyer, G S; Blankenburg, M; Frettlöh, J; Krumova, E K; Ocklenburg, S; Maier, C
2011-09-01
In patients with complex regional pain syndrome (CRPS) a disruption of the body schema has been shown in an altered cortical representation of the hand and in delayed reaction times (RT) in the hand laterality recognition task. However, the role of attentional processes or the effect of isolated limb laterality training has not yet been clarified. The performance of healthy subjects (n = 38), CRPS patients (n = 12) and phantom limb pain (PLP) patients (n = 12) in a test battery of attentional performance (TAP) and in a limb laterality recognition task was compared and the effect of limb laterality training in CRPS patients and healthy subjects evaluated. The RTs of both CRPS and PLP patients were significantly slower than those of healthy subjects despite normal TAP values. The CRPS and PLP patients showed bilaterally delayed RTs. Through training RTs improved significantly but the RTs of CRPS patients remained slower than those of healthy subjects. In this study an equal disruption of the body schema was found in both CRPS and PLP patients which cannot be accounted for by attentional processes. For CRPS patients this disorder cannot be fully reversed by isolated limb laterality recognition training.
López-Guerra, Enrique A
2017-01-01
We explore the contact problem of a flat-end indenter penetrating intermittently a generalized viscoelastic surface, containing multiple characteristic times. This problem is especially relevant for nanoprobing of viscoelastic surfaces with the highly popular tapping-mode AFM imaging technique. By focusing on the material perspective and employing a rigorous rheological approach, we deliver analytical closed-form solutions that provide physical insight into the viscoelastic sources of repulsive forces, tip–sample dissipation and virial of the interaction. We also offer a systematic comparison to the well-established standard harmonic excitation, which is the case relevant for dynamic mechanical analysis (DMA) and for AFM techniques where tip–sample sinusoidal interaction is permanent. This comparison highlights the substantial complexity added by the intermittent-contact nature of the interaction, which precludes the derivation of straightforward equations as is the case for the well-known harmonic excitations. The derivations offered have been thoroughly validated through numerical simulations. Despite the complexities inherent to the intermittent-contact nature of the technique, the analytical findings highlight the potential feasibility of extracting meaningful viscoelastic properties with this imaging method. PMID:29114450
Residues in the H+ Translocation Site Define the pKa for Sugar Binding to LacY†
Smirnova, Irina; Kasho, Vladimir; Sugihara, Junichi; Choe, Jun-Yong; Kaback, H. Ronald
2009-01-01
A remarkably high pKa of approximately 10.5 has been determined for sugar-binding affinity to the lactose permease of Escherichia coli (LacY), indicating that, under physiological conditions, substrate binds to fully protonated LacY. We have now systematically tested site-directed replacements for the residues involved in sugar binding, as well as H+ translocation and coupling, in order to determine which residues may be responsible for this alkaline pKa. Mutations in the sugar-binding site (Glu126, Trp151, Glu269) markedly decrease affinity for sugar but do not alter the pKa for binding. In contrast, replacements for residues involved in H+ translocation (Arg302, Tyr236, His322, Asp240, Glu325, Lys319) exhibit pKa values for sugar binding that are either shifted toward neutral pH or independent of pH. Values for the apparent dissociation constant for sugar binding (Kdapp) increase greatly for all mutants except neutral replacements for Glu325 or Lys319, which are characterized by remarkably high affinity sugar binding (i.e., low Kdapp) from pH 5.5 to pH 11. The pH dependence of the on- and off-rate constants for sugar binding measured directly by stopped-flow fluorometry implicates koff as a major factor for the affinity change at alkaline pH and confirms the effects of pH on Kdapp inferred from steady-state fluorometry. These results indicate that the high pKa for sugar binding by wild-type LacY cannot be ascribed to any single amino acid residue but appears to reside within a complex of residues involved in H+ translocation. There is structural evidence for water bound in this complex, and the water could be the site of protonation responsible for the pH dependence of sugar binding. PMID:19689129
NASA Astrophysics Data System (ADS)
Costa, Justin A.
The translocation of nucleic acid polymers across cell membranes is a fundamental requirement for complex life and has greatly contributed to genomic molecular evolution. The diversity of pathways that have evolved to transport DNA and RNA across membranes include protein receptors, active and passive transporters, endocytic and pinocytic processes, and various types of nucleic acid conducting channels known as nanopores. We have developed a series of experimental techniques, collectively known as "
Control system for a wound-rotor motor
Ellis, James N.
1983-01-01
A load switching circuit for switching two or more transformer taps under load carrying conditions includes first and second parallel connected bridge rectifier circuits which control the selective connection of a direct current load to taps of a transformer. The first bridge circuit is normally conducting so that the load is connected to a first tap through the first bridge circuit. To transfer the load to the second tap, a switch is operable to connect the second bridge circuit to a second tap, and when the second bridge circuit begins to conduct, the first bridge circuit ceases conduction because the potential at the second tap is higher than the potential at the first tap, and the load is thus connected to the second tap through the second bridge circuit. The load switching circuit is applicable in a motor speed controller for a wound-rotor motor for effecting tap switching as a function of motor speed while providing a stepless motor speed control characteristic.
Effects of age, task, and frequency on variability of finger tapping.
Sommervoll, Yngve; Ettema, Gertjan; Vereijken, Beatrix
2011-10-01
The goal was to assess whether prior studies might have overestimated performance variability in older adults in dual task conditions by relying on primary motor tasks that are not constant with aging. 30 younger and 31 older adults performed a bimanual tapping task at four different frequencies in isolation or concurrently with a secondary task. Results showed that performance of younger and older adults was not significantly different in performing the tapping task at all frequencies and with either secondary task, as indicated by mean tapping performance and low number of errors in the secondary tasks. Both groups showed increased variability as tapping frequency increased and with the presence of a secondary task. Tapping concurrently while reading words increased tapping variability more than tapping concurrently while naming colours. Although older participants' performances were overall more variable, no interaction effects with age were found and at the highest frequencies of tapping, younger and older participants did not differ in performance.
Nano-scale characterization of the dynamics of the chloroplast Toc translocon.
Reddick, L Evan; Chotewutmontri, Prakitchai; Crenshaw, Will; Dave, Ashita; Vaughn, Michael; Bruce, Barry D
2008-01-01
Translocons are macromolecular nano-scale machines that facilitate the selective translocation of proteins across membranes. Although common in function, different translocons have evolved diverse molecular mechanisms for protein translocation. Subcellular organelles of endosymbiotic origin such as the chloroplast and mitochondria had to evolve/acquire translocons capable of importing proteins whose genes were transferred to the host genome. These gene products are expressed on cytosolic ribosomes as precursor proteins and targeted back to the organelle by an N-terminal extension called the transit peptide or presequence. In chloroplasts the transit peptide is specifically recognized by the Translocon of the Outer Chloroplast membrane (Toc) which is composed of receptor GTPases that potentially function as gate-like switches, where GTP binding and hydrolysis somehow facilitate preprotein binding and translocation. Compared to other translocons, the dynamics of the Toc translocon are probably more complex and certainly less understood. We have developed biochemical/biophysical, imaging, and computational techniques to probe the dynamics of the Toc translocon at the nanoscale. In this chapter we provide detailed protocols for kinetic and binding analysis of precursor interactions in organeller, measurement of the activity and nucleotide binding of the Toc GTPases, native electrophoretic analysis of the assembly/organization of the Toc complex, visualization of the distribution and mobility of Toc apparatus on the surface of chloroplasts, and conclude with the identification and molecular modeling Toc75 POTRA domains. With these new methodologies we discuss future directions of the field.
Martynova, S P; Dobrotvorskaya, T V; Krupnov, V A
2016-02-01
During the last 80 years, in order to increase the genetic variability of wheat, translocations containing nine elongated wheatgrass (Agropyron elongatum) and eight intermediate wheatgrass (Agropyron intermedium) genes, which control resistance to pathogens, were transferred to this crop culture. Genealogical and statistical analysis of 1500 varieties developed using the wheatgrass gave evidence of the continuing increase in the proportion of such varieties in the total number of wheat varieties over the last half-century. Translocations from Ag. elongatum most commonly occur in the pedigrees of the varieties from the United States, less frequently they can be found in Australian and Chinese varieties, and they are extremely rare--in European and African ones. Ag. intermedium most frequently occurs in the pedigrees of the Eastern European varieties, mainly in those from Russia, as well as in the varieties from China. The observed uneven distribution of such varieties may be associated with either the effectiveness of the translocation in the development of resistance to the local populations of pathogens or with the effect of the translocation on the adaptive traits of plants. By computer tracking of pedigrees, we performed an inventory of the translocation donors from A. elongatum and A. intermedium used in the breeding programs in the United States, Russia, Australia, India, and China. The most widely occurring combinations of the gene complex Lr24/Sr24 of Ag. elongatum with other resistance genes were revealed. In Russia there were developed varieties in which the 6D chromosome was substituted by the 6Ai chromosome of Ag. intermedium, which controls disease resistance and the adaptivity of plants. The identification and introgression of new translocations indicates that the possibilities of using wheatgrass species for broadening of genetic variability of wheat are far from being exhausted.
Familial translocation involving chromosomes 1 and 9 in a patient with Philadelphia-positive CML
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehman, K.; Rosner, F.; Shanske, A.
1994-09-01
CML has provided a model for understanding the genetic basis of neoplasia. Approximately 5% of Philadelphia-positive patients have a variant chromosome rearrangement. We recently evaluated a patient with a previously unreported simple variant translocation that is part of a familial rearrangement. He had a constitutional translocation, t(1;9)(p21;p22), which was initially identified after his wife had a routine amniocentesis. Case report: K.H. was a 54-year-old male with CML for 4 years. He had been treated until recently with hydroxyurea. An abnormal male karyotype, 46,XY,t(1;9)(q21;p22),t(9;22)(q34;q11) was recorded from an unstimulated blood sample soon after diagnosis. Both translocations involved the same number 9more » homologue resulting in a derivative 9(1pter{r_arrow}1q21::9p22{r_arrow}9q34::22q11{r_arrow}22qter). A recent CT scan of the chest showed a lytic lesion of a rib with associated soft tissue mass in the right costo-vertebral angle. He was hospitalized for progressive pain in the right lower chest and fever, treated for a UTI, required multiple transfusions for declining hemoglobin and platelets and died shortly thereafter. Autopsy revealed widespread chloromas as part of terminal CML. At least 13 complex rearrangements involving chromosomes 1, 9 and 22 are known. Our case represents a unique rearrangement with a familial component and also unique breakpoints for a Philadelphia variant. In line with the current view of cancer as a clonal disorder, perhaps the constitutional translocation contributed to the multi-step nature of the malignant transformation. In fact, a number of cancer-specific breakpoints in both regions of 1p and 9p are involved in the familial translocation.« less
Synchronized tapping facilitates learning sound sequences as indexed by the P300.
Kamiyama, Keiko S; Okanoya, Kazuo
2014-01-01
The purpose of the present study was to determine whether and how single finger tapping in synchrony with sound sequences contributed to the auditory processing of them. The participants learned two unfamiliar sound sequences via different methods. In the tapping condition, they learned an auditory sequence while they tapped in synchrony with each sound onset. In the no tapping condition, they learned another sequence while they kept pressing a key until the sequence ended. After these learning sessions, we presented the two melodies again and recorded event-related potentials (ERPs). During the ERP recordings, 10% of the tones within each melody deviated from the original tones. An analysis of the grand average ERPs showed that deviant stimuli elicited a significant P300 in the tapping but not in the no-tapping condition. In addition, the significance of the P300 effect in the tapping condition increased as the participants showed highly synchronized tapping behavior during the learning sessions. These results indicated that single finger tapping promoted the conscious detection and evaluation of deviants within the learned sequences. The effect was related to individuals' musical ability to coordinate their finger movements along with external auditory events.
Synchronized tapping facilitates learning sound sequences as indexed by the P300
Kamiyama, Keiko S.; Okanoya, Kazuo
2014-01-01
The purpose of the present study was to determine whether and how single finger tapping in synchrony with sound sequences contributed to the auditory processing of them. The participants learned two unfamiliar sound sequences via different methods. In the tapping condition, they learned an auditory sequence while they tapped in synchrony with each sound onset. In the no tapping condition, they learned another sequence while they kept pressing a key until the sequence ended. After these learning sessions, we presented the two melodies again and recorded event-related potentials (ERPs). During the ERP recordings, 10% of the tones within each melody deviated from the original tones. An analysis of the grand average ERPs showed that deviant stimuli elicited a significant P300 in the tapping but not in the no-tapping condition. In addition, the significance of the P300 effect in the tapping condition increased as the participants showed highly synchronized tapping behavior during the learning sessions. These results indicated that single finger tapping promoted the conscious detection and evaluation of deviants within the learned sequences. The effect was related to individuals’ musical ability to coordinate their finger movements along with external auditory events. PMID:25400564
Tapping the promise of genomics in species with complex, nonmodel genomes.
Hirsch, Candice N; Buell, C Robin
2013-01-01
Genomics is enabling a renaissance in all disciplines of plant biology. However, many plant genomes are complex and remain recalcitrant to current genomic technologies. The complexities of these nonmodel plant genomes are attributable to gene and genome duplication, heterozygosity, ploidy, and/or repetitive sequences. Methods are available to simplify the genome and reduce these barriers, including inbreeding and genome reduction, making these species amenable to current sequencing and assembly methods. Some, but not all, of the complexities in nonmodel genomes can be bypassed by sequencing the transcriptome rather than the genome. Additionally, comparative genomics approaches, which leverage phylogenetic relatedness, can aid in the interpretation of complex genomes. Although there are limitations in accessing complex nonmodel plant genomes using current sequencing technologies, genome manipulation and resourceful analyses can allow access to even the most recalcitrant plant genomes.
Tap water isotopes reveal the San Francisco Bay Area's plumbing and responses to a major drought
NASA Astrophysics Data System (ADS)
Tipple, B. J.; Jameel, M. Y.; Chau, T. H.; Mancuso, C. J.; Bowen, G. J.; Dufour, A.; Chesson, L. A.; Ehleringer, J. R.
2016-12-01
Water availability and sustainability in the Western United States is a major flashpoint among expanding communities, growing industries, and productive agricultural lands. This issue came to a head in 2015 in the State of California, when the State mandated a 25% reduction in urban water use following a multi-year drought that significantly depleted water resources. The demands for and challenges in supplying water are only expected to intensify as climate perturbations, such as the 2012-2015 California Drought, become more common. As a consequence, there is an increased need to understand linkages between population centers, water transport and usage, and the impacts of climate change on water resources and infrastructure. To better understand these relationships within a megalopolis in the Western United States, we collected and analyzed 723 tap waters from the San Francisco Bay Area during seven collection campaigns across 21 months during 2013-2015. San Francisco Bay Area was selected as it has well-known water management strategies and its water resources were dramatically affected by the 2012-2105 drought. Consistent with known water management strategies and previous reports of tap water isotope values, we found large spatiotemporal variations in the δ2H and δ18O values of tap waters, indicative of complex water transport systems and municipality-scale management decisions. We observed δ2H and δ18O values of tap water consistent with waters originating from snowmelt from the Sierra Nevada Mountains, local precipitation, ground water, and partially evaporated reservoir sources. A cluster analysis of measured tap water data grouped waters from 43 static sampling sites that were associated with specific water utility providers within the San Francisco Bay Area and known management practices. Water management responses to the drought, such as source switching, bringing in new sources, and conservation, could be observed within the isotope data from each of collection campaigns. Finally, we used a modified Craig-Gordon model of evaporative loss from one utility's reservoir system during the 2015 water year to estimate the consequences of the drought on this resource. Using these isotope methods, we estimated that approximately 10% of the water in this reservoir system was lost to evaporation.
