Science.gov

Sample records for transmembrane helix structure

  1. Transmembrane helix structure, dynamics, and interactions: multi-nanosecond molecular dynamics simulations.

    PubMed Central

    Shen, L; Bassolino, D; Stouch, T

    1997-01-01

    To probe the fundamentals of membrane/protein interactions, all-atom multi-nanosecond molecular dynamics simulations were conducted on a single transmembrane poly(32)alanine helix in a fully solvated dimyristoyphosphatidylcholine (DMPC) bilayer. The central 12 residues, which interact only with the lipid hydrocarbon chains, maintained a very stable helical structure. Helical regions extended beyond these central 12 residues, but interactions with the lipid fatty-acyl ester linkages, the lipid headgroups, and water molecules made the helix less stable in this region. The C and N termini, exposed largely to water, existed as random coils. As a whole, the helix tilted substantially, from perpendicular to the bilayer plane (0 degree) to a 30 degrees tilt. The helix experienced a bend at its middle, and the two halves of the helix at times assumed substantially different tilts. Frequent hydrogen bonding, of up to 0.7 ns in duration, occurred between peptide and lipid molecules. This resulted in correlated translational diffusion between the helix and a few lipid molecules. Because of the large variation in lipid conformation, the lipid environment of the peptide was not well defined in terms of "annular" lipids and on average consisted of 18 lipid molecules. When compared with a "neat" bilayer without peptide, no significant difference was seen in the bilayer thickness, lipid conformations or diffusion, or headgroup orientation. However, the lipid hydrocarbon chain order parameters showed a significant decrease in order, especially in those methylene groups closest to the headgroup. Images FIGURE 1 FIGURE 14 PMID:9199766

  2. Transmembrane helix: simple or complex.

    PubMed

    Wong, Wing-Cheong; Maurer-Stroh, Sebastian; Schneider, Georg; Eisenhaber, Frank

    2012-07-01

    Transmembrane helical segments (TMs) can be classified into two groups of so-called 'simple' and 'complex' TMs. Whereas the first group represents mere hydrophobic anchors with an overrepresentation of aliphatic hydrophobic residues that are likely attributed to convergent evolution in many cases, the complex ones embody ancestral information and tend to have structural and functional roles beyond just membrane immersion. Hence, the sequence homology concept is not applicable on simple TMs. In practice, these simple TMs can attract statistically significant but evolutionarily unrelated hits during similarity searches (whether through BLAST- or HMM-based approaches). This is especially problematic for membrane proteins that contain both globular segments and TMs. As such, we have developed the transmembrane helix: simple or complex (TMSOC) webserver for the identification of simple and complex TMs. By masking simple TM segments in seed sequences prior to sequence similarity searches, the false-discovery rate decreases without sacrificing sensitivity. Therefore, TMSOC is a novel and necessary sequence analytic tool for both the experimentalists and the computational biology community working on membrane proteins. It is freely accessible at http://tmsoc.bii.a-star.edu.sg or available for download.

  3. Assignment of Oriented Sample NMR Resonances from a Three Transmembrane Helix Protein

    PubMed Central

    Murray, D. T.; Hung, I.; Cross, T. A.

    2014-01-01

    Oriented sample solid state NMR techniques have been routinely employed to determine the structures of membrane proteins with one or two transmembrane helices. For larger proteins the technique has been limited by spectral resolution and lack of assignment strategies. Here, a strategy for resonance assignment is devised and applied to a three transmembrane helix protein. Sequence specific assignments for all labeled transmembrane amino acid sites are obtained, which provide a set of orientational restraints and helix orientation in the bilayer. Our experiments expand the utility of solid state NMR in membrane protein structure characterization to three transmembrane helix proteins and represent a straightforward strategy for routinely characterizing multiple transmembrane helix protein structures. PMID:24509383

  4. Light and pH-induced Changes in Structure and Accessibility of Transmembrane Helix B and Its Immediate Environment in Channelrhodopsin-2.

    PubMed

    Volz, Pierre; Krause, Nils; Balke, Jens; Schneider, Constantin; Walter, Maria; Schneider, Franziska; Schlesinger, Ramona; Alexiev, Ulrike

    2016-08-12

    A variant of the cation channel channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2) was selectively labeled at position Cys-79 at the end of the first cytoplasmic loop and the beginning of transmembrane helix B with the fluorescent dye fluorescein (acetamidofluorescein). We utilized (i) time-resolved fluorescence anisotropy experiments to monitor the structural dynamics at the cytoplasmic surface close to the inner gate in the dark and after illumination in the open channel state and (ii) time-resolved fluorescence quenching experiments to observe the solvent accessibility of helix B at pH 6.0 and 7.4. The light-induced increase in final anisotropy for acetamidofluorescein bound to the channel variant with a prolonged conducting state clearly shows that the formation of the open channel state is associated with a large conformational change at the cytoplasmic surface, consistent with an outward tilt of helix B. Furthermore, results from solute accessibility studies of the cytoplasmic end of helix B suggest a pH-dependent structural heterogeneity that appears below pH 7. At pH 7.4 conformational homogeneity was observed, whereas at pH 6.0 two protein fractions exist, including one in which residue 79 is buried. This inaccessible fraction amounts to 66% in nanodiscs and 82% in micelles. Knowledge about pH-dependent structural heterogeneity may be important for CrChR2 applications in optogenetics. PMID:27268055

  5. Transmembrane Helix Assembly by Max-Min Ant System Algorithm.

    PubMed

    Sujaree, Kanon; Kitjaruwankul, Sunan; Boonamnaj, Panisak; Supunyabut, Chirayut; Sompornpisut, Pornthep

    2015-12-01

    Because of the rapid progress in biochemical and structural studies of membrane proteins, considerable attention has been given on developing efficient computational methods for solving low-to-medium resolution structures using sparse structural data. In this study, we demonstrate a novel algorithm, max-min ant system (MMAS), designed to find an assembly of α-helical transmembrane proteins using a rigid helix arrangement guided by distance constraints. The new algorithm generates a large variety with finite number of orientations of transmembrane helix bundle and finds the solution that is matched with the provided distance constraints based on the behavior of ants to search for the shortest possible path between their nest and the food source. To demonstrate the efficiency of the novel search algorithm, MMAS is applied to determine the transmembrane packing of KcsA and MscL ion channels from a limited distance information extracted from the crystal structures, and the packing of KvAP voltage sensor domain using a set of 10 experimentally determined constraints, and the results are compared with those of two popular used stochastic methods, simulated annealing Monte Carlo method and genetic algorithm. PMID:26058409

  6. Transmembrane helix dimerization: beyond the search for sequence motifs.

    PubMed

    Li, Edwin; Wimley, William C; Hristova, Kalina

    2012-02-01

    Studies of the dimerization of transmembrane (TM) helices have been ongoing for many years now, and have provided clues to the fundamental principles behind membrane protein (MP) folding. Our understanding of TM helix dimerization has been dominated by the idea that sequence motifs, simple recognizable amino acid sequences that drive lateral interaction, can be used to explain and predict the lateral interactions between TM helices in membrane proteins. But as more and more unique interacting helices are characterized, it is becoming clear that the sequence motif paradigm is incomplete. Experimental evidence suggests that the search for sequence motifs, as mediators of TM helix dimerization, cannot solve the membrane protein folding problem alone. Here we review the current understanding in the field, as it has evolved from the paradigm of sequence motifs into a view in which the interactions between TM helices are much more complex. This article is part of a Special Issue entitled: Membrane protein structure and function.

  7. The Homology Model of PMP22 Suggests Mutations Resulting in Peripheral Neuropathy Disrupt Transmembrane Helix Packing

    PubMed Central

    2015-01-01

    Peripheral myelin protein 22 (PMP22) is a tetraspan membrane protein strongly expressed in myelinating Schwann cells of the peripheral nervous system. Myriad missense mutations in PMP22 result in varying degrees of peripheral neuropathy. We used Rosetta 3.5 to generate a homology model of PMP22 based on the recently published crystal structure of claudin-15. The model suggests that several mutations known to result in neuropathy act by disrupting transmembrane helix packing interactions. Our model also supports suggestions from previous studies that the first transmembrane helix is not tightly associated with the rest of the helical bundle. PMID:25243937

  8. Peptide mimics of the M13 coat protein transmembrane segment. Retention of helix-helix interaction motifs.

    PubMed

    Wang, C; Deber, C M

    2000-05-26

    Sequence-specific noncovalent helix-helix interactions between transmembrane (TM) segments in proteins are investigated by incorporating selected TM sequences into synthetic peptides using the construct CKKK-TM-KKK. The peptides are of suitable hydrophobicity for spontaneous membrane insertion, whereas formation of an N-terminal S-S bond can bring pairs of TM helices into proximity and promote their parallel orientation. Using the propensity of the protein to undergo thermally induced alpha-helix --> beta-sheet transitions as a parameter for helix stability, we compared the wild type and mutant (V29A and V31A) bacteriophage M13 coat proteins with their corresponding TM peptide constructs (M13 residues 24-42). Our results demonstrated that the relevant helix-helix tertiary contacts found in the intact proteins persist in the peptide mimics. Molecular dynamics simulations support the tight "two in-two out" dimerization motif for V31A consistent with mutagenesis data. The overall results reinforce the notion of TM segments as autonomous folding domains and suggest that the generic peptide construct provides a viable reductionist system for membrane protein structural and computational analysis.

  9. Detergent properties influence the stability of the glycophorin A transmembrane helix dimer in lysophosphatidylcholine micelles.

    PubMed

    Stangl, Michael; Veerappan, Anbazhagan; Kroeger, Anja; Vogel, Peter; Schneider, Dirk

    2012-12-19

    Detergents might affect membrane protein structures by promoting intramolecular interactions that are different from those found in native membrane bilayers, and fine-tuning detergent properties can be crucial for obtaining structural information of intact and functional transmembrane proteins. To systematically investigate the influence of the detergent concentration and acyl-chain length on the stability of a transmembrane protein structure, the stability of the human glycophorin A transmembrane helix dimer has been analyzed in lyso-phosphatidylcholine micelles of different acyl-chain length. While our results indicate that the transmembrane protein is destabilized in detergents with increasing chain-length, the diameter of the hydrophobic micelle core was found to be less crucial. Thus, hydrophobic mismatch appears to be less important in detergent micelles than in lipid bilayers and individual detergent molecules appear to be able to stretch within a micelle to match the hydrophobic thickness of the peptide. However, the stability of the GpA TM helix dimer linearly depends on the aggregation number of the lyso-PC detergents, indicating that not only is the chemistry of the detergent headgroup and acyl-chain region central for classifying a detergent as harsh or mild, but the detergent aggregation number might also be important.

  10. Integrin α1 Has a Long Helix, Extending from the Transmembrane Region to the Cytoplasmic Tail in Detergent Micelles

    PubMed Central

    Lai, Chaohua; Liu, Xiaoxi; Tian, Changlin; Wu, Fangming

    2013-01-01

    Integrin proteins are very important adhesion receptors that mediate cell-cell and cell-extracellular matrix interactions. They play essential roles in cell signaling and the regulation of cellular shape, motility, and the cell cycle. Here, the transmembrane and cytoplasmic (TMC) domains of integrin α1 and β1 were over-expressed and purified in detergent micelles. The structure and backbone relaxations of α1-TMC in LDAO micelles were determined and analyzed using solution NMR. A long helix, extending from the transmembrane region to the cytoplasmic tail, was observed in α1-TMC. Structural comparisons of α1-TMC with reported αIIb-TMC domains indicated different conformations in the transmembrane regions and cytoplasmic tails. An NMR titration experiment indicated weak interactions between α1-TMC and β1-TMC through several α1-TMC residues located at its N-terminal juxta-transmembrane region and C-terminal extended helix region. PMID:23646163

  11. Helix Capping in RNA Structure

    PubMed Central

    Lee, Jung C.; Gutell, Robin R.

    2014-01-01

    Helices are an essential element in defining the three-dimensional architecture of structured RNAs. While internal basepairs in a canonical helix stack on both sides, the ends of the helix stack on only one side and are exposed to the loop side, thus susceptible to fraying unless they are protected. While coaxial stacking has long been known to stabilize helix ends by directly stacking two canonical helices coaxially, based on analysis of helix-loop junctions in RNA crystal structures, herein we describe helix capping, topological stacking of a helix end with a basepair or an unpaired nucleotide from the loop side, which in turn protects helix ends. Beyond the topological protection of helix ends against fraying, helix capping should confer greater stability onto the resulting composite helices. Our analysis also reveals that this general motif is associated with the formation of tertiary structure interactions. Greater knowledge about the dynamics at the helix-junctions in the secondary structure should enhance the prediction of RNA secondary structure with a richer set of energetic rules and help better understand the folding of a secondary structure into its three-dimensional structure. These together suggest that helix capping likely play a fundamental role in driving RNA folding. PMID:24691270

  12. Combined approaches of EPR and NMR illustrate only one transmembrane helix in the human IFITM3

    PubMed Central

    Ling, Shenglong; Zhang, Chengwei; Wang, Wei; Cai, Xiaoying; Yu, Lu; Wu, Fangming; Zhang, Longhua; Tian, Changlin

    2016-01-01

    Interferon-inducible transmembrane protein IFITM3 was known to restrict the entry of a wide spectrum of viruses to the cytosol of the host. The mechanism used by the protein to restrict viral entry is unclear given the unavailability of the membrane topology and structures of the IFITM family proteins. Systematic site-directed spin labeling (SDSL) and electron paramagnetic resonance (EPR) studies of IFITM3 in detergent micelles identified a single, long transmembrane helix in the C-terminus and an intramembrane segment in the N-terminal hydrophobic region. Solution NMR studies of the same sample verified the secondary structure distribution and demonstrated two rigid regions interacting with the micellar surface. The resulting membrane topology of IFITM3 supports the mechanism of an enhanced restricted membrane hemi-fusion. PMID:27046158

  13. Use of Molecular Dynamics Data in Biochemistry Courses: An Amphipathy Scale to Determine Protein [alpha]-Helix Transmembrane Segments

    ERIC Educational Resources Information Center

    Mazze, Fernanda M.; Fuzo, Carlos A.; Degreve, Leo; Ciancaglini, Pietro

    2008-01-01

    The aim of this manuscript is to explain the application of an amphipathy scale obtained from molecular dynamics simulations and to demonstrate how it can be useful in the protein structure field. It is shown that this scale is easy to be used with the advantage of revealing domains of transmembrane [alpha]-helix of proteins without the need of…

  14. PSOFuzzySVM-TMH: identification of transmembrane helix segments using ensemble feature space by incorporated fuzzy support vector machine.

    PubMed

    Hayat, Maqsood; Tahir, Muhammad

    2015-08-01

    Membrane protein is a central component of the cell that manages intra and extracellular processes. Membrane proteins execute a diversity of functions that are vital for the survival of organisms. The topology of transmembrane proteins describes the number of transmembrane (TM) helix segments and its orientation. However, owing to the lack of its recognized structures, the identification of TM helix and its topology through experimental methods is laborious with low throughput. In order to identify TM helix segments reliably, accurately, and effectively from topogenic sequences, we propose the PSOFuzzySVM-TMH model. In this model, evolutionary based information position specific scoring matrix and discrete based information 6-letter exchange group are used to formulate transmembrane protein sequences. The noisy and extraneous attributes are eradicated using an optimization selection technique, particle swarm optimization, from both feature spaces. Finally, the selected feature spaces are combined in order to form ensemble feature space. Fuzzy-support vector Machine is utilized as a classification algorithm. Two benchmark datasets, including low and high resolution datasets, are used. At various levels, the performance of the PSOFuzzySVM-TMH model is assessed through 10-fold cross validation test. The empirical results reveal that the proposed framework PSOFuzzySVM-TMH outperforms in terms of classification performance in the examined datasets. It is ascertained that the proposed model might be a useful and high throughput tool for academia and research community for further structure and functional studies on transmembrane proteins. PMID:26054033

  15. Fluorophores, environments and quantification techniques in the analysis of transmembrane helix interaction using FRET

    PubMed Central

    Khadria, Ambalika S.; Senes, Alessandro

    2015-01-01

    FRET has been widely used as a spectroscopic tool in vitro to study the interactions between transmembrane helices in detergent and lipid environments. This technique has been instrumental to many studies that have greatly contributed to quantitative understanding of the physical principles that govern helix-helix interaction in the membrane. These studies have also improved our understanding of the biological role of oligomerization in membrane proteins. In this review, we focus on the combinations of fluorophores used, the membrane mimetic environments and measurement techniques that have been applied to study model systems as well as biological oligomeric complexes in vitro. We highlight the different formalisms used to calculate FRET efficiency, and the challenges associated with accurate quantification. The goal is to provide the reader with a comparative summary of the relevant literature for planning and designing FRET experiments aimed at measuring transmembrane helix-helix association. PMID:25968159

  16. Measuring Transmembrane Helix Interaction Strengths in Lipid Bilayers Using Steric Trapping

    PubMed Central

    Hong, Heedeok; Chang, Yu-Chu; Bowie, James U.

    2016-01-01

    We have developed a method to measure strong transmembrane (TM) helix interaction affinities in lipid bilayers that are difficult to measure by traditional dilution methods. The method, called steric trapping, couples dissociation of biotinylated TM helices to a competitive binding by monovalent streptavidin (mSA), so that dissociation is driven by the affinity of mSA for biotin and mSA concentration. By adjusting the binding affinity of mSA through mutation, the method can obtain dissociation constants of TM helix dimers (Kd,dimer) over a range of six orders of magnitudes. The Kd,dimer limit of measurable target interaction is extended 3–4 orders of magnitude lower than possible by dilution methods. Thus, steric trapping opens up new opportunities to study the folding and assembly of α-helical membrane proteins in lipid bilayer environments. Here we provide detailed methods for applying steric trapping to a TM helix dimer. PMID:23975771

  17. Dependence of AT1 angiotensin receptor function on adjacent asparagine residues in the seventh transmembrane helix.

    PubMed

    Hunyady, L; Ji, H; Jagadeesh, G; Zhang, M; Gáborik, Z; Mihalik, B; Catt, K J

    1998-08-01

    For several G protein-coupled receptors, amino acids in the seventh transmembrane helix have been implicated in ligand binding and receptor activation. The function of this region in the AT1 angiotensin receptor was further investigated by mutation of two conserved polar residues (Asn294 and Asn295) and the adjacent Phe293 residue. Analysis of the properties of the mutant receptors expressed in COS-7 cells revealed that alanine replacement of Phe293 had no major effect on AT1 receptor function. Substitution of the adjacent Asn294 residue with alanine (N294A) reduced receptor binding affinities for angiotensin II, two nonpeptide agonists (L-162,313 and L-163,491), and the AT1-selective nonpeptide antagonist losartan but not that for the peptide antagonist [Sar1, Ile8]angiotensin II. The N294A receptor also showed impaired G protein coupling and severely attenuated inositol phosphate generation. In contrast, alanine replacement of Asn295 decreased receptor binding affinities for all angiotensin II ligands but did not impair signal transduction. Additional substitutions of Asn295 with a variety of amino acids did not identify specific structural elements for ligand binding. These findings indicate that Asn295 is required for the integrity of the intramembrane binding pocket of the AT1a receptor but is not essential for signal generation. They also demonstrate the importance of transmembrane helices in the formation of the binding site for nonpeptide AT1 receptor agonists. We conclude that the Asn294 residue of the AT1 receptor is an essential determinant of receptor activation and that the adjacent Asn295 residue is required for normal ligand binding.

  18. Quantification of structural distortions in the transmembrane helices of GPCRs.

    PubMed

    Deupi, Xavier

    2012-01-01

    A substantial part of the structural and much of the functional information about G protein-coupled receptors (GPCRs) comes from studies on rhodopsin. Thus, analysis tools for detailed structure comparison are key to see to what extent this information can be extended to other GPCRs. Among the methods to evaluate protein structures and, in particular, helix distortions, HELANAL has the advantage that it provides data (local bend and twist angles) that can be easily translated to structural effects, as a local opening/tightening of the helix.In this work I show how HELANAL can be used to extract detailed structural information of the transmembrane bundle of GPCRs, and I provide some examples on how these data can be interpreted to study basic principles of protein structure, to compare homologous proteins and to study mechanisms of receptor activation. Also, I show how in combination with the sequence analysis tools provided by the program GMoS, distortions in individual receptors can be put in the context of the whole Class A GPCR family. Specifically, quantification of the strong proline-induced distortions in the transmembrane bundle of rhodopsin shows that they are not standard proline kinks. Moreover, the helix distortions in transmembrane helix (TMH) 5 and TMH 6 of rhodopsin are also present in the rest of GPCR crystal structures obtained so far, and thus, rhodopsin-based homology models have modeled correctly these strongly distorted helices. While in some cases the inherent "rhodopsin bias" of many of the GPCR models to date has not been a disadvantage, the availability of more templates will clearly result in better homology models. This type of analysis can be, of course, applied to any protein, and it may be particularly useful for the structural analysis of other membrane proteins. A detailed knowledge of the local structural changes related to ligand binding and how they are translated into larger-scale movements of transmembrane domains is key to

  19. Prediction of three-dimensional transmembrane helical protein structures

    NASA Astrophysics Data System (ADS)

    Barth, Patrick

    Membrane proteins are critical to living cells and their dysfunction can lead to serious diseases. High-resolution structures of these proteins would provide very valuable information for designing eficient therapies but membrane protein crystallization is a major bottleneck. As an important alternative approach, methods for predicting membrane protein structures have been developed in recent years. This chapter focuses on the problem of modeling the structure of transmembrane helical proteins, and describes recent advancements, current limitations, and future challenges facing de novo modeling, modeling with experimental constraints, and high-resolution comparative modeling of these proteins. Abbreviations: MP, membrane protein; SP, water-soluble protein; RMSD, root-mean square deviation; Cα RMSD, root-mean square deviation over Cα atoms; TM, transmembrane; TMH, transmembrane helix; GPCR, G protein-coupled receptor; 3D, three dimensional; NMR, nuclear magnetic resonance spectroscopy; EPR, electron paramagnetic resonance spectroscopy; FTIR, Fourier transform infrared spectroscopy.

  20. A helix-to-coil transition at the ε-cut site in the transmembrane dimer of the amyloid precursor protein is required for proteolysis

    PubMed Central

    Sato, Takeshi; Tang, Tzu-chun; Reubins, Gabriella; Fei, Jeffrey Z.; Fujimoto, Taiki; Kienlen-Campard, Pascal; Constantinescu, Stefan N.; Octave, Jean-Noel; Aimoto, Saburo; Smith, Steven O.

    2009-01-01

    Processing of amyloid precursor protein (APP) by γ-secretase is the last step in the formation of the Aβ peptides associated Alzheimer's disease. Solid-state NMR spectroscopy is used to establish the structural features of the transmembrane (TM) and juxtamembrane (JM) domains of APP that facilitate proteolysis. Using peptides corresponding to the APP TM and JM regions (residues 618–660), we show that the TM domain forms an α-helical homodimer mediated by consecutive GxxxG motifs. We find that the APP TM helix is disrupted at the intracellular membrane boundary near the ε-cleavage site. This helix-to-coil transition is required for γ-secretase processing; mutations that extend the TM α-helix inhibit ε cleavage, leading to a low production of Aβ peptides and an accumulation of the α- and β-C-terminal fragments. Our data support a progressive cleavage mechanism for APP proteolysis that depends on the helix-to-coil transition at the TM-JM boundary and unraveling of the TM α-helix. PMID:19164538

  1. Structural and dynamic study of the transmembrane domain of the amyloid precursor protein.

    PubMed

    Nadezhdin, K D; Bocharova, O V; Bocharov, E V; Arseniev, A S

    2011-01-01

    Alzheimer's disease affects people all over the world, regardless of nationality, gender or social status. An adequate study of the disease requires essential understanding of the molecular fundamentals of the pathogenesis. The amyloid β-peptide, which forms amyloid plaques in the brain of people with Alzheimer's disease, is the product of sequential cleavage of a single-span membrane amyloid precursor protein (APP). More than half of the APP mutations found to be associated with familial forms of Alzheimer's disease are located in its transmembrane domain. The pathogenic mutations presumably affect the structural-dynamic properties of the APP transmembrane domain by changing its conformational stability and/or lateral dimerization. In the present study, the structure and dynamics of the recombinant peptide corresponding to the APP fragment, Gln686-Lys726, which comprises the APP transmembrane domain with an adjacent N-terminal juxtamembrane sequence, were determined in the membrane mimetic environment composed of detergent micelles using NMR spectroscopy. The structure obtained in dodecylphosphocholine micelles consists of two α-helices: a short surface-associated juxtamembrane helix (Lys687-Asp694) and a long transmembrane helix (Gly700-Leu723), both connected via a mobile loop region. A minor bend of the transmembrane α-helix is observed near the paired residues Gly708-Gly709. A cholesterol-binding hydrophobic cavity is apparently formed under the loop region, where the juxtamembrane α-helix comes into contact with the membrane surface near the N-terminus of the transmembrane α-helix. PMID:22649674

  2. The Gramicidin A Transmembrane Channel: A Proposed π(L,D) Helix

    PubMed Central

    Urry, D. W.

    1971-01-01

    A lipophilic, left-handed helical structure is proposed for gramicidin A in which the C-O bonds alternately point toward the amino and carboxyl ends; it is a hybrid of the 4.314 and 4.416 helices. The C-O groups pointing toward the carboxyl end form part of 16-membered hydrogen-bonded rings, whereas the C-O moieties pointing toward the amino end form 14-membered hydrogenbonded rings. The proposed structure is based on conformational analysis combined with requirements for the gramicidin A transmembrane channel. Two helices combine to form the channel. The alternating C-O directions allow hydrogen-bonded dimerization by the unique possibilities of head-to-head and tail-to-tail attachment. The formyl group at the amino end allows for a favorable head-to-head attachment with no loss of structural continuity. Unpublished studies. by M. C. Goodall on the lipid bilayer conductance of deformyl gramicidin A strongly argue for head-to-head attachment. Such hydrogen-bonded association is not possible with previously described helices, as the C-O groups all point in the same direction. In relation to possible π(L,D) helices in mammalian systems, it should be noted that glycines would fill the role of D residues. The conformation can undergo ion-induced relaxations, which provide approximate tetrahedral coordination for the ion, with facile shifting of coordinations. The ready exchange of coordinations provides the mechanism for movement of the ion along the channel. Conceivably, such transmembrane channels could have application as models for ion transport across biological membranes—an application which may be as great as, or greater than, that of carriers such as valinomycin and nonactin. Specifically, biogenic amines and drugs containing aromatic groups could control access to the channel by interactions with the two tryptophan residues at the ethanolamine end and with the negative region provided by the three oxygens. Images PMID:5276779

  3. Transmembrane helix prediction using amino acid property features and latent semantic analysis

    PubMed Central

    Ganapathiraju, Madhavi; Balakrishnan, N; Reddy, Raj; Klein-Seetharaman, Judith

    2008-01-01

    Background Prediction of transmembrane (TM) helices by statistical methods suffers from lack of sufficient training data. Current best methods use hundreds or even thousands of free parameters in their models which are tuned to fit the little data available for training. Further, they are often restricted to the generally accepted topology "cytoplasmic-transmembrane-extracellular" and cannot adapt to membrane proteins that do not conform to this topology. Recent crystal structures of channel proteins have revealed novel architectures showing that the above topology may not be as universal as previously believed. Thus, there is a need for methods that can better predict TM helices even in novel topologies and families. Results Here, we describe a new method "TMpro" to predict TM helices with high accuracy. To avoid overfitting to existing topologies, we have collapsed cytoplasmic and extracellular labels to a single state, non-TM. TMpro is a binary classifier which predicts TM or non-TM using multiple amino acid properties (charge, polarity, aromaticity, size and electronic properties) as features. The features are extracted from sequence information by applying the framework used for latent semantic analysis of text documents and are input to neural networks that learn the distinction between TM and non-TM segments. The model uses only 25 free parameters. In benchmark analysis TMpro achieves 95% segment F-score corresponding to 50% reduction in error rate compared to the best methods not requiring an evolutionary profile of a protein to be known. Performance is also improved when applied to more recent and larger high resolution datasets PDBTM and MPtopo. TMpro predictions in membrane proteins with unusual or disputed TM structure (K+ channel, aquaporin and HIV envelope glycoprotein) are discussed. Conclusion TMpro uses very few free parameters in modeling TM segments as opposed to the very large number of free parameters used in state-of-the-art membrane

  4. Automated method for modeling seven-helix transmembrane receptors from experimental data.

    PubMed Central

    Herzyk, P; Hubbard, R E

    1995-01-01

    A rule-based automated method is presented for modeling the structures of the seven transmembrane helices of G-protein-coupled receptors. The structures are generated by using a simulated annealing Monte Carlo procedure that positions and orients rigid helices to satisfy structural restraints. The restraints are derived from analysis of experimental information from biophysical studies on native and mutant proteins, from analysis of the sequences of related proteins, and from theoretical considerations of protein structure. Calculations are presented for two systems. The method was validated through calculations using appropriate experimental information for bacteriorhodopsin, which produced a model structure with a root mean square (rms) deviation of 1.87 A from the structure determined by electron microscopy. Calculations are also presented using experimental and theoretical information available for bovine rhodopsin to assign the helices to a projection density map and to produce a model of bovine rhodopsin that can be used as a template for modeling other G-protein-coupled receptors. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 8 FIGURE 11 PMID:8599649

  5. Polar Residues in Transmembrane Helices can Decrease Electrophoretic Mobility in Polyacrylamide Gels Without Causing Helix Dimerization

    PubMed Central

    Walkenhorst, William F.; Merzlyakov, Mikhail; Hristova, Kalina; Wimley, William C.

    2010-01-01

    There are only a few available methods to study lateral interactions and self assembly of transmembrane helices. One of the most frequently used methods is sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) which can report on strong interactions between peptides in SDS solution. Here we offer a cautionary tale about studying the folding and assembly of membrane proteins using peptides and SDS-PAGE experiments as membrane mimetic systems. At least for the specific peptide and detergent systems studied here, we show that a polar asparagine residue in the 12th position of an otherwise hydrophobic helical segment of 20 amino acids causes a peptide to migrate on SDS-PAGE gels with an apparent molecular weight that is twice its true molecular weight, suggesting dimerization. However when examined carefully in SDS solutions and in situ in the polyacrylamide gel itself using Forster resonance energy transfer no interaction can be detected. Instead we show evidence suggesting that differential interactions between peptide and detergent drive the differences in electrophoretic mobility without any interaction between peptides. These results emphasize the need to apply multiple independent techniques to the study of membrane protein folding, and they highlight the usefulness of studying folding and structure of membrane proteins in lipid membranes rather than in detergents. PMID:19265670

  6. Structural classification and prediction of reentrant regions in alpha-helical transmembrane proteins: application to complete genomes.

    PubMed

    Viklund, Håkan; Granseth, Erik; Elofsson, Arne

    2006-08-18

    Alongside the well-studied membrane spanning helices, alpha-helical transmembrane (TM) proteins contain several functionally and structurally important types of substructures. Here, existing 3D structures of transmembrane proteins have been used to define and study the concept of reentrant regions, i.e. membrane penetrating regions that enter and exit the membrane on the same side. We find that these regions can be divided into three distinct categories based on secondary structure motifs, namely long regions with a helix-coil-helix motif, regions of medium length with the structure helix-coil or coil-helix and regions of short to medium length consisting entirely of irregular secondary structure. The residues situated in reentrant regions are significantly smaller on average compared to other regions and reentrant regions can be detected in the inter-transmembrane loops with an accuracy of approximately 70% based on their amino acid composition. Using TOP-MOD, a novel method for predicting reentrant regions, we have scanned the genomes of Escherichia coli, Saccharomyces cerevisiae and Homo sapiens. The results suggest that more than 10% of transmembrane proteins contain reentrant regions and that the occurrence of reentrant regions increases linearly with the number of transmembrane regions. Reentrant regions seem to be most commonly found in channel proteins and least commonly in signal receptors.

  7. pH-Dependent Tetramerization and Amantadine Binding of the Transmembrane Helix of M2 from the Influenza A Virus†

    PubMed Central

    Salom, David; Hill, Blake R.; Lear, James D.

    2011-01-01

    The M2 proton channel from the influenza A virus is a small protein with a single transmembrane helix that associates to form a tetramer in vivo. This protein forms proton-selective ion channels, which are the target of the drug amantadine. Here, we propose a mechanism for the pH-dependent association, and amantadine binding of M2, based on studies of a peptide representing the M2 transmembrane segment in dodecylphosphocholine micelles. Using analytical ultracentrifugation, we find that the sedimentation curves for the peptide depend on its concentration in the micellar phase. The data are well-described by a monomer–tetramer equilibrium, and the binding of amantadine shifts the monomer–tetramer equilibrium toward tetrameric species. Both tetramerization and the binding of amantadine lead to increases in the magnitude of the ellipticity at 223 nm in the circular dichroism spectrum of the peptide. The tetramerization and binding of amantadine are more favorable at elevated pH, with a pKa that is assigned to a His side chain, the only ionizable residue within the transmembrane helix. Our results, interpreted quantitatively in terms of a reversible monomer and tetramer protonation equilibrium model, suggest that amantadine competes with protons for binding to the deprotonated tetramer, thereby stabilizing the tetramer in a slightly altered conformation. This model accounts for the observed inhibition of proton flux by amantadine. Additionally, our measurements suggest that the M2 tetramer is substantially protonated at neutral pH and that both singly and doubly protonated states could be involved in M2’s proton conduction at more acidic pHs. PMID:11087364

  8. The Transmembrane Helix Tilt May Be Determined by the Balance between Precession Entropy and Lipid Perturbation

    PubMed Central

    2012-01-01

    Hydrophobic helical peptides interact with lipid bilayers in various modes, determined by the match between the length of the helix’s hydrophobic core and the thickness of the hydrocarbon region of the bilayer. For example, long helices may tilt with respect to the membrane normal to bury their hydrophobic cores in the membrane, and the lipid bilayer may stretch to match the helix length. Recent molecular dynamics simulations and potential of mean force calculations have shown that some TM helices whose lengths are equal to, or even shorter than, the bilayer thickness may also tilt. The tilt is driven by a gain in the helix precession entropy, which compensates for the free energy penalty resulting from membrane deformation. Using this free energy balance, we derived theoretically an equation of state, describing the dependence of the tilt on the helix length and membrane thickness. To this end, we conducted coarse-grained Monte Carlo simulations of the interaction of helices of various lengths with lipid bilayers of various thicknesses, reproducing and expanding the previous molecular dynamics simulations. Insight from the simulations facilitated the derivation of the theoretical model. The tilt angles calculated using the theoretical model agree well with our simulations and with previous calculations and measurements. PMID:24932138

  9. Transmembrane beta-barrel protein structure prediction

    NASA Astrophysics Data System (ADS)

    Randall, Arlo; Baldi, Pierre

    Transmembrane β-barrel (TMB) proteins are embedded in the outer membranes of mitochondria, Gram-negative bacteria, and chloroplasts. These proteins perform critical functions, including active ion-transport and passive nutrient intake. Therefore, there is a need for accurate prediction of secondary and tertiary structures of TMB proteins. A variety of methods have been developed for predicting the secondary structure and these predictions are very useful for constructing a coarse topology of TMB structure; however, they do not provide enough information to construct a low-resolution tertiary structure for a TMB protein. In addition, while the overall structural architecture is well conserved among TMB proteins, the amino acid sequences are highly divergent. Thus, traditional homology modeling methods cannot be applied to many putative TMB proteins. Here, we describe the TMBpro: a pipeline of methods for predicting TMB secondary structure, β-residue contacts, and finally tertiary structure. The tertiary prediction method relies on the specific construction rules that TMB proteins adhere to and on the predicted β-residue contacts to dramatically reduce the search space for the model building procedure.

  10. Order Parameters of a Transmembrane Helix in a Fluid Bilayer: Case Study of a WALP Peptide

    PubMed Central

    Holt, Andrea; Rougier, Léa; Réat, Valérie; Jolibois, Franck; Saurel, Olivier; Czaplicki, Jerzy; Killian, J. Antoinette; Milon, Alain

    2010-01-01

    Abstract A new solid-state NMR-based strategy is established for the precise and efficient analysis of orientation and dynamics of transmembrane peptides in fluid bilayers. For this purpose, several dynamically averaged anisotropic constraints, including 13C and 15N chemical shift anisotropies and 13C-15N dipolar couplings, were determined from two different triple-isotope-labeled WALP23 peptides (2H, 13C, and 15N) and combined with previously published quadrupolar splittings of the same peptide. Chemical shift anisotropy tensor orientations were determined with quantum chemistry. The complete set of experimental constraints was analyzed using a generalized, four-parameter dynamic model of the peptide motion, including tilt and rotation angle and two associated order parameters. A tilt angle of 21° was determined for WALP23 in dimyristoylphosphatidylcholine, which is much larger than the tilt angle of 5.5° previously determined from 2H NMR experiments. This approach provided a realistic value for the tilt angle of WALP23 peptide in the presence of hydrophobic mismatch, and can be applied to any transmembrane helical peptide. The influence of the experimental data set on the solution space is discussed, as are potential sources of error. PMID:20441750

  11. Analysis of transmembrane helix integration in the endoplasmic reticulum in S. cerevisiae.

    PubMed

    Hessa, Tara; Reithinger, Johannes H; von Heijne, Gunnar; Kim, Hyun

    2009-03-13

    What sequence features in integral membrane proteins determine which parts of the polypeptide chain will form transmembrane alpha-helices and which parts will be located outside the lipid bilayer? Previous studies on the integration of model transmembrane segments into the mammalian endoplasmic reticulum (ER) have provided a rather detailed quantitative picture of the relation between amino acid sequence and membrane-integration propensity for proteins targeted to the Sec61 translocon. We have now carried out a comparative study of the integration of N out-C in-orientated 19-residue-long polypeptide segments into the ER of the yeast Saccharomyces cerevisiae. We find that the 'threshold hydrophobicity' required for insertion into the ER membrane is very similar in S. cerevisiae and in mammalian cells. Further, when comparing the contributions to the apparent free energy of membrane insertion of the 20 natural amino acids between the S. cerevisiae and the mammalian ER, we find that the two scales are strongly correlated but that the absolute difference between the most hydrophobic and most hydrophilic residues is approximately 2-fold smaller in S. cerevisiae.

  12. Structure of FGFR3 transmembrane domain dimer: implications for signaling and human pathologies.

    PubMed

    Bocharov, Eduard V; Lesovoy, Dmitry M; Goncharuk, Sergey A; Goncharuk, Marina V; Hristova, Kalina; Arseniev, Alexander S

    2013-11-01

    Fibroblast growth factor receptor 3 (FGFR3) transduces biochemical signals via lateral dimerization in the plasma membrane, and plays an important role in human development and disease. Eight different pathogenic mutations, implicated in cancers and growth disorders, have been identified in the FGFR3 transmembrane segment. Here, we describe the dimerization of the FGFR3 transmembrane domain in membrane-mimicking DPC/SDS (9/1) micelles. In the solved NMR structure, the two transmembrane helices pack into a symmetric left-handed dimer, with intermolecular stacking interactions occurring in the dimer central region. Some pathogenic mutations fall within the helix-helix interface, whereas others are located within a putative alternative interface. This implies that although the observed dimer structure is important for FGFR3 signaling, the mechanism of FGFR3-mediated transduction across the membrane is complex. We propose an FGFR3 signaling mechanism that is based on the solved structure, available structures of isolated soluble FGFR domains, and published biochemical and biophysical data.

  13. A helix-turn-helix structure unit in human centromere protein B (CENP-B).

    PubMed Central

    Iwahara, J; Kigawa, T; Kitagawa, K; Masumoto, H; Okazaki, T; Yokoyama, S

    1998-01-01

    CENP-B has been suggested to organize arrays of centromere satellite DNA into a higher order structure which then directs centromere formation and kinetochore assembly in mammalian chromosomes. The N-terminal portion of CENP-B is a 15 kDa DNA binding domain (DBD) consisting of two repeating units, RP1 and RP2. The DBD specifically binds to the CENP-B box sequence (17 bp) in centromere DNA. We determined the solution structure of human CENP-B DBD RP1 by multi-dimensional 1H, 13C and 15N NMR methods. The CENP-B DBD RP1 structure consists of four helices and has a helix-turn-helix structure. The overall folding is similar to those of some other eukaryotic DBDs, although significant sequence homology with these proteins was not found. The DBD of yeast RAP1, a telomere binding protein, is most similar to CENP-B DBD RP1. We studied the interaction between CENP-B DBD RP1 and the CENP-B box by the use of NMR chemical shift perturbation. The results suggest that CENP-B DBD RP1 interacts with one of the essential regions of the CENP-B box DNA, mainly at the N-terminal basic region, the N-terminal portion of helix 2 and helix 3. PMID:9451007

  14. All-Atom Structural Models of the Transmembrane Domains of Insulin and Type 1 Insulin-Like Growth Factor Receptors

    PubMed Central

    Mohammadiarani, Hossein; Vashisth, Harish

    2016-01-01

    The receptor tyrosine kinase superfamily comprises many cell-surface receptors including the insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF1R) that are constitutively homodimeric transmembrane glycoproteins. Therefore, these receptors require ligand-triggered domain rearrangements rather than receptor dimerization for activation. Specifically, binding of peptide ligands to receptor ectodomains transduces signals across the transmembrane domains for trans-autophosphorylation in cytoplasmic kinase domains. The molecular details of these processes are poorly understood in part due to the absence of structures of full-length receptors. Using MD simulations and enhanced conformational sampling algorithms, we present all-atom structural models of peptides containing 51 residues from the transmembrane and juxtamembrane regions of IR and IGF1R. In our models, the transmembrane regions of both receptors adopt helical conformations with kinks at Pro961 (IR) and Pro941 (IGF1R), but the C-terminal residues corresponding to the juxtamembrane region of each receptor adopt unfolded and flexible conformations in IR as opposed to a helix in IGF1R. We also observe that the N-terminal residues in IR form a kinked-helix sitting at the membrane–solvent interface, while homologous residues in IGF1R are unfolded and flexible. These conformational differences result in a larger tilt-angle of the membrane-embedded helix in IGF1R in comparison to IR to compensate for interactions with water molecules at the membrane–solvent interfaces. Our metastable/stable states for the transmembrane domain of IR, observed in a lipid bilayer, are consistent with a known NMR structure of this domain determined in detergent micelles, and similar states in IGF1R are consistent with a previously reported model of the dimerized transmembrane domains of IGF1R. Our all-atom structural models suggest potentially unique structural organization of kinase domains in each receptor. PMID

  15. Predictions of Tertiary Structures of α-Helical Membrane Proteins by Replica-Exchange Method with Consideration of Helix Deformations

    NASA Astrophysics Data System (ADS)

    Urano, Ryo; Kokubo, Hironori; Okamoto, Yuko

    2015-08-01

    We propose an improved prediction method of the tertiary structures of α-helical membrane proteins based on the replica-exchange method by taking into account helix deformations. Our method has wide applications because transmembrane helices of native membrane proteins are often distorted. In order to test the effectiveness of the present method, we applied it to the structure predictions of glycophorin A and phospholamban. The results were in good agreement with experiments.

  16. The M4 Transmembrane α-Helix Contributes Differently to Both the Maturation and Function of Two Prokaryotic Pentameric Ligand-gated Ion Channels.

    PubMed

    Hénault, Camille M; Juranka, Peter F; Baenziger, John E

    2015-10-01

    The role of the outermost transmembrane α-helix in both the maturation and function of the prokaryotic pentameric ligand-gated ion channels, GLIC and ELIC, was examined by Ala scanning mutagenesis, deletion mutations, and mutant cycle analyses. Ala mutations at the M4-M1/M3 interface lead to loss-of-function phenotypes in GLIC, with the largest negative effects occurring near the M4 C terminus. In particular, two aromatic residues at the M4 C terminus form a network of π-π and/or cation-π interactions with residues on M3 and the β6-β7 loop that is essential for both maturation and function. M4-M1/M3 interactions appear to be optimized in GLIC with even subtle structural changes at this interface leading to detrimental effects. In contrast, mutations along the M4-M1/M3 interface of ELIC typically lead to gain-of-function phenotypes, suggesting that these interactions in ELIC are not optimized for channel function. In addition, no cluster of interacting residues involving the M4 C terminus, M3, and the β6-β7 loop was found, suggesting that the M4 C terminus plays little role in ELIC maturation or function. This study shows that M4 makes distinct contributions to the maturation and gating of these two closely related homologs, suggesting that GLIC and ELIC exhibit divergent features of channel function.

  17. Structure, stability and folding of the alpha-helix.

    PubMed

    Doig, A J; Andrew, C D; Cochran, D A; Hughes, E; Penel, S; Sun, J K; Stapley, B J; Clarke, D T; Jones, G R

    2001-01-01

    Pauling first described the alpha-helix nearly 50 years ago, yet new features of its structure continue to be discovered, using peptide model systems, site-directed mutagenesis, advances in theory, the expansion of the Protein Data Bank and new experimental techniques. Helical peptides in solution form a vast number of structures, including fully helical, fully coiled and partly helical. To interpret peptide results quantitatively it is essential to use a helix/coil model that includes the stabilities of all these conformations. Our models now include terms for helix interiors, capping, side-chain interactions, N-termini and 3(10)-helices. The first three amino acids in a helix (N1, N2 and N3) and the preceding N-cap are unique, as their amide NH groups do not participate in backbone hydrogen bonding. We surveyed their structures in proteins and measured their amino acid preferences. The results are predominantly rationalized by hydrogen bonding to the free NH groups. Stabilizing side-chain-side-chain energies, including hydrophobic interactions, hydrogen bonding and polar/non-polar interactions, were measured accurately in helical peptides. Helices in proteins show a preference for having approximately an integral number of turns so that their N- and C-caps lie on the same side. There are also strong periodic trends in the likelihood of terminating a helix with a Schellman or alpha L C-cap motif. The kinetics of alpha-helix folding have been studied with stopped-flow deep ultraviolet circular dichroism using synchrotron radiation as the light source; this gives a far superior signal-to-noise ratio than a conventional instrument. We find that poly(Glu), poly(Lys) and alanine-based peptides fold in milliseconds, with longer peptides showing a transient overshoot in helix content.

  18. Ring Substituents on Substituted Benzamide Ligands Indirectly Mediate Interactions with Position 7.39 of Transmembrane Helix 7 of the D4 Dopamine Receptor

    PubMed Central

    Ericksen, Spencer S.; Cummings, David F.; Teer, Michael E.; Amdani, Shahnawaz

    2012-01-01

    In an effort to delineate how specific molecular interactions of dopamine receptor ligand classes vary between D2-like dopamine receptor subtypes, a conserved threonine in transmembrane (TM) helix 7 (Thr7.39), implicated as a key ligand interaction site with biogenic amine G protein-coupled receptors, was substituted with alanine in D2 and D4 receptors. Interrogation of different ligand chemotypes for sensitivity to this substitution revealed enhanced affinity in the D4, but not the D2 receptor, specifically for substituted benzamides (SBAs) having polar 4- (para) and/or 5- (meta) benzamide ring substituents. D4-T7.39A was fully functional, and the mutation did not alter the sodium-mediated positive and negative allostery observed with SBAs and agonists, respectively. With the exception of the non-SBA ligand (+)-butaclamol, which, in contrast to certain SBAs, had decreased affinity for the D4-T7.39A mutant, the interactions of numerous other ligands were unaffected by this mutation. SBAs were docked into D4 models in the same mode as observed for eticlopride in the D3 crystal structure. In this mode, interactions with TM5 and TM6 residues constrain the SBA ring position that produces distal steric crowding between pyrrolidinyl/diethylamine moieties and D4-Thr7.39. Ligand-residue interaction energy profiles suggest this crowding is mitigated by substitution with a smaller alanine. The profiles indicate sites that contribute to the SBA binding interaction and site-specific energy changes imparted by the D4-T7.39A mutation. Substantial interaction energy changes are observed at only a few positions, some of which are not conserved among the dopamine receptor subtypes and thus seem to account for this D4 subtype-specific structure-activity relationship. PMID:22588261

  19. Structural and thermodynamic basis of proline-induced transmembrane complex stabilization

    PubMed Central

    Schmidt, Thomas; Situ, Alan J.; Ulmer, Tobias S.

    2016-01-01

    In membrane proteins, proline-mediated helix kinks are indispensable for the tight packing of transmembrane (TM) helices. However, kinks invariably affect numerous interhelical interactions, questioning the acceptance of proline substitutions and evolutionary origin of kinks. Here, we present the structural and thermodynamic basis of proline-induced integrin αIIbβ3 TM complex stabilization to understand the introduction of proline kinks in membrane proteins. In phospholipid bicelles, the A711P substitution in the center of the β3 TM helix changes the direction of adjacent helix segments to form a 35 ± 2° angle and predominantly repacks the segment in the inner membrane leaflet due to a swivel movement. This swivel repacks hydrophobic and electrostatic interhelical contacts within intracellular lipids, resulting in an overall TM complex stabilization of −0.82 ± 0.01 kcal/mol. Thus, proline substitutions can directly stabilize membrane proteins and such substitutions are proposed to follow the structural template of integrin αIIbβ3(A711P). PMID:27436065

  20. Optimizing an emperical scoring function for transmembrane protein structure determination.

    SciTech Connect

    Young, Malin M.; Sale, Kenneth L.; Gray, Genetha Anne; Kolda, Tamara Gibson

    2003-10-01

    We examine the problem of transmembrane protein structure determination. Like many other questions that arise in biological research, this problem cannot be addressed by traditional laboratory experimentation alone. An approach that integrates experiment and computation is required. We investigate a procedure which states the transmembrane protein structure determination problem as a bound constrained optimization problem using a special empirical scoring function, called Bundler, as the objective function. In this paper, we describe the optimization problem and some of its mathematical properties. We compare and contrast results obtained using two different derivative free optimization algorithms.

  1. Structural role of the conserved cysteines in the dimerization of the viral transmembrane oncoprotein E5.

    PubMed

    Windisch, Dirk; Hoffmann, Silke; Afonin, Sergii; Vollmer, Stefanie; Benamira, Soraya; Langer, Birgid; Bürck, Jochen; Muhle-Goll, Claudia; Ulrich, Anne S

    2010-09-22

    The E5 oncoprotein is the major transforming protein of bovine papillomavirus type 1. This 44-residue transmembrane protein can interact with the platelet-derived growth factor receptor β, leading to ligand-independent activation and cell transformation. For productive interaction, E5 needs to dimerize via a C-terminal pair of cysteines, though a recent study suggested that its truncated transmembrane segment can dimerize on its own. To analyze the structure of the full protein in a membrane environment and elucidate the role of the Cys-Ser-Cys motif, we produced recombinantly the wild-type protein and four cysteine mutants. Comparison by circular dichroism in detergent micelles and lipid vesicular dispersion and by NMR in trifluoroethanol demonstrates that the absence of one or both cysteines does not influence the highly α-helical secondary structure, nor does it impair the ability of E5 to dimerize, observations that are further supported by sodium dodecylsulfate polyacrylamide gel electrophoresis. We also observed assemblies of higher order. Oriented circular dichroism in lipid bilayers shows that E5 is aligned as a transmembrane helix with a slight tilt angle, and that this membrane alignment is also independent of any cysteines. We conclude that the Cys-containing motif represents a disordered region of the protein that serves as an extra covalent connection for stabilization.

  2. Evolution of the α-Subunit of Na/K-ATPase from Paramecium to Homo sapiens: Invariance of Transmembrane Helix Topology.

    PubMed

    Morrill, Gene A; Kostellow, Adele B; Liu, Lijun; Gupta, Raj K; Askari, Amir

    2016-05-01

    Na/K-ATPase is a key plasma membrane enzyme involved in cell signaling, volume regulation, and maintenance of electrochemical gradients. The α-subunit, central to these functions, belongs to a large family of P-type ATPases. Differences in transmembrane (TM) helix topology, sequence homology, helix-helix contacts, cell signaling, and protein domains of Na/K-ATPase α-subunit were compared in fungi (Beauveria), unicellular organisms (Paramecia), primitive multicellular organisms (Hydra), and vertebrates (Xenopus, Homo sapiens), and correlated with evolution of physiological functions in the α-subunit. All α-subunits are of similar length, with groupings of four and six helices in the N- and C-terminal regions, respectively. Minimal homology was seen for protein domain patterns in Paramecium and Hydra, with high correlation between Hydra and vertebrates. Paramecium α-subunits display extensive disorder, with minimal helix contacts. Increases in helix contacts in Hydra approached vertebrates. Protein motifs known to be associated with membrane lipid rafts and cell signaling reveal significant positional shifts between Paramecium and Hydra vulgaris, indicating that regional membrane fluidity changes occur during evolution. Putative steroid binding sites overlapping TM-3 occurred in all species. Sites associated with G-protein-receptor stimulation occur both in vertebrates and amphibia but not in Hydra or Paramecia. The C-terminus moiety "KETYY," necessary for the Na(+) activation of pump phosphorylation, is not present in unicellular species indicating the absence of classical Na(+)/K(+)-pumps. The basic protein topology evolved earliest, followed by increases in protein domains and ordered helical arrays, correlated with appearance of α-subunit regions known to involve cell signaling, membrane recycling, and ion channel formation. PMID:26961431

  3. The Atomic Structure of the HIV-1 gp41 Transmembrane Domain and Its Connection to the Immunogenic Membrane-proximal External Region.

    PubMed

    Apellániz, Beatriz; Rujas, Edurne; Serrano, Soraya; Morante, Koldo; Tsumoto, Kouhei; Caaveiro, Jose M M; Jiménez, M Ángeles; Nieva, José L

    2015-05-22

    The membrane-proximal external region (MPER) C-terminal segment and the transmembrane domain (TMD) of gp41 are involved in HIV-1 envelope glycoprotein-mediated fusion and modulation of immune responses during viral infection. However, the atomic structure of this functional region remains unsolved. Here, based on the high resolution NMR data obtained for peptides spanning the C-terminal segment of MPER and the TMD, we report two main findings: (i) the conformational variability of the TMD helix at a membrane-buried position; and (ii) the existence of an uninterrupted α-helix spanning MPER and the N-terminal region of the TMD. Thus, our structural data provide evidence for the bipartite organization of TMD predicted by previous molecular dynamics simulations and functional studies, but they do not support the breaking of the helix at Lys-683, as was suggested by some models to mark the initiation of the TMD anchor. Antibody binding energetics examined with isothermal titration calorimetry and humoral responses elicited in rabbits by peptide-based vaccines further support the relevance of a continuous MPER-TMD helix for immune recognition. We conclude that the transmembrane anchor of HIV-1 envelope is composed of two distinct subdomains: 1) an immunogenic helix at the N terminus also involved in promoting membrane fusion; and 2) an immunosuppressive helix at the C terminus, which might also contribute to the late stages of the fusion process. The unprecedented high resolution structural data reported here may guide future vaccine and inhibitor developments.

  4. Structure of single-wall carbon nanotubes: a graphene helix.

    PubMed

    Lee, Jae-Kap; Lee, Sohyung; Kim, Jin-Gyu; Min, Bong-Ki; Kim, Yong-Il; Lee, Kyung-Il; An, Kay Hyeok; John, Phillip

    2014-08-27

    Evidence is presented in this paper that certain single-wall carbon nanotubes are not seamless tubes, but rather adopt a graphene helix resulting from the spiral growth of a nano-graphene ribbon. The residual traces of the helices are confirmed by high-resolution transmission electron microscopy and atomic force microscopy. The analysis also shows that the tubular graphene material may exhibit a unique armchair structure and the chirality is not a necessary condition for the growth of carbon nanotubes. The description of the structure of the helical carbon nanomaterials is generalized using the plane indices of hexagonal space groups instead of using chiral vectors. It is also proposed that the growth model, via a graphene helix, results in a ubiquitous structure of single-wall carbon nanotubes. PMID:24838196

  5. Natural constraints, folding, motion, and structural stability in transmembrane helical proteins

    NASA Astrophysics Data System (ADS)

    Harrington, Susan E.; Ben-Tal, Nir

    Transmembrane (TM) helical proteins are of fundamental importance in many diverse biological processes. To understand these proteins functionally, it is necessary to characterize the forces that stabilize them. What are these forces (both within the protein itself and between the protein and membrane) and how do they give rise to the multiple conformational states and complex activity of TM helical proteins? How do they act in concert to fold TM helical proteins, create their low-energy stable states, and guide their motion? These central questions have led to the description of critical natural constraints and partial answers, which we will review. We will then describe how these constraints can be tracked through homologs and proteins of similar folds in order to better understand how amino acid sequence can specify structure and guide motion. Our emphasis throughout will be on structural features of TM helix bundles themselves, but we will also sketch the membrane-related aspects of these questions.

  6. Study on structure and assembly of the third transmembrane domain of Slc11a1.

    PubMed

    Xiao, Shuyan; Wang, Yuxia; Yang, Lei; Qi, Haiyan; Wang, Chunyu; Li, Fei

    2010-05-01

    The structure and self-assembly of the peptide corresponding to the third transmembrane domain (TMD3) of Slc11a1 and its E139A mutant are studied in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) aqueous solution by NMR and CD experiments. Slc11a1 is an integral membrane protein with 12 putative TMDs and functions as a pH-coupled divalent metal cation transporter. Glu139 of Slc11a1 is highly conserved within predicted TMD3 of the Slc11 protein family and function-associated. Here, we provide the first direct experimental evidence for the structural features of two 24-residue peptides corresponding to TMD3 of Slc11a1 and its E139A mutant in 60% HFIP-d(2) aqueous solution using CD and NMR spectroscopies. Our study shows that the membrane-spanning peptide folds as a typical amphipathic alpha-helix structure from Ile5 to Met20 with hydrophilic residues Glu12 (Glu139 in Slc11a1) and Asp19 lying on the same side of the helix. The substitution of Glu139 by an alanine residue has little effect on the structure of the peptide, but increases hydrophobicity and facilitates self-assembly of the peptide. Although the wildtype peptide is monomeric in HFIP aqueous solution, the E139A mutant forms a dimer. The increase in hydrophobicity of the membrane-spanning peptide and/or change in the interactions between transmembrane segments induced by E139A mutation may affect the metal ion transport of the protein. PMID:20401926

  7. Tunable Control of Polyproline Helix (PPII) Structure via Aromatic Electronic Effects: An Electronic Switch of Polyproline Helix

    PubMed Central

    2015-01-01

    Aromatic rings exhibit defined interactions via the unique aromatic π face. Aromatic amino acids interact favorably with proline residues via both the hydrophobic effect and aromatic–proline interactions, C−H/π interactions between the aromatic π face and proline ring C–H bonds. The canonical aromatic amino acids Trp, Tyr, and Phe strongly disfavor a polyproline helix (PPII) when they are present in proline-rich sequences because of the large populations of cis amide bonds induced by favorable aromatic–proline interactions (aromatic–cis-proline and proline–cis-proline–aromatic interactions). We demonstrate the ability to tune polyproline helix conformation and cis–trans isomerism in proline-rich sequences using aromatic electronic effects. Electron-rich aromatic residues strongly disfavor polyproline helix and exhibit large populations of cis amide bonds, while electron-poor aromatic residues exhibit small populations of cis amide bonds and favor polyproline helix. 4-Aminophenylalanine is a pH-dependent electronic switch of polyproline helix, with cis amide bonds favored as the electron-donating amine, but trans amide bonds and polyproline helix preferred as the electron-withdrawing ammonium. Peptides with block proline–aromatic PPXPPXPPXPP sequences exhibited electronically switchable pH-dependent structures. Electron-poor aromatic amino acids provide special capabilities to integrate aromatic residues into polyproline helices and to serve as the basis of aromatic electronic switches to change structure. PMID:25075447

  8. Cystic fibrosis transmembrane conductance regulator (ABCC7) structure.

    PubMed

    Hunt, John F; Wang, Chi; Ford, Robert C

    2013-02-01

    Structural studies of the cystic fibrosis transmembrane conductance regulator (CFTR) are reviewed. Like many membrane proteins, full-length CFTR has proven to be difficult to express and purify, hence much of the structural data available is for the more tractable, independently expressed soluble domains. Therefore, this chapter covers structural data for individual CFTR domains in addition to the sparser data available for the full-length protein. To set the context for these studies, we will start by reviewing structural information on model proteins from the ATP-binding cassette (ABC) transporter superfamily, to which CFTR belongs.

  9. Cystic Fibrosis Transmembrane Conductance Regulator (ABCC7) Structure

    PubMed Central

    Hunt, John F.; Wang, Chi; Ford, Robert C.

    2013-01-01

    Structural studies of the cystic fibrosis transmembrane conductance regulator (CFTR) are reviewed. Like many membrane proteins, full-length CFTR has proven to be difficult to express and purify, hence much of the structural data available is for the more tractable, independently expressed soluble domains. Therefore, this chapter covers structural data for individual CFTR domains in addition to the sparser data available for the full-length protein. To set the context for these studies, we will start by reviewing structural information on model proteins from the ATP-binding cassette (ABC) transporter superfamily, to which CFTR belongs. PMID:23378596

  10. Transmembrane signaling in the sensor kinase DcuS of Escherichia coli: A long-range piston-type displacement of transmembrane helix 2

    PubMed Central

    Monzel, Christian; Unden, Gottfried

    2015-01-01

    The C4-dicarboxylate sensor kinase DcuS is membrane integral because of the transmembrane (TM) helices TM1 and TM2. Fumarate-induced movement of the helices was probed in vivo by Cys accessibility scanning at the membrane–water interfaces after activation of DcuS by fumarate at the periplasmic binding site. TM1 was inserted with amino acid residues 21–41 in the membrane in both the fumarate-activated (ON) and inactive (OFF) states. In contrast, TM2 was inserted with residues 181–201 in the OFF state and residues 185–205 in the ON state. Replacement of Trp 185 by an Arg residue caused displacement of TM2 toward the outside of the membrane and a concomitant induction of the ON state. Results from Cys cross-linking of TM2/TM2′ in the DcuS homodimer excluded rotation; thus, data from accessibility changes of TM2 upon activation, either by ligand binding or by mutation of TM2, and cross-linking of TM2 and the connected region in the periplasm suggest a piston-type shift of TM2 by four residues to the periplasm upon activation (or fumarate binding). This mode of function is supported by the suggestion from energetic calculations of two preferred positions for TM2 insertion in the membrane. The shift of TM2 by four residues (or 4–6 Å) toward the periplasm upon activation is complementary to the periplasmic displacement of 3–4 Å of the C-terminal part of the periplasmic ligand-binding domain upon ligand occupancy in the citrate-binding domain in the homologous CitA sensor kinase. PMID:26283365

  11. Helix Bundle Quaternary Structure from [alpha]/[beta]-Peptide Foldamers

    SciTech Connect

    Horne, W. Seth; Price, Joshua L.; Keck, James L.; Gellman, Samuel H.

    2008-11-18

    The function of a protein generally depends on adoption of a specific folding pattern, which in turn is determined by the side chain sequence along the polypeptide backbone. Here we show that the sequence-encoded structural information in peptides derived from yeast transcriptional activator GCN4 can be used to prepare hybrid {alpha}/{beta}-peptide foldamers that adopt helix bundle quaternary structures. Crystal structures of two hybrid {alpha}/{beta}-peptides are reported along with detailed structural comparison to {alpha}-peptides of analogous side chain sequence. There is considerable homology between {alpha}- and {alpha}/{beta}-peptides at the level of helical secondary structure, with modest but significant differences in the association geometry of helices in the quaternary structure.