Age-Related Changes in Bimanual Instrument Playing with Rhythmic Cueing
Kim, Soo Ji; Cho, Sung-Rae; Yoo, Ga Eul
2017-01-01
Deficits in bimanual coordination of older adults have been demonstrated to significantly limit their functioning in daily life. As a bimanual sensorimotor task, instrument playing has great potential for motor and cognitive training in advanced age. While the process of matching a person’s repetitive movements to auditory rhythmic cueing during instrument playing was documented to involve motor and attentional control, investigation into whether the level of cognitive functioning influences the ability to rhythmically coordinate movement to an external beat in older populations is relatively limited. Therefore, the current study aimed to examine how timing accuracy during bimanual instrument playing with rhythmic cueing differed depending on the degree of participants’ cognitive aging. Twenty one young adults, 20 healthy older adults, and 17 older adults with mild dementia participated in this study. Each participant tapped an electronic drum in time to the rhythmic cueing provided using both hands simultaneously and in alternation. During bimanual instrument playing with rhythmic cueing, mean and variability of synchronization errors were measured and compared across the groups and the tempo of cueing during each type of tapping task. Correlations of such timing parameters with cognitive measures were also analyzed. The results showed that the group factor resulted in significant differences in the synchronization errors-related parameters. During bimanual tapping tasks, cognitive decline resulted in differences in synchronization errors between younger adults and older adults with mild dimentia. Also, in terms of variability of synchronization errors, younger adults showed significant differences in maintaining timing performance from older adults with and without mild dementia, which may be attributed to decreased processing time for bimanual coordination due to aging. Significant correlations were observed between variability of synchronization errors and performance of cognitive tasks involving executive control and cognitive flexibility when asked for bimanual coordination in response to external timing cues at adjusted tempi. Also, significant correlations with cognitive measures were more prevalent in variability of synchronization errors during alternative tapping compared to simultaneous tapping. The current study supports that bimanual tapping may be predictive of cognitive processing of older adults. Also, tempo and type of movement required for instrument playing both involve cognitive and motor loads at different levels, and such variables could be important factors for determining the complexity of the task and the involved task requirements for interventions using instrument playing. PMID:29085309
Nicotianamine forms complexes with Zn(II) in vivo.
Trampczynska, Aleksandra; Küpper, Hendrik; Meyer-Klaucke, Wolfram; Schmidt, Holger; Clemens, Stephan
2010-01-01
The non-proteinogenic amino acid nicotianamine (NA) is a major player in plant metal homeostasis. It is known to form complexes with different transition metals in vitro. Available evidence associates NA with translocation of Fe, and possibly other micronutrients, to and between different plant cells and tissues. To date, however, it is still extremely challenging to detect metal-ligand complexes in vivo because tissue disruption immediately changes the chemical environment and thereby the availability of binding partners. In order to overcome this limitation we used various Schizosaccharomyces pombe strains expressing a plant NAS gene to study formation of metal-NA complexes in vivo. Tolerance, accumulation and competition data clearly indicated formation of Zn(ii)-NA but not of Cu(ii)-NA complexes. Zn(ii)-NA was then identified by X-ray absorption spectroscopy (XAS). About half of the cellular Zn was found to be bound by NA in NAS-expressing cells while no NA-like ligands were detected by XAS in control cells not expressing NAS. Given the high conservation of eukaryotic metal homeostasis components, these results strongly suggest the possible existence of Zn(ii)-NA complexes also in planta. Reported observations implicating NA in plant Zn homeostasis would then indeed be attributable to direct interaction of Zn(ii) with NA rather than only indirectly to perturbations in Fe metabolism. Re-evaluation of extended X-ray absorption fine structure (EXAFS) spectra for the Zn hyperaccumulator Thlaspi caerulescens showed that NA is as expected not a major storage ligand for Zn. Instead it is hypothesized to be involved in efficient translocation of Zn to above-ground tissues in hyperaccumulators.
Dolar, Davor; Vuković, Ana; Asperger, Danijela; Kosutić, Kresimir
2011-01-01
This study explored the removal of five veterinary pharmaceuticals (VPs) (sulfamethoxazole (SMETOX), trimethoprim (TMP), ciprofloxacin (CIPRO), dexamethasone (DEXA) and febantel (FEBA)) from different water matrices (Milli-Q water, model water, tap water and real pharmaceutical wastewater using four types of nanofiltration (NF) membranes (NF90, NF270, NF and HL) and two reverse osmosis (RO) membranes (LFC-1 and XLE). All VPs were added to different water matrices at a concentration of 10 mg/L. Rejections of VPs and water flux were measured. The rejection increased with increase of molecular weight. The highest rejections were obtained with RO membranes (LFC-1, XLE) and tight NF (NF90) membrane. In general, the rejection of VPs was higher in model water and tap water than in Milli-Q water, but the water flux was lower. This was mainly explained by ion adsorption inside the membranes pores. Narrower pore size counteracted the effect of presence of low concentration of natural organic matter (NOM) in tap water. The NOM was assumed to enhance the adsorption of VPs onto membrane surface, increased the size exclusion and electrostatic repulsion also appeared during the transport. Investigated water matrices had influence on water flux decline due to their complexity.
NASA Astrophysics Data System (ADS)
Yamuna, R.; Ramakrishnan, S.; Dhara, Keerthy; Devi, R.; Kothurkar, Nikhil K.; Kirubha, E.; Palanisamy, P. K.
2013-01-01
The synthesis of a porphyrin-graphene oxide hybrid (GO-TAP) was carried out by covalently functionalizing graphene oxide (GO) with 5,10,15,20 mesotetra (4-aminophenyl) porphyrin (TAP) through an amide linkage. The GO-TAP hybrid has been characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV-visible spectroscopy. The peak intensity of the Soret band of the material was suppressed compared to neat TAP. This indicates a strong interaction between the electronic energy level of TAP and GO in the GO-TAP hybrid. The functionalization of GO with TAP significantly improved its solubility and dispersion stability in organic solvents. Scanning electron micrographs reveal that the hybrid was found to be similar to the unmodified GO but slightly more wrinkled. Transmission electron micrographs also demonstrate that GO sheet in the hybrid is more wrinkled with some dark spot due to functionalization. Atomic force microscopy results also reveal that the TAP functionalization increases the thickness of GO sheet to 2.0-3.0 nm from 1.2 to 1.8 nm. We observed improved nonlinear optical and optical limiting properties for the hybrid compared to both graphene oxide and porphyrin. GO-TAP shows fluorescence quenching compared with porphyrin, indicating excellent electron and/or energy transfer to GO from TAP. Thermogravimetric analysis confirms that the GO-TAP hybrid has outstanding thermal stability.
Arsenic Hyperaccumulation Strategies: An Overview
Souri, Zahra; Karimi, Naser; Sandalio, Luisa M.
2017-01-01
Arsenic (As) pollution, which is on the increase around the world, poses a growing threat to the environment. Phytoremediation, an important green technology, uses different strategies, including As uptake, transport, translocation, and detoxification, to remediate this metalloid. Arsenic hyperaccumulator plants have developed various strategies to accumulate and tolerate high concentrations of As. In these plants, the formation of AsIII complexes with GSH and phytochelatins and their transport into root and shoot vacuoles constitute important mechanisms for coping with As stress. The oxidative stress induced by reactive oxygen species (ROS) production is one of the principal toxic effects of As; moreover, the strong antioxidative defenses in hyperaccumulator plants could constitute an important As detoxification strategy. On the other hand, nitric oxide activates antioxidant enzyme and phytochelatins biosynthesis which enhances As stress tolerance in plants. Although several studies have focused on transcription, metabolomics, and proteomic changes in plants induced by As, the mechanisms involved in As transport, translocation, and detoxification in hyperaccumulator plants need to be studied in greater depth. This review updates recent progress made in the study of As uptake, translocation, chelation, and detoxification in As hyperaccumulator plants. PMID:28770198
Receptor Tyrosine Kinase ErbB2 Translocates into Mitochondria and Regulates Cellular Metabolism
Ding, Yan; Liu, Zixing; Desai, Shruti; Zhao, Yuhua; Liu, Hao; Pannell, Lewis K; Yi, Hong; Wright, Elizabeth R; Owen, Laurie B; Dean-Colomb, Windy; Fodstad, Oystein; Lu, Jianrong; LeDoux, Susan P; Wilson, Glenn L; Tan, Ming
2012-01-01
It is well known that ErbB2, a receptor tyrosine kinase, localizes on the plasma membrane. Here we describe a novel observation that ErbB2 also localizes in mitochondria of cancer cells and patient samples. We found that ErbB2 translocates into mitochondria through the association with mtHSP70. Additionally, mitochondrial ErbB2 (mtErbB2) negatively regulates mitochondrial respiratory functions. Oxygen consumption and activities of complexes of the mitochondrial electron transport chain were decreased in mtErbB2-overexpressing cells. Mitochondrial membrane potential and the cellular ATP level also were decreased. In contrast, mtErbB2 enhanced cellular glycolysis. The translocation of ErbB2 and its impact on mitochondrial function are kinase dependent. Interestingly, cancer cells with higher levels of mtErbB2 were more resistant to ErbB2 targeting antibody trastuzumab. Our study provides a novel perspective on the metabolic regulatory function of ErbB2 and reveals that mtErbB2 plays an important role in the regulation of cellular metabolism and cancer cell resistance to therapeutics. PMID:23232401
Yang, Yi-Chieh; Chien, Ming-Hsien; Liu, Hsin-Yi; Chang, Yu-Chan; Chen, Chi-Kuan; Lee, Wei-Jiunn; Kuo, Tsang-Chih; Hsiao, Michael; Hua, Kuo-Tai; Cheng, Tsu-Yao
2018-05-01
Cancer cells encounter metabolic stresses such as hypoxia and nutrient limitations because they grow and divide more quickly than their normal counterparts. In response to glucose restriction, we found that nuclear translocation of the glycolic enzyme, pyruvate kinase M2 (PKM2), helped cancer cells survive under the metabolic stress. Restriction of glucose stimulated AMPK activation and resulted in co-translocation of AMPK and PKM2 through Ran-mediated nuclear transport. Nuclear PKM2 subsequently bound to Oct4 and promoted the expression of cancer stemness-related genes, which might enrich the cancer stem cell population under the metabolic stress. Nuclear PKM2 was also capable of promoting cancer metastasis in an orthotopic xenograft model. In summary, we found that cytosolic AMPK helped PKM2 carry out its nonmetabolic functions in the nucleus under glucose restriction and that nuclear PKM2 promoted cancer stemness and metastasis. These findings suggested a potential new targeting pathway for cancer therapy in the future. Copyright © 2018 Elsevier B.V. All rights reserved.
Spiller, Michael P.; Stirling, Colin J.
2011-01-01
Protein translocation across the endoplasmic reticulum membrane occurs via a “translocon” channel formed by the Sec61p complex. In yeast, two channels exist: the canonical Sec61p channel and a homolog called Ssh1p. Here, we used trapped translocation intermediates to demonstrate that a specific signal recognition particle-dependent substrate, Sec71p, is targeted exclusively to Ssh1p. Strikingly, we found that, in the absence of Ssh1p, precursor could be successfully redirected to canonical Sec61p, demonstrating that the normal targeting reaction must involve preferential sorting to Ssh1p. Our data therefore demonstrate that Ssh1p is the primary translocon for Sec71p and reveal a novel sorting mechanism at the level of the endoplasmic reticulum membrane enabling precursors to be directed to distinct translocons. Interestingly, the Ssh1p-dependent translocation of Sec71p was found to be dependent upon Sec63p, demonstrating a previously unappreciated functional interaction between Sec63p and the Ssh1p translocon. PMID:21454595
Rothbächer, Ute; Laurent, Micheline N.; Deardorff, Matthew A.; Klein, Peter S.; Cho, Ken W.Y.; Fraser, Scott E.
2000-01-01
Dishevelled (Dsh) induces a secondary axis and can translocate to the membrane when activated by Frizzleds; however, dominant-negative approaches have not supported a role for Dsh in primary axis formation. We demonstrate that the Dsh protein is post-translationally modified at the dorsal side of the embryo: timing and position of this regulation suggests a role of Dsh in dorsal–ventral patterning in Xenopus. To create functional links between these properties of Dsh we analyzed the influence of endogenous Frizzleds and the Dsh domain dependency for these characteristics. Xenopus Frizzleds phosphorylate and translocate Xdsh to the membrane irrespective of their differential ectopic axes inducing abilities, showing that translocation is insufficient for axis induction. Dsh deletion analysis revealed that axis inducing abilities did not segregate with Xdsh membrane association. The DIX region and a short stretch at the N–terminus of the DEP domain are necessary for axis induction while the DEP region is required for Dsh membrane association and its phosphorylation. In addition, Dsh forms homomeric complexes in embryos suggesting that multimerization is important for its proper function. PMID:10698942
Hayama, Yoshitomo; Kimura, Tetsuya; Takeda, Yoshito; Nada, Shigeyuki; Koyama, Shohei; Takamatsu, Hyota; Kang, Sujin; Ito, Daisuke; Maeda, Yohei; Nishide, Masayuki; Nojima, Satoshi; Sarashina-Kida, Hana; Hosokawa, Takashi; Kinehara, Yuhei; Kato, Yasuhiro; Nakatani, Takeshi; Nakanishi, Yoshimitsu; Tsuda, Takeshi; Koba, Taro; Okada, Masato; Kumanogoh, Atsushi
2018-06-01
Amino acid metabolism plays important roles in innate immune cells, including macrophages. Recently, we reported that a lysosomal adaptor protein, Lamtor1, which serves as the scaffold for amino acid-activated mechanistic target of rapamycin complex 1 (mTORC1), is critical for the polarization of M2 macrophages. However, little is known about how Lamtor1 affects the inflammatory responses that are triggered by the stimuli for TLRs. In this article, we show that Lamtor1 controls innate immune responses by regulating the phosphorylation and nuclear translocation of transcription factor EB (TFEB), which has been known as the master regulator for lysosome and autophagosome biogenesis. Furthermore, we show that nuclear translocation of TFEB occurs in alveolar macrophages of myeloid-specific Lamtor1 conditional knockout mice and that these mice are hypersensitive to intratracheal administration of LPS and bleomycin. Our observation clarified that the amino acid-sensing pathway consisting of Lamtor1, mTORC1, and TFEB is involved in the regulation of innate immune responses. Copyright © 2018 by The American Association of Immunologists, Inc.