  12. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore

    NASA Astrophysics Data System (ADS)

    Song, Langzhou; Hobaugh, Michael R.; Shustak, Christopher; Cheley, Stephen; Bayley, Hagan; Gouaux, J. Eric

    1996-12-01

    The structure of the Staphylococcus aureus α-hemolysin pore has been determined to 1.9 overset{circ}{mathrm A} resolution. Contained within the mushroom-shaped homo-oligomeric heptamer is a solvent-filled channel, 100 overset{circ}{mathrm A} in length, that runs along the sevenfold axis and ranges from 14 overset{circ}{mathrm A} to 46 overset{circ}{mathrm A} in diameter. The lytic, transmembrane domain comprises the lower half of a 14-strand antiparallel β barrel, to which each protomer contributes two β strands, each 65 overset{circ}{mathrm A} long. The interior of the β barrel is primarily hydrophilic, and the exterior has a hydrophobic belt 28 overset{circ}{mathrm A} wide. The structure proves the heptameric subunit stoichiometry of the α-hemolysin oligomer, shows that a glycine-rich and solvent-exposed region of a water-soluble protein can self-assemble to form a transmembrane pore of defined structure, and provides insight into the principles of membrane interaction and transport activity of β barrel pore-forming toxins.

  13. Assembly of transmembrane proteins on oil-water interfaces

    NASA Astrophysics Data System (ADS)

    Yunker, Peter; Landry, Corey; Chong, Shaorong; Weitz, David

    2015-03-01

    Transmembrane proteins are difficult to handle by aqueous solution-based biochemical and biophysical approaches, due to the hydrophobicity of transmembrane helices. Detergents can solubilize transmembrane proteins; however, surfactant coated transmembrane proteins are not always functional, and purifying detergent coated proteins in a micellar solution can be difficult. Motivated by this problem, we study the self-assembly of transmembrane proteins on oil-water interfaces. We found that the large water-oil interface of oil drops prevents nascent transmembrane proteins from forming non-functional aggregates. The oil provides a hydrophobic environment for the transmembrane helix, allowing the ectodomain to fold into its natural structure and orientation. Further, modifying the strength or valency of hydrophobic interactions between transmembrane proteins results in the self-assembly of spatially clustered, active proteins on the oil-water interface. Thus, hydrophobic interactions can facilitate, rather than inhibit, the assembly of transmembrane proteins.

  14. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system

    SciTech Connect

    AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide

    2015-11-19

    Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database in which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the

  15. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system

    DOE PAGES

    AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide

    2015-11-19

    Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database inmore » which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the

  16. The Atomic Structure of the HIV-1 gp41 Transmembrane Domain and Its Connection to the Immunogenic Membrane-proximal External Region*♦

    PubMed Central

    Apellániz, Beatriz; Rujas, Edurne; Serrano, Soraya; Morante, Koldo; Tsumoto, Kouhei; Caaveiro, Jose M. M.; Jiménez, M. Ángeles; Nieva, José L.

    2015-01-01

    The membrane-proximal external region (MPER) C-terminal segment and the transmembrane domain (TMD) of gp41 are involved in HIV-1 envelope glycoprotein-mediated fusion and modulation of immune responses during viral infection. However, the atomic structure of this functional region remains unsolved. Here, based on the high resolution NMR data obtained for peptides spanning the C-terminal segment of MPER and the TMD, we report two main findings: (i) the conformational variability of the TMD helix at a membrane-buried position; and (ii) the existence of an uninterrupted α-helix spanning MPER and the N-terminal region of the TMD. Thus, our structural data provide evidence for the bipartite organization of TMD predicted by previous molecular dynamics simulations and functional studies, but they do not support the breaking of the helix at Lys-683, as was suggested by some models to mark the initiation of the TMD anchor. Antibody binding energetics examined with isothermal titration calorimetry and humoral responses elicited in rabbits by peptide-based vaccines further support the relevance of a continuous MPER-TMD helix for immune recognition. We conclude that the transmembrane anchor of HIV-1 envelope is composed of two distinct subdomains: 1) an immunogenic helix at the N terminus also involved in promoting membrane fusion; and 2) an immunosuppressive helix at the C terminus, which might also contribute to the late stages of the fusion process. The unprecedented high resolution structural data reported here may guide future vaccine and inhibitor developments. PMID:25787074

  17. Structure of the transmembrane domain of human nicastrin-a component of γ-secretase

    PubMed Central

    Li, Yan; Liew, Lynette Sin Yee; Li, Qingxin; Kang, CongBao

    2016-01-01

    Nicastrin is the largest component of γ-secretase that is an intramembrane protease important in the development of Alzheimer’s disease. Nicastrin contains a large extracellular domain, a single transmembrane (TM) domain, and a short C-terminus. Its TM domain is important for the γ-secretase complex formation. Here we report nuclear magnetic resonance (NMR) studies of the TM and C-terminal regions of human nicastrin in both sodium dodecyl sulfate (SDS) and dodecylphosphocholine (DPC) micelles. Structural study and dynamic analysis reveal that the TM domain is largely helical and stable under both SDS and DPC micelles with its N-terminal region undergoing intermediate time scale motion. The TM helix contains a hydrophilic patch that is important for TM-TM interactions. The short C-terminus is not structured in solution and a region formed by residues V697-A702 interacts with the membrane, suggesting that these residues may play a role in the γ-secretase complex formation. Our study provides structural insight into the function of the nicastrin TM domain and the C-terminus in γ-secretase complex. PMID:26776682

  18. Structure of the transmembrane domain of human nicastrin-a component of γ-secretase.

    PubMed

    Li, Yan; Liew, Lynette Sin Yee; Li, Qingxin; Kang, CongBao

    2016-01-01

    Nicastrin is the largest component of γ-secretase that is an intramembrane protease important in the development of Alzheimer's disease. Nicastrin contains a large extracellular domain, a single transmembrane (TM) domain, and a short C-terminus. Its TM domain is important for the γ-secretase complex formation. Here we report nuclear magnetic resonance (NMR) studies of the TM and C-terminal regions of human nicastrin in both sodium dodecyl sulfate (SDS) and dodecylphosphocholine (DPC) micelles. Structural study and dynamic analysis reveal that the TM domain is largely helical and stable under both SDS and DPC micelles with its N-terminal region undergoing intermediate time scale motion. The TM helix contains a hydrophilic patch that is important for TM-TM interactions. The short C-terminus is not structured in solution and a region formed by residues V697-A702 interacts with the membrane, suggesting that these residues may play a role in the γ-secretase complex formation. Our study provides structural insight into the function of the nicastrin TM domain and the C-terminus in γ-secretase complex. PMID:26776682

  19. Analysis of Helix Slow Wave Structure for High Efficiency Space TWT

    NASA Astrophysics Data System (ADS)

    Alaria, Mukesh Kumar; Bera, A.; Sinha, A. K.; Srivastava, V.

    2009-03-01

    This paper describes the analysis of helix slow-wave structure (SWS) for a high efficiency space traveling wave tube that is carried out using Ansoft HFSS and CST microwave studio, which is a 3D electromagnetic field simulators. Two approaches of simulating the dispersion and impedance characteristics of the helix slow wave structure have been discussed and compared with measured results. The dispersion characteristic gives the information about axial propagation constant (Beta). Which in turn yields the phase velocity at a particular frequency. The dispersion and impedance characteristics can be used in finding the pertinent design parameters of the helix slow-wave structure. Therefore a new trend has been initiated at CEERI to use Ansoft HFSS code to analysis of the helix slow wave structure in its real environment. The analysis of the helix SWS for Ku-band 140W space TWT has been carried out and compared with experimental results, and found is close agreement.

  20. Structural Plasticity in Self-Assembling Transmembrane β-Sheets

    PubMed Central

    Bishop, Christopher M.; Wimley, William C.

    2011-01-01

    Here we test the hypothesis that membrane-spanning β-sheets can exhibit structural plasticity in membranes due to their ability to shift hydrogen-bonding patterns. Transmembrane β-sheet forming peptides of the sequence AcWLn, where n = 5, 6, or 7, which range from 21 to 27 Å in maximum length, were incorporated into bilayers made of phosphatidylcholine lipids with saturated acyl chains containing 14, 16, or 18 carbons, which are 36–50 Å in thickness. The effect of the peptide β-sheets on fluid- and gel-phase bilayers were studied with differential scanning calorimetry and circular dichroism spectroscopy. We show that AcWL5 forms a stable, peptide-rich gel phase in all three lipids. The whole family of AcWLn peptides appears to form similarly stable, nonmembrane-disrupting β-sheets in all bilayer phases and thicknesses. Bilayers containing up to 20 mol % peptide, which is the maximum concentration tested, formed gel phases with melting temperatures that were equal to, or slightly higher than, the pure lipid transitions. Given the range of peptide lengths and bilayer thicknesses tested, these experiments show that the AcWLn family of membrane-inserted β-sheets exhibit remarkable structural plasticity in membranes. PMID:21843473

  1. Structure of bacteriophage [phi]29 head fibers has a supercoiled triple repeating helix-turn-helix motif

    SciTech Connect

    Xiang, Ye; Rossmann, Michael G.

    2011-12-22

    The tailed bacteriophage {phi}29 capsid is decorated with 55 fibers attached to quasi-3-fold symmetry positions. Each fiber is a homotrimer of gene product 8.5 (gp8.5) and consists of two major structural parts, a pseudohexagonal base and a protruding fibrous portion that is about 110 {angstrom} in length. The crystal structure of the C-terminal fibrous portion (residues 112-280) has been determined to a resolution of 1.6 {angstrom}. The structure is about 150 {angstrom} long and shows three distinct structural domains designated as head, neck, and stem. The stem region is a unique three-stranded helix-turn-helix supercoil that has not previously been described. When fitted into a cryoelectron microscope reconstruction of the virus, the head structure corresponded to a disconnected density at the distal end of the fiber and the neck structure was located in weak density connecting it to the fiber. Thin section studies of Bacillus subtilis cells infected with fibered or fiberless {phi}29 suggest that the fibers might enhance the attachment of the virions onto the host cell wall.

  2. patGPCR: A Multitemplate Approach for Improving 3D Structure Prediction of Transmembrane Helices of G-Protein-Coupled Receptors

    PubMed Central

    Wu, Hongjie; Lü, Qiang; Quan, Lijun; Qian, Peide; Xia, Xiaoyan

    2013-01-01

    The structures of the seven transmembrane helices of G-protein-coupled receptors are critically involved in many aspects of these receptors, such as receptor stability, ligand docking, and molecular function. Most of the previous multitemplate approaches have built a “super” template with very little merging of aligned fragments from different templates. Here, we present a parallelized multitemplate approach, patGPCR, to predict the 3D structures of transmembrane helices of G-protein-coupled receptors. patGPCR, which employs a bundle-packing related energy function that extends on the RosettaMem energy, parallelizes eight pipelines for transmembrane helix refinement and exchanges the optimized helix structures from multiple templates. We have investigated the performance of patGPCR on a test set containing eight determined G-protein-coupled receptors. The results indicate that patGPCR improves the TM RMSD of the predicted models by 33.64% on average against a single-template method. Compared with other homology approaches, the best models for five of the eight targets built by patGPCR had a lower TM RMSD than that obtained from SWISS-MODEL; patGPCR also showed lower average TM RMSD than single-template and multiple-template MODELLER. PMID:23554839

  3. Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus.

    PubMed

    Acharya, Rudresh; Carnevale, Vincenzo; Fiorin, Giacomo; Levine, Benjamin G; Polishchuk, Alexei L; Balannik, Victoria; Samish, Ilan; Lamb, Robert A; Pinto, Lawrence H; DeGrado, William F; Klein, Michael L

    2010-08-24

    The M2 proton channel from influenza A virus is an essential protein that mediates transport of protons across the viral envelope. This protein has a single transmembrane helix, which tetramerizes into the active channel. At the heart of the conduction mechanism is the exchange of protons between the His37 imidazole moieties of M2 and waters confined to the M2 bundle interior. Protons are conducted as the total charge of the four His37 side chains passes through 2(+) and 3(+) with a pK(a) near 6. A 1.65 A resolution X-ray structure of the transmembrane protein (residues 25-46), crystallized at pH 6.5, reveals a pore that is lined by alternating layers of sidechains and well-ordered water clusters, which offer a pathway for proton conduction. The His37 residues form a box-like structure, bounded on either side by water clusters with well-ordered oxygen atoms at close distance. The conformation of the protein, which is intermediate between structures previously solved at higher and lower pH, suggests a mechanism by which conformational changes might facilitate asymmetric diffusion through the channel in the presence of a proton gradient. Moreover, protons diffusing through the channel need not be localized to a single His37 imidazole, but instead may be delocalized over the entire His-box and associated water clusters. Thus, the new crystal structure provides a possible unification of the discrete site versus continuum conduction models.

  4. A DNA glycosylase from Pyrobaculum aerophilum with an 8-oxoguanine binding mode and a noncanonical helix-hairpin-helix structure.

    PubMed

    Lingaraju, Gondichatnahalli M; Sartori, Alessandro A; Kostrewa, Dirk; Prota, Andrea E; Jiricny, Josef; Winkler, Fritz K

    2005-01-01

    Studies of DNA base excision repair (BER) pathways in the hyperthermophilic crenarchaeon Pyrobaculum aerophilum identified an 8-oxoguanine-DNA glycosylase, Pa-AGOG (archaeal GO glycosylase), with distinct functional characteristics. Here, we describe its crystal structure and that of its complex with 8-oxoguanosine at 1.0 and 1.7 A resolution, respectively. Characteristic structural features are identified that confirm Pa-AGOG to be the founding member of a functional class within the helix-hairpin-helix (HhH) superfamily of DNA repair enzymes. Its hairpin structure differs substantially from that of other proteins containing an HhH motif, and we predict that it interacts with the DNA backbone in a distinct manner. Furthermore, the mode of 8-oxoguanine recognition, which involves several hydrogen-bonding and pi-stacking interactions, is unlike that observed in human OGG1, the prototypic 8-oxoguanine HhH-type DNA glycosylase. Despite these differences, the predicted kinked conformation of bound DNA and the catalytic mechanism are likely to resemble those of human OGG1. PMID:15642264

  5. Structural dynamics of the myosin relay helix by time-resolved EPR and FRET

    PubMed Central

    Agafonov, Roman V.; Negrashov, Igor V.; Tkachev, Yaroslav V.; Blakely, Sarah E.; Titus, Margaret A.; Thomas, David D.; Nesmelov, Yuri E.

    2009-01-01

    We have used two complementary time-resolved spectroscopic techniques, dipolar electron–electron resonance and fluorescence resonance energy transfer to determine conformational changes in a single structural element of the myosin motor domain, the relay helix, before and after the recovery stroke. Two double-Cys mutants were labeled with optical probes or spin labels, and interprobe distances were determined. Both methods resolved two distinct structural states of myosin, corresponding to straight and bent conformations of the relay helix. The bent state was occupied only upon nucleotide addition, indicating that relay helix, like the entire myosin head, bends in the recovery stroke. However, saturation of myosin with nucleotide, producing a single biochemical state, did not produce a single structural state. Both straight and bent structural states of the relay helix were occupied when either ATP (ADP.BeFx) or ADP.Pi (ADP.AlF4) analogs were bound at the active site. A greater population was found in the bent structural state when the posthydrolysis analog ADP.AlF4 was bound. We conclude that the bending of the relay helix in the recovery stroke does not require ATP hydrolysis but is favored by it. A narrower interprobe distance distribution shows ordering of the relay helix, despite its bending, during the recovery stroke, providing further insight into the dynamics of this energy-transducing structural transition. PMID:19966224

  6. A graph-theoretic approach for classification and structure prediction of transmembrane β-barrel proteins

    PubMed Central

    2012-01-01

    Background Transmembrane β-barrel proteins are a special class of transmembrane proteins which play several key roles in human body and diseases. Due to experimental difficulties, the number of transmembrane β-barrel proteins with known structures is very small. Over the years, a number of learning-based methods have been introduced for recognition and structure prediction of transmembrane β-barrel proteins. Most of these methods emphasize on homology search rather than any biological or chemical basis. Results We present a novel graph-theoretic model for classification and structure prediction of transmembrane β-barrel proteins. This model folds proteins based on energy minimization rather than a homology search, avoiding any assumption on availability of training dataset. The ab initio model presented in this paper is the first method to allow for permutations in the structure of transmembrane proteins and provides more structural information than any known algorithm. The model is also able to recognize β-barrels by assessing the pseudo free energy. We assess the structure prediction on 41 proteins gathered from existing databases on experimentally validated transmembrane β-barrel proteins. We show that our approach is quite accurate with over 90% F-score on strands and over 74% F-score on residues. The results are comparable to other algorithms suggesting that our pseudo-energy model is close to the actual physical model. We test our classification approach and show that it is able to reject α-helical bundles with 100% accuracy and β-barrel lipocalins with 97% accuracy. Conclusions We show that it is possible to design models for classification and structure prediction for transmembrane β-barrel proteins which do not depend essentially on training sets but on combinatorial properties of the structures to be proved. These models are fairly accurate, robust and can be run very efficiently on PC-like computers. Such models are useful for the genome

  7. Helix-packing motifs in membrane proteins.

    PubMed

    Walters, R F S; DeGrado, W F

    2006-09-12

    The fold of a helical membrane protein is largely determined by interactions between membrane-imbedded helices. To elucidate recurring helix-helix interaction motifs, we dissected the crystallographic structures of membrane proteins into a library of interacting helical pairs. The pairs were clustered according to their three-dimensional similarity (rmsd structural features can be understood in terms of simple principles of helix-helix packing. Thus, the universe of common transmembrane helix-pairing motifs is relatively simple. The largest cluster, which comprises 29% of the library members, consists of an antiparallel motif with left-handed packing angles, and it is frequently stabilized by packing of small side chains occurring every seven residues in the sequence. Right-handed parallel and antiparallel structures show a similar tendency to segregate small residues to the helix-helix interface but spaced at four-residue intervals. Position-specific sequence propensities were derived for the most populated motifs. These structural and sequential motifs should be quite useful for the design and structural prediction of membrane proteins.

  8. The stability of the three transmembrane and the four transmembrane human vitamin K epoxide reductase models

    NASA Astrophysics Data System (ADS)

    Wu, Sangwook

    2016-04-01

    The three transmembrane and the four transmembrane helix models are suggested for human vitamin K epoxide reductase (VKOR). In this study, we investigate the stability of the human three transmembrane/four transmembrane VKOR models by employing a coarse-grained normal mode analysis and molecular dynamics simulation. Based on the analysis of the mobility of each transmembrane domain, we suggest that the three transmembrane human VKOR model is more stable than the four transmembrane human VKOR model.

  9. Helix-like structure formation of a semi-flexible chain confined in a cylinder channel

    NASA Astrophysics Data System (ADS)

    Wen, Xiaohui; Sun, Tieyu; Zhang, Wei-Bing; Lam, Chi-Hang; Zhang, Linxi; Zang, Huaping

    2016-09-01

    Molecular dynamics method is used to study the conformation behavior of a semi-flexible polymer chain confined in a cylinder channel. A novel helix-like structure is found to form during the simulation. Moreover, the detailed characteristic parameters and formation probability of these helix-like structures under moderate conditions are investigated. We find that the structure is not a perfect helix, but a bundle of elliptical turns. In addition, we conduct a statistical analysis for the chain monomer distribution along the radial direction. This research contributes to our understanding of the microscopic conformation of polymer chains in confined environments filled with a solvent. Project supported by the National Natural Science Foundation of China (Grant Nos. 11504033 and 11404290) and the General Research Fund of Hong Kong Research Council of China (Grant No. 15301014).

  10. Structure and stability of the alpha-helix: lessons for design.

    PubMed

    Errington, Neil; Iqbalsyah, Teuku; Doig, Andrew J

    2006-01-01

    The alpha-helix is the most abundant secondary structure in proteins. We now have an excellent understanding of the rules for helix formation because of experimental studies of helices in isolated peptides and within proteins, examination of helices in crystal structures, computer modeling and simulations, and theoretical work. Here we discuss structural features that are important for designing peptide helices, including amino acid preferences for interior and terminal positions, side chain interactions, disulfide bonding, metal binding, and phosphorylation. The solubility and stability of a potential design can be predicted with helical wheels and helix/coil theory, respectively. The helical content of a peptide is most often quantified by circular dichroism, so its use is discussed in detail. PMID:16957330

  11. Helix-like structure formation of a semi-flexible chain confined in a cylinder channel

    NASA Astrophysics Data System (ADS)

    Wen, Xiaohui; Sun, Tieyu; Zhang, Wei-Bing; Lam, Chi-Hang; Zhang, Linxi; Zang, Huaping

    2016-09-01

    Molecular dynamics method is used to study the conformation behavior of a semi-flexible polymer chain confined in a cylinder channel. A novel helix-like structure is found to form during the simulation. Moreover, the detailed characteristic parameters and formation probability of these helix-like structures under moderate conditions are investigated. We find that the structure is not a perfect helix, but a bundle of elliptical turns. In addition, we conduct a statistical analysis for the chain monomer distribution along the radial direction. This research contributes to our understanding of the microscopic conformation of polymer chains in confined environments filled with a solvent. Project supported by the National Natural Science Foundation of China (Grant Nos. 11504033 and 11404290) and the General Research Fund of Hong Kong Research Council of China (Grant No. 15301014).

  12. Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus

    PubMed Central

    Acharya, Rudresh; Carnevale, Vincenzo; Fiorin, Giacomo; Levine, Benjamin G.; Polishchuk, Alexei L.; Balannik, Victoria; Samish, Ilan; Lamb, Robert A.; Pinto, Lawrence H.; DeGrado, William F.; Klein, Michael L.

    2010-01-01

    The M2 proton channel from influenza A virus is an essential protein that mediates transport of protons across the viral envelope. This protein has a single transmembrane helix, which tetramerizes into the active channel. At the heart of the conduction mechanism is the exchange of protons between the His37 imidazole moieties of M2 and waters confined to the M2 bundle interior. Protons are conducted as the total charge of the four His37 side chains passes through 2+ and 3+ with a pKa near 6. A 1.65 Å resolution X-ray structure of the transmembrane protein (residues 25–46), crystallized at pH 6.5, reveals a pore that is lined by alternating layers of sidechains and well-ordered water clusters, which offer a pathway for proton conduction. The His37 residues form a box-like structure, bounded on either side by water clusters with well-ordered oxygen atoms at close distance. The conformation of the protein, which is intermediate between structures previously solved at higher and lower pH, suggests a mechanism by which conformational changes might facilitate asymmetric diffusion through the channel in the presence of a proton gradient. Moreover, protons diffusing through the channel need not be localized to a single His37 imidazole, but instead may be delocalized over the entire His-box and associated water clusters. Thus, the new crystal structure provides a possible unification of the discrete site versus continuum conduction models. PMID:20689043

  13. Structure and Mechanism of Proton Transport Through the Transmembrane Tetrameric M2 Protein Bundle of the Influenza A Virus

    SciTech Connect

    R Acharya; V Carnevale; G Fiorin; B Levine; A Polishchuk; V Balannick; I Samish; R Lamb; L Pinto; et al.

    2011-12-31

    The M2 proton channel from influenza A virus is an essential protein that mediates transport of protons across the viral envelope. This protein has a single transmembrane helix, which tetramerizes into the active channel. At the heart of the conduction mechanism is the exchange of protons between the His37 imidazole moieties of M2 and waters confined to the M2 bundle interior. Protons are conducted as the total charge of the four His37 side chains passes through 2{sup +} and 3{sup +} with a pK{sub a} near 6. A 1.65 {angstrom} resolution X-ray structure of the transmembrane protein (residues 25-46), crystallized at pH 6.5, reveals a pore that is lined by alternating layers of sidechains and well-ordered water clusters, which offer a pathway for proton conduction. The His37 residues form a box-like structure, bounded on either side by water clusters with well-ordered oxygen atoms at close distance. The conformation of the protein, which is intermediate between structures previously solved at higher and lower pH, suggests a mechanism by which conformational changes might facilitate asymmetric diffusion through the channel in the presence of a proton gradient. Moreover, protons diffusing through the channel need not be localized to a single His37 imidazole, but instead may be delocalized over the entire His-box and associated water clusters. Thus, the new crystal structure provides a possible unification of the discrete site versus continuum conduction models.

  14. How are exons encoding transmembrane sequences distributed in the exon-intron structure of genes?

    PubMed

    Sawada, Ryusuke; Mitaku, Shigeki

    2011-01-01

    The exon-intron structure of eukaryotic genes raises a question about the distribution of transmembrane regions in membrane proteins. Were exons that encode transmembrane regions formed simply by inserting introns into preexisting genes or by some kind of exon shuffling? To answer this question, the exon-per-gene distribution was analyzed for all genes in 40 eukaryotic genomes with a particular focus on exons encoding transmembrane segments. In 21 higher multicellular eukaryotes, the percentage of multi-exon genes (those containing at least one intron) within all genes in a genome was high (>70%) and with a mean of 87%. When genes were grouped by the number of exons per gene in higher eukaryotes, good exponential distributions were obtained not only for all genes but also for the exons encoding transmembrane segments, leading to a constant ratio of membrane proteins independent of the exon-per-gene number. The positional distribution of transmembrane regions in single-pass membrane proteins showed that they are generally located in the amino or carboxyl terminal regions. This nonrandom distribution of transmembrane regions explains the constant ratio of membrane proteins to the exon-per-gene numbers because there are always two terminal (i.e., the amino and carboxyl) regions - independent of the length of sequences.

  15. Calcium-dependent structural coupling between opposing globular domains of calmodulin involves the central helix.

    PubMed

    Sun, H; Yin, D; Squier, T C

    1999-09-21

    We have used fluorescence spectroscopy to investigate the average structure and extent of conformational heterogeneity associated with the central helix in calmodulin (CaM), a sequence that contributes to calcium binding sites 2 and 3 and connects the amino- and carboxyl-terminal globular domains. Using site-directed mutagenesis, a double mutant was constructed involving conservative substitution of Tyr(99) --> Trp(99) and Leu(69) --> Cys(69) with no significant effect on the secondary structure of CaM. These mutation sites are at opposite ends of the central helix. Trp(99) acts as a fluorescence resonance energy transfer (FRET) donor in distance measurements of the conformation of the central helix. Cys(69) provides a reactive group for the covalent attachment of the FRET acceptor 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS). AEDANS-modified CaM fully activates the plasma membrane (PM) Ca-ATPase, indicating that the native structure is retained following site-directed mutagenesis and chemical modification. We find that the average spatial separation between Trp(99) and AEDANS covalently bound to Cys(69) decreases by approximately 7 +/- 2 A upon calcium binding. However, irrespective of calcium binding, there is little change in the conformational heterogeneity associated with the central helix under physiologically relevant conditions (i.e., pH 7.5, 0.1 M KCl). These results indicate that calcium activation alters the spatial arrangement of the opposing globular domains between two defined conformations. In contrast, under conditions of low ionic strength or pH the structure of CaM is altered and the conformational heterogeneity of the central helix is decreased upon calcium activation. These results suggest the presence of important ionizable groups that affect the structure of the central helix, which may play an important role in mediating the ability of CaM to rapidly bind and activate target proteins.

  16. The discovery of the -helix and -sheet, the principal structural features of proteins

    NASA Astrophysics Data System (ADS)

    Eisenberg, David

    2003-09-01

    PNAS papers by Linus Pauling, Robert Corey, and Herman Branson in the spring of 1951 proposed the -helix and the -sheet, now known to form the backbones of tens of thousands of proteins. They deduced these fundamental building blocks from properties of small molecules, known both from crystal structures and from Pauling's resonance theory of chemical bonding that predicted planar peptide groups. Earlier attempts by others to build models for protein helices had failed both by including nonplanar peptides and by insisting on helices with an integral number of units per turn. In major respects, the Pauling-Corey-Branson models were astoundingly correct, including bond lengths that were not surpassed in accuracy for >40 years. However, they did not consider the hand of the helix or the possibility of bent sheets. They also proposed structures and functions that have not been found, including the -helix.

  17. Ser/Thr Motifs in Transmembrane Proteins: Conservation Patterns and Effects on Local Protein Structure and Dynamics

    PubMed Central

    del Val, Coral; White, Stephen H.

    2014-01-01

    We combined systematic bioinformatics analyses and molecular dynamics simulations to assess the conservation patterns of Ser and Thr motifs in membrane proteins, and the effect of such motifs on the structure and dynamics of α-helical transmembrane (TM) segments. We find that Ser/Thr motifs are often present in β-barrel TM proteins. At least one Ser/Thr motif is present in almost half of the sequences of α-helical proteins analyzed here. The extensive bioinformatics analyses and inspection of protein structures led to the identification of molecular transporters with noticeable numbers of Ser/Thr motifs within the TM region. Given the energetic penalty for burying multiple Ser/Thr groups in the membrane hydrophobic core, the observation of transporters with multiple membrane-embedded Ser/Thr is intriguing and raises the question of how the presence of multiple Ser/Thr affects protein local structure and dynamics. Molecular dynamics simulations of four different Ser-containing model TM peptides indicate that backbone hydrogen bonding of membrane-buried Ser/Thr hydroxyl groups can significantly change the local structure and dynamics of the helix. Ser groups located close to the membrane interface can hydrogen bond to solvent water instead of protein backbone, leading to an enhanced local solvation of the peptide. PMID:22836667

  18. Amelogenin Supramolecular Assembly in Nanospheres Defined by a Complex Helix-Coil-PPII Helix 3D-Structure

    PubMed Central

    Zhang, Xu; Ramirez, Benjamin E.; Liao, Xiubei; Diekwisch, Thomas G. H.

    2011-01-01

    Tooth enamel, the hardest material in the human body, is formed within a self-assembled matrix consisting mostly of amelogenin proteins. Here we have determined the complete mouse amelogenin structure under physiological conditions and defined interactions between individual domains. NMR spectroscopy revealed four major amelogenin structural motifs, including an N-terminal assembly of four α-helical segments (S9-V19, T21-P33, Y39-W45, V53-Q56), an elongated random coil region interrupted by two 310 helices (∼P60-Q117), an extended proline-rich PPII-helical region (P118-L165), and a charged hydrophilic C-terminus (L165-D180). HSQC experiments demonstrated ipsilateral interactions between terminal domains of individual amelogenin molecules, i.e. N-terminal interactions with corresponding N-termini and C-terminal interactions with corresponding C-termini, while the central random coil domain did not engage in interactions. Our HSQC spectra of the full-length amelogenin central domain region completely overlapped with spectra of the monomeric Amel-M fragment, suggesting that the central amelogenin coil region did not involve in assembly, even in assembled nanospheres. This finding was confirmed by analytical ultracentrifugation experiments. We conclude that under conditions resembling those found in the developing enamel protein matrix, amelogenin molecules form complex 3D-structures with N-terminal α-helix-like segments and C-terminal PPII-helices, which self-assemble through ipsilateral interactions at the N-terminus of the molecule. PMID:21984897

  19. Analysis of negative material supported helix slow wave structure for traveling-wave tubes

    NASA Astrophysics Data System (ADS)

    Purushothaman, N.; Srivastava, V.; Ghosh, S. K.

    2013-06-01

    We investigate the effect of negative materials used as support structures for helix travelling wave tubes (TWTs). Analysis is carried out with materials having negative permittivity or negative permeability and compared with the positive dielectric support materials. The work attempts to focus on the dispersion relation and interaction impedance as a measure to check for the feasibility of using negative materials in TWT.

  20. Structures and Energetics of Four Adjacent G·U Pairs That Stabilize an RNA Helix.

    PubMed

    Gu, Xiaobo; Mooers, Blaine H M; Thomas, Leonard M; Malone, Joshua; Harris, Steven; Schroeder, Susan J

    2015-10-22

    Consecutive G·U base pairs inside RNA helices can be destabilizing, while those at the ends of helices are thermodynamically stabilizing. To determine if this paradox could be explained by differences in base stacking, we determined the high-resolution (1.32 Å) crystal structure of (5'-GGUGGCUGUU-3')2 and studied three sequences with four consecutive terminal G·U pairs by NMR spectroscopy. In the crystal structure of (5'-GGUGGCUGUU-3')2, the helix is overwound but retains the overall features of A-form RNA. The penultimate base steps at each end of the helix have high base overlap and contribute to the unexpectedly favorable energetic contribution for the 5'-GU-3'/3'-UG-5' motif in this helix position. The balance of base stacking and helical twist contributes to the positional dependence of G·U pair stabilities. The energetic stabilities and similarity to A-form RNA helices suggest that consecutive G·U pairs would be recognized by RNA helix binding proteins, such as Dicer and Ago. Thus, these results will aid future searches for target sites of small RNAs in gene regulation. PMID:26425937

  1. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix.

    PubMed

    Brown, Jessica A; Bulkley, David; Wang, Jimin; Valenstein, Max L; Yario, Therese A; Steitz, Thomas A; Steitz, Joan A

    2014-07-01

    Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a highly abundant nuclear long noncoding RNA that promotes malignancy. A 3'-stem-loop structure is predicted to confer stability by engaging a downstream A-rich tract in a triple helix, similar to the expression and nuclear retention element (ENE) from the KSHV polyadenylated nuclear RNA. The 3.1-Å-resolution crystal structure of the human MALAT1 ENE and A-rich tract reveals a bipartite triple helix containing stacks of five and four U•A-U triples separated by a C+•G-C triplet and C-G doublet, extended by two A-minor interactions. In vivo decay assays indicate that this blunt-ended triple helix, with the 3' nucleotide in a U•A-U triple, inhibits rapid nuclear RNA decay. Interruption of the triple helix by the C-G doublet induces a 'helical reset' that explains why triple-helical stacks longer than six do not occur in nature.

  2. RNA secondary structure prediction based on SHAPE data in helix regions.

    PubMed

    Lotfi, Mohadeseh; Zare-Mirakabad, Fatemeh; Montaseri, Soheila

    2015-09-01

    RNA molecules play important and fundamental roles in biological processes. Frequently, the functional form of single-stranded RNA molecules requires a specific tertiary structure. Classically, RNA structure determination has mostly been accomplished by X-Ray crystallography or Nuclear Magnetic Resonance approaches. These experimental methods are time consuming and expensive. In the past two decades, some computational methods and algorithms have been developed for RNA secondary structure prediction. In these algorithms, minimum free energy is known as the best criterion. However, the results of algorithms show that minimum free energy is not a sufficient criterion to predict RNA secondary structure. These algorithms need some additional knowledge about the structure, which has to be added in the methods. Recently, the information obtained from some experimental data, called SHAPE, can greatly improve the consistency between the native and predicted RNA secondary structure. In this paper, we investigate the influence of SHAPE data on four types of RNA substructures, helices, loops, base pairs from the start and end of helices and two base pairs from the start and end of helices. The results show that SHAPE data in helix regions can improve the prediction. We represent a new method to apply SHAPE data in helix regions for finding RNA secondary structure. Finally, we compare the results of the method on a set of RNAs to predict minimum free energy structure based on considering all SHAPE data and only SHAPE data in helix regions as pseudo free energy and without SHAPE data (without any pseudo free energy). The results show that RNA secondary structure prediction based on considering only SHAPE data in helix regions is more successful than not considering SHAPE data and it provides competitive results in comparison with considering all SHAPE data.

  3. Dynamics Of α-Helix Proteins: Highly Structured Noise Generated By Soliton Modes

    NASA Astrophysics Data System (ADS)

    Silva, Marcelo; Lindgârd, Per-Anker

    2005-11-01

    The great advantages of using the new pump-probe techniques and free electron tunable lasers for studying dynamics in proteins, has renewed the interest in more realistic modeling and theories for the non-linear phenomena in bio-molecules. In particular effects originating from solitonic behavior and/or trapped modes may give distinct signatures in the measured spectra (pioneered by Austin et al and Hamm et al). We have constructed a fairly realistic 3D α-helix model and studied the dynamics, including the effect of thermal noise by means of computer simulations. We use various perturbations to create excitations; in particular a kick at one residue — simulating a local lattice deformation caused by the chemical stimulus from a molecule changing quantum states. This generates a multitude of modes, including at least two kinds of solitons: one moving on the Hydrogen-chains along the extremities of the helix, and one Davidov-like soliton moving along the back bone and carrying along a packet of the peptide-bond excitations (Amino-I C-O stretch mode), as well as phononic modes. The unsolved problem with respect to noise is to understand and describe the highly structured propagation of energy, which is found to occur in the model α-helix — and which is probably also present in real α-helix proteins.

  4. kPROT: a knowledge-based scale for the propensity of residue orientation in transmembrane segments. Application to membrane protein structure prediction.

    PubMed

    Pilpel, Y; Ben-Tal, N; Lancet, D

    1999-12-10

    Modeling of integral membrane proteins and the prediction of their functional sites requires the identification of transmembrane (TM) segments and the determination of their angular orientations. Hydrophobicity scales predict accurately the location of TM helices, but are less accurate in computing angular disposition. Estimating lipid-exposure propensities of the residues from statistics of solved membrane protein structures has the disadvantage of relying on relatively few proteins. As an alternative, we propose here a scale of knowledge-based Propensities for Residue Orientation in Transmembrane segments (kPROT), derived from the analysis of more than 5000 non-redundant protein sequences. We assume that residues that tend to be exposed to the membrane are more frequent in TM segments of single-span proteins, while residues that prefer to be buried in the transmembrane bundle interior are present mainly in multi-span TMs. The kPROT value for each residue is thus defined as the logarithm of the ratio of its proportions in single and multiple TM spans. The scale is refined further by defining it for three discrete sections of the TM segment; namely, extracellular, central, and intracellular. The capacity of the kPROT scale to predict angular helical orientation was compared to that of alternative methods in a benchmark test, using a diversity of multi-span alpha-helical transmembrane proteins with a solved 3D structure. kPROT yielded an average angular error of 41 degrees, significantly lower than that of alternative scales (62 degrees -68 degrees ). The new scale thus provides a useful general tool for modeling and prediction of functional residues in membrane proteins. A WWW server (http://bioinfo.weizmann.ac.il/kPROT) is available for automatic helix orientation prediction with kPROT. PMID:10588897

  5. Shielded helix traveling wave cathode ray tube deflection structure

    DOEpatents

    Norris, Neil J.; Hudson, Charles L.

    1992-01-01

    Various embodiments of a helical coil deflection structure of a CRT are described and illustrated which provide shielding between adjacent turns of the coil on either three or four sides of each turn in the coil. Threaded members formed with either male or female threads and having the same pitch as the deflection coil are utilized for shielding the deflection coil with each turn of the helical coil placed between adjacent threads which act to shield each coil turn from adjacent turns and to confine the field generated by the coil to prevent or inhibit cross-coupling between adjacent turns of the coil to thereby prevent generation of fast fields which might otherwise deflect the beam out of time synchronization with the electron beam pulse.

  6. Shielded helix traveling wave cathode ray tube deflection structure

    DOEpatents

    Norris, N.J.; Hudson, C.L.

    1992-12-15

    Various embodiments of a helical coil deflection structure of a CRT are described and illustrated which provide shielding between adjacent turns of the coil on either three or four sides of each turn in the coil. Threaded members formed with either male or female threads and having the same pitch as the deflection coil are utilized for shielding the deflection coil with each turn of the helical coil placed between adjacent threads which act to shield each coil turn from adjacent turns and to confine the field generated by the coil to prevent or inhibit cross-coupling between adjacent turns of the coil to thereby prevent generation of fast fields which might otherwise deflect the beam out of time synchronization with the electron beam pulse. 13 figs.

  7. Biological insertion of computationally designed short transmembrane segments.

    PubMed

    Baeza-Delgado, Carlos; von Heijne, Gunnar; Marti-Renom, Marc A; Mingarro, Ismael

    2016-01-01

    The great majority of helical membrane proteins are inserted co-translationally into the ER membrane through a continuous ribosome-translocon channel. The efficiency of membrane insertion depends on transmembrane (TM) helix amino acid composition, the helix length and the position of the amino acids within the helix. In this work, we conducted a computational analysis of the composition and location of amino acids in transmembrane helices found in membrane proteins of known structure to obtain an extensive set of designed polypeptide segments with naturally occurring amino acid distributions. Then, using an in vitro translation system in the presence of biological membranes, we experimentally validated our predictions by analyzing its membrane integration capacity. Coupled with known strategies to control membrane protein topology, these findings may pave the way to de novo membrane protein design. PMID:26987712

  8. Biological insertion of computationally designed short transmembrane segments

    PubMed Central

    Baeza-Delgado, Carlos; von Heijne, Gunnar; Marti-Renom, Marc A.; Mingarro, Ismael

    2016-01-01

    The great majority of helical membrane proteins are inserted co-translationally into the ER membrane through a continuous ribosome-translocon channel. The efficiency of membrane insertion depends on transmembrane (TM) helix amino acid composition, the helix length and the position of the amino acids within the helix. In this work, we conducted a computational analysis of the composition and location of amino acids in transmembrane helices found in membrane proteins of known structure to obtain an extensive set of designed polypeptide segments with naturally occurring amino acid distributions. Then, using an in vitro translation system in the presence of biological membranes, we experimentally validated our predictions by analyzing its membrane integration capacity. Coupled with known strategies to control membrane protein topology, these findings may pave the way to de novo membrane protein design. PMID:26987712

  9. Structural and Functional Characterization of the C-terminal Transmembrane Region of NBCe1-A*

    PubMed Central

    Zhu, Quansheng; Kao, Liyo; Azimov, Rustam; Abuladze, Natalia; Newman, Debra; Pushkin, Alexander; Liu, Weixin; Chang, Connie; Kurtz, Ira

    2010-01-01

    NBCe1-A and AE1 both belong to the SLC4 HCO3− transporter family. The two transporters share 40% sequence homology in the C-terminal transmembrane region. In this study, we performed extensive substituted cysteine-scanning mutagenesis analysis of the C-terminal region of NBCe1-A covering amino acids Ala800–Lys967. Location of the introduced cysteines was determined by whole cell labeling with a membrane-permeant biotin maleimide and a membrane-impermeant 2-((5(6)-tetramethylrhodamine)carboxylamino) ethyl methanethiosulfonate (MTS-TAMRA) cysteine-reactive reagent. The results show that the extracellular surface of the NBCe1-A C-terminal transmembrane region is minimally exposed to aqueous media with Met858 accessible to both biotin maleimide and TAMRA and Thr926–Ala929 only to TAMRA labeling. The intracellular surface contains a highly exposed (Met813–Gly828) region and a cryptic (Met887–Arg904) connecting loop. The lipid/aqueous interface of the last transmembrane segment is at Asp960. Our data clearly determined that the C terminus of NBCe1-A contains 5 transmembrane segments with greater average size compared with AE1. Functional assays revealed only two residues in the region of Pro868–Leu967 (a functionally important region in AE1) that are highly sensitive to cysteine substitution. Our findings suggest that the C-terminal transmembrane region of NBCe1-A is tightly folded with unique structural and functional features that differ from AE1. PMID:20837482

  10. Structural Basis for Elastic Mechanical Properties of the DNA Double Helix

    PubMed Central

    Kim, Young-Joo; Kim, Do-Nyun

    2016-01-01

    In this article, we investigate the principal structural features of the DNA double helix and their effects on its elastic mechanical properties. We develop, in the pursuit of this purpose, a helical continuum model consisting of a soft helical core and two stiff ribbons wrapping around it. The proposed model can reproduce the negative twist-stretch coupling of the helix successfully as well as its global stretching, bending, and torsional rigidities measured experimentally. Our parametric study of the model using the finite element method further reveals that the stiffness of phosphate backbones is a crucial factor for the counterintuitive overwinding behavior of the duplex and its extraordinarily high torsional rigidity, the major-minor grooves augment the twist-stretch coupling, and the change of the helicity might be responsible for the transition from a negative to a positive twist-stretching coupling when a tensile force is applied to the duplex. PMID:27055239

  11. Structure of the Membrane Anchor of Pestivirus Glycoprotein Erns, a Long Tilted Amphipathic Helix

    PubMed Central

    Aberle, Daniel; Muhle-Goll, Claudia; Bürck, Jochen; Wolf, Moritz; Reißer, Sabine; Luy, Burkhard; Wenzel, Wolfgang; Ulrich, Anne S.; Meyers, Gregor

    2014-01-01

    Erns is an essential virion glycoprotein with RNase activity that suppresses host cellular innate immune responses upon being partially secreted from the infected cells. Its unusual C-terminus plays multiple roles, as the amphiphilic helix acts as a membrane anchor, as a signal peptidase cleavage site, and as a retention/secretion signal. We analyzed the structure and membrane binding properties of this sequence to gain a better understanding of the underlying mechanisms. CD spectroscopy in different setups, as well as Monte Carlo and molecular dynamics simulations confirmed the helical folding and showed that the helix is accommodated in the amphiphilic region of the lipid bilayer with a slight tilt rather than lying parallel to the surface. This model was confirmed by NMR analyses that also identified a central stretch of 15 residues within the helix that is fully shielded from the aqueous layer, which is C-terminally followed by a putative hairpin structure. These findings explain the strong membrane binding of the protein and provide clues to establishing the Erns membrane contact, processing and secretion. PMID:24586172

  12. Structural features and stability of an RNA triple helix in solution.

    PubMed Central

    Holland, J A; Hoffman, D W

    1996-01-01

    A 30 nt RNA with a sequence designed to form an intramolecular triple helix was analyzed by one-and two-dimensional NMR spectroscopy and UV absorption measurements. NMR data show that the RNA contains seven pyrimidine-purine-pyrimidine base triples stabilized by Watson-Crick and Hoogsteen interactions. The temperature dependence of the imino proton resonances, as well as UV absorption data, indicate that the triple helix is highly stable at acidic pH, melting in a single sharp transition centered at 62 degrees C at pH 4.3. The Watson-Crick and Hoogsteen pairings are disrupted simultaneously upon melting. The NMR data are consistent with a structural model where the Watson-Crick paired strands form an A-helix. Results of model building, guided by NMR data, suggest a possible hydrogen bond between the 2' hydroxyl proton of the Hoogsteen strand and a phosphate oxygen of the purine strand. The structural model is discussed in terms of its ability to account for some of the differences in stability reported for RNA and DNA triple helices and provides insight into features that are likely to be important in the design of RNA binding compounds. PMID:8759020

  13. MAPS: an interactive web server for membrane annotation of transmembrane protein structures.

    PubMed

    Cheema, Jitender; Basu, Gautam

    2011-04-01

    The exact positioning of the membrane in transmembrane (TM) proteins plays important functional roles. Yet, the structures of TM proteins in protein data bank (pdb) have no information about the explicit position of the membrane. Using a simple hydrophobic lipid-protein mismatch energy function and a flexible lipid/water boundary, the position of lipid bilayer for representative TM proteins in pdb have been annotated. A web server called MAPS (Membrane Annotation of Protein Structures; available at: http://www.boseinst.ernet.in/gautam/maps) has been set up that allows the user to interactively analyze membrane-protein orientations of any uploaded pdb structure with user-defined membrane flexibility parameters.

  14. A novel slotted helix slow-wave structure for high power Ka-band traveling-wave tubes

    NASA Astrophysics Data System (ADS)

    Liu, Lu-Wei; Wei, Yan-Yu; Wang, Shao-Meng; Hou, Yan; Yin, Hai-Rong; Zhao, Guo-Qing; Duan, Zhao-Yun; Xu, Jin; Gong, Yu-Bin; Wang, Wen-Xiang; Yang, Ming-Hua

    2013-10-01

    A novel slotted helix slow-wave structure (SWS) is proposed to develop a high power, wide-bandwidth, and high reliability millimeter-wave traveling-wave tube (TWT). This novel structure, which has higher heat capacity than a conventional helix SWS, evolves from conventional helix SWS with three parallel rows of rectangular slots made in the outside of the helix tape. In this paper, the electromagnetic characteristics and the beam-wave interaction of this novel structure operating in the Ka-band are investigated. From our calculations, when the designed beam voltage and beam current are set to be 18.45 kV and 0.2 A, respectively, this novel circuit can produce over 700-W average output power in a frequency range from 27.5 GHz to 32.5 GHz, and the corresponding conversion efficiency values vary from 19% to 21.3%, and the maximum output power is 787 W at 30 GHz.

  15. CLASSICAL AREAS OF PHENOMENOLOGY: Small-signal analysis of a rectangular helix structure traveling-wave-tube

    NASA Astrophysics Data System (ADS)

    Fu, Cheng-Fang; Wei, Yan-Yu; Duan, Zhao-Yun; Wang, Wen-Xiang; Gong, Yu-Bin

    2009-07-01

    This paper investigates the properties of traveling wave-beam interaction in a rectangular helix traveling-wave-tube (TWT) for a solid sheet electron beam. The 'hot' dispersion equation is obtained by means of the self-consistent field theory. The small signal analysis, which includes the effects of the beam parameters and slow-wave structure (SWS) parameters, is carried out by theoretical computation. The numerical results show that the bandwidth and the small-signal gain of the rectangular helix TWT increase as the beam current increases; and the beam voltage not obviously influences the small signal gain. Among different rectangular helix structures, the small-signal gain increases as the width of the rectangular helix SWS increases, however, the bandwidth decreases whether structure parameters a and L or Ψ and L are fixed or not. In addition, a comparison of the small-signal gain of this structure with a conventional round helix is made. The presented analysis will be useful for the design of the TWT with a rectangular helix circuit.

  16. Free Energy and Structure of Helix-forming Peptides: A Theoretical Investigation

    NASA Astrophysics Data System (ADS)

    Karpusenka, Vadzim

    This thesis focuses on the structure and free energy of helical secondary structures of short peptides in a variety of experimental settings. Specifically, the formation of alpha-, pi- and 310-helices was investigated using large-scale classical molecular dynamics simulations with state-of-the-art force fields. In addition, the recently developed Adaptively Biased Molecular Dynamics (ABMD) and Steered Molecular Dynamics (SMD) methods were used to calculate the corresponding free energies. The most important results are as follows. For the examined peptide homopolymers, the observed minima on the free energy landscapes (based on suitable collective variables such as the radius of gyration, number of hydrogen bonds, and handedness) were associated with alpha-helices and "globular" or "knot-like" configurations only. No evidence was found to indicate that 310- or pi-helices represent equilibrium structures for these systems. In addition, the free energy landscape of short peptide chains formed by mixing two different amino acids were also examined. These results too indicate that the alpha-helix is only equilibrium helical secondary structure, and that the mixing of different amino acids does not result in the introduction of any significant new minima into the free energy landscapes. These results are in agreement with experimental observations insofar as these indicate that helical structural motifs are primary based on alpha-helices, with 310- and pi-helices being observed only rarely. Although pi- and 310-helices represent nonequilibrium structures, we were still able to estimate their free energies by means of SMD simulations. The helical secondary structure of the examined polypeptide chains is due to the formation of hydrogen bonds. However, there are other mechanisms that may allow for the additional stabilization of these structures. Specifically, in the so-called AK-(4,7) protein, the possible presence of disulfide bonds connecting cysteine residues may

  17. Investigation and direct mapping of the persistent spin helix in confined structures

    NASA Astrophysics Data System (ADS)

    Schwemmer, Markus; Weingartner, Matthias; Völkl, Roland; Oltscher, Martin; Schuh, Dieter; Bougeard, Dominique; Korn, Tobias; Schüller, Christian

    The spin-orbit field in GaAs-based quantum well (QW) structures typically consists of two different contributions: Dresselhaus and Rashba field. The geometry of the Dresselhaus field, which arises due to the bulk inversion asymmetry, is mostly determined by the growth direction of the quantum well. The Rashba field instead is caused by a structure inversion asymmetry, which can be controlled, e.g. by the modulation doping. For the specific case of a (001)-grown GaAs quantum well with equal strength of Dresselhaus and Rashba fields, the effective spin-orbit field is oriented along the in-plane [110] direction for all k values and the spin splitting for this direction vanishes. For optically injected spins, which are initially oriented perpendicular to the QW plane, a persistent spin helix (PSH) state forms. We use a femtosecond pulsed TiSa-Laser system combined with a magneto-optical Kerr effect microscope for time- and space-resolved mapping of the PSH. With this technique, we investigate the PSH behavior in confined structures, e.g., thin channels along the helix direction. Hence we find that lateral confinement increases the effective PSH lifetime drastically. In more complex structures, we observe that PSH formation is even stable under a forced direction change. Financial support by the DFG via SFB 689 and SPP 1285 is gratefully acknowledged.

  18. Structural organization of FtsB, a transmembrane protein of the bacterial divisome

    PubMed Central

    LaPointe, Loren M.; Taylor, Keenan C.; Subramaniam, Sabareesh; Khadria, Ambalika; Rayment, Ivan; Senes, Alessandro

    2013-01-01

    We report the first structural analysis of an integral membrane protein of the bacterial divisome. FtsB is a single-pass membrane protein with a periplasmic coiled coil. Its heterologous association with its partner FtsL represents an essential event for the recruitment of the late components to the division site. Using a combination of mutagenesis, computational modeling and X-ray crystallography, we determined that FtsB self-associates and we investigated its structural organization. We found that the transmembrane domain of FtsB homo-oligomerizes through an evolutionarily conserved interaction interface where a polar residue (Gln 16) plays a critical role through the formation of an inter-helical hydrogen bond. The crystal structure of the periplasmic domain, solved as a fusion with Gp7, shows that 30 juxta-membrane amino acids of FtsB form a canonical coiled coil. The presence of conserved Gly residue in the linker region suggests that flexibility between the transmembrane and coiled coil domains is functionally important. We hypothesize that the transmembrane helices of FtsB form a stable dimeric core for its association with FtsL into a higher-order oligomer, and that FtsL is required to stabilize the periplasmic domain of FtsB, leading to the formation of a complex that is competent for binding to FtsQ, and to their consequent recruitment to the divisome. The study provides an experimentally validated structural model and identifies point mutations that disrupt association, thereby establishing important groundwork for the functional characterization of FtsB in vivo. PMID:23520975

  19. Structural and functional aspects of winged-helix domains at the core of transcription initiation complexes.

    PubMed

    Teichmann, Martin; Dumay-Odelot, Hélène; Fribourg, Sébastien

    2012-01-01

    The winged helix (WH) domain is found in core components of transcription systems in eukaryotes and prokaryotes. It represents a sub-class of the helix-turn-helix motif. The WH domain participates in establishing protein-DNA and protein-protein-interactions. Here, we discuss possible explanations for the enrichment of this motif in transcription systems.

  20. Structure and dynamics of helix-0 of the N-BAR domain in lipid micelles and bilayers.

    PubMed

    Löw, Christian; Weininger, Ulrich; Lee, Hwankyu; Schweimer, Kristian; Neundorf, Ines; Beck-Sickinger, Annette G; Pastor, Richard W; Balbach, Jochen

    2008-11-01

    Bin/Amphiphysin/Rvs-homology (BAR) domains generate and sense membrane curvature by binding the negatively charged membrane to their positively charged concave surfaces. N-BAR domains contain an N-terminal extension (helix-0) predicted to form an amphipathic helix upon membrane binding. We determined the NMR structure and nano-to-picosecond dynamics of helix-0 of the human Bin1/Amphiphysin II BAR domain in sodium dodecyl sulfate and dodecylphosphocholine micelles. Molecular dynamics simulations of this 34-amino acid peptide revealed electrostatic and hydrophobic interactions with the detergent molecules that induce helical structure formation from residues 8-10 toward the C-terminus. The orientation in the micelles was experimentally confirmed by backbone amide proton exchange. The simulation and the experiment indicated that the N-terminal region is disordered, and the peptide curves to adopted the micelle shape. Deletion of helix-0 reduced tubulation of liposomes by the BAR domain, whereas the helix-0 peptide itself was fusogenic. These findings support models for membrane curving by BAR domains in which helix-0 increases the binding affinity to the membrane and enhances curvature generation. PMID:18658220

  1. Helix 3 acts as a conformational hinge in Class A GPCR activation: An analysis of interhelical interaction energies in crystal structures.

    PubMed

    Lans, Isaias; Dalton, James A R; Giraldo, Jesús

    2015-12-01

    A collection of crystal structures of rhodopsin, β2-adrenergic and adenosine A2A receptors in active, intermediate and inactive states were selected for structural and energetic analyses to identify the changes involved in the activation/deactivation of Class A GPCRs. A set of helix interactions exclusive to either inactive or active/intermediate states were identified. The analysis of these interactions distinguished some local conformational changes involved in receptor activation, in particular, a packing between the intracellular domains of transmembrane helices H3 and H7 and a separation between those of H2 and H6. Also, differential movements of the extracellular and intracellular domains of these helices are apparent. Moreover, a segment of residues in helix H3, including residues L/I3.40 to L3.43, is identified as a key component of the activation mechanism, acting as a conformational hinge between extracellular and intracellular regions. Remarkably, the influence on the activation process of some glutamic and aspartic acidic residues and, as a consequence, the influence of variations on local pH is highlighted. Structural hypotheses that arose from the analysis of rhodopsin, β2-adrenergic and adenosine A2A receptors were tested on the active and inactive M2 muscarinic acetylcholine receptor structures and further discussed in the context of the new mechanistic insights provided by the recently determined active and inactive crystal structures of the μ-opioid receptor. Overall, the structural and energetic analyses of the interhelical interactions present in this collection of Class A GPCRs suggests the existence of a common general activation mechanism featuring a chemical space useful for drug discovery exploration.

  2. Structure and dynamics of one-dimensional ionic solutions in biological transmembrane channels.

    PubMed Central

    Skerra, A; Brickmann, J

    1987-01-01

    The structure and dynamics of solvated alkali metal cations in transmembrane channels are treated using the molecular dynamics simulation technique. The simulations are based on a modified Fischer-Brickmann model (Fischer, W., and J. Brickmann, 1983, Biophys. Chem., 18:323-337) for gramicidin A-type channels. The trajectories of all particles in the channel as well as two-dimensional pair correlation functions are analyzed. It is found from the analysis of the stationary simulation state that one-dimensional solvation complexes are formed and that the number of water molecules in the channel varies for different alkali metal cations. PMID:2440485

  3. Helix coupling

    DOEpatents

    Ginell, W.S.

    1989-04-25

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the "U" sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  4. Helix coupling

    DOEpatents

    Ginell, W.S.

    1982-03-17

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the U sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  5. Unwinding of the uniform lying helix structure in cholesteric liquid crystals next to a spatially uniform aligning surface.

    PubMed

    Salter, Patrick S; Carbone, Giovanni; Jewell, Sharon A; Elston, Steve J; Raynes, Peter

    2009-10-01

    The symmetry of the cholesteric uniform lying helix (ULH) structure, where the helix axis is aligned in a single direction parallel to the device substrates, is not compatible with a uniform surface alignment and an unwinding of the helical structure is expected at the interface. Fluorescence confocal polarizing microscopy experiments are performed on the interface between a bulk ULH and a uniform aligning surface (for both planar and homeotropic alignments). The results are analyzed in the framework of a finite difference numerical simulation based on the Frank elastic distortion, to determine relevant director structures. An optical model is introduced to predict three-dimensional fluorescence profiles for the structures. Comparison of experimental and theoretical results shows that the equilibrium structure of the system involves a continuous unwinding of the helix close to the surface. PMID:19905325

  6. Structural characterizations of fusion peptide analogs of influenza virus hemagglutinin. Implication of the necessity of a helix-hinge-helix motif in fusion activity.

    PubMed

    Hsu, Chun-Hua; Wu, Shih-Hsiung; Chang, Ding-Kwo; Chen, Chinpan

    2002-06-21

    Infection by enveloped viruses initially involves membrane fusion between viral and host cell membranes. The fusion peptide plays a crucial role in triggering this reaction. To clarify how the fusion peptide exerts this specific function, we carried out biophysical studies of three fusion peptide analogs of influenza virus hemagglutinin HA2, namely E5, G13L, and L17A. E5 exhibits an activity similar to the native fusion peptide, whereas G13L and L17A, which are two point mutants of the E5 analog, possess much less fusion activity. Our CD data showed that the conformations of these three analogs in SDS micelles are pH-dependent, with higher alpha-helical contents at acidic pH. Tryptophan fluorescence emission experiments indicated that these three analogs insert deeper into lipid bilayers at acidic pH. The three-dimensional structure of the E5 analog in SDS micelles at pH 4.0 revealed that two segments, Leu(2)-Glu(11) and Trp(14)-Ile(18), form amphipathic helical conformations, with Gly(12)-Gly(13) forming a hinge. The hydrophobic residues in the N- and C-terminal helices form a hydrophobic cluster. At neutral pH, however, the C-terminal helix of Trp(14)-Ile(18) reduces dramatically, and the hydrophobic core observed at acidic pH is severely disrupted. We suggest that the disruption of the C-terminal helix renders the E5 analog fusion-inactive at neutral pH. Furthermore, the decrease of the hinge and the reduction of fusion activity in G13L reveal the importance of the hinge in fusion activity. Also, the decrease in the C-terminal helix and the reduction of fusion activity in L17A demonstrates the importance of the C-terminal helix in fusion activity. Based on these biophysical studies, we propose a model that illustrates the structural change of the HA2 fusion peptide analog and explains how the analog interacts with the lipid bilayer at different pH values.

  7. Structure of FitAB from Neisseria gonorrhoeae bound to DNA reveals a tetramer of toxin-antitoxin heterodimers containing pin domains and ribbon-helix-helix motifs.

    PubMed

    Mattison, Kirsten; Wilbur, J Scott; So, Magdalene; Brennan, Richard G

    2006-12-01

    Neisseria gonorrhoeae is a sexually transmitted pathogen that initiates infections in humans by adhering to the mucosal epithelium of the urogenital tract. The bacterium then enters the apical region of the cell and traffics across the cell to exit into the subepithelial matrix. Mutations in the fast intracellular trafficking (fitAB) locus cause the bacteria to transit a polarized epithelial monolayer more quickly than the wild-type parent and to replicate within cells at an accelerated rate. Here, we describe the crystal structure of the toxin-antitoxin heterodimer, FitAB, bound to a high affinity 36-bp DNA fragment from the fitAB promoter. FitA, the antitoxin, binds DNA through its ribbon-helix-helix motif and is tethered to FitB, the toxin, to form a heterodimer by the insertion of a four turn alpha-helix into an extensive FitB hydrophobic pocket. FitB is composed of a PIN (PilT N terminus) domain, with a central, twisted, 5-stranded parallel beta-sheet that is open on one side and flanked by five alpha-helices. FitB in the context of the FitAB complex does not display nuclease activity against tested PIN substrates. The FitAB complex points to the mechanism by which antitoxins with RHH motifs can block the activity of toxins with PIN domains. Interactions between two FitB molecules result in the formation of a tetramer of FitAB heterodimers, which binds to the 36-bp DNA fragment and provides an explanation for how FitB enhances the DNA binding affinity of FitA. PMID:16982615

  8. Structure and Biophysical Properties of a Triple-Stranded Beta-Helix Comprising the Central Spike of Bacteriophage T4

    PubMed Central

    Buth, Sergey A.; Menin, Laure; Shneider, Mikhail M.; Engel, Jürgen; Boudko, Sergei P.; Leiman, Petr G.

    2015-01-01

    Gene product 5 (gp5) of bacteriophage T4 is a spike-shaped protein that functions to disrupt the membrane of the target cell during phage infection. Its C-terminal domain is a long and slender β-helix that is formed by three polypeptide chains wrapped around a common symmetry axis akin to three interdigitated corkscrews. The folding and biophysical properties of such triple-stranded β-helices, which are topologically related to amyloid fibers, represent an unsolved biophysical problem. Here, we report structural and biophysical characterization of T4 gp5 β-helix and its truncated mutants of different lengths. A soluble fragment that forms a dimer of trimers and that could comprise a minimal self-folding unit has been identified. Surprisingly, the hydrophobic core of the β-helix is small. It is located near the C-terminal end of the β-helix and contains a centrally positioned and hydrated magnesium ion. A large part of the β-helix interior comprises a large elongated cavity that binds palmitic, stearic, and oleic acids in an extended conformation suggesting that these molecules might participate in the folding of the complete β-helix. PMID:26295253

  9. Analysis of a Chiral Dielectric Supported Broadband Helix Slow-Wave Structure for Millimeter-Wave TWTs

    NASA Astrophysics Data System (ADS)

    Datta, S. K.; Jayashree, E. V.; Veena, S. D.; Kumar, Lalit

    2007-09-01

    A novel technique of broadbanding a helical slow-wave structure through negative dispersion shaping is proposed. The model considers a simple continuous chiral dielectric support for the helix inside a metallic barrel, unlike conventional helix slow-wave structures with three discrete dielectric supports at 1200 apart. The dispersion relation of the slow-wave structure was derived following sheath-helix abstraction, suitably benchmarked for special cases, and was used for analyzing the dispersion behavior of a typical slow-wave structure. Chiral dielectric loading could easily provide negative dispersion characteristics (required for broadband operation) by merely controlling the chirality parameter alone. The scheme with its simple geometric configuration is expected to be useful for millimeter-wave devices providing better thermal management.