Tight coupling between nucleus and cell migration through the perinuclear actin cap
Kim, Dong-Hwee; Cho, Sangkyun; Wirtz, Denis
2014-01-01
ABSTRACT Although eukaryotic cells are known to alternate between ‘advancing’ episodes of fast and persistent movement and ‘hesitation’ episodes of low speed and low persistence, the molecular mechanism that controls the dynamic changes in morphology, speed and persistence of eukaryotic migratory cells remains unclear. Here, we show that the movement of the interphase nucleus during random cell migration switches intermittently between two distinct modes – rotation and translocation – that follow with high fidelity the sequential rounded and elongated morphologies of the nucleus and cell body, respectively. Nuclear rotation and translocation mediate the stop-and-go motion of the cell through the dynamic formation and dissolution, respectively, of the contractile perinuclear actin cap, which is dynamically coupled to the nuclear lamina and the nuclear envelope through LINC complexes. A persistent cell movement and nuclear translocation driven by the actin cap are halted following the disruption of the actin cap, which in turn allows the cell to repolarize for its next persistent move owing to nuclear rotation mediated by cytoplasmic dynein light intermediate chain 2. PMID:24639463
Microbiological tap water profile of a medium-sized building and effect of water stagnation.
Lipphaus, Patrick; Hammes, Frederik; Kötzsch, Stefan; Green, James; Gillespie, Simon; Nocker, Andreas
2014-01-01
Whereas microbiological quality of drinking water in water distribution systems is routinely monitored for reasons of legal compliance, microbial numbers in tap water are grossly understudied. Motivated by gross differences in water from private households, we applied in this study flow cytometry as a rapid analytical method to quantify microbial concentrations in water sampled at diverse taps in a medium size research building receiving chlorinated water. Taps differed considerably in frequency of usage and were located in laboratories, bathrooms, and a coffee kitchen. Substantial differences were observed between taps with concentrations (per mL) in the range from 6.29 x 10(3) to 7.74 x 10(5) for total cells and from 1.66 x 10(3) to 4.31 x 10(5) for intact cells. The percentage of intact cells varied between 7% and 96%. Water from taps with very infrequent use showed the highest bacterial numbers and the highest proportions of intact cells. Stagnation tended to increase microbial numbers in water from those taps which were otherwise frequently used. Microbial numbers in other taps that were rarely opened were not affected by stagnation as their water is probably mostly stagnant. For cold water taps, microbial numbers and the percentage of intact cells tended to decline with flushing with the greatest decline for taps used least frequently whereas microbial concentrations in water from hot water taps tended to be somewhat more stable. We conclude that microbiological water quality is mainly determined by building-specific parameters. Tap water profiling can provide valuable insight into plumbing system hygiene and maintenance.
More than just tapping: index finger-tapping measures procedural learning in schizophrenia.
Da Silva, Felipe N; Irani, Farzin; Richard, Jan; Brensinger, Colleen M; Bilker, Warren B; Gur, Raquel E; Gur, Ruben C
2012-05-01
Finger-tapping has been widely studied using behavioral and neuroimaging paradigms. Evidence supports the use of finger-tapping as an endophenotype in schizophrenia, but its relationship with motor procedural learning remains unexplored. To our knowledge, this study presents the first use of index finger-tapping to study procedural learning in individuals with schizophrenia or schizoaffective disorder (SCZ/SZA) as compared to healthy controls. A computerized index finger-tapping test was administered to 1169 SCZ/SZA patients (62% male, 88% right-handed), and 689 healthy controls (40% male, 93% right-handed). Number of taps per trial and learning slopes across trials for the dominant and non-dominant hands were examined for motor speed and procedural learning, respectively. Both healthy controls and SCZ/SZA patients demonstrated procedural learning for their dominant hand but not for their non-dominant hand. In addition, patients showed a greater capacity for procedural learning even though they demonstrated more variability in procedural learning compared to healthy controls. Left-handers of both groups performed better than right-handers and had less variability in mean number of taps between non-dominant and dominant hands. Males also had less variability in mean tap count between dominant and non-dominant hands than females. As expected, patients had a lower mean number of taps than healthy controls, males outperformed females and dominant-hand trials had more mean taps than non-dominant hand trials in both groups. The index finger-tapping test can measure both motor speed and procedural learning, and motor procedural learning may be intact in SCZ/SZA patients. Copyright © 2012 Elsevier B.V. All rights reserved.
Multi-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air
An, Sangmin; Long, Christian J
2014-01-01
Summary We present an exploratory study of multimodal tapping-mode atomic force microscopy driving more than three cantilever eigenmodes. We present tetramodal (4-eigenmode) imaging experiments conducted on a thin polytetrafluoroethylene (PTFE) film and computational simulations of pentamodal (5-eigenmode) cantilever dynamics and spectroscopy, focusing on the case of large amplitude ratios between the fundamental eigenmode and the higher eigenmodes. We discuss the dynamic complexities of the tip response in time and frequency space, as well as the average amplitude and phase response. We also illustrate typical images and spectroscopy curves and provide a very brief description of the observed contrast. Overall, our findings are promising in that they help to open the door to increasing sophistication and greater versatility in multi-frequency AFM through the incorporation of a larger number of driven eigenmodes, and in highlighting specific future research opportunities. PMID:25383276
Barrès, Romain; Grémeaux, Thierry; Gual, Philippe; Gonzalez, Teresa; Gugenheim, Jean; Tran, Albert; Le Marchand-Brustel, Yannick; Tanti, Jean-François
2006-11-01
APS (adaptor protein with PH and SH2 domains) initiates a phosphatidylinositol 3-kinase-independent pathway involved in insulin-stimulated glucose transport. We recently identified Enigma, a PDZ and LIM domain-containing protein, as a partner of APS and showed that APS-Enigma complex plays a critical role in actin cytoskeleton organization in fibroblastic cells. Because actin rearrangement is important for insulin-induced glucose transporter 4 (Glut 4) translocation, we studied the potential involvement of Enigma in insulin-induced glucose transport in 3T3-L1 adipocytes. Enigma mRNA was expressed in differentiated adipocytes and APS and Enigma were colocalized with cortical actin. Expression of an APS mutant unable to bind Enigma increased the insulin-induced Glut 4 translocation to the plasma membrane. By contrast, overexpression of Enigma inhibited insulin-stimulated glucose transport and Glut 4 translocation without alterations in proximal insulin signaling. This inhibitory effect was prevented with the deletion of the LIM domains of Enigma. Using time-lapse fluorescent microscopy of green fluorescent protein-actin, we demonstrated that the overexpression of Enigma altered insulin-induced actin rearrangements, whereas the expression of Enigma without its LIM domains was without effect. A physiological link between increased expression of Enigma and an alteration in insulin-induced glucose uptake was suggested by the increase in Enigma mRNA expression in adipose tissue of diabetic obese patients. Taken together, these data strongly suggest that the interaction between APS and Enigma is involved in insulin-induced Glut 4 translocation by regulating cortical actin remodeling and raise the possibility that modification of APS/Enigma ratio could participate in the alteration of insulin-induced glucose uptake in adipose tissue.
Structure of a eukaryotic SWEET transporter in a homotrimeric complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Yuyong; Cheung, Lily S.; Li, Shuo
Eukaryotes rely on efficient distribution of energy and carbon skeletons between organs in the form of sugars. Glucose in animals and sucrose in plants serve as the dominant distribution forms. Cellular sugar uptake and release require vesicular and/or plasma membrane transport proteins. Humans and plants use proteins from three superfamilies for sugar translocation: the major facilitator superfamily (MFS), the sodium solute symporter family (SSF; only in the animal kingdom), and SWEETs. SWEETs carry mono- and disaccharides across vacuolar or plasma membranes. Plant SWEETs play key roles in sugar translocation between compartments, cells, and organs, notably in nectar secretion, phloem loadingmore » for long distance translocation, pollen nutrition, and seed filling. Plant SWEETs cause pathogen susceptibility possibly by sugar leakage from infected cells. The vacuolar Arabidopsis thaliana AtSWEET2 sequesters sugars in root vacuoles; loss-of-function mutants show increased susceptibility to Pythium infection. In this paper, we show that its orthologue, the vacuolar glucose transporter OsSWEET2b from rice (Oryza sativa), consists of an asymmetrical pair of triple-helix bundles, connected by an inversion linker transmembrane helix (TM4) to create the translocation pathway. Structural and biochemical analyses show OsSWEET2b in an apparent inward (cytosolic) open state forming homomeric trimers. TM4 tightly interacts with the first triple-helix bundle within a protomer and mediates key contacts among protomers. Structure-guided mutagenesis of the close paralogue SWEET1 from Arabidopsis identified key residues in substrate translocation and protomer crosstalk. Finally, insights into the structure–function relationship of SWEETs are valuable for understanding the transport mechanism of eukaryotic SWEETs and may be useful for engineering sugar flux.« less
Gao, Tong; Knecht, David; Tang, Lei; Hatton, R. Diane; Gomer, Richard H.
2004-01-01
Little is known about how individual cells can organize themselves to form structures of a given size. During development, Dictyostelium discoideum aggregates in dendritic streams and forms groups of ∼20,000 cells. D. discoideum regulates group size by secreting and simultaneously sensing a multiprotein complex called counting factor (CF). If there are too many cells in a stream, the associated high concentration of CF will decrease cell-cell adhesion and increase cell motility, causing aggregation streams to break up. The pulses of cyclic AMP (cAMP) that mediate aggregation cause a transient translocation of Akt/protein kinase B (Akt/PKB) to the leading edge of the plasma membrane and a concomitant activation of the kinase activity, which in turn stimulates motility. We found that countin− cells (which lack bioactive CF) and wild-type cells starved in the presence of anticountin antibodies (which block CF activity) showed a decreased level of cAMP-stimulated Akt/PKB membrane translocation and kinase activity compared to parental wild-type cells. Recombinant countin has the bioactivity of CF, and a 1-min treatment of cells with recombinant countin potentiated Akt/PKB translocation to membranes and Akt/PKB activity. Western blotting of total cell lysates indicated that countin does not affect the total level of Akt/PKB. Fluorescence microscopy of cells expressing an Akt/PKB pleckstrin homology domain-green fluorescent protein (PH-GFP) fusion protein indicated that recombinant countin and anti-countin antibodies do not obviously alter the distribution of Akt/PKB PH-GFP when it translocates to the membrane. Our data indicate that CF increases motility by potentiating the cAMP-stimulated activation and translocation of Akt/PKB. PMID:15470246
Structure of a eukaryotic SWEET transporter in a homotrimeric complex
Tao, Yuyong; Cheung, Lily S.; Li, Shuo; ...
2015-10-19
Eukaryotes rely on efficient distribution of energy and carbon skeletons between organs in the form of sugars. Glucose in animals and sucrose in plants serve as the dominant distribution forms. Cellular sugar uptake and release require vesicular and/or plasma membrane transport proteins. Humans and plants use proteins from three superfamilies for sugar translocation: the major facilitator superfamily (MFS), the sodium solute symporter family (SSF; only in the animal kingdom), and SWEETs. SWEETs carry mono- and disaccharides across vacuolar or plasma membranes. Plant SWEETs play key roles in sugar translocation between compartments, cells, and organs, notably in nectar secretion, phloem loadingmore » for long distance translocation, pollen nutrition, and seed filling. Plant SWEETs cause pathogen susceptibility possibly by sugar leakage from infected cells. The vacuolar Arabidopsis thaliana AtSWEET2 sequesters sugars in root vacuoles; loss-of-function mutants show increased susceptibility to Pythium infection. In this paper, we show that its orthologue, the vacuolar glucose transporter OsSWEET2b from rice (Oryza sativa), consists of an asymmetrical pair of triple-helix bundles, connected by an inversion linker transmembrane helix (TM4) to create the translocation pathway. Structural and biochemical analyses show OsSWEET2b in an apparent inward (cytosolic) open state forming homomeric trimers. TM4 tightly interacts with the first triple-helix bundle within a protomer and mediates key contacts among protomers. Structure-guided mutagenesis of the close paralogue SWEET1 from Arabidopsis identified key residues in substrate translocation and protomer crosstalk. Finally, insights into the structure–function relationship of SWEETs are valuable for understanding the transport mechanism of eukaryotic SWEETs and may be useful for engineering sugar flux.« less
Pang, Lijuan; Qiu, Tao; Cao, Xu; Wan, Mei
2011-07-01
Smad4, originally isolated from the human chromosome 18q21, is a key factor in transducing the signals of the TGF-β superfamily of growth hormones and plays a pivotal role in mediating antimitogenic and proapoptotic effects of TGF-β, but the mechanisms by which Smad4 induces apoptosis are elusive. Here we report that Smad4 directly translocates to the mitochondria of apoptotic cells. Smad4 gene silencing by siRNA inhibits TGF-β-induced apoptosis in Hep3B cells and UV-induced apoptosis in PANC-1 cells. Cell fractionation assays demonstrated that a fraction of Smad4 translocates to mitochondria after long time TGF-β treatment or UV exposure, during which the cells were under apoptosis. Smad4 mitochondria translocation during apoptosis was also confirmed by fluorescence observation of Smad4 colocalization with MitoTracker Red. We searched for mitochondria proteins that have physical interactions with Smad4 using yeast two-hybrid screening approach. DNA sequence analysis identified 34 positive clones, five of which encoded subunits in mitochondria complex IV, i.e., one clone encoded cytochrome c oxidase COXII, three clones encoded COXIII and one clone encoded COXVb. Strong interaction between Smad4 with COXII, an important apoptosis regulator, was verified in yeast by β-gal activity assays and in mammalian cells by immunoprecipitation assays. Further, mitochondrial portion of cells was isolated and the interaction between COXII and Smad4 in mitochondria upon TGF-β treatment or UV exposure was confirmed. Importantly, targeting Smad4 to mitochondria using import leader fusions enhanced TGF-β-induced apoptosis. Collectively, the results suggest that Smad4 promote apoptosis of the cells through its mitochondrial translocation and association with mitochondria protein COXII. Copyright © 2011 Elsevier Inc. All rights reserved.
Structure of a eukaryotic SWEET transporter in a homo-trimeric complex
Li, Shuo; Eom, Joon-Seob; Chen, Li-Qing; Xu, Yan; Perry, Kay; Frommer, Wolf B.; Feng, Liang
2016-01-01
Eukaryotes rely on efficient distribution of energy and carbon skeletons between organs in the form of sugars. Glucose in animals and sucrose in plants serve as dominant distribution forms. Cellular sugar uptake and release require vesicular and/or plasma membrane transport proteins. Humans and plants use related proteins from three superfamilies for sugar translocation: the major facilitator superfamily (MFS), the sodium solute symporter Family (SSF; only animal kingdom), and SWEETs1-5. SWEETs carry mono- and disaccharides6 across vacuolar or plasma membranes. Plant SWEETs play key roles in sugar translocation between compartments, cells, and organs, notably in nectar secretion7, phloem loading for long distance translocation8, pollen nutrition9, and seed filling10. Plant SWEETs cause pathogen susceptibility by sugar leakage from infected cells3,11,12. The vacuolar AtSWEET2 sequesters sugars in root vacuoles; loss-of-function increases susceptibility to Pythium infection13. Here we show that its orthologue, the vacuolar glucose transporter OsSWEET2b from rice, consists of an asymmetrical pair of triple-helix-bundles (THBs), connected by an inversion linker helix (TM4) to create the translocation pathway. Structural and biochemical analyses show OsSWEET2b in an apparent inward (cytosolic) open state forming homomeric trimers. TM4 tightly interacts with the first THB within a protomer and mediates key contacts among protomers. Structure-guided mutagenesis of the close paralogue SWEET1 from Arabidopsis identified key residues in substrate translocation and protomer crosstalk. Insights into the structure-function relationship of SWEETs is valuable for understanding the transport mechanism of eukaryotic SWEETs and may be useful for engineering sugar flux. PMID:26479032
Nestorovich, Ekaterina M.; Karginov, Vladimir A.; Popoff, Michel R.; Bezrukov, Sergey M.; Barth, Holger
2011-01-01
Background Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin are binary exotoxins, which ADP-ribosylate actin in the cytosol of mammalian cells and thereby destroy the cytoskeleton. C2 and iota toxin consists of two individual proteins, an enzymatic active (A-) component and a separate receptor binding and translocation (B-) component. The latter forms a complex with the A-component on the surface of target cells and after receptor-mediated endocytosis, it mediates the translocation of the A-component from acidified endosomal vesicles into the cytosol. To this end, the B-components form heptameric pores in endosomal membranes, which serve as translocation channels for the A-components. Methodology/Principal Findings Here we demonstrate that a 7-fold symmetrical positively charged ß-cyclodextrin derivative, per-6-S-(3-aminomethyl)benzylthio-ß-cyclodextrin, protects cultured cells from intoxication with C2 and iota toxins in a concentration-dependent manner starting at low micromolar concentrations. We discovered that the compound inhibited the pH-dependent membrane translocation of the A-components of both toxins in intact cells. Consistently, the compound strongly blocked transmembrane channels formed by the B-components of C2 and iota toxin in planar lipid bilayers in vitro. With C2 toxin, we consecutively ruled out all other possible inhibitory mechanisms showing that the compound did not interfere with the binding of the toxin to the cells or with the enzyme activity of the A-component. Conclusions/Significance The described ß-cyclodextrin derivative was previously identified as one of the most potent inhibitors of the binary lethal toxin of Bacillus anthracis both in vitro and in vivo, implying that it might represent a broad-spectrum inhibitor of binary pore-forming exotoxins from pathogenic bacteria. PMID:21887348
TAP polymorphism in patients with Behçet's disease.
González-Escribano, M F; Morales, J; García-Lozano, J R; Castillo, M J; Sánchez-Román, J; Núñez-Roldán, A; Sánchez, B
1995-01-01
OBJECTIVE--To determine if susceptibility to Behçet's disease (BD) is associated with polymorphism of HLA-DRB1, HLA-DQB1, DQB1, and TAP1 and TAP2 genes. METHODS--Fifty eight Spanish BD patients and 116 ethnically matched unrelated healthy subjects were typed at the HLA-DRB1 and HLA-DQB1 loci using polymerase chain reaction/sequence specific oligotyping (PCR/SSO). TAP1 and TAP2 alleles were assigned using amplification refractory mutation system-PCR. RESULTS--TAP1C was absent in BD patients, but was found in 12.1% of control subjects (pcorr < 0.05; relative risk = 0.06). Additionally, a linkage disequilibrium between HLA-DQB1*0501 and TAP2B was observed in BD patients (delta = 0.095, pcorr < 0.02), but not in the control group (delta = -0.0031, p > 0.05). CONCLUSIONS--The complete absence of TAP1C alleles in BD patients may indicate that TAP1 polymorphism is not without some significance in the development of BD. Furthermore, the existence of a linkage disequilibrium between HLA-DQB1*0501 and TAP2B in our patients suggests that the gene conferring susceptibility for BD is inherited as an extended haplotype in the population studied. PMID:7794046
On-line tool breakage monitoring of vibration tapping using spindle motor current
NASA Astrophysics Data System (ADS)
Li, Guangjun; Lu, Huimin; Liu, Gang
2008-10-01
Input current of driving motor has been employed successfully as monitoring the cutting state in manufacturing processes for more than a decade. In vibration tapping, however, the method of on-line monitoring motor electric current has not been reported. In this paper, a tap failure prediction method is proposed to monitor the vibration tapping process using the electrical current signal of the spindle motor. The process of vibration tapping is firstly described. Then the relationship between the torque of vibration tapping and the electric current of motor is investigated by theoretic deducing and experimental measurement. According to those results, a monitoring method of tool's breakage is proposed through monitoring the ratio of the current amplitudes during adjacent vibration tapping periods. Finally, a low frequency vibration tapping system with motor current monitoring is built up using a servo motor B-106B and its driver CR06. The proposed method has been demonstrated with experiment data of vibration tapping in titanic alloys. The result of experiments shows that the method, which can avoid the tool breakage and giving a few error alarms when the threshold of amplitude ratio is 1.2 and there is at least 2 times overrun among 50 adjacent periods, is feasible for tool breakage monitoring in the process of vibration tapping small thread holes.
A statistical characterization of the finger tapping test: modeling, estimation, and applications.
Austin, Daniel; McNames, James; Klein, Krystal; Jimison, Holly; Pavel, Misha
2015-03-01
Sensory-motor performance is indicative of both cognitive and physical function. The Halstead-Reitan finger tapping test is a measure of sensory-motor speed commonly used to assess function as part of a neuropsychological evaluation. Despite the widespread use of this test, the underlying motor and cognitive processes driving tapping behavior during the test are not well characterized or understood. This lack of understanding may make clinical inferences from test results about health or disease state less accurate because important aspects of the task such as variability or fatigue are unmeasured. To overcome these limitations, we enhanced the tapper with a sensor that enables us to more fully characterize all the aspects of tapping. This modification enabled us to decompose the tapping performance into six component phases and represent each phase with a set of parameters having clear functional interpretation. This results in a set of 29 total parameters for each trial, including change in tapping over time, and trial-to-trial and tap-to-tap variability. These parameters can be used to more precisely link different aspects of cognition or motor function to tapping behavior. We demonstrate the benefits of this new instrument with a simple hypothesis-driven trial comparing single and dual-task tapping.
Tseng, Chia-Chen; Wang, Shou-Jen; Young, Yi-Ho
2012-02-01
This study compared bone-conducted vibration (BCV) stimuli at forehead (Fz) and mastoid sites for eliciting ocular vestibular-evoked myogenic potentials (oVEMPs). Prospective study. University hospital. Twenty healthy subjects underwent oVEMP testing via BCV stimuli at Fz and mastoid sites. Another 50 patients with unilateral Meniere's disease also underwent oVEMP testing. All healthy subjects showed clear oVEMPs via BCV stimulation regardless of the tapping sites. The right oVEMPs stimulated by tapping at the right mastoid had earlier nI and pI latencies and a larger nI-pI amplitude compared with those stimulated by tapping at the Fz and left mastoid. Similar trends were also observed in left oVEMPs. However, the asymmetry ratio did not differ significantly between the ipsilateral mastoid and Fz sites. Clinically, tapping at the Fz revealed absent oVEMPs in 28% of Meniere's ears, which decreased to 16% when tapping at the ipsilesional (hydropic) mastoid site, exhibiting a significant difference. Tapping at the ipsilateral mastoid site elicits earlier oVEMP latencies and larger oVEMP amplitudes when compared with tapping at the Fz site. Thus, tapping at the Fz site is suggested to screen for the otolithic function, whereas tapping at the ipsilesional mastoid site is suitable for evaluating residual otolithic function.
Wilquin, Hélène; Delevoye-Turrell, Yvonne; Dione, Mariama; Giersch, Anne
2018-01-01
Objective: Basic temporal dysfunctions have been described in patients with schizophrenia, which may impact their ability to connect and synchronize with the outer world. The present study was conducted with the aim to distinguish between interval timing and synchronization difficulties and more generally the spatial-temporal organization disturbances for voluntary actions. A new sensorimotor synchronization task was developed to test these abilities. Method: Twenty-four chronic schizophrenia patients matched with 27 controls performed a spatial-tapping task in which finger taps were to be produced in synchrony with a regular metronome to six visual targets presented around a virtual circle on a tactile screen. Isochronous (time intervals of 500 ms) and non-isochronous auditory sequences (alternated time intervals of 300/600 ms) were presented. The capacity to produce time intervals accurately versus the ability to synchronize own actions (tap) with external events (tone) were measured. Results: Patients with schizophrenia were able to produce the tapping patterns of both isochronous and non-isochronous auditory sequences as accurately as controls producing inter-response intervals close to the expected interval of 500 and 900 ms, respectively. However, the synchronization performances revealed significantly more positive asynchrony means (but similar variances) in the patient group than in the control group for both types of auditory sequences. Conclusion: The patterns of results suggest that patients with schizophrenia are able to perceive and produce both simple and complex sequences of time intervals but are impaired in the ability to synchronize their actions with external events. These findings suggest a specific deficit in predictive timing, which may be at the core of early symptoms previously described in schizophrenia.
Gompf, Florian; Pflug, Anja; Laufs, Helmut; Kell, Christian A.
2017-01-01
Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region. PMID:29249950
ERIC Educational Resources Information Center
Turnbull, O.H.; Evans, C.E.Y.; Bunce, A.; Carzolio, B.; O'Connor, J.
2005-01-01
The role of emotion in complex decision-making can be assessed on the Iowa Gambling Task (IGT), a widely used neuropsychological measure that may tap a different aspect of executive function than that assessed by conventional measures. Most notably, the 'feeling' about which decks are good or bad, often described in relation to IGT performance,…
Transversus abdominal plane (TAP) block for postoperative pain management: a review.
Jakobsson, Jan; Wickerts, Liselott; Forsberg, Sune; Ledin, Gustaf
2015-01-01
Transversus abdominal plane (TAP) block has a long history and there is currently extensive clinical experience around TAP blocks. The aim of this review is to provide a summary of the present evidence on the effects of TAP block and to provide suggestions for further studies. There are several approaches to performing abdominal wall blocks, with the rapid implementation of ultrasound-guided technique facilitating a major difference in TAP block performance. During surgery, an abdominal wall block may also be applied by the surgeon from inside the abdominal cavity. Today, there are more than 11 meta-analyses providing a compiled evidence base around the effects of TAP block. These analyses include different procedures, different techniques of TAP block administration and, importantly, they compare the TAP block with a variety of alternative analgesic regimes. The effects of TAP block during laparoscopic cholecystectomy seem to be equivalent to local infiltration analgesia and also seem to be beneficial during laparoscopic colon resection. The effects of TAP are more pronounced when it is provided prior to surgery and these effects are local anaesthesia dose-dependent. TAP block seems an interesting alternative in patients with, for example, severe obesity where epidural or spinal anaesthesia/analgesia is technically difficult and/or poses a risk. There is an obvious need for further high-quality studies comparing TAP block prior to surgery with local infiltration analgesia, single-shot spinal analgesia, and epidural analgesia. These studies should be procedure-specific and the effects should be evaluated, both regarding short-term pain and analgesic requirement and also including the effects on postoperative nausea and vomiting, recovery of bowel function, ambulation, discharge, and protracted recovery outcomes (assessed by e.g., postoperative quality of recovery scale).
Onufrak, Stephen J; Park, Sohyun; Sharkey, Joseph R; Sherry, Bettylou
2015-01-01
Objective Research is limited on whether mistrust of tap water discourages plain water intake and leads to greater intake of sugar-sweetened beverages (SSB). The objective of this study is to examine demographic differences in perceptions of tap water safety and determine if these perceptions are associated with intake of SSB and plain water Design The study examined perceptions of tap water safety and their cross-sectional association with intake of SSB and plain water. Racial/ethnic differences in the associations of tap water perceptions with SSB and plain water intake were also examined. Setting Nationally weighted data from 2010 HealthStyles Survey (n=4184) Subjects United States adults ≥18 years Results Overall, 13.0% of participants disagreed that their local tap water was safe to drink and 26.4% of participants agreed that bottled water was safer than tap water. Both mistrust of tap water safety and favoring bottled water differed by region, age, race/ethnicity, income, and education. The associations of tap water mistrust on intake of SSB and plain water were modified by race/ethnicity (p<0.05). Non-white racial/ethnic groups who disagreed that their local tap water was safe to drink were more likely to report low intake of plain water. The odds of consuming ≥1 SSB/day among Hispanics who mistrusted their local tap water was twice that of Hispanics who did not (OR = 2.0; 95% CI: 1.2, 3.3). Conclusions Public health efforts to promote healthy beverages should recognize the potential impact of tap water perceptions on water and SSB intake among minority populations. PMID:23098620
Cost of Maple Sap Production for Various Size Tubing Operations
Niel K. Huyler
2000-01-01
Reports sap production costs for small (500 to 1,000 taps), medium (1,000 to 5,000), and large (5,000 to 15,000) maple syrup operations that use plastic tubing with vacuum pumping. The average annual operating cost per tap ranged from $4.64 for a 500-tap sugarbush operation to $1.84 for a sugarbush with 10,000 taps. The weighted average was $2.87 per tap or $11.48 per...
Loh, Sheng Wei; Looi, Chung Yeng; Hassandarvish, Pouya; Phan, Alicia Yi Ling; Wong, Won Fen; Wang, Hao; Paterson, Ian C.; Ea, Chee Kwee; Mustafa, Mohd Rais; Maah, Mohd Jamil
2014-01-01
Background The biological properties of thiosemicarbazone have been widely reported. The incorporation of some transition metals such as Fe, Ni and Cu to thiosemicarbazone complexes is known to enhance its biological effects. In this study, we incorporated nickel(II) ions into thiosemicarbazone with N4-substitution groups H3L (H; H3L1, CH3; H3L2, C6H5; H3L3 and C2H5; H3L4) and examined its potential anti-inflammatory activity. Methodology/Principal Findings Four ligands (1–4) and their respective nickel-containing complexes (5–8) were synthesized and characterized. The compounds synthesized were tested for their effects on NF-κB nuclear translocation, pro-inflammatory cytokines secretion and NF-κB transactivation activity. The active compound was further evaluated on its ability to suppress carrageenan-induced acute inflammation in vivo. A potential binding target of the active compound was also predicted by molecular docking analysis. Conclusions/Significance Among all synthesized compounds tested, we found that complex [Ni(H2L1)(PPh3)]Cl (5) (complex 5), potently inhibited IκBα degradation and NF-κB p65 nuclear translocation in LPS-stimulated RAW264.7 cells as well as TNFα-stimulated HeLa S3 cells. In addition, complex 5 significantly down-regulated LPS- or TNFα-induced transcription of NF-κB target genes, including genes that encode the pro-inflammatory cytokines TNFα, IFNβ and IL6. Luciferase reporter assays confirmed that complex 5 inhibited the transactivation activity of NF-κB. Furthermore, the anti-inflammatory effect of complex 5 was also supported by its suppressive effect on carrageenan-induced paw edema formation in wild type C57BL/6 mice. Interestingly, molecular docking study showed that complex 5 potentially interact with the active site of IKKβ. Taken together, we suggest complex 5 as a novel NF-κB inhibitor with potent anti-inflammatory effects. PMID:24977407
Clinical outcome in neonates with twin anemia-polycythemia sequence.
Lopriore, Enrico; Slaghekke, Femke; Oepkes, Dick; Middeldorp, Johanna M; Vandenbussche, Frank P; Walther, Frans J
2010-07-01
The purpose of this study was to evaluate neonatal outcome of monochorionic twin pregnancies complicated by twin anemia-polycythemia sequence (TAPS). A cohort of consecutive monochorionic twins with TAPS with double survivors was included in the study. Each twin pair with TAPS was compared with 2 monochorionic twin pairs who were unaffected by TAPS or twin-to-twin transfusion syndrome and who were matched for gestational age at birth. Neonatal death, severe morbidity, and cerebral injury were studied. We included 19 twin pairs in the TAPS group and 38 control twin pairs. The incidence of neonatal death and severe neonatal morbidity was similar in the TAPS group and control group (3% [1/38] vs 1% [1/76] and 24% [9/38] vs 28% [21/76], respectively). Severe cerebral injury was detected in 1 infant (5%) in the TAPS group and 1 infant (2%) in the control group. Neonatal mortality and morbidity rates in a select population of TAPS neonates are similar to control neonatal rates. Copyright (c) 2010 Mosby, Inc. All rights reserved.