  10. Predicting RNA 3D structure using a coarse-grain helix-centered model.

    PubMed

    Kerpedjiev, Peter; Höner Zu Siederdissen, Christian; Hofacker, Ivo L

    2015-06-01

    A 3D model of RNA structure can provide information about its function and regulation that is not possible with just the sequence or secondary structure. Current models suffer from low accuracy and long running times and either neglect or presume knowledge of the long-range interactions which stabilize the tertiary structure. Our coarse-grained, helix-based, tertiary structure model operates with only a few degrees of freedom compared with all-atom models while preserving the ability to sample tertiary structures given a secondary structure. It strikes a balance between the precision of an all-atom tertiary structure model and the simplicity and effectiveness of a secondary structure representation. It provides a simplified tool for exploring global arrangements of helices and loops within RNA structures. We provide an example of a novel energy function relying only on the positions of stems and loops. We show that coupling our model to this energy function produces predictions as good as or better than the current state of the art tools. We propose that given the wide range of conformational space that needs to be explored, a coarse-grain approach can explore more conformations in less iterations than an all-atom model coupled to a fine-grain energy function. Finally, we emphasize the overarching theme of providing an ensemble of predicted structures, something which our tool excels at, rather than providing a handful of the lowest energy structures. PMID:25904133

  11. Predicting RNA 3D structure using a coarse-grain helix-centered model.

    PubMed

    Kerpedjiev, Peter; Höner Zu Siederdissen, Christian; Hofacker, Ivo L

    2015-06-01

    A 3D model of RNA structure can provide information about its function and regulation that is not possible with just the sequence or secondary structure. Current models suffer from low accuracy and long running times and either neglect or presume knowledge of the long-range interactions which stabilize the tertiary structure. Our coarse-grained, helix-based, tertiary structure model operates with only a few degrees of freedom compared with all-atom models while preserving the ability to sample tertiary structures given a secondary structure. It strikes a balance between the precision of an all-atom tertiary structure model and the simplicity and effectiveness of a secondary structure representation. It provides a simplified tool for exploring global arrangements of helices and loops within RNA structures. We provide an example of a novel energy function relying only on the positions of stems and loops. We show that coupling our model to this energy function produces predictions as good as or better than the current state of the art tools. We propose that given the wide range of conformational space that needs to be explored, a coarse-grain approach can explore more conformations in less iterations than an all-atom model coupled to a fine-grain energy function. Finally, we emphasize the overarching theme of providing an ensemble of predicted structures, something which our tool excels at, rather than providing a handful of the lowest energy structures.

  12. Structural Organization of a Full-Length Gp130/LIF-R Cytokine Receptor Transmembrane Complex

    SciTech Connect

    Skiniotis, G.; Lupardus, P.J.; Martick, M.; Walz, T.; Garcia, K.C.

    2009-05-26

    gp130 is a shared receptor for at least nine cytokines, and can signal either as a homodimer, or as a heterodimer with Leukemia Inhibitory Factor Receptor (LIF-R). Here we biophysically and structurally characterize the full-length, transmembrane form of a quaternary cytokine receptor complex consisting of gp130, LIF-R, the cytokine Ciliary Neurotrophic Factor (CNTF), and its alpha receptor (CNTF-R{alpha}). Thermodynamic analysis indicates that, unlike the cooperative assembly of the symmetric gp130/Interleukin-6/IL-6R{alpha} hexameric complex, CNTF/CNTF-R{alpha} heterodimerizes gp130 and LIF-R via non-cooperative energetics to form an asymmetric 1:1:1:1 complex. Single particle electron microscopic (EM) analysis of the full-length gp130/LIF-R/CNTF-R{alpha}/CNTF quaternary complex elucidates an asymmetric structural arrangement, in which the receptor extracellular and transmembrane segments join as a continuous, rigid unit, poised to sensitively transduce ligand engagement to the membrane-proximal intracellular signaling regions. These studies also enumerate the organizing principles for assembly of the 'tall' class of gp130-family cytokine receptor complexes including LIF, IL-27, IL-12, and others.

  13. All-atom 3D structure prediction of transmembrane β-barrel proteins from sequences

    PubMed Central

    Hayat, Sikander; Sander, Chris; Marks, Debora S.

    2015-01-01

    Transmembrane β-barrels (TMBs) carry out major functions in substrate transport and protein biogenesis but experimental determination of their 3D structure is challenging. Encouraged by successful de novo 3D structure prediction of globular and α-helical membrane proteins from sequence alignments alone, we developed an approach to predict the 3D structure of TMBs. The approach combines the maximum-entropy evolutionary coupling method for predicting residue contacts (EVfold) with a machine-learning approach (boctopus2) for predicting β-strands in the barrel. In a blinded test for 19 TMB proteins of known structure that have a sufficient number of diverse homologous sequences available, this combined method (EVfold_bb) predicts hydrogen-bonded residue pairs between adjacent β-strands at an accuracy of ∼70%. This accuracy is sufficient for the generation of all-atom 3D models. In the transmembrane barrel region, the average 3D structure accuracy [template-modeling (TM) score] of top-ranked models is 0.54 (ranging from 0.36 to 0.85), with a higher (44%) number of residue pairs in correct strand–strand registration than in earlier methods (18%). Although the nonbarrel regions are predicted less accurately overall, the evolutionary couplings identify some highly constrained loop residues and, for FecA protein, the barrel including the structure of a plug domain can be accurately modeled (TM score = 0.68). Lower prediction accuracy tends to be associated with insufficient sequence information and we therefore expect increasing numbers of β-barrel families to become accessible to accurate 3D structure prediction as the number of available sequences increases. PMID:25858953

  14. Crystal Structure of the Signaling Helix Coiled-coil Domain of the b1 Subunit of the Soluble guanylyl Cyclase

    SciTech Connect

    Ma, X.; Beuve, A; van den Akker, F

    2010-01-01

    The soluble guanylyl cyclase (sGC) is a heterodimeric enzyme that, upon activation by nitric oxide, stimulates the production of the second messenger cGMP. Each sGC subunit harbor four domains three of which are used for heterodimerization: H-NOXA/H-NOBA domain, coiled-coil domain (CC), and catalytic guanylyl cyclase domain. The CC domain has previously been postulated to be part of a larger CC family termed the signaling helix (S-helix) family. Homodimers of sGC have also been observed but are not functionally active yet are likely transient awaiting their intended heterodimeric partner. To investigate the structure of the CC S-helix region, we crystallized and determined the structure of the CC domain of the sGC{beta}1 subunit comprising residues 348-409. The crystal structure was refined to 2.15 {angstrom} resolution. The CC structure of sGC{beta}1 revealed a tetrameric arrangement comprised of a dimer of CC dimers. Each monomer is comprised of a long a-helix, a turn near residue P399, and a short second a-helix. The CC structure also offers insights as to how sGC homodimers are not as stable as (functionally) active heterodimers via a possible role for inter-helix salt-bridge formation. The structure also yielded insights into the residues involved in dimerization. In addition, the CC region is also known to harbor a number of congenital and man-made mutations in both membrane and soluble guanylyl cyclases and those function-affecting mutations have been mapped onto the CC structure. This mutant analysis indicated an importance for not only certain dimerization residue positions, but also an important role for other faces of the CC dimer which might perhaps interact with adjacent domains. Our results also extend beyond guanylyl cyclases as the CC structure is, to our knowledge, the first S-helix structure and serves as a model for all S-helix containing family members.

  15. Characterizing diverse orthologues of the cystic fibrosis transmembrane conductance regulator protein for structural studies.

    PubMed

    Pollock, Naomi L; Rimington, Tracy L; Ford, Robert C

    2015-10-01

    As an ion channel, the cystic fibrosis transmembrane conductance regulator (CFTR) protein occupies a unique niche within the ABC family. Orthologues of CFTR are extant throughout the animal kingdom from sharks to platypods to sheep, where the osmoregulatory function of the protein has been applied to differing lifestyles and diverse organ systems. In humans, loss-of-function mutations to CFTR cause the disease cystic fibrosis, which is a significant health burden in populations of white European descent. Orthologue screening has proved fruitful in the pursuit of high-resolution structural data for several membrane proteins, and we have applied some of the princples developed in previous studies to the expression and purification of CFTR. We have overexpressed this protein, along with evolutionarily diverse orthologues, in Saccharomyces cerevisiae and developed a purification to isolate it in quantities sufficient for structural and functional studies. PMID:26517900

  16. The discovery of the α-helix and β-sheet, the principal structural features of proteins

    PubMed Central

    Eisenberg, David

    2003-01-01

    PNAS papers by Linus Pauling, Robert Corey, and Herman Branson in the spring of 1951 proposed the α-helix and the β-sheet, now known to form the backbones of tens of thousands of proteins. They deduced these fundamental building blocks from properties of small molecules, known both from crystal structures and from Pauling's resonance theory of chemical bonding that predicted planar peptide groups. Earlier attempts by others to build models for protein helices had failed both by including nonplanar peptides and by insisting on helices with an integral number of units per turn. In major respects, the Pauling–Corey–Branson models were astoundingly correct, including bond lengths that were not surpassed in accuracy for >40 years. However, they did not consider the hand of the helix or the possibility of bent sheets. They also proposed structures and functions that have not been found, including the γ-helix. PMID:12966187

  17. Structures of Two Arabidopsis thaliana Major Latex Proteins Represent Novel Helix-Grip Folds

    PubMed Central

    Lytle, Betsy L.; Song, Jikui; de la Cruz, Norberto B.; Peterson, Francis C.; Johnson, Kenneth A.; Bingman, Craig A.; Phillips, George N.; Volkman, Brian F.

    2010-01-01

    The major latex proteins (MLP) are a protein family first identified in the latex of opium poppy. They are found only in plants and have 24 identified members in Arabidopsis alone as well as in other plants such as peach, strawberry, melon, cucumber, and soybean. While the function of the MLPs is unknown, they have been associated with fruit and flower development and in pathogen defense responses. Based on modest sequence similarity, they have been characterized as members of the Bet v 1 protein superfamily; however, no structures have yet been reported. As part of an ongoing structural genomics effort, we determined the structures of two Arabidopsis thaliana MLPs: the solution structure of MLP28 (gene product of At1g70830.1) and the crystal structure of At1g24000.1. The structures revealed distinct differences when compared to one another and to the typical Bet v 1 fold. Nevertheless, NMR titration experiments demonstrated that the characteristic Bet v 1 hydrophobic binding pocket of At1g24000.1 is able to bind a ligand, suggesting that it plays a role in the function of the MLPs. A structure-based sequence analysis identified conserved hydrophobic residues in the long alpha helix that contribute to the binding cavity and may specify preferred ligands for the MLP family. PMID:19326460

  18. Right- and left-handed three-helix proteins. I. Experimental and simulation analysis of differences in folding and structure.

    PubMed

    Glyakina, Anna V; Pereyaslavets, Leonid B; Galzitskaya, Oxana V

    2013-09-01

    Despite the large number of publications on three-helix protein folding, there is no study devoted to the influence of handedness on the rate of three-helix protein folding. From the experimental studies, we make a conclusion that the left-handed three-helix proteins fold faster than the right-handed ones. What may explain this difference? An important question arising in this paper is whether the modeling of protein folding can catch the difference between the protein folding rates of proteins with similar structures but with different folding mechanisms. To answer this question, the folding of eight three-helix proteins (four right-handed and four left-handed), which are similar in size, was modeled using the Monte Carlo and dynamic programming methods. The studies allowed us to determine the orders of folding of the secondary-structure elements in these domains and amino acid residues which are important for the folding. The obtained data are in good correlation with each other and with the experimental data. Structural analysis of these proteins demonstrated that the left-handed domains have a lesser number of contacts per residue and a smaller radius of cross section than the right-handed domains. This may be one of the explanations of the observed fact. The same tendency is observed for the large dataset consisting of 332 three-helix proteins (238 right- and 94 left-handed). From our analysis, we found that the left-handed three-helix proteins have some less-dense packing that should result in faster folding for some proteins as compared to the case of right-handed proteins.

  19. Genomic structure of SAS, a member of the transmembrane 4 superfamily amplified in human sarcomas

    SciTech Connect

    Jankowski, S.A.; De Jong, P.; Meltzer, P.S.

    1995-01-20

    SAS is a recently identified member of the transmembrane 4 superfamily (TM4SF) that is frequently amplified in human sarcomas. To further its characterization and to confirm its classification, the genomic structure of the SAS gene was determined. The SAS gene covers approximately 3.2 kb of DNA. It contains six exons within its translated region, three of which are highly conserved in the TM4SF. 5{prime} to the translation start site are two putative transcription start sites, two CCAAT consensus sequences, and potential binding sites for both Sp1 and ATF transcription factors. Comparison of SAS organization to human ME491, CD9, and CD53 and murine CD53 and TAPA-1 confirms that SAS is a member of this family of genes and is consistent with the theory that these genes arose through duplication and divergent evolution. 44 refs., 4 figs., 2 tabs.

  20. Transmembrane Signaling Characterized in Bacterial Chemoreceptors by Using Sulfhydryl Cross-Linking in vivo

    NASA Astrophysics Data System (ADS)

    Lee, Geoffrey F.; Lebert, Michael R.; Lilly, Angela A.; Hazelbauer, Gerald L.

    1995-04-01

    Transmembrane signaling by bacterial chemoreceptors is thought to involve conformational changes within a stable homodimer. We investigated the functional consequences of constraining movement between pairs of helices in the four-helix structure of the transmembrane domain of chemoreceptor Trg. Using a family of cysteine-containing receptors, we identified oxidation treatments for intact cells that catalyzed essentially complete sulfhydryl cross-linking at selected positions and yet left flagellar and sensory functions largely unperturbed. Constraining movement by cross-links between subunits had little effect on tactic response, but constraining movement between transmembrane segments of the monomer drastically reduced function. We deduce that transmembrane signaling requires substantial movement between transmembrane helices of a monomer but not between interacting helices across the interface between subunits.

  1. Bis-Histidine-Coordinated Hemes in Four-Helix Bundles: How the Geometry of the Bundle Controls the Axial Imidazole Plane Orientations in Transmembrane Cytochromes of Mitochondrial Complexes II and III and Related Proteins

    PubMed Central

    Berry, Edward A.; Walker, F. Ann

    2009-01-01

    Early investigation of the EPR spectra of bis-histidine-coordinated membrane-bound ferriheme proteins led to the description of a spectral signal that had only one resolved feature. These became known as “highly anisotropic low-spin” (HALS) or “large gmax” ferriheme centers. Extensive work with small-molecule model heme complexes showed that this spectroscopic signature occurs in bis-imidazole ferrihemes in which the planes of the imidazole ligands are nearly perpendicular, Δϕ = 57–90°. In the last decade protein crystallographic studies have revealed the atomic structures of a number of examples of bis-histidine heme proteins. A frequent characteristic of these large gmax ferrihemes in membrane-bound proteins is the occurrence of the heme within a four-helix bundle with a left-handed twist. The histidine ligands occur at the same level on two diametrically opposed helices of the bundle. These ligands have the same side chain conformation and ligate heme iron on the bundle axis, resulting in a quasi-2-fold symmetric structure. The two non-ligand-bearing helices also obey this symmetry, and have a conserved small residue, usually glycine, where the edge of the heme ring makes contact with the helix backbones. In many cases this small residue is preceded by a threonine or serine residue whose side chain hydroxyl oxygen acts as a hydrogen-bond acceptor from the Nδ1 atom of the heme-ligating histidine. The Δϕ angle is thus determined by the common histidine side-chain conformation and the crossing angle of the ligand-bearing helices, in some cases constrained by H-bonds to the Ser/Thr residues on the non-ligand-bearing helices. PMID:18418633

  2. Structural Studies of Amphiphilic 4-Helix Bundle Peptides Incorporating Designed Extended Chromophores for Nonlinear Optical Biomolecular Materials

    SciTech Connect

    Strzalka,J.; Xu, T.; Tronin, A.; Wu, S.; Miloradovic, I.; Kuzmenko, I.; Gog, T.; Therien, M.; Blasie, K.

    2006-01-01

    Extended conjugated chromophores containing (porphinato)zinc components that exhibit large optical polarizabilities and hyperpolarizabiliites are incorporated into amphiphilic 4-helix bundle peptides via specific axial histidyl ligation of the metal. The bundle's designed amphiphilicity enables vectorial orientation of the chromophore/peptide complex in macroscopic monolayer ensembles. The 4-helix bundle structure is maintained upon incorporation of two different chromophores at stoichiometries of 1-2 per bundle. The axial ligation site appears to effectively control the position of the chromophore along the length of the bundle.

  3. Predicting three-dimensional structures of transmembrane domains of β-barrel membrane proteins

    PubMed Central

    Naveed, Hammad; Xu, Yun; Jackups, Ronald; Liang, Jie

    2012-01-01

    β-barrel membrane proteins are found in the outer membrane of gram-negative bacteria, mitochondria, and chloroplasts. They are important for pore formation, membrane anchoring, enzyme activity, and are often responsible for bacterial virulence. Due to difficulties in experimental structure determination, they are sparsely represented in the protein structure databank. We have developed a computational method for predicting structures of the trans-membrane (TM) domains of β-barrel membrane proteins. Our method based on key organization principles, can predict structures of the TM domain of β-barrel membrane proteins of novel topology, including those from eukaryotic mitochondria. Our method is based on a model of physical interactions, a discrete conformational state-space, an empirical potential function, as well as a model to account for interstrand loop entropy. We are able to construct three dimensional atomic structure of the TM-domains from sequences for a set of 23 non-homologous proteins (resolution 1.8 – 3.0 Å). The median RMSD of TM-domains containing 75–222 residues between predicted and measured structures is 3.9 Å for main chain atoms. In addition, stability determinants and protein-protein interaction sites can be predicted. Such predictions on eukaryotic mitochondria outer membrane protein Tom40 and VDAC are confirmed by independent mutagenesis and chemical cross-linking studies. These results suggest that our model captures key components of the organization principles of β-barrel membrane protein assembly. PMID:22148174

  4. An empirical energy function for structural assessment of protein transmembrane domains.

    PubMed

    Postic, Guillaume; Ghouzam, Yassine; Gelly, Jean-Christophe

    2015-08-01

    Knowing the structure of a protein is essential to characterize its function and mechanism at the molecular level. Despite major advances in solving structures experimentally, most membrane protein native conformations remain unknown. This lack of available structures, along with the physical constraints imposed by the lipid bilayer environment, constitutes a difficulty for the modeling of membrane protein structures. Assessing the quality of membrane protein models is therefore critical. Using a non-redundant set of 66 membrane protein structures (41 alpha and 25 beta), we have developed an empirical energy function for the structural assessment of alpha-helical and beta-sheet transmembrane domains. This statistical potential quantifies the interatomic distance between residues located in the lipid bilayer. To minimize the problem of insufficient sampling, we have used kernel density estimations of the distance distributions. Following a leave-one-out cross-validation procedure, we show that our method outperforms current statistical potentials in discriminating correct from incorrect membrane protein models. Furthermore, the comparison of our distance-dependent statistical potential with one optimized on globular proteins provides insights into the rules by which residues interact within the lipid bilayer. PMID:26044650

  5. The position of the Gly-xxx-Gly motif in transmembrane segments modulates dimer affinity.

    PubMed

    Johnson, Rachel M; Rath, Arianna; Deber, Charles M

    2006-12-01

    Although the intrinsic low solubility of membrane proteins presents challenges to their high-resolution structure determination, insight into the amino acid sequence features and forces that stabilize their folds has been provided through study of sequence-dependent helix-helix interactions between single transmembrane (TM) helices. While the stability of helix-helix partnerships mediated by the Gly-xxx-Gly (GG4) motif is known to be generally modulated by distal interfacial residues, it has not been established whether the position of this motif, with respect to the ends of a given TM segment, affects dimer affinity. Here we examine the relationship between motif position and affinity in the homodimers of 2 single-spanning membrane protein TM sequences: glycophorin A (GpA) and bacteriophage M13 coat protein (MCP). Using the TOXCAT assay for dimer affinity on a series of GpA and MCP TM segments that have been modified with either 4 Leu residues at each end or with 8 Leu residues at the N-terminal end, we show that in each protein, centrally located GG4 motifs are capable of stronger helix-helix interactions than those proximal to TM helix ends, even when surrounding interfacial residues are maintained. The relative importance of GG4 motifs in stabilizing helix-helix interactions therefore must be considered not only in its specific residue context but also in terms of the location of the interactive surface relative to the N and C termini of alpha-helical TM segments.

  6. Interfacial water screens the protein-induced transmembrane voltage.

    PubMed

    Zarzycki, Piotr

    2015-01-29

    Transmembrane proteins are crucial in cellular traffic, signal transduction, and energy storage in a form of transmembrane voltage. These proteins are stabilized by hydrophobic and hydrophilic interactions, in which cytoplasmic and exoplasmic water plays a special role. Water structural ordering generates the dipole potential that typically overcompensates for an intrinsic membrane-protein potential gradient, and thus it modifies and sustains an overall cellular electrostatics. Although the transmembrane voltage has been extensively studied, the dipole potential has attracted very little attention. Here, by using molecular dynamics, we examined water electrostatic response to the transmembrane charge, field, and potential asymmetry introduced by the presence of four integral membrane proteins: typical of inner (α-helix) and outer membrane (β-barrel). In all cases, the protein presence introduces electrostatic directionality in the transmembrane dipole field and voltage. In particular, water generates a deep potential sink if strongly polar residues are densely packed on one side of bilayer, as frequently occurs in a selectivity filter of the K(+) channel. We also found that protein secondary structure is less important than the polar residue distribution along the protein channel. Our findings are relevant for understanding the driving force behind biomembrane conductivity: the ability of biological water to electrostatically screen the transmembrane voltage.

  7. Artificial Diiron Enzymes with a De Novo Designed Four-Helix Bundle Structure

    PubMed Central

    Chino, Marco; Maglio, Ornella; Nastri, Flavia; Pavone, Vincenzo; DeGrado, William F.

    2016-01-01

    A single polypeptide chain may provide an astronomical number of conformers. Nature selected only a trivial number of them through evolution, composing an alphabet of scaffolds, that can afford the complete set of chemical reactions needed to support life. These structural templates are so stable that they allow several mutations without disruption of the global folding, even having the ability to bind several exogenous cofactors. With this perspective, metal cofactors play a crucial role in the regulation and catalysis of several processes. Nature is able to modulate the chemistry of metals, adopting only a few ligands and slightly different geometries. Several scaffolds and metal-binding motifs are representing the focus of intense interest in the literature. This review discusses the widespread four-helix bundle fold, adopted as a scaffold for metal binding sites in the context of de novo protein design to obtain basic biochemical components for biosensing or catalysis. In particular, we describe the rational refinement of structure/function in diiron–oxo protein models from the due ferri (DF) family. The DF proteins were developed by us through an iterative process of design and rigorous characterization, which has allowed a shift from structural to functional models. The examples reported herein demonstrate the importance of the synergic application of de novo design methods as well as spectroscopic and structural characterization to optimize the catalytic performance of artificial enzymes. PMID:27630532

  8. The molecular structure of the left-handed supra-molecular helix of eukaryotic polyribosomes

    NASA Astrophysics Data System (ADS)

    Myasnikov, Alexander G.; Afonina, Zhanna A.; Ménétret, Jean-François; Shirokov, Vladimir A.; Spirin, Alexander S.; Klaholz, Bruno P.

    2014-11-01

    During protein synthesis, several ribosomes bind to a single messenger RNA (mRNA) forming large macromolecular assemblies called polyribosomes. Here we report the detailed molecular structure of a 100 MDa eukaryotic poly-ribosome complex derived from cryo electron tomography, sub-tomogram averaging and pseudo-atomic modelling by crystal structure fitting. The structure allowed the visualization of the three functional parts of the polysome assembly, the central core region that forms a rather compact left-handed supra-molecular helix, and the more open regions that harbour the initiation and termination sites at either ends. The helical region forms a continuous mRNA channel where the mRNA strand bridges neighbouring exit and entry sites of the ribosomes and prevents mRNA looping between ribosomes. This structure provides unprecedented insights into protein- and RNA-mediated inter-ribosome contacts that involve conserved sites through 40S subunits and long protruding RNA expansion segments, suggesting a role in stabilizing the overall polyribosomal assembly.

  9. The molecular structure of the left-handed supra-molecular helix of eukaryotic polyribosomes.

    PubMed

    Myasnikov, Alexander G; Afonina, Zhanna A; Ménétret, Jean-François; Shirokov, Vladimir A; Spirin, Alexander S; Klaholz, Bruno P

    2014-11-07

    During protein synthesis, several ribosomes bind to a single messenger RNA (mRNA) forming large macromolecular assemblies called polyribosomes. Here we report the detailed molecular structure of a 100 MDa eukaryotic poly-ribosome complex derived from cryo electron tomography, sub-tomogram averaging and pseudo-atomic modelling by crystal structure fitting. The structure allowed the visualization of the three functional parts of the polysome assembly, the central core region that forms a rather compact left-handed supra-molecular helix, and the more open regions that harbour the initiation and termination sites at either ends. The helical region forms a continuous mRNA channel where the mRNA strand bridges neighbouring exit and entry sites of the ribosomes and prevents mRNA looping between ribosomes. This structure provides unprecedented insights into protein- and RNA-mediated inter-ribosome contacts that involve conserved sites through 40S subunits and long protruding RNA expansion segments, suggesting a role in stabilizing the overall polyribosomal assembly.

  10. Structure and Function of the Intracellular Region of the Plexin-B1 Transmembrane Receptor

    SciTech Connect

    Tong, Yufeng; Hota, Prasanta K.; Penachioni, Junia Y.; Hamaneh, Mehdi B.; Kim, SoonJeung; Alviani, Rebecca S.; Shen, Limin; He, Hao; Tempel, Wolfram; Tamagnone, Luca; Park, Hee-Won; Buck, Matthias

    2010-02-11

    Members of the plexin family are unique transmembrane receptors in that they interact directly with Rho family small GTPases; moreover, they contain a GTPase-activating protein (GAP) domain for R-Ras, which is crucial for plexin-mediated regulation of cell motility. However, the functional role and structural basis of the interactions between the different intracellular domains of plexins remained unclear. Here we present the 2.4 {angstrom} crystal structure of the complete intracellular region of human plexin-B1. The structure is monomeric and reveals that the GAP domain is folded into one structure from two segments, separated by the Rho GTPase binding domain (RBD). The RBD is not dimerized, as observed previously. Instead, binding of a conserved loop region appears to compete with dimerization and anchors the RBD to the GAP domain. Cell-based assays on mutant proteins confirm the functional importance of this coupling loop. Molecular modeling based on structural homology to p120{sup GAP} {center_dot}H-Ras suggests that Ras GTPases can bind to the plexin GAP region. Experimentally, we show that the monomeric intracellular plexin-B1 binds R-Ras but not H-Ras. These findings suggest that the monomeric form of the intracellular region is primed for GAP activity and extend a model for plexin activation.

  11. Study on Effects of Different Metallic Vane-Loaded Helix Slow-Wave Structures in Traveling-Wave Tubes

    NASA Astrophysics Data System (ADS)

    Yang, Jianhong; Zhang, Yong; Cai, Xueyuan; Li, Lin

    2009-06-01

    The effects of different metallic vane-loaded helix slow-wave structures of a traveling-wave tube are proposed based on the analysis of the Fourier expansions of the exterior region with metallic vanes. The influences of the metallic vanes dimensions on the phase velocity and interaction impedance are considered in detail. The computed data is compared with the reference data in the 0-16 GHz frequency range with a good consistency. The analytical results reveal that the method of using Fourier expansions can contribute effectively to the reducing of the error between the theoretical and experimented data (around 1.2%). By analyzing the computed results, the performances of the helix slow-wave structure, with T-shaped metallic vanes are superior to the sector-shaped with the same designed parameters. Adjustments can be made to the outer radius of T-shaped metallic vanes which then control the dispersion relation showing either negative or positive, and it is similar to sector-shaped vanes by adjusting its inner radius. And with increasing the distance between the helix and metallic vanes, the dispersion characteristics and interaction impedance of the helix slow-wave structure with T-shaped/sector-shaped metallic vane are all improved.

  12. Structure modulation of helix 69 from Escherichia coli 23S ribosomal RNA by pseudouridylations

    PubMed Central

    Jiang, Jun; Aduri, Raviprasad; Chow, Christine S.; SantaLucia, John

    2014-01-01

    Helix 69 (H69) is a 19-nt stem-loop region from the large subunit ribosomal RNA. Three pseudouridine (Ψ) modifications clustered in H69 are conserved across phylogeny and known to affect ribosome function. To explore the effects of Ψ on the conformations of Escherichia coli H69 in solution, nuclear magnetic resonance spectroscopy was used to reveal the structural differences between H69 with (ΨΨΨ) and without (UUU) Ψ modifications. Comparison of the two structures shows that H69 ΨΨΨ has the following unique features: (i) the loop region is closed by a Watson–Crick base pair between Ψ1911 and A1919, which is potentially reinforced by interactions involving Ψ1911N1H and (ii) Ψ modifications at loop residues 1915 and 1917 promote base stacking from Ψ1915 to A1918. In contrast, the H69 UUU loop region, which lacks Ψ modifications, is less organized. Structure modulation by Ψ leads to alteration in conformational behavior of the 5' half of the H69 loop region, observed as broadening of C1914 non-exchangeable base proton resonances in the H69 ΨΨΨ nuclear magnetic resonance spectra, and plays an important biological role in establishing the ribosomal intersubunit bridge B2a and mediating translational fidelity. PMID:24371282

  13. Probabilistic grammatical model for helix‐helix contact site classification

    PubMed Central

    2013-01-01

    Background Hidden Markov Models power many state‐of‐the‐art tools in the field of protein bioinformatics. While excelling in their tasks, these methods of protein analysis do not convey directly information on medium‐ and long‐range residue‐residue interactions. This requires an expressive power of at least context‐free grammars. However, application of more powerful grammar formalisms to protein analysis has been surprisingly limited. Results In this work, we present a probabilistic grammatical framework for problem‐specific protein languages and apply it to classification of transmembrane helix‐helix pairs configurations. The core of the model consists of a probabilistic context‐free grammar, automatically inferred by a genetic algorithm from only a generic set of expert‐based rules and positive training samples. The model was applied to produce sequence based descriptors of four classes of transmembrane helix‐helix contact site configurations. The highest performance of the classifiers reached AUCROC of 0.70. The analysis of grammar parse trees revealed the ability of representing structural features of helix‐helix contact sites. Conclusions We demonstrated that our probabilistic context‐free framework for analysis of protein sequences outperforms the state of the art in the task of helix‐helix contact site classification. However, this is achieved without necessarily requiring modeling long range dependencies between interacting residues. A significant feature of our approach is that grammar rules and parse trees are human‐readable. Thus they could provide biologically meaningful information for molecular biologists. PMID:24350601

  14. Structural insight into the transmembrane segments 3 and 4 of the hERG potassium channel.

    PubMed

    Li, Qingxin; Wong, Ying Lei; Ng, Hui Qi; Gayen, Shovanlal; Kang, CongBao

    2014-12-01

    The hERG (human ether-a-go-go related gene) potassium channel is a voltage-gated potassium channel containing an N-terminal domain, a voltage-sensor domain, a pore domain and a C-terminal domain. The transmembrane segment 4 (S4) is important for sensing changes of membrane potentials through positively charge residues. A construct containing partial S2-S3 linker, S3, S4 and the S4-S5 linker of the hERG channel was purified into detergent micelles. This construct exhibits good quality NMR spectrum when it was purified in lyso-myristoyl phosphatidylglycerol (LMPG) micelles. Structural study showed that S3 contains two short helices with a negatively charged surface. The S4 and S4-S5 linker adopt helical structures. The six positively charged residues in S4 localize at different sides, suggesting that they may have different functions in channel gating. Relaxation studies indicated that S3 is more flexible than S4. The boundaries of S3-S4 and S4-S4-S5 linker were identified. Our results provided structural information of the S3 and S4, which will be helpful to understand their roles in channel gating.

  15. Structural Variation and Uniformity among Tetraloop-Receptor Interactions and Other Loop-Helix Interactions in RNA Crystal Structures

    PubMed Central

    Wu, Li; Chai, Dinggeng; Fraser, Marie E.; Zimmerly, Steven

    2012-01-01

    Tetraloop-receptor interactions are prevalent structural units in RNAs, and include the GAAA/11-nt and GNRA-minor groove interactions. In this study, we have compiled a set of 78 nonredundant loop-helix interactions from X-ray crystal structures, and examined them for the extent of their sequence and structural variation. Of the 78 interactions in the set, only four were classical GAAA/11-nt motifs, while over half (48) were GNRA-minor groove interactions. The GNRA-minor groove interactions were not a homogeneous set, but were divided into five subclasses. The most predominant subclass is characterized by two triple base pair interactions in the minor groove, flanked by two ribose zipper contacts. This geometry may be considered the “standard” GNRA-minor groove interaction, while the other four subclasses are alternative ways to form interfaces between a minor groove and tetraloop. The remaining 26 structures in the set of 78 have loops interacting with mostly idiosyncratic receptors. Among the entire set, a number of sequence-structure correlations can be identified, which may be used as initial hypotheses in predicting three-dimensional structures from primary sequences. Conversely, other sequence patterns are not predictive; for example, GAAA loop sequences and GG/CC receptors bind to each other with three distinct geometries. Finally, we observe an example of structural evolution in group II introns, in which loop-receptor motifs are substituted for each other while maintaining the larger three-dimensional geometry. Overall, the study gives a more complete view of RNA loop-helix interactions that exist in nature. PMID:23152878

  16. Transmembrane and Juxtamembrane Structure of αL Integrin in Bicelles.

    PubMed

    Surya, Wahyu; Li, Yan; Millet, Oscar; Diercks, Tammo; Torres, Jaume

    2013-01-01

    The accepted model for the interaction of α and β integrins in the transmembrane (TM) domain is based on the pair αIIbβ3. This involves the so-called outer and inner membrane association clasps (OMC and IMC, respectively). In the α chain, the OMC involves a GxxxG-like motif, whereas in the IMC a conserved juxtamembrane GFFKR motif experiences a backbone reversal that partially fills the void generated by TM separation towards the cytoplasmic half. However, the GFFKR motif of several α integrin cytoplasmic tails in non-bicelle environments has been shown to adopt an α-helical structure that is not membrane-embedded and which was shown to bind a variety of cytoplasmic proteins. Thus it is not known if a membrane-embedded backbone reversal is a conserved structural feature in α integrins. We have studied the system αLβ2 because of its importance in leukocytes, where integrin deactivation is particularly important. Herein we show that the backbone reversal feature is not only present in αIIb but also in αL-TM when reconstituted in bicelles. Additionally, titration with β2 TM showed eight residues clustering along one side of αL-TM, forming a plausible interacting face with β2. The latter orientation is consistent with a previously predicted reported polar interaction between αL Ser-1071 and β2 Thr-686.

  17. Interface connections of a transmembrane voltage sensor.

    PubMed

    Freites, J Alfredo; Tobias, Douglas J; von Heijne, Gunnar; White, Stephen H

    2005-10-18

    Voltage-sensitive ion channels open and close in response to changes in transmembrane (TM) potential caused by the motion of the S4 voltage sensors. These sensors are alpha-helices that include four or more positively charged amino acids, most commonly arginine. The so-called paddle model, based on the high-resolution structure of the KvAP K+ channel [Jiang, et al. (2003) Nature 423, 33-41], posits that the S4 sensors move within the membrane bilayer in response to TM voltage changes. Direct exposure of S4 sensors to lipid is contrary to the classical expectation that the dielectric contrast between the membrane hydrocarbon core and water presents an insurmountable energetic penalty to burial of electric charges. Nevertheless, recent experiments have shown that a helix with the sequence of KvAP S4 can be inserted across the endoplasmic reticulum membrane. To reconcile this result with the classical energetics argument, we have carried out a molecular dynamics simulation of an isolated TM S4 helix in a lipid bilayer. The simulation reveals a stabilizing hydrogen-bonded network of water and lipid phosphates around the arginines that reduces the effective thickness of the bilayer hydrocarbon core to approximately 10 A in the vicinity of the helix. It suggests that bilayer phospholipids can adapt locally to strongly perturbing protein elements, causing the phospholipids to become a structural extension of the protein.

  18. Structure based aggregation studies reveal the presence of helix-rich intermediate during α-Synuclein aggregation

    PubMed Central

    Ghosh, Dhiman; Singh, Pradeep K.; Sahay, Shruti; Jha, Narendra Nath; Jacob, Reeba S.; Sen, Shamik; Kumar, Ashutosh; Riek, Roland; Maji, Samir K.

    2015-01-01

    Mechanistic understanding of nucleation dependent polymerization by α-synuclein (α-Syn) into toxic oligomers and amyloids is important for the drug development against Parkinson's disease. However the structural and morphological characterization during nucleation and subsequent fibrillation process of α-Syn is not clearly understood. Using a variety of complementary biophysical techniques monitoring entire pathway of nine different synucleins, we found that transition of unstructured conformation into β-sheet rich fibril formation involves helix-rich intermediates. These intermediates are common for all aggregating synucleins, contain high solvent-exposed hydrophobic surfaces, are cytotoxic to SHSY-5Y cells and accelerate α-Syn aggregation efficiently. A multidimensional NMR study characterizing the intermediate accompanied with site-specific fluorescence study suggests that the N-terminal and central portions mainly participate in the helix-rich intermediate formation while the C-terminus remained in an extended conformation. However, significant conformational transitions occur at the middle and at the C-terminus during helix to β-sheet transition as evident from Trp fluorescence study. Since partial helix-rich intermediates were also observed for other amyloidogenic proteins such as Aβ and IAPP, we hypothesize that this class of intermediates may be one of the important intermediates for amyloid formation pathway by many natively unstructured protein/peptides and represent a potential target for drug development against amyloid diseases. PMID:25784353

  19. Modulating immunogenic properties of HIV-1 gp41 membrane-proximal external region by destabilizing six-helix bundle structure.

    PubMed

    Banerjee, Saikat; Shi, Heliang; Habte, Habtom H; Qin, Yali; Cho, Michael W

    2016-03-01

    The C-terminal alpha-helix of gp41 membrane-proximal external region (MPER; (671)NWFDITNWLWYIK(683)) encompassing 4E10/10E8 epitopes is an attractive target for HIV-1 vaccine development. We previously reported that gp41-HR1-54Q, a trimeric protein comprised of the MPER in the context of a stable six-helix bundle (6HB), induced strong immune responses against the helix, but antibodies were directed primarily against the non-neutralizing face of the helix. To better target 4E10/10E8 epitopes, we generated four putative fusion intermediates by introducing double point mutations or deletions in the heptad repeat region 1 (HR1) that destabilize 6HB in varying degrees. One variant, HR1-∆10-54K, elicited antibodies in rabbits that targeted W672, I675 and L679, which are critical for 4E10/10E8 recognition. Overall, the results demonstrated that altering structural parameters of 6HB can influence immunogenic properties of the MPER and antibody targeting. Further exploration of this strategy could allow development of immunogens that could lead to induction of 4E10/10E8-like antibodies. PMID:26803471

  20. Myriad Triple-Helix-Forming Structures in the Transposable Element RNAs of Plants and Fungi

    PubMed Central

    Tycowski, Kazimierz T.; Shu, Mei-Di; Steitz, Joan A.

    2016-01-01

    SUMMARY The ENE (element for nuclear expression) is a cis-acting RNA structure that protects viral or cellular noncoding (nc)RNAs from nuclear decay through triple-helix formation with the poly(A) tail or 3′-terminal A-rich tract. We expanded the roster of 9 known ENEs by bioinformatic identification of ~200 distinct ENEs that reside in transposable elements (TEs) of numerous non-metazoan and one fish species, and in four Dicistrovirus genomes. Despite variation within the ENE core, none of the predicted triple-helical stacks exceeds five base triples. Increased accumulation of reporter transcripts in human cells demonstrated functionality for representative ENEs. Location close to the poly(A) tail argues that ENEs are active in TE transcripts. Their presence in intronless but not intron-containing hAT transposase genes supports the idea that TEs acquired ENEs to counteract the RNA-destabilizing effects of intron loss, a potential evolutionary consequence of TE horizontal transfer in organisms that couple RNA silencing to splicing deficits. PMID:27134163

  1. Crystal Structures of the Response Regulator DosR From Mycobacterium Tuberculosis Suggest a Helix Rearrangement Mechanism for Phosphorylation Activation

    SciTech Connect

    Wisedchaisri, G.; Wu, M.; Sherman, D.R.; Hol, W.G.J.

    2009-05-26

    The response regulator DosR is essential for promoting long-term survival of Mycobacterium tuberculosis under low oxygen conditions in a dormant state and may be responsible for latent tuberculosis in one-third of the world's population. Here, we report crystal structures of full-length unphosphorylated DosR at 2.2 {angstrom} resolution and its C-terminal DNA-binding domain at 1.7 {angstrom} resolution. The full-length DosR structure reveals several features never seen before in other response regulators. The N-terminal domain of the full-length DosR structure has an unexpected ({beta}{alpha}){sub 4} topology instead of the canonical ({beta}{alpha}){sub 5} fold observed in other response regulators. The linker region adopts a unique conformation that contains two helices forming a four-helix bundle with two helices from another subunit, resulting in dimer formation. The C-terminal domain in the full-length DosR structure displays a novel location of helix {alpha}10, which allows Gln199 to interact with the catalytic Asp54 residue of the N-terminal domain. In contrast, the structure of the DosR C-terminal domain alone displays a remarkable unstructured conformation for helix {alpha}10 residues, different from the well-defined helical conformations in all other known structures, indicating considerable flexibility within the C-terminal domain. Our structures suggest a mode of DosR activation by phosphorylation via a helix rearrangement mechanism.

  2. Allosteric and hyperekplexic mutant phenotypes investigated on an α1 glycine receptor transmembrane structure

    PubMed Central

    Moraga-Cid, Gustavo; Sauguet, Ludovic; Huon, Christèle; Malherbe, Laurie; Girard-Blanc, Christine; Petres, Stéphane; Murail, Samuel; Taly, Antoine; Baaden, Marc; Delarue, Marc; Corringer, Pierre-Jean

    2015-01-01

    The glycine receptor (GlyR) is a pentameric ligand-gated ion channel (pLGIC) mediating inhibitory transmission in the nervous system. Its transmembrane domain (TMD) is the target of allosteric modulators such as general anesthetics and ethanol and is a major locus for hyperekplexic congenital mutations altering the allosteric transitions of activation or desensitization. We previously showed that the TMD of the human α1GlyR could be fused to the extracellular domain of GLIC, a bacterial pLGIC, to form a functional chimera called Lily. Here, we overexpress Lily in Schneider 2 insect cells and solve its structure by X-ray crystallography at 3.5 Å resolution. The TMD of the α1GlyR adopts a closed-channel conformation involving a single ring of hydrophobic residues at the center of the pore. Electrophysiological recordings show that the phenotypes of key allosteric mutations of the α1GlyR, scattered all along the pore, are qualitatively preserved in this chimera, including those that confer decreased sensitivity to agonists, constitutive activity, decreased activation kinetics, or increased desensitization kinetics. Combined structural and functional data indicate a pore-opening mechanism for the α1GlyR, suggesting a structural explanation for the effect of some key hyperekplexic allosteric mutations. The first X-ray structure of the TMD of the α1GlyR solved here using GLIC as a scaffold paves the way for mechanistic investigation and design of allosteric modulators of a human receptor. PMID:25730860

  3. The membrane- and soluble-protein helix-helix interactome: similar geometry via different interactions.

    PubMed

    Zhang, Shao-Qing; Kulp, Daniel W; Schramm, Chaim A; Mravic, Marco; Samish, Ilan; DeGrado, William F

    2015-03-01

    α Helices are a basic unit of protein secondary structure and therefore the interaction between helices is crucial to understanding tertiary and higher-order folds. Comparing subtle variations in the structural and sequence motifs between membrane and soluble proteins sheds light on the different constraints faced by each environment and elucidates the complex puzzle of membrane protein folding. Here, we demonstrate that membrane and water-soluble helix pairs share a small number of similar folds with various interhelical distances. The composition of the residues that pack at the interface between corresponding motifs shows that hydrophobic residues tend to be more enriched in the water-soluble class of structures and small residues in the transmembrane class. The latter group facilitates packing via sidechain- and backbone-mediated hydrogen bonds within the low-dielectric membrane milieu. The helix-helix interactome space, with its associated sequence preferences and accompanying hydrogen-bonding patterns, should be useful for engineering, prediction, and design of protein structure.

  4. The membrane- and soluble-protein helix-helix interactome: similar geometry via different interactions.

    PubMed

    Zhang, Shao-Qing; Kulp, Daniel W; Schramm, Chaim A; Mravic, Marco; Samish, Ilan; DeGrado, William F

    2015-03-01

    α Helices are a basic unit of protein secondary structure and therefore the interaction between helices is crucial to understanding tertiary and higher-order folds. Comparing subtle variations in the structural and sequence motifs between membrane and soluble proteins sheds light on the different constraints faced by each environment and elucidates the complex puzzle of membrane protein folding. Here, we demonstrate that membrane and water-soluble helix pairs share a small number of similar folds with various interhelical distances. The composition of the residues that pack at the interface between corresponding motifs shows that hydrophobic residues tend to be more enriched in the water-soluble class of structures and small residues in the transmembrane class. The latter group facilitates packing via sidechain- and backbone-mediated hydrogen bonds within the low-dielectric membrane milieu. The helix-helix interactome space, with its associated sequence preferences and accompanying hydrogen-bonding patterns, should be useful for engineering, prediction, and design of protein structure. PMID:25703378

  5. Phosphorylation by cAMP-dependent Protein Kinase Modulates the Structural Coupling Between the Transmembrane and Cytosolic Domains of Phospholamban

    SciTech Connect

    Li, Jinhui; Bigelow, Diana J.; Squier, Thomas C.

    2003-09-16

    We have used frequency-domain fluorescence spectroscopy to investigate the structural linkage between the transmembrane and cytosolic domains of the regulatory protein phospholamban (PLB). Using an engineered PLB having a single cysteine (Cys24) derivatized with the fluorophore N-(1-pyrenyl) maleimide (PMal), we have used fluorescence resonance energy transfer (FRET) to measure the average spatial separation and conformational heterogeneity between PMal bound to Cys24 in the transmembrane domain and Tyr6 in the cytosolic domain near the amino-terminus of PLB. In these measurements, PMal serves as an FRET donor and Tyr6 serves as a FRET acceptor following its nitration by tetranitromethane. The native structure of PLB is retained following site-directed mutagenesis and chemical modification, as indicated by the ability of the derivatized PLB to fully regulate the Ca-ATPase following their co-reconstitution. To assess how phosphorylation modulates the structure of PLB, FRET measurements were made following reconstitution of PLB in membrane vesicles made from lipids extracted from sarcoplasmic reticulum vesicles in the absence of the Ca-ATPase. We find that the cytosolic domain of PLB assumes a wide range of structures relative to the transmembrane sequence, consistent with other structural data indicating the presence of a flexible hinge region between the transmembrane and cytosolic domains of PLB. Phosphorylation of Ser16 by PKA results in almost a two-fold decrease in conformational heterogeneity, suggesting a stabilization of the hinge region of PLB possibly through an electrostatic-linkage between phosphoserine16 and Arg13. These results suggest that the stabilization of the structure of PLB following phosphorylation of Ser16 is part of a switching mechanism, which functions to alter binding interactions between PLB and the nucleotide-binding domain of the Ca-ATPase that modulates enzyme inhibition.

  6. transFold: a web server for predicting the structure and residue contacts of transmembrane beta-barrels

    PubMed Central

    Waldispühl, J.; Berger, Bonnie; Clote, Peter; Steyaert, Jean-Marc

    2006-01-01

    Transmembrane β-barrel (TMB) proteins are embedded in the outer membrane of Gram-negative bacteria, mitochondria and chloroplasts. The cellular location and functional diversity of β-barrel outer membrane proteins makes them an important protein class. At the present time, very few non-homologous TMB structures have been determined by X-ray diffraction because of the experimental difficulty encountered in crystallizing transmembrane (TM) proteins. The transFold web server uses pairwise inter-strand residue statistical potentials derived from globular (non-outer-membrane) proteins to predict the supersecondary structure of TMB. Unlike all previous approaches, transFold does not use machine learning methods such as hidden Markov models or neural networks; instead, transFold employs multi-tape S-attribute grammars to describe all potential conformations, and then applies dynamic programming to determine the global minimum energy supersecondary structure. The transFold web server not only predicts secondary structure and TMB topology, but is the only method which additionally predicts the side-chain orientation of transmembrane β-strand residues, inter-strand residue contacts and TM β-strand inclination with respect to the membrane. The program transFold currently outperforms all other methods for accuracy of β-barrel structure prediction. Available at . PMID:16844989

  7. Transmembrane Domain Interactions and Residue Proline 378 Are Essential for Proper Structure, Especially Disulfide Bond Formation, in the Human Vitamin K-Dependent γ-Glutamyl Carboxylase†

    PubMed Central

    Tie, Jian-Ke; Zheng, Mei-Yan; Hsiao, Kuang-Ling N.; Perera, Lalith; Stafford, Darrel W.; Straight, David L.

    2009-01-01

    We used recombinant techniques to create a two-chain form (residues 1–345 and residues 346–758) of the vitamin K-dependent γ-glutamyl carboxylase, a glycoprotein located in the endoplasmic reticulum containing five transmembrane domains. The two-chain carboxylase had carboxylase and epoxidase activities similar to those of one-chain carboxylase. In addition, it had normal affinity for the propeptide of factor IX. We employed this molecule to investigate formation of the one disulfide bond in carboxylase, the transmembrane structure of carboxylase, and the potential interactions among the carboxylase’s transmembrane domains. Our results indicate that the two peptides of the two-chain carboxylase are joined by a disulfide bond. Proline 378 is important for the structure necessary for disulfide formation. Results with the P378L carboxylase indicate that noncovalent bonds maintain the two-chain structure even when the disulfide bond is disrupted. As we had previously proposed, the fifth transmembrane domain of carboxylase is the last and only transmembrane domain in the C-terminal peptide of the two-chain carboxylase. We show that the noncovalent association between the two chains of carboxylase involves an interaction between the fifth transmembrane domain and the second transmembrane domain. Results of a homology model of transmembrane domains 2 and 5 suggest that not only do these two domains associate but that transmembrane domain 2 may interact with another transmembrane domain. This latter interaction may be mediated at least in part by a motif of glycine residues in the second transmembrane domain. PMID:18498174

  8. Structure, attachment properties, and ecological importance of the attachment system of English ivy (Hedera helix)

    PubMed Central

    Melzer, Björn; Seidel, Robin; Steinbrecher, Tina; Speck, Thomas

    2012-01-01

    Root climbers such as English ivy (Hedera helix) rely on specialized adventitious roots for attachment, enabling the plants to climb on a wide range of natural and artificial substrates. Despite their importance for the climbing habit, the biomechanical properties of these specialized adventitious roots compared with standard roots and their performance in the attachment to different host species or inert substrates have not been studied. Here organs and tissues involved in the attachment are characterized and their significance in regard to a broader functional and ecological aspect is discussed. Depending on the substrate, the root clusters show different types of failure modes at various frequencies, demonstrating the close interaction between the climber and its substrates. With a Young’s Modulus of 109.2 MPa, the attachment roots are relatively stiff for non-woody roots. The central cylinders of the attachment roots show a high tensile strength of 38 MPa and a very high extensibility of 34%. In host trees naturally co-distributed with English ivy, a ‘balanced’ occurrence of failure of the attachment system of the climber and the bark of the host is found, suggesting a co-evolution of climber and host. Maximum loads of root clusters normalized by the number of roots match those of individually tested attachment roots. In comparison with most subterranean roots the properties and structure of the attachment roots of English ivy show distinct differences. There exist similarities to the properties found for roots of Galium aparine, suggesting a trend in not fully self-supporting plants towards a higher extensibility. PMID:21914660

  9. Structure, attachment properties, and ecological importance of the attachment system of English ivy (Hedera helix).

    PubMed

    Melzer, Björn; Seidel, Robin; Steinbrecher, Tina; Speck, Thomas

    2012-01-01

    Root climbers such as English ivy (Hedera helix) rely on specialized adventitious roots for attachment, enabling the plants to climb on a wide range of natural and artificial substrates. Despite their importance for the climbing habit, the biomechanical properties of these specialized adventitious roots compared with standard roots and their performance in the attachment to different host species or inert substrates have not been studied. Here organs and tissues involved in the attachment are characterized and their significance in regard to a broader functional and ecological aspect is discussed. Depending on the substrate, the root clusters show different types of failure modes at various frequencies, demonstrating the close interaction between the climber and its substrates. With a Young's Modulus of 109.2 MPa, the attachment roots are relatively stiff for non-woody roots. The central cylinders of the attachment roots show a high tensile strength of 38 MPa and a very high extensibility of 34%. In host trees naturally co-distributed with English ivy, a 'balanced' occurrence of failure of the attachment system of the climber and the bark of the host is found, suggesting a co-evolution of climber and host. Maximum loads of root clusters normalized by the number of roots match those of individually tested attachment roots. In comparison with most subterranean roots the properties and structure of the attachment roots of English ivy show distinct differences. There exist similarities to the properties found for roots of Galium aparine, suggesting a trend in not fully self-supporting plants towards a higher extensibility.

  10. Asp96 deprotonation and transmembrane alpha-helical structural changes in bacteriorhodopsin.

    PubMed

    Rothschild, K J; Marti, T; Sonar, S; He, Y W; Rath, P; Fischer, W; Khorana, H G

    1993-12-25

    The M-->N transition in the photocycle of bacteriorhodopsin involves the transfer of a proton from Asp96 to the retinylidene Schiff base, possibly through a network of hydrogen-bonded amino acid residues and water molecules (Rothschild, K. J., He, Y. W., Sonar, S., Marti, T., and Khorana, H. G. (1992) J. Biol. Chem. 267, 1615-1622). A conformational change of the protein backbone is also observed during this transition. In this work, we have investigated the effects of replacing the residue Thr46, which might be part of this chain, with an aspartic acid. Both Fourier transform infrared and resonance Raman spectroscopy show that the chromophore structure of this mutant (T46D) is normal. However, N formation is accelerated and N decay is significantly slowed compared to wild-type bacteriorhodopsin. This effect causes the N intermediate to accumulate under steady-state illumination thereby facilitating spectroscopic studies under normal pH conditions. Fourier transform infrared difference spectroscopy reveals that like native bacteriorhodopsin, N formation in T46D involves deprotonation of Asp96, reprotonation of the Schiff base, and a change in the backbone secondary structure. However, in contrast to bacteriorhodopsin, bands assigned to the C = O stretch mode of the carboxylic acid group of Asp96 are upshifted by 10 cm-1 reflecting a change in the Asp96 environment and a drop in its effective pKa throughout the photocycle. This change in the pKa can directly account for changes in the photocycle kinetics and indicates that Asp96 deprotonation/protonation are the rate limiting steps in the formation and decay of the N intermediate. By studying the effects of H/D exchange, evidence is found that the backbone structural changes involve transmembrane alpha-helices. It is proposed that these structural changes serve to modulate the local environment and protonation state of Asp96 during the photocycle and are also essential for formation of the proton conducting hydrogen

  11. Structure-Based Sequence Alignment of the Transmembrane Domains of All Human GPCRs: Phylogenetic, Structural and Functional Implications

    PubMed Central

    Cvicek, Vaclav; Goddard, William A.; Abrol, Ravinder

    2016-01-01

    The understanding of G-protein coupled receptors (GPCRs) is undergoing a revolution due to increased information about their signaling and the experimental determination of structures for more than 25 receptors. The availability of at least one receptor structure for each of the GPCR classes, well separated in sequence space, enables an integrated superfamily-wide analysis to identify signatures involving the role of conserved residues, conserved contacts, and downstream signaling in the context of receptor structures. In this study, we align the transmembrane (TM) domains of all experimental GPCR structures to maximize the conserved inter-helical contacts. The resulting superfamily-wide GpcR Sequence-Structure (GRoSS) alignment of the TM domains for all human GPCR sequences is sufficient to generate a phylogenetic tree that correctly distinguishes all different GPCR classes, suggesting that the class-level differences in the GPCR superfamily are encoded at least partly in the TM domains. The inter-helical contacts conserved across all GPCR classes describe the evolutionarily conserved GPCR structural fold. The corresponding structural alignment of the inactive and active conformations, available for a few GPCRs, identifies activation hot-spot residues in the TM domains that get rewired upon activation. Many GPCR mutations, known to alter receptor signaling and cause disease, are located at these conserved contact and activation hot-spot residue positions. The GRoSS alignment places the chemosensory receptor subfamilies for bitter taste (TAS2R) and pheromones (Vomeronasal, VN1R) in the rhodopsin family, known to contain the chemosensory olfactory receptor subfamily. The GRoSS alignment also enables the quantification of the structural variability in the TM regions of experimental structures, useful for homology modeling and structure prediction of receptors. Furthermore, this alignment identifies structurally and functionally important residues in all human GPCRs

  12. Molecular structure of r/GCG/d/TATACGC/ - A DNA-RNA hybrid helix joined to double helical DNA

    NASA Technical Reports Server (NTRS)

    Wang, A. H.-J.; Fujii, S.; Rich, A.; Van Boom, J. H.; Van Der Marel, G. A.; Van Boeckel, S. A. A.

    1982-01-01

    The molecule r(GCG)d(TATACGC) is self-complementary and forms two DNA-RNA hybrid segments surrounding a central region of double helical DNA; its molecular structure has been solved by X-ray analysis. All three parts of the molecule adopt a conformation which is close to that seen in the 11-fold RNA double helix. The conformation of the ribonucleotides is partly determined by water molecules bridging between the ribose O2' hydroxyl group and cytosine O2. The hybrid-DNA duplex junction contains no structural discontinuities. However, the central DNA TATA sequence has some structural irregularities.

  13. Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity.

    PubMed

    Manjasetty, Babu A; Halavaty, Andrei S; Luan, Chi-Hao; Osipiuk, Jerzy; Mulligan, Rory; Kwon, Keehwan; Anderson, Wayne F; Joachimiak, Andrzej

    2016-04-01

    Multidrug transcription regulator AcrR from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 belongs to the tetracycline repressor family, one of the largest groups of bacterial transcription factors. The crystal structure of dimeric AcrR was determined and refined to 1.56Å resolution. The tertiary and quaternary structures of AcrR are similar to those of its homologs. The multidrug binding site was identified based on structural alignment with homologous proteins and has a di(hydroxyethyl)ether molecule bound. Residues from helices α4 and α7 shape the entry into this binding site. The structure of AcrR reveals that the extended helical conformation of helix α4 is stabilized by the hydrogen bond between Glu67 (helix α4) and Gln130 (helix α7). Based on the structural comparison with the closest homolog structure, the Escherichia coli AcrR, we propose that this hydrogen bond is responsible for control of the loop-to-helix transition within helix α4. This local conformational switch of helix α4 may be a key step in accessing the multidrug binding site and securing ligands at the binding site. Solution small-molecule binding studies suggest that AcrR binds ligands with their core chemical structure resembling the tetracyclic ring of cholesterol. PMID:26796657

  14. An acidic amino acid transmembrane helix 10 residue conserved in the neurotransmitter:sodium:symporters is essential for the formation of the extracellular gate of the γ-aminobutyric acid (GABA) transporter GAT-1.

    PubMed

    Ben-Yona, Assaf; Kanner, Baruch I

    2012-03-01

    GAT-1 mediates transport of GABA together with sodium and chloride in an electrogenic process enabling efficient GABAergic transmission. Biochemical and modeling studies based on the structure of the bacterial homologue LeuT are consistent with a mechanism whereby the binding pocket is alternately accessible to either side of the membrane and which predicts that the extracellular part of transmembrane domain 10 (TM10) exhibits aqueous accessibility in the outward-facing conformation only. In this study we have engineered cysteine residues in the extracellular half of TM10 of GAT-1 and probed their state-dependent accessibility to sulfhydryl reagents. In three out of four of the accessible cysteine mutants, the inhibition of transport by a membrane impermeant sulfhydryl reagent was diminished under conditions expected to increase the proportion of inward-facing transporters, such as the presence of GABA together with the cotransported ions. A conserved TM10 aspartate residue, whose LeuT counterpart participates in a "thin" extracellular gate, was found to be essential for transport and only the D451E mutant exhibited residual transport activity. D451E exhibited robust sodium-dependent transient currents with a voltage-dependence indicative of an increased apparent affinity for sodium. Moreover the accessibility of an endogenous cysteine to a membrane impermeant sulfhydryl reagent was enhanced by the D451E mutation, suggesting that sodium binding promotes an outward-facing conformation of the transporter. Our results support the idea that TM10 of GAT-1 lines an accessibility pathway from the extracellular space into the binding pocket and plays a role in the opening and closing of the extracellular transporter gate.

  15. Vaccine Candidate P6 of Nontypable Haemophilus influenzae is Not a Transmembrane Protein Based on Protein Structural Analysis

    PubMed Central

    Michel, Lea Vacca; Kalmeta, Breanna; McCreary, Mark; Snyder, Joy; Craig, Paul; Pichichero, Michael E.

    2011-01-01

    P6 has been a vaccine candidate for nontypable Haemophilus influenzae (NTHi) based on its location on the outer membrane and immunogenicity. Because P6 is attached to the inner peptidoglycan layer of NTHi, and is putatively surface exposed, it must be a transmembrane protein. We examined the P6 structure using computational modeling, a P6 modified by site-directed mutagenesis to study monoclonal antibody attachment to P6, and nuclear magnetic resonance spectroscopy. We found that P6 cannot be a transmembrane protein, and therefore may not be surface exposed. We conclude that there may be another protein on the surface of NTHi that has epitopes similar if not identical to P6. PMID:21215345

  16. Simplified Approach to the Nonlinear Analysis in Helix Slow-Wave-Structure for a Traveling Wave Tube

    NASA Astrophysics Data System (ADS)

    Joo, Young-Do; Sinha, Ashok Kumar; Wei, Yanyu; Park, Gun-Sik

    2003-11-01

    A stationary 1-D nonlinear code based on Lagrangian disk model is developed on the basis of a simple set of analytical expressions to study nonlinear dynamics in the helix slow-wave structure used in a traveling wave tube. The loss profiles such as triangular and Gaussian types are modeled as stairsteps and a simple formula is developed to found the loss at a plane for such loss profile. In contrast to the earlier works in nonlinear theory, at present, no numerical method is used at any stage. The method, introduced in this work, is general in nature because it can handle (a) multi-section structure with sever, (b) different loss profiles, namely, center (Gaussian) and tip (triangular: increasing or decreasing), (c) space charge effect on the electrons, (d) backward waves arising due to reflections, etc. Accuracy of the theory and code is verified with comparison of the computed present results with the results from simulation code MAGIC and published elsewhere and found to be in good agreement. The generation and suppression of the harmonic power are studied for a typical structure. It is found that the introduction of resynchronization section of the reduced pitch enhances the fundamental power with the reduction of the second harmonic power. In addition, the method can be used for any helix slow-wave-structure consisting of homogeneous/inhomogeneous dielectric support rods in isotropic/anisotropic overall metallic enclosure, because the axial propagation constant and interaction impedance obtained for any structure and model such as sheath and tape helix approximations or from any simulation codes can be used as the input in the program to make the code more general.