TAp63 is a master transcriptional regulator of lipid and glucose metabolism
Su, Xiaohua; Gi, Young Jin; Chakravarti, Deepavali; Chan, Io Long; Zhang, Aijun; Xia, Xuefeng; Tsai, Kenneth Y.; Flores, Elsa R.
2012-01-01
SUMMARY TAp63 prevents premature aging suggesting a link to genes that regulate longevity. Further characterization of TAp63−/− mice revealed that these mice develop obesity, insulin resistance, and glucose intolerance, similar to those seen in mice lacking two key metabolic regulators, Silent information regulator T1 (Sirt1) and AMPK. While the roles of Sirt1 and AMPK in metabolism have been well studied, their upstream regulators are not well understood. We found that TAp63 is important in regulating energy metabolism by accumulating in response to metabolic stress and transcriptionally activating Sirt1, AMPKα2, and LKB1 resulting in increased fatty acid synthesis and decreased fatty acid oxidation. Moreover, we found that TAp63 lowers blood glucose levels in response to metformin. Restoration of Sirt1, AMPKα2, and LKB1 in TAp63−/− mice rescued some of the metabolic defects of the TAp63−/− mice. Our study defines a role for TAp63 in metabolism and weight control. PMID:23040072
Seok, Seung-Hyeon; Lee, Woojong; Jiang, Li; Molugu, Kaivalya; Zheng, Aiping; Li, Yitong; Park, Sanghyun; Bradfield, Christopher A; Xing, Yongna
2017-05-23
The aryl hydrocarbon receptor (AHR) belongs to the PAS (PER-ARNT-SIM) family transcription factors and mediates broad responses to numerous environmental pollutants and cellular metabolites, modulating diverse biological processes from adaptive metabolism, acute toxicity, to normal physiology of vascular and immune systems. The AHR forms a transcriptionally active heterodimer with ARNT (AHR nuclear translocator), which recognizes the dioxin response element (DRE) in the promoter of downstream genes. We determined the crystal structure of the mammalian AHR-ARNT heterodimer in complex with the DRE, in which ARNT curls around AHR into a highly intertwined asymmetric architecture, with extensive heterodimerization interfaces and AHR interdomain interactions. Specific recognition of the DRE is determined locally by the DNA-binding residues, which discriminates it from the closely related hypoxia response element (HRE), and is globally affected by the dimerization interfaces and interdomain interactions. Changes at the interdomain interactions caused either AHR constitutive nuclear localization or failure to translocate to nucleus, underlying an allosteric structural pathway for mediating ligand-induced exposure of nuclear localization signal. These observations, together with the global higher flexibility of the AHR PAS-A and its loosely packed structural elements, suggest a dynamic structural hierarchy for complex scenarios of AHR activation induced by its diverse ligands.
Lee, Woojong; Jiang, Li; Molugu, Kaivalya; Zheng, Aiping; Li, Yitong; Park, Sanghyun; Bradfield, Christopher A.; Xing, Yongna
2017-01-01
The aryl hydrocarbon receptor (AHR) belongs to the PAS (PER-ARNT-SIM) family transcription factors and mediates broad responses to numerous environmental pollutants and cellular metabolites, modulating diverse biological processes from adaptive metabolism, acute toxicity, to normal physiology of vascular and immune systems. The AHR forms a transcriptionally active heterodimer with ARNT (AHR nuclear translocator), which recognizes the dioxin response element (DRE) in the promoter of downstream genes. We determined the crystal structure of the mammalian AHR–ARNT heterodimer in complex with the DRE, in which ARNT curls around AHR into a highly intertwined asymmetric architecture, with extensive heterodimerization interfaces and AHR interdomain interactions. Specific recognition of the DRE is determined locally by the DNA-binding residues, which discriminates it from the closely related hypoxia response element (HRE), and is globally affected by the dimerization interfaces and interdomain interactions. Changes at the interdomain interactions caused either AHR constitutive nuclear localization or failure to translocate to nucleus, underlying an allosteric structural pathway for mediating ligand-induced exposure of nuclear localization signal. These observations, together with the global higher flexibility of the AHR PAS-A and its loosely packed structural elements, suggest a dynamic structural hierarchy for complex scenarios of AHR activation induced by its diverse ligands. PMID:28396409
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seok, Seung-Hyeon; Lee, Woojong; Jiang, Li
he aryl hydrocarbon receptor (AHR) belongs to the PAS (PER-ARNT-SIM) family transcription factors and mediates broad responses to numerous environmental pollutants and cellular metabolites, modulating diverse biological processes from adaptive metabolism, acute toxicity, to normal physiology of vascular and immune systems. The AHR forms a transcriptionally active heterodimer with ARNT (AHR nuclear translocator), which recognizes the dioxin response element (DRE) in the promoter of downstream genes. We determined the crystal structure of the mammalian AHR–ARNT heterodimer in complex with the DRE, in which ARNT curls around AHR into a highly intertwined asymmetric architecture, with extensive heterodimerization interfaces and AHR interdomainmore » interactions. Specific recognition of the DRE is determined locally by the DNA-binding residues, which discriminates it from the closely related hypoxia response element (HRE), and is globally affected by the dimerization interfaces and interdomain interactions. Changes at the interdomain interactions caused either AHR constitutive nuclear localization or failure to translocate to nucleus, underlying an allosteric structural pathway for mediating ligand-induced exposure of nuclear localization signal. These observations, together with the global higher flexibility of the AHR PAS-A and its loosely packed structural elements, suggest a dynamic structural hierarchy for complex scenarios of AHR activation induced by its diverse ligands.« less
Molecular Signature That Determines the Acute Tolerance of G Protein-Coupled Receptors
Min, Chengchun; Zhang, Xiaohan; Zheng, Mei; Sun, Ningning; Acharya, Srijan; Zhang, Xiaowei; Kim, Kyeong-Man
2017-01-01
Desensitization and acute tolerance are terms used to describe the attenuation of receptor responsiveness by prolonged or intermittent exposure to an agonist. Unlike desensitization of G protein-coupled receptors (GPCRs), which is commonly explained by steric hindrance caused by the β-arrestins that are translocated to the activated receptors, molecular mechanisms involved in the acute tolerance of GPCRs remain unclear. Our studies with several GPCRs and related mutants showed that the acute tolerance of GPCRs could occur independently of agonist-induced β-arrestin translocation. A series of co-immunoprecipitation experiments revealed a correlation between receptor tolerance and interactions among receptors, β-arrestin2, and Gβγ. Gβγ displayed a stable interaction with receptors and β-arrestin2 in cells expressing GPCRs that were prone to undergo tolerance compared to the GPCRs that were resistant to acute tolerance. Strengthening the interaction between Gβγ and β-arrestin rendered the GPCRs to acquire the tendency of acute tolerance. Overall, stable interaction between the receptor and Gβγ complex is required for the formation of a complex with β-arrestin, and determines the potential of a particular GPCR to undergo acute tolerance. Rather than turning off the signal, β-arrestins seem to contribute on continuous signaling when they are in the context of complex with receptor and Gβγ. PMID:27956717
Perspective: Rapid synthesis of complex oxides by combinatorial molecular beam epitaxy
A. T. Bollinger; Wu, J.; Bozovic, I.
2016-03-15
In this study, the molecular beam epitaxy(MBE) technique is well known for producing atomically smooth thin films as well as impeccable interfaces in multilayers of many different materials. In particular, molecular beam epitaxy is well suited to the growth of complex oxides, materials that hold promise for many applications. Rapid synthesis and high throughput characterization techniques are needed to tap into that potential most efficiently. We discuss our approach to doing that, leaving behind the traditional one-growth-one-compound scheme and instead implementing combinatorial oxide molecular beam epitaxy in a custom built system.
Insect-mediated nitrogen dynamics in decomposing wood
Michael D. Ulyshen
2015-01-01
1.Wood decomposition is characterised by complex and poorly understood nitrogen (N) dynamics with unclear implications for forest nutrient cycling and productivity.Wood-dwelling microbes have developed unique strategies for coping with the N limitations imposed by their substrate, including the translocation of N into wood by cord-forming fungi and the fixation of...
USDA-ARS?s Scientific Manuscript database
Botulinum neurotoxins (BoNTs) are some of the most poisonous natural toxins and considered to be a major venue of bioterrorist threat. BoNTs associate with neurotoxin associated proteins (NAPs), forming large complexes. NAPs have been shown to shield the BoNT holotoxin from the harsh environment of ...
Chizoba, Amara Frances; Pharr, Jennifer R; Oodo, Gina; Ezeobi, Edith; Ilozumb, Jude; Egharevba, Johnbull; Ezeanolue, Echezona E; Nwandu, Anthea
2017-09-01
Engaging Traditional Birth Attendants (TBAs) may be critical to preventing mother-to-child transmission of HIV (PMTCT) in Nigeria. We integrated TBAs into Primary Health Centers (PHCs) and provided the TBAs with HIV counseling and testing (HCT) training for PMTCT (TAP-In). The purpose of this study was to evaluate the impact of TAP-In on HCT uptake among pregnant women. A quasi-experimental design was used for this study. Twenty PHCs were assigned to the intervention group that integrated TAP-In and 20 were assigned to the control group. Data were collected six months prior to the initiation of TAP-In and six months post, using antenatal clinic registries. Intervention PHCs more than doubled the number of pregnant women who received HCT in their catchment area post TAP-In while control PHCs had no significant change. After initiating TAP-In, intervention PHCs provided almost three times more HCT than the control PHCs (p < 0.01) with TBA provided over half of the HCT post TAP-In. The TAP-In model was effective for increasing HCT among pregnant women.
Hove, Michael J.; Balasubramaniam, Ramesh; Keller, Peter E.
2014-01-01
Synchronizing movements with a beat requires rapid compensation for timing errors. The phase-correction response (PCR) has been studied extensively in finger tapping by shifting a metronome onset and measuring the adjustment of the following tap time. How the response unfolds during the subsequent tap cycle remains unknown. Using motion capture, we examined finger kinematics during the PCR. Participants tapped with a metronome containing phase perturbations. They tapped in ‘legato’ and ‘staccato’ style at various tempi, which altered the timing of the constituent movement stages (dwell at the surface, extension, flexion). After a phase perturbation, tapping kinematics changed compared to baseline, and the PCR was distributed differently across movement stages. In staccato tapping, the PCR trajectory changed primarily during finger extension across tempi. In legato tapping, at fast tempi the PCR occurred primarily during extension, whereas at slow tempi most phase correction was already completed during dwell. Across conditions, timing adjustments occurred primarily 100-250 ms into the following tap cycle. The change in movement around 100 ms represents the time to integrate information into an already planned movement and the rapidity suggests a subcortical route. PMID:25151103
NASA Astrophysics Data System (ADS)
Siva kumar, R.; Mohammed, Raffi; Srinivasa Rao, K.
2018-03-01
Integrated Steel Plants commonly uses Blast Furnace route for iron production which accounts for over 60 % of the world iron output. Blast Furnace runs for ten to twenty years without repairing hearth walls and Tap Hole (TH). Tap hole is an outlet for hot metal produced in a Blast Furnace and run from the shell of the furnace into the interior allowing access to the molten material. Tapping is the term used for drilling a hole through the tap hole which allows the molten iron and slag to flow out. In Iron making process, removal of liquid iron from furnace and sending it for steel making is known as cast house practice. For tapping liquid iron and operating the tap hole requires a special type of clay. Tap hole clay (THC) used to stop the flow of liquid iron and slag from the blast furnace. Present work deals with the study on manufacturing of THC at Visakhapatnam Steel Plant and problems related to manufacturing. Experiments were conducted to solve the identified problems and results are furnished in detail. The findings can improve the manufacturing process and improve the productivity of tap hole clay.
Water use and time analysis in ablution from taps
NASA Astrophysics Data System (ADS)
Zaied, Roubi A.
2017-09-01
There is a lack of water resources and an extreme use of potable water in our Arab region. Ablution from taps was studied since it is a repeated daily activity that consumes more water. Five different tap types are investigated for water consumption fashions including traditional mixing tap and automatic tap. Analyzing 100 experimental observations revealed that 22.7-28.8 % of ablution water is used for washing of feet and the largest water waste occurs during washing of face portions. Moreover, 30-47 % amount of water consumed in ablution from taps is wasted which can be saved if tap releases water only at moments of need. The push-type tap is being spread recently especially in airports. If it is intended for use in ablution facilities, batch duration and volume must be tuned. When each batch is 0.25 L of water and lasts for 3 s, 3 L are sufficient for one complete ablution in average which means considerable saving. A cost-benefit model is proposed for using different tap types and an economic feasibility study is performed on a case study. This analysis can help us to design better ablution systems.
Self-Advancing Step-Tap Drills
NASA Technical Reports Server (NTRS)
Pettit, Donald R.; Camarda, Charles J.; Penner, Ronald K.; Franklin, Larry D.
2007-01-01
Self-advancing tool bits that are hybrids of drills and stepped taps make it possible to form threaded holes wider than about 1/2 in. (about 13 mm) without applying any more axial force than is necessary for forming narrower pilot holes. These self-advancing stepped-tap drills were invented for use by space-suited astronauts performing repairs on reinforced carbon/carbon space-shuttle leading edges during space walks, in which the ability to apply axial drilling forces is severely limited. Self-advancing stepped-tap drills could also be used on Earth for making wide holes without applying large axial forces. A self-advancing stepped-tap drill (see figure) includes several sections having progressively larger diameters, typically in increments between 0.030 and 0.060 in. (between about 0.8 and about 1.5 mm). The tip section, which is the narrowest, is a pilot drill bit that typically has a diameter between 1/8 and 3/16 in. (between about 3.2 and about 4.8 mm). The length of the pilot-drill section is chosen, according to the thickness of the object to be drilled and tapped, so that the pilot hole is completed before engagement of the first tap section. Provided that the cutting-edge geometry of the drill bit is optimized for the material to be drilled, only a relatively small axial force [typically of the order of a few pounds (of the order of 10 newtons)] must be applied during drilling of the pilot hole. Once the first tap section engages the pilot hole, it is no longer necessary for the drill operator to apply axial force: the thread engagement between the tap and the workpiece provides the axial force to advance the tool bit. Like the pilot-drill section, each tap section must be long enough to complete its hole before engagement of the next, slightly wider tap section. The precise values of the increments in diameter, the thread pitch, the rake angle of the tap cutting edge, and other geometric parameters of the tap sections must be chosen, in consideration of the workpiece material and thickness, to prevent stripping of threads during the drilling/tapping operation. A stop-lip or shoulder at the shank end of the widest tap section prevents further passage of the tool bit through the hole.
Molecular Marker Systems for Oenothera Genetics
Rauwolf, Uwe; Golczyk, Hieronim; Meurer, Jörg; Herrmann, Reinhold G.; Greiner, Stephan
2008-01-01
The genus Oenothera has an outstanding scientific tradition. It has been a model for studying aspects of chromosome evolution and speciation, including the impact of plastid nuclear co-evolution. A large collection of strains analyzed during a century of experimental work and unique genetic possibilities allow the exchange of genetically definable plastids, individual or multiple chromosomes, and/or entire haploid genomes (Renner complexes) between species. However, molecular genetic approaches for the genus are largely lacking. In this study, we describe the development of efficient PCR-based marker systems for both the nuclear genome and the plastome. They allow distinguishing individual chromosomes, Renner complexes, plastomes, and subplastomes. We demonstrate their application by monitoring interspecific exchanges of genomes, chromosome pairs, and/or plastids during crossing programs, e.g., to produce plastome–genome incompatible hybrids. Using an appropriate partial permanent translocation heterozygous hybrid, linkage group 7 of the molecular map could be assigned to chromosome 9·8 of the classical Oenothera map. Finally, we provide the first direct molecular evidence that homologous recombination and free segregation of chromosomes in permanent translocation heterozygous strains is suppressed. PMID:18791241
Rzechorzek, Neil J; Blackwood, John K; Bray, Sian M; Maman, Joseph D; Pellegrini, Luca; Robinson, Nicholas P
2014-11-25
The HerA ATPase cooperates with the NurA nuclease and the Mre11-Rad50 complex for the repair of double-strand DNA breaks in thermophilic archaea. Here we extend our structural knowledge of this minimal end-resection apparatus by presenting the first crystal structure of hexameric HerA. The full-length structure visualizes at atomic resolution the N-terminal HerA-ATP synthase domain and a conserved C-terminal extension, which acts as a physical brace between adjacent protomers. The brace also interacts in trans with nucleotide-binding residues of the neighbouring subunit. Our observations support a model in which the coaxial interaction of the HerA ring with the toroidal NurA dimer generates a continuous channel traversing the complex. HerA-driven translocation would propel the DNA towards the narrow annulus of NurA, leading to duplex melting and nucleolytic digestion. This system differs substantially from the bacterial end-resection paradigms. Our findings suggest a novel mode of DNA-end processing by this integrated archaeal helicase-nuclease machine.
Molecular marker systems for Oenothera genetics.
Rauwolf, Uwe; Golczyk, Hieronim; Meurer, Jörg; Herrmann, Reinhold G; Greiner, Stephan
2008-11-01
The genus Oenothera has an outstanding scientific tradition. It has been a model for studying aspects of chromosome evolution and speciation, including the impact of plastid nuclear co-evolution. A large collection of strains analyzed during a century of experimental work and unique genetic possibilities allow the exchange of genetically definable plastids, individual or multiple chromosomes, and/or entire haploid genomes (Renner complexes) between species. However, molecular genetic approaches for the genus are largely lacking. In this study, we describe the development of efficient PCR-based marker systems for both the nuclear genome and the plastome. They allow distinguishing individual chromosomes, Renner complexes, plastomes, and subplastomes. We demonstrate their application by monitoring interspecific exchanges of genomes, chromosome pairs, and/or plastids during crossing programs, e.g., to produce plastome-genome incompatible hybrids. Using an appropriate partial permanent translocation heterozygous hybrid, linkage group 7 of the molecular map could be assigned to chromosome 9.8 of the classical Oenothera map. Finally, we provide the first direct molecular evidence that homologous recombination and free segregation of chromosomes in permanent translocation heterozygous strains is suppressed.
Huang, Po-Kai; Chan, Po-Ting; Chen, Lih-Jen
2016-01-01
Three stromal chaperone ATPases, cpHsc70, Hsp90C, and Hsp93, are present in the chloroplast translocon, but none has been shown to directly bind preproteins in vivo during import, so it remains unclear whether any function as a preprotein-translocating motor and whether they have different functions during the import process. Here, using protein crosslinking followed by ionic detergent solubilization, we show that Hsp93 directly binds to the transit peptides of various preproteins undergoing active import into chloroplasts. Hsp93 also binds to the mature region of a preprotein. A time course study of import, followed by coimmunoprecipitation experiments, confirmed that Hsp93 is present in the same complexes as preproteins at an early stage when preproteins are being processed to the mature size. In contrast, cpHsc70 is present in the same complexes as preproteins at both the early stage and a later stage after the transit peptide has been removed, suggesting that cpHsc70, but not Hsp93, is important in translocating processed mature proteins across the envelope. PMID:26676256
Tumor Necrosis Factor alpha (TNF{alpha}) regulates CD40 expression through SMAR1 phosphorylation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Kamini; Sinha, Surajit; Malonia, Sunil Kumar
2010-01-08
CD40 plays an important role in mediating inflammatory response and is mainly induced by JAK/STAT phosphorylation cascade. TNF{alpha} is the key cytokine that activates CD40 during inflammation and tumorigenesis. We have earlier shown that SMAR1 can repress the transcription of Cyclin D1 promoter by forming a HDAC1 dependent repressor complex. In this study, we show that SMAR1 regulates the transcription of NF-{kappa}B target gene CD40. SMAR1 recruits HDAC1 and forms a repressor complex on CD40 promoter and keeps its basal transcription in check. Further, we show that TNF{alpha} stimulation induces SMAR1 phosphorylation at Ser-347 and promotes its cytoplasmic translocation, thusmore » releasing its negative effect. Concomitantly, TNF{alpha} induced phosphorylation of STAT1 at Tyr-701 by JAK1 facilitates its nuclear translocation and activation of CD40 through p300 recruitment and core Histone-3 acetylation. Thus, TNF{alpha} mediated regulation of CD40 expression occurs by dual phosphorylation of SMAR1 and STAT1.« less
Role of the Rho GTPase Rac in the activation of the phagocyte NADPH oxidase
Pick, Edgar
2014-01-01
The superoxide-generating NADPH oxidase of phagocytes consists of the membrane-associated cytochrome b558 (a heterodimer of Nox2 and p22phox) and 4 cytosolic components: p47phox, p67phox, p40phox, and the small GTPase, Rac, in complex with RhoGDI. Superoxide is produced by the NADPH-driven reduction of molecular oxygen, via a redox gradient located in Nox2. Electron flow in Nox2 is initiated by interaction with cytosolic components, which translocate to the membrane, p67phox playing the central role. The participation of Rac is expressed in the following sequence: (1) Translocation of the RacGDP-RhoGDI complex to the membrane; (2) Dissociation of RacGDP from RhoGDI; (3) GDP to GTP exchange on Rac, mediated by a guanine nucleotide exchange factor; (4) Binding of RacGTP to p67phox; (5) Induction of a conformational change in p67phox, promoting interaction with Nox2. The particular involvement of Rac in NADPH oxidase assembly serves as a paradigm for signaling by Rho GTPases, in general. PMID:24598074
Levels of major and trace elements, including rare earth elements, and ²³⁸U in Croatian tap waters.
Fiket, Željka; Rožmarić, Martina; Krmpotić, Matea; Benedik, Ljudmila
2015-05-01
Concentrations of 46 elements, including major, trace, and rare earth elements, and (238)U in Croatian tap waters were investigated. Selected sampling locations include tap waters from various hydrogeological regions, i.e., different types of aquifers, providing insight into the range of concentrations of studied elements and (238)U activity concentrations in Croatian tap waters. Obtained concentrations were compared with the Croatian maximum contaminant levels for trace elements in water intended for human consumption, as well as WHO and EPA drinking water standards. Concentrations in all analyzed tap waters were found in accordance with Croatian regulations, except tap water from Šibenik in which manganese in concentration above maximum permissible concentration (MPC) was measured. Furthermore, in tap water from Osijek, levels of arsenic exceeded the WHO guidelines and EPA regulations. In general, investigated tap waters were found to vary considerably in concentrations of studied elements, including (238)U activity concentrations. Causes of variability were further explored using statistical methods. Composition of studied tap waters was found to be predominately influenced by hydrogeological characteristics of the aquifer, at regional and local level, the existing redox conditions, and the household plumbing system. Rare earth element data, including abundances and fractionation patterns, complemented the characterization and facilitated the interpretation of factors affecting the composition of the analyzed tap waters.
Allen, Heidi S.; Steiner, Jörg; Broussard, John; Mansfield, Caroline; Williams, David A.; Jones, Boyd
2006-01-01
The purpose of this study was to compare the clinical utility of the serum concentration of feline trypsin-like immunoreactivity (fTLI), the plasma and urine concentrations of trypsinogen-activation peptide (TAP), and the ratio of the urine TAP and creatinine concentrations (TAP:Cr) in the diagnosis of feline acute pancreatitis. We used 13 healthy cats and 10 cats with a diagnosis of acute pancreatitis. The mean serum fTLI and plasma TAP concentrations were significantly higher in the cats with acute pancreatitis than in the healthy cats (P < 0.05); the mean urine TAP concentrations and the median urine TAP:Cr ratios were not significantly different. Among the cats examined in this study, there was no benefit of plasma TAP over serum fTLI in the evaluation of suspected acute pancreatitis. PMID:17042387
Ventricular shunt tap as a predictor of proximal shunt malfunction in children: a prospective study.
Rocque, Brandon G; Lapsiwala, Samir; Iskandar, Bermans J
2008-06-01
The clinical diagnosis of cerebrospinal fluid (CSF) shunt malfunction can be challenging. In this prospective study, the authors evaluated a common method of interrogating shunts: the shunt tap; specifically, its ability to predict proximal malfunction. The authors performed standardized shunt taps in a consecutive series of cases involving children with suspected or proven shunt malfunction, assessing flow and, when possible, opening pressure. Data were collected prospectively, and results analyzed in light of surgical findings. A shunt tap was performed prior to 68 operative explorations in 51 patients. Of the 68 taps, 28 yielded poor or no CSF flow on aspiration. After 26 of these 28 procedures, proximal catheter obstruction was identified. After 28 taps with good CSF return and normal or low opening pressure, 18 shunts were found to have a proximal obstruction, 8 had no obstruction, and 2 had a distal obstruction. Another 12 taps with good CSF flow had high opening pressure; subsequent surgery showed distal obstruction in 11 of the shunts, and proximal obstruction in 1. The positive predictive value of poor flow was 93%, while good flow on shunt tap predicted adequate proximal catheter function in only 55% of cases. Poor flow of CSF on shunt tap is highly predictive of obstruction of the proximal catheter. Because not all patients with good flow on shunt tap underwent surgical shunt exploration, the specificity of this test cannot be determined. Nonetheless, a shunt tap that reveals good flow with a normal opening pressure can be misleading, and management of such cases should be based on clinical judgment.
Frankincense tapping reduces the carbohydrate storage of Boswellia trees.
Mengistu, Tefera; Sterck, Frank J; Fetene, Masresha; Bongers, Frans
2013-06-01
Carbohydrates fixed by photosynthesis are stored in plant organs in the form of starch or sugars. Starch and sugars sum to the total non-structural carbohydrate pool (TNC) and may serve as intermediate pools between assimilation and utilization. We examined the impact of tapping on TNC concentrations in stem-wood, bark and root tissues of the frankincense tree (Boswellia papyrifera (Del.) Hochst) in two natural woodlands of Ethiopia. Two tapping treatments, one without tapping (control) and the other with tapping at 12 incisions, are applied on experimental trees. Trees are tapped in the leafless dry period, diminishing their carbon storage pools. If storage pools are not refilled by assimilation during the wet season, when crowns are in full leaf, tapping may deplete the carbon pool and weaken Boswellia trees. The highest soluble sugar concentrations were in the bark and the highest starch concentrations in the stem-wood. The stem-wood contains 12 times higher starch than soluble sugar concentrations. Hence, the highest TNC concentrations occurred in the stem-wood. Moreover, wood volume was larger than root or bark volumes and, as a result, more TNC was stored in the stem-wood. As predicted, tapping reduced the TNC concentrations and pool sizes in frankincense trees during the dry season. During the wet season, these carbon pools were gradually filled in tapped trees, but never to the size of non-tapped trees. We conclude that TNC is dynamic on a seasonal time scale and offers resilience against stress, highlighting its importance for tree carbon balance. But current resin tapping practices are intensive and may weaken Boswellia populations, jeopardizing future frankincense production.
Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Deuschl, G; Raethjen, J; Heute, U; Muthuraman, M
2012-01-01
Directionality analysis of signals originating from different parts of brain during motor tasks has gained a lot of interest. Since brain activity can be recorded over time, methods of time series analysis can be applied to medical time series as well. Granger Causality is a method to find a causal relationship between time series. Such causality can be referred to as a directional connection and is not necessarily bidirectional. The aim of this study is to differentiate between different motor tasks on the basis of activation maps and also to understand the nature of connections present between different parts of the brain. In this paper, three different motor tasks (finger tapping, simple finger sequencing, and complex finger sequencing) are analyzed. Time series for each task were extracted from functional magnetic resonance imaging (fMRI) data, which have a very good spatial resolution and can look into the sub-cortical regions of the brain. Activation maps based on fMRI images show that, in case of complex finger sequencing, most parts of the brain are active, unlike finger tapping during which only limited regions show activity. Directionality analysis on time series extracted from contralateral motor cortex (CMC), supplementary motor area (SMA), and cerebellum (CER) show bidirectional connections between these parts of the brain. In case of simple finger sequencing and complex finger sequencing, the strongest connections originate from SMA and CMC, while connections originating from CER in either direction are the weakest ones in magnitude during all paradigms.
76 FR 12418 - Recruitment Notice for the Taxpayer Advocacy Panel
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-07
... for Recruitment of IRS Taxpayer Advocacy Panel (TAP) Members. DATES: March 14, 2011 through April 29... Advocacy Panel (TAP). The mission of the TAP is to listen to taxpayers, identify issues that affect taxpayers, and make suggestions for improving IRS service and customer satisfaction. The TAP serves as an...
77 FR 13390 - Recruitment Notice for the Taxpayer Advocacy Panel
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-06
... for Recruitment of IRS Taxpayer Advocacy Panel (TAP) Members. DATES: March 19, 2012 through April 27... Advocacy Panel (TAP). The mission of the TAP is to listen to taxpayers, identify issues that affect taxpayers, and make suggestions for improving IRS service and customer satisfaction. The TAP serves as an...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-13
... Taxpayer Advocacy Panel (TAP) Tax Check Waiver AGENCY: Internal Revenue Service (IRS), Treasury. ACTION... comments concerning Taxpayer Advocacy Panel (TAP) Tax Check Waiver. DATES: Written comments should [email protected] . SUPPLEMENTARY INFORMATION: Title: Taxpayer Advocacy Panel (TAP) Tax Check Waiver. OMB...
40 CFR 60.265 - Monitoring of operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... quantity, by weight. (3) Time and duration of each tapping period and the identification of material tapped... only the volumetric flow rate through the capture system for control of emissions from the tapping... performance test. If emissions due to tapping are captured and ducted separately from emissions of the...
75 FR 9028 - Recruitment Notice for the Taxpayer Advocacy Panel
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-26
... for Recruitment of IRS Taxpayer Advocacy Panel (TAP) Members. DATES: March 15, 2010 through April 30... Advocacy Panel (TAP). The mission of the TAP is to listen to taxpayers, identify issues that affect taxpayers, and make suggestions for improving IRS service and customer satisfaction. The TAP serves as an...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Tapping. 192.151 Section 192.151 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Design of Pipeline Components § 192.151 Tapping. (a) Each mechanical fitting used to make a hot tap must be designed for at least the operating pressure of...
Reflex Augmentation of a Tap-Elicited Eyeblink: The Effects of Tone Frequency and Tap Intensity.