  17. Structural studies of Helix aspersa agglutinin complexed with GalNAc: A lectin that serves as a diagnostic tool.

    PubMed

    Pietrzyk, Agnieszka J; Bujacz, Anna; Mak, Paweł; Potempa, Barbara; Niedziela, Tomasz

    2015-11-01

    Lectins belong to a differentiated group of proteins known to possess sugar-binding properties. Due to this fact, they are interesting research targets in medical diagnostics. Helix aspersa agglutinin (HAA) is a lectin that recognizes the epitopes containing α-d-N-acetylgalactosamine (GalNAc), which is present at the surface of metastatic cancer cells. Although several reports have already described the use of HAA as a diagnostic tool, this protein was not characterized on the molecular level. Here, we present for the first time the structural information about lectin isolated from mucus of Helix aspersa (garden snail). The amino acid sequence of this agglutinin was determined by Edman degradation and tertiary as well as quaternary structure by X-ray crystallography. The high resolution crystal structure (1.38Å) and MALDI-TOF mass spectrometry analysis provide the detailed information about a large part of the HAA natural glycan chain. The topology of the GalNAc binding cleft and interaction with lectin are very well defined in the structure and fully confirmed by STD HSQC NMR spectroscopy. Together, this provides structural clues regarding HAA specificity and opens possibilities to rational modifications of this important diagnostic tool.

  18. Cu**+ Transporting ATPases: Structure of the Two Transmembrane Cu**+ Transport Sites

    SciTech Connect

    Gonzalez-Guerrero, M.; Eren, E.; Rawat, S.; Stemmler, T.L.; Arguello, J.M.

    2009-05-18

    Cu{sup +}-ATPases drive metal efflux from the cell cytoplasm. Paramount to this function is the binding of Cu{sup +} within the transmembrane region and its coupled translocation across the permeability barrier. Here, we describe the two transmembrane Cu{sup +} transport sites present in Archaeoglobus fulgidus CopA. Both sites can be independently loaded with Cu{sup +}. However, their simultaneous occupation is associated with enzyme turnover. Site I is constituted by two Cys in transmembrane segment (TM) 6 and a Tyr in TM7. An Asn in TM7 and Met and Ser in TM8 form Site II. Single site x-ray spectroscopic analysis indicates a trigonal coordination in both sites. This architecture is distinct from that observed in Cu{sup +}-trafficking chaperones and classical cuproproteins. The high affinity of these sites for Cu{sup +} (Site I K{sub {alpha}} = 1.3 fM{sup -1}, Site II K{sub {alpha}} = 1.1 fM{sup -1}), in conjunction with reversible direct Cu{sup +} transfer from chaperones, points to a transport mechanism where backward release of free Cu{sup +} to the cytoplasm is largely prevented.

  19. Structure Change from β-Strand and Turn to α-Helix in Histone H2A-H2B Induced by DNA Damage Response.

    PubMed

    Izumi, Yudai; Fujii, Kentaro; Wien, Frank; Houée-Lévin, Chantal; Lacombe, Sandrine; Salado-Leza, Daniela; Porcel, Erika; Masoud, Rawand; Yamamoto, Satoshi; Réfrégiers, Matthieu; Hervé du Penhoat, Marie-Anne; Yokoya, Akinari

    2016-07-12

    Using synchrotron radiation-based circular dichroism spectroscopy, we found that the DNA damage response induces an increase of α-helix structure and a decrease of β-strand and turn structures in histone H2A-H2B extracted from x-irradiated human HeLa cells. The structural alterations correspond to the assumption that an average of eight amino acid residues form new α-helix structures at 310 K. We propose the structural transition from β-strand and turn structures to an α-helix structure in H2A-H2B as a novel, to our knowledge, process involved in the DNA damage response.

  20. Crystal structures of SIRT3 reveal that the α2-α3 loop and α3-helix affect the interaction with long-chain acyl lysine.

    PubMed

    Gai, Wei; Li, He; Jiang, Hualiang; Long, Yaqiu; Liu, Dongxiang

    2016-09-01

    SIRT1-7 play important roles in many biological processes and age-related diseases. In addition to a NAD(+) -dependent deacetylase activity, they can catalyze several other reactions, including the hydrolysis of long-chain fatty acyl lysine. To study the binding modes of sirtuins to long-chain acyl lysines, we solved the crystal structures of SIRT3 bound to either a H3K9-myristoylated- or a H3K9-palmitoylated peptide. Interaction of SIRT3 with the palmitoyl group led to unfolding of the α3-helix. The myristoyl and palmitoyl groups bind to the C-pocket and an allosteric site near the α3-helix, respectively. We found that the residues preceding the α3-helix determine the size of the C-pocket. The flexibility of the α2-α3 loop and the plasticity of the α3-helix affect the interaction with long-chain acyl lysine. PMID:27501476

  1. Membrane Protein Crystallization in Lipidic Mesophases. Hosting Lipid Effects on the Crystallization and Structure of a Transmembrane Peptide

    SciTech Connect

    Hfer, Nicole; Aragao, David; Lyons, Joseph A.; Caffrey, Martin

    2011-09-28

    Gramicidin is an apolar pentadecapeptide antibiotic consisting of alternating d- and l-amino acids. It functions, in part, by creating pores in membranes of susceptible cells rendering them leaky to monovalent cations. The peptide should be able to traverse the host membrane either as a double-stranded, intertwined double helix (DSDH) or as a head-to-head single-stranded helix (HHSH). Current structure models are based on macromolecular X-ray crystallography (MX) and nuclear magnetic resonance (NMR). However, the HHSH form has only been observed by NMR. The shape and size of the different gramicidin conformations differ. We speculated therefore that reconstituting it into a lipidic mesophase with bilayers of different microstructures would preferentially stabilize one form over the other. By using such mesophases for in meso crystallogenesis, the expectation was that at least one would generate crystals of gramicidin in the HHSH form for structure determination by MX. This was tested using commercial and in-house synthesized lipids that support in meso crystallogenesis. Lipid acyl chain lengths were varied from 14 to 18 carbons to provide mesophases with a range of bilayer thicknesses. Unexpectedly, all lipids produced high-quality, structure-grade crystals with gramicidin only in the DSDH conformation.

  2. Structural studies of E73 from a hyperthermophilic archaeal virus identify the “RH3” domain, an elaborated ribbon-helix-helix motif involved in DNA recognition†

    PubMed Central

    Schlenker, Casey; Goel, Anupam; Tripet, Brian P.; Menon, Smita; Willi, Taylor; Dlakić, Mensur; Young, Mark J.; Lawrence, C Martin; Copié, Valérie

    2012-01-01

    Hyperthermophilic archaeal viruses including Sulfolobus spindle-shaped viruses (SSVs) such as SSV-1 and SSV-Ragged Hills exhibit remarkable morphology and genetic diversity. However, they remain poorly understood, in part because their genomes exhibit limited or unrecognizable sequence similarity to genes with known function. Here we report structural and functional studies of E73, a 73-residue homodimeric protein encoded within the SSV-Ragged Hills genome. Despite lacking significant sequence similarity, the NMR structure reveals clear similarity to ribbon-helix-helix (RHH) domains present in numerous proteins involved in transcriptional regulation. In vitro dsDNA binding experiments confirm the ability of E73 to bind dsDNA in a non-specific manner with micromolar affinity, and characterization of the K11E variant confirms the location of the predicted DNA binding surface. E73 is distinct, however, from known RHHs. The RHH motif is elaborated upon by the insertion of a third helix that is tightly integrated into the structural domain, giving rise to the “RH3” fold. Within the homodimer, this helix results in the formation of a conserved, symmetric cleft distal to the DNA binding surface, where it may mediate protein-protein interactions, or contribute to the high thermal stability of E73. Analysis of backbone amide dynamics by NMR provides evidence for a rigid core, and fast ps-ns timescale NH bond vector motions for residues located within the antiparallel β-sheet region of the proposed DNA-binding surface, and slower μs to ms timescale motions for residues in the α1-α2 loop. The role of E73 and its SSV homologs in the viral life cycle are discussed. PMID:22409376

  3. A New LxxxA Motif in the Transmembrane Helix3 of Maize Aquaporins Belonging to the Plasma Membrane Intrinsic Protein PIP2 Group Is Required for Their Trafficking to the Plasma Membrane1[W][OPEN

    PubMed Central

    Chevalier, Adrien S.; Bienert, Gerd Patrick; Chaumont, François

    2014-01-01

    Aquaporins play important roles in maintaining plant water status under challenging environments. The regulation of aquaporin density in cell membranes is essential to control transcellular water flows. This work focuses on the maize (Zea mays) plasma membrane intrinsic protein (ZmPIP) aquaporin subfamily, which is divided into two sequence-related groups (ZmPIP1s and ZmPIP2s). When expressed alone in mesophyll protoplasts, ZmPIP2s are efficiently targeted to the plasma membrane, whereas ZmPIP1s are retained in the endoplasmic reticulum (ER). A protein domain-swapping approach was utilized to demonstrate that the transmembrane domain3 (TM3), together with the previously identified N-terminal ER export diacidic motif, account for the differential localization of these proteins. In addition to protoplasts, leaf epidermal cells transiently transformed by biolistic particle delivery were used to confirm and refine these results. By generating artificial proteins consisting of a single transmembrane domain, we demonstrated that the TM3 of ZmPIP1;2 or ZmPIP2;5 discriminates between ER and plasma membrane localization, respectively. More specifically, a new LxxxA motif in the TM3 of ZmPIP2;5, which is highly conserved in plant PIP2s, was shown to regulate its anterograde routing along the secretory pathway, particularly its export from the ER. PMID:24989232

  4. A new LxxxA motif in the transmembrane Helix3 of maize aquaporins belonging to the plasma membrane intrinsic protein PIP2 group is required for their trafficking to the plasma membrane.

    PubMed

    Chevalier, Adrien S; Bienert, Gerd Patrick; Chaumont, François

    2014-09-01

    Aquaporins play important roles in maintaining plant water status under challenging environments. The regulation of aquaporin density in cell membranes is essential to control transcellular water flows. This work focuses on the maize (Zea mays) plasma membrane intrinsic protein (ZmPIP) aquaporin subfamily, which is divided into two sequence-related groups (ZmPIP1s and ZmPIP2s). When expressed alone in mesophyll protoplasts, ZmPIP2s are efficiently targeted to the plasma membrane, whereas ZmPIP1s are retained in the endoplasmic reticulum (ER). A protein domain-swapping approach was utilized to demonstrate that the transmembrane domain3 (TM3), together with the previously identified N-terminal ER export diacidic motif, account for the differential localization of these proteins. In addition to protoplasts, leaf epidermal cells transiently transformed by biolistic particle delivery were used to confirm and refine these results. By generating artificial proteins consisting of a single transmembrane domain, we demonstrated that the TM3 of ZmPIP1;2 or ZmPIP2;5 discriminates between ER and plasma membrane localization, respectively. More specifically, a new LxxxA motif in the TM3 of ZmPIP2;5, which is highly conserved in plant PIP2s, was shown to regulate its anterograde routing along the secretory pathway, particularly its export from the ER.

  5. Evolutionary-guided de novo structure prediction of self-associated transmembrane helical proteins with near-atomic accuracy

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Barth, P.

    2015-05-01

    How specific protein associations regulate the function of membrane receptors remains poorly understood. Conformational flexibility currently hinders the structure determination of several classes of membrane receptors and associated oligomers. Here we develop EFDOCK-TM, a general method to predict self-associated transmembrane protein helical (TMH) structures from sequence guided by co-evolutionary information. We show that accurate intermolecular contacts can be identified using a combination of protein sequence covariation and TMH binding surfaces predicted from sequence. When applied to diverse TMH oligomers, including receptors characterized in multiple conformational and functional states, the method reaches unprecedented near-atomic accuracy for most targets. Blind predictions of structurally uncharacterized receptor tyrosine kinase TMH oligomers provide a plausible hypothesis on the molecular mechanisms of disease-associated point mutations and binding surfaces for the rational design of selective inhibitors. The method sets the stage for uncovering novel determinants of molecular recognition and signalling in single-spanning eukaryotic membrane receptors.

  6. Evolutionary-guided de novo structure prediction of self-associated transmembrane helical proteins with near-atomic accuracy

    PubMed Central

    Wang, Y.; Barth, P.

    2016-01-01

    How specific protein associations regulate the function of membrane receptors remains poorly understood. Conformational flexibility currently hinders the structure determination of several classes of membrane receptors and associated oligomers. Here we develop EFDOCK-TM, a general method to predict self-associated transmembrane protein helical (TMH) structures from sequence guided by co-evolutionary information. We show that accurate intermolecular contacts can be identified using a combination of protein sequence covariation and TMH binding surfaces predicted from sequence. When applied to diverse TMH oligomers, including receptors characterized in multiple conformational and functional states, the method reaches unprecedented near-atomic accuracy for most targets. Blind predictions of structurally uncharacterized receptor tyrosine kinase TMH oligomers provide a plausible hypothesis on the molecular mechanisms of disease-associated point mutations and binding surfaces for the rational design of selective inhibitors. The method sets the stage for uncovering novel determinants of molecular recognition and signalling in single-spanning eukaryotic membrane receptors. PMID:25995083

  7. Singlet Oxygen Attack on Guanine: Reactivity and Structural Signature within the B-DNA Helix.

    PubMed

    Dumont, Elise; Grüber, Raymond; Bignon, Emmanuelle; Morell, Christophe; Aranda, Juan; Ravanat, Jean-Luc; Tuñón, Iñaki

    2016-08-22

    Oxidatively generated DNA lesions are numerous and versatile, and have been the subject of intensive research since the discovery of 8-oxoguanine in 1984. Even for this prototypical lesion, the precise mechanism of formation remains elusive due to the inherent difficulties in characterizing high-energy intermediates. We have probed the stability of the guanine endoperoxide in B-DNA as a key intermediate and determined a unique activation free energy of around 6 kcal mol(-1) for the formation of the first C-O covalent bond upon the attack of singlet molecular oxygen ((1) O2 ) on the central guanine of a solvated 13 base-pair poly(dG-dC), described by means of quantum mechanics/molecular mechanics (QM/MM) simulations. The B-helix remains stable upon oxidation in spite of the bulky character of the guanine endoperoxide. Our modeling study has revealed the nature of the versatile (1) O2 attack in terms of free energy and shows a sensitivity to electrostatics and solvation as it involves a charge-separated intermediate. PMID:27440482

  8. The use of mould-templated surface structures for high-quality uniform-lying-helix liquid-crystal alignment

    NASA Astrophysics Data System (ADS)

    Outram, B. I.; Elston, S. J.; Tuffin, R.; Siemianowski, S.; Snow, B.

    2013-06-01

    The chiral-flexoelectrooptic effect in a Uniform Lying Helix (ULH) configuration provides a sub-millisecond in-plane rotation of the optic axis with the application of a transverse field. This enables displays with a wide viewing angle without costly in-plane-type electrodes. The salient challenge is one of alignment of the ULH, which is not topologically compatible with uniform alignment surface treatments. Here, we create a micro-grooved surface structure with features on the micron scale by using a replica-moulding technique. When the cell is assembled, the micro-grooves create channels, and using surface-energy considerations, we explain how and show experimentally that the channels align a cholesteric material in the ULH geometry with the helicoidal axis oriented parallel to the channels. The resultant alignment provides a high level of contrast between crossed polarizers and exhibits an electrooptic response with a switching time of the order of tens of microseconds.

  9. Transmembrane signaling proteoglycans.

    PubMed

    Couchman, John R

    2010-01-01

    Virtually all metazoan cells contain at least one and usually several types of transmembrane proteoglycans. These are varied in protein structure and type of polysaccharide, but the total number of vertebrate genes encoding transmembrane proteoglycan core proteins is less than 10. Some core proteins, including those of the syndecans, always possess covalently coupled glycosaminoglycans; others do not. Syndecan has a long evolutionary history, as it is present in invertebrates, but many other transmembrane proteoglycans are vertebrate inventions. The variety of proteins and their glycosaminoglycan chains is matched by diverse functions. However, all assume roles as coreceptors, often working alongside high-affinity growth factor receptors or adhesion receptors such as integrins. Other common themes are an ability to signal through their cytoplasmic domains, often to the actin cytoskeleton, and linkage to PDZ protein networks. Many transmembrane proteoglycans associate on the cell surface with metzincin proteases and can be shed by them. Work with model systems in vivo and in vitro reveals roles in growth, adhesion, migration, and metabolism. Furthermore, a wide range of phenotypes for the core proteins has been obtained in mouse knockout experiments. Here some of the latest developments in the field are examined in hopes of stimulating further interest in this fascinating group of molecules. PMID:20565253

  10. Solution Structure and DNA-binding Properties of the Winged Helix Domain of the Meiotic Recombination HOP2 Protein*

    PubMed Central

    Moktan, Hem; Guiraldelli, Michel F.; Eyster, Craig A.; Zhao, Weixing; Lee, Chih-Ying; Mather, Timothy; Camerini-Otero, R. Daniel; Sung, Patrick; Zhou, Donghua H.; Pezza, Roberto J.

    2014-01-01

    The HOP2 protein is required for efficient double-strand break repair which ensures the proper synapsis of homologous chromosomes and normal meiotic progression. We previously showed that in vitro HOP2 shows two distinctive activities: when it is incorporated into a HOP2-MND1 heterodimer, it stimulates DMC1 and RAD51 recombination activities, and the purified HOP2 alone is proficient in promoting strand invasion. The structural and biochemical basis of HOP2 action in recombination are poorly understood; therefore, they are the focus of this work. Herein, we present the solution structure of the amino-terminal portion of mouse HOP2, which contains a typical winged helix DNA-binding domain. Together with NMR spectral changes in the presence of double-stranded DNA, protein docking on DNA, and mutation analysis to identify the amino acids involved in DNA coordination, our results on the three-dimensional structure of HOP2 provide key information on the fundamental structural and biochemical requirements directing the interaction of HOP2 with DNA. These results, in combination with mutational experiments showing the role of a coiled-coil structural feature involved in HOP2 self-association, allow us to explain important aspects of the function of HOP2 in recombination. PMID:24711446

  11. Structural polymorphism of the major capsid protein of a double-stranded RNA virus: an amphipathic alpha helix as a molecular switch.

    PubMed

    Saugar, Irene; Luque, Daniel; Oña, Ana; Rodríguez, José F; Carrascosa, José L; Trus, Benes L; Castón, José R

    2005-07-01

    The infectious bursal disease virus T=13 viral particle is composed of two major proteins, VP2 and VP3. Here, we show that the molecular basis of the conformational flexibility of the major capsid protein precursor, pVP2, is an amphipatic alpha helix formed by the sequence GFKDIIRAIR. VP2 containing this alpha helix is able to assemble into the T=13 capsid only when expressed as a chimeric protein with an N-terminal His tag. An amphiphilic alpha helix, which acts as a conformational switch, is thus responsible for the inherent structural polymorphism of VP2. The His tag mimics the VP3 C-terminal region closely and acts as a molecular triggering factor. Using cryo-electron microscopy difference imaging, both polypeptide elements were detected on the capsid inner surface. We propose that electrostatic interactions between these two morphogenic elements are transmitted to VP2 to acquire the competent conformations for capsid assembly.

  12. Transmembrane Signaling by the Aspartate Receptor: Engineered Disulfides Reveal Static Regions of the Subunit Interface†

    PubMed Central

    Chervitz, Stephen A.; Lin, Christina M.; Falke, Joseph J.

    2010-01-01

    Ligand binding to the periplasmic domain of the transmembrane aspartate receptor generates an intramolecular conformational change which spans the bilayer and ultimately signals the cytoplasmic CheA histidine kinase, thereby triggering chemotaxis. The receptor is a homodimer stabilized by the interface between its two identical subunits: the present study investigates the role of the periplasmic and transmembrane regions of this interface in the mechanism of transmembrane signaling. Free cysteines and disulfide bonds are engineered into selected interfacial positions, and the resulting effects on the transmembrane signal are assayed by monitoring in vitro regulation of kinase activity. Three of the 14 engineered cysteine pairs examined, as well as six of the 14 engineered disulfides, cause perturbations of the interface structure which essentially destroy transmembrane regulation of the kinase. The remaining 11 cysteine pairs, and eight engineered disulfides covalently linking the two subunits at locations spanning positions 18–75, are observed to retain significant transmembrane kinase regulation. The eight functional disulfides positively identify adjacent faces of the two N-terminal helices in the native receptor dimer and indicate that large regions of the periplasmic and transmembrane subunit interface remain effectively static during the transmembrane signal. The results are consistent with a model in which the subunit interface plays a structural role, while the second membrane-spanning helix transmits the ligand-induced signal across the bilayer to the kinase binding domain. The effects of engineered cysteines and disulfides on receptor methylation in vitro are also measured, enabling direct comparison of the in vitro methylation and phosphorylation assays. PMID:7626643

  13. Structural and functional studies of Stf76 from the Sulfolobus islandicus plasmid-virus pSSVx: a novel peculiar member of the winged helix-turn-helix transcription factor family.

    PubMed

    Contursi, Patrizia; Farina, Biancamaria; Pirone, Luciano; Fusco, Salvatore; Russo, Luigi; Bartolucci, Simonetta; Fattorusso, Roberto; Pedone, Emilia

    2014-05-01

    The hybrid plasmid-virus pSSVx from Sulfolobus islandicus presents an open reading frame encoding a 76 amino acid protein, namely Stf76, that does not show significant sequence homology with any protein with known 3D structure. The recombinant protein recognizes specifically two DNA-binding sites located in its own promoter, thus suggesting an auto-regulated role of its expression. Circular dichroism, spectrofluorimetric, light scattering and isothermal titration calorimetry experiments indicated a 2:1 molar ratio (protein:DNA) upon binding to the DNA target containing a single site. Furthermore, the solution structure of Stf76, determined by nuclear magnetic resonance (NMR) using chemical shift Rosetta software, has shown that the protein assumes a winged helix-turn-helix fold. NMR chemical shift perturbation analysis has been performed for the identification of the residues responsible for DNA interaction. In addition, a model of the Stf76-DNA complex has been built using as template a structurally related homolog.

  14. The structure of Plasmodium vivax phosphatidylethanolamine-binding protein suggests a functional motif containing a left-handed helix

    SciTech Connect

    Arakaki, Tracy; Neely, Helen; Boni, Erica; Mueller, Natasha; Buckner, Frederick S.; Van Voorhis, Wesley C.; Lauricella, Angela; DeTitta, George; Luft, Joseph; Hol, Wim G. J.; Merritt, Ethan A.

    2007-03-01

    The crystal structure of a phosphatidylethanolamine-binding protein from P. vivax, a homolog of Raf-kinase inhibitor protein (RKIP), has been solved to a resolution of 1.3 Å. The inferred interaction surface near the anion-binding site is found to include a distinctive left-handed α-helix. The structure of a putative Raf kinase inhibitor protein (RKIP) homolog from the eukaryotic parasite Plasmodium vivax has been studied to a resolution of 1.3 Å using multiple-wavelength anomalous diffraction at the Se K edge. This protozoan protein is topologically similar to previously studied members of the phosphatidylethanolamine-binding protein (PEBP) sequence family, but exhibits a distinctive left-handed α-helical region at one side of the canonical phospholipid-binding site. Re-examination of previously determined PEBP structures suggests that the P. vivax protein and yeast carboxypeptidase Y inhibitor may represent a structurally distinct subfamily of the diverse PEBP-sequence family.

  15. Structural basis of typhoid: Salmonella typhi type IVb pilin (PiLS) and cystic fibrosis transmembrane conductance regulator interaction

    SciTech Connect

    Balakrishna, A.M.; Saxena, A.; Mok, H. Y.-K.; Swaminathan, K.

    2009-11-01

    The type IVb pilus of the enteropathogenic bacteria Salmonella typhi is a major adhesion factor during the entry of this pathogen into gastrointestinal epithelial cells. Its target of adhesion is a stretch of 10 residues from the first extracellular domain of cystic fibrosis transmembrane conductance regulator (CFTR). The crystal structure of the N-terminal 25 amino acid deleted S. typhi native PilS protein ({Delta}PilS), which makes the pilus, was determined at 1.9 {angstrom} resolution by the multiwavelength anomalous dispersion method. Also, the structure of the complex of {Delta}PilS and a target CFTR peptide, determined at 1.8 {angstrom}, confirms that residues 113-117 (NKEER) of CFTR are involved in binding with the pilin protein and gives us insight on the amino acids that are essential for binding. Furthermore, we have also explored the role of a conserved disulfide bridge in pilus formation. The subunit structure and assembly architecture are crucial for understanding pilus functions and designing suitable therapeutics against typhoid.

  16. Structural basis of typhod: Salmonella typhi type IVb pilin (PilS) and cystic fibrosis transmembrane conductance regulator interaction

    SciTech Connect

    Balakrishna, A.; Saxena, A; Mok, H; Swaminathan, K

    2009-01-01

    The type IVb pilus of the enteropathogenic bacteria Salmonella typhi is a major adhesion factor during the entry of this pathogen into gastrointestinal epithelial cells. Its target of adhesion is a stretch of 10 residues from the first extracellular domain of cystic fibrosis transmembrane conductance regulator (CFTR). The crystal structure of the N-terminal 25 amino acid deleted S. typhi native PilS protein (PilS), which makes the pilus, was determined at 1.9 A resolution by the multiwavelength anomalous dispersion method. Also, the structure of the complex of PilS and a target CFTR peptide, determined at 1.8 A, confirms that residues 113-117 (NKEER) of CFTR are involved in binding with the pilin protein and gives us insight on the amino acids that are essential for binding. Furthermore, we have also explored the role of a conserved disulfide bridge in pilus formation. The subunit structure and assembly architecture are crucial for understanding pilus functions and designing suitable therapeutics against typhoid.

  17. Structural Basis of Typhoid: Salmonella typhi Type IVb pilin (PilS) and Cystic Fibrosis Transmembrane Conductance Regulatory Interaction

    SciTech Connect

    Balakrishna, A.; Saxena, A; Mok, H; Swaminathan, K

    2009-01-01

    The type IVb pilus of the enteropathogenic bacteria Salmonella typhi is a major adhesion factor during the entry of this pathogen into gastrointestinal epithelial cells. Its target of adhesion is a stretch of 10 residues from the first extracellular domain of cystic fibrosis transmembrane conductance regulator (CFTR). The crystal structure of the N-terminal 25 amino acid deleted S. typhi native PilS protein (PilS), which makes the pilus, was determined at 1.9 A resolution by the multiwavelength anomalous dispersion method. Also, the structure of the complex of PilS and a target CFTR peptide, determined at 1.8 A, confirms that residues 113-117 (NKEER) of CFTR are involved in binding with the pilin protein and gives us insight on the amino acids that are essential for binding. Furthermore, we have also explored the role of a conserved disulfide bridge in pilus formation. The subunit structure and assembly architecture are crucial for understanding pilus functions and designing suitable therapeutics against typhoid.

  18. Disordered regions in transmembrane proteins.

    PubMed

    Tusnády, Gábor E; Dobson, László; Tompa, Peter

    2015-11-01

    The functions of transmembrane proteins in living cells are widespread; they range from various transport processes to energy production, from cell-cell adhesion to communication. Structurally, they are highly ordered in their membrane-spanning regions, but may contain disordered regions in the cytosolic and extra-cytosolic parts. In this study, we have investigated the disordered regions in transmembrane proteins by a stringent definition of disordered residues on the currently available largest experimental dataset, and show a significant correlation between the spatial distributions of positively charged residues and disordered regions. This finding suggests a new role of disordered regions in transmembrane proteins by providing structural flexibility for stabilizing interactions with negatively charged head groups of the lipid molecules. We also find a preference of structural disorder in the terminal--as opposed to loop--regions in transmembrane proteins, and survey the respective functions involved in recruiting other proteins or mediating allosteric signaling effects. Finally, we critically compare disorder prediction methods on our transmembrane protein set. While there are no major differences between these methods using the usual statistics, such as per residue accuracies, Matthew's correlation coefficients, etc.; substantial differences can be found regarding the spatial distribution of the predicted disordered regions. We conclude that a predictor optimized for transmembrane proteins would be of high value to the field of structural disorder. PMID:26275590

  19. Global force-torque phase diagram for the DNA double helix: structural transitions, triple points and collapsed plectonemes

    PubMed Central

    Marko, John F.; Neukirch, Sébastien

    2014-01-01

    We present a free energy model for structural transitions of the DNA double helix driven by tensile and torsional stress. Our model is coarse grained, and is based on semiflexible polymer descriptions of B-DNA, underwound L-DNA, and highly overwound P-DNA. The statistical-mechanical model of plectonemic supercoiling previously developed for B-DNA is applied to semiflexible polymer models of P and L-DNA, to obtain a model of DNA structural transitions in quantitative accord with experiment. We identify two distinct plectonemic states, one “inflated” by electrostatic repulsion and thermal fluctuations, and the other “collapsed”, with the two double helices inside the supercoils driven to close contact. We find that supercoiled B and L are stable only in inflated form, while supercoiled P is always collapsed. We also predict the behavior and experimental signatures of highly underwound “Q”-DNA, the left-handed analog of P-DNA; as for P, supercoiled Q is always collapsed. Overstretched “S”-DNA and strand-separated “stress-melted” DNA are also included in our model, allowing prediction of a global phase diagram for forces up to 1000 pN and torques between ±60 pN nm, or in terms of linking number density, from σ = −5 to +3. PMID:24483501

  20. Impact of membrane lipid composition on the structure and stability of the transmembrane domain of amyloid precursor protein.

    PubMed

    Dominguez, Laura; Foster, Leigh; Straub, John E; Thirumalai, D

    2016-09-01

    Cleavage of the amyloid precursor protein (APP) by γ-secretase is a crucial first step in the evolution of Alzheimer's disease. To discover the cleavage mechanism, it is urgent to predict the structures of APP monomers and dimers in varying membrane environments. We determined the structures of the C9923-55 monomer and homodimer as a function of membrane lipid composition using a multiscale simulation approach that blends atomistic and coarse-grained models. We demonstrate that the C9923-55 homodimer structures form a heterogeneous ensemble with multiple conformational states, each stabilized by characteristic interpeptide interactions. The relative probabilities of each conformational state are sensitive to the membrane environment, leading to substantial variation in homodimer peptide structure as a function of membrane lipid composition or the presence of an anionic lipid environment. In contrast, the helicity of the transmembrane domain of monomeric C991-55 is relatively insensitive to the membrane lipid composition, in agreement with experimental observations. The dimer structures of human EphA2 receptor depend on the lipid environment, which we show is linked to the location of the structural motifs in the dimer interface, thereby establishing that both sequence and membrane composition modulate the complete energy landscape of membrane-bound proteins. As a by-product of our work, we explain the discrepancy in structures predicted for C99 congener homodimers in membrane and micelle environments. Our study provides insight into the observed dependence of C99 protein cleavage by γ-secretase, critical to the formation of amyloid-β protein, on membrane thickness and lipid composition. PMID:27559086

  1. Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed by single-molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Maity, Sourav; Mazzolini, Monica; Arcangeletti, Manuel; Valbuena, Alejandro; Fabris, Paolo; Lazzarino, Marco; Torre, Vincent

    2015-05-01

    Cyclic nucleotide-gated (CNG) channels are activated by binding of cyclic nucleotides. Although structural studies have identified the channel pore and selectivity filter, conformation changes associated with gating remain poorly understood. Here we combine single-molecule force spectroscopy (SMFS) with mutagenesis, bioinformatics and electrophysiology to study conformational changes associated with gating. By expressing functional channels with SMFS fingerprints in Xenopus laevis oocytes, we were able to investigate gating of CNGA1 in a physiological-like membrane. Force spectra determined that the S4 transmembrane domain is mechanically coupled to S5 in the closed state, but S3 in the open state. We also show there are multiple pathways for the unfolding of the transmembrane domains, probably caused by a different degree of α-helix folding. This approach demonstrates that CNG transmembrane domains have dynamic structure and establishes SMFS as a tool for probing conformational change in ion channels.

  2. Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed by single-molecule force spectroscopy

    PubMed Central

    Maity, Sourav; Mazzolini, Monica; Arcangeletti, Manuel; Valbuena, Alejandro; Fabris, Paolo; Lazzarino, Marco; Torre, Vincent

    2015-01-01

    Cyclic nucleotide-gated (CNG) channels are activated by binding of cyclic nucleotides. Although structural studies have identified the channel pore and selectivity filter, conformation changes associated with gating remain poorly understood. Here we combine single-molecule force spectroscopy (SMFS) with mutagenesis, bioinformatics and electrophysiology to study conformational changes associated with gating. By expressing functional channels with SMFS fingerprints in Xenopus laevis oocytes, we were able to investigate gating of CNGA1 in a physiological-like membrane. Force spectra determined that the S4 transmembrane domain is mechanically coupled to S5 in the closed state, but S3 in the open state. We also show there are multiple pathways for the unfolding of the transmembrane domains, probably caused by a different degree of α-helix folding. This approach demonstrates that CNG transmembrane domains have dynamic structure and establishes SMFS as a tool for probing conformational change in ion channels. PMID:25963832

  3. Using experimental information to produce a model of the transmembrane domain of the ion channel phospholamban.

    PubMed Central

    Herzyk, P; Hubbard, R E

    1998-01-01

    Molecular models of the transmembrane domain of the phospholamban pentamer have been generated by a computational method that uses the experimentally measured effects of systematic single-site mutations as a guiding force in the modeling procedure. This method makes the assumptions that 1) the phospholamban transmembrane domain is a parallel five-helix bundle, and 2) nondisruptive mutation positions are lipid exposed, whereas 3) disruptive or partially disruptive mutations are not. Our procedure requires substantially less computer time than systematic search methods, allowing rapid assessment of the effects of different experimental results on the helix arrangement. The effectiveness of the approach is investigated in test calculations on two helix-dimer systems of known structure. Two independently derived sets of mutagenesis data were used to define the restraints for generating models of phospholamban. Both resulting models are left-handed, highly symmetrical pentamers. Although the overall bundle geometry is very similar in the two models, the orientation of individual helices differs by approximately 50 degrees, resulting in different sets of residues facing the pore. This demonstrates how differences in restraints can have an effect on the model structures generated, and how the violation of these restraints can identify inconsistent experimental data. PMID:9512019

  4. The importance of helix P1 stability for structural pre-organization and ligand binding affinity of the adenine riboswitch aptamer domain

    PubMed Central

    Nozinovic, Senada; Reining, Anke; Kim, Yong-Boum; Noeske, Jonas; Schlepckow, Kai; Wöhnert, Jens; Schwalbe, Harald

    2014-01-01

    We report here an in-depth characterization of the aptamer domain of the transcriptional adenine-sensing riboswitch (pbuE) by NMR and fluorescence spectroscopy. By NMR studies, the structure of two aptamer sequences with different lengths of the helix P1, the central element involved in riboswitch conformational switching, was characterized. Hydrogen-bond interactions could be mapped at nucleotide resolution providing information about secondary and tertiary structure, structure homogeneity and dynamics. Our study reveals that the elongation of helix P1 has pronounced effects not only on the local but on the global structure of the apo aptamer domain. The structural differences induced by stabilizing helix P1 were found to be linked to changes of the ligand binding affinity as revealed from analysis of kinetic and thermodynamic data obtained from stopped-flow fluorescence studies. The results provide new insight into the sequence-dependent fine tuning of the structure and function of purine-sensing riboswitches. PMID:24921630

  5. Solution structure of a DNA double helix with consecutive metal-mediated base pairs.

    PubMed

    Johannsen, Silke; Megger, Nicole; Böhme, Dominik; Sigel, Roland K O; Müller, Jens

    2010-03-01

    Metal-mediated base pairs represent a powerful tool for the site-specific functionalization of nucleic acids with metal ions. The development of applications of the metal-modified nucleic acids will depend on the availability of structural information on these double helices. We present here the NMR solution structure of a self-complementary DNA oligonucleotide with three consecutive imidazole nucleotides in its centre. In the absence of transition-metal ions, a hairpin structure is adopted with the artificial nucleotides forming the loop. In the presence of Ag(i) ions, a duplex comprising three imidazole-Ag(+)-imidazole base pairs is formed. Direct proof for the formation of metal-mediated base pairs was obtained from ¹J(¹⁵N,¹⁰⁷/¹⁰⁹Ag) couplings upon incorporation of ¹⁵N-labelled imidazole. The duplex adopts a B-type conformation with only minor deviations in the region of the artificial bases. This work represents the first structural characterization of a metal-modified nucleic acid with a continuous stretch of metal-mediated base pairs. PMID:21124482

  6. Structures of two Arabidopsis thaliana major latex proteins represent novel helix-grip folds

    SciTech Connect

    Lytle, Betsy L.; Song, Jikui; de la Cruz, Norberto B.; Peterson, Francis C.; Johnson, Kenneth A.; Bingman, Craig A.; Phillips, Jr., George N.; Volkman, Brian F.

    2009-06-02

    Here we report the first structures of two major latex proteins (MLPs) which display unique structural differences from the canonical Bet v 1 fold described earlier. MLP28 (SwissProt/TrEMBL ID Q9SSK9), the product of gene At1g70830.1, and the At1g24000.1 gene product (Swiss- Prot/TrEMBL ID P0C0B0), proteins which share 32% sequence identity, were independently selected as foldspace targets by the Center for Eukaryotic Structural Genomics. The structure of a single domain (residues 17-173) of MLP28 was solved by NMR spectroscopy, while the full-length At1g24000.1 structure was determined by X-ray crystallography. MLP28 displays greater than 30% sequence identity to at least eight MLPs from other species. For example, the MLP28 sequence shares 64% identity to peach Pp-MLP119 and 55% identity to cucumber Csf2.20 In contrast, the At1g24000.1 sequence is highly divergent (see Fig. 1), containing a gap of 33 amino acids when compared with all other known MLPs. Even when the gap is excluded, the sequence identity with MLPs from other species is less than 30%. Unlike some of the MLPs from other species, none of the A. thaliana MLPs have been characterized biochemically. We show by NMR chemical shift mapping that At1g24000.1 binds progesterone, demonstrating that despite its sequence dissimilarity, the hydrophobic binding pocket is conserved and, therefore, may play a role in its biological function and that of the MLP family in general.

  7. Role of sequence and membrane composition in structure of transmembrane domain of Amyloid Precursor Protein

    NASA Astrophysics Data System (ADS)

    Straub, John

    2013-03-01

    Aggregation of proteins of known sequence is linked to a variety of neurodegenerative disorders. The amyloid β (A β) protein associated with Alzheimer's Disease (AD) is derived from cleavage of the 99 amino acid C-terminal fragment of Amyloid Precursor Protein (APP-C99) by γ-secretase. Certain familial mutations of APP-C99 have been shown to lead to altered production of A β protein and the early onset of AD. We describe simulation studies exploring the structure of APP-C99 in micelle and membrane environments. Our studies explore how changes in sequence and membrane composition influence (1) the structure of monomeric APP-C99 and (2) APP-C99 homodimer structure and stability. Comparison of simulation results with recent NMR studies of APP-C99 monomers and dimers in micelle and bicelle environments provide insight into how critical aspects of APP-C99 structure and dimerization correlate with secretase processing, an essential component of the A β protein aggregation pathway and AD.

  8. Structure of the Newcastle disease virus hemagglutinin-neuraminidase (HN) ectodomain reveals a four-helix bundle stalk

    SciTech Connect

    Yuan, Ping; Swanson, Kurt A.; Leser, George P.; Paterson, Reay G.; Lamb, Robert A.; Jardetzky, Theodore S.

    2014-10-02

    The paramyxovirus hemagglutinin-neuraminidase (HN) protein plays multiple roles in viral entry and egress, including binding to sialic acid receptors, activating the fusion (F) protein to activate membrane fusion and viral entry, and cleaving sialic acid from carbohydrate chains. HN is an oligomeric integral membrane protein consisting of an N-terminal transmembrane domain, a stalk region, and an enzymatically active neuraminidase (NA) domain. Structures of the HN NA domains have been solved previously; however, the structure of the stalk region has remained elusive. The stalk region contains specificity determinants for F interactions and activation, underlying the requirement for homotypic F and HN interactions in viral entry. Mutations of the Newcastle disease virus HN stalk region have been shown to affect both F activation and NA activities, but a structural basis for understanding these dual affects on HN functions has been lacking. Here, we report the structure of the Newcastle disease virus HN ectodomain, revealing dimers of NA domain dimers flanking the N-terminal stalk domain. The stalk forms a parallel tetrameric coiled-coil bundle (4HB) that allows classification of extensive mutational data, providing insight into the functional roles of the stalk region. Mutations that affect both F activation and NA activities map predominantly to the 4HB hydrophobic core, whereas mutations that affect only F-protein activation map primarily to the 4HB surface. Two of four NA domains interact with the 4HB stalk, and residues at this interface in both the stalk and NA domain have been implicated in HN function.

  9. Correlation of bistranded clustered abasic DNA lesion processing with structural and dynamic DNA helix distortion

    PubMed Central

    Bignon, Emmanuelle; Gattuso, Hugo; Morell, Christophe; Dehez, François; Georgakilas, Alexandros G.; Monari, Antonio; Dumont, Elise

    2016-01-01

    Clustered apurinic/apyrimidinic (AP; abasic) DNA lesions produced by ionizing radiation are by far more cytotoxic than isolated AP lesion entities. The structure and dynamics of a series of seven 23-bp oligonucleotides featuring simple bistranded clustered damage sites, comprising of two AP sites, zero, one, three or five bases 3′ or 5′ apart from each other, were investigated through 400 ns explicit solvent molecular dynamics simulations. They provide representative structures of synthetically engineered multiply damage sites-containing oligonucleotides whose repair was investigated experimentally (Nucl. Acids Res. 2004, 32:5609-5620; Nucl. Acids Res. 2002, 30: 2800–2808). The inspection of extrahelical positioning of the AP sites, bulge and non Watson–Crick hydrogen bonding corroborates the experimental measurements of repair efficiencies by bacterial or human AP endonucleases Nfo and APE1, respectively. This study provides unprecedented knowledge into the structure and dynamics of clustered abasic DNA lesions, notably rationalizing the non-symmetry with respect to 3′ to 5′ position. In addition, it provides strong mechanistic insights and basis for future studies on the effects of clustered DNA damage on the recognition and processing of these lesions by bacterial or human DNA repair enzymes specialized in the processing of such lesions. PMID:27587587

  10. [Preparation of Transmembrane Fragments Growth Hormone Receptor GHR in a Cell-Free Expression System for Structural Studies].

    PubMed

    Bocharova, O V; Kuzmichev, P K; Urban, A S; Goncharuk, S A; Bocharov, E V; Arsenyev, A S

    2015-01-01

    Growth hormone somatotropin and its membrane receptor GHR, belonging to a superfamily of the type I receptors possessing tyrosine kinase activity, are involved in the intercellular signal transduction cascade and regulate a number of important physiological and pathological processes in humans. Binding with somatotropin triggers a transition of GHR between two alternative dimer states, resulting in an allosteric activation of JAK2 tyrosine kinase in the cell cytoplasm. Transmembrane domain of GHR directly involved in this complex conformational transition. It has presumably two dimerization interfaces corresponding to the "unliganded" and the active state of GHR. In order to study the molecular basis of biochemical signal transduction mechanism across the cell membrane, we have developed an efficient cell-free production system of a TM fragment of GHR, which contains its TM domain flanked by functionally important juxtamembrane regions (GHRtm residues 254-298). The developed system allows to obtain -1 mg per 1 ml of reaction mixture of 13C- and 15N-isotope-labeled protein for structural and dynamic studies of the GHR TM domain dimerization in the membrane-mimicking medium by high-resolution heteronuclear NMR spectroscopy. PMID:27125024

  11. Structural mimicry of the α-helix in aqueous solution with an isoatomic α/β/γ-peptide backbone.

    PubMed

    Sawada, Tomohisa; Gellman, Samuel H

    2011-05-18

    Artificial mimicry of α-helices offers a basis for development of protein-protein interaction antagonists. Here we report a new type of unnatural peptidic backbone, containing α-, β-, and γ-amino acid residues in an αγααβα repeat pattern, for this purpose. This unnatural hexad has the same number of backbone atoms as a heptad of α residues. Two-dimensional NMR data clearly establish the formation of an α-helix-like conformation in aqueous solution. The helix formed by our 12-mer α/β/γ-peptide is considerably more stable than the α-helix formed by an analogous 14-mer α-peptide, presumably because of the preorganized β and γ residues employed.

  12. Structural studies of polypeptides: Mechanism of immunoglobin catalysis and helix propagation in hybrid sequence, disulfide containing peptides

    SciTech Connect

    Storrs, R.W.

    1992-08-01

    Catalytic immunoglobin fragments were studied Nuclear Magnetic Resonance spectroscopy to identify amino acid residues responsible for the catalytic activity. Small, hybrid sequence peptides were analyzed for helix propagation following covalent initiation and for activity related to the protein from which the helical sequence was derived. Hydrolysis of p-nitrophenyl carbonates and esters by specific immunoglobins is thought to involve charge complementarity. The pK of the transition state analog P-nitrophenyl phosphate bound to the immunoglobin fragment was determined by {sup 31}P-NMR to verify the juxtaposition of a positively charged amino acid to the binding/catalytic site. Optical studies of immunoglobin mediated photoreversal of cis, syn cyclobutane thymine dimers implicated tryptophan as the photosensitizing chromophore. Research shows the chemical environment of a single tryptophan residue is altered upon binding of the thymine dimer. This tryptophan residue was localized to within 20 {Angstrom} of the binding site through the use of a nitroxide paramagnetic species covalently attached to the thymine dimer. A hybrid sequence peptide was synthesized based on the bee venom peptide apamin in which the helical residues of apamin were replaced with those from the recognition helix of the bacteriophage 434 repressor protein. Oxidation of the disufide bonds occured uniformly in the proper 1-11, 3-15 orientation, stabilizing the 434 sequence in an {alpha}-helix. The glycine residue stopped helix propagation. Helix propagation in 2,2,2-trifluoroethanol mixtures was investigated in a second hybrid sequence peptide using the apamin-derived disulfide scaffold and the S-peptide sequence. The helix-stop signal previously observed was not observed in the NMR NOESY spectrum. Helical connectivities were seen throughout the S-peptide sequence. The apamin/S-peptide hybrid binded to the S-protein (residues 21-166 of ribonuclease A) and reconstituted enzymatic activity.

  13. Structural studies of polypeptides: Mechanism of immunoglobin catalysis and helix propagation in hybrid sequence, disulfide containing peptides

    SciTech Connect

    Storrs, R.W.

    1992-08-01

    Catalytic immunoglobin fragments were studied Nuclear Magnetic Resonance spectroscopy to identify amino acid residues responsible for the catalytic activity. Small, hybrid sequence peptides were analyzed for helix propagation following covalent initiation and for activity related to the protein from which the helical sequence was derived. Hydrolysis of p-nitrophenyl carbonates and esters by specific immunoglobins is thought to involve charge complementarity. The pK of the transition state analog P-nitrophenyl phosphate bound to the immunoglobin fragment was determined by [sup 31]P-NMR to verify the juxtaposition of a positively charged amino acid to the binding/catalytic site. Optical studies of immunoglobin mediated photoreversal of cis, syn cyclobutane thymine dimers implicated tryptophan as the photosensitizing chromophore. Research shows the chemical environment of a single tryptophan residue is altered upon binding of the thymine dimer. This tryptophan residue was localized to within 20 [Angstrom] of the binding site through the use of a nitroxide paramagnetic species covalently attached to the thymine dimer. A hybrid sequence peptide was synthesized based on the bee venom peptide apamin in which the helical residues of apamin were replaced with those from the recognition helix of the bacteriophage 434 repressor protein. Oxidation of the disufide bonds occured uniformly in the proper 1-11, 3-15 orientation, stabilizing the 434 sequence in an [alpha]-helix. The glycine residue stopped helix propagation. Helix propagation in 2,2,2-trifluoroethanol mixtures was investigated in a second hybrid sequence peptide using the apamin-derived disulfide scaffold and the S-peptide sequence. The helix-stop signal previously observed was not observed in the NMR NOESY spectrum. Helical connectivities were seen throughout the S-peptide sequence. The apamin/S-peptide hybrid binded to the S-protein (residues 21-166 of ribonuclease A) and reconstituted enzymatic activity.

  14. Helix unfolding in unsolvated peptides.

    PubMed

    Kinnear, B S; Hartings, M R; Jarrold, M F

    2001-06-20

    The conformations of unsolvated Ac-K(AGG)(5)+H(+) and Ac-(AGG)(5)K+H(+) peptides (Ac = acetyl, A = alanine, G = glycine, and K = lysine) have been examined by ion mobility measurements over a wide temperature range (150-410 K). The Ac-K(AGG)(5)+H(+) peptide remains a globule (a compact, roughly spherical structure) over the entire temperature range, while both an alpha-helix and a globule are found for Ac-(AGG)(5)K+H(+) at low temperature. As the temperature is raised the alpha-helix unfolds. Rate constants for loss of the helix (on a millisecond time scale) have been determined as a function of temperature and yield an Arrhenius activation energy and preexponential factor of 38.2 +/- 1.0 kJ mol(-1) and 6.5 +/- 3.7 x 10(9) s(-1), respectively. The alpha-helix apparently does not unfold directly into the globule, but first converts into a long-lived intermediate which survives to a significantly higher temperature before converting. According to molecular dynamics simulations, there is a partially untwisted helical conformation that has both a low energy and a well-defined geometry. This special structure lies between the helix and globule and may be the long-lived intermediate. PMID:11403597

  15. The dimeric transmembrane domain of prolyl dipeptidase DPP-IV contributes to its quaternary structure and enzymatic activities.

    PubMed

    Chung, Kuei-Min; Cheng, Jai-Hong; Suen, Ching-Shu; Huang, Chih-Hsiang; Tsai, Cheng-Han; Huang, Li-Hao; Chen, Yi-Rong; Wang, Andrew H-J; Jiaang, Weir-Torn; Hwang, Ming-Jing; Chen, Xin

    2010-09-01

    Dipeptidyl peptidase IV (DPP-IV) is a drug target in the treatment of human type II diabetes. It is a type II membrane protein with a single transmembrane domain (TMD) anchoring the extracellular catalytic domain to the membrane. DPP-IV is active as a dimer, with two dimer interacting surfaces located extracellularly. In this study, we demonstrate that the TM of DPP-IV promotes DPP-IV dimerization and rescues monomeric DPP-IV mutants into partial dimers, which is specific and irreplaceable by TMs of other type II membrane proteins. By bioluminescence resonance energy transfer (BRET) and peptide electrophoresis, we found that the TM domain of DPP-IV is dimerized in mammalian cells and in vitro. The TM dimer interaction is very stable, based on our results with TM site-directed mutagenesis. None of the mutations, including the introduction of two prolines, resulted in their complete disruption to monomers. However, these TM proline mutations result in a significant reduction of DPP-IV enzymatic activity, comparable to what is found with mutations near the active site. A systematic analysis of TM structures deposited in the Protein Data Bank showed that prolines in the TM generally produce much bigger kinking angles than occur in nonproline-containing TMs. Thus, the proline-dependent reduction in enzyme activity may result from propagated conformational changes from the TM to the extracellular active site. Our results demonstrate that TM dimerization and conformation contribute significantly to the structure and activity of DPP-IV. Optimal enzymatic activity of DPP-IV requires an optimal interaction of all three dimer interfaces, including its TM.

  16. Crystal structure of an RNA helix recognized by a zinc-finger protein: an 18-bp duplex at 1.6 A resolution.

    PubMed Central

    Lima, Susana; Hildenbrand, Jayne; Korostelev, Andrei; Hattman, Stanley; Li, Hong

    2002-01-01

    The crystal structure of the 19-mer RNA, 5'-GAAUGCCUGCGAGCAUCCC-3' has been determined from X-ray diffraction data to 1.6 A resolution by the multiwavelength anomalous diffraction method from crystals containing a brominated uridine. In the crystal, this RNA forms an 18-mer self-complementary double helix with the 19th nucleotide flipped out of the helix. This helix contains most of the target stem recognized by the bacteriophage Mu Com protein (control of mom), which activates translation of an unusual DNA modification enzyme, Mom. The 19-mer duplex, which contains one A.C mismatch and one A.C/G.U tandem wobble pair, was shown to bind to the Com protein by native gel electrophoresis shift assay. Comparison of the geometries and base stacking properties between Watson-Crick base pairs and the mismatches in the crystal structure suggest that both hydrogen bonding and base stacking are important for stabilizing these mismatched base pairs, and that the unusual geometry adopted by the A.C mismatch may reveal a unique structural motif required for the function of Com. PMID:12166647

  17. Inhibiting nucleation of amyloid structure in a huntingtin fragment by targeting α-helix rich oligomeric intermediates

    PubMed Central

    Mishra, Rakesh; Jayaraman, Murali; Roland, Bartholomew P.; Landrum, Elizabeth; Fullam, Timothy; Kodali, Ravindra; Thakur, Ashwani K.; Arduini, Irene; Wetzel, Ronald

    2011-01-01

    Although oligomeric intermediates are transiently formed in almost all known amyloid assembly reactions, their mechanistic roles are poorly understood. Recently we demonstrated a critical role for the 17 amino acid N-terminal segment (httNT) of huntingtin (htt) in oligomer-mediated amyloid assembly of htt N-terminal fragments. In this mechanism, the httNT segment forms the α-helix rich core of the oligomers, leaving most or all of each polyglutamine (polyQ) segment disordered and solvent-exposed. Nucleation of amyloid structure occurs within this local high concentration of disordered polyQ. Here we demonstrate the kinetic importance of httNT self-assembly by describing inhibitory httNT-containing peptides that appear to work by targeting nucleation within the oligomer fraction. These molecules inhibit amyloid nucleation by forming mixed oligomers with the httNT domains of polyQ-containing htt N-terminal fragments. In one class of inhibitor, nucleation is passively suppressed due to the reduced local concentration of polyQ within the mixed oligomer. In the other class, nucleation is actively suppressed by a proline-rich polyQ segment covalently attached to httNT. Studies with D-amino acid and scrambled sequence versions of httNT suggest that inhibition activity is strongly linked to the propensity of inhibitory peptides to make amphipathic α-helices. HttNT derivatives with C-terminal cell penetrating peptide segments, also exhibit excellent inhibitory activity. The httNT-based peptides described here, especially those with protease-resistant D-amino acids and/or with cell penetrating sequences, may prove useful as lead therapeutics for inhibiting nucleation of amyloid formation in Huntington’s disease. PMID:22178478

  18. Asymmetry in structural response of inner and outer transmembrane segments of CorA protein by a coarse-grain model

    NASA Astrophysics Data System (ADS)

    Kitjaruwankul, Sunan; Khrutto, Channarong; Sompornpisut, Pornthep; Farmer, B. L.; Pandey, R. B.

    2016-10-01

    Structure of CorA protein and its inner (i.corA) and outer (o.corA) transmembrane (TM) components are investigated as a function of temperature by a coarse-grained Monte Carlo simulation. Thermal response of i.corA is found to differ considerably from that of the outer component, o.corA. Analysis of the radius of gyration reveals that the inner TM component undergoes a continuous transition from a globular conformation to a random coil structure on raising the temperature. In contrast, the outer transmembrane component exhibits an abrupt (nearly discontinuous) thermal response in a narrow range of temperature. Scaling of the structure factor shows a globular structure of i.corA at a low temperature with an effective dimension D ˜ 3 and a random coil at a high temperature with D ˜ 2. The residue distribution in o.corA is slightly sparser than that of i.corA in a narrow thermos-responsive regime. The difference in thermos-response characteristics of these components (i.corA and o.corA) may reflect their unique transmembrane functions.

  19. Effect of four-alpha-helix bundle cavity size on volatile anesthetic binding energetics.

    PubMed

    Manderson, Gavin A; Michalsky, Stuart J; Johansson, Jonas S

    2003-09-30

    Currently, it is thought that inhalational anesthetics cause anesthesia by binding to ligand-gated ion channels. This is being investigated using four-alpha-helix bundles, small water-soluble analogues of the transmembrane domains of the "natural" receptor proteins. The study presented here specifically investigates how multiple alanine-to-valine substitutions (which each decrease the volume of the internal binding cavity by 38 A(3)) affect structure, stability, and anesthetic binding affinity of the four-alpha-helix bundles. Structure remains essentially unchanged when up to four alanine residues are changed to valine. However, stability increases as the number of these substitutions is increased. Anesthetic binding affinities are also affected. Halothane binds to the four-alpha-helix bundle variants with 0, 1, and 2 substitutions with equivalent affinities but binds to the variants with 3 and 4 more tightly. The same order of binding affinities was observed for chloroform, although for a particular variant, chloroform was bound less tightly. The observed differences in binding affinities may be explained in terms of a modulation of van der Waals and hydrophobic interactions between ligand and receptor. These, in turn, could result from increased four-alpha-helix bundle binding cavity hydrophobicity, a decrease in cavity size, or improved ligand/receptor shape complementarity.

  20. Effect of secondary structure on the potential of mean force for poly-L-lysine in the alpha-Helix and beta-sheet conformations

    SciTech Connect

    Grigsby, J.J.; Blanch, H.W.; Prausnitz, J.M.

    2001-10-30

    Because poly-L-lysine (PLL) can exist in the {alpha}-helix or {beta}-sheet conformation depending on solution preparation and solution conditions, PLL is a suitable candidate to probe the dependence of protein interactions on secondary structure. The osmotic second virial coefficient and weight-average molecular weight are reported from low-angle laser-light scattering measurements for PLL as a function of NaCl concentration, pH, and {alpha}-helix or {beta}-sheet content. Interactions between PLL molecules become more attractive as salt concentration increases due to screening of PLL charge by salt ions and at low salt concentration become more attractive as pH increases due to decreased net charge on PLL. The experimental results show that interactions are stronger for the {beta}-sheet conformation than for the {alpha}-helix conformation. A spherically-symmetric model for the potential of mean force is used to account for specific interactions not described by DLVO theory and to show how differences in secondary structure affect PLL interactions.

  1. Lipid exposure prediction enhances the inference of rotational angles of transmembrane helices

    PubMed Central

    2013-01-01

    Background Since membrane protein structures are challenging to crystallize, computational approaches are essential for elucidating the sequence-to-structure relationships. Structural modeling of membrane proteins requires a multidimensional approach, and one critical geometric parameter is the rotational angle of transmembrane helices. Rotational angles of transmembrane helices are characterized by their folded structures and could be inferred by the hydrophobic moment; however, the folding mechanism of membrane proteins is not yet fully understood. The rotational angle of a transmembrane helix is related to the exposed surface of a transmembrane helix, since lipid exposure gives the degree of accessibility of each residue in lipid environment. To the best of our knowledge, there have been few advances in investigating whether an environment descriptor of lipid exposure could infer a geometric parameter of rotational angle. Results Here, we present an analysis of the relationship between rotational angles and lipid exposure and a support-vector-machine method, called TMexpo, for predicting both structural features from sequences. First, we observed from the development set of 89 protein chains that the lipid exposure, i.e., the relative accessible surface area (rASA) of residues in the lipid environment, generated from high-resolution protein structures could infer the rotational angles with a mean absolute angular error (MAAE) of 46.32˚. More importantly, the predicted rASA from TMexpo achieved an MAAE of 51.05˚, which is better than 71.47˚ obtained by the best of the compared hydrophobicity scales. Lastly, TMexpo outperformed the compared methods in rASA prediction on the independent test set of 21 protein chains and achieved an overall Matthew’s correlation coefficient, accuracy, sensitivity, specificity, and precision of 0.51, 75.26%, 81.30%, 69.15%, and 72.73%, respectively. TMexpo is publicly available at http

  2. Viral fusion protein transmembrane domain adopts β-strand structure to facilitate membrane topological changes for virus-cell fusion.

    PubMed

    Yao, Hongwei; Lee, Michelle W; Waring, Alan J; Wong, Gerard C L; Hong, Mei

    2015-09-01

    The C-terminal transmembrane domain (TMD) of viral fusion proteins such as HIV gp41 and influenza hemagglutinin (HA) is traditionally viewed as a passive α-helical anchor of the protein to the virus envelope during its merger with the cell membrane. The conformation, dynamics, and lipid interaction of these fusion protein TMDs have so far eluded high-resolution structure characterization because of their highly hydrophobic nature. Using magic-angle-spinning solid-state NMR spectroscopy, we show that the TMD of the parainfluenza virus 5 (PIV5) fusion protein adopts lipid-dependent conformations and interactions with the membrane and water. In phosphatidylcholine (PC) and phosphatidylglycerol (PG) membranes, the TMD is predominantly α-helical, but in phosphatidylethanolamine (PE) membranes, the TMD changes significantly to the β-strand conformation. Measured order parameters indicate that the strand segments are immobilized and thus oligomerized. (31)P NMR spectra and small-angle X-ray scattering (SAXS) data show that this β-strand-rich conformation converts the PE membrane to a bicontinuous cubic phase, which is rich in negative Gaussian curvature that is characteristic of hemifusion intermediates and fusion pores. (1)H-(31)P 2D correlation spectra and (2)H spectra show that the PE membrane with or without the TMD is much less hydrated than PC and PG membranes, suggesting that the TMD works with the natural dehydration tendency of PE to facilitate membrane merger. These results suggest a new viral-fusion model in which the TMD actively promotes membrane topological changes during fusion using the β-strand as the fusogenic conformation.

  3. v-SNARE transmembrane domains function as catalysts for vesicle fusion.

    PubMed

    Dhara, Madhurima; Yarzagaray, Antonio; Makke, Mazen; Schindeldecker, Barbara; Schwarz, Yvonne; Shaaban, Ahmed; Sharma, Satyan; Böckmann, Rainer A; Lindau, Manfred; Mohrmann, Ralf; Bruns, Dieter

    2016-01-01

    Vesicle fusion is mediated by an assembly of SNARE proteins between opposing membranes, but it is unknown whether transmembrane domains (TMDs) of SNARE proteins serve mechanistic functions that go beyond passive anchoring of the force-generating SNAREpin to the fusing membranes. Here, we show that conformational flexibility of synaptobrevin-2 TMD is essential for efficient Ca(2+)-triggered exocytosis and actively promotes membrane fusion as well as fusion pore expansion. Specifically, the introduction of helix-stabilizing leucine residues within the TMD region spanning the vesicle's outer leaflet strongly impairs exocytosis and decelerates fusion pore dilation. In contrast, increasing the number of helix-destabilizing, ß-branched valine or isoleucine residues within the TMD restores normal secretion but accelerates fusion pore expansion beyond the rate found for the wildtype protein. These observations provide evidence that the synaptobrevin-2 TMD catalyzes the fusion process by its structural flexibility, actively setting the pace of fusion pore expansion.

  4. v-SNARE transmembrane domains function as catalysts for vesicle fusion.

    PubMed

    Dhara, Madhurima; Yarzagaray, Antonio; Makke, Mazen; Schindeldecker, Barbara; Schwarz, Yvonne; Shaaban, Ahmed; Sharma, Satyan; Böckmann, Rainer A; Lindau, Manfred; Mohrmann, Ralf; Bruns, Dieter

    2016-01-01

    Vesicle fusion is mediated by an assembly of SNARE proteins between opposing membranes, but it is unknown whether transmembrane domains (TMDs) of SNARE proteins serve mechanistic functions that go beyond passive anchoring of the force-generating SNAREpin to the fusing membranes. Here, we show that conformational flexibility of synaptobrevin-2 TMD is essential for efficient Ca(2+)-triggered exocytosis and actively promotes membrane fusion as well as fusion pore expansion. Specifically, the introduction of helix-stabilizing leucine residues within the TMD region spanning the vesicle's outer leaflet strongly impairs exocytosis and decelerates fusion pore dilation. In contrast, increasing the number of helix-destabilizing, ß-branched valine or isoleucine residues within the TMD restores normal secretion but accelerates fusion pore expansion beyond the rate found for the wildtype protein. These observations provide evidence that the synaptobrevin-2 TMD catalyzes the fusion process by its structural flexibility, actively setting the pace of fusion pore expansion. PMID:27343350

  5. Structure and function of transmembrane segment XII in osmosensor and osmoprotectant transporter ProP of Escherichia coli.