ERIC Educational Resources Information Center
Cohen, Michelle E.; And Others
1986-01-01
Describes two experiments that examined whether the amplitude of the human eyeblink by a mild tap between the eyebrows can be increased if a brief tone is presented simultaneously with the tap and how these effects change from newborn infants to adults. (HOD)
Gornicka, Agnieszka; Bragoszewski, Piotr; Chroscicki, Piotr; Wenz, Lena-Sophie; Schulz, Christian; Rehling, Peter; Chacinska, Agnieszka
2014-12-15
Mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria with the help of protein translocases. For the majority of precursor proteins, the role of the translocase of the outer membrane (TOM) and mechanisms of their transport across the outer mitochondrial membrane are well recognized. However, little is known about the mode of membrane translocation for proteins that are targeted to the intermembrane space via the redox-driven mitochondrial intermembrane space import and assembly (MIA) pathway. On the basis of the results obtained from an in organello competition import assay, we hypothesized that MIA-dependent precursor proteins use an alternative pathway to cross the outer mitochondrial membrane. Here we demonstrate that this alternative pathway involves the protein channel formed by Tom40. We sought a translocation intermediate by expressing tagged versions of MIA-dependent proteins in vivo. We identified a transient interaction between our model substrates and Tom40. Of interest, outer membrane translocation did not directly involve other core components of the TOM complex, including Tom22. Thus MIA-dependent proteins take another route across the outer mitochondrial membrane that involves Tom40 in a form that is different from the canonical TOM complex. © 2014 Gornicka et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Tursun, Ablat; Zhu, Shaotong; Vik, Steven B
2016-12-01
Respiratory Complex I appears to have 4 sites for proton translocation, which are coupled to the oxidation of NADH and reduction of coenzyme Q. The proton pathways are thought to be made of offset half-channels that connect to the membrane surfaces, and are connected by a horizontal path through the center of the membrane. In this study of the enzyme from Escherichia coli, subunit N, containing one of the sites, was targeted. Pairs of cysteine residues were introduced into neighboring α-helices along the proposed proton pathways. In an effort to constrain conformational changes that might occur during proton translocation, we attempted to form disulfide bonds or methanethiosulfonate bridges between two engineered cysteine residues. Cysteine modification was inferred by the inability of PEG-maleimide to shift the electrophoretic mobility of subunit N, which will occur upon reaction with free sulfhydryl groups. After the cross-linking treatment, NADH oxidase and NADH-driven proton translocation were measured. Ten different pairs of cysteine residues showed evidence of cross-linking. The most significant loss of enzyme activity was seen for residues near the essential Lys 395. This residue is positioned between the proposed proton half-channel to the periplasm and the horizontal connection through subunit N, and is also near the essential Glu 144 of subunit M. The results suggest important conformational changes in this region for the delivery of protons to the periplasm, or for coupling the actions of subunit N to subunit M. Copyright © 2016 Elsevier B.V. All rights reserved.
Deciding Which Way to Go: How Do Insects Alter Movements to Negotiate Barriers?
Ritzmann, Roy E.; Harley, Cynthia M.; Daltorio, Kathryn A.; Tietz, Brian R.; Pollack, Alan J.; Bender, John A.; Guo, Peiyuan; Horomanski, Audra L.; Kathman, Nicholas D.; Nieuwoudt, Claudia; Brown, Amy E.; Quinn, Roger D.
2012-01-01
Animals must routinely deal with barriers as they move through their natural environment. These challenges require directed changes in leg movements and posture performed in the context of ever changing internal and external conditions. In particular, cockroaches use a combination of tactile and visual information to evaluate objects in their path in order to effectively guide their movements in complex terrain. When encountering a large block, the insect uses its antennae to evaluate the object’s height then rears upward accordingly before climbing. A shelf presents a choice between climbing and tunneling that depends on how the antennae strike the shelf; tapping from above yields climbing, while tapping from below causes tunneling. However, ambient light conditions detected by the ocelli can bias that decision. Similarly, in a T-maze turning is determined by antennal contact but influenced by visual cues. These multi-sensory behaviors led us to look at the central complex as a center for sensori-motor integration within the insect brain. Visual and antennal tactile cues are processed within the central complex and, in tethered preparations, several central complex units changed firing rates in tandem with or prior to altered step frequency or turning, while stimulation through the implanted electrodes evoked these same behavioral changes. To further test for a central complex role in these decisions, we examined behavioral effects of brain lesions. Electrolytic lesions in restricted regions of the central complex generated site specific behavioral deficits. Similar changes were also found in reversible effects of procaine injections in the brain. Finally, we are examining these kinds of decisions made in a large arena that more closely matches the conditions under which cockroaches forage. Overall, our studies suggest that CC circuits may indeed influence the descending commands associated with navigational decisions, thereby making them more context dependent. PMID:22783160
Garcia-Higuera, I; Kuang, Y; Denham, J; D'Andrea, A D
2000-11-01
Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with 8 complementation groups. Four of the FA genes have been cloned, and at least 3 of the encoded proteins, FANCA, FANCC, and FANCG/XRCC9, interact in a multisubunit protein complex. The FANCG protein binds directly to the amino terminal nuclear localization sequence (NLS) of FANCA, suggesting that FANCG plays a role in regulating FANCA nuclear accumulation. In the current study the functional consequences of FANCG/FANCA binding were examined. Correction of an FA-G cell line with the FANCG complementary DNA (cDNA) resulted in FANCA/FANCG binding, prolongation of the cellular half-life of FANCA, and an increase in the nuclear accumulation of the FA protein complex. Similar results were obtained upon correction of an FA-A cell line, with a reciprocal increase in the half-life of FANCG. Patient-derived mutant forms of FANCA, containing an intact NLS sequence but point mutations in the carboxy-terminal leucine zipper region, bound FANCG in the cytoplasm. The mutant forms failed to translocate to the nucleus of transduced cells, thereby suggesting a model of coordinated binding and nuclear translocation. These results demonstrate that the FANCA/FANCG interaction is required to maintain the cellular levels of both proteins. Moreover, at least one function of FANCG and FANCA is to regulate the nuclear accumulation of the FA protein complex. Failure to accumulate the nuclear FA protein complex results in the characteristic spectrum of clinical and cellular abnormalities observed in FA.
Veith, Paul D; Glew, Michelle D; Gorasia, Dhana G; Reynolds, Eric C
2017-10-01
The Type IX secretion system (T9SS) is present in over 1000 sequenced species/strains of the Fibrobacteres-Chlorobi-Bacteroidetes superphylum. Proteins secreted by the T9SS have an N-terminal signal peptide for translocation across the inner membrane via the SEC translocon and a C-terminal signal for secretion across the outer membrane via the T9SS. Nineteen protein components of the T9SS have been identified including three, SigP, PorX and PorY that are involved in regulation. The inner membrane proteins PorL and PorM and the outer membrane proteins PorK and PorN interact and a complex comprising PorK and PorN forms a large ring structure of 50 nm in diameter. PorU, PorV, PorQ and PorZ form an attachment complex on the cell surface of the oral pathogen, Porphyromonas gingivalis. P. gingivalis T9SS substrates bind to PorV suggesting that after translocation PorV functions as a shuttle protein to deliver T9SS substrates to the attachment complex. The PorU component of the attachment complex is a novel Gram negative sortase which catalyses the cleavage of the C-terminal signal and conjugation of the protein substrates to lipopolysaccharide, anchoring them to the cell surface. This review presents an overview of the T9SS focusing on the function of T9SS substrates and machinery components. © 2017 John Wiley & Sons Ltd.
McBride, D M; Cherry, B J; Kee, D W; Neale, P L
1995-07-01
The study was conducted to clarify factors involved in dual-task finger-tapping interference. Left-handers, as assessed by hand-writing preference and left-hand baseline tapping advantage, tapped both alone and while solving anagrams. Even though the left-hand baseline tapping advantage was experimentally removed on some (adjusted) trials, greater left- than right-hand tapping interference was observed during concurrent task performance. This result coupled with previous findings for right-handed subjects [Kee and Cherry, Neuropsychologia, Vol. 28, pp. 313-316, 1990] indicates that lateralized interference effects are not merely due to initial baseline tapping differences as proposed by Willis and Goodwin [Neuropsychologia, Vol. 25, pp. 719-724, 1987].
Elimination of current spikes in buck power converters
NASA Technical Reports Server (NTRS)
Mclyman, W. T. (Inventor)
1981-01-01
Current spikes in a buck power converter due to commutating diode turn-off time are eliminated by using a tapped inductor in the converter with the tap connected to the switching transistor. The commutating diode is not in the usual place, but is instead connected to conduct current from one end of the tapped inductor remote from the load during the interval in which the transistor is not conducting. In the case of a converter having a center-tapped (primary and secondary) transformer between two switching power transistors operated in a push-pull mode and two rectifying diodes in the secondary circuit, current spikes due to transformer saturation are also eliminated by using a tapped inductor in the converter with the tap connected to the rectifying diodes and a diode connected to conduct current from one end of the tapped inductor remote from the load during the interval in which the transistors are not conducting.
van Erp, Brianna; Webber, Whitney L; Stoddard, Pamela; Shah, Roshni; Martin, Lori; Broderick, Bonnie; Induni, Marta
2014-06-12
The objective of this study was to examine differences in tap water consumption and perceptions of bottle versus tap water safety for Hispanics and non-Hispanic whites, as well as associations with other demographic characteristics. Data are from the Santa Clara County, California, Dietary Practices Survey (2011; N = 306). We used logistic regression to examine associations between demographic characteristics and 1) perceptions that bottled water is safer than tap and 2) primarily consuming tap water. Hispanics were less likely than non-Hispanic whites to primarily drink tap water (OR = 0.33; 95% CI, 0.11-0.99), although there was no significant difference in perceptions that bottled water is safer between these groups (OR = 0.50; 95% CI, 0.11-2.27). Hispanics may be an important population for interventions promoting tap water consumption.
ERIC Educational Resources Information Center
Sterling, Joan
2011-01-01
In the small island country of Haiti, colorful taxis transport the natives to the market. Although the taxis may be crowded with people, goods, and even livestock, it is considered a luxury to ride rather than go on foot. The children's picture book, "Tap-Tap," is a wonderful introduction to the culture of this land. The name…
ERIC Educational Resources Information Center
Tapping America's Potential, 2008
2008-01-01
In July 2005, Business Roundtable and fifteen of America's most prominent business organizations--Tapping America's Potential, the TAP coalition--issued a report stating that "one of the pillars of American economic prosperity--U.S. scientific and technological superiority--is beginning to atrophy even as other nations are developing their own…
43 CFR 29.7 - Imposition of strict liability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Pipeline and ports under the jurisdiction of the United States, and is carrying TAPS oil, the Owner and... discharge of TAPS oil from such vessel. Strict liability under this section shall cease when the TAPS oil... State law. (2) The Fund shall establish uniform procedures to determine whether claims from a TAPS oil...
The Ability to Tap to a Beat Relates to Cognitive, Linguistic, and Perceptual Skills
ERIC Educational Resources Information Center
Tierney, Adam T.; Kraus, Nina
2013-01-01
Reading-impaired children have difficulty tapping to a beat. Here we tested whether this relationship between reading ability and synchronized tapping holds in typically-developing adolescents. We also hypothesized that tapping relates to two other abilities. First, since auditory-motor synchronization requires monitoring of the relationship…
75 FR 82145 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-29
... Advocacy Panel (TAP) Tax Check Waiver. Abstract: Taxpayer Advocacy Panel (TAP) members must be compliant with their tax obligations and must undergo and pass a tax check in order to be selected as a TAP... otherwise confidential, to the Director of TAP to help in determining the suitability of the applicant for...
49 CFR 192.627 - Tapping pipelines under pressure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Tapping pipelines under pressure. 192.627 Section... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Operations § 192.627 Tapping pipelines under pressure. Each tap made on a pipeline under pressure must be performed by a crew qualified to make...
X-ray microtomography study of the compaction process of rods under tapping.
Fu, Yang; Xi, Yan; Cao, Yixin; Wang, Yujie
2012-05-01
We present an x-ray microtomography study of the compaction process of cylindrical rods under tapping. The process is monitored by measuring the evolution of the orientational order parameter, local, and overall packing densities as a function of the tapping number for different tapping intensities. The slow relaxation dynamics of the orientational order parameter can be well fitted with a stretched-exponential law with stretching exponents ranging from 0.9 to 1.6. The corresponding relaxation time versus tapping intensity follows an Arrhenius behavior which is reminiscent of the slow dynamics in thermal glassy systems. We also investigated the boundary effect on the ordering process and found that boundary rods order faster than interior ones. In searching for the underlying mechanism of the slow dynamics, we estimated the initial random velocities of the rods under tapping and found that the ordering process is compatible with a diffusion mechanism. The average coordination number as a function of the tapping number at different tapping intensities has also been measured, which spans a range from 6 to 8.
Kim, Il Kwang; Lee, Soo Il
2016-05-01
The modal decomposition of tapping mode atomic force microscopy microcantilevers in liquid environments was studied experimentally. Microcantilevers with different lengths and stiffnesses and two sample surfaces with different elastic moduli were used in the experiment. The response modes of the microcantilevers were extracted as proper orthogonal modes through proper orthogonal decomposition. Smooth orthogonal decomposition was used to estimate the resonance frequency directly. The effects of the tapping setpoint and the elastic modulus of the sample under test were examined in terms of their multi-mode responses with proper orthogonal modes, proper orthogonal values, smooth orthogonal modes and smooth orthogonal values. Regardless of the stiffness of the microcantilever under test, the first mode was dominant in tapping mode atomic force microscopy under normal operating conditions. However, at lower tapping setpoints, the flexible microcantilever showed modal distortion and noise near the tip when tapping on a hard sample. The stiff microcantilever had a higher mode effect on a soft sample at lower tapping setpoints. Modal decomposition for tapping mode atomic force microscopy can thus be used to estimate the characteristics of samples in liquid environments.
Amy Daniels; Nancy Shaw; Dave Peterson; Keith Nislow; Monica Tomosy; Mary Rowland
2014-01-01
As a growing body of science shows, climate change impacts on wildlife are already profoundâfrom shifting speciesâ ranges and altering the synchronicity of food sources to changing the availability of water. Such impacts are only expected to increase in the coming decades. As climate change shapes complex, interwoven ecological processes, novel conditions and...
Fadeeva, M S; Bertsova, Y V; Verkhovsky, M I; Bogachev, A V
2008-02-01
Each of two hydrophobic subunits of Na+-translocating NADH:quinone oxidoreductase (NQR), NqrD and NqrE, contain a pair of strictly conserved cysteine residues within their transmembrane alpha-helices. Site-directed mutagenesis showed that substitutions of these residues in NQR of Vibrio harveyi blocked the Na+-dependent and 2-n-heptyl-4-hydroxyquinoline N-oxide-sensitive quinone reductase activity of the enzyme. However, these mutations did not affect the interaction of NQR with NADH and menadione. It was demonstrated that these conserved cysteine residues are necessary for the correct folding and/or the stability of the NQR complex. Mass and EPR spectroscopy showed that NQR from V. harveyi bears only a 2Fe-2S cluster as a metal-containing prosthetic group.