    PubMed

    Liu, Feng; Culham, Doreen E; Vernikovska, Yaroslava I; Keates, Robert A B; Boggs, Joan M; Wood, Janet M

    2007-05-15

    Escherichia coli transporter ProP acts as both an osmosensor and an osmoregulator. As medium osmolality rises, ProP is activated and mediates H+-coupled uptake of osmolytes like proline. A homology model of ProP with 12-transmembrane (TM) helices and cytoplasmic termini was created, and the protein's topology was substantiated experimentally. Residues 468-497, at the end of the C-terminal domain and linked to TM XII, form an intermolecular, homodimeric alpha-helical coiled-coil that tunes the transporter's response to osmolality. We aim to further define the structure and function of ProP residues Q415-E440, predicted to include TM XII. Each residue was replaced with cysteine (Cys) in a histidine-tagged, Cys-less ProP variant (ProP*). Cys at positions 415-418 and 438-440 were most reactive with Oregon Green Maleimide (OGM), suggesting that residues 419 through 437 are in the membrane. Except for V429-I433, reactivity of those Cys varied with helical periodicity. Cys predicted to face the interior of ProP were more reactive than Cys predicted to face the lipid. The former may be exposed to hydrated polar residues in the protein interior, particularly on the periplasmic side. Intermolecular cross-links formed when ProP* variants with Cys at positions 419, 420, 422, and 439 were treated with DTME. Thus TM XII can participate, along its entire length, in the dimer interface of ProP. Cys substitution E440C rendered ProP* inactive. All other variants retained more than 30% of the proline uptake activity of ProP* at high osmolality. Most variants with Cys substitutions in the periplasmic half of TM XII activated at lower osmolalities than ProP*. Variants with Cys substitutions on one face of the cytoplasmic half of TM XII required a higher osmolality to activate. They included elements of a GXXXG motif that are predicted to form the interface of TM XII with TM VII. These studies define the position of ProP TM XII within the membrane, further support the predicted

  6. The structure of the XPF-ssDNA complex underscores the distinct roles of the XPF and ERCC1 helix- hairpin-helix domains in ss/ds DNA recognition.

    PubMed

    Das, Devashish; Folkers, Gert E; van Dijk, Marc; Jaspers, Nicolaas G J; Hoeijmakers, Jan H J; Kaptein, Robert; Boelens, Rolf

    2012-04-01

    Human XPF/ERCC1 is a structure-specific DNA endonuclease that nicks the damaged DNA strand at the 5' end during nucleotide excision repair. We determined the structure of the complex of the C-terminal domain of XPF with 10 nt ssDNA. A positively charged region within the second helix of the first HhH motif contacts the ssDNA phosphate backbone. One guanine base is flipped out of register and positioned in a pocket contacting residues from both HhH motifs of XPF. Comparison to other HhH-containing proteins indicates a one-residue deletion in the second HhH motif of XPF that has altered the hairpin conformation, thereby permitting ssDNA interactions. Previous nuclear magnetic resonance studies showed that ERCC1 in the XPF-ERCC1 heterodimer can bind dsDNA. Combining the two observations gives a model that underscores the asymmetry of the human XPF/ERCC1 heterodimer in binding at an ss/ds DNA junction. PMID:22483113

  7. The influence of a transmembrane pH gradient on protonation probabilities of bacteriorhodopsin: the structural basis of the back-pressure effect.

    PubMed

    Calimet, Nicolas; Ullmann, G Matthias

    2004-06-01

    Bacteriorhodopsin pumps protons across a membrane using the energy of light. The proton pumping is inhibited when the transmembrane proton gradient that the protein generates becomes larger than four pH units. This phenomenon is known as the back-pressure effect. Here, we investigate the structural basis of this effect by predicting the influence of a transmembrane pH gradient on the titration behavior of bacteriorhodopsin. For this purpose we introduce a method that accounts for a pH gradient in protonation probability calculations. The method considers that in a transmembrane protein, which is exposed to two different aqueous phases, each titratable residue is accessible for protons from one side of the membrane depending on its hydrogen-bond pattern. This method is applied to several ground-state structures of bacteriorhodopsin, which residues already present complicated titration behaviors in the absence of a proton gradient. Our calculations show that a pH gradient across the membrane influences in a non-trivial manner the protonation probabilities of six titratable residues which are known to participate in the proton transfer: D85, D96, D115, E194, E204, and the Schiff base. The residues connected to one side of the membrane are influenced by the pH on the other side because of their long-range electrostatic interactions within the protein. In particular, D115 senses the pH at the cytoplasmic side of the membrane and transmits this information to D85 and the Schiff base. We propose that the strong electrostatic interactions found between D85, D115, and the Schiff base as well as the interplay of their respective protonation states under the influence of a transmembrane pH gradient are responsible for the back-pressure effect on bacteriorhodopsin.

  8. Multiwalled ice helixes and ice nanotubes

    PubMed Central

    Bai, Jaeil; Wang, Jun; Zeng, X. C.

    2006-01-01

    We report six phases of high-density nano-ice predicted to form within carbon nanotubes (CNTs) at high pressure. High-density nano-ice self-assembled within smaller-diameter CNT (17,0) exhibits a double-walled helical structure where the outer wall consists of four double-stranded helixes, which resemble a DNA double helix, and the inner wall is a quadruple-stranded helix. Four other double-walled nano-ices, self-assembled respectively in two larger-diameter CNTs (20,0 and 22,0), display tubular structure. Within CNT (24,0), the confined water can freeze spontaneously into a triple-walled helical nano-ice where the outer wall is an 18-stranded helix and the middle and inner walls are hextuple-stranded helixes. PMID:17170136

  9. Structural waters in the minor and major grooves of DNA--a major factor governing structural adjustments of the A-T mini-helix.

    PubMed

    Zubatiuk, Tetiana; Shishkin, Oleg; Gorb, Leonid; Hovorun, Dmytro; Leszczynski, Jerzy

    2015-01-15

    The role of microhydration in structural adjustments of the AT-tract in B-DNA was studied at the B97-D/def2-SV(P) level. The (dA:dT)5 complexes with 10 water molecules in minor and 15 water molecules in major grooves were studied. The obtained network of hydrogen bonds revealed the dependence between the groove width and the types of water patterns. In the minor groove, the following patterns were observed: interstrand one-water bridges similar to that of the Dickerson "water spine" and interstrand two-water bridges. The network of structural waters in the major groove is more diverse than that in the minor groove, which agrees with crystallographic data. As the major groove is wider, it is enriched by water molecules forming two- and three-water bridges. Results suggest the nucleobase-water interactions in both grooves prevent AT-tract twisting and its "collapse" along the minor groove. Whereby, a helix structure with narrow minor and wide major grooves is formed. The structural waters affect the polynucleotide conformation so that it becomes similar to poly(dA)·poly(dT) in fibers and acquires features of the A-tracts in DNA in solution. We suggest that formation of specific water patterns in both grooves is the factor responsible for stabilization of A-tracts with a narrowed minor groove, leading in turn to their strong intrinsic bending in DNA. PMID:25495126

  10. Measuring the Double Helix

    SciTech Connect

    Mathew-Fenn, R.S.; Das, R.; Harbury, P.A.B.

    2009-05-26

    DNA is thought to behave as a stiff elastic rod with respect to the ubiquitous mechanical deformations inherent to its biology. To test this model at short DNA lengths, we measured the mean and variance of end-to-end length for a series of DNA double helices in solution, using small-angle x-ray scattering interference between gold nanocrystal labels. In the absence of applied tension, DNA is at least one order of magnitude softer than measured by single-molecule stretching experiments. Further, the data rule out the conventional elastic rod model. The variance in end-to-end length follows a quadratic dependence on the number of base pairs rather than the expected linear dependence, indicating that DNA stretching is cooperative over more than two turns of the DNA double helix. Our observations support the idea of long-range allosteric communication through DNA structure.

  11. A mutation in the first transmembrane domain of the lutropin receptor causes male precocious puberty.

    PubMed

    Gromoll, J; Partsch, C J; Simoni, M; Nordhoff, V; Sippell, W G; Nieschlag, E; Saxena, B B

    1998-02-01

    We describe a patient with onset of puberty at the age of 5 yr. characterized by accelerated growth, enlargement of genitalia, pubarche, and serum hormone levels compatible with noncentral precocious puberty. Exon 11 of the LH receptor gene was amplified from genomic DNA by PCR and directly sequenced. We identified a heterozygous C to T base change at nucleotide position 1126, exchanging codon 373 from Ala to Val in the first transmembrane domain. The LH receptor sequence of the parents was normal. The mutated receptor displayed an up to 7.5-fold increase in basal cAMP production compared to that of the wild-type receptor in transiently transfected COS-7 cells. Treatment of the patient with ketoconazole resulted in inconsistent suppression of serum testosterone levels. At the age of 9.1 yr, central activation of the hypothalamic-pituitary-gonadal axis occurred. Additional treatment with a GnRH agonist led to complete suppression of testosterone secretion. This is the first description of constitutive activation of the LH receptor in the first transmembrane segment. It suggests the involvement of the first transmembrane helix in signal transduction and provides further insight into the structural organization of the seven transmembrane domains of the glycoprotein hormone receptor proteins.

  12. Transmembrane Communication: General Principles and Lessons from the Structure and Function of the M2 Proton Channel, K+ Channels, and Integrin Receptors

    PubMed Central

    Grigoryan, Gevorg; Moore, David T.; DeGrado, William F.

    2013-01-01

    Signal transduction across biological membranes is central to life. This process generally happens through communication between different domains and hierarchical coupling of information. Here, we review structural and thermodynamic principles behind transmembrane (TM) signal transduction and discuss common themes. Communication between signaling domains can be understood in terms of thermodynamic and kinetic principles, and complex signaling patterns can arise from simple wiring of thermodynamically coupled domains. We relate this to functions of several signal transduction systems: the M2 proton channel from influenza A virus, potassium channels, integrin receptors, and bacterial kinases. We also discuss key features in the structural rearrangements responsible for signal transduction in these systems. PMID:21548783

  13. Transmembrane communication: general principles and lessons from the structure and function of the M2 proton channel, K⁺ channels, and integrin receptors.

    PubMed

    Grigoryan, Gevorg; Moore, David T; DeGrado, William F

    2011-01-01

    Signal transduction across biological membranes is central to life. This process generally happens through communication between different domains and hierarchical coupling of information. Here, we review structural and thermodynamic principles behind transmembrane (TM) signal transduction and discuss common themes. Communication between signaling domains can be understood in terms of thermodynamic and kinetic principles, and complex signaling patterns can arise from simple wiring of thermodynamically coupled domains. We relate this to functions of several signal transduction systems: the M2 proton channel from influenza A virus, potassium channels, integrin receptors, and bacterial kinases. We also discuss key features in the structural rearrangements responsible for signal transduction in these systems.

  14. Structural characterization of triple transmembrane domain containing fragments of a yeast G protein-coupled receptor in an organic : aqueous environment by solution-state NMR spectroscopy.

    PubMed

    Fracchiolla, Katrina E; Cohen, Leah S; Arshava, Boris; Poms, Martin; Zerbe, Oliver; Becker, Jeffrey M; Naider, Fred

    2015-03-01

    This report summarizes recent biophysical and protein expression experiments on polypeptides containing the N-terminus, the first, second, and third transmembrane (TM) domains and the contiguous loops of the α-factor receptor Ste2p, a G protein-coupled receptor. The 131-residue polypeptide Ste2p(G31-R161), TM1-TM3, was investigated by solution NMR in trifluoroethanol/water. TM1-TM3 contains helical TM domains at the predicted locations, supported by continuous sets of medium-range NOEs. In addition, a short helix N-terminal to TM1 was detected, as well as a short helical stretch in the first extracellular loop. Two 161-residue polypeptides, [Ste2p(M1-R161), NT-TM1-TM3], that contain the entire N-terminal sequence, one with a single mutation, were directly expressed and isolated from Escherichia coli in yields as high as 30 mg/L. Based on its increased stability, the L11P mutant will be used in future experiments to determine long-range interactions. The study demonstrated that 3-TM domains of a yeast G protein-coupled receptor can be produced in isotopically labeled form suitable for solution NMR studies. The quality of spectra is superior to data recorded in micelles and allows more rapid data analysis. No tertiary contacts have been determined, and if present, they are likely transient. This observation supports earlier studies by us that secondary structure was retained in smaller fragments, both in organic solvents and in detergent micelles, but that stable tertiary contacts may only be present when the protein is imbedded in lipids. PMID:25645975

  15. Crystal structure of a poly(rA) staggered zipper at acidic pH: evidence that adenine N1 protonation mediates parallel double helix formation

    PubMed Central

    Gleghorn, Michael L.; Zhao, Jianbo; Turner, Douglas H.; Maquat, Lynne E.

    2016-01-01

    We have solved at 1.07 Å resolution the X-ray crystal structure of a polyriboadenylic acid (poly(rA)) parallel and continuous double helix. Fifty-nine years ago, double helices of poly(rA) were first proposed to form at acidic pH. Here, we show that 7-mer oligo(rA), i.e. rA7, hybridizes and overlaps in all registers at pH 3.5 to form stacked double helices that span the crystal. Under these conditions, rA7 forms well-ordered crystals, whereas rA6 forms fragile crystalline-like structures, and rA5, rA8 and rA11 fail to crystallize. Our findings support studies from ∼50 years ago: one showed using spectroscopic methods that duplex formation at pH 4.5 largely starts with rA7 and begins to plateau with rA8; another proposed a so-called ‘staggered zipper’ model in which oligo(rA) strands overlap in multiple registers to extend the helical duplex. While never shown, protonation of adenines at position N1 has been hypothesized to be critical for helix formation. Bond angles in our structure suggest that N1 is protonated on the adenines of every other rAMP−rAMP helix base pair. Our data offer new insights into poly(rA) duplex formation that may be useful in developing a pH sensor. PMID:27288442

  16. Three complete turns of a 3(10)-helix at atomic resolution: the crystal structure of Z-(Aib)11-OtBu.

    PubMed

    Gessmann, Renate; Brückner, Hans; Petratos, Kyriacos

    2003-01-01

    The crystal structure of the synthetic protected oligopeptide Z-(Aib)11-OtBu was determined by x-ray crystallography. The undecapeptide folds in a regular 3(10)-helix with nine consecutive 4 --> 1 hydrogen bonds. At present, this is the largest available structure of a homopeptide (including homopeptides consisting of standard amino acids) and also the longest observed regular 3(10)-helix at atomic resolution. Z-(Aib)11-OtBu crystallizes readily from hot ethanol-water mixture and is one of the crystals in which no solvent molecule is co-crystallized. In the crystal head-to-tail hydrogen bonded columns are formed in the [1 0 1] direction. Each helical column is surrounded by six others, whereby two are packed in parallel and four in antiparallel fashion. Helical columns are packed via apolar crystal contacts. The crystal structure of Z-(Aib)11-OtBu is compared with the crystal structures of Z-(Aib)10-OtBu and Z-(Aib)9-OtBu. The similarities and differences are analysed.

  17. Structure of a group A streptococcal phage-encoded virulence factor reveals a catalytically active triple-stranded beta-helix.

    PubMed

    Smith, Nicola L; Taylor, Edward J; Lindsay, Anna-Marie; Charnock, Simon J; Turkenburg, Johan P; Dodson, Eleanor J; Davies, Gideon J; Black, Gary W

    2005-12-01

    Streptococcus pyogenes (group A Streptococcus) causes severe invasive infections including scarlet fever, pharyngitis (streptococcal sore throat), skin infections, necrotizing fasciitis (flesh-eating disease), septicemia, erysipelas, cellulitis, acute rheumatic fever, and toxic shock. The conversion from nonpathogenic to toxigenic strains of S. pyogenes is frequently mediated by bacteriophage infection. One of the key bacteriophage-encoded virulence factors is a putative "hyaluronidase," HylP1, a phage tail-fiber protein responsible for the digestion of the S. pyogenes hyaluronan capsule during phage infection. Here we demonstrate that HylP1 is a hyaluronate lyase. The 3D structure, at 1.8-angstroms resolution, reveals an unusual triple-stranded beta-helical structure and provides insight into the structural basis for phage tail assembly and the role of phage tail proteins in virulence. Unlike the triple-stranded beta-helix assemblies of the bacteriophage T4 injection machinery and the tailspike endosialidase of the Escherichia coli K1 bacteriophage K1F, HylP1 possesses three copies of the active center on the triple-helical fiber itself without the need for an accessory catalytic domain. The triple-stranded beta-helix is not simply a structural scaffold, as previously envisaged; it is harnessed to provide a 200-angstroms-long substrate-binding groove for the optimal reduction in hyaluronan viscosity to aid phage penetration of the capsule.

  18. Participation of the surface structure of Pharaonis phoborhodopsin, ppR and its A149S and A149V mutants, consisting of the C-terminal alpha-helix and E-F loop, in the complex-formation with the cognate transducer pHtrII, as revealed by site-directed 13C solid-state NMR.

    PubMed

    Kawamura, Izuru; Ikeda, Yoichi; Sudo, Yuki; Iwamoto, Masayuki; Shimono, Kazumi; Yamaguchi, Satoru; Tuzi, Satoru; Saitô, Hazime; Kamo, Naoki; Naito, Akira

    2007-01-01

    We have recorded 13C solid state NMR spectra of [3-13C]Ala-labeled pharaonis phoborhodopsin (ppR) and its mutants, A149S and A149V, complexed with the cognate transducer pharaonis halobacterial transducer II protein (pHtrII) (1-159), to gain insight into a possible role of their cytoplasmic surface structure including the C-terminal alpha-helix and E-F loop for stabilization of the 2:2 complex, by both cross-polarization magic angle spinning (CP-MAS) and dipolar decoupled (DD)-MAS NMR techniques. We found that 13C CP-MAS NMR spectra of [3-13C]Ala-ppR, A149S and A149V complexed with the transducer pHtrII are very similar, reflecting their conformation and dynamics changes caused by mutual interactions through the transmembrane alpha-helical surfaces. In contrast, their DD-MAS NMR spectral features are quite different between [3-13C]Ala-A149S and A149V in the complexes with pHtrII: 13C DD-MAS NMR spectrum of [3-13C]Ala-A149S complex is rather similar to that of the uncomplexed form, while the corresponding spectral feature of A149V complex is similar to that of ppR complex in the C-terminal tip region. This is because more flexible surface structure detected by the DD-MAS NMR spectra are more directly influenced by the dynamics changes than the CP-MAS NMR. It turned out, therefore, that an altered surface structure of A149S resulted in destabilized complex as viewed from the 13C NMR spectrum of the surface areas, probably because of modified conformation at the corner of the helix E in addition to the change of hydropathy. It is, therefore, concluded that the surface structure of ppR including the C-terminal alpha-helix and the E-F loops is directly involved in the stabilization of the complex through conformational stability of the helix E.

  19. Common interruptions in the repeating tripeptide sequence of non-fibrillar collagens: sequence analysis and structural studies on triple-helix peptide models.

    PubMed

    Thiagarajan, Geetha; Li, Yingjie; Mohs, Angela; Strafaci, Christopher; Popiel, Magdalena; Baum, Jean; Brodsky, Barbara

    2008-02-22

    Interruptions in the repeating (Gly-X1-X2)(n) amino acid sequence pattern are found in the triple-helix domains of all non-fibrillar collagens, and perturbations to the triple-helix at such sites are likely to play a role in collagen higher-order structure and function. This study defines the sequence features and structural consequences of the most common interruption, where one residue is missing from the tripeptide pattern, Gly-X1-X2-Gly-AA(1)-Gly-X1-X2, designated G1G interruptions. Residues found within G1G interruptions are predominantly hydrophobic (70%), followed by a significant amount of charged residues (16%), and the Gly-X1-X2 triplets flanking the interruption are atypical. Studies on peptide models indicate the degree of destabilization is much greater when Pro is in the interruption, GP, than when hydrophobic residues (GF, GY) are present, and a rigid Gly-Pro-Hyp tripeptide adjacent to the interruption leads to greater destabilization than a flexible Gly-Ala-Ala sequence. Modeling based on NMR data indicates the Phe residue within a GF interruption is located on the outside of the triple helix. The G1G interruptions resemble a previously studied collagen interruption GPOGAAVMGPO, designated G4G-type, in that both are destabilizing, but allow continuation of rod-like triple helices and maintenance of the single residue stagger throughout the imperfection, with a loss of axial register of the superhelix on both sides. Both kinds of interruptions result in a highly localized perturbation in hydrogen bonding and dihedral angles, but the hydrophobic residue of a G4G interruption packs near the central axis of the superhelix, while the hydrophobic residue of a G1G interruption is located on the triple-helix surface. The different structural consequences of G1G and G4G interruptions in the repeating tripeptide sequence pattern suggest a physical basis for their differential susceptibility to matrix metalloproteinases in type X collagen.

  20. A Trigger Residue for Transmembrane Signaling in the Escherichia coli Serine Chemoreceptor

    PubMed Central

    Kitanovic, Smiljka; Ames, Peter

    2015-01-01

    ABSTRACT The transmembrane Tsr protein of Escherichia coli mediates chemotactic responses to environmental serine gradients. Serine binds to the periplasmic domain of the homodimeric Tsr molecule, promoting a small inward displacement of one transmembrane helix (TM2). TM2 piston displacements, in turn, modulate the structural stability of the Tsr-HAMP domain on the cytoplasmic side of the membrane to control the autophosphorylation activity of the signaling CheA kinase bound to the membrane-distal cytoplasmic tip of Tsr. A five-residue control cable segment connects TM2 to the AS1 helix of HAMP and transmits stimulus and sensory adaptation signals between them. To explore the possible role of control cable helicity in transmembrane signaling by Tsr, we characterized the signaling properties of mutant receptors with various control cable alterations. An all-alanine control cable shifted Tsr output toward the kinase-on state, whereas an all-glycine control cable prevented Tsr from reaching either a fully on or fully off output state. Restoration of the native isoleucine (I214) in these synthetic control cables largely alleviated their signaling defects. Single amino acid replacements at Tsr-I214 shifted output toward the kinase-off (L, N, H, and R) or kinase-on (A and G) states, whereas other control cable residues tolerated most amino acid replacements with little change in signaling behavior. These findings indicate that changes in control cable helicity might mediate transitions between the kinase-on and kinase-off states during transmembrane signaling by chemoreceptors. Moreover, the Tsr-I214 side chain plays a key role, possibly through interaction with the membrane interfacial environment, in triggering signaling changes in response to TM2 piston displacements. IMPORTANCE The Tsr protein of E. coli mediates chemotactic responses to environmental serine gradients. Stimulus signals from the Tsr periplasmic sensing domain reach its cytoplasmic kinase control

  1. Modified helix-like instability structure on imploding z-pinch liners that are pre-imposed with a uniform axial magnetic field

    SciTech Connect

    Awe, T. J. Jennings, C. A.; McBride, R. D.; Cuneo, M. E.; Lamppa, D. C.; Martin, M. R.; Rovang, D. C.; Sinars, D. B.; Slutz, S. A.; Owen, A. C.; Gomez, M. R.; Hansen, S. B.; Herrmann, M. C.; Jones, M. C.; McKenney, J. L.; Robertson, G. K.; Rochau, G. A.; Savage, M. E.; Stygar, W. A.; Tomlinson, K.; and others

    2014-05-15

    Recent experiments at the Sandia National Laboratories Z Facility have, for the first time, studied the implosion dynamics of magnetized liner inertial fusion (MagLIF) style liners that were pre-imposed with a uniform axial magnetic field. As reported [T. J. Awe et al., Phys. Rev. Lett. 111, 235005 (2013)] when premagnetized with a 7 or 10 T axial field, these liners developed 3D-helix-like hydrodynamic instabilities; such instabilities starkly contrast with the azimuthally correlated magneto-Rayleigh-Taylor (MRT) instabilities that have been consistently observed in many earlier non-premagnetized experiments. The helical structure persisted throughout the implosion, even though the azimuthal drive field greatly exceeded the expected axial field at the liner's outer wall for all but the earliest stages of the experiment. Whether this modified instability structure has practical importance for magneto-inertial fusion concepts depends primarily on whether the modified instability structure is more stable than standard azimuthally correlated MRT instabilities. In this manuscript, we discuss the evolution of the helix-like instability observed on premagnetized liners. While a first principles explanation of this observation remains elusive, recent 3D simulations suggest that if a small amplitude helical perturbation can be seeded on the liner's outer surface, no further influence from the axial field is required for the instability to grow.

  2. An Id-related helix-loop-helix protein encoded by a growth factor-inducible gene.

    PubMed Central

    Christy, B A; Sanders, L K; Lau, L F; Copeland, N G; Jenkins, N A; Nathans, D

    1991-01-01

    An mRNA encoding a helix-loop-helix protein that we have named HLH462 is induced in mouse 3T3 cells as part of the immediate early transcriptional response to growth factors and other signaling agents. The RNA is present in a number of mouse tissues and in the developing mouse fetus. The HLH462 gene has been mapped by interspecific backcross analysis to the distal region of mouse chromosome 4. In its helix-loop-helix region HLH462 is closely related to the Id protein and the Drosophila emc protein. Like Id, HLH462 lacks a basic region required for DNA binding, and it inhibits the DNA-binding activities of other helix-loop-helix proteins. On the basis of its structural and functional similarity to Id, we suggest that HLH462 may inhibit the activities of helix-loop-helix transcription factors during the cellular growth response and during development. Images PMID:2000388

  3. Crystal structure of rat heme oxygenase-1 in complex with biliverdin-iron chelate. Conformational change of the distal helix during the heme cleavage reaction.

    PubMed

    Sugishima, Masakazu; Sakamoto, Hiroshi; Higashimoto, Yuichiro; Noguchi, Masato; Fukuyama, Keiichi

    2003-08-22

    The crystal structure of rat heme oxygenase-1 in complex with biliverdin-iron chelate (biliverdin(Fe)-HO-1), the immediate precursor of the final product, biliverdin, has been determined at a 2.4-A resolution. The electron density in the heme pocket clearly showed that the tetrapyrrole ring of heme is cleaved at the alpha-meso edge. Like the heme bound to HO-1, biliverdin-iron chelate is located between the distal and proximal helices, but its accommodation state seems to be less stable in light of the disordering of the solvent-exposed propionate and vinyl groups. The middle of the distal helix is shifted away from the center of the active site in biliverdin(Fe)-HO-1, increasing the size of the heme pocket. The hydrogen-bonding interaction between Glu-29 and Gln-38, considered to restrain the orientation of the proximal helix in the heme-HO-1 complex, was lost in biliverdin(Fe)-HO-1, leading to relaxation of the helix. Biliverdin has a distorted helical conformation; the lactam oxygen atom of its pyrrole ring-A interacted with Asp-140 through a hydrogen-bonding solvent network. Because of the absence of a distal water ligand, the iron atom is five-coordinated with His-25 and four pyrrole nitrogen atoms. The coordination geometry deviates considerably from a square pyramid, suggesting that the iron may be readily dissociated. We speculate that the opened conformation of the heme pocket facilitates sequential product release, first iron then biliverdin, and that because of biliverdin's increased flexibility, iron release triggers its slow dissociation. PMID:12794075

  4. Helical hairpin structure of influenza hemagglutinin fusion peptide stabilized by charge-dipole interactions between the N-terminal amino group and the second helix.

    PubMed

    Lorieau, Justin L; Louis, John M; Bax, Ad

    2011-03-01

    The fusion domain of the influenza coat protein hemagglutinin HA2, bound to dodecyl phosphocholine micelles, was recently shown to adopt a structure consisting of two antiparallel α-helices, packed in an exceptionally tight hairpin configuration. Four interhelical H(α) to C═O aliphatic H-bonds were identified as factors stabilizing this fold. Here, we report evidence for an additional stabilizing force: a strong charge-dipole interaction between the N-terminal Gly(1) amino group and the dipole moment of helix 2. pH titration of the amino-terminal (15)N resonance, using a methylene-TROSY-based 3D NMR experiment, and observation of Gly(1 13)C' show a strongly elevated pK = 8.8, considerably higher than expected for an N-terminal amino group in a lipophilic environment. Chemical shifts of three C-terminal carbonyl carbons of helix 2 titrate with the protonation state of Gly(1)-N, indicative of a close proximity between the N-terminal amino group and the axis of helix 2, providing an optimal charge-dipole stabilization of the antiparallel hairpin fold. pK values of the side-chain carboxylate groups of Glu(11) and Asp(19) are higher by about 1 and 0.5 unit, respectively, than commonly seen for solvent-exposed side chains in water-soluble proteins, indicative of dielectric constants of ε = ∼30 (Glu(11)) and ∼60 (Asp(19)), placing these groups in the headgroup region of the phospholipid micelle.

  5. Contributions of the C-Terminal Helix to the Structural Stability of a Hyperthermophilic Fe-Superoxide Dismutase (TcSOD)

    PubMed Central

    Wang, Sha; Yan, Yong-Bin; Dong, Zhi-Yang

    2009-01-01

    Hyperthermophilic superoxide dismutases (SODs) are of particular interest due to their potential industrial importance and scientific merit in studying the molecular mechanisms of protein folding and stability. Compared to the mesophilic SODs, the hyperthermostable Fe-SODs (TcSOD and ApSOD) have an extended C-terminal helix, which forms an additional ion-pairing network. In this research, the role of the extended C-terminus in the structural stability of TcSOD was studied by investigating the properties of two deletion mutants. The results indicated that the ion-pairing network at the C-terminus had limited contributions to the stability of TcSOD against heat- and GdnHCl-induced inactivation. The intactness of the C-terminal helix had dissimilar impact on the two stages of TcSOD unfolding induced by guanidinium chloride. The mutations slightly decreased the Gibbs free energy of the dissociation of the tetrameric enzymes, while greatly affected the stability of the molten globule-like intermediate. These results suggested that the additional ion-pairing network mainly enhanced the structural stability of TcSOD by stabilizing the monomers. PMID:20054483

  6. Structural and functional interactions between six-transmembrane μ-opioid receptors and β2-adrenoreceptors modulate opioid signaling

    PubMed Central

    Samoshkin, Alexander; Convertino, Marino; Viet, Chi T.; Wieskopf, Jeffrey S.; Kambur, Oleg; Marcovitz, Jaclyn; Patel, Pinkal; Stone, Laura S.; Kalso, Eija; Mogil, Jeffrey S.; Schmidt, Brian L.; Maixner, William; Dokholyan, Nikolay V.; Diatchenko, Luda

    2015-01-01

    The primary molecular target for clinically used opioids is the μ-opioid receptor (MOR). Besides the major seven-transmembrane (7TM) receptors, the MOR gene codes for alternatively spliced six-transmembrane (6TM) isoforms, the biological and clinical significance of which remains unclear. Here, we show that the otherwise exclusively intracellular localized 6TM-MOR translocates to the plasma membrane upon coexpression with β2-adrenergic receptors (β2-ARs) through an interaction with the fifth and sixth helices of β2-AR. Coexpression of the two receptors in BE(2)-C neuroblastoma cells potentiates calcium responses to a 6TM-MOR ligand, and this calcium response is completely blocked by a selective β2-antagonist in BE(2)-C cells, and in trigeminal and dorsal root ganglia. Co-administration of 6TM-MOR and β2-AR ligands leads to substantial analgesic synergy and completely reverses opioid-induced hyperalgesia in rodent behavioral models. Together, our results provide evidence that the heterodimerization of 6TM-MOR with β2-AR underlies a molecular mechanism for 6TM cellular signaling, presenting a unique functional responses to opioids. This signaling pathway may contribute to the hyperalgesic effects of opioids that can be efficiently blocked by β2-AR antagonists, providing a new avenue for opioid therapy. PMID:26657998

  7. Reovirus FAST Proteins Drive Pore Formation and Syncytiogenesis Using a Novel Helix-Loop-Helix Fusion-Inducing Lipid Packing Sensor

    PubMed Central

    Sarker, Muzaddid; de Antueno, Roberto; Langelaan, David N.; Parmar, Hiren B.; Shin, Kyungsoo; Rainey, Jan K.; Duncan, Roy

    2015-01-01

    Pore formation is the most energy-demanding step during virus-induced membrane fusion, where high curvature of the fusion pore rim increases the spacing between lipid headgroups, exposing the hydrophobic interior of the membrane to water. How protein fusogens breach this thermodynamic barrier to pore formation is unclear. We identified a novel fusion-inducing lipid packing sensor (FLiPS) in the cytosolic endodomain of the baboon reovirus p15 fusion-associated small transmembrane (FAST) protein that is essential for pore formation during cell-cell fusion and syncytiogenesis. NMR spectroscopy and mutational studies indicate the dependence of this FLiPS on a hydrophobic helix-loop-helix structure. Biochemical and biophysical assays reveal the p15 FLiPS preferentially partitions into membranes with high positive curvature, and this partitioning is impeded by bis-ANS, a small molecule that inserts into hydrophobic defects in membranes. Most notably, the p15 FLiPS can be functionally replaced by heterologous amphipathic lipid packing sensors (ALPS) but not by other membrane-interactive amphipathic helices. Furthermore, a previously unrecognized amphipathic helix in the cytosolic domain of the reptilian reovirus p14 FAST protein can functionally replace the p15 FLiPS, and is itself replaceable by a heterologous ALPS motif. Anchored near the cytoplasmic leaflet by the FAST protein transmembrane domain, the FLiPS is perfectly positioned to insert into hydrophobic defects that begin to appear in the highly curved rim of nascent fusion pores, thereby lowering the energy barrier to stable pore formation. PMID:26061049

  8. Protein Secondary Structures (alpha-helix and beta-sheet) at a Cellular Levle and Protein Fractions in Relation to Rumen Degradation Behaviours of Protein: A New Approach

    SciTech Connect

    Yu,P.

    2007-01-01

    Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein, and such an understanding of the structure of the whole protein is often vital to understanding its digestive behaviour and nutritive value in animals. The main protein secondary structures are the {alpha}-helix and {beta}-sheet. The percentage of these two structures in protein secondary structures influences protein nutritive value, quality and digestive behaviour. A high percentage of {beta}-sheet structure may partly cause a low access to gastrointestinal digestive enzymes, which results in a low protein value. The objectives of the present study were to use advanced synchrotron-based Fourier transform IR (S-FTIR) microspectroscopy as a new approach to reveal the molecular chemistry of the protein secondary structures of feed tissues affected by heat-processing within intact tissue at a cellular level, and to quantify protein secondary structures using multicomponent peak modelling Gaussian and Lorentzian methods, in relation to protein digestive behaviours and nutritive value in the rumen, which was determined using the Cornell Net Carbohydrate Protein System. The synchrotron-based molecular chemistry research experiment was performed at the National Synchrotron Light Source at Brookhaven National Laboratory, US Department of Energy. The results showed that, with S-FTIR microspectroscopy, the molecular chemistry, ultrastructural chemical make-up and nutritive characteristics could be revealed at a high ultraspatial resolution ({approx}10 {mu}m). S-FTIR microspectroscopy revealed that the secondary structure of protein differed between raw and roasted golden flaxseeds in terms of the percentages and ratio of {alpha}-helixes and {beta}-sheets in the mid-IR range at the cellular level. By using multicomponent peak modelling, the results show that the roasting reduced (P <0.05) the percentage of {alpha}-helixes (from 47.1% to 36.1%: S

  9. Detecting the Conformational Change of Transmembrane Signaling in a Bacterial Chemoreceptor by Measuring Effects on Disulfide Cross-Linking in vivo

    NASA Astrophysics Data System (ADS)

    Hughson, Andrew G.; Hazelbauer, Gerald L.

    1996-10-01

    Transmembrane signaling by bacterial chemoreceptors is thought to involve relative movement among the four transmembrane helices of the homodimer. We assayed that movement by measuring effects of ligand occupancy on rates of oxidative cross-linking between cysteines introduced into neighboring helices of the transmembrane domain of chemoreceptor Trg from Escherichia coli. Measurements were done on chemoreceptors in their native environment, intact cells that were motile and chemotactically responsive. Receptor occupancy did not appear to cause drastic rearrangement of the four-helix structure since, among 67 cysteine pairs tested, the same 19 exhibited oxidative cross-linking in the presence or absence of saturating chemoattractant. However, occupancy did cause subtle changes that were detected as effects on rates of cross-linking. Among the seven disulfides appropriate for measurements of initial rates of formation, ligand occupancy had significant and different effects on all three cross-links that connected the two helices within a subunit but had minimal effects on the four that spanned the packing interface between subunits. This constitutes direct evidence that the conformational change of transmembrane signaling involves significant movement within a subunit and minimal movement between subunits, a pattern deduced from several previous studies and now documented directly. Among possible modes of movement between the two helices of a subunit, axial sliding of one helix relative to the other was the conformational change that best accounted for the observed effects on cross-linking.

  10. Crystal structure of the N-terminal region of human Ash2L shows a winged-helix motif involved in DNA binding

    SciTech Connect

    Chen, Yong; Wan, Bingbing; Wang, Kevin C.; Cao, Fang; Yang, Yuting; Protacio, Angeline; Dou, Yali; Chang, Howard Y.; Lei, Ming

    2011-09-06

    Ash2L is a core component of the MLL family histone methyltransferases and has an important role in regulating the methylation of histone H3 on lysine 4. Here, we report the crystal structure of the N-terminal domain of Ash2L and reveal a new function of Ash2L. The structure shows that Ash2L contains an atypical PHD finger that does not have histone tail-binding activity. Unexpectedly, the structure shows a previously unrecognized winged-helix motif that directly binds to DNA. The DNA-binding-deficient mutants of Ash2L reduced Ash2L localization to the HOX locus. Strikingly, a single mutation in Ash2L{sub WH} (K131A) breaks the chromatin domain boundary, suggesting that Ash2L also has a role in chromosome demarcation.

  11. Monoclinic uncomplexed double-stranded, antiparallel, left-handed beta 5.6-helix (increases decreases beta 5.6) structure of gramicidin A: alternate patterns of helical association and deformation.

    PubMed Central

    Langs, D A; Smith, G D; Courseille, C; Précigoux, G; Hospital, M

    1991-01-01

    A comparison of the monoclinic and orthorhombic crystal structures of the uncomplexed double-stranded, antiparallel, left-handed beta-helix (5.6 amino acid residues per turn) (increases decreases beta 5.6) conformers of gramicidin A reveals marked differences in the tryptophan side-chain orientations and the degree of helical uniformity of the dimer and in the manner in which these helical dimers associate with one another in the crystal. The helix of the orthorhombic dimer exhibits a regular pattern of bulges and constrictions that appears to be induced by crystal packing forces affecting tryptophan side chains that are aligned parallel to the helix axis. The monoclinic dimer is more uniform than the orthorhombic dimer as a consequence of pi stacking interactions between dimers in which orientation of tryptophan side chains is normal to the helix axis to relieve the lateral crystal packing forces that may locally twist and deform the helix. It may be inferred from these observations that lipid interactions may be expected to destabilize the increases decreases beta 5.6 helix when it is inserted into a membrane bilayer. PMID:1711230

  12. A Sidekick for Membrane Simulations: Automated Ensemble Molecular Dynamics Simulations of Transmembrane Helices

    PubMed Central

    Hall, Benjamin A; Halim, Khairul Abd; Buyan, Amanda; Emmanouil, Beatrice; Sansom, Mark S P

    2016-01-01

    The interactions of transmembrane (TM) α-helices with the phospholipid membrane and with one another are central to understanding the structure and stability of integral membrane proteins. These interactions may be analysed via coarse-grained molecular dynamics (CGMD) simulations. To obtain statistically meaningful analysis of TM helix interactions, large (N ca. 100) ensembles of CGMD simulations are needed. To facilitate the running and analysis of such ensembles of simulations we have developed Sidekick, an automated pipeline software for performing high throughput CGMD simulations of α-helical peptides in lipid bilayer membranes. Through an end-to-end approach, which takes as input a helix sequence and outputs analytical metrics derived from CGMD simulations, we are able to predict the orientation and likelihood of insertion into a lipid bilayer of a given helix of family of helix sequences. We illustrate this software via analysis of insertion into a membrane of short hydrophobic TM helices containing a single cationic arginine residue positioned at different positions along the length of the helix. From analysis of these ensembles of simulations we estimate apparent energy barriers to insertion which are comparable to experimentally determined values. In a second application we use CGMD simulations to examine self-assembly of dimers of TM helices from the ErbB1 receptor tyrosine kinase, and analyse the numbers of simulation repeats necessary to obtain convergence of simple descriptors of the mode of packing of the two helices within a dimer. Our approach offers proof-of-principle platform for the further employment of automation in large ensemble CGMD simulations of membrane proteins. PMID:26580541

  13. The Molecular Mechanism of Opening the Helix Bundle Crossing (HBC) Gate of a Kir Channel.

    PubMed

    Meng, Xuan-Yu; Liu, Shengtang; Cui, Meng; Zhou, Ruhong; Logothetis, Diomedes E

    2016-01-01

    Inwardly rectifying K(+) (Kir) channels, serving as natural molecular nanomachines, transport potassium ions across the plasma membrane of the cell. Along the ion permeation pathway, three relatively narrow regions (the selectivity filter (SF), the inner helix bundle crossing (HBC), and the cytosolic G loop) may serve as gates to control ion permeation. Our previous molecular dynamics simulations based on the crystal structure of a Kir3.1 chimera revealed the possible gating mechanism of the G loop gate. Here, we introduced a proline mutation in the inner helix and obtained a channel model of the open HBC gate. The open HBC gate reaches 0.6 nm in diameter, which allows partial hydrated K(+) ions to pass through. During the gating process, both the transmembrane helices TM1 and TM2 cooperatively rotate in a counterclockwise direction (viewed from the extracellular side) with the aid of the phospholipid PIP2. Only when all the transmembrane helices adopt a counterclockwise rotation, the HBC gate can be stabilized in the open state. We estimate that introduction of the proline mutation decreases the energy required to open the HBC gate by about 1.4 kcal/mol (ΔΔG).

  14. The Molecular Mechanism of Opening the Helix Bundle Crossing (HBC) Gate of a Kir Channel.

    PubMed

    Meng, Xuan-Yu; Liu, Shengtang; Cui, Meng; Zhou, Ruhong; Logothetis, Diomedes E

    2016-01-01

    Inwardly rectifying K(+) (Kir) channels, serving as natural molecular nanomachines, transport potassium ions across the plasma membrane of the cell. Along the ion permeation pathway, three relatively narrow regions (the selectivity filter (SF), the inner helix bundle crossing (HBC), and the cytosolic G loop) may serve as gates to control ion permeation. Our previous molecular dynamics simulations based on the crystal structure of a Kir3.1 chimera revealed the possible gating mechanism of the G loop gate. Here, we introduced a proline mutation in the inner helix and obtained a channel model of the open HBC gate. The open HBC gate reaches 0.6 nm in diameter, which allows partial hydrated K(+) ions to pass through. During the gating process, both the transmembrane helices TM1 and TM2 cooperatively rotate in a counterclockwise direction (viewed from the extracellular side) with the aid of the phospholipid PIP2. Only when all the transmembrane helices adopt a counterclockwise rotation, the HBC gate can be stabilized in the open state. We estimate that introduction of the proline mutation decreases the energy required to open the HBC gate by about 1.4 kcal/mol (ΔΔG). PMID:27439597

  15. The Molecular Mechanism of Opening the Helix Bundle Crossing (HBC) Gate of a Kir Channel

    PubMed Central

    Meng, Xuan-Yu; Liu, Shengtang; Cui, Meng; Zhou, Ruhong; Logothetis, Diomedes E.

    2016-01-01

    Inwardly rectifying K+ (Kir) channels, serving as natural molecular nanomachines, transport potassium ions across the plasma membrane of the cell. Along the ion permeation pathway, three relatively narrow regions (the selectivity filter (SF), the inner helix bundle crossing (HBC), and the cytosolic G loop) may serve as gates to control ion permeation. Our previous molecular dynamics simulations based on the crystal structure of a Kir3.1 chimera revealed the possible gating mechanism of the G loop gate. Here, we introduced a proline mutation in the inner helix and obtained a channel model of the open HBC gate. The open HBC gate reaches 0.6 nm in diameter, which allows partial hydrated K+ ions to pass through. During the gating process, both the transmembrane helices TM1 and TM2 cooperatively rotate in a counterclockwise direction (viewed from the extracellular side) with the aid of the phospholipid PIP2. Only when all the transmembrane helices adopt a counterclockwise rotation, the HBC gate can be stabilized in the open state. We estimate that introduction of the proline mutation decreases the energy required to open the HBC gate by about 1.4 kcal/mol (ΔΔG). PMID:27439597

  16. Revisting the Double Helix

    SciTech Connect

    Ha, Taekjip

    2010-12-08

    Properties of DNA double helix have been studied for over 60 years. Yet as more sensitive tools become available, fundamental assumptions in our understanding of these properties are being challenged. One such question is over the flexibility of DNA. Looping or bending of DNA on short length scales is essential for many cellular processes but it is highly controversial exactly how flexible the DNA is. Using a new, single-molecule based method, we found that DNA of lengths as short as 50 base pairs can form a circle more than 108 times faster than theoretical predictions. Another question concerns the physical principles governing the reversible, helix-coil transitions of DNA between the double helix and single strands. Using porous nanocontainers, we found that the rate of double helix formation shows an abrupt 100 fold change depending on whether there are 7 or more contiguous base pairs or not.

  17. Structure of the unique SEFIR domain from human interleukin 17 receptor A reveals a composite ligand-binding site containing a conserved α-helix for Act1 binding and IL-17 signaling

    SciTech Connect

    Zhang, Bing; Liu, Caini; Qian, Wen; Han, Yue; Li, Xiaoxia; Deng, Junpeng

    2014-05-01

    Crystal structure of the SEFIR domain from human IL-17 receptor A provides new insights into IL-17 signaling. Interleukin 17 (IL-17) cytokines play a crucial role in mediating inflammatory and autoimmune diseases. A unique intracellular signaling domain termed SEFIR is found within all IL-17 receptors (IL-17Rs) as well as the key adaptor protein Act1. SEFIR-mediated protein–protein interaction is a crucial step in IL-17 cytokine signaling. Here, the 2.3 Å resolution crystal structure of the SEFIR domain of IL-17RA, the most commonly shared receptor for IL-17 cytokine signaling, is reported. The structure includes the complete SEFIR domain and an additional α-helical C-terminal extension, which pack tightly together to form a compact unit. Structural comparison between the SEFIR domains of IL-17RA and IL-17RB reveals substantial differences in protein topology and folding. The uniquely long insertion between strand βC and helix αC in IL-17RA SEFIR is mostly well ordered, displaying a helix (αCC′{sub ins}) and a flexible loop (CC′). The DD′ loop in the IL-17RA SEFIR structure is much shorter; it rotates nearly 90° with respect to the counterpart in the IL-17RB SEFIR structure and shifts about 12 Å to accommodate the αCC′{sub ins} helix without forming any knots. Helix αC was identified as critical for its interaction with Act1 and IL-17-stimulated gene expression. The data suggest that the heterotypic SEFIR–SEFIR association via helix αC is a conserved and signature mechanism specific for IL-17 signaling. The structure also suggests that the downstream motif of IL-17RA SEFIR together with helix αC could provide a composite ligand-binding surface for recruiting Act1 during IL-17 signaling.

  18. Transmembrane domain V plays a stabilizing role in the function of human bile acid transporter SLC10A2.

    PubMed

    Moore, Robyn H; Chothe, Paresh; Swaan, Peter W

    2013-07-30

    The human apical sodium-dependent bile acid transporter (hASBT, SLC10A2), primarily expressed in the ileum, is involved in both the recycling of bile acids and cholesterol homeostasis. In this study, the structure-function relationship of transmembrane domain 5 (TM5) residues involved in transport is elucidated. Cysteine scanning mutagenesis of each consecutive residue on TM5 resulted in 96% of mutants having a significantly decreased transport activity, although each was expressed at the cell surface. Specifically, G197 and I208 were no longer functional, and G201 and G212 functioned at a level of <10% upon cysteine mutation. Interestingly, each of these exists along one face of the helix. Studies suggest that neither G201 nor G212 is on the substrate pathway. Conservative alanine mutations of the four residues displayed a higher activity in all but G197A, indicating its functional importance. G197 and G201 form a GxxxG motif, which has been found to be important in helix-helix interactions. According to our model, G197 and G201 face transmembrane domain 4 (TM4) residues G179 and P175, respectively. Similarly, G212 faces G237, which forms part of a GxxxG domain in transmembrane domain 6 (TM6). It is possible that these GxxxG domains and their interacting partners are responsible for maintaining the structure of the helices and their interactions with one another. I205 and I208 are both in positions to anchor the GxxxG domains and direct the change in interaction of TM5 from TM4 to TM6. Combined, the results suggest that residues along TM5 are critical for ASBT function but are not directly involved in substrate translocation.

  19. SU-E-T-241: Monte Carlo Simulation Study About the Prediction of Proton-Induced DNA Strand Breakage On the Double Helix Structure

    SciTech Connect

    Shin, J; Park, S; Jeong, J; Jeong, C; Lim, Y; Lee, S; SHIN, D; Incerti, S

    2014-06-01

    Purpose: In particle therapy and radiobiology, the investigation of mechanisms leading to the death of target cancer cells induced by ionising radiation is an active field of research. Recently, several studies based on Monte Carlo simulation codes have been initiated in order to simulate physical interactions of ionising particles at cellular scale and in DNA. Geant4-DNA is the one of them; it is an extension of the general purpose Geant4 Monte Carlo simulation toolkit for the simulation of physical interactions at sub-micrometre scale. In this study, we present Geant4-DNA Monte Carlo simulations for the prediction of DNA strand breakage using a geometrical modelling of DNA structure. Methods: For the simulation of DNA strand breakage, we developed a specific DNA geometrical structure. This structure consists of DNA components, such as the deoxynucleotide pairs, the DNA double helix, the nucleosomes and the chromatin fibre. Each component is made of water because the cross sections models currently available in Geant4-DNA for protons apply to liquid water only. Also, at the macroscopic-scale, protons were generated with various energies available for proton therapy at the National Cancer Center, obtained using validated proton beam simulations developed in previous studies. These multi-scale simulations were combined for the validation of Geant4-DNA in radiobiology. Results: In the double helix structure, the deposited energy in a strand allowed to determine direct DNA damage from physical interaction. In other words, the amount of dose and frequency of damage in microscopic geometries was related to direct radiobiological effect. Conclusion: In this report, we calculated the frequency of DNA strand breakage using Geant4- DNA physics processes for liquid water. This study is now on-going in order to develop geometries which use realistic DNA material, instead of liquid water. This will be tested as soon as cross sections for DNA material become available in Geant4

  20. Specific recognition of the collagen triple helix by chaperone HSP47. II. The HSP47-binding structural motif in collagens and related proteins.

    PubMed

    Koide, Takaki; Nishikawa, Yoshimi; Asada, Shinichi; Yamazaki, Chisato M; Takahara, Yoshifumi; Homma, Daisuke L; Otaka, Akira; Ohtani, Katsuki; Wakamiya, Nobutaka; Nagata, Kazuhiro; Kitagawa, Kouki

    2006-04-21

    The endoplasmic reticulum-resident chaperone heat-shock protein 47 (HSP47) plays an essential role in procollagen biosynthesis. The function of HSP47 relies on its specific interaction with correctly folded triple-helical regions comprised of Gly-Xaa-Yaa repeats, and Arg residues at Yaa positions have been shown to be important for this interaction. The amino acid at the Yaa position (Yaa(-3)) in the N-terminal-adjoining triplet containing the critical Arg (defined as Arg(0)) was also suggested to be directly recognized by HSP47 (Koide, T., Asada, S., Takahara, Y., Nishikawa, Y., Nagata, K., and Kitagawa, K. (2006) J. Biol. Chem. 281, 3432-3438). Based on this finding, we examined the relationship between the structure of Yaa(-3) and HSP47 binding using synthetic collagenous peptides. The results obtained indicated that the structure of Yaa(-3) determined the binding affinity for HSP47. Maximal binding was observed when Yaa(-3) was Thr. Moreover, the required relative spatial arrangement of these key residues in the triple helix was analyzed by taking advantage of heterotrimeric collagen-model peptides, each of which contains one Thr(-3) and one Arg(0). The results revealed that HSP47 recognizes the Yaa(-3) and Arg(0) residues only when they are on the same peptide strand. Taken together, the data obtained led us to define the HSP47-binding structural epitope in the collagen triple helix and also define the HSP47-binding motif in the primary structure. A motif search against human protein database predicted candidate clients for this molecular chaperone. The search result indicated that not all collagen family proteins require the chaperoning by HSP47.

  1. Current-voltage characteristics of seven-helix proteins from a cubic array of amino acids

    NASA Astrophysics Data System (ADS)

    Alfinito, Eleonora; Reggiani, Lino

    2016-06-01

    The electrical properties of a set of seven-helix transmembrane proteins, whose space arrangement [three-dimensional (3D) structure] is known, are investigated by using regular arrays of the amino acids. These structures, specifically cubes, have topological features similar to those shown by the chosen proteins. The theoretical results show a good agreement between the predicted current-voltage characteristics obtained from a cubic array and those obtained from a detailed 3D structure. The agreement is confirmed by available experiments on bacteriorhodopsin. Furthermore, all the analyzed proteins are found to share the same critical behavior of the voltage-dependent conductance and of its variance. In particular, the cubic arrangement evidences a short plateau of the excess conductance and its variance at high voltages. The results of the present investigation show the possibility to predict the I -V characteristics of a multiple-protein sample even in the absence of detailed knowledge of the proteins' 3D structure.

  2. A Helix Replacement Mechanism Directs Metavinculin Functions

    SciTech Connect

    Rangarajan, Erumbi S.; Lee, Jun Hyuck; Yogesha, S.D.; Izard, Tina

    2010-10-11

    Cells require distinct adhesion complexes to form contacts with their neighbors or the extracellular matrix, and vinculin links these complexes to the actin cytoskeleton. Metavinculin, an isoform of vinculin that harbors a unique 68-residue insert in its tail domain, has distinct actin bundling and oligomerization properties and plays essential roles in muscle development and homeostasis. Moreover, patients with sporadic or familial mutations in the metavinculin-specific insert invariably develop fatal cardiomyopathies. Here we report the high resolution crystal structure of the metavinculin tail domain, as well as the crystal structures of full-length human native metavinculin (1,134 residues) and of the full-length cardiomyopathy-associated {Delta}Leu954 metavinculin deletion mutant. These structures reveal that an {alpha}-helix (H1{prime}) and extended coil of the metavinculin insert replace {alpha}-helix H1 and its preceding extended coil found in the N-terminal region of the vinculin tail domain to form a new five-helix bundle tail domain. Further, biochemical analyses demonstrate that this helix replacement directs the distinct actin bundling and oligomerization properties of metavinculin. Finally, the cardiomyopathy associated {Delta}Leu954 and Arg975Trp metavinculin mutants reside on the replaced extended coil and the H1{prime} {alpha}-helix, respectively. Thus, a helix replacement mechanism directs metavinculin's unique functions.

  3. The crystal structure of GXGD membrane protease FlaK

    SciTech Connect

    Hu, Jian; Xue, Yi; Lee, Sangwon; Ha, Ya

    2011-09-20

    The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 {angstrom} resolution. The structure contains six transmembrane helices. The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.

  4. The Crystal Structure of GXGD Membrane Protease FlaK

    SciTech Connect

    J Hu; Y Xue; S Lee; Y Ha

    2011-12-31

    The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 {angstrom} resolution. The structure contains six transmembrane helices. The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.

  5. Helix-forming tendencies of amino acids depend on the restrictions of side-chain rotamer conformations: crystal structure of the tripeptide GAI in two crystalline forms.

    PubMed

    Go, K; Chaturvedi, S; Parthasarathy, R

    1992-02-01

    In our attempts to design crystalline alpha-helical peptides, we synthesized and crystallized GAI (C11H21N3O4) in two crystal forms, GAI1 and GAI2. Form 1 (GAI1) Gly-L-Ala-L-Ile (C11H21N3O4.3H2O) crystals are monoclinic, space group P2(1) with a = 8.171(2), b = 6.072(4), c = 16.443(4) A, beta = 101.24(2) degrees, V = 800 A3, Dc = 1.300 g cm-3 and Z = 2, R = 0.081 for 482 reflections. Form 2 (GAI2) Gly-L-Ala-L-Ile (C11H21N3O4.1/2H2O) is triclinic, space group P1 with a = 5.830(1), b = 8.832(2), c = 15.008(2) A, alpha = 102.88(1), beta = 101.16(2), gamma = 70.72(2) degrees, V = 705 A3, Z = 2, Dc = 1.264 g cm-3, R = 0.04 for 2582 reflections. GAI1 is isomorphous with GAV and forms a helix, whereas GAI2 does not. In GAI1, the tripeptide molecule is held in a near helical conformation by a water molecule that bridges the NH3+ and COO- groups, and acts as the fourth residue needed to complete the turn by forming two hydrogen bonds. Two other water molecules form intermolecular hydrogen bonds in stabilizing the helical structure so that the end result is a column of molecules that looks like an incipient alpha-helix. GAI2 imitates a cyclic peptide and traps a water molecule. The conformation angles chi 11 and chi 12 for the side chain are (-63.7 degrees, 171.1 degrees) for the helical GAI1, and (-65.1 degrees, 58.6 degrees) and (-65.0 degrees, 58.9 degrees) for the two independent nonhelical molecules in GAI2; in GAI1, both the C gamma atoms point away from the helix, whereas in GAI2 the C gamma atom with the g+ conformation points inward to the helix and causes sterical interaction with atoms in the adjacent peptide plane. From these results, it is clear that the helix-forming tendencies of amino acids correlate with the restrictions of side-chain rotamer conformations. Both the peptide units in GAI1 are trans and show significant deviation from planarity [omega 1 = -168(1) degrees; omega 2 = -171(1) degrees] whereas both the peptide units in both the molecules A and B

  6. Transmembrane signaling and assembly of the cytochrome b6f-lipidic charge transfer complex.

    PubMed

    Saif Hasan, S; Yamashita, Eiki; Cramer, William A

    2013-01-01

    Structure-function properties of the cytochrome b6f complex are sufficiently unique compared to those of the cytochrome bc1 complex that b6f should not be considered a trivially modified bc1 complex. A unique property of the dimeric b6f complex is its involvement in transmembrane signaling associated with the p-side oxidation of plastoquinol. Structure analysis of lipid binding sites in the cyanobacterial b6f complex prepared by hydrophobic chromatography shows that the space occupied by the H transmembrane helix in the cytochrome b subunit of the bc1 complex is mostly filled by a lipid in the b6f crystal structure. It is suggested that this space can be filled by the domain of a transmembrane signaling protein. The identification of lipid sites and likely function defines the intra-membrane conserved central core of the b6f complex, consisting of the seven trans-membrane helices of the cytochrome b and subunit IV polypeptides. The other six TM helices, contributed by cytochrome f, the iron-sulfur protein, and the four peripheral single span subunits, define a peripheral less conserved domain of the complex. The distribution of conserved and non-conserved domains of each monomer of the complex, and the position and inferred function of a number of the lipids, suggests a model for the sequential assembly in the membrane of the eight subunits of the b6f complex, in which the assembly is initiated by formation of the cytochrome b6-subunit IV core sub-complex in a monomer unit. Two conformations of the unique lipidic chlorophyll a, defined in crystal structures, are described, and functions of the outlying β-carotene, a possible 'latch' in supercomplex formation, are discussed. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes. PMID:23507619

  7. Transmembrane signaling and assembly of the cytochrome b6f-lipidic charge transfer complex.

    PubMed

    Saif Hasan, S; Yamashita, Eiki; Cramer, William A

    2013-01-01

    Structure-function properties of the cytochrome b6f complex are sufficiently unique compared to those of the cytochrome bc1 complex that b6f should not be considered a trivially modified bc1 complex. A unique property of the dimeric b6f complex is its involvement in transmembrane signaling associated with the p-side oxidation of plastoquinol. Structure analysis of lipid binding sites in the cyanobacterial b6f complex prepared by hydrophobic chromatography shows that the space occupied by the H transmembrane helix in the cytochrome b subunit of the bc1 complex is mostly filled by a lipid in the b6f crystal structure. It is suggested that this space can be filled by the domain of a transmembrane signaling protein. The identification of lipid sites and likely function defines the intra-membrane conserved central core of the b6f complex, consisting of the seven trans-membrane helices of the cytochrome b and subunit IV polypeptides. The other six TM helices, contributed by cytochrome f, the iron-sulfur protein, and the four peripheral single span subunits, define a peripheral less conserved domain of the complex. The distribution of conserved and non-conserved domains of each monomer of the complex, and the position and inferred function of a number of the lipids, suggests a model for the sequential assembly in the membrane of the eight subunits of the b6f complex, in which the assembly is initiated by formation of the cytochrome b6-subunit IV core sub-complex in a monomer unit. Two conformations of the unique lipidic chlorophyll a, defined in crystal structures, are described, and functions of the outlying β-carotene, a possible 'latch' in supercomplex formation, are discussed. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.

  8. A Novel Topology of Proline-rich Transmembrane Protein 2 (PRRT2)

    PubMed Central

    Rossi, Pia; Sterlini, Bruno; Castroflorio, Enrico; Marte, Antonella; Onofri, Franco; Valtorta, Flavia; Maragliano, Luca; Corradi, Anna; Benfenati, Fabio

    2016-01-01

    Proline-rich transmembrane protein 2 (PRRT2) has been identified as the single causative gene for a group of paroxysmal syndromes of infancy, including epilepsy, paroxysmal movement disorders, and migraine. On the basis of topology predictions, PRRT2 has been assigned to the recently characterized family of Dispanins, whose members share the two-transmembrane domain topology with a large N terminus and short C terminus oriented toward the outside of the cell. Because PRRT2 plays a role at the synapse, it is important to confirm the exact orientation of its N and C termini with respect to the plasma membrane to get clues regarding its possible function. Using a combination of different experimental approaches, including live immunolabeling, immunogold electron microscopy, surface biotinylation and computational modeling, we demonstrate a novel topology for this protein. PRRT2 is a type II transmembrane protein in which only the second hydrophobic segment spans the plasma membrane, whereas the first one is associated with the internal surface of the membrane and forms a helix-loop-helix structure without crossing it. Most importantly, the large proline-rich N-terminal domain is not exposed to the extracellular space but is localized intracellularly, and only the short C terminus is extracellular (Ncyt/Cexo topology). Accordingly, we show that PRRT2 interacts with the Src homology 3 domain-bearing protein Intersectin 1, an intracellular protein involved in synaptic vesicle cycling. These findings will contribute to the clarification of the role of PRRT2 at the synapse and the understanding of pathogenic mechanisms on the basis of PRRT2-related neurological disorders. PMID:26797119

  9. Super D-helix

    NASA Astrophysics Data System (ADS)

    Cho, Jin-Ho; Oh, Phillial

    2001-11-01

    We study the ``Myers effect'' for a bunch of D1-branes with type-IIB superstrings moving in one direction along the branes. We show that the ``blown-up'' configuration is a helical D1-brane, which is self-supported from collapse by the axial momentum flow. The tilting angle of the helix is determined by the number of D1-branes. The radius of the helix is stabilized to a certain value depending on the number of D1-branes and the momentum carried by type-IIB superstrings. This helix is actually a T-dual version of the supertube recently found as the ``blown-up'' configuration of a bunch of type-IIA superstrings carrying a D0-brane charge. It is shown that the helical D1 configuration preserves one-quarter of the supersymmetry of the type-IIB Minkowski vacuum.

  10. Specific recognition of the collagen triple helix by chaperone HSP47: minimal structural requirement and spatial molecular orientation.

    PubMed

    Koide, Takaki; Asada, Shinichi; Takahara, Yoshifumi; Nishikawa, Yoshimi; Nagata, Kazuhiro; Kitagawa, Kouki

    2006-02-10

    The unique folding of procollagens in the endoplasmic reticulum is achieved with the assistance of procollagen-specific molecular chaperones. Heat-shock protein 47 (HSP47) is an endoplasmic reticulum-resident chaperone that plays an essential role in normal procollagen folding, although its molecular function has not yet been clarified. Recent advances in studies on the binding specificity of HSP47 have revealed that Arg residues at Yaa positions in collagenous Gly-Xaa-Yaa repeats are critical for its interactions (Koide, T., Takahara, Y., Asada, S., and Nagata, K. (2002) J. Biol. Chem. 277, 6178-6182; Tasab, M., Jenkinson, L., and Bulleid, N. J. (2002) J. Biol. Chem. 277, 35007-35012). In the present study, we further examined the client recognition mechanism of HSP47 by taking advantage of systems employing engineered collagen model peptides. First, in vitro binding studies using conformationally constrained collagen-like peptides revealed that HSP47 only recognized correctly folded triple helices and that the interaction with the corresponding single-chain polypeptides was negligible. Second, a binding study using heterotrimeric model clients for HSP47 demonstrated a minimal requirement for the number of Arg residues in the triple helix. Finally, a cross-linking study using photoreactive collagenous peptides provided information about the spatial orientation of an HSP47 molecule in the chaperone-collagen complex. The obtained results led to the development of a new model of HSP47-collagen complexes that differs completely from the previously proposed "flying capstan model" (Dafforn, T. R., Della, M., and Miller, A. D. (2001) J. Biol. Chem. 276, 49310-49319).

  11. Short and long range functions of amino acids in the transmembrane region of the sarcoplasmic reticulum ATPase. A mutational study.

    PubMed

    Chen, L; Sumbilla, C; Lewis, D; Zhong, L; Strock, C; Kirtley, M E; Inesi, G

    1996-05-01

    Mutational analysis of several amino acids in the transmembrane region of the sarcoplasmic reticulum ATPase was performed by expressing wild type ATPase and 32 site-directed mutants in COS-1 cells followed by functional characterization of the microsomal fraction. Four different phenotype characteristics were observed in the mutants: (a) functions similar to those sustained by the wild type ATPase; (b) Ca2+ transport inhibited to a greater extent than ATPase hydrolytic activity; (c) inhibition of transport and hydrolytic activity in the presence of high levels of phosphorylated enzyme intermediate; and (d) total inhibition of ATP utilization by the enzyme while retaining the ability to form phosphoenzyme by utilization of P(i). Analysis of experimental observations and molecular models revealed short and long range functions of several amino acids within the transmembrane region. Short range functions include: (a) direct involvement of five amino acids in Ca2+ binding within a channel formed by clustered transmembrane helices M4, M5, M6, and M8; (b) roles of several amino acids in structural stabilization of the helical cluster for optimal channel function; and (c) a specific role of Lys297 in sealing the distal end of the channel, suggesting that the M4 helix rotates to allow vectorial flux of Ca2+ upon enzyme phosphorylation. Long range functions are related to the influence of several transmembrane amino acids on phosphorylation reactions with ATP or P(i), transmitted to the extramembranous region of the ATPase in the presence or in the absence of Ca2+.

  12. Structure and dynamics of the lipid modifications of a transmembrane α-helical peptide determined by ²H solid-state NMR spectroscopy.

    PubMed

    Penk, Anja; Müller, Matthias; Scheidt, Holger A; Langosch, Dieter; Huster, Daniel

    2011-03-01

    The fusion of biological membranes is mediated by integral membrane proteins with α-helical transmembrane segments. Additionally, those proteins are often modified by the covalent attachment of hydrocarbon chains. Previously, a series of de novo designed α-helical peptides with mixed Leu/Val sequences was presented, mimicking fusiogenically active transmembrane segments in model membranes (Hofmann et al., Proc. Natl. Acad. Sci. USA 101 (2004) 14776-14781). From this series, we have investigated the peptide LV16 (KKKW LVLV LVLV LVLV LVLV KKK), which was synthesized featuring either a free N-terminus or a saturated N-acylation of 2, 8, 12, or 16 carbons. We used ²H and ³¹P NMR spectroscopy to investigate the structure and dynamics of those peptide lipid modifications in POPC and DLPC bilayers and compared them to the hydrocarbon chains of the surrounding membrane. Except for the C2 chain, all peptide acyl chains were found to insert well into the membrane. This can be explained by the high local lipid concentrations the N-terminal lipid chains experience. Further, the insertion of these peptides did not influence the membrane structure and dynamics as seen from the ²H and ³¹P NMR data. In spite of the fact that the longer acyl chains insert into the membrane, they do not adapt their lengths to the thickness of the bilayer. Even the C16 lipid chain on the peptide, which could match the length of the POPC palmitoyl chain, exhibited lower order parameters in the upper chain, which get closer and finally reach similar values in the lower chain region. ²H NMR square law plots reveal motions of slightly larger amplitudes for the peptide lipid chains compared to the surrounding phospholipids. In spite of the significantly different chain lengths of the acylations, the fraction of gauche defects in the inserted chains is constant.

  13. Transmembrane Helices Tilt, Bend, Slide, Torque, and Unwind between Functional States of Rhodopsin

    PubMed Central

    Ren, Zhong; Ren, Peter X.; Balusu, Rohith; Yang, Xiaojing

    2016-01-01

    The seven-helical bundle of rhodopsin and other G-protein coupled receptors undergoes structural rearrangements as the transmembrane receptor protein is activated. These structural changes are known to involve tilting and bending of various transmembrane helices. However, the cause and effect relationship among structural events leading to a cytoplasmic crevasse for G-protein binding is less well defined. Here we present a mathematical model of the protein helix and a simple procedure to determine multiple parameters that offer precise depiction of a helical conformation. A comprehensive survey of bovine rhodopsin structures shows that the helical rearrangements during the activation of rhodopsin involve a variety of angular and linear motions such as torsion, unwinding, and sliding in addition to the previously reported tilting and bending. These hitherto undefined motion components unify the results obtained from different experimental approaches, and demonstrate conformational similarity between the active opsin structure and the photoactivated structures in crystallo near the retinal anchor despite their marked differences. PMID:27658480

  14. [The helix of life].

    PubMed

    Kahn, Axel

    2003-04-01

    The discovery of DNA's double helix 50 years ago was the founding event of molecular biology. It was also the moment that forged the reputation of two of biology's most compelling figures, no doubt in perpetuity. However, Jim Watson and Francis Crick were not the only players of this outstanding fest whose certain circumstances remain today rather singular.

  15. Double Helix Revisited.

    ERIC Educational Resources Information Center

    Glickstein, Neil M.

    1995-01-01

    Describes the use of James Watson's book, "The Double Helix," as a multidisciplinary way of introducing students to actual science; the scientific method; dilemmas encountered in the world of research; and the rich setting of personalities, politics, and history in post-World War II Europe. (MKR)

  16. A left-hand beta-helix revealed by the crystal structure of a carbonic anhydrase from the archaeon Methanosarcina thermophila.

    PubMed Central

    Kisker, C; Schindelin, H; Alber, B E; Ferry, J G; Rees, D C

    1996-01-01

    A carbonic anhydrase from the thermophilic archaeon Methanosarcina thermophila that exhibits no significant sequence similarity to known carbonic anhydrases has recently been characterized. Here we present the structure of this enzyme, which adopts a left-handed parallel beta-helix fold. This fold is of particular interest since it contains only left-handed crossover connections between the parallel beta-strands, which so far have been observed very infrequently. The active form of the enzyme is a trimer with three zinc-containing active sites, each located at the interface between two monomers. While the arrangement of active site groups differs between this enzyme and the carbonic anhydrases from higher vertebrates, there are structural similarities in the zinc coordination environment, suggestive of convergent evolution dictated by the chemical requirements for catalysis of the same reaction. Based on sequence similarities, the structure of this enzyme is the prototype of a new class of carbonic anhydrases with representatives in all three phylogenetic domains of life. Images PMID:8665839

  17. Transmembrane complexes of DAP12 crystallized in lipid membranes provide insights into control of oligomerization in immunoreceptor assembly

    PubMed Central

    Knoblich, Konstantin; Park, Soohyung; Lutfi, Mariam; Hag, Leonie van’t; Conn, Charlotte E.; Seabrook, Shane A.; Newman, Janet; Czabotar, Peter E.; Im, Wonpil; Call, Matthew E.; Call, Melissa J.

    2015-01-01

    Summary The membrane-spanning α-helices of single-pass receptors play crucial roles in stabilizing oligomeric structures and transducing biochemical signals across the membrane. Probing intermolecular transmembrane interactions in single-pass receptors presents unique challenges, reflected in a gross underrepresentation of their membrane-embedded domains in structural databases. Here we present two high-resolution structures of transmembrane assemblies from a eukaryotic single-pass protein crystallized in a lipidic membrane environment. Trimeric and tetrameric structures of the immunoreceptor signaling module DAP12, determined to 1.77 Å and 2.14 Å resolution, respectively, are organized by the same polar surfaces that govern intramembrane assembly with client receptors. We demonstrate that both trimeric and tetrameric products form in cells and that formation of products larger than dimers is competitive with receptor association in the ER. The polar transmembrane sequences therefore act as primary determinants of oligomerization specificity through interplay between charge-shielding and sequestration of polar surfaces within helix interfaces. PMID:25981043

  18. Differentiation between transmembrane helices and peripheral helices by the deconvolution of circular dichroism spectra of membrane proteins.

    PubMed Central

    Park, K.; Perczel, A.; Fasman, G. D.

    1992-01-01

    The interpretation of the circular dichroism (CD) spectra of proteins to date requires additional secondary structural information of the proteins to be analyzed, such as X-ray or NMR data. Therefore, these methods are inappropriate for a CD database whose secondary structures are unknown, as in the case of the membrane proteins. The convex constraint analysis algorithm (Perczel, A., Hollósi, M., Tusnády, G., & Fasman, G. D., 1991, Protein Eng. 4, 669-679), on the other hand, operates only on a collection of spectral data to extract the common spectral components with their spectral weights. The linear combinations of these derived "pure" CD curves can reconstruct the original data set with great accuracy. For a membrane protein data set, the five-component spectra so obtained from the deconvolution consisted of two different types of alpha helices (the alpha helix in the soluble domain and the alpha T helix, for the transmembrane alpha helix), a beta-pleated sheet, a class C-like spectrum related to beta turns, and a spectrum correlated with the unordered conformation. The deconvoluted CD spectrum for the alpha T helix was characterized by a positive red-shifted band in the range 195-200 nm (+95,000 deg cm2 dmol-1), with the intensity of the negative band at 208 nm being slightly less negative than that of the 222-nm band (-50,000 and -60,000 deg cm2 dmol-1, respectively) in comparison with the regular alpha helix, with a positive band at 190 nm and two negative bands at 208 and 222 nm with magnitudes of +70,000, -30,000, and -30,000 deg cm2 dmol-1, respectively. PMID:1338977

  19. Crystal Structure of the Cystic Fibrosis Transmembrane Conductance Regulator Inhibitory Factor Cif Reveals Novel Active-Site Features of an Epoxide Hydrolase Virulence Factor

    SciTech Connect

    Bahl, C.; Morisseau, C; Bomberger, J; Stanton, B; Hammock, B; O' Toole, G; Madden, D

    2010-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is a virulence factor secreted by Pseudomonas aeruginosa that reduces the quantity of CFTR in the apical membrane of human airway epithelial cells. Initial sequence analysis suggested that Cif is an epoxide hydrolase (EH), but its sequence violates two strictly conserved EH motifs and also is compatible with other {alpha}/{beta} hydrolase family members with diverse substrate specificities. To investigate the mechanistic basis of Cif activity, we have determined its structure at 1.8-{angstrom} resolution by X-ray crystallography. The catalytic triad consists of residues Asp129, His297, and Glu153, which are conserved across the family of EHs. At other positions, sequence deviations from canonical EH active-site motifs are stereochemically conservative. Furthermore, detailed enzymatic analysis confirms that Cif catalyzes the hydrolysis of epoxide compounds, with specific activity against both epibromohydrin and cis-stilbene oxide, but with a relatively narrow range of substrate selectivity. Although closely related to two other classes of {alpha}/{beta} hydrolase in both sequence and structure, Cif does not exhibit activity as either a haloacetate dehalogenase or a haloalkane dehalogenase. A reassessment of the structural and functional consequences of the H269A mutation suggests that Cif's effect on host-cell CFTR expression requires the hydrolysis of an extended endogenous epoxide substrate.

  20. The Crystal Structure of Six-transmembrane Epithelial Antigen of the Prostate 4 (Steap4), a Ferri/Cuprireductase, Suggests a Novel Interdomain Flavin-binding Site*

    PubMed Central

    Gauss, George H.; Kleven, Mark D.; Sendamarai, Anoop K.; Fleming, Mark D.; Lawrence, C. Martin

    2013-01-01

    Steap4 is a cell surface metalloreductase linked to obesity-associated insulin resistance. Initial characterization of its cell surface metalloreductase activity has been reported, but thorough biochemical characterization of this activity is lacking. Here, we report detailed kinetic analysis of the Steap4 cell surface metalloreductase activities. Steap4 shows physiologically relevant Km values for both Fe3+ and Cu2+ and retains activity at acidic pH, suggesting it may also function within intracellular organelles to reduce these metals. Flavin-dependent NADPH oxidase activity that was much greater than the equivalent Steap3 construct was observed for the isolated N-terminal oxidoreductase domain. The crystal structure of the Steap4 oxidoreductase domain was determined, providing a structural explanation for these differing activities. Structure-function work also suggested Steap4 utilizes an interdomain flavin-binding site to shuttle electrons between the oxidoreductase and transmembrane domains, and it showed that the disordered N-terminal residues do not contribute to enzymatic activity. PMID:23733181

  1. The structure of the CD3 ζζ transmembrane dimer in POPC and raft-like lipid bilayer: a molecular dynamics study.

    PubMed

    Petruk, Ariel Alcides; Varriale, Sonia; Coscia, Maria Rosaria; Mazzarella, Lelio; Merlino, Antonello; Oreste, Umberto

    2013-11-01

    Plasma membrane lipids significantly affect assembly and activity of many signaling networks. The present work is aimed at analyzing, by molecular dynamics simulations, the structure and dynamics of the CD3 ζζ dimer in palmitoyl-oleoyl-phosphatidylcholine bilayer (POPC) and in POPC/cholesterol/sphingomyelin bilayer, which resembles the raft membrane microdomain supposed to be the site of the signal transducing machinery. Both POPC and raft-like environment produce significant alterations in structure and flexibility of the CD3 ζζ with respect to nuclear magnetic resonance (NMR) model: the dimer is more compact, its secondary structure is slightly less ordered, the arrangement of the Asp6 pair, which is important for binding to the Arg residue in the alpha chain of the T cell receptor (TCR), is stabilized by water molecules. Different interactions of charged residues with lipids at the lipid-cytoplasm boundary occur when the two environments are compared. Furthermore, in contrast to what is observed in POPC, in the raft-like environment correlated motions between transmembrane and cytoplasmic regions are observed. Altogether the data suggest that when the TCR complex resides in the raft domains, the CD3 ζζ dimer assumes a specific conformation probably necessary to the correct signal transduction.

  2. Probing the Transmembrane Structure and Topology of Microsomal Cytochrome-P450 by Solid-State NMR on Temperature-Resistant Bicelles

    PubMed Central

    Yamamoto, Kazutoshi; Gildenberg, Melissa; Ahuja, Shivani; Im, Sang-Choul; Pearcy, Paige; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2013-01-01

    Though the importance of high-resolution structure and dynamics of membrane proteins has been well recognized, optimizing sample conditions to retain the native-like folding and function of membrane proteins for Nuclear Magnetic Resonance (NMR) or X-ray measurements has been a major challenge. While bicelles have been shown to stabilize the function of membrane proteins and are increasingly utilized as model membranes, the loss of their magnetic-alignment at low temperatures makes them unsuitable to study heat-sensitive membrane proteins like cytochrome-P450 and protein-protein complexes. In this study, we report temperature resistant bicelles that can magnetically-align for a broad range of temperatures and demonstrate their advantages in the structural studies of full-length microsomal cytochrome-P450 and cytochrome-b5 by solid-state NMR spectroscopy. Our results reveal that the N-terminal region of rabbit cytochromeP4502B4, that is usually cleaved off to obtain crystal structures, is helical and has a transmembrane orientation with ~17° tilt from the lipid bilayer normal. PMID:23989972

  3. Isolation and characterization of an alpha-macroglobulin from the gastropod mollusc Helix pomatia with tetrameric structure and preserved activity after methylamine treatment.

    PubMed

    Yigzaw, Y; Gielens, C; Préaux, G

    2001-02-01

    A proteinase inhibitor with M(r) 697000 and 20.3% (w/w) carbohydrate was isolated from the haemolymph of the snail Helix pomatia and characterized. It was shown to have a tetrameric structure with subunits disulphide linked by two. It inhibited the activity of several types of proteinases against large substrates but not that of trypsin against N-alpha-benzoyl-DL-arginine-4-nitroanilide. This indicated a nonspecific and steric hindrance mode of inhibition. The ratio of trypsin molecules inactivated per inhibitor amounted to 1.5. This interaction led to a cleavage of the subunits into two equal fragments and to a slow to fast conformational change of the whole molecules. Experiments with 125I-labelled trypsin indicated that the proteinase had become covalently linked to one of the fragments. Heating of the inhibitor led to autolytic cleavage products but not when methylamine treated. Thiol titration after trypsin or methylamine treatment indicated the presence of one thiol ester bond per subunit. These facts are all indicative of an alpha-macroglobulin type of inhibitor. However, unlike for most of them the methylamine treatment did not induce a conformational change nor suppress its proteinase inhibitory activity. Moreover, invertebrate alpha-macroglobulins are mostly dimeric in structure but tetramers likewise do occur in Biomphalaria glabrata. PMID:11342036

  4. [Quaternion-based Characterization of Protein α Helix].

    PubMed

    Xu, Yonghong; Chu, Zefei

    2016-02-01

    This paper proposes a method based on quaternion for characterization a helix of proteins. The method defines the parameter called Quaternion Helix Axis Spherical Distance (QHASD) on the basis of mapping protein Cα frames' helical axis onto a unit sphere, and uses QHASD to characterize the a helix of the protein secondary structure. Application of this method has been verified based on the PDBselect database, with an a helix characterization accuracy of 91.7%. This method possesses significant advantages of high detection accuracy, low computation and clear geometric significance. PMID:27382757

  5. Autoinhibition of a calmodulin-dependent calcium pump involves a structure in the stalk that connects the transmembrane domain to the ATPase catalytic domain

    NASA Technical Reports Server (NTRS)

    Curran, A. C.; Hwang, I.; Corbin, J.; Martinez, S.; Rayle, D.; Sze, H.; Harper, J. F.; Evans, M. L. (Principal Investigator)

    2000-01-01

    The regulation of Ca(2+)-pumps is important for controlling [Ca(2+)] in the cytosol and organelles of all eukaryotes. Here, we report a genetic strategy to identify residues that function in autoinhibition of a novel calmodulin-activated Ca(2+)-pump with an N-terminal regulatory domain (isoform ACA2 from Arabidopsis). Mutant pumps with constitutive activity were identified by complementation of a yeast (K616) deficient in two Ca(2+)-pumps. Fifteen mutations were found that disrupted a segment of the N-terminal autoinhibitor located between Lys(23) and Arg(54). Three mutations (E167K, D219N, and E341K) were found associated with the stalk that connects the ATPase catalytic domain (head) and with the transmembrane domain. Enzyme assays indicated that the stalk mutations resulted in calmodulin-independent activity, with V(max), K(mATP), and K(mCa(2+)) similar to that of a pump in which the N-terminal autoinhibitor had been deleted. A highly conservative substitution at Asp(219) (D219E) still produced a deregulated pump, indicating that the autoinhibitory structure in the stalk is highly sensitive to perturbation. In plasma membrane H(+)-ATPases from yeast and plants, similarly positioned mutations resulted in hyperactive pumps. Together, these results suggest that a structural feature of the stalk is of general importance in regulating diverse P-type ATPases.

  6. Helix-forming tendencies of amino acids depend on their sequence contexts: tripeptides AFG and FAG show incipient beta-bulge formation in their crystal structures.

    PubMed

    Parthasarathy, R; Go, K; Chaturvedi, S

    1993-01-01

    Many of the theoretical methods used for predicting the occurrence of alpha-helices in peptides are based on the helical preferences of amino acid monomer residues. In order to check whether the helix-forming tendencies are based on helical preferences of monomers only or also on their sequence contexts, we synthesized permuted sequences of the tripeptides GAF, GAV, and GAL that formed crystalline helices with near alpha-helical conformation. The tripeptides AFG and FAG formed good crystals. The x-ray crystallographic studies of AFG and FAG showed that though they contain the same amino acids as GAF but in different sequences, they do not assume a helical conformation in the solid state. On the other hand, AFG and FAG, which contain the same amino acids but in a different sequence, exhibit nearly the same backbone torsion angles corresponding to an incipient formation of a beta-bulge, and exhibit nearly identical unit cells and crystal structures. Based on these results, it appears that the helix-forming tendencies of amino acids depend on the sequence context in which it occurs in a polypeptide. The synthetic peptides AFG (L-Ala-L-Phe-Gly) and FAG (L-Phe-L-Ala-Gly), C14H19N3O4, crystallize in the orthorhombic space group P2(1)2(1)2(1), with a = 5.232(1), b = 14.622(2), c = 19.157(3) A, Dx = 1.329 g cm-3, Z = 4, R = 0.041 for 549 reflections for AFG, and with a = 5.488(2), b = 14.189(1), c = 18.562(1) A, Dx = 1.348 g cm-3, Z = 4, R = 0.038 for 919 reflections for FAG. Unlike the other tripeptides GAF, GGV, GAL, and GAI, the crystals of AFG and FAG do not contain water molecule, and the molecules of AFG aor FAG do not show the helical conformation. The torsion angles at the backbone of the peptide are psi 1 = 144.5(5) degrees; phi 2, psi 2 = -98.1(6) degrees, -65.2(6) degrees; phi 3, psi 13, psi 31 = 154.1(6) degrees, -173.6(6) degrees, 6.9(8) degrees for AFG; and psi 1 = 162.6(3) degrees; phi 2, psi 2 = -96.7(4) degrees, -46.3(4) degrees; phi 3, psi 13, psi 31

  7. A Putative Transmembrane Leucine Zipper of Agrobacterium VirB10 Is Essential for T-Pilus Biogenesis but Not Type IV Secretion

    PubMed Central

    Garza, Isaac

    2013-01-01

    The Agrobacterium tumefaciens VirB/VirD4 type IV secretion system is composed of a translocation channel and an extracellular T pilus. Bitopic VirB10, the VirB7 lipoprotein, and VirB9 interact to form a cell envelope-spanning structural scaffold termed the “core complex” that is required for the assembly of both structures. The related pKM101-encoded core complex is composed of 14 copies each of these VirB homologs, and the transmembrane (TM) α helices of VirB10-like TraF form a 55-Å-diameter ring at the inner membrane. Here, we report that the VirB10 TM helix possesses two types of putative dimerization motifs, a GxxxA (GA4) motif and two leucine (Leu1, Leu2) zippers. Mutations in the Leu1 motif disrupted T-pilus biogenesis, but these or other mutations in the GA4 or Leu2 motif did not abolish substrate transfer. Replacement of the VirB10 TM domain with a nondimerizing poly-Leu/Ala TM domain sequence also blocked pilus production but not substrate transfer or formation of immunoprecipitable complexes with the core subunits VirB7 and VirB9 and the substrate receptor VirD4. The VirB10 TM helix formed weak homodimers in Escherichia coli, as determined with the TOXCAT assay, whereas replacement of the VirB10 TM helix with the strongly dimerizing TM helix from glycophorin A blocked T-pilus biogenesis in A. tumefaciens. Our findings support a model in which VirB10's TM helix contributes to the assembly or activity of the translocation channel as a weakly self-interacting membrane anchor but establishes a heteromeric TM-TM helix interaction via its Leu1 motif that is critical for T-pilus biogenesis. PMID:23625845

  8. Fluoroalcohols induced unfolding of Succinylated Con A: native like beta-structure in partially folded intermediate and alpha-helix in molten globule like state.

    PubMed

    Fatima, Sadaf; Ahmad, Basir; Khan, Rizwan Hasan

    2006-10-15

    Concanavalin A (Con A) exists in dimeric state at pH 5. In concentration range 20-60% (v/v) 2,2,2-trifluoroethanol (TFE) and 2-40% (v/v) 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), Con A at pH 5.0 shows visible aggregation. However, when succinyl Con A was used, no aggregation was observed in the entire concentration range of fluoroalcohols (0-90% v/v TFE and HFIP) and resulted in stable alpha-helix formation. Temperature-induced concentration-dependent aggregation in Con A was also found to be prevented/reduced in succinylated form. Possible role of electrostatic repulsion among residues in the prevention of hydrophobically driven aggregation has been discussed. Results indicate that succinylation of a protein resulted in greater stability (in both beta-sheet and alpha-helical forms) against alcohol-induced and temperature-induced concentration-dependent aggregation and this observation may play significant role in amyloid-forming proteins. Effect of TFE and HFIP on the conformation of a dimeric protein, Succinylated Con A, has been investigated by circular dichroism (CD), fluorescence emission spectroscopy, binding of hydrophobic dye ANS (8-anilinonaphthalene-1-sulfonic acid). Far UV-CD, a probe for secondary structure shows loss of native secondary structure in the presence of low concentration of both the alcohols, TFE (10% v/v) and HFIP (4% v/v). Upon addition of higher concentration of these alcohols, Succinylated Con A exhibited transformation from beta-sheet to alpha-helical structure. Intrinsic tryptophan fluorescence studies, ANS binding and near UV-CD experiments indicate the protein is more expanded, have more exposed hydrophobic surfaces and highly disrupted tertiary structure at 60% (v/v) TFE and 30% (v/v) HFIP concentrations. Taken together, these results it might be concluded that TFE and HFIP induce two intermediate states at their low and high concentrations in Succinyl Con A.

  9. The crystal structure of Z-(Aib)10-OH at 0.65 Å resolution: three complete turns of 310-helix.

    PubMed

    Gessmann, Renate; Brückner, Hans; Petratos, Kyriacos

    2016-02-01

    The synthetic peptide Z-(Aib)10-OH was crystallized from hot methanol by slow evaporation. The crystal used for data collection reflected synchrotron radiation to sub-atomic resolution, where the bonding electron density becomes visible between the non-hydrogen atoms. Crystals belong to the centrosymmetric space group P1. Both molecules in the asymmetric unit form regular 310 -helices. All residues in each molecule possess the same handedness, which is in contrast to all other crystal structure determined to date of longer Aib-homopeptides. These other peptides are C-terminal protected by OtBu or OMe. In these cases, because of the missing ability of the C-terminal protection group to form a hydrogen bond to the residue i-3, the sense of the helix is reversed in the last residue. Here, the C-terminal OH-groups form hydrogen bonds to the residues i-3, in part mediated by water molecules. This makes Z-(Aib)10-OH an Aib-homopeptide with three complete 310-helical turns in spite of the shorter length it has compared with Z-(Aib)11-OtBu, the only homopeptide to date with three complete turns.

  10. Role of GxxxG Motifs in Transmembrane Domain Interactions.

    PubMed

    Teese, Mark G; Langosch, Dieter

    2015-08-25

    Transmembrane (TM) helices of integral membrane proteins can facilitate strong and specific noncovalent protein-protein interactions. Mutagenesis and structural analyses have revealed numerous examples in which the interaction between TM helices of single-pass membrane proteins is dependent on a GxxxG or (small)xxx(small) motif. It is therefore tempting to use the presence of these simple motifs as an indicator of TM helix interactions. In this Current Topic review, we point out that these motifs are quite common, with more than 50% of single-pass TM domains containing a (small)xxx(small) motif. However, the actual interaction strength of motif-containing helices depends strongly on sequence context and membrane properties. In addition, recent studies have revealed several GxxxG-containing TM domains that interact via alternative interfaces involving hydrophobic, polar, aromatic, or even ionizable residues that do not form recognizable motifs. In multipass membrane proteins, GxxxG motifs can be important for protein folding, and not just oligomerization. Our current knowledge thus suggests that the presence of a GxxxG motif alone is a weak predictor of protein dimerization in the membrane. PMID:26244771

  11. Thermal and Structural Analysis of Co-axial Coupler used in High Power Helix Traveling-Wave Tube

    NASA Astrophysics Data System (ADS)

    Gahlaut, Vishant; Alvi, Parvez Ahmad; Ghosh, Sanjay Kumar

    2014-07-01

    In traveling-wave tubes (TWTs), coaxial couplers or window assemblies are used for coupling milliwatt (mW) to hundreds of watts of average power. For the proper transformation of impedance of interaction structure to the standard connector, coaxial couplers are suitably modeled as multi-section coaxial transformer. Due to high average power propagation, center conductor of coupler gets heated and the dimensions of multi-section coupler get deformed from its cold condition which causes impedance mismatch and increase of thermal load. Due to impedance mismatch, reflection of RF signal occurs from the couplers causing oscillation and finally leads of destruction of the TWT. This paper presents the thermal and structural analysis of coaxial coupler to quantify the temperature distribution at different regions, deformation of cold dimensions and stress due to material property of window disc.

  12. A structurally dynamic N-terminal helix is a key functional determinant in staphylococcal complement inhibitor (SCIN) proteins.

    PubMed

    Garcia, Brandon L; Summers, Brady J; Ramyar, Kasra X; Tzekou, Apostolia; Lin, Zhuoer; Ricklin, Daniel; Lambris, John D; Laity, John H; Geisbrecht, Brian V

    2013-01-25

    Complement is a network of interacting circulatory and cell surface proteins that recognizes, marks, and facilitates clearance of microbial invaders. To evade complement attack, the pathogenic organism Staphylococcus aureus expresses a number of secreted proteins that interfere with activation and regulation of the complement cascade. Staphylococcal complement inhibitors (SCINs) are one important class of these immunomodulators and consist of three active members (SCIN-A/-B/-C). SCINs inhibit a critical enzymatic complex, the alternative pathway C3 convertase, by targeting a functional "hot spot" on the central opsonin of complement, C3b. Although N-terminal truncation mutants of SCINs retain complement inhibitory properties, they are significantly weaker binders of C3b. To provide a structural basis for this observation, we undertook a series of crystallographic and NMR dynamics studies on full-length SCINs. This work reveals that N-terminal SCIN domains are characterized by a conformationally dynamic helical motif. C3b binding and functional experiments further demonstrate that this sequence-divergent N-terminal region of SCINs is both functionally important and context-dependent. Finally, surface plasmon resonance data provide evidence for the formation of inhibitor·enzyme·substrate complexes ((SCIN·C3bBb)·C3). Similar to the (SCIN·C3bBb)(2) pseudodimeric complexes, ((SCIN·C3bBb)·C3) interferes with the interaction of complement receptors and C3b. This activity provides an additional mechanism by which SCIN couples convertase inhibition to direct blocking of phagocytosis. Together, these data suggest that tethering multi-host protein complexes by small modular bacterial inhibitors may be a global strategy of immune evasion used by S. aureus. The work presented here provides detailed structure-activity relationships and improves our understanding of how S. aureus circumvents human innate immunity.

  13. Impact of the [delta]F508 Mutation in First Nucleotide-binding Domain of Human Cystic Fibrosis Transmembrane Conductance Regulator on Domain Folding and Structure

    SciTech Connect

    Lewis, Hal A.; Zhao, Xun; Wang, Chi; Sauder, J. Michael; Rooney, Isabelle; Noland, Brian W.; Lorimer, Don; Kearins, Margaret C.; Conners, Kris; Condon, Brad; Maloney, Peter C.; Guggino, William B.; Hunt, John F.; Emtage, Spencer

    2010-07-19

    Cystic fibrosis is caused by defects in the cystic fibrosis transmembrane conductance regulator (CFTR), commonly the deletion of residue Phe-508 (DeltaF508) in the first nucleotide-binding domain (NBD1), which results in a severe reduction in the population of functional channels at the epithelial cell surface. Previous studies employing incomplete NBD1 domains have attributed this to aberrant folding of DeltaF508 NBD1. We report structural and biophysical studies on complete human NBD1 domains, which fail to demonstrate significant changes of in vitro stability or folding kinetics in the presence or absence of the DeltaF508 mutation. Crystal structures show minimal changes in protein conformation but substantial changes in local surface topography at the site of the mutation, which is located in the region of NBD1 believed to interact with the first membrane spanning domain of CFTR. These results raise the possibility that the primary effect of DeltaF508 is a disruption of proper interdomain interactions at this site in CFTR rather than interference with the folding of NBD1. Interestingly, increases in the stability of NBD1 constructs are observed upon introduction of second-site mutations that suppress the trafficking defect caused by the DeltaF508 mutation, suggesting that these suppressors might function indirectly by improving the folding efficiency of NBD1 in the context of the full-length protein. The human NBD1 structures also solidify the understanding of CFTR regulation by showing that its two protein segments that can be phosphorylated both adopt multiple conformations that modulate access to the ATPase active site and functional interdomain interfaces.

  14. The crystal structures of the calcium-bound con-G and con-T[K7gamma] dimeric peptides demonstrate a metal-dependent helix-forming motif.

    PubMed

    Cnudde, Sara E; Prorok, Mary; Dai, Qiuyun; Castellino, Francis J; Geiger, James H

    2007-02-14

    Short peptides that have the ability to form stable alpha-helices in solution are rare, and a number of strategies have been used to produce them, including the use of metal chelation to stabilize folding of the backbone. However, no example exists of a structurally well-defined helix stabilized exclusively through metal ion chelation. Conantokins (con)-G and -T are short peptides that are potent antagonists of N-methyl-D-aspartate receptor channels. While con-G exhibits no helicity alone, it undergoes a structural transition to a helical conformation in the presence of a variety of multivalent cations, especially Mg2+ and Ca2+. This complexation also results in antiparallel dimerization of two peptide helices in the presence of Ca2+, but not Mg2+. A con-T variant, con-T[K7gamma], displays very similar behavior. We have solved the crystal structures of both Ca2+/con-G and Ca2+/con-T [K7gamma] at atomic resolution. These structures clearly show the nature of the metal-dependent dimerization and helix formation and surprisingly also show that the con-G dimer interface is completely different from the con-T[K7gamma] interface, even though the metal chelation is similar in the two peptides. This represents a new paradigm in helix stabilization completely independent of the hydrophobic effect, which we define as the "metallo-zipper."

  15. Signal transmission through the CXC chemokine receptor 4 (CXCR4) transmembrane helices.

    PubMed

    Wescott, Melanie P; Kufareva, Irina; Paes, Cheryl; Goodman, Jason R; Thaker, Yana; Puffer, Bridget A; Berdougo, Eli; Rucker, Joseph B; Handel, Tracy M; Doranz, Benjamin J

    2016-08-30

    The atomic-level mechanisms by which G protein-coupled receptors (GPCRs) transmit extracellular ligand binding events through their transmembrane helices to activate intracellular G proteins remain unclear. Using a comprehensive library of mutations covering all 352 residues of the GPCR CXC chemokine receptor 4 (CXCR4), we identified 41 amino acids that are required for signaling induced by the chemokine ligand CXCL12 (stromal cell-derived factor 1). CXCR4 variants with each of these mutations do not signal properly but remain folded, based on receptor surface trafficking, reactivity to conformationally sensitive monoclonal antibodies, and ligand binding. When visualized on the structure of CXCR4, the majority of these residues form a continuous intramolecular signaling chain through the transmembrane helices; this chain connects chemokine binding residues on the extracellular side of CXCR4 to G protein-coupling residues on its intracellular side. Integrated into a cohesive model of signal transmission, these CXCR4 residues cluster into five functional groups that mediate (i) chemokine engagement, (ii) signal initiation, (iii) signal propagation, (iv) microswitch activation, and (v) G protein coupling. Propagation of the signal passes through a "hydrophobic bridge" on helix VI that coordinates with nearly every known GPCR signaling motif. Our results agree with known conserved mechanisms of GPCR activation and significantly expand on understanding the structural principles of CXCR4 signaling. PMID:27543332

  16. A distinct three-helix centipede toxin SSD609 inhibits Iks channels by interacting with the KCNE1 auxiliary subunit

    PubMed Central

    Sun, Peibei; Wu, Fangming; Wen, Ming; Yang, Xingwang; Wang, Chenyang; Li, Yiming; He, Shufang; Zhang, Longhua; Zhang, Yun; Tian, Changlin

    2015-01-01

    KCNE1 is a single-span transmembrane auxiliary protein that modulates the voltage-gated potassium channel KCNQ1. The KCNQ1/KCNE1 complex in cardiomyocytes exhibited slow activated potassium (Iks) currents. Recently, a novel 47-residue polypeptide toxin SSD609 was purified from Scolopendra subspinipes dehaani venom and showed Iks current inhibition. Here, chemically synthesized SSD609 was shown to exert Iks inhibition in extracted guinea pig cardiomyocytes and KCNQ1/KCNE1 current attenuation in CHO cells. The K+ current attenuation of SSD609 showed decent selectivity among different auxiliary subunits. Solution nuclear magnetic resonance analysis of SSD609 revealed a distinctive three-helix conformation that was stabilized by a new disulfide bonding pattern as well as segregated surface charge distribution. Structure-activity studies demonstrated that negatively charged Glu19 in the amphipathic extracellular helix of KCNE1 was the key residue that interacted with SSD609. The distinctive three-helix centipede toxin SSD609 is known to be the first polypeptide toxin acting on channel auxiliary subunit KCNE1, which suggests a new type of pharmacological regulation for ion channels in cardiomyocytes. PMID:26307551

  17. Tailored fibro-porous structure of electrospun polyurethane membranes, their size-dependent properties and trans-membrane glucose diffusion

    PubMed Central

    Wang, Ning; Burugapalli, Krishna; Song, Wenhui; Halls, Justin; Moussy, Francis; Zheng, Yudong; Ma, Yanxuan; Wu, Zhentao; Li, Kang

    2012-01-01

    The aim of this study was to develop polyurethane (PU) based fibro-porous membranes and to investigate the size-effect of hierarchical porous structure on permeability and surface properties of the developed electrospun membranes. Non-woven Selectophore™ PU membranes having tailored fibre diameters, pore sizes, and thickness were spun using electrospinning, and their chemical, physical and glucose permeability properties were characterised. Solvents, solution concentration, applied voltage, flow rate and distance to collector, each were systematically investigated, and electrospinning conditions for tailoring fibre diameters were identified. Membranes having average fibre diameters – 347, 738 and 1102 nm were characterized, revealing average pore sizes of 800, 870 and 1060 nm and pore volumes of 44, 63 and 68% respectively. Hydrophobicity increased with increasing fibre diameter and porosity. Effective diffusion coefficients for glucose transport across the electrospun membranes varied as a function of thickness and porosity, indicating high flux rates for mass transport. Electrospun PU membranes having significantly high pore volumes, extensively interconnected porosity and tailorable properties compared to conventional solvent cast membranes can find applications as coatings for sensors requiring analyte exchange. PMID:23170040

  18. Synaptobrevin Transmembrane Domain Dimerization Studied by Multiscale Molecular Dynamics Simulations

    PubMed Central

    Han, Jing; Pluhackova, Kristyna; Wassenaar, Tsjerk A.; Böckmann, Rainer A.

    2015-01-01

    Synaptic vesicle fusion requires assembly of the SNARE complex composed of SNAP-25, syntaxin-1, and synaptobrevin-2 (sybII) proteins. The SNARE proteins found in vesicle membranes have previously been shown to dimerize via transmembrane (TM) domain interactions. While syntaxin homodimerization is supposed to promote the transition from hemifusion to complete fusion, the role of synaptobrevin’s TM domain association in the fusion process remains poorly understood. Here, we combined coarse-grained and atomistic simulations to model the homodimerization of the sybII transmembrane domain and of selected TM mutants. The wild-type helix is shown to form a stable, right-handed dimer with the most populated helix-helix interface, including key residues predicted in a previous mutagenesis study. In addition, two alternative binding interfaces were discovered, which are essential to explain the experimentally observed higher-order oligomerization of sybII. In contrast, only one dimerization interface was found for a fusion-inactive poly-Leu mutant. Moreover, the association kinetics found for this mutant is lower as compared to the wild-type. These differences in dimerization between the wild-type and the poly-Leu mutant are suggested to be responsible for the reported differences in fusogenic activity between these peptides. This study provides molecular insight into the role of TM sequence specificity for peptide aggregation in membranes. PMID:26287628

  19. A Novel Topology of Proline-rich Transmembrane Protein 2 (PRRT2): HINTS FOR AN INTRACELLULAR FUNCTION AT THE SYNAPSE.

    PubMed

    Rossi, Pia; Sterlini, Bruno; Castroflorio, Enrico; Marte, Antonella; Onofri, Franco; Valtorta, Flavia; Maragliano, Luca; Corradi, Anna; Benfenati, Fabio

    2016-03-18

    Proline-rich transmembrane protein 2 (PRRT2) has been identified as the single causative gene for a group of paroxysmal syndromes of infancy, including epilepsy, paroxysmal movement disorders, and migraine. On the basis of topology predictions, PRRT2 has been assigned to the recently characterized family of Dispanins, whose members share the two-transmembrane domain topology with a large N terminus and short C terminus oriented toward the outside of the cell. Because PRRT2 plays a role at the synapse, it is important to confirm the exact orientation of its N and C termini with respect to the plasma membrane to get clues regarding its possible function. Using a combination of different experimental approaches, including live immunolabeling, immunogold electron microscopy, surface biotinylation and computational modeling, we demonstrate a novel topology for this protein. PRRT2 is a type II transmembrane protein in which only the second hydrophobic segment spans the plasma membrane, whereas the first one is associated with the internal surface of the membrane and forms a helix-loop-helix structure without crossing it. Most importantly, the large proline-rich N-terminal domain is not exposed to the extracellular space but is localized intracellularly, and only the short C terminus is extracellular (N cyt/C exo topology). Accordingly, we show that PRRT2 interacts with the Src homology 3 domain-bearing protein Intersectin 1, an intracellular protein involved in synaptic vesicle cycling. These findings will contribute to the clarification of the role of PRRT2 at the synapse and the understanding of pathogenic mechanisms on the basis of PRRT2-related neurological disorders. PMID:26797119

  20. A Novel Topology of Proline-rich Transmembrane Protein 2 (PRRT2): HINTS FOR AN INTRACELLULAR FUNCTION AT THE SYNAPSE.

    PubMed

    Rossi, Pia; Sterlini, Bruno; Castroflorio, Enrico; Marte, Antonella; Onofri, Franco; Valtorta, Flavia; Maragliano, Luca; Corradi, Anna; Benfenati, Fabio

    2016-03-18

    Proline-rich transmembrane protein 2 (PRRT2) has been identified as the single causative gene for a group of paroxysmal syndromes of infancy, including epilepsy, paroxysmal movement disorders, and migraine. On the basis of topology predictions, PRRT2 has been assigned to the recently characterized family of Dispanins, whose members share the two-transmembrane domain topology with a large N terminus and short C terminus oriented toward the outside of the cell. Because PRRT2 plays a role at the synapse, it is important to confirm the exact orientation of its N and C termini with respect to the plasma membrane to get clues regarding its possible function. Using a combination of different experimental approaches, including live immunolabeling, immunogold electron microscopy, surface biotinylation and computational modeling, we demonstrate a novel topology for this protein. PRRT2 is a type II transmembrane protein in which only the second hydrophobic segment spans the plasma membrane, whereas the first one is associated with the internal surface of the membrane and forms a helix-loop-helix structure without crossing it. Most importantly, the large proline-rich N-terminal domain is not exposed to the extracellular space but is localized intracellularly, and only the short C terminus is extracellular (N cyt/C exo topology). Accordingly, we show that PRRT2 interacts with the Src homology 3 domain-bearing protein Intersectin 1, an intracellular protein involved in synaptic vesicle cycling. These findings will contribute to the clarification of the role of PRRT2 at the synapse and the understanding of pathogenic mechanisms on the basis of PRRT2-related neurological disorders.

  1. Efflux by small multidrug resistance proteins is inhibited by membrane-interactive helix-stapled peptides.

    PubMed

    Bellmann-Sickert, Kathrin; Stone, Tracy A; Poulsen, Bradley E; Deber, Charles M

    2015-01-16

    Bacterial cell membranes contain several protein pumps that resist the toxic effects of drugs by efficiently extruding them. One family of these pumps, the small multidrug resistance proteins (SMRs), consists of proteins of about 110 residues that need to oligomerize to form a structural pathway for substrate extrusion. As such, SMR oligomerization sites should constitute viable targets for efflux inhibition, by disrupting protein-protein interactions between helical segments. To explore this proposition, we are using Hsmr, an SMR from Halobacter salinarum that dimerizes to extrude toxicants. Our previous work established that (i) Hsmr dimerization is mediated by a helix-helix interface in Hsmr transmembrane (TM) helix 4 (residues (90)GLALIVAGV(98)); and (ii) a peptide comprised of the full TM4(85-105) sequence inhibits Hsmr-mediated ethidium bromide efflux from bacterial cells. Here we define the minimal linear sequence for inhibitor activity (determined as TM4(88-100), and then "staple" this sequence via Grubbs metathesis to produce peptides typified by acetyl-A-(Sar)3-(88)VVGLXLIZXGVVV(100)-KKK-NH2 (X = 2-(4'-pentenyl)alanine at positions 92 and 96; Z = Val, Gly, or Asn at position 95)). The Asn(95) peptide displayed specific efflux inhibition and resensitization of Hsmr-expressing cells to ethidium bromide; and was non-hemolytic to human red blood cells. Stapling essentially prevented peptide degradation in blood plasma and liver homogenates versus an unstapled counterpart. The overall results confirm that the stapled analog of TM4(88-100) retains the structural complementarity required to disrupt the Hsmr TM4-TM4 locus in Hsmr, and portend the general validity of stapled peptides as therapeutics for the disruption of functional protein-protein interactions in membranes.

  2. Efflux by Small Multidrug Resistance Proteins Is Inhibited by Membrane-interactive Helix-stapled Peptides*

    PubMed Central

    Bellmann-Sickert, Kathrin; Stone, Tracy A.; Poulsen, Bradley E.; Deber, Charles M.

    2015-01-01

    Bacterial cell membranes contain several protein pumps that resist the toxic effects of drugs by efficiently extruding them. One family of these pumps, the small multidrug resistance proteins (SMRs), consists of proteins of about 110 residues that need to oligomerize to form a structural pathway for substrate extrusion. As such, SMR oligomerization sites should constitute viable targets for efflux inhibition, by disrupting protein-protein interactions between helical segments. To explore this proposition, we are using Hsmr, an SMR from Halobacter salinarum that dimerizes to extrude toxicants. Our previous work established that (i) Hsmr dimerization is mediated by a helix-helix interface in Hsmr transmembrane (TM) helix 4 (residues 90GLALIVAGV98); and (ii) a peptide comprised of the full TM4(85–105) sequence inhibits Hsmr-mediated ethidium bromide efflux from bacterial cells. Here we define the minimal linear sequence for inhibitor activity (determined as TM4(88–100), and then “staple” this sequence via Grubbs metathesis to produce peptides typified by acetyl-A-(Sar)3-88VVGLXLIZXGVVV100-KKK-NH2 (X = 2-(4′-pentenyl)alanine at positions 92 and 96; Z = Val, Gly, or Asn at position 95)). The Asn95 peptide displayed specific efflux inhibition and resensitization of Hsmr-expressing cells to ethidium bromide; and was non-hemolytic to human red blood cells. Stapling essentially prevented peptide degradation in blood plasma and liver homogenates versus an unstapled counterpart. The overall results confirm that the stapled analog of TM4(88–100) retains the structural complementarity required to disrupt the Hsmr TM4-TM4 locus in Hsmr, and portend the general validity of stapled peptides as therapeutics for the disruption of functional protein-protein interactions in membranes. PMID:25425644

  3. The transmembrane domains of the bacterial cell division proteins FtsB and FtsL form a stable high-order oligomer

    PubMed Central

    Khadria, Ambalika S.; Senes, Alessandro

    2014-01-01

    FtsB and FtsL are two essential integral membrane proteins of the bacterial division complex or “divisome”, both characterized by a single transmembrane helix and a juxta-membrane coiled coil domain. The two domains are important for the association of FtsB and FtsL, a key event for their recruitment to the divisome, that in turn enables recruitment of the late divisomal components to the Z-ring and subsequent completion of the division process. Here we present a biophysical analysis performed in vitro that shows that the transmembrane domains of FtsB and FtsL associate strongly in isolation. Using FRET, we have measured the oligomerization of fluorophore-labeled transmembrane domains of FtsB and FtsL in both detergent and lipid. The data indicates that the transmembrane helices are likely a major contributor to the stability of the FtsB-FtsL complex. Our analyses show that FtsB and FtsL form a 1:1 higher-order oligomeric complex, possibly a tetramer. This finding suggests that the FtsB-FtsL complex is capable of multi-valent binding to FtsQ and other divisome components, a hypothesis that is consistent with the possibility that the FtsB-FtsL complex has a structural role in the stabilization of the Z-ring. PMID:24083359

  4. OVERVIEW OF HELIX HOUSE NO. 2 (S87), WITH ANTENNA TOWERS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF HELIX HOUSE NO. 2 (S-87), WITH ANTENNA TOWERS, HELIX HOUSE NO. 1 (S-3) AND TRANSMITTER BLDG. (S-2) AT REAR, LOOKING WEST SOUTHWEST. - Naval Computer & Telecommunications Area Master Station, Eastern Pacific, Radio Transmitter Facility Lualualei, Helix House No. 2, Base of Radio Antenna Structure No. 427, Makaha, Honolulu County, HI

  5. v-SNARE transmembrane domains function as catalysts for vesicle fusion

    PubMed Central

    Dhara, Madhurima; Yarzagaray, Antonio; Makke, Mazen; Schindeldecker, Barbara; Schwarz, Yvonne; Shaaban, Ahmed; Sharma, Satyan; Böckmann, Rainer A; Lindau, Manfred

    2016-01-01

    Vesicle fusion is mediated by an assembly of SNARE proteins between opposing membranes, but it is unknown whether transmembrane domains (TMDs) of SNARE proteins serve mechanistic functions that go beyond passive anchoring of the force-generating SNAREpin to the fusing membranes. Here, we show that conformational flexibility of synaptobrevin-2 TMD is essential for efficient Ca2+-triggered exocytosis and actively promotes membrane fusion as well as fusion pore expansion. Specifically, the introduction of helix-stabilizing leucine residues within the TMD region spanning the vesicle’s outer leaflet strongly impairs exocytosis and decelerates fusion pore dilation. In contrast, increasing the number of helix-destabilizing, ß-branched valine or isoleucine residues within the TMD restores normal secretion but accelerates fusion pore expansion beyond the rate found for the wildtype protein. These observations provide evidence that the synaptobrevin-2 TMD catalyzes the fusion process by its structural flexibility, actively setting the pace of fusion pore expansion. DOI: http://dx.doi.org/10.7554/eLife.17571.001 PMID:27343350

  6. Hydrophobic Mismatch Drives the Interaction of E5 with the Transmembrane Segment of PDGF Receptor

    PubMed Central

    Windisch, Dirk; Ziegler, Colin; Grage, Stephan L.; Bürck, Jochen; Zeitler, Marcel; Gor’kov, Peter L.; Ulrich, Anne S.

    2015-01-01

    The oncogenic E5 protein from bovine papillomavirus is a short (44 amino acids long) integral membrane protein that forms homodimers. It activates platelet-derived growth factor receptor (PDGFR) β in a ligand-independent manner by transmembrane helix-helix interactions. The nature of this recognition event remains elusive, as numerous mutations are tolerated in the E5 transmembrane segment, with the exception of one hydrogen-bonding residue. Here, we examined the conformation, stability, and alignment of the E5 protein in fluid lipid membranes of substantially varying bilayer thickness, in both the absence and presence of the PDGFR transmembrane segment. Quantitative synchrotron radiation circular dichroism analysis revealed a very long transmembrane helix for E5 of ∼26 amino acids. Oriented circular dichroism and solid-state 15N-NMR showed that the alignment and stability of this unusually long segment depend critically on the membrane thickness. When reconstituted alone in exceptionally thick DNPC lipid bilayers, the E5 helix was found to be inserted almost upright. In moderately thick bilayers (DErPC and DEiPC), it started to tilt and became slightly deformed, and finally it became aggregated in conventional DOPC, POPC, and DMPC membranes due to hydrophobic mismatch. On the other hand, when E5 was co-reconstituted with the transmembrane segment of PDGFR, it was able to tolerate even the most pronounced mismatch and was stabilized by binding to the receptor, which has the same hydrophobic length. As E5 is known to activate PDGFR within the thin membranes of the Golgi compartment, we suggest that the intrinsic hydrophobic mismatch of these two interaction partners drives them together. They seem to recognize each other by forming a closely packed bundle of mutually aligned transmembrane helices, which is further stabilized by a specific pair of hydrogen-bonding residues. PMID:26287626

  7. Into the Eye of the Helix

    NASA Astrophysics Data System (ADS)

    2009-02-01

    A deep new image of the magnificent Helix planetary nebula has been obtained using the Wide Field Imager at ESO's La Silla Observatory. The image shows a rich background of distant galaxies, usually not seen in other images of this object. ESO PR Photo 07a/09 The Helix Nebula ESO PR Video 06a/09 Helix Nebula Zoom-in ESO PR Video 06b/09 Pan over the Helix Nebula ESO PR Video 06c/09 Zoom and pan over the Helix Nebula The Helix Nebula, NGC 7293, lies about 700 light-years away in the constellation of Aquarius (the Water Bearer). It is one of the closest and most spectacular examples of a planetary nebula. These exotic objects have nothing to do with planets, but are the final blooming of Sun-like stars before their retirement as white dwarfs. Shells of gas are blown off from a star's surface, often in intricate and beautiful patterns, and shine under the harsh ultraviolet radiation from the faint, but very hot, central star. The main ring of the Helix Nebula is about two light-years across or half the distance between the Sun and its closest stellar neighbour. Despite being photographically very spectacular the Helix is hard to see visually as its light is thinly spread over a large area of sky and the history of its discovery is rather obscure. It first appears in a list of new objects compiled by the German astronomer Karl Ludwig Harding in 1824. The name Helix comes from the rough corkscrew shape seen in the earlier photographs. Although the Helix looks very much like a doughnut, studies have shown that it possibly consists of at least two separate discs with outer rings and filaments. The brighter inner disc seems to be expanding at about 100 000 km/h and to have taken about 12 000 years to have formed. Because the Helix is relatively close -- it covers an area of the sky about a quarter of the full Moon -- it can be studied in much greater detail than most other planetary nebulae and has been found to have an unexpected and complex structure. All around the

  8. Transmembrane segments of complement receptor 3 do not participate in cytotoxic activities but determine receptor structure required for action of Bordetella adenylate cyclase toxin.

    PubMed

    Wald, Tomas; Osickova, Adriana; Masin, Jiri; Liskova, Petra M; Petry-Podgorska, Inga; Matousek, Tomas; Sebo, Peter; Osicka, Radim

    2016-04-01

    Adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) of the whooping cough agent Bordetella pertussis penetrates phagocytes expressing the integrin complement receptor 3 (CR3, CD11b/CD18, α(M)β(2) or Mac-1). CyaA translocates its adenylate cyclase (AC) enzyme domain into cell cytosol and catalyzes unregulated conversion of ATP to cAMP, thereby subverting cellular signaling. In parallel, CyaA forms small cation-selective membrane pores that permeabilize cells for potassium efflux, contributing to cytotoxicity of CyaA and eventually provoking colloid-osmotic cell lysis. To investigate whether the single-pass α-helical transmembrane segments of CR3 subunits CD11b and CD18 do directly participate in AC domain translocation and/or pore formation by the toxin, we expressed in CHO cells variants of CR3 that contained artificial transmembrane segments, or lacked the transmembrane segment(s) at all. The results demonstrate that the transmembrane segments of CR3 are not directly involved in the cytotoxic activities of CyaA but serve for maintaining CR3 in a conformation that is required for efficient toxin binding and action. PMID:26802078

  9. Converting One-Face α-Helix Mimetics into Amphiphilic α-Helix Mimetics as Potent Inhibitors of Protein-Protein Interactions.

    PubMed

    Lee, Ji Hoon; Oh, Misook; Kim, Hyun Soo; Lee, Huisun; Im, Wonpil; Lim, Hyun-Suk

    2016-01-11

    Many biologically active α-helical peptides adopt amphiphilic helical structures that contain hydrophobic residues on one side and hydrophilic residues on the other side. Therefore, α-helix mimetics capable of mimicking such amphiphilic helical peptides should possess higher binding affinity and specificity to target proteins. Here we describe an efficient method for generating amphiphilic α-helix mimetics. One-face α-helix mimetics having hydrophobic side chains on one side was readily converted into amphiphilic α-helix mimetics by introducing appropriate charged residues on the opposite side. We also demonstrate that such two-face amphiphilic α-helix mimetics indeed show remarkably improved binding affinity to a target protein, compared to one-face hydrophobic α-helix mimetics. We believe that generating a large combinatorial library of these amphiphilic α-helix mimetics can be valuable for rapid discovery of highly potent and specific modulators of protein-protein interactions.

  10. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans.

    PubMed

    Killian, J A; Salemink, I; de Planque, M R; Lindblom, G; Koeppe, R E; Greathouse, D V

    1996-01-23

    We have investigated the effect of several hydrophobic polypeptides on the phase behavior of diacylphosphatidylcholines with different acyl chain length. The polypeptides are uncharged and consist of a sequence with variable length of alternating leucine and alanine, flanked on both sides by two tryptophans, and with the N- and C-termini blocked. First it was demonstrated by circular dichroism measurements that these peptides adopt an alpha-helical conformation with a transmembrane orientation in bilayers of dimyristoylphosphatidylcholine. Subsequent 31P NMR measurements showed that the peptides can affect lipid organization depending on the difference in hydrophobic length between the peptide and the lipid bilayer in the liquid-crystalline phase. When a 17 amino acid residue long peptide (WALP17) was incorporated in a 1/10 molar ratio of peptide to lipid, a bilayer was maintained in saturated phospholipids containing acyl chains of 12 and 14 C atoms, an isotropic phase was formed at 16 C atoms, and an inverted hexagonal (HII) phase at 18 and 20 C atoms. For a 19 amino acid residue long peptide (WALP19) similar changes in lipid phase behavior were observed, but at acyl chain lengths of 2 C-atoms longer. Also in several cis-unsaturated phosphatidylcholine model membranes it was found that these peptides and a shorter analog (WALP16) induce the formation of nonbilayer structures as a consequence of hydrophobic mismatch. It is proposed that this unique ability of the peptides to induce nonbilayer structures in phosphatidylcholine model membranes is due to the presence of two tryptophans at both sides of the membrane/water interface, which prevent the peptide from aggregating when the mismatch is increased. Comparison of the hydrophobic length of the bilayers with the length of the different peptides showed that it is the precise extent of mismatch that determines whether the preferred lipid organization is a bilayer, isotropic phase, or HII phase. The peptide

  11. Marginally hydrophobic transmembrane α-helices shaping membrane protein folding

    PubMed Central

    De Marothy, Minttu T; Elofsson, Arne

    2015-01-01

    Cells have developed an incredible machinery to facilitate the insertion of membrane proteins into the membrane. While we have a fairly good understanding of the mechanism and determinants of membrane integration, more data is needed to understand the insertion of membrane proteins with more complex insertion and folding pathways. This review will focus on marginally hydrophobic transmembrane helices and their influence on membrane protein folding. These weakly hydrophobic transmembrane segments are by themselves not recognized by the translocon and therefore rely on local sequence context for membrane integration. How can such segments reside within the membrane? We will discuss this in the light of features found in the protein itself as well as the environment it resides in. Several characteristics in proteins have been described to influence the insertion of marginally hydrophobic helices. Additionally, the influence of biological membranes is significant. To begin with, the actual cost for having polar groups within the membrane may not be as high as expected; the presence of proteins in the membrane as well as characteristics of some amino acids may enable a transmembrane helix to harbor a charged residue. The lipid environment has also been shown to directly influence the topology as well as membrane boundaries of transmembrane helices—implying a dynamic relationship between membrane proteins and their environment. PMID:25970811

  12. Salvador-Warts-Hippo pathway in a developmental checkpoint monitoring Helix-Loop-Helix proteins

    PubMed Central

    Wang, Lan-Hsin; Baker, Nicholas E.

    2014-01-01

    The E-proteins and Id-proteins are, respectively, the positive and negative heterodimer partners for the basic-helix-loop-helix protein family, and as such contribute to a remarkably large number of cell fate decisions. E-proteins and Id-proteins also function to inhibit or promote cell proliferation and cancer. Using a genetic modifier screen in Drosophila, we show that the Id-protein Extramacrochaetae enables growth by suppressing activation of the Salvador-Warts-Hippo pathway of tumor suppressors, activation that requires transcriptional activation of the expanded gene by the E-protein Daughterless. Daughterless protein binds to an intronic enhancer in the expanded gene, both activating the SWH pathway independently of the transmembrane protein Crumbs, and bypassing the negative feedback regulation that targets the same expanded enhancer. Thus the Salvador-Warts-Hippo pathway has a cell-autonomous function to prevent inappropriate differentiation due to transcription factor imbalance, and monitors the intrinsic developmental status of progenitor cells, distinct from any responses to cell-cell interactions. PMID:25579975

  13. Crystallizing Transmembrane Peptides in Lipidic Mesophases

    SciTech Connect

    Höfer, Nicole; Aragão, David; Caffrey, Martin

    2011-09-28

    Structure determination of membrane proteins by crystallographic means has been facilitated by crystallization in lipidic mesophases. It has been suggested, however, that this so-called in meso method, as originally implemented, would not apply to small protein targets having {le}4 transmembrane crossings. In our study, the hypothesis that the inherent flexibility of the mesophase would enable crystallogenesis of small proteins was tested using a transmembrane pentadecapeptide, linear gramicidin, which produced structure-grade crystals. This result suggests that the in meso method should be considered as a viable means for high-resolution structure determination of integral membrane peptides, many of which are predicted to be coded for in the human genome.

  14. Structural model for the organization of the transmembrane spans of the human red-cell anion exchanger (band 3; AE1).

    PubMed Central

    Groves, J D; Tanner, M J

    1999-01-01

    We have examined the functional co-assembly of non-complementary pairs of N- and C-terminal polypeptide fragments of the anion transport domain (b3mem) of human red-cell band 3. cDNA clones encoding non-contiguous pairs of fragments with one transmembrane (TM) region omitted, or overlapping pairs of fragments with between one and ten TM regions duplicated, were co-expressed in Xenopus oocytes and a cell-free translation system. Stilbene disulphonate-sensitive chloride uptake assays in oocytes revealed that the omission of any single TM region of b3mem except spans 6 and 7 caused a complete loss of functional expression. In contrast, co-expressed pairs of fragments overlapping a single TM region 5, 6, 7, 8, 9-10 or 11-12 retained a high level of functionality, whereas fragments overlapping the clusters of TM regions 2-5, 4-5, 5-8 and 8-10 also mediated some stilbene disulphonate-sensitive uptake. The co-assembly of N- or C-terminal fragments with intact band 3, b3mem or other fragments was examined by co-immunoprecipitation in non-denaturing detergent solutions by using monoclonal antibodies against the termini of b3mem. All the fragments, except for TM spans 13-14, co-immunoprecipitated with b3mem. The medium-sized N-terminal fragments comprising spans 1-6, 1-7 or 1-8 co-immunoprecipitated particularly strongly with the C-terminal fragments containing spans 8-14 or 9-14. The fragments comprising spans 1-4 or 1-12 co-immunoprecipitated less extensively than the other N-terminal fragments with either b3mem or C-terminal fragments. There is sufficient flexibility in the structure of b3mem to allow the inclusion of at least one duplicated TM span without a loss of function. We propose a working model for the organization of TM spans of dimeric band 3 based on current evidence. PMID:10585856

  15. Four complete turns of a curved 3₁₀-helix at atomic resolution: the crystal structure of the peptaibol trichovirin I-4A in a polar environment suggests a transition to α-helix for membrane function.