Hing, Stephanie; Northover, Amy S; Narayan, Edward J; Wayne, Adrian F; Jones, Krista L; Keatley, Sarah; Thompson, R C Andrew; Godfrey, Stephanie S
2017-03-01
Translocation can be stressful for wildlife. Stress may be important in fauna translocation because it has been suggested that it can exacerbate the impact of infectious disease on translocated wildlife. However, few studies explore this hypothesis by measuring stress physiology and infection indices in parallel during wildlife translocations. We analysed faecal cortisol metabolite (FCM) concentration and endoparasite parameters (nematodes, coccidians and haemoparasites) in a critically endangered marsupial, the woylie (Bettongia penicillata), 1-3 months prior to translocation, at translocation, and 6 months later. FCM for both translocated and resident woylies was significantly higher after translocation compared to before or at translocation. In addition, body condition decreased with increasing FCM after translocation. These patterns in host condition and physiology may be indicative of translocation stress or stress associated with factors independent of the translocation. Parasite factors also influenced FCM in translocated woylies. When haemoparasites were detected, there was a significant negative relationship between strongyle egg count and FCM. This may reflect the influence of glucocorticoids on the immune response to micro- and macro-parasites. Our results indicate that host physiology and infection patterns can change significantly during translocation, but further investigation is required to determine how these patterns influence translocation success.
Ma, Ning; Duncan, Joanna K; Scarfe, Anje J; Schuhmann, Susanne; Cameron, Alun L
2017-06-01
Transversus abdominis plane (TAP) blocks can provide analgesia postoperatively for a range of surgeries. Abundant clinical trials have assessed TAP block showing positive analgesic effects. This systematic review assesses safety and effectiveness outcomes of TAP block in all clinical settings, comparing with both active (standard care) and inactive (placebo) comparators. PubMed, EMBASE, The Cochrane Library and the University of York CRD databases were searched. RCTs were screened for their eligibility and assessed for risk of bias. Meta-analyses were performed on available data. TAP block showed an equivalent safety profile to all comparators in the incidence of nausea (OR = 1.07) and vomiting (OR = 0.81). TAP block was more effective in reducing morphine consumption [MD = 13.05, 95% CI (8.33, 51.23)] and in delaying time to first analgesic request [MD = 123.49, 95% CI (48.59, 198.39)]. Postoperative pain within 24 h was reduced or at least equivalent in TAP block compared to its comparators. Therefore, TAP block is a safe and effective procedure compared to standard care, placebo and other analgesic techniques. Further research is warranted to investigate whether the TAP block technique can be improved by optimizing dose and technique-related factors.
Gadsden, Jeffrey; Ayad, Sabry; Gonzales, Jeffrey J; Mehta, Jaideep; Boublik, Jan; Hutchins, Jacob
2015-01-01
Transversus abdominis plane (TAP) infiltration is a regional anesthesia technique that has been demonstrated to be effective for management of postsurgical pain after abdominal surgery. There are several different clinical variations in the approaches used for achieving analgesia via TAP infiltration, and methods for identification of the TAP have evolved considerably since the landmark-guided technique was first described in 2001. There are many factors that impact the analgesic outcomes following TAP infiltration, and the various nuances of this technique have led to debate regarding procedural classification of TAP infiltration. Based on our current understanding of fascial and neuronal anatomy of the anterior abdominal wall, as well as available evidence from studies assessing local anesthetic spread and cutaneous sensory block following TAP infiltration, it is clear that TAP infiltration techniques are appropriately classified as field blocks. While the objective of peripheral nerve block and TAP infiltration are similar in that both approaches block sensory response in order to achieve analgesia, the technical components of the two procedures are different. Unlike peripheral nerve block, which involves identification or stimulation of a specific nerve or nerve plexus, followed by administration of a local anesthetic in close proximity, TAP infiltration involves administration and spread of local anesthetic within an anatomical plane of the surgical site.
Sano, Yuko; Kandori, Akihiko; Shima, Keisuke; Yamaguchi, Yuki; Tsuji, Toshio; Noda, Masafumi; Higashikawa, Fumiko; Yokoe, Masaru; Sakoda, Saburo
2016-06-01
We propose a novel index of Parkinson's disease (PD) finger-tapping severity, called "PDFTsi," for quantifying the severity of symptoms related to the finger tapping of PD patients with high accuracy. To validate the efficacy of PDFTsi, the finger-tapping movements of normal controls and PD patients were measured by using magnetic sensors, and 21 characteristics were extracted from the finger-tapping waveforms. To distinguish motor deterioration due to PD from that due to aging, the aging effect on finger tapping was removed from these characteristics. Principal component analysis (PCA) was applied to the age-normalized characteristics, and principal components that represented the motion properties of finger tapping were calculated. Multiple linear regression (MLR) with stepwise variable selection was applied to the principal components, and PDFTsi was calculated. The calculated PDFTsi indicates that PDFTsi has a high estimation ability, namely a mean square error of 0.45. The estimation ability of PDFTsi is higher than that of the alternative method, MLR with stepwise regression selection without PCA, namely a mean square error of 1.30. This result suggests that PDFTsi can quantify PD finger-tapping severity accurately. Furthermore, the result of interpreting a model for calculating PDFTsi indicated that motion wideness and rhythm disorder are important for estimating PD finger-tapping severity.
Joundi, Raed A; Brittain, John-Stuart; Green, Alex L; Aziz, Tipu Z; Brown, Peter; Jenkinson, Ned
2013-03-01
The function of synchronous oscillatory activity at beta band (15-30Hz) frequencies within the basal ganglia is unclear. Here we sought support for the hypothesis that beta activity has a global function within the basal ganglia and is not directly involved in the coding of specific biomechanical parameters of movement. We recorded local field potential activity from the subthalamic nuclei of 11 patients with Parkinson's disease during a synchronized tapping task at three different externally cued rates. Beta activity was suppressed during tapping, reaching a minimum that differed little across the different tapping rates despite an increase in velocity of finger movements. Thus beta power suppression was independent of specific motor parameters. Moreover, although beta oscillations remained suppressed during all tapping rates, periods of resynchronization between taps were markedly attenuated during high rate tapping. As such, a beta rebound above baseline between taps at the lower rates was absent at the high rate. Our results demonstrate that beta desynchronization in the region of the subthalamic nucleus is independent of motor parameters and that the beta resynchronization is differentially modulated by rate of finger tapping, These findings implicate consistent beta suppression in the facilitation of continuous movement sequences. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Impact analysis of tap switch out of step for converter transformer
NASA Astrophysics Data System (ADS)
Hong-yue, ZHANG; Zhen-hua, ZHANG; Zhang-xue, XIONG; Gao-wang, YU
2017-06-01
AC transformer load regulation is mainly used to adjust the load side voltage level, improve the quality of power supply, the voltage range is relatively narrow. In DC system, converter transformer is the core equipment of AC and DC power converter and inverter. converter transformer tap adjustment can maintain the normal operation of the converter in small angle range control, the absorption of reactive power, economic operation, valve less stress, valve damping circuit loss, AC / DC harmonic component is also smaller. In this way, the tap switch action is more frequent, and a large range of the tap switch adjustment is required. Converter transformer with a more load voltage regulation switch, the voltage regulation range of the switch is generally 20~30%, the adjustment of each file is 1%~2%. Recently it is often found that the tap switch of Converter Transformers is out of step in Converter station. In this paper, it is analyzed in detail the impact of tap switch out of step for differential protection, overexcitation protection and zero sequence over current protection. Analysis results show that: the tap switch out of step has no effect on the differential protection and the overexcitation protection including the tap switch. But the tap switch out of step has effect on zero sequence overcurrent protection of out of step star-angle converter transformer. The zero sequence overcurrent protection will trip when the tap switch out of step is greater than 3 for out of step star-angle converter transformer.
Finger tapping ability in healthy elderly and young adults.
Aoki, Tomoko; Fukuoka, Yoshiyuki
2010-03-01
The maximum isometric force production capacity of the fingers decreases with age. However, little information is available on age-related changes in dynamic motor capacity of individual fingers. The purpose of this study was to compare the dynamic motor function of individual fingers between elderly and young adults using rapid single-finger and double-finger tapping. Fourteen elderly and 14 young adults performed maximum frequency tapping by the index, middle, ring, or little finger (single-finger tapping) and with alternate movements of the index-middle, middle-ring, or ring-little finger-pair (double-finger tapping). The maximum pinch force between the thumb and each finger, tactile sensitivity of each fingertip, and time taken to complete a pegboard test were also measured. Compared with young subjects, the older subjects had significantly slower tapping rates in all fingers and finger-pairs in the tapping tasks. The age-related decline was also observed in the tactile sensitivities of all fingers and in the pegboard test. However, there was no group difference in the pinch force of any finger. The tapping rate of each finger did not correlate with the pinch force or tactile sensitivity for the corresponding finger in the elderly subjects. Maximum rate of finger tapping was lower in the elderly adults compared with the young adults. The decline of finger tapping ability in elderly adults seems to be less affected by their maximum force production capacities of the fingers as well as tactile sensitivities at the tips of the fingers.
XRCC4 suppresses medulloblastomas with recurrent translocations in p53-deficient mice
Yan, Catherine T.; Kaushal, Dhruv; Murphy, Michael; Zhang, Yu; Datta, Abhishek; Chen, Changzhong; Monroe, Brianna; Mostoslavsky, Gustavo; Coakley, Kristen; Gao, Yijie; Mills, Kevin D.; Fazeli, Alex P.; Tepsuporn, Suprawee; Hall, Giles; Mulligan, Richard; Fox, Edward; Bronson, Roderick; De Girolami, Umberto; Lee, Charles; Alt, Frederick W.
2006-01-01
Inactivation of the XRCC4 nonhomologous end-joining factor in the mouse germ line leads to embryonic lethality, in association with apoptosis of newly generated, postmitotic neurons. We now show that conditional inactivation of the XRCC4 in nestin-expressing neuronal progenitor cells, although leading to no obvious phenotype in a WT background, leads to early onset of neuronally differentiated medulloblastomas (MBs) in a p53-deficient background. A substantial proportion of the XRCC4/p53-deficient MBs have high-level N-myc gene amplification, often intrachromosomally in the context of complex translocations or other alterations of chromosome 12, on which N-myc resides, or extrachromosomally within double minutes. In addition, most XRCC4/p53-deficient MBs harbor clonal translocations of chromosome 13, which frequently involve chromosome 6 as a partner. One copy of the patched gene (Ptc), which lies on chromosome 13, was deleted in all tested XRCC4/p53-deficient MBs in the context of translocations or interstitial deletions. In addition, Cyclin D2, a chromosome 6 gene, was amplified in a subset of tumors. Notably, amplification of Myc-family or Cyclin D2 genes and deletion of Ptc also have been observed in human MBs. We therefore conclude that, in neuronal cells of mice, the nonhomologous end-joining pathway plays a critical role in suppressing genomic instability that, in a p53-deficient background, routinely contributes to genesis of MBs with recurrent chromosomal alterations. PMID:16670198
Smooth muscle-protein translocation and tissue function.
Eddinger, Thomas J
2014-09-01
Smooth muscle (SM) tissue is a complex organization of multiple cell types and is regulated by numerous signaling molecules (neurotransmitters, hormones, cytokines, etc.). SM contractile function can be regulated via expression and distribution of the contractile and cytoskeletal proteins, and activation of any of the second messenger pathways that regulate them. Spatial-temporal changes in the contractile, cytoskeletal or regulatory components of SM cells (SMCs) have been proposed to alter SM contractile activity. Ca(2+) sensitization/desensitization can occur as a result of changes at any of these levels, and specific pathways have been identified at all of these levels. Understanding when and how proteins can translocate within the cytoplasm, or to-and-from the plasmalemma and the cytoplasm to alter contractile activity is critical. Numerous studies have reported translocation of proteins associated with the adherens junction and G protein-coupled receptor activation pathways in isolated SMC systems. Specific examples of translocation of vinculin to and from the adherens junction and protein kinase C (PKC) and 17 kDa PKC-potentiated inhibitor of myosin light chain phosphatase (CPI-17) to and from the plasmalemma in isolated SMC systems but not in intact SM tissues are discussed. Using both isolated SMC systems and SM tissues in parallel to pursue these studies will advance our understanding of both the role and mechanism of these pathways as well as their possible significance for Ca(2+) sensitization in intact SM tissues and organ systems. © 2014 Wiley Periodicals, Inc.
Schultz, Benjamin G; van Vugt, Floris T
2016-12-01
Timing abilities are often measured by having participants tap their finger along with a metronome and presenting tap-triggered auditory feedback. These experiments predominantly use electronic percussion pads combined with software (e.g., FTAP or Max/MSP) that records responses and delivers auditory feedback. However, these setups involve unknown latencies between tap onset and auditory feedback and can sometimes miss responses or record multiple, superfluous responses for a single tap. These issues may distort measurements of tapping performance or affect the performance of the individual. We present an alternative setup using an Arduino microcontroller that addresses these issues and delivers low-latency auditory feedback. We validated our setup by having participants (N = 6) tap on a force-sensitive resistor pad connected to the Arduino and on an electronic percussion pad with various levels of force and tempi. The Arduino delivered auditory feedback through a pulse-width modulation (PWM) pin connected to a headphone jack or a wave shield component. The Arduino's PWM (M = 0.6 ms, SD = 0.3) and wave shield (M = 2.6 ms, SD = 0.3) demonstrated significantly lower auditory feedback latencies than the percussion pad (M = 9.1 ms, SD = 2.0), FTAP (M = 14.6 ms, SD = 2.8), and Max/MSP (M = 15.8 ms, SD = 3.4). The PWM and wave shield latencies were also significantly less variable than those from FTAP and Max/MSP. The Arduino missed significantly fewer taps, and recorded fewer superfluous responses, than the percussion pad. The Arduino captured all responses, whereas at lower tapping forces, the percussion pad missed more taps. Regardless of tapping force, the Arduino outperformed the percussion pad. Overall, the Arduino is a high-precision, low-latency, portable, and affordable tool for auditory experiments.
Salibian, Ara A; Frey, Jordan D; Thanik, Vishal D; Karp, Nolan S; Choi, Mihye
2018-06-02
Transversus abdominis plane (TAP) blocks are increasingly being utilized in microvascular breast reconstruction. The implications of TAP blocks on specific reconstructive, patient and institutional outcomes remain to be fully elucidated. Patients undergoing abdominally-based microvascular breast reconstruction from 2015-2017 were reviewed. Length of stay, complications, narcotic consumption, donor-site pain and hospital expenses were compared between patients that did and those that did not receive TAP blocks with liposomal bupivacaine. Outcomes were subsequently compared in patients with elevated body mass index (BMI). Fifty patients (43.9%) received TAP blocks (27 [54.0%] under ultrasound guidance) and 64 patients (56.1%) did not. Patients with TAP blocks had significantly decreased oral and total narcotic consumption (p=0.0001 and p<0.0001, respectively) as well as significantly less donor-site pain (3.3 versus 4.3, p<0.0001). There was no significant difference in hospital expenses between the two cohorts ($21,531.53 versus $22,050.15 per patient, p=0.5659). Patients with BMI≥25 who received TAP blocks had a significantly decreased length of stay (3.8 versus 4.4 days, p=0.0345) as well as decreased narcotic consumption and postoperative pain compared to patients without TAP blocks. Patients with BMI<25 did not have a significant difference in postoperative pain, narcotic consumption or length of stay between the TAP versus no TAP block groups. TAP blocks with liposomal bupivacaine significantly reduce oral and total postoperative narcotic consumption as well as donor-site pain in all patients after abdominally-based microvascular breast reconstruction without increasing hospital expenses. TAP blocks additionally significantly decrease length of stay in patients with BMI≥25.