    PubMed

    Gessmann, Renate; Axford, Danny; Owen, Robin L; Brückner, Hans; Petratos, Kyriacos

    2012-02-01

    The first crystal structure of a member of peptaibol antibiotic subfamily 4, trichovirin I-4A (14 residues), has been determined by direct methods and refined at atomic resolution. The monoclinic unit cell has two molecules in the asymmetric unit. Both molecules assume a 3₁₀ right-handed helical conformation and are significantly bent. The molecules pack loosely along the crystallographic twofold axis, forming two large tunnels between symmetry-related molecules in which no ordered solvent could be located. Carbonyl O atoms which are not involved in intramolecular hydrogen bonding participate in close van der Waals interactions with apolar groups. The necessary amphipathicity for biological activity of peptaibols is not realised in the crystal structure. Hence, a structural change of trichovirin to an α-helical conformation is proposed for membrane integration and efficient water/ion transportation across the lipid bilayer.

  16. The double helix and the 'wronged heroine'.

    PubMed

    Maddox, Brenda

    2003-01-23

    In 1962, James Watson, Francis Crick and Maurice Wilkins received the Nobel prize for the discovery of the structure of DNA. Notably absent from the podium was Rosalind Franklin, whose X-ray photographs of DNA contributed directly to the discovery of the double helix. Franklin's premature death, combined with misogynist treatment by the male scientific establishment, cast her as a feminist icon. This myth overshadowed her intellectual strength and independence both as a scientist and as an individual. PMID:12540909

  17. The double helix and the 'wronged heroine'.

    PubMed

    Maddox, Brenda

    2003-01-23

    In 1962, James Watson, Francis Crick and Maurice Wilkins received the Nobel prize for the discovery of the structure of DNA. Notably absent from the podium was Rosalind Franklin, whose X-ray photographs of DNA contributed directly to the discovery of the double helix. Franklin's premature death, combined with misogynist treatment by the male scientific establishment, cast her as a feminist icon. This myth overshadowed her intellectual strength and independence both as a scientist and as an individual.

  18. Site-specific unfolding thermodynamics of a helix-turn-helix protein.

    PubMed

    Amunson, Krista E; Ackels, Loren; Kubelka, Jan

    2008-07-01

    The thermal unfolding of a 40-residue helix-turn-helix subdomain of the P22 viral coat protein was investigated using circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) with site-specific 13C isotopic labeling. Helix-turn-helix is the simplest alpha-helical structural motif that combines both secondary and tertiary structural elements. The CD of individual helical fragments reveals that the P22 subdomain is stabilized by tertiary interhelical interactions. Overall the temperature-dependent CD and FTIR data can be described by a three-state process with a partially folded intermediate. However, the analysis of the site-specific 13C IR signals reveals distinct unfolding thermodynamics for each of the labeled sites. The thermodynamic parameters of the thermal unfolding of each of the labeled segments were obtained using singular value decomposition in combination with target transformation and global fitting. The P22 subdomain unfolds from the N-terminus toward the helical segments near the turn. Our results show that as few as two 13C labeled residues can be detected in a 40 residue protein and provide local, site-specific structural information about protein unfolding, which is not resolved by standard, nonsite-specific spectroscopic probes.

  19. A deterministic algorithm for constrained enumeration of transmembrane protein folds.

    SciTech Connect

    Brown, William Michael; Young, Malin M.; Sale, Kenneth L.; Faulon, Jean-Loup Michel; Schoeniger, Joseph S.

    2004-07-01

    A deterministic algorithm for enumeration of transmembrane protein folds is presented. Using a set of sparse pairwise atomic distance constraints (such as those obtained from chemical cross-linking, FRET, or dipolar EPR experiments), the algorithm performs an exhaustive search of secondary structure element packing conformations distributed throughout the entire conformational space. The end result is a set of distinct protein conformations, which can be scored and refined as part of a process designed for computational elucidation of transmembrane protein structures.

  20. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)

    PubMed Central

    Corradi, Valentina; Vergani, Paola; Tieleman, D. Peter

    2015-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter superfamily. CFTR controls the flow of anions through the apical membrane of epithelia. Dysfunctional CFTR causes the common lethal genetic disease cystic fibrosis. Transitions between open and closed states of CFTR are regulated by ATP binding and hydrolysis on the cytosolic nucleotide binding domains, which are coupled with the transmembrane (TM) domains forming the pathway for anion permeation. Lack of structural data hampers a global understanding of CFTR and thus the development of “rational” approaches directly targeting defective CFTR. In this work, we explored possible conformational states of the CFTR gating cycle by means of homology modeling. As templates, we used structures of homologous ABC transporters, namely TM(287–288), ABC-B10, McjD, and Sav1866. In the light of published experimental results, structural analysis of the transmembrane cavity suggests that the TM(287–288)-based CFTR model could correspond to a commonly occupied closed state, whereas the McjD-based model could represent an open state. The models capture the important role played by Phe-337 as a filter/gating residue and provide structural information on the conformational transition from closed to open channel. PMID:26229102

  1. Heavy-Atom Labeled Transmembrane β-Peptides: Synthesis, CD-Spectroscopy, and X-ray Diffraction Studies in Model Lipid Multilayer.

    PubMed

    Rost, Ulrike; Xu, Yihui; Salditt, Tim; Diederichsen, Ulf

    2016-08-18

    Transmembrane β-peptides are promising candidates for the design of well-controlled membrane anchors in lipid membranes. Here, we present the synthesis of transmembrane β-peptides with and without tryptophan anchors, as well as a novel iodine-labeled d-β(3) -amino acid. By using one or more of the heavy-atom labeled amino acids as markers, the orientation of the helical peptide was inferred based on the electron-density profile determined by X-ray reflectivity. The β-peptides were synthesized through manual Fmoc-based solid-phase peptide synthesis (SPPS) and reconstituted in unilamellar vesicles forming a right-handed 314 -helix secondary structure, as shown by circular dichroism spectroscopy. We then integrated the β-peptide into solid-supported membrane stacks and carried out X-ray reflectivity and grazing incidence small-angle X-ray scattering to determine the β-peptide orientation and its effect on the membrane bilayers. These β-peptides adopt a well-ordered transmembrane motif in the solid-supported model membrane, maintaining the basic structure of the original bilayer with some distinct alterations. Notably, the helical tilt angle, which accommodates the positive hydrophobic mismatch, induces a tilt of the acyl chains. The tilted chains, in turn, lead to a membrane thinning effect.

  2. Crystal structure of YwpF from Staphylococcus aureus reveals its architecture comprised of a β-barrel core domain resembling type VI secretion system proteins and a two-helix pair.

    PubMed

    Lee, Sang Jae; Lee, Kyu-Yeon; Lee, Ki-Young; Kim, Dong-Gyun; Kim, Soon-Jong; Lee, Bong-Jin

    2015-04-01

    The ywpF gene (SAV2097) of the Staphylococcus aureus strain Mu50 encodes the YwpF protein, which may play a role in antibiotic resistance. Here, we report the first crystal structure of the YwpF superfamily from S. aureus at 2.5-Å resolution. The YwpF structure consists of two regions: an N-terminal core β-barrel domain that shows structural similarity to type VI secretion system (T6SS) proteins (e.g., Hcp1, Hcp3, and EvpC) and a C-terminal two-helix pair. Although the monomer structure of S. aureus YwpF resembles those of T6SS proteins, the dimer/tetramer model of S. aureus YwpF is distinct from the functionally important hexameric ring of T6SS proteins. We therefore suggest that the S. aureus YwpF may have a different function compared to T6SS proteins.

  3. The effect of secondary structures on the NLO properties of single chain oligopeptides: a comparison between β-strand and α-helix polyglycines.

    PubMed

    Alparone, Andrea

    2013-08-21

    The evolution of the electronic first-order longitudinal hyperpolarizability (βzzz) and the hyperpolarizability aligned along the direction of the dipole moment (βμ) of the α-helix and β-strand single chain H2N-(CH2-CO-NH)n-CH2-COOH (n = 1-9) oligoglycines, were investigated. For this purpose we have used Hartree-Fock, second-order Møller-Plesset perturbation theory and Coulomb-attenuating Density Functional Theory computations. For the longest chain, βμ(β-strand) is one order of magnitude greater than βμ(α-helix), due to the cooperative effect of the α-helices being unfavourable for the NLO properties. The βzzz and βμ values per unit cell of the β-strand conformation were determined, extrapolating the properties in the limit of the polymer. The calculated βzzz values were elucidated using the two-state model involving the characteristic π-π* NV1 electronic transition of peptides. Single chain β-strand polyglycines can be discriminated from the α-helices using second-order NLO effects.

  4. A distinct three-helix centipede toxin SSD609 inhibits I(ks) channels by interacting with the KCNE1 auxiliary subunit.

    PubMed

    Sun, Peibei; Wu, Fangming; Wen, Ming; Yang, Xingwang; Wang, Chenyang; Li, Yiming; He, Shufang; Zhang, Longhua; Zhang, Yun; Tian, Changlin

    2015-08-26

    KCNE1 is a single-span transmembrane auxiliary protein that modulates the voltage-gated potassium channel KCNQ1. The KCNQ1/KCNE1 complex in cardiomyocytes exhibited slow activated potassium (I(ks)) currents. Recently, a novel 47-residue polypeptide toxin SSD609 was purified from Scolopendra subspinipes dehaani venom and showed I(ks) current inhibition. Here, chemically synthesized SSD609 was shown to exert I(ks) inhibition in extracted guinea pig cardiomyocytes and KCNQ1/KCNE1 current attenuation in CHO cells. The K(+) current attenuation of SSD609 showed decent selectivity among different auxiliary subunits. Solution nuclear magnetic resonance analysis of SSD609 revealed a distinctive three-helix conformation that was stabilized by a new disulfide bonding pattern as well as segregated surface charge distribution. Structure-activity studies demonstrated that negatively charged Glu19 in the amphipathic extracellular helix of KCNE1 was the key residue that interacted with SSD609. The distinctive three-helix centipede toxin SSD609 is known to be the first polypeptide toxin acting on channel auxiliary subunit KCNE1, which suggests a new type of pharmacological regulation for ion channels in cardiomyocytes.

  5. A distinct three-helix centipede toxin SSD609 inhibits I(ks) channels by interacting with the KCNE1 auxiliary subunit.

    PubMed

    Sun, Peibei; Wu, Fangming; Wen, Ming; Yang, Xingwang; Wang, Chenyang; Li, Yiming; He, Shufang; Zhang, Longhua; Zhang, Yun; Tian, Changlin

    2015-01-01

    KCNE1 is a single-span transmembrane auxiliary protein that modulates the voltage-gated potassium channel KCNQ1. The KCNQ1/KCNE1 complex in cardiomyocytes exhibited slow activated potassium (I(ks)) currents. Recently, a novel 47-residue polypeptide toxin SSD609 was purified from Scolopendra subspinipes dehaani venom and showed I(ks) current inhibition. Here, chemically synthesized SSD609 was shown to exert I(ks) inhibition in extracted guinea pig cardiomyocytes and KCNQ1/KCNE1 current attenuation in CHO cells. The K(+) current attenuation of SSD609 showed decent selectivity among different auxiliary subunits. Solution nuclear magnetic resonance analysis of SSD609 revealed a distinctive three-helix conformation that was stabilized by a new disulfide bonding pattern as well as segregated surface charge distribution. Structure-activity studies demonstrated that negatively charged Glu19 in the amphipathic extracellular helix of KCNE1 was the key residue that interacted with SSD609. The distinctive three-helix centipede toxin SSD609 is known to be the first polypeptide toxin acting on channel auxiliary subunit KCNE1, which suggests a new type of pharmacological regulation for ion channels in cardiomyocytes. PMID:26307551

  6. Translocation of α-helix chains through a nanopore

    NASA Astrophysics Data System (ADS)

    Yang, Zhiyong; Li, Shiben; Zhang, Linxi; ur Rehman, Ateeq; Liang, Haojun

    2010-10-01

    The translocation of α-helix chains through a nanopore is studied through Langevin dynamics simulations. The α-helix chains exhibit several different characteristics about their average translocation times and the α-helix structures when they transport through the nanopores under the driving forces. First, the relationship between average translocation times τ and the chain length N satisfies the scaling law, τ ˜Nα, and the scaling exponent α depends on the driving force f for the small forces while it is close to the Flory exponent (ν) in the other force regions. For the chains with given chain lengths, it is observed that the dependence of the average translocation times can be expressed as τ ˜f-1/2 for the small forces while can be described as τ ˜f in the large force regions. Second, for the large driving force, the average number of α-helix structures Nh decreases first and then increases in the translocation process. The average waiting time of each bead, especially of the first bead, is also dependent on the driving forces. Furthermore, an elasticity spring model is presented to reasonably explain the change of the α-helix number during the translocation and its elasticity can be locally damaged by the large driving forces. Our results demonstrate the unique behaviors of α-helix chains transporting through the pores, which can enrich our insights into and knowledge on biopolymers transporting through membranes.

  7. Molecular Content of the Helix Nebula

    NASA Astrophysics Data System (ADS)

    Zack, L. N.; Zeigler, N. R.; Ziurys, L. M.

    2012-06-01

    Multiple transitions of H_2CO, HCO^+, and CO were detected at nine positions across the planetary nebula NGC 7293, the Helix Nebula, using the 12m telescope and the Submillimeter Telescope (SMT) of the Arizona Radio Observatory (ARO). A complete map of the nebula has also been made in the J = 1 → 0 transition of HCO^+ at 89 GHz. HCO^+ emission was found to be widespread across the Helix, and is coincident with the ionized gas as traced in optical images. A complex velocity structure is apparent in the HCO^+ spectra, as well. The CO and H_2CO data (J = 1 → 0, 2 → 1, and 3 → 2) were modeled using a radiative transfer code at the nine positions observed in the Helix. Kinetic temperatures were typically found to be in the range Tkin ≈ 20 - 45 K and the gas density on the order of n(H_2) ≈ 105 cm-3 at these positions. The column densities for CO, H_2CO, and HCO^+ were determined to be 1015, 1012, and 1011 cm-2 respectively, corresponding to fractional abundances, relative to H_2, of f ≈ 10-4, 10-7, and 10-8. The extended distribution of HCO^+ suggests that dense clumps may exist throughout the nebula. Hence, the chemistry of evolved planetary nebulae may be more active than previously thought.

  8. TRAMPLE: the transmembrane protein labelling environment.

    PubMed

    Fariselli, Piero; Finelli, Michele; Rossi, Ivan; Amico, Mauro; Zauli, Andrea; Martelli, Pier Luigi; Casadio, Rita

    2005-07-01

    TRAMPLE (http://gpcr.biocomp.unibo.it/biodec/) is a web application server dedicated to the detection and the annotation of transmembrane protein sequences. TRAMPLE includes different state-of-the-art algorithms for the prediction of signal peptides, transmembrane segments (both beta-strands and alpha-helices), secondary structure and fast fold recognition. TRAMPLE also includes a complete content management system to manage the results of the predictions. Each user of the server has his/her own workplace, where the data can be stored, organized, accessed and annotated with documents through a simple web-based interface. In this manner, TRAMPLE significantly improves usability with respect to other more traditional web servers. PMID:15980454

  9. A Classification of Basic Helix-Loop-Helix Transcription Factors of Soybean

    PubMed Central

    Hudson, Karen A.; Hudson, Matthew E.

    2015-01-01

    The complete genome sequence of soybean allows an unprecedented opportunity for the discovery of the genes controlling important traits. In particular, the potential functions of regulatory genes are a priority for analysis. The basic helix-loop-helix (bHLH) family of transcription factors is known to be involved in controlling a wide range of systems critical for crop adaptation and quality, including photosynthesis, light signalling, pigment biosynthesis, and seed pod development. Using a hidden Markov model search algorithm, 319 genes with basic helix-loop-helix transcription factor domains were identified within the soybean genome sequence. These were classified with respect to their predicted DNA binding potential, intron/exon structure, and the phylogeny of the bHLH domain. Evidence is presented that the vast majority (281) of these 319 soybean bHLH genes are expressed at the mRNA level. Of these soybean bHLH genes, 67% were found to exist in two or more homeologous copies. This dataset provides a framework for future studies on bHLH gene function in soybean. The challenge for future research remains to define functions for the bHLH factors encoded in the soybean genome, which may allow greater flexibility for genetic selection of growth and environmental adaptation in this widely grown crop. PMID:25763382

  10. Transmembrane aromatic amino acid distribution in P-glycoprotein. A functional role in broad substrate specificity.

    PubMed

    Pawagi, A B; Wang, J; Silverman, M; Reithmeier, R A; Deber, C M

    1994-01-14

    Multidrug resistance (MDR) in cancer cells is associated with overexpression of P-glycoprotein (Pgp), a membrane protein which interacts with structurally diverse hydrophobic molecules of high membrane affinity. In an analysis of the molecular basis for this broad range of substrate specificity, we found that the transmembrane (TM) regions of Pgp are rich in highly conserved aromatic amino acid residues. Computer-generated three-dimensional model structures showed that a typical substrate, rhodamine 123, can intercalate between three to four phenylalanine side-chains in any of several Pgp TM helices with minimal protrusion of the drug into bulk lipid, and that five to six (of the 12 Pgp putative TM segments) helices can facilitate transport through creation of a sterically compatible pore. In contrast to the case for proteins involved in the transport of membrane-impermeable, relatively polar substrates, the "transport path" for Pgp substrates need not be polar, and may involve either an internal channel occupied largely by aromatic side-chains, or external gaps along TM helix-lipid interfaces. Weakly polar interactions between drug cationic sites and Pgp aromatic residues contribute additionally to overall protein/drug binding. The ability of Pgp to recognize and efflux structurally diverse molecules suggests that rather than a unique structure, the Pgp channel may maintain the intrinsic capacity to undergo wide-ranging drug-dependent dynamic reorganization. PMID:7904655

  11. Relative motion of transmembrane segments S0 and S4 during voltage sensor activation in the human BK(Ca) channel.

    PubMed

    Pantazis, Antonios; Kohanteb, Azadeh P; Olcese, Riccardo

    2010-12-01

    Large-conductance voltage- and Ca(2+)-activated K(+) (BK(Ca)) channel α subunits possess a unique transmembrane helix referred to as S0 at their N terminus, which is absent in other members of the voltage-gated channel superfamily. Recently, S0 was found to pack close to transmembrane segments S3 and S4, which are important components of the BK(Ca) voltage-sensing apparatus. To assess the role of S0 in voltage sensitivity, we optically tracked protein conformational rearrangements from its extracellular flank by site-specific labeling with an environment-sensitive fluorophore, tetramethylrhodamine maleimide (TMRM). The structural transitions resolved from the S0 region exhibited voltage dependence similar to that of charge-bearing transmembrane domains S2 and S4. The molecular determinant of the fluorescence changes was identified in W203 at the extracellular tip of S4: at hyperpolarized potential, W203 quenches the fluorescence of TMRM labeling positions at the N-terminal flank of S0. We provide evidence that upon depolarization, W203 (in S4) moves away from the extracellular region of S0, lifting its quenching effect on TMRM fluorescence. We suggest that S0 acts as a pivot component against which the voltage-sensitive S4 moves upon depolarization to facilitate channel activation.

  12. Triple helix purification and sequencing

    DOEpatents

    Wang, R.; Smith, L.M.; Tong, X.E.

    1995-03-28

    Disclosed herein are methods, kits, and equipment for purifying single stranded circular DNA and then using the DNA for DNA sequencing purposes. Templates are provided with an insert having a hybridization region. An elongated oligonucleotide has two regions that are complementary to the insert and the oligo is bound to a magnetic anchor. The oligo hybridizes to the insert on two sides to form a stable triple helix complex. The anchor can then be used to drag the template out of solution using a magnet. The system can purify sequencing templates, and if desired the triple helix complex can be opened up to a double helix so that the oligonucleotide will act as a primer for further DNA synthesis. 4 figures.

  13. Triple helix purification and sequencing

    DOEpatents

    Wang, Renfeng; Smith, Lloyd M.; Tong, Xinchun E.

    1995-01-01

    Disclosed herein are methods, kits, and equipment for purifying single stranded circular DNA and then using the DNA for DNA sequencing purposes. Templates are provided with an insert having a hybridization region. An elongated oligonucleotide has two regions that are complementary to the insert and the oligo is bound to a magnetic anchor. The oligo hybridizes to the insert on two sides to form a stable triple helix complex. The anchor can then be used to drag the template out of solution using a magnet. The system can purify sequencing templates, and if desired the triple helix complex can be opened up to a double helix so that the oligonucleotide will act as a primer for further DNA synthesis.

  14. The structure of GlpF, a glycerol conducting channel.

    PubMed

    Fu, Dax; Libson, Andrew; Stroud, Robert

    2002-01-01

    The passage of water or small neutral solutes across the cell membrane in animals, plants and bacteria is facilitated by a family of homologous membrane channels, variously known as aquaporins though perhaps more correctly as aquaglyceroporins. The glycerol facilitator (GlpF) is a 28 kDa aquaglyceroporin that catalyses transmembrane diffusion of glycerol and certain linear polyhydric alcohols in Escherichia coli. X-ray crystallographic analysis of GlpF to 2.2 A resolution revealed an alpha-barrel structure, surrounded by six full-length transmembrane helices and two half-spanning helices that are joined head-to-head in the middle of the membrane. These helices are arranged to a quasi twofold manner relative to the central membrane plane, where highly conserved residues make helix-to-helix contacts that stabilize the relative position and orientation of the helices in the structure. This sequence-structure correlation suggests that the evolutionary divergence of aquaporins and aquaglyceroporins is constrained by a conserved structural framework within which specialized function may be developed. Three glycerol molecules were resolved in the central channel through the GlpF monomer, thereby defining a transmembrane channel for glycerol permeation. The structure of glycerol GlpF complex provides insight into the chemical basis for transmembrane selective permeability. PMID:12027015

  15. Lipid solvation effects contribute to the affinity of Gly-xxx-Gly motif-mediated helix-helix interactions.

    PubMed

    Johnson, Rachel M; Rath, Arianna; Melnyk, Roman A; Deber, Charles M

    2006-07-18

    Interactions between transmembrane helices are mediated by the concave Gly-xxx-Gly motif surface. Whether Gly residues per se are sufficient for selection of this motif has not been established. Here, we used the in vivo TOXCAT assay to measure the relative affinities of all 18 combinations of Gly, Ala, and Ser "small-xxx-small" mutations in glycophorin A (GpA) and bacteriophage M13 major coat protein (MCP) homodimers. Affinity values were compared with the accessibility to a methylene-sized probe of the total surface area of each helix monomer as a measure of solvation by membrane components. A strong inverse correlation was found between nonpolar-group lipid accessibility and dimer affinity (R = 0.75 for GpA, p = 0.013, and R = 0.81 for MCP, p = 0.004), suggesting that lipid as a poor membrane protein solvent, conceptually analogous to water in soluble protein folding, can contribute to dimer stability and help to define helix-helix interfaces.

  16. Evidence for new homotypic and heterotypic interactions between transmembrane helices of proteins involved in receptor tyrosine kinase and neuropilin signaling.

    PubMed

    Sawma, Paul; Roth, Lise; Blanchard, Cécile; Bagnard, Dominique; Crémel, Gérard; Bouveret, Emmanuelle; Duneau, Jean-Pierre; Sturgis, James N; Hubert, Pierre

    2014-12-12

    Signaling in eukaryotic cells frequently relies on dynamic interactions of single-pass membrane receptors involving their transmembrane (TM) domains. To search for new such interactions, we have developed a bacterial two-hybrid system to screen for both homotypic and heterotypic interactions between TM helices. We have explored the dimerization of TM domains from 16 proteins involved in both receptor tyrosine kinase and neuropilin signaling. This study has revealed several new interactions. We found that the TM domain of Mucin-4, a putative intramembrane ligand for erbB2, dimerizes not only with erbB2 but also with all four members of the erbB family. In the Neuropilin/Plexin family of receptors, we showed that the TM domains of Neuropilins 1 and 2 dimerize with themselves and also with Plexin-A1, Plexin-B1, and L1CAM, but we were unable to observe interactions with several other TM domains notably those of members of the VEGF receptor family. The potentially important Neuropilin 1/Plexin-A1 interaction was confirmed using a surface plasmon resonance assay. This work shows that TM domain interactions can be highly specific. Exploring further the propensities of TM helix-helix association in cell membrane should have important practical implications related to our understanding of the structure-function of bitopic proteins' assembly and subsequent function, especially in the regulation of signal transduction. PMID:25315821

  17. Misplaced helix slows down ultrafast pressure-jump protein folding.

    PubMed

    Prigozhin, Maxim B; Liu, Yanxin; Wirth, Anna Jean; Kapoor, Shobhna; Winter, Roland; Schulten, Klaus; Gruebele, Martin

    2013-05-14

    Using a newly developed microsecond pressure-jump apparatus, we monitor the refolding kinetics of the helix-stabilized five-helix bundle protein λ*YA, the Y22W/Q33Y/G46,48A mutant of λ-repressor fragment 6-85, from 3 μs to 5 ms after a 1,200-bar P-drop. In addition to a microsecond phase, we observe a slower 1.4-ms phase during refolding to the native state. Unlike temperature denaturation, pressure denaturation produces a highly reversible helix-coil-rich state. This difference highlights the importance of the denatured initial condition in folding experiments and leads us to assign a compact nonnative helical trap as the reason for slower P-jump-induced refolding. To complement the experiments, we performed over 50 μs of all-atom molecular dynamics P-drop refolding simulations with four different force fields. Two of the force fields yield compact nonnative states with misplaced α-helix content within a few microseconds of the P-drop. Our overall conclusion from experiment and simulation is that the pressure-denatured state of λ*YA contains mainly residual helix and little β-sheet; following a fast P-drop, at least some λ*YA forms misplaced helical structure within microseconds. We hypothesize that nonnative helix at helix-turn interfaces traps the protein in compact nonnative conformations. These traps delay the folding of at least some of the population for 1.4 ms en route to the native state. Based on molecular dynamics, we predict specific mutations at the helix-turn interfaces that should speed up refolding from the pressure-denatured state, if this hypothesis is correct. PMID:23620522

  18. Effects of the oncogenic V(664)E mutation on membrane insertion, structure, and sequence-dependent interactions of the Neu transmembrane domain in micelles and model membranes: an integrated biophysical and simulation study.

    PubMed

    Beevers, Andrew J; Nash, Anthony; Salazar-Cancino, Martha; Scott, David J; Notman, Rebecca; Dixon, Ann M

    2012-03-27

    Receptor tyrosine kinases bind ligands such as cytokines, hormones, and growth factors and regulate key cellular processes, including cell division. They are also implicated in the development of many types of cancer. One such example is the Neu receptor tyrosine kinase found in rats (homologous to the human ErbB2 protein), which can undergo a valine to glutamic acid (V(664)E) mutation at the center of its α-helical transmembrane domain. This substitution results in receptor activation and oncogenesis. The molecular basis of this dramatic change in behavior upon introduction of the V(664)E mutation has been difficult to pin down, with conflicting results reported in the literature. Here we report the first quantitative, thermodynamic analysis of dimerization and biophysical characterization of the rat Neu transmembrane domain and several mutants in a range of chemical environments. These data have allowed us to identify the effects of the V(664)E mutation in the isolated TM domain with respect to protein-protein and protein-lipid interactions, membrane insertion, and secondary structure. We also report the results from a 100 ns atomistic molecular dynamics simulation of the Neu transmembrane domain in a model membrane bilayer (dipalmitoylphosphatidylcholine). The results from simulation and experiment are in close agreement and suggest that, in the model systems investigated, the V(664)E mutation leads to a weakening of the TM dimer and a change in sequence-dependent interactions. These results are contrary to recent results obtained in mammalian membranes, and the implications of this are discussed. PMID:22385253

  19. Free Energy Landscape of Lipid Interactions with Regulatory Binding Sites on the Transmembrane Domain of the EGF Receptor.

    PubMed

    Hedger, George; Shorthouse, David; Koldsø, Heidi; Sansom, Mark S P

    2016-08-25

    Lipid molecules can bind to specific sites on integral membrane proteins, modulating their structure and function. We have undertaken coarse-grained simulations to calculate free energy profiles for glycolipids and phospholipids interacting with modulatory sites on the transmembrane helix dimer of the EGF receptor within a lipid bilayer environment. We identify lipid interaction sites at each end of the transmembrane domain and compute interaction free energy profiles for lipids with these sites. Interaction free energies ranged from ca. -40 to -4 kJ/mol for different lipid species. Those lipids (glycolipid GM3 and phosphoinositide PIP2) known to modulate EGFR function exhibit the strongest binding to interaction sites on the EGFR, and we are able to reproduce the preference for interaction with GM3 over other glycolipids suggested by experiment. Mutation of amino acid residues essential for EGFR function reduce the binding free energy of these key lipid species. The residues interacting with the lipids in the simulations are in agreement with those suggested by experimental (mutational) studies. This approach provides a generalizable tool for characterizing the interactions of lipids that bind to specific sites on integral membrane proteins.

  20. Free Energy Landscape of Lipid Interactions with Regulatory Binding Sites on the Transmembrane Domain of the EGF Receptor

    PubMed Central

    2016-01-01

    Lipid molecules can bind to specific sites on integral membrane proteins, modulating their structure and function. We have undertaken coarse-grained simulations to calculate free energy profiles for glycolipids and phospholipids interacting with modulatory sites on the transmembrane helix dimer of the EGF receptor within a lipid bilayer environment. We identify lipid interaction sites at each end of the transmembrane domain and compute interaction free energy profiles for lipids with these sites. Interaction free energies ranged from ca. −40 to −4 kJ/mol for different lipid species. Those lipids (glycolipid GM3 and phosphoinositide PIP2) known to modulate EGFR function exhibit the strongest binding to interaction sites on the EGFR, and we are able to reproduce the preference for interaction with GM3 over other glycolipids suggested by experiment. Mutation of amino acid residues essential for EGFR function reduce the binding free energy of these key lipid species. The residues interacting with the lipids in the simulations are in agreement with those suggested by experimental (mutational) studies. This approach provides a generalizable tool for characterizing the interactions of lipids that bind to specific sites on integral membrane proteins. PMID:27109430

  1. The Other Double Helix--The Fascinating Chemistry of Starch

    NASA Astrophysics Data System (ADS)

    Hancock, Robert D.; Tarbet, Bryon J.

    2000-08-01

    Current textbooks deal only briefly with the chemistry of starch. A short review with 21 references is presented, describing the structure of starch and indicating the double helix structure of A-type and B-type starch. The structure of the starch granule is examined, pointing out the existence of growth rings of alternating crystalline and noncrystalline starch, with growing amylopectin molecules extending from the hilum (point of origin) to the surface of the starch granule. The swelling of starch granules in water, above the gelatinization temperature of about 60 °C, is discussed. The process of gelatinization involves unraveling of the starch helix and a manyfold increase in volume of the starch granule as water is imbibed and bound to the unraveled starch polymer by hydrogen bonding. Baking bread or pastries causes unraveling of the starch helix, and the process by which these products become stale corresponds primarily to the re-forming of the starch helix. The importance of this phenomenon in food science is discussed. The absorption of nonpolar linear molecules such as I2, or linear nonpolar portions of molecules such as n-butanol or fats and phospholipids, by the C-type helix of starch is examined. The way in which starch is structurally modified to retard staling is discussed in relation to food technology.

  2. Membrane-inserted conformation of transmembrane domain 4 of divalent-metal transporter.

    PubMed Central

    Li, Hongyan; Li, Fei; Sun, Hongzhe; Qian, Zhong Ming

    2003-01-01

    Divalent-metal transporter 1 (DMT1) is involved in the intestinal iron absorption and in iron transport in the transferrin cycle. It transports metal ions at low pH ( approximately 5.5), but not at high pH (7.4), and the transport is a proton-coupled process. Previously it has been shown that transmembrane domain 4 (TM4) is crucial for the function of this protein. Here we provide the first direct experimental evidence for secondary-structural features and membrane insertions of a 24-residue peptide, corresponding to TM4 of DMT1 (DMTI-TM4), in various membrane-mimicking environments by the combined use of CD and NMR spectroscopies. The peptide mainly adopts an alpha-helical structure in trifluoroethanol, SDS and dodecylphosphocholine micelles, and dimyristoyl phosphatidylcholine and dimyristoyl phosphatidylglycerol small unilamellar vesicles. It has been demonstrated from both Halpha secondary shifts and nuclear-Overhauser-enhancement (NOE) connectivities that the peptide is well folded into an alpha-helix from Val(8) to Lys(23) in SDS micelles at pH 4.0, whereas the N-terminus is highly flexible. The alpha-helical content estimated from NMR data is in agreement with that extracted from CD simulations. The highest helicity was observed in the anionic phospholipids [1,2-dimyristoyl- sn -glycero-3-[phospho-rac -(1-glycerol)

  3. Molecular Mechanism of Holin Transmembrane Domain I in Pore Formation and Bacterial Cell Death.

    PubMed

    Lella, Muralikrishna; Kamilla, Soumya; Jain, Vikas; Mahalakshmi, Radhakrishnan

    2016-04-15

    Bacterial cell lysis during bacteriophage infection is timed by perfect orchestration between components of the holin-endolysin cassette. In bacteria, progressively accumulating holin in the inner membrane, retained in its inactive form by antiholin, is triggered into active hole formation, resulting in the canonical host cell lysis. However, the molecular mechanism of regulation and physical basis of pore formation in the mycobacterial cell membrane by D29 mycobacteriophage holin, particularly in the nonexistence of a known antiholin, is poorly understood. In this study, we report, for the first time, the use of fluorescence resonance transfer measurements to demonstrate that the first transmembrane domain (TM1) of D29 holin undergoes a helix ↔ β-hairpin conformational interconversion. We validate that this structural malleability is mediated by a centrally positioned proline and is responsible for controlled TM1 self-association in membrana, in the presence of a proton gradient across the lipid membrane. We demonstrate that TM1 is sufficient for bacterial growth inhibition. The biological effect of D29 holin structural alteration is presented as a holin self-regulatory mechanism, and its implications are discussed in the context of holin function. PMID:26701742

  4. Circular dichroism, molecular modeling, and serology indicate that the structural basis of antigenic variation in foot-and-mouth disease virus is [alpha]-helix formation

    SciTech Connect

    France, L.L.; Piatti, P.G.; Newman, J.F.E.; Brown, F. ); Toth, I.; Gibbons, W.A. )

    1994-08-30

    Seven antigenic variants obtained from a single field isolate of foot-and-mouth disease virus, serotype A12, differ only at residues 148 and 153 in the immunodominant loop of viral protein VP1. Synthetic peptides corresponding to the region 141-160 are highly immunogenic. UV circular dichroism shows that (i) in aqueous solution of the peptides are nearly identical, but in 100% trifluoroethanol they display helix-forming properties which correlate well with their serological crossreactivities for anti-peptide sera, and (ii) these properties are insensitive to substitutions at position 153, except for proline, but are highly sensitive to substitutions at position 148. This pattern can be explained by the effects of these substitutions on the amphiphilic character and positions of helices postulated in the region 146-156. Molecular models indicate that residues 147, 148, 150, 151, 153-155, and 157 are most likely to interact with residues of the antibody paratopes. The data are consistent with the existence of an inverse [gamma]-turn around Pro-153, and a [beta]-turn at the cell-attachment site at residues 145-147. 31 refs., 5 figs.

  5. Structural determinants critical for localization and signaling within the seventh transmembrane domain of the type 1 corticotropin releasing hormone receptor: lessons from the receptor variant R1d.

    PubMed

    Markovic, Danijela; Lehnert, Hendrik; Levine, Michael A; Grammatopoulos, Dimitris K

    2008-11-01

    The type 1 CRH receptor (CRH-R1) plays a fundamental role in homeostatic adaptation to stressful stimuli. CRH-R1 gene activity is regulated through alternative splicing and generation of various CRH-R1 mRNA variants. One such variant is the CRH-R1d, which has 14 amino acids missing from the putative seventh transmembrane domain due to exon 13 deletion, a splicing event common to other members of the B1 family of G protein-coupled receptors. In this study, using overexpression of recombinant receptors in human embryonic kidney 293 and myometrial cells, we showed by confocal microscopy that in contrast to CRH-R1alpha, the R1d variant is primarily retained in the cytoplasm, although some cell membrane expression is also evident. Use of antibodies against the CRH-R1 C terminus in nonpermeabilized cells showed that membrane-expressed CRH-R1d contains an extracellular C terminus. Interestingly, treatment of CRH-R1d-expressing cells with CRH (100 nM) for 45-60 min elicited functional responses associated with a significant reduction of plasma membrane receptor expression, redistribution of intracellular receptors, and increased receptor degradation. Site-directed mutagenesis studies identified the cassette G356-F358 within transmembrane domain 7 as crucial for CRH-R1alpha stability to the plasma membrane because deletion of this cassette caused substantial intracellular localization of CRH-R1 alpha. Most importantly, coexpression studies between CRH-R1d and CRH-R2beta demonstrated that the CRH-R2beta could partially rescue CRH-R1d membrane expression, and this was associated with a significant attenuation of urocotrin II-induced cAMP production and ERK1/2 and p38MAPK activation, suggesting that CRH-R1d might specifically induce heterologous impairment of CRH-R2 signaling responses. This mechanism appears to involve accelerated CRH-R2beta endocytosis.

  6. Characterization of Disease-Associated Mutations in Human Transmembrane Proteins

    PubMed Central

    Molnár, János; Szakács, Gergely; Tusnády, Gábor E.

    2016-01-01

    Transmembrane protein coding genes are commonly associated with human diseases. We characterized disease causing mutations and natural polymorphisms in transmembrane proteins by mapping missense genetic variations from the UniProt database on the transmembrane protein topology listed in the Human Transmembrane Proteome database. We found characteristic differences in the spectrum of amino acid changes within transmembrane regions: in the case of disease associated mutations the non-polar to non-polar and non-polar to charged amino acid changes are equally frequent. In contrast, in the case of natural polymorphisms non-polar to charged amino acid changes are rare while non-polar to non-polar changes are common. The majority of disease associated mutations result in glycine to arginine and leucine to proline substitutions. Mutations to positively charged amino acids are more common in the center of the lipid bilayer, where they cause more severe structural and functional anomalies. Our analysis contributes to the better understanding of the effect of disease associated mutations in transmembrane proteins, which can help prioritize genetic variations in personal genomic investigations. PMID:26986070

  7. Connecting two proteins using a fusion alpha helix stabilized by a chemical cross linker

    NASA Astrophysics Data System (ADS)

    Jeong, Woo Hyeon; Lee, Haerim; Song, Dong Hyun; Eom, Jae-Hoon; Kim, Sun Chang; Lee, Hee-Seung; Lee, Hayyoung; Lee, Jie-Oh

    2016-03-01

    Building a sophisticated protein nano-assembly requires a method for linking protein components in a predictable and stable structure. Most of the cross linkers available have flexible spacers. Because of this, the linked hybrids have significant structural flexibility and the relative structure between their two components is largely unpredictable. Here we describe a method of connecting two proteins via a `fusion α helix' formed by joining two pre-existing helices into a single extended helix. Because simple ligation of two helices does not guarantee the formation of a continuous helix, we used EY-CBS, a synthetic cross linker that has been shown to react selectively with cysteines in α-helices, to stabilize the connecting helix. Formation and stabilization of the fusion helix was confirmed by determining the crystal structures of the fusion proteins with and without bound EY-CBS. Our method should be widely applicable for linking protein building blocks to generate predictable structures.

  8. Connecting two proteins using a fusion alpha helix stabilized by a chemical cross linker

    PubMed Central

    Jeong, Woo Hyeon; Lee, Haerim; Song, Dong Hyun; Eom, Jae-Hoon; Kim, Sun Chang; Lee, Hee-Seung; Lee, Hayyoung; Lee, Jie-Oh

    2016-01-01

    Building a sophisticated protein nano-assembly requires a method for linking protein components in a predictable and stable structure. Most of the cross linkers available have flexible spacers. Because of this, the linked hybrids have significant structural flexibility and the relative structure between their two components is largely unpredictable. Here we describe a method of connecting two proteins via a ‘fusion α helix' formed by joining two pre-existing helices into a single extended helix. Because simple ligation of two helices does not guarantee the formation of a continuous helix, we used EY-CBS, a synthetic cross linker that has been shown to react selectively with cysteines in α-helices, to stabilize the connecting helix. Formation and stabilization of the fusion helix was confirmed by determining the crystal structures of the fusion proteins with and without bound EY-CBS. Our method should be widely applicable for linking protein building blocks to generate predictable structures. PMID:26980593

  9. PDBTM: Protein Data Bank of transmembrane proteins after 8 years.

    PubMed

    Kozma, Dániel; Simon, István; Tusnády, Gábor E

    2013-01-01

    The PDBTM database (available at http://pdbtm.enzim.hu), the first comprehensive and up-to-date transmembrane protein selection of the Protein Data Bank, was launched in 2004. The database was created and has been continuously updated by the TMDET algorithm that is able to distinguish between transmembrane and non-transmembrane proteins using their 3D atomic coordinates only. The TMDET algorithm can locate the spatial positions of transmembrane proteins in lipid bilayer as well. During the last 8 years not only the size of the PDBTM database has been steadily growing from ∼400 to 1700 entries but also new structural elements have been identified, in addition to the well-known α-helical bundle and β-barrel structures. Numerous 'exotic' transmembrane protein structures have been solved since the first release, which has made it necessary to define these new structural elements, such as membrane loops or interfacial helices in the database. This article reports the new features of the PDBTM database that have been added since its first release, and our current efforts to keep the database up-to-date and easy to use so that it may continue to serve as a fundamental resource for the scientific community.

  10. Modeling Transmembrane Domain Dimers/Trimers of Plexin Receptors: Implications for Mechanisms of Signal Transmission across the Membrane

    PubMed Central

    Zhang, Liqun; Polyansky, Anton; Buck, Matthias

    2015-01-01

    Single-pass transmembrane (TM) receptors transmit signals across lipid bilayers by helix association or by configurational changes within preformed dimers. The structure determination for such TM regions is challenging and has mostly been accomplished by NMR spectroscopy. Recently, the computational prediction of TM dimer structures is becoming recognized for providing models, including alternate conformational states, which are important for receptor regulation. Here we pursued a strategy to predict helix oligomers that is based on packing considerations (using the PREDDIMER webserver) and is followed by a refinement of structures, utilizing microsecond all-atom molecular dynamics simulations. We applied this method to plexin TM receptors, a family of 9 human proteins, involved in the regulation of cell guidance and motility. The predicted models show that, overall, the preferences identified by PREDDIMER are preserved in the unrestrained simulations and that TM structures are likely to be diverse across the plexin family. Plexin-B1 and –B3 TM helices are regular and tend to associate, whereas plexin-A1, -A2, –A3, -A4, -C1 and –D1 contain sequence elements, such as poly-Glycine or aromatic residues that distort helix conformation and association. Plexin-B2 does not form stable dimers due to the presence of TM prolines. No experimental structural information on the TM region is available for these proteins, except for plexin-C1 dimeric and plexin-B1 – trimeric structures inferred from X-ray crystal structures of the intracellular regions. Plexin-B1 TM trimers utilize Ser and Thr sidechains for interhelical contacts. We also modeled the juxta-membrane (JM) region of plexin-C1 and plexin-B1 and show that it synergizes with the TM structures. The structure and dynamics of the JM region and TM-JM junction provide determinants for the distance and distribution of the intracellular domains, and for their binding partners relative to the membrane. The structures

  11. Gramicidin cation channel: An experimental determination of the right-handed helix sense and verification of. beta. -type hydrogen bonding

    SciTech Connect

    Nicholson, L.K.; Cross, T.A. )

    1989-11-28

    Due to the difficulty of obtaining protein/lipid cocrystals for diffraction studies, structural research on intrinsic membrane proteins and polypeptides has been largely restricted to indirect experimental techniques. Hence, many fundamental questions associated with peptide/lipid systems remain unanswered. In particular, the handedness of the gramicidin A transmembrane ion channel incorporated into lipid bilayers has been an open question for nearly two decades. In this study, solid-state {sup 15}N NMR spectroscopy is employed to probe directly the secondary structure of the polypeptide backbone. Recent determinations of the {sup 15}N chemical shift anisotropy tensor with respect to the molecular frame enable the quantitative evaluation of the {sup 15}N chemical shift resonances obtained from oriented dimyristoylphosphatidylcholine (DMPC) bilayer samples containing specific site {sup 15}N labeled gramicidin. This direct structural approach verifies the {beta}-sheet hydrogen-bonding pattern proposed by Urry and determines that in our DMPC bilayer preparations the gramicidin channel is right-handed. Additional structural information is provided by the {sup 15}N chemical shift data in the form of orientational constraints on the C{sub {alpha}}-C{sub {alpha}} axis orientation of individual peptides relative to the helix axis. The significance of these solid-state NMR results lies in the direct determination of the helix sense and the verification of the {beta}-type hydrogen bonding, in the development of the solid-state NMR methods for obtaining such information, and in emphasizing the importance of having direct structural data at atomic resolution.

  12. Probing α-3(10) transitions in a voltage-sensing S4 helix.

    PubMed

    Kubota, Tomoya; Lacroix, Jérôme J; Bezanilla, Francisco; Correa, Ana M

    2014-09-01

    The S4 helix of voltage sensor domains (VSDs) transfers its gating charges across the membrane electrical field in response to changes of the membrane potential. Recent studies suggest that this process may occur via the helical conversion of the entire S4 between α and 310 conformations. Here, using LRET and FRET, we tested this hypothesis by measuring dynamic changes in the transmembrane length of S4 from engineered VSDs expressed in Xenopus oocytes. Our results suggest that the native S4 from the Ciona intestinalis voltage-sensitive phosphatase (Ci-VSP) does not exhibit extended and long-lived 310 conformations and remains mostly α-helical. Although the S4 of NavAb displays a fully extended 310 conformation in x-ray structures, its transplantation in the Ci-VSP VSD scaffold yielded similar results as the native Ci-VSP S4. Taken together, our study does not support the presence of long-lived extended α-to-310 helical conversions of the S4 in Ci-VSP associated with voltage activation.

  13. Identification of a site critical for kinase regulation on the central processing unit (CPU) helix of the aspartate receptor.

    PubMed

    Trammell, M A; Falke, J J

    1999-01-01

    Ligand binding to the homodimeric aspartate receptor of Escherichia coli and Salmonella typhimurium generates a transmembrane signal that regulates the activity of a cytoplasmic histidine kinase, thereby controlling cellular chemotaxis. This receptor also senses intracellular pH and ambient temperature and is covalently modified by an adaptation system. A specific helix in the cytoplasmic domain of the receptor, helix alpha6, has been previously implicated in the processing of these multiple input signals. While the solvent-exposed face of helix alpha6 possesses adaptive methylation sites known to play a role in kinase regulation, the functional significance of its buried face is less clear. This buried region lies at the subunit interface where helix alpha6 packs against its symmetric partner, helix alpha6'. To test the role of the helix alpha6-helix alpha6' interface in kinase regulation, the present study introduces a series of 13 side-chain substitutions at the Gly 278 position on the buried face of helix alpha6. The substitutions are observed to dramatically alter receptor function in vivo and in vitro, yielding effects ranging from kinase superactivation (11 examples) to complete kinase inhibition (one example). Moreover, four hydrophobic, branched side chains (Val, Ile, Phe, and Trp) lock the kinase in the superactivated state regardless of whether the receptor is occupied by ligand. The observation that most side-chain substitutions at position 278 yield kinase superactivation, combined with evidence that such facile superactivation is rare at other receptor positions, identifies the buried Gly 278 residue as a regulatory hotspot where helix packing is tightly coupled to kinase regulation. Together, helix alpha6 and its packing interactions function as a simple central processing unit (CPU) that senses multiple input signals, integrates these signals, and transmits the output to the signaling subdomain where the histidine kinase is bound. Analogous CPU

  14. Single-spanning transmembrane domains in cell growth and cell-cell interactions

    PubMed Central

    Sawma, Paul; Duneau, Jean-Pierre; Khao, Jonathan; Hénin, Jélerôme; Bagnard, Dominique; Sturgis, James

    2010-01-01

    As a whole, integral membrane proteins represent about one third of sequenced genomes, and more than 50% of currently available drugs target membrane proteins, often cell surface receptors. Some membrane protein classes, with a defined number of transmembrane (TM) helices, are receiving much attention because of their great functional and pharmacological importance, such as G protein-coupled receptors possessing 7 TM segments. Although they represent roughly half of all membrane proteins, bitopic proteins (with only 1 TM helix) have so far been less well characterized. Though they include many essential families of receptors, such as adhesion molecules and receptor tyrosine kinases, many of which are excellent targets for biopharmaceuticals (peptides, antibodies, et al.). A growing body of evidence suggests a major role for interactions between TM domains of these receptors in signaling, through homo and heteromeric associations, conformational changes, assembly of signaling platforms, etc. Significantly, mutations within single domains are frequent in human disease, such as cancer or developmental disorders. This review attempts to give an overview of current knowledge about these interactions, from structural data to therapeutic perspectives, focusing on bitopic proteins involved in cell signaling. PMID:20543559

  15. VIEW OF SOUTH ELEVATION OF HELIX HOUSE NO. 2 (S87) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF SOUTH ELEVATION OF HELIX HOUSE NO. 2 (S-87) SHOWING MAIN ENTRY DOOR, LOOKING NORTH NORTHWEST. - Naval Computer & Telecommunications Area Master Station, Eastern Pacific, Radio Transmitter Facility Lualualei, Helix House No. 2, Base of Radio Antenna Structure No. 427, Makaha, Honolulu County, HI

  16. VIEW OF HELIX HOUSE NO. 2 (S87), WITH ANTENNA TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF HELIX HOUSE NO. 2 (S-87), WITH ANTENNA TOWER CABLE SUPPORT IN FOREGROUND, LOOKING SOUTHEAST. - Naval Computer & Telecommunications Area Master Station, Eastern Pacific, Radio Transmitter Facility Lualualei, Helix House No. 2, Base of Radio Antenna Structure No. 427, Makaha, Honolulu County, HI

  17. VIEW OF EAST ELEVATION OF HELIX HOUSE NO. 2 (S87), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF EAST ELEVATION OF HELIX HOUSE NO. 2 (S-87), LOOKING WEST (with scale stick). - Naval Computer & Telecommunications Area Master Station, Eastern Pacific, Radio Transmitter Facility Lualualei, Helix House No. 2, Base of Radio Antenna Structure No. 427, Makaha, Honolulu County, HI

  18. VIEW OF EAST ELEVATION OF HELIX HOUSE NO. 2 (S87), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF EAST ELEVATION OF HELIX HOUSE NO. 2 (S-87), LOOKING WEST (without scale stick). - Naval Computer & Telecommunications Area Master Station, Eastern Pacific, Radio Transmitter Facility Lualualei, Helix House No. 2, Base of Radio Antenna Structure No. 427, Makaha, Honolulu County, HI

  19. Predicting transmembrane beta-barrels in proteomes

    PubMed Central

    Bigelow, Henry R.; Petrey, Donald S.; Liu, Jinfeng; Przybylski, Dariusz; Rost, Burkhard

    2004-01-01

    Very few methods address the problem of predicting beta-barrel membrane proteins directly from sequence. One reason is that only very few high-resolution structures for transmembrane beta-barrel (TMB) proteins have been determined thus far. Here we introduced the design, statistics and results of a novel profile-based hidden Markov model for the prediction and discrimination of TMBs. The method carefully attempts to avoid over-fitting the sparse experimental data. While our model training and scoring procedures were very similar to a recently published work, the architecture and structure-based labelling were significantly different. In particular, we introduced a new definition of beta- hairpin motifs, explicit state modelling of transmembrane strands, and a log-odds whole-protein discrimination score. The resulting method reached an overall four-state (up-, down-strand, periplasmic-, outer-loop) accuracy as high as 86%. Furthermore, accurately discriminated TMB from non-TMB proteins (45% coverage at 100% accuracy). This high precision enabled the application to 72 entirely sequenced Gram-negative bacteria. We found over 164 previously uncharacterized TMB proteins at high confidence. Database searches did not implicate any of these proteins with membranes. We challenge that the vast majority of our 164 predictions will eventually be verified experimentally. All proteome predictions and the PROFtmb prediction method are available at http://www.rostlab.org/services/PROFtmb/. PMID:15141026

  20. The DNA double helix fifty years on.

    PubMed

    Macgregor, Robert B; Poon, Gregory M K

    2003-10-01

    This year marks the 50th anniversary of the proposal of a double helical structure for DNA by James Watson and Francis Crick. The place of this proposal in the history and development of molecular biology is discussed. Several other discoveries that occurred in the middle of the twentieth century were perhaps equally important to our understanding of cellular processes; however, none of these captured the attention and imagination of the public to the same extent as the double helix. The existence of multiple forms of DNA and the uses of DNA in biological technologies is presented. DNA is also finding increasing use as a material due to its rather unusual structural and physical characteristics as well as its ready availability.

  1. Conformational Flexibility in the Transmembrane Protein TSPO.

    PubMed

    Jaremko, Łukasz; Jaremko, Mariusz; Giller, Karin; Becker, Stefan; Zweckstetter, Markus

    2015-11-01

    The translocator protein (TSPO) is an integral membrane protein that interacts with a wide variety of endogenous ligands, such as cholesterol and porphyrins, and is also the target for several small molecules with substantial in vivo efficacy. When complexed with the TSPO-specific radioligand (R)-PK11195, TSPO folds into a rigid five-helix bundle. However, little is known about the structure and dynamics of TSPO in the absence of high-affinity ligands. By means of NMR spectroscopy, we show that TSPO exchanges between multiple conformations in the absence of (R)-PK11195. Extensive motions on time scales from pico- to microseconds occur all along the primary sequence of the protein, leading to a loss of stable tertiary interactions and local unfolding of the helical structure in the vicinity of the ligand-binding site. The flexible nature of TSPO highlights the importance of conformational plasticity in integral membrane proteins.

  2. Inter- and intrasubunit interactions between transmembrane helices in the open state of P2X receptor channels

    PubMed Central

    Heymann, Gabriel; Dai, Jian; Silberberg, Shai D.; Zhou, Huan-Xiang; Swartz, Kenton J.

    2013-01-01

    P2X receptor channels open in response to the binding of extracellular ATP, a property that is essential for purinergic sensory signaling. Apo and ATP-bound X-ray structures of the detergent-solubilized zebrafish P2X4 receptor provide a blueprint for receptor mechanisms but unexpectedly showed large crevices between subunits within the transmembrane (TM) domain of the ATP-bound structure. Here we investigate both intersubunit and intrasubunit interactions between TM helices of P2X receptors in membranes using both computational and functional approaches. Our results suggest that intersubunit crevices found in the TM domain of the ATP-bound crystal structure are not present in membrane-embedded receptors but substantiate helix interactions within individual subunits and identify a hot spot at the internal end of the pore where both the gating and permeation properties of P2X receptors can be tuned. We propose a model for the structure of the open state that has stabilizing intersubunit interactions and that is compatible with available structural constraints from functional channels in membrane environments. PMID:24082111

  3. Folding simulations of gramicidin A into the beta-helix conformations: Simulated annealing molecular dynamics study.

    PubMed

    Mori, Takaharu; Okamoto, Yuko

    2009-10-28

    Gramicidin A is a linear hydrophobic 15-residue peptide which consists of alternating D- and L-amino acids and forms a unique tertiary structure, called the beta(6.3)-helix, to act as a cation-selective ion channel in the natural conditions. In order to investigate the intrinsic ability of the gramicidin A monomer to form secondary structures, we performed the folding simulation of gramicidin A using a simulated annealing molecular dynamics (MD) method in vacuum mimicking the low-dielectric, homogeneous membrane environment. The initial conformation was a fully extended one. From the 200 different MD runs, we obtained a right-handed beta(4.4)-helix as the lowest-potential-energy structure, and left-handed beta(4.4)-helix, right-handed and left-handed beta(6.3)-helix as local-minimum energy states. These results are in accord with those of the experiments of gramicidin A in homogeneous organic solvent. Our simulations showed a slight right-hand sense in the lower-energy conformations and a quite beta-sheet-forming tendency throughout almost the entire sequence. In order to examine the stability of the obtained right-handed beta(6.3)-helix and beta(4.4)-helix structures in more realistic membrane environment, we have also performed all-atom MD simulations in explicit water, ion, and lipid molecules, starting from these beta-helix structures. The results suggested that beta(6.3)-helix is more stable than beta(4.4)-helix in the inhomogeneous, explicit membrane environment, where the pore water and the hydrogen bonds between Trp side-chains and lipid-head groups have a role to further stabilize the beta(6.3)-helix conformation.

  4. Folding simulations of gramicidin A into the β-helix conformations: Simulated annealing molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Mori, Takaharu; Okamoto, Yuko

    2009-10-01

    Gramicidin A is a linear hydrophobic 15-residue peptide which consists of alternating D- and L-amino acids and forms a unique tertiary structure, called the β6.3-helix, to act as a cation-selective ion channel in the natural conditions. In order to investigate the intrinsic ability of the gramicidin A monomer to form secondary structures, we performed the folding simulation of gramicidin A using a simulated annealing molecular dynamics (MD) method in vacuum mimicking the low-dielectric, homogeneous membrane environment. The initial conformation was a fully extended one. From the 200 different MD runs, we obtained a right-handed β4.4-helix as the lowest-potential-energy structure, and left-handed β4.4-helix, right-handed and left-handed β6.3-helix as local-minimum energy states. These results are in accord with those of the experiments of gramicidin A in homogeneous organic solvent. Our simulations showed a slight right-hand sense in the lower-energy conformations and a quite β-sheet-forming tendency throughout almost the entire sequence. In order to examine the stability of the obtained right-handed β6.3-helix and β4.4-helix structures in more realistic membrane environment, we have also performed all-atom MD simulations in explicit water, ion, and lipid molecules, starting from these β-helix structures. The results suggested that β6.3-helix is more stable than β4.4-helix in the inhomogeneous, explicit membrane environment, where the pore water and the hydrogen bonds between Trp side-chains and lipid-head groups have a role to further stabilize the β6.3-helix conformation.

  5. Expression of a chimeric helix-loop-helix gene, Id-SCL, in K562 human leukemic cells is associated with nuclear segmentation.

    PubMed Central

    Goldfarb, A. N.; Wolf, M. L.; Greenberg, J. M.

    1992-01-01

    We have designed a chimeric gene, Id-SCL, in which the 3' helix-loop-helix encoding portion of the presumptive oncogene SCL/tal is joined to the 5' coding portion of Id, an inhibitory helix-loop-helix gene. The predicted protein product of this chimeric gene contains the helix-loop-helix dimerization domain of SCL/tal, but, lacking a basic DNA binding domain, is predicted to have the inhibitory function of the Id product. Expression of the Id-SCL fusion gene in stably transfected K562 cells reproducibly resulted in nuclear segmentation and depressed growth rates; both of these phenotypic effects demonstrated a dosage dependence on the levels of Id-SCL mRNA and protein expressed in the various clones. Electron microscopy of cells expressing high levels of Id-SCL mRNA showed a significant increase in cytoplasmic perinuclear thin filaments and diminution of marginal heterochromatin in the nuclei. No other changes in hematopoietic differentiation status were observed in association with Id-SCL expression. Expression of intact Id and SCL/tal genes, as well as deletion mutants of Id and SCL/tal, independently transfected into K562 cells, indicated that the nuclear segmentation effect is dependent on the presence of a protein possessing a helix-loop-helix domain but lacking a basic domain. Our studies suggest that the balance of transcriptional inhibitory and stimulatory helix-loop-helix proteins in cells may be important determinants of proliferation and of structural organization within cells. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 8 Figure 11 PMID:1443047

  6. Transmembrane domain interactions control biological functions of neuropilin-1.

    PubMed

    Roth, Lise; Nasarre, Cécile; Dirrig-Grosch, Sylvie; Aunis, Dominique; Crémel, Gérard; Hubert, Pierre; Bagnard, Dominique

    2008-02-01

    Neuropilin-1 (NRP1) is a transmembrane receptor playing a pivotal role in the control of semaphorins and VEGF signaling pathways. The exact mechanism controlling semaphorin receptor complex formation is unknown. A structural analysis and modeling of NRP1 revealed a putative dimerization GxxxG motif potentially important for NRP1 dimerization and oligomerization. Our data show that this motif mediates the dimerization of the transmembrane domain of NRP1 as demonstrated by a dimerization assay (ToxLuc assay) performed in natural membrane and FRET analysis. A synthetic peptide derived from the transmembrane segment of NRP1 abolished the inhibitory effect of Sema3A. This effect depends on the capacity of the peptide to interfere with NRP1 dimerization and the formation of oligomeric complexes. Mutation of the GxxxG dimerization motif in the transmembrane domain of NRP1 confirmed its biological importance for Sema3A signaling. Overall, our results shed light on an essential step required for semaphorin signaling and provide novel evidence for the crucial role of transmembrane domain of bitopic protein containing GxxxG motif in the formation of receptor complexes that are a prerequisite for cell signaling.

  7. HELIX: The High Energy Light Isotope Experiment

    NASA Astrophysics Data System (ADS)

    Tarle, Gregory

    This is the lead proposal for a new suborbital program, HELIX (High-Energy Light Isotope eXperiment), designed to make measurements of the isotopic composition of light cosmic-ray nuclei from ~200 MeV/nuc to ~10 GeV/nuc. Past measurements of this kind have provided profound insights into the nature and origin of cosmic rays, revealing, for instance, information on acceleration and confinement time scales, and exposing some conspicuous discrepancies between solar and cosmic-ray abundances. The most detailed information currently available comes from the ACE/CRIS mission, but is restricted to energies below a few 100 MeV/nuc. HELIX aims at extending this energy range by over an order of magnitude, where, in most cases, no measurements of any kind exist, and where relativistic time dilation affects the apparent lifetime of radioactive clock nuclei. The HELIX measurements will provide essential information for understanding the propagation history of cosmic rays in the galaxy. This is crucial for properly interpreting several intriguing anomalies reported in recent cosmic-ray measurements, pertaining to the energy spectra of protons, helium, and heavier nuclei, and to the anomalous rise in the positron fraction at higher energy. HELIX employs a high-precision magnet spectrometer to provide measurements which are not achievable by any current or planned instrument. The superconducting magnet originally used for the HEAT payload in five successful high-altitude flights will be combined with state-of-the-art detectors to measure the charge, time-of-flight, magnetic rigidity, and velocity of cosmic-ray particles with high precision. The instrumentation includes plastic scintillators, silicon-strip detectors repurposed from Fermilab's CDF detector, a high-performance gas drift chamber, and a ring-imaging Cherenkov counter employing aerogel radiators and silicon photomultipliers. To reduce cost and technical risk, the HELIX program will be structured in two stages. The first

  8. Structure of the TPR domain of AIP: lack of client protein interaction with the C-terminal α-7 helix of the TPR domain of AIP is sufficient for pituitary adenoma predisposition.

    PubMed

    Morgan, Rhodri M L; Hernández-Ramírez, Laura C; Trivellin, Giampaolo; Zhou, Lihong; Roe, S Mark; Korbonits, Márta; Prodromou, Chrisostomos

    2012-01-01

    Mutations of the aryl hydrocarbon receptor interacting protein (AIP) have been associated with familial isolated pituitary adenomas predisposing to young-onset acromegaly and gigantism. The precise tumorigenic mechanism is not well understood as AIP interacts with a large number of independent proteins as well as three chaperone systems, HSP90, HSP70 and TOMM20. We have determined the structure of the TPR domain of AIP at high resolution, which has allowed a detailed analysis of how disease-associated mutations impact on the structural integrity of the TPR domain. A subset of C-terminal α-7 helix (Cα-7h) mutations, R304* (nonsense mutation), R304Q, Q307* and R325Q, a known site for AhR and PDE4A5 client-protein interaction, occur beyond those that interact with the conserved MEEVD and EDDVE sequences of HSP90 and TOMM20. These C-terminal AIP mutations appear to only disrupt client-protein binding to the Cα-7h, while chaperone binding remains unaffected, suggesting that failure of client-protein interaction with the Cα-7h is sufficient to predispose to pituitary adenoma. We have also identified a molecular switch in the AIP TPR-domain that allows recognition of both the conserved HSP90 motif, MEEVD, and the equivalent sequence (EDDVE) of TOMM20.

  9. Structure of the TPR domain of AIP: lack of client protein interaction with the C-terminal α-7 helix of the TPR domain of AIP is sufficient for pituitary adenoma predisposition.

    PubMed

    Morgan, Rhodri M L; Hernández-Ramírez, Laura C; Trivellin, Giampaolo; Zhou, Lihong; Roe, S Mark; Korbonits, Márta; Prodromou, Chrisostomos

    2012-01-01

    Mutations of the aryl hydrocarbon receptor interacting protein (AIP) have been associated with familial isolated pituitary adenomas predisposing to young-onset acromegaly and gigantism. The precise tumorigenic mechanism is not well understood as AIP interacts with a large number of independent proteins as well as three chaperone systems, HSP90, HSP70 and TOMM20. We have determined the structure of the TPR domain of AIP at high resolution, which has allowed a detailed analysis of how disease-associated mutations impact on the structural integrity of the TPR domain. A subset of C-terminal α-7 helix (Cα-7h) mutations, R304* (nonsense mutation), R304Q, Q307* and R325Q, a known site for AhR and PDE4A5 client-protein interaction, occur beyond those that interact with the conserved MEEVD and EDDVE sequences of HSP90 and TOMM20. These C-terminal AIP mutations appear to only disrupt client-protein binding to the Cα-7h, while chaperone binding remains unaffected, suggesting that failure of client-protein interaction with the Cα-7h is sufficient to predispose to pituitary adenoma. We have also identified a molecular switch in the AIP TPR-domain that allows recognition of both the conserved HSP90 motif, MEEVD, and the equivalent sequence (EDDVE) of TOMM20. PMID:23300914

  10. Structure of the TPR Domain of AIP: Lack of Client Protein Interaction with the C-Terminal α-7 Helix of the TPR Domain of AIP Is Sufficient for Pituitary Adenoma Predisposition

    PubMed Central

    Morgan, Rhodri M. L.; Hernández-Ramírez, Laura C.; Trivellin, Giampaolo; Zhou, Lihong; Roe, S. Mark; Korbonits, Márta; Prodromou, Chrisostomos

    2012-01-01

    Mutations of the aryl hydrocarbon receptor interacting protein (AIP) have been associated with familial isolated pituitary adenomas predisposing to young-onset acromegaly and gigantism. The precise tumorigenic mechanism is not well understood as AIP interacts with a large number of independent proteins as well as three chaperone systems, HSP90, HSP70 and TOMM20. We have determined the structure of the TPR domain of AIP at high resolution, which has allowed a detailed analysis of how disease-associated mutations impact on the structural integrity of the TPR domain. A subset of C-terminal α-7 helix (Cα-7h) mutations, R304* (nonsense mutation), R304Q, Q307* and R325Q, a known site for AhR and PDE4A5 client-protein interaction, occur beyond those that interact with the conserved MEEVD and EDDVE sequences of HSP90 and TOMM20. These C-terminal AIP mutations appear to only disrupt client-protein binding to the Cα-7h, while chaperone binding remains unaffected, suggesting that failure of client-protein interaction with the Cα-7h is sufficient to predispose to pituitary adenoma. We have also identified a molecular switch in the AIP TPR-domain that allows recognition of both the conserved HSP90 motif, MEEVD, and the equivalent sequence (EDDVE) of TOMM20. PMID:23300914

  11. The cytosolic half of helix III forms the substrate exit route during permeation events of the sodium/bile acid cotransporter ASBT.

    PubMed

    Hussainzada, Naissan; Claro Da Silva, Tatiana; Swaan, Peter W

    2009-09-15

    Site-directed alkylation of consecutively introduced cysteines was employed to probe the solvent-accessible profile of highly conserved transmembrane helix 3 (TM3), spanning residues V127-T149 of the apical sodium-dependent bile acid transporter (ASBT), a key membrane protein involved in cholesterol homeostasis. Sequence alignment of SLC10 family members has previously identified a signature motif (ALGMMPL) localized to TM3 of ASBT with as yet undetermined function. Cysteine mutagenesis of this motif resulted in severe decreases in uptake activity only for mutants M141C and P142C. Additional conservative and nonconservative replacement of P142 suggests its structural and functional importance during the ASBT transport cycle. Significant decreases in transport activity were also observed for three cysteine mutants clustered along the exofacial half of the helix (M129C, T130C, S133C) and five mutants consecutively lining the cytosolic half of TM3 (L145C-T149C). Measurable surface expression was detected for all TM3 mutants. Using physicochemically different alkylating reagents, sites predominantly lining the cytosolic half of the TM3 helix were found to be solvent accessible (i.e., S128C, L143C-T149C). Analysis of substrate kinetics for select TM3 mutants demonstrates significant loss of taurocholic acid affinity for mutants S128C and L145C-T149C. Overall, we conclude (i) the functional and structural importance of P142 during the transport cycle and (ii) the presence of a large hydrophilic cleft region lining the cytosolic half of TM3 that may form portions of the substrate exit route during permeation. Our studies provide unique insight into molecular mechanisms guiding the ASBT transport cycle with respect to substrate binding and translocation events.

  12. Structure determination and analysis of helix parameters in the DNA decamer d(CATGGCCATG)2 comparison of results from NMR and crystallography.

    PubMed

    Dornberger, U; Flemming, J; Fritzsche, H

    1998-12-18

    The solution structure of the DNA decamer (CATGGCCATG)2 has been determined by NMR spectroscopy and restrained molecular dynamic and distance geometry calculations. The restrainted data set includes interproton distances and torsion angles for the deoxyribose sugar ring which were obtained by nuclear Overhauser enhancement intensities and quantitative simulation of cross-peaks from double quantum filtered correlation spectroscopy. The backbone torsion angles were constrained using experimental data from NOE cross-peaks, 1H-1H and 1H-31P-coupling constants. The NMR structure and the crystal structure of the DNA decamer deviates from the structure of the canonical form of B-DNA in a number of observable characteristics. Particularly, both structures display a specific pattern of stacking interaction in the central GGC base triplet. Furthermore, a specific local conformation of the TG/CA base-pair step is present in NMR and crystal structure, highlighting the unusually high flexibility of this DNA duplex part. The solution structure of the TG/CA base-pair step obtained by our high resolution NMR study is characterized by a positive roll angle, whereas in crystal this base-pair step tends to adopt remarkably high twist angles.

  13. Folding and insertion thermodynamics of the transmembrane WALP peptide

    NASA Astrophysics Data System (ADS)

    Bereau, Tristan; Bennett, W. F. Drew; Pfaendtner, Jim; Deserno, Markus; Karttunen, Mikko

    2015-12-01

    The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA)n (L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural properties have been illuminated in a large number of experimental and simulation studies. In this combined coarse-grained and atomistic simulation study, we probe the thermodynamics of a single WALP peptide, focusing on both the insertion across the water-membrane interface, as well as folding in both water and a membrane. The potential of mean force characterizing the peptide's insertion into the membrane shows qualitatively similar behavior across peptides and three force fields. However, the Martini force field exhibits a pronounced secondary minimum for an adsorbed interfacial state, which may even become the global minimum—in contrast to both atomistic simulations and the alternative PLUM force field. Even though the two coarse-grained models reproduce the free energy of insertion of individual amino acids side chains, they both underestimate its corresponding value for the full peptide (as compared with atomistic simulations), hinting at cooperative physics beyond the residue level. Folding of WALP in the two environments indicates the helix as the most stable structure, though with different relative stabilities and chain-length dependence.

  14. Folding and insertion thermodynamics of the transmembrane WALP peptide.

    PubMed

    Bereau, Tristan; Bennett, W F Drew; Pfaendtner, Jim; Deserno, Markus; Karttunen, Mikko

    2015-12-28

    The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA)n (L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural properties have been illuminated in a large number of experimental and simulation studies. In this combined coarse-grained and atomistic simulation study, we probe the thermodynamics of a single WALP peptide, focusing on both the insertion across the water-membrane interface, as well as folding in both water and a membrane. The potential of mean force characterizing the peptide's insertion into the membrane shows qualitatively similar behavior across peptides and three force fields. However, the Martini force field exhibits a pronounced secondary minimum for an adsorbed interfacial state, which may even become the global minimum-in contrast to both atomistic simulations and the alternative PLUM force field. Even though the two coarse-grained models reproduce the free energy of insertion of individual amino acids side chains, they both underestimate its corresponding value for the full peptide (as compared with atomistic simulations), hinting at cooperative physics beyond the residue level. Folding of WALP in the two environments indicates the helix as the most stable structure, though with different relative stabilities and chain-length dependence. PMID:26723612

  15. Folding and insertion thermodynamics of the transmembrane WALP peptide.

    PubMed

    Bereau, Tristan; Bennett, W F Drew; Pfaendtner, Jim; Deserno, Markus; Karttunen, Mikko

    2015-12-28

    The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA)n (L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural properties have been illuminated in a large number of experimental and simulation studies. In this combined coarse-grained and atomistic simulation study, we probe the thermodynamics of a single WALP peptide, focusing on both the insertion across the water-membrane interface, as well as folding in both water and a membrane. The potential of mean force characterizing the peptide's insertion into the membrane shows qualitatively similar behavior across peptides and three force fields. However, the Martini force field exhibits a pronounced secondary minimum for an adsorbed interfacial state, which may even become the global minimum-in contrast to both atomistic simulations and the alternative PLUM force field. Even though the two coarse-grained models reproduce the free energy of insertion of individual amino acids side chains, they both underestimate its corresponding value for the full peptide (as compared with atomistic simulations), hinting at cooperative physics beyond the residue level. Folding of WALP in the two environments indicates the helix as the most stable structure, though with different relative stabilities and chain-length dependence.

  16. Folding and insertion thermodynamics of the transmembrane WALP peptide

    SciTech Connect

    Bereau, Tristan; Bennett, W. F. Drew; Pfaendtner, Jim; Deserno, Markus; Karttunen, Mikko

    2015-12-28

    The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA){sub n} (L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural properties have been illuminated in a large number of experimental and simulation studies. In this combined coarse-grained and atomistic simulation study, we probe the thermodynamics of a single WALP peptide, focusing on both the insertion across the water-membrane interface, as well as folding in both water and a membrane. The potential of mean force characterizing the peptide’s insertion into the membrane shows qualitatively similar behavior across peptides and three force fields. However, the Martini force field exhibits a pronounced secondary minimum for an adsorbed interfacial state, which may even become the global minimum—in contrast to both atomistic simulations and the alternative PLUM force field. Even though the two coarse-grained models reproduce the free energy of insertion of individual amino acids side chains, they both underestimate its corresponding value for the full peptide (as compared with atomistic simulations), hinting at cooperative physics beyond the residue level. Folding of WALP in the two environments indicates the helix as the most stable structure, though with different relative stabilities and chain-length dependence.

  17. Design of Tip Loss Profile on Support Rod for a Helix TWT

    NASA Astrophysics Data System (ADS)

    Alaria, Mukesh Kumar; Sinha, A. K.; Srivastava, V.

    2009-07-01

    This paper describes the design of tip loss profile on support rod for a high gain, high efficiency helix TWT. The tip loss profile at sever ends for the input and the output section of the helix slow wave structure has been designed for return loss at severs ends better than -20 dB. The experimental results have been carried out in the input and the output section of the helix assemblies for the high gain helix TWT to find the return loss in the region of carbon coated tip loss on the support rods. The experimental result has been compared with the simulated performance for the return loss at the sever ends. The design of tip loss profile on the support rod for helix TWT has been carried out in real situation using Ansoft HFSS. A good agreement has been found in the simulated and experimental results.

  18. X-ray structure of dopamine transporter elucidates antidepressant mechanism.

    PubMed

    Penmatsa, Aravind; Wang, Kevin H; Gouaux, Eric

    2013-11-01

    Antidepressants targeting Na(+)/Cl(-)-coupled neurotransmitter uptake define a key therapeutic strategy to treat clinical depression and neuropathic pain. However, identifying the molecular interactions that underlie the pharmacological activity of these transport inhibitors, and thus the mechanism by which the inhibitors lead to increased synaptic neurotransmitter levels, has proven elusive. Here we present the crystal structure of the Drosophila melanogaster dopamine transporter at 3.0 Å resolution bound to the tricyclic antidepressant nortriptyline. The transporter is locked in an outward-open conformation with nortriptyline wedged between transmembrane helices 1, 3, 6 and 8, blocking the transporter from binding substrate and from isomerizing to an inward-facing conformation. Although the overall structure of the dopamine transporter is similar to that of its prokaryotic relative LeuT, there are multiple distinctions, including a kink in transmembrane helix 12 halfway across the membrane bilayer, a latch-like carboxy-terminal helix that caps the cytoplasmic gate, and a cholesterol molecule wedged within a groove formed by transmembrane helices 1a, 5 and 7. Taken together, the dopamine transporter structure reveals the molecular basis for antidepressant action on sodium-coupled neurotransmitter symporters and elucidates critical elements of eukaryotic transporter structure and modulation by lipids, thus expanding our understanding of the mechanism and regulation of neurotransmitter uptake at chemical synapses.

  19. X-ray structure of dopamine transporter elucidates antidepressant mechanism.

    PubMed

    Penmatsa, Aravind; Wang, Kevin H; Gouaux, Eric

    2013-11-01

    Antidepressants targeting Na(+)/Cl(-)-coupled neurotransmitter uptake define a key therapeutic strategy to treat clinical depression and neuropathic pain. However, identifying the molecular interactions that underlie the pharmacological activity of these transport inhibitors, and thus the mechanism by which the inhibitors lead to increased synaptic neurotransmitter levels, has proven elusive. Here we present the crystal structure of the Drosophila melanogaster dopamine transporter at 3.0 Å resolution bound to the tricyclic antidepressant nortriptyline. The transporter is locked in an outward-open conformation with nortriptyline wedged between transmembrane helices 1, 3, 6 and 8, blocking the transporter from binding substrate and from isomerizing to an inward-facing conformation. Although the overall structure of the dopamine transporter is similar to that of its prokaryotic relative LeuT, there are multiple distinctions, including a kink in transmembrane helix 12 halfway across the membrane bilayer, a latch-like carboxy-terminal helix that caps the cytoplasmic gate, and a cholesterol molecule wedged within a groove formed by transmembrane helices 1a, 5 and 7. Taken together, the dopamine transporter structure reveals the molecular basis for antidepressant action on sodium-coupled neurotransmitter symporters and elucidates critical elements of eukaryotic transporter structure and modulation by lipids, thus expanding our understanding of the mechanism and regulation of neurotransmitter uptake at chemical synapses. PMID:24037379

  20. Transmembrane protein sorting driven by membrane curvature

    PubMed Central

    Strahl, H.; Ronneau, S.; González, B. Solana; Klutsch, D.; Schaffner-Barbero, C.; Hamoen, L. W.

    2015-01-01

    The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show that the classical chemoreceptor TlpA of Bacillus subtilis does not localize according to the consensus stochastic nucleation mechanism but accumulates at strongly curved membrane areas generated during cell division. This preference was confirmed by accumulation at non-septal curved membranes. Localization appears to be an intrinsic property of the protein complex and does not rely on chemoreceptor clustering, as was previously shown for Escherichia coli. By constructing specific amino-acid substitutions, we demonstrate that the preference for strongly curved membranes arises from the curved shape of chemoreceptor trimer of dimers. These findings demonstrate that the intrinsic shape of transmembrane proteins can determine their cellular localization. PMID:26522943

  1. Transmembrane protein sorting driven by membrane curvature

    NASA Astrophysics Data System (ADS)

    Strahl, H.; Ronneau, S.; González, B. Solana; Klutsch, D.; Schaffner-Barbero, C.; Hamoen, L. W.

    2015-11-01

    The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show that the classical chemoreceptor TlpA of Bacillus subtilis does not localize according to the consensus stochastic nucleation mechanism but accumulates at strongly curved membrane areas generated during cell division. This preference was confirmed by accumulation at non-septal curved membranes. Localization appears to be an intrinsic property of the protein complex and does not rely on chemoreceptor clustering, as was previously shown for Escherichia coli. By constructing specific amino-acid substitutions, we demonstrate that the preference for strongly curved membranes arises from the curved shape of chemoreceptor trimer of dimers. These findings demonstrate that the intrinsic shape of transmembrane proteins can determine their cellular localization.

  2. Lightweight S-band helix antenna

    NASA Technical Reports Server (NTRS)

    Cribb, H. E.

    1970-01-01

    Pyrotechnically operated S-band helical antenna is developed in which helix is deployed subsequent to antenna placement. Antenna is small, lightweight, and novel in that deployable helix is used in place of fixed dish or horn. It can be designed to cover L- and X-band frequencies.

  3. Identification of a cluster of residues in transmembrane segment 6 of domain III of the cockroach sodium channel essential for the action of pyrethroid insecticides.

    PubMed

    Du, Yuzhe; Lee, Jung-Eun; Nomura, Yoshiko; Zhang, Tianxiang; Zhorov, Boris S; Dong, Ke

    2009-04-15

    A phenylalanine residue (Phe1519) in the sixth transmembrane segment of domain III (IIIS6) of the cockroach BgNa(v) sodium channel is required for the binding and action of pyrethroids. However, whether or not other residues in IIIS6 participate in the action of pyrethroids remains to be determined. In the present study, we conducted a systematic analysis of 20 residues in IIIS6 of the BgNa(v) channel using alanine-scanning mutagenesis. Our results show that alanine substitutions of four residues, Ile1514, Gly1516, Phe1518 and Asn1522, altered sodium channel sensitivity to pyrethroid insecticides. Whereas the G1516A, F1518A and N1522A substitutions diminished sodium channel sensitivity to all seven pyrethroids examined, including four type I (lacking the alpha-cyano group at the phenoxybenzyl alcohol) and three type II (containing the alpha-cyano group) pyrethroids, the I1514A substitution enhanced sodium channel sensitivity to four type I and type II pyrethroids that contain the phenoxybenzyl alcohol only. We also show that alanine/lysine substitutions of Leu1521 and Ser1517 affected the action of BTX (batrachotoxin), but not pyrethroids. In the Kv1.2-based homology model of the open sodium channel, side chains of Ile1514, Phe1518 and Asn1522 are exposed towards helix IIS5 and linker IIS4-IIS5, which contain previously identified pyrethroid-interacting residues, whereas Ser1517 and Leu1521 face the inner pore where the BTX receptor is located. Thus the present study provides further evidence for structural models in which pyrethroids bind to the lipid-exposed interface formed by helices IIIS6, IIS5 and linker helix IIS4-IIS5, whereas BTX binds to the pore-exposed side of the IIIS6 helix.

  4. Phasing and structure of bestrophin-1: a case study in the use of heavy-atom cluster compounds with multi-subunit transmembrane proteins

    PubMed Central

    Kane Dickson, Veronica

    2016-01-01

    The purification and three-dimensional crystallization of membrane proteins are commonly affected by a cumulation of pathologies that are less prevalent in their soluble counterparts. This may include severe anisotropy, poor spot shape, poor to moderate-resolution diffraction, crystal twinning, translational pseudo-symmetry and poor uptake of heavy atoms for derivatization. Such challenges must be circumvented by adaptations in the approach to crystallization and/or phasing. Here, an example of a protein that exhibited all of the above-mentioned complications is presented. Bestrophin-1 is a eukaryotic calcium-activated chloride channel, the structure of which was recently determined in complex with monoclonal antibody fragments using SAD phasing with tantalum bromide clusters (Ta6Br12·Br2). Some of the obstacles to obtaining improved diffraction and phasing for this particular channel are discussed, as well as the approach and adaptations that were key to determining the structure. PMID:26960119

  5. Phasing and structure of bestrophin-1: a case study in the use of heavy-atom cluster compounds with multi-subunit transmembrane proteins.

    PubMed

    Kane Dickson, Veronica

    2016-03-01

    The purification and three-dimensional crystallization of membrane proteins are commonly affected by a cumulation of pathologies that are less prevalent in their soluble counterparts. This may include severe anisotropy, poor spot shape, poor to moderate-resolution diffraction, crystal twinning, translational pseudo-symmetry and poor uptake of heavy atoms for derivatization. Such challenges must be circumvented by adaptations in the approach to crystallization and/or phasing. Here, an example of a protein that exhibited all of the above-mentioned complications is presented. Bestrophin-1 is a eukaryotic calcium-activated chloride channel, the structure of which was recently determined in complex with monoclonal antibody fragments using SAD phasing with tantalum bromide clusters (Ta6Br12·Br2). Some of the obstacles to obtaining improved diffraction and phasing for this particular channel are discussed, as well as the approach and adaptations that were key to determining the structure. PMID:26960119

  6. An Autonomously Reciprocating Transmembrane Nanoactuator.

    PubMed

    Watson, Matthew A; Cockroft, Scott L

    2016-01-22

    Biological molecular machines operate far from equilibrium by coupling chemical potential to repeated cycles of dissipative nanomechanical motion. This principle has been exploited in supramolecular systems that exhibit true machine behavior in solution and on surfaces. However, designed membrane-spanning assemblies developed to date have been limited to simple switches or stochastic shuttles, and true machine behavior has remained elusive. Herein, we present a transmembrane nanoactuator that turns over chemical fuel to drive autonomous reciprocating (back-and-forth) nanomechanical motion. Ratcheted reciprocating motion of a DNA/PEG copolymer threaded through a single α-hemolysin pore was induced by a combination of DNA strand displacement processes and enzyme-catalyzed reactions. Ion-current recordings revealed saw-tooth patterns, indicating that the assemblies operated in autonomous, asymmetric cycles of conformational change at rates of up to one cycle per minute. PMID:26661295

  7. Type II Transmembrane Serine Proteases*

    PubMed Central

    Bugge, Thomas H.; Antalis, Toni M.; Wu, Qingyu

    2009-01-01

    Analysis of genome and expressed sequence tag data bases at the turn of the millennium unveiled a new protease family named the type II transmembrane serine proteases (TTSPs) in a Journal of Biological Chemistry minireview (Hooper, J. D., Clements, J. A., Quigley, J. P., and Antalis, T. M. (2001) J. Biol. Chem. 276, 857–860). Since then, the number of known TTSPs has more than doubled, and more importantly, our understanding of the physiological functions of individual TTSPs and their contribution to human disease has greatly increased. Progress has also been made in identifying molecular substrates and endogenous inhibitors. This minireview summarizes the current knowledge of the rapidly advancing TTSP field. PMID:19487698

  8. First principles design of a core bioenergetic transmembrane electron-transfer protein.

    PubMed

    Goparaju, Geetha; Fry, Bryan A; Chobot, Sarah E; Wiedman, Gregory; Moser, Christopher C; Dutton, P Leslie; Discher, Bohdana M

    2016-05-01

    Here we describe the design, Escherichia coli expression and characterization of a simplified, adaptable and functionally transparent single chain 4-α-helix transmembrane protein frame that binds multiple heme and light activatable porphyrins. Such man-made cofactor-binding oxidoreductases, designed from first principles with minimal reference to natural protein sequences, are known as maquettes. This design is an adaptable frame aiming to uncover core engineering principles governing bioenergetic transmembrane electron-transfer function and recapitulate protein archetypes proposed to represent the origins of photosynthesis. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.

  9. First principles design of a core bioenergetic transmembrane electron-transfer protein.

    PubMed

    Goparaju, Geetha; Fry, Bryan A; Chobot, Sarah E; Wiedman, Gregory; Moser, Christopher C; Dutton, P Leslie; Discher, Bohdana M

    2016-05-01

    Here we describe the design, Escherichia coli expression and characterization of a simplified, adaptable and functionally transparent single chain 4-α-helix transmembrane protein frame that binds multiple heme and light activatable porphyrins. Such man-made cofactor-binding oxidoreductases, designed from first principles with minimal reference to natural protein sequences, are known as maquettes. This design is an adaptable frame aiming to uncover core engineering principles governing bioenergetic transmembrane electron-transfer function and recapitulate protein archetypes proposed to represent the origins of photosynthesis. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. PMID:26672896

  10. The C-terminal tail of the gp41 transmembrane envelope glycoprotein of HIV-1 clades A, B, C, and D may exist in two conformations: an analysis of sequence, structure, and function

    SciTech Connect

    Hollier, Mark J.; Dimmock, Nigel J. . E-mail: n.j.dimmock@warwick.ac.uk

    2005-07-05

    In addition to the major ectodomain, the gp41 transmembrane glycoprotein of HIV-1 is now known to have a minor ectodomain that is part of the long C-terminal tail. Both ectodomains are highly antigenic, carry neutralizing and non-neutralizing epitopes, and are involved in virus-mediated fusion activity. However, data have so far been biologically based, and derived solely from T cell line-adapted (TCLA), B clade viruses. Here we have carried out sequence and theoretically based structural analyses of 357 gp41 C-terminal sequences of mainly primary isolates of HIV-1 clades A, B, C, and D. Data show that all these viruses have the potential to form a tail loop structure (the minor ectodomain) supported by three, {beta}-sheet, membrane-spanning domains (MSDs). This means that the first (N-terminal) tyrosine-based sorting signal of the gp41 tail is situated outside the cell membrane and is non-functional, and that gp41 that reaches the cell surface may be recycled back into the cytoplasm through the activity of the second tyrosine-sorting signal. However, we suggest that only a minority of cell-associated gp41 molecules - those destined for incorporation into virions - has 3 MSDs and the minor ectodomain. Most intracellular gp41 has the conventional single MSD, no minor ectodomain, a functional first tyrosine-based sorting signal, and in line with current thinking is degraded intracellularly. The gp41 structural diversity suggested here can be viewed as an evolutionary strategy to minimize HIV-1 envelope glycoprotein expression on the cell surface, and hence possible cytotoxicity and immune attack on the infected cell.

  11. Proposed structure of putative glucose channel in GLUT1 facilitative glucose transporter.

    PubMed

    Zeng, H; Parthasarathy, R; Rampal, A L; Jung, C Y

    1996-01-01

    A family of structurally related intrinsic membrane proteins (facilitative glucose transporters) catalyzes the movement of glucose across the plasma membrane of animal cells. Evidence indicates that these proteins show a common structural motif where approximately 50% of the mass is embedded in lipid bilayer (transmembrane domain) in 12 alpha-helices (transmembrane helices; TMHs) and accommodates a water-filled channel for substrate passage (glucose channel) whose tertiary structure is currently unknown. Using recent advances in protein structure prediction algorithms we proposed here two three-dimensional structural models for the transmembrane glucose channel of GLUT1 glucose transporter. Our models emphasize the physical dimension and water accessibility of the channel, loop lengths between TMHs, the macrodipole orientation in four-helix bundle motif, and helix packing energy. Our models predict that five TMHs, either TMHs 3, 4, 7, 8, 11 (Model 1) or TMHs 2, 5, 11, 8, 7 (Model 2), line the channel, and the remaining TMHs surround these channel-lining TMHs. We discuss how our models are compatible with the experimental data obtained with this protein, and how they can be used in designing new biochemical and molecular biological experiments in elucidation of the structural basis of this important protein function.

  12. Conformational dynamics of a seven transmembrane helical protein Anabaena Sensory Rhodopsin probed by solid-state NMR.

    PubMed

    Good, Daryl B; Wang, Shenlin; Ward, Meaghan E; Struppe, Jochem; Brown, Leonid S; Lewandowski, Józef R; Ladizhansky, Vladimir

    2014-02-19

    The ability to detect and characterize molecular motions represents one of the unique strengths of nuclear magnetic resonance (NMR) spectroscopy. In this study, we report solid-state NMR site-specific measurements of the dipolar order parameters and (15)N rotating frame spin-lattice (R1ρ) relaxation rates in a seven transmembrane helical protein Anabaena Sensory Rhodopsin reconstituted in lipids. The magnitudes of the observed order parameters indicate that both the well-defined transmembrane regions and the less structured intramembrane loops undergo restricted submicrosecond time scale motions. In contrast, the R1ρ rates, which were measured under fast magic angle spinning conditions, vary by an order of magnitude between the TM and exposed regions and suggest the presence of intermediate time scale motions. Using a simple model, which assumes a single exponential autocorrelation function, we estimated the time scales of dominant stochastic motions to be on the order of low tens of nanoseconds for most residues within the TM helices and tens to hundreds of nanoseconds for the extracellular B-C and F-G loops. These relatively slow time scales could be attributed to collective anisotropic motions. We used the 3D Gaussian axial fluctuations model to estimate amplitudes, directions, and time scales of overall motions for helices and the extracellular B-C and F-G loops. Within this model, the TM helices A,B,C,D,E,F undergo rigid body motions on a time scale of tens of nanoseconds, while the time scale for the seventh helix G approaches 100 ns. Similar time scales of roughly 100-200 ns are estimated for the B-C and F-G loops. PMID:24467417

  13. Hydroxyproline Ring Pucker Causes Frustration of Helix Parameters in the Collagen Triple Helix

    NASA Astrophysics Data System (ADS)

    Ying Chow, W.; Bihan, Dominique; Forman, Chris J.; Slatter, David A.; Reid, David G.; Wales, David J.; Farndale, Richard W.; Duer, Melinda J.

    2015-07-01

    Collagens, the most abundant proteins in mammals, are defined by their triple-helical structures and distinctive Gly-Xaa-Yaa repeating sequence, where Xaa is often proline and Yaa, hydroxyproline (Hyp/O). It is known that hydroxyproline in the Yaa position stabilises the triple helix, and that lack of proline hydroxylation in vivo leads to dysfunctional collagen extracellular matrix assembly, due to a range of factors such as a change in hydration properties. In addition, we note that in model peptides, when Yaa is unmodified proline, the Xaa proline has a strong propensity to adopt an endo ring conformation, whilst when Yaa is hydroxyproline, the Xaa proline adopts a range of endo and exo conformations. Here we use a combination of solid-state NMR spectroscopy and potential energy landscape modelling of synthetic triple-helical collagen peptides to understand this effect. We show that hydroxylation of the Yaa proline causes the Xaa proline ring conformation to become metastable, which in turn confers flexibility on the triple helix.

  14. Macrocyclization and labeling of helix-loop-helix peptide with intramolecular bis-thioether linkage.

    PubMed

    Nishihara, Toshio; Kitada, Hidekazu; Fujiwara, Daisuke; Fujii, Ikuo

    2016-11-01

    Conformationally constrained peptides have been developed as an inhibitor for protein-protein interactions (PPIs), and we have de novo designed cyclized helix-loop-helix (cHLH) peptide with a disulfide bond consisting of 40 amino acids to generate molecular-targeting peptides. However, synthesis of long peptides has sometimes resulted in low yield according to the respective amino acid sequences. Here we developed a method for efficient synthesis and labeling for cHLH peptides. First, we synthesized two peptide fragments and connected them by the copper-mediated alkyne and azide cycloaddition (CuAAC) reaction. Cyclization was performed by bis-thioether linkage using 1,3-dibromomethyl-5-propargyloxybenzene, and subsequently, the cHLH peptide was labeled with an azide-labeled probe. Finally, we designed and synthesized a peptide inhibitor for the p53-HDM2 interaction using a structure-guided design and successfully labeled it with a fluorescent probe or a functional peptide, respectively, by click chemistry. This macrocyclization and labeling method for cHLH peptide would facilitate the discovery of de novo bioactive ligands and therapeutic leads. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 415-421, 2016. PMID:26917088

  15. Hydroxyproline Ring Pucker Causes Frustration of Helix Parameters in the Collagen Triple Helix

    PubMed Central

    Ying Chow, W.; Bihan, Dominique; Forman, Chris J.; Slatter, David A.; Reid, David G.; Wales, David J.; Farndale, Richard W.; Duer, Melinda J.

    2015-01-01

    Collagens, the most abundant proteins in mammals, are defined by their triple-helical structures and distinctive Gly-Xaa-Yaa repeating sequence, where Xaa is often proline and Yaa, hydroxyproline (Hyp/O). It is known that hydroxyproline in the Yaa position stabilises the triple helix, and that lack of proline hydroxylation in vivo leads to dysfunctional collagen extracellular matrix assembly, due to a range of factors such as a change in hydration properties. In addition, we note that in model peptides, when Yaa is unmodified proline, the Xaa proline has a strong propensity to adopt an endo ring conformation, whilst when Yaa is hydroxyproline, the Xaa proline adopts a range of endo and exo conformations. Here we use a combination of solid-state NMR spectroscopy and potential energy landscape modelling of synthetic triple-helical collagen peptides to understand this effect. We show that hydroxylation of the Yaa proline causes the Xaa proline ring conformation to become metastable, which in turn confers flexibility on the triple helix. PMID:26220399

  16. Suppression of mammary epithelial cell differentiation by the helix-loop-helix protein Id-1

    SciTech Connect

    Desprez, P.; Hara, E.; Bissell, M.J.

    1995-06-01

    Cell proliferation and differentiation are precisely coordinated during the development and maturation of the mammary gland, and this balance invariably is disrupted during carcinogenesis. Little is known about the cell-specific transcription factors that regulate these processes in the mammary gland. The mouse mammary epithelial cell line SCp2 grows well under standard culture conditions but arrests growth, forms alveolus-like structures, and expresses {beta}-casein, a differentiation marker, 4 to 5 days after exposure to basement membrane and lactogenic hormones (differentiation signals). The authors show that this differentiation entails a marked decline in the expression of Id-1, a helix-loop-helix (HLH) protein that inactivates basic HLH transcription factors in other cell types. SCp2 cells stably transfected with an Id-1 expression vector grew more rapidly than control cells under standard conditions, but in response to differentiation signals, they lost three-dimensional organization, invaded the basement membrane, and then resumed growth. SCp2 cells expressing an Id-1 antisense vector grew more slowly than controls; in response to differentiation signals, they remained stably growth arrested and fully differentiated, as did control cells. The authors suggest that Id-1 renders cells refractory to differentiation signals and receptive to growth signals by inactivating one or more basic HLH proteins that coordinate growth and differentiation in the mammary epithelium. 53 refs., 6 figs.

  17. An exploration of alternative visualisations of the basic helix-loop-helix protein interaction network

    PubMed Central

    Holden, Brian J; Pinney, John W; Lovell, Simon C; Amoutzias, Grigoris D; Robertson, David L

    2007-01-01

    Background Alternative representations of biochemical networks emphasise different aspects of the data and contribute to the understanding of complex biological systems. In this study we present a variety of automated methods for visualisation of a protein-protein interaction network, using the basic helix-loop-helix (bHLH) family of transcription factors as an example. Results Network representations that arrange nodes (proteins) according to either continuous or discrete information are investigated, revealing the existence of protein sub-families and the retention of interactions following gene duplication events. Methods of network visualisation in conjunction with a phylogenetic tree are presented, highlighting the evolutionary relationships between proteins, and clarifying the context of network hubs and interaction clusters. Finally, an optimisation technique is used to create a three-dimensional layout of the phylogenetic tree upon which the protein-protein interactions may be projected. Conclusion We show that by incorporating secondary genomic, functional or phylogenetic information into network visualisation, it is possible to move beyond simple layout algorithms based on network topology towards more biologically meaningful representations. These new visualisations can give structure to complex networks and will greatly help in interpreting their evolutionary origins and functional implications. Three open source software packages (InterView, TVi and OptiMage) implementing our methods are available. PMID:17683601

  18. The structure of aquaporin-1 at 4.5-A resolution reveals short alpha-helices in the center of the monomer.

    PubMed

    Mitsuoka, K; Murata, K; Walz, T; Hirai, T; Agre, P; Heymann, J B; Engel, A; Fujiyoshi, Y

    1999-12-01

    Aquaporin-1 is a water channel found in mammalian red blood cells that is responsible for high water permeability of its membrane. Our electron crystallographic analysis of the three-dimensional structure of aquaporin-1 at 4.5-A resolution confirms the previous finding that each subunit consists of a right-handed bundle of six highly tilted transmembrane helices that surround a central X-shaped structure. In our new potential map, the rod-like densities for the transmembrane helices show helically arranged protrusions, indicating the positions of side chains. Thus, in addition to the six transmembrane helices, observation of helically arranged side-chain densities allowed the identification of two short alpha-helices representing the two branches of the central X-shaped structure that extend to the extracellular and cytoplasmic membrane surfaces. The other two branches are believed to be loops connecting the short alpha-helix to a neighboring transmembrane helix. A pore found close to the center of the aquaporin-1 monomer is suggested to be the course of water flow with implications for the water selectivity. PMID:10600556

  19. Helix Dipole Movement and Conformational Variability Contribute to Allosteric GDP Release in G[alpha] Subunits

    SciTech Connect

    Preininger, Anita M.; Funk, Michael A.; Oldham, William M.; Meier, Scott M.; Johnston, Christopher A.; Adhikary, Suraj; Kimple, Adam J.; Siderovski, David P.; Hamm, Heidi E.; Iverson, Tina M.

    2009-06-01

    Heterotrimeric G proteins (Galphabetagamma) transmit signals from activated G protein-coupled receptors (GPCRs) to downstream effectors through a guanine nucleotide signaling cycle. Numerous studies indicate that the carboxy-terminal alpha5 helix of Galpha subunits participates in Galpha-receptor binding, and previous EPR studies suggest this receptor-mediated interaction induces a rotation and translation of the alpha5 helix of the Galpha subunit [Oldham, W. M., et al. (2006) Nat. Struct. Mol. Biol. 13, 772-777]. On the basis of this result, an engineered disulfide bond was designed to constrain the alpha5 helix of Galpha(i1) into its EPR-measured receptor-associated conformation through the introduction of cysteines at position 56 in the alpha1 helix and position 333 in the alpha5 helix (I56C/Q333C Galpha(i1)). A functional mimetic of the EPR-measured alpha5 helix dipole movement upon receptor association was additionally created by introduction of a positive charge at the amino terminus of this helix, D328R Galpha(i1). Both proteins exhibit a dramatically elevated level of basal nucleotide exchange. The 2.9 A resolution crystal structure of I56C/Q333C Galpha(i1) in complex with GDP-AlF(4)(-) reveals the shift of the alpha5 helix toward the guanine nucleotide binding site that is anticipated by EPR measurements. The structure of the I56C/Q333C Galpha(i1) subunit further revealed altered positions for the switch regions and throughout the Galpha(i1) subunit, accompanied by significantly elevated crystallographic temperature factors. Combined with previous evidence in the literature, the structural analysis supports the critical role of electrostatics of the alpha5 helix dipole and overall conformational variability during nucleotide release.

  20. A Novel Point Mutation in Helix 10 of the Human Glucocorticoid Receptor Causes Generalized Glucocorticoid Resistance by Disrupting the Structure of the Ligand-Binding Domain

    PubMed Central

    Nader, Nancy; Bachrach, Bert E.; Hurt, Darrell E.; Gajula, Sonia; Pittman, Amy; Lescher, Rachel; Kino, Tomoshige

    2010-01-01

    Context: Generalized glucocorticoid resistance syndrome is a rare familial or sporadic condition characterized by partial insensitivity to glucocorticoids, caused by mutations in the glucocorticoid receptor (GR) gene. Most of the reported cases are adults, demonstrating symptoms associated with mineralocorticoid and/or adrenal androgen excess caused by compensatively increased secretion of the adrenocorticotropic hormone. Patient: We identified a new 2-yr-old female case of generalized glucocorticoid resistance syndrome. The patient (TJ) presented with a generalized seizure associated with hypoglycemia and hypokalemia. She also had hypertension and premature pubarche, whereas dexamethasone effectively suppressed these clinical manifestations. Results: The patient’s GR gene had a heterozygotic mutation (G→A) at nucleotide position 2141 (exon 8), which resulted in substitution of arginine by glutamine at amino acid position 714 in the ligand-binding domain (LBD) of the GRα. Molecular analysis revealed that the mutant receptor had significantly impaired transactivation activity with a 2-fold reduction in affinity to ligand. It showed attenuated transactivation of the activation function (AF)-2 and reduced binding to a p160 nuclear receptor coactivator. Computer-based structural analysis revealed that replacement of arginine by glutamine at position 714 transmitted a conformational change to the LBD and the AF-2 transactivation surface, resulting in a decreased binding affinity to ligand and to the LXXLL coactivator motif. Conclusions: Dexamethasone treatment is effective in controlling the premature pubarche, hypoglycemia, hypertension, and hypokalemia in this child case, wherein arginine 714 plays a key role in the proper formation of the ligand-binding pocket and the AF-2 surface of the GRα LBD. PMID:20335448

  1. Activation of transmembrane cell‐surface receptors via a common mechanism? The “rotation model”

    PubMed Central

    2015-01-01

    It has long been thought that transmembrane cell‐surface receptors, such as receptor tyrosine kinases and cytokine receptors, among others, are activated by ligand binding through ligand‐induced dimerization of the receptors. However, there is growing evidence that prior to ligand binding, various transmembrane receptors have a preformed, yet inactive, dimeric structure on the cell surface. Various studies also demonstrate that during transmembrane signaling, ligand binding to the extracellular domain of receptor dimers induces a rotation of transmembrane domains, followed by rearrangement and/or activation of intracellular domains. The paper here describes transmembrane cell‐surface receptors that are known or proposed to exist in dimeric form prior to ligand binding, and discusses how these preformed dimers are activated by ligand binding. PMID:26241732

  2. Computational approaches to detect allosteric pathways in transmembrane molecular machines.

    PubMed

    Stolzenberg, Sebastian; Michino, Mayako; LeVine, Michael V; Weinstein, Harel; Shi, Lei

    2016-07-01

    Many of the functions of transmembrane proteins involved in signal processing and transduction across the cell membrane are determined by allosteric couplings that propagate the functional effects well beyond the original site of activation. Data gathered from breakthroughs in biochemistry, crystallography, and single molecule fluorescence have established a rich basis of information for the study of molecular mechanisms in the allosteric couplings of such transmembrane proteins. The mechanistic details of these couplings, many of which have therapeutic implications, however, have only become accessible in synergy with molecular modeling and simulations. Here, we review some recent computational approaches that analyze allosteric coupling networks (ACNs) in transmembrane proteins, and in particular the recently developed Protein Interaction Analyzer (PIA) designed to study ACNs in the structural ensembles sampled by molecular dynamics simulations. The power of these computational approaches in interrogating the functional mechanisms of transmembrane proteins is illustrated with selected examples of recent experimental and computational studies pursued synergistically in the investigation of secondary active transporters and GPCRs. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.

  3. An anthraquinone scaffold for putative, two-face Bim BH3 α-helix mimic.

    PubMed

    Zhang, Zhichao; Li, Xiangqian; Song, Ting; Zhao, Yan; Feng, Yingang

    2012-12-13

    Bim BH3 peptide features an α-helix with hotspot residues on multiple faces. Compound 5 (6-bromo-2,3-dihydroxyanthracene-9,10-dione), which adopts a rigid-plan amphipathic conformation, was designed and evaluated as a scaffold to mimic two faces of Bim α-helix. It reproduced the functionalities of both D67 and I65 on two opposing helical sides. Moreover, it maintained the two-faced binding mode during further evolution. A putative BH3 α-helix mimic and nanomolar Bcl-2/Mcl-1 dual inhibitor, 6, was obtained based on the structure of 5.

  4. The Origins of Transmembrane Ion Channels

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.

    2012-01-01

    Even though membrane proteins that mediate transport of ions and small molecules across cell walls are among the largest and least understood biopolymers in contemporary cells, it is still possible to shed light on their origins and early evolution. The central observation is that transmembrane portions of most ion channels are simply bundles of -helices. By combining results of experimental and computer simulation studies on synthetic models and natural channels, mostly of non-genomic origin, we show that the emergence of -helical channels was protobiologically plausible, and did not require highly specific amino acid sequences. Despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. Specifically, we explain how the antiamoebin channels, which are made of identical helices, 16 amino acids in length, achieve efficiency comparable to that of highly evolved channels. We further show that antiamoebin channels are extremely flexible, compared to modern, genetically coded channels. On the basis of our results, we propose that channels evolved further towards high structural complexity because they needed to acquire stable rigid structures and mechanisms for precise regulation rather than improve efficiency. In general, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during evolution.

  5. Cooperative Transmembrane Penetration of Nanoparticles

    PubMed Central

    Zhang, Haizhen; Ji, Qiuju; Huang, Changjin; Zhang, Sulin; Yuan, Bing; Yang, Kai; Ma, Yu-qiang

    2015-01-01

    Physical penetration of lipid bilayer membranes presents an alternative pathway for cellular delivery of nanoparticles (NPs) besides endocytosis. NPs delivered through this pathway could reach the cytoplasm, thereby opening the possibility of organelle-specific targeting. Herein we perform dissipative particle dynamics simulations to elucidate the transmembrane penetration mechanisms of multiple NPs. Our simulations demonstrate that NPs’ translocation proceeds in a cooperative manner, where the interplay of the quantity and surface chemistry of the NPs regulates the translocation efficiency. For NPs with hydrophilic surfaces, the increase of particle quantity facilitates penetration, while for NPs with partly or totally hydrophobic surfaces, the opposite highly possibly holds. Moreover, a set of interesting cooperative ways, such as aggregation, aggregation-dispersion, and aggregation-dispersion-reaggregation of the NPs, are observed during the penetration process. We find that the penetration behaviors of multiple NPs are mostly dominated by the changes of the NP-membrane force components in the membrane plane direction, in addition to that in the penetration direction, suggesting a different interaction mechanism between the multiple NPs and the membrane compared with the one-NP case. These results provide a fundamental understanding in the underlying mechanisms of cooperative penetration of NPs, and shed light on the NP-based drug and gene delivery. PMID:26013284

  6. A supramolecular helix that disregards chirality.

    PubMed

    Roche, Cécile; Sun, Hao-Jan; Leowanawat, Pawaret; Araoka, Fumito; Partridge, Benjamin E; Peterca, Mihai; Wilson, Daniela A; Prendergast, Margaret E; Heiney, Paul A; Graf, Robert; Spiess, Hans W; Zeng, Xiangbing; Ungar, Goran; Percec, Virgil

    2016-01-01

    The functions of complex crystalline systems derived from supramolecular biological and non-biological assemblies typically emerge from homochiral programmed primary structures via first principles involving secondary, tertiary and quaternary structures. In contrast, heterochiral and racemic compounds yield disordered crystals, amorphous solids or liquids. Here, we report the self-assembly of perylene bisimide derivatives in a supramolecular helix that in turn self-organizes in columnar hexagonal crystalline domains regardless of the enantiomeric purity of the perylene bisimide. We show that both homochiral and racemic perylene bisimide compounds, including a mixture of 21 diastereomers that cannot be deracemized at the molecular level, self-organize to form single-handed helical assemblies with identical single-crystal-like order. We propose that this high crystalline order is generated via a cogwheel mechanism that disregards the chirality of the self-assembling building blocks. We anticipate that this mechanism will facilitate access to previously inaccessible complex crystalline systems from racemic and homochiral building blocks. PMID:26673268

  7. Helix promotion in polypeptides by polyols.

    PubMed

    Bello, J

    1993-03-01

    The helix content of [L-Lys(Me3)]n.ClO4 and [L-Lys(Me3)50,L-Ala50]n.ClO4 in water is markedly increased by the presence of sucrose and glycerol. For [L-Lys(Me3)]n.ClO4 the ellipticity at 222 nm changes from +2 x 10(3) deg cm2 dmole-1 in water to -44 x 10(3) in 50% glycerol. Sucrose does not promote helix formation in melittin at pH 7.2, but glycerol does. At pH 5.5 sucrose and, more so, glycerol, induce helix in melittin. Glycerol induces some helix in methylated melittin, but less than in melittin. The results are discussed in relation to excluded volume effects, delta G of transfer of peptide and hydrophobic groups from water to mixed solvents, electrostatic effects, and preferential hydration.

  8. The NC16A Domain of Collagen XVII Plays a Role in Triple Helix Assembly and Stability*

    PubMed Central

    Van den Bergh, Françoise; Fu, Chang-Ling; Olague-Marchan, Monica; Giudice, George J.

    2007-01-01

    Collagen XVII/BP180 is a transmembrane constituent of the epidermal anchoring complex. To study the role of its non-collagenous linker domain, NC16A, in protein assembly and stability, we analyzed the following recombinant proteins: the collagen XVII extracellular domain with or without NC16A, and a pair of truncated proteins comprising the COL15-NC15 stretch expressed with or without NC16A. All four proteins were found to exist as stable collagen triple helices; however, the two missing NC16A exhibited melting temperatures significantly lower than their NC16A-containing counterparts. Protein refolding experiments revealed that the rate of triple helix assembly of the collagen model peptide GPP10 is greatly increased by the addition of an upstream NC16A domain. In summary, the NC16A linker domain of collagen XVII exhibits a positive effect on both the rate of assembly and the stability of the adjoining collagen structure. PMID:17045967

  9. The first transmembrane domain (TM1) of β2-subunit binds to the transmembrane domain S1 of α-subunit in BK potassium channels

    PubMed Central

    Morera, Francisco J.; Alioua, Abderrahmane; Kundu, Pallob; Salazar, Marcelo; Gonzalez, Carlos; Martinez, Agustin D.; Stefani, Enrico; Toro, Ligia; Latorre, Ramon

    2012-01-01

    The BK channel is one of the most broadly expressed ion channels in mammals. In many tissues, the BK channel pore-forming α-subunit is associated to an auxiliary β-subunit that modulates the voltage- and Ca2+-dependent activation of the channel. Structural components present in β-subunits that are important for the physical association with the α-subunit are yet unknown. Here, we show through co-immunoprecipitation that the intracellular C-terminus, the second transmembrane domain (TM2) and the extracellular loop of the β2-subunit are dispensable for association with the α-subunit pointing transmembrane domain 1 (TM1) as responsible for the interaction. Indeed, the TOXCAT assay for transmembrane protein–protein interactions demonstrated for the first time that TM1 of the β2-subunit physically binds to the transmembrane S1 domain of the α-subunit. PMID:22710124

  10. Bent helix formation between RNA hairpins with complementary loops.

    PubMed

    Marino, J P; Gregorian, R S; Csankovszki, G; Crothers, D M

    1995-06-01

    The initial interaction between the ColE1 plasmid specific transcripts RNA I and RNA II, which function as antisense regulators of plasmid replication, comprises a transient complex between complementary loops found within the RNA secondary structures. Multidimensional heteronuclear magnetic resonance spectroscopy was used to characterize complexes formed between model RNA hairpins having seven nucleotide complementary loops. Seven base pairs are formed in the loop-loop helix, with continuous helical stacking of the loop residues on the 3' side of their helical stems. A sharp bend in the loop-loop helix, documented by gel electrophoresis, narrows the major groove and allows bridging of the phosphodiester backbones across the major groove in order to close the hairpin loops at their 5'-ends. The bend is further enhanced by the binding of Rom, a ColE1 encoded protein that regulates replication. PMID:7539549

  11. Triple Helix Formation in a Topologically Controlled DNA Nanosystem.

    PubMed

    Yamagata, Yutaro; Emura, Tomoko; Hidaka, Kumi; Sugiyama, Hiroshi; Endo, Masayuki

    2016-04-11

    In the present study, we demonstrate single-molecule imaging of triple helix formation in DNA nanostructures. The binding of the single-molecule third strand to double-stranded DNA in a DNA origami frame was examined using two different types of triplet base pairs. The target DNA strand and the third strand were incorporated into the DNA frame, and the binding of the third strand was controlled by the formation of Watson-Crick base pairing. Triple helix formation was monitored by observing the structural changes in the incorporated DNA strands. It was also examined using a photocaged third strand wherein the binding of the third strand was directly observed using high-speed atomic force microscopy during photoirradiation. We found that the binding of the third strand could be controlled by regulating duplex formation and the uncaging of the photocaged strands in the designed nanospace.

  12. Nonlinear time-dependent simulation of helix traveling wave tubes

    NASA Astrophysics Data System (ADS)

    Peng, Wei-Feng; Yang, Zhong-Hai; Hu, Yu-Lu; Li, Jian-Qing; Lu, Qi-Ru; Li, Bin

    2011-07-01

    A one-dimensional nonlinear time-dependent theory for helix traveling wave tubes is studied. A generalized electromagnetic field is applied to the expression of the radio frequency field. To simulate the variations of the high frequency structure, such as the pitch taper and the effect of harmonics, the spatial average over a wavelength is substituted by a time average over a wave period in the equation of the radio frequency field. Under this assumption, the space charge field of the electron beam can be treated by a space charge wave model along with the space charge coefficient. The effects of the radio frequency and the space charge fields on the electrons are presented by the equations of the electron energy and the electron phase. The time-dependent simulation is compared with the frequency-domain simulation for a helix TWT, which validates the availability of this theory.

  13. Bent helix formation between RNA hairpins with complementary loops.

    PubMed

    Marino, J P; Gregorian, R S; Csankovszki, G; Crothers, D M

    1995-06-01

    The initial interaction between the ColE1 plasmid specific transcripts RNA I and RNA II, which function as antisense regulators of plasmid replication, comprises a transient complex between complementary loops found within the RNA secondary structures. Multidimensional heteronuclear magnetic resonance spectroscopy was used to characterize complexes formed between model RNA hairpins having seven nucleotide complementary loops. Seven base pairs are formed in the loop-loop helix, with continuous helical stacking of the loop residues on the 3' side of their helical stems. A sharp bend in the loop-loop helix, documented by gel electrophoresis, narrows the major groove and allows bridging of the phosphodiester backbones across the major groove in order to close the hairpin loops at their 5'-ends. The bend is further enhanced by the binding of Rom, a ColE1 encoded protein that regulates replication.

  14. Transmembrane signaling in kidney health and disease.

    PubMed

    Hack, N; Schultz, A; Clayman, P; Goldberg, H; Skorecki, K L

    1995-08-01

    Transmembrane signal transduction is the process whereby a ligand binds to the external surface of the cell membrane and elicits a physiological response specific for that ligand and cell type. It is now appreciated that numerous disease states represent disturbances in normal transmembrane signaling mechanisms. In the current paper, we focus our attention on the mesangial cell of the glomerular microcirculation as a prototypical model system for understanding normal and abnormal transmembrane signaling processes. Among the major receptor and effector mechanisms for transmembrane signal transduction in the mesangial cell, this paper emphasizes the phospholipase effector response to growth factors and vasoactive hormones. The post-translational and transcriptional pathways for regulation of phospholipase C and phospholipase A2 are described, including consideration of perturbations in these systems that characterize two disease models, namely: acute cyclosporine nephrotoxicity and early diabetic glomerulopathy.

  15. Polarization of intraprotein hydrogen bond is critical to thermal stability of short helix.

    PubMed

    Gao, Ya; Lu, Xiaoliang; Duan, Li L; Zhang, John Z H; Mei, Ye

    2012-01-12

    Simulation result for protein folding/unfolding is highly dependent on the accuracy of the force field employed. Even for the simplest structure of protein such as a short helix, simulations using the existing force fields often fail to produce the correct structural/thermodynamic properties of the protein. Recent research indicated that lack of polarization is at least partially responsible for the failure to successfully fold a short helix. In this work, we develop a simple formula-based atomic charge polarization model for intraprotein (backbone) hydrogen bonding based on the existing AMBER force field to study the thermal stability of a short helix (2I9M) by replica exchange molecular dynamics simulation. By comparison of the simulation results with those obtained by employing the standard AMBER03 force field, the formula-based atomic charge polarization model gave the helix melting curve in close agreement with the NMR experiment. However, in simulations using the standard AMBER force field, the helix was thermally unstable at the temperature of the NMR experiment, with a melting temperature almost below the freezing point. The difference in observed thermal stability from these two simulations is the effect of backbone intraprotein polarization, which was included in the formula-based atomic charge polarization model. The polarization of backbone hydrogen bonding thus plays a critical role in the thermal stability of helix or more general protein structures.

  16. A sequence preference for nucleation of alpha-helix--crystal structure of Gly-L-Ala-L-Val and Gly-L-Ala-L-Leu: some comments on the geometry of leucine zippers.

    PubMed

    Chaturvedi, S; Go, K; Parthasarathy, R

    1991-03-01

    The synthetic peptide Gly-L-Ala-L-Val (C10H19N3O4.3H2O; GAV) crystallizes in the monoclinic space group P21, with a = 8.052(2), b = 6.032(2), c = 15.779(7) A, beta = 98.520(1) degree, V = 757.8 A3, Dx = 1.312 g cm-3, and Z = 2. The peptide Gly-L-Ala-L-Leu (C11H21N3O4.3H2O; GAL) crystallizes in the orthorhombic space group P212121, with a = 6.024(1), b = 8.171(1), c = 32.791(1) A, V = 1614 A3, Dx = 1.289 g cm-3, and Z = 4. Their crystal structures were solved by direct methods using the program SHELXS-86, and refined to an R index of 0.05 for 1489 reflections for GAV and to an R index of 0.05 for 1563 reflections for GAL. The tripeptides exist as a zwitterion in the crystal and assume a near alpha-helical backbone conformation with the following torsion angles: psi 1 = -150.7 degrees; phi 2, psi 2 = -68.7 degrees, -38.1 degrees; phi 3, psi 32 = -74.8 degrees, -44.9 degrees, 135.9 degrees for GAV; psi 1 = -150.3 degrees; phi 2, psi 2 = -67.7 degrees, -38.9 degrees; phi 3, psi 31, psi 32 = -72.2 degrees, -45.3 degrees, 137.5 degrees for GAL. Both the peptide units in both of the tripeptides show significant deviation from planarity [omega 1 = -171.3(6) degrees and omega 2 = -172.0(6) degrees for GAV; omega 1 = -171.9(5) degrees and omega 2 = -173.2(6) degrees for GAL]. The side-chain conformational angles chi 21 and chi 22 are -61.7(5) degrees and 175.7(5) degrees, respectively, for valine, and the side-chain conformations chi 12 and chi 23's are -68.5(5) degrees and (-78.4(6) degrees, 159.10(5) degrees) respectively, for leucine. Each of the tripeptide molecule is held in a near helical conformation by a water molecule that bridges the NH3+ and COO- groups, and acts as the fourth residue needed to complete the turn by forming two hydrogen bonds. Two other water molecules form intermolecular hydrogen bonds in stabilizing the helical structure so that the end result is a column of molecules that looks like an alpha-helix.

  17. Structure of a bacterial homologue of vitamin K epoxide reductase

    SciTech Connect

    Li, Weikai; Schulman, Sol; Dutton, Rachel J.; Boyd, Dana; Beckwith, Jon; Rapoport, Tom A.

    2010-03-19

    Vitamin K epoxide reductase (VKOR) generates vitamin K hydroquinone to sustain {gamma}-carboxylation of many blood coagulation factors. Here, we report the 3.6 {angstrom} crystal structure of a bacterial homologue of VKOR from Synechococcus sp. The structure shows VKOR in complex with its naturally fused redox partner, a thioredoxin-like domain, and corresponds to an arrested state of electron transfer. The catalytic core of VKOR is a four transmembrane helix bundle that surrounds a quinone, connected through an additional transmembrane segment with the periplasmic thioredoxin-like domain. We propose a pathway for how VKOR uses electrons from cysteines of newly synthesized proteins to reduce a quinone, a mechanism confirmed by in vitro reconstitution of vitamin K-dependent disulphide bridge formation. Our results have implications for the mechanism of the mammalian VKOR and explain how mutations can cause resistance to the VKOR inhibitor warfarin, the most commonly used oral anticoagulant.

  18. Design and synthesis of peptides with hybrid helix-turn-helix (HTH) motif and their conformational study.

    PubMed

    Sharma, Gangavaram V M; Thodupunuri, Prashanth; Sirisha, Katukuri; Basha, Shaik Jeelani; Gurava Reddy, Pottireddygari; Sarma, Akella V S

    2014-09-19

    The present study is aimed at the design and synthesis of peptides with hybrid helix-turn-helix (HTH) motif and their conformational analysis (NMR, MD, and CD studies). The requisite peptides with heterogeneous backbones were prepared from β-, γ-, and δ-amino acids with carbohydrate side chains and α-amino acid, L-Ala. The α/β-peptides were prepared from (S)-β-Caa(l) (C-linked carbo-β-amino acid with D-lyxo furanoside side chain) and L-Ala with a 1:1 alternation. The α/β-peptides with "helix-turn" motif displayed a 11/9-helix nucleating a 13-atom H-bonding turn. The α/β-octapeptides showed the presence of HTH structures with bifurcated 11/15-H-bonded turn. Further, the α/β-hexapeptide with HT motif, independently on coupling with γ/α/γ/α- and δ/α/δ/α-tetrapeptides at the C-terminus provided access to the decapeptides with "hybrid HTH" motifs. The decapeptide ("α-β-α-β-α-β-γ-α-γ-α") showed a hybrid HTH with "11/9/11/9/11/16/9/12/10" H-bonding, while the decapeptide ("α-β-α-β-α-β-δ-α-δ-α") revealed the presence of a "11/9/11/9/11/17/9/13/11" helical pattern. The above peptides thus have shown compatibility between different types of helices and serendipitous bifurcated 11/16- and 11/17-turns. The present study thus provided the first opportunity for the design and study of "hybrid HTH" motifs with more than one kind of helical structures in them.

  19. Design and synthesis of peptides with hybrid helix-turn-helix (HTH) motif and their conformational study.

    PubMed

    Sharma, Gangavaram V M; Thodupunuri, Prashanth; Sirisha, Katukuri; Basha, Shaik Jeelani; Gurava Reddy, Pottireddygari; Sarma, Akella V S

    2014-09-19

    The present study is aimed at the design and synthesis of peptides with hybrid helix-turn-helix (HTH) motif and their conformational analysis (NMR, MD, and CD studies). The requisite peptides with heterogeneous backbones were prepared from β-, γ-, and δ-amino acids with carbohydrate side chains and α-amino acid, L-Ala. The α/β-peptides were prepared from (S)-β-Caa(l) (C-linked carbo-β-amino acid with D-lyxo furanoside side chain) and L-Ala with a 1:1 alternation. The α/β-peptides with "helix-turn" motif displayed a 11/9-helix nucleating a 13-atom H-bonding turn. The α/β-octapeptides showed the presence of HTH structures with bifurcated 11/15-H-bonded turn. Further, the α/β-hexapeptide with HT motif, independently on coupling with γ/α/γ/α- and δ/α/δ/α-tetrapeptides at the C-terminus provided access to the decapeptides with "hybrid HTH" motifs. The decapeptide ("α-β-α-β-α-β-γ-α-γ-α") showed a hybrid HTH with "11/9/11/9/11/16/9/12/10" H-bonding, while the decapeptide ("α-β-α-β-α-β-δ-α-δ-α") revealed the presence of a "11/9/11/9/11/17/9/13/11" helical pattern. The above peptides thus have shown compatibility between different types of helices and serendipitous bifurcated 11/16- and 11/17-turns. The present study thus provided the first opportunity for the design and study of "hybrid HTH" motifs with more than one kind of helical structures in them. PMID:25180942

  20. Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions.

    PubMed

    Park, Ji Hyun; Noh, JungHyun; Schütz, Christina; Salazar-Alvarez, German; Scalia, Giusy; Bergström, Lennart; Lagerwall, Jan P F

    2014-05-19

    The intrinsic ability of cellulose nanocrystals (CNCs) to self-organize into films and bulk materials with helical order in a cholesteric liquid crystal is scientifically intriguing and potentially important for the production of renewable multifunctional materials with attractive optical properties. A major obstacle, however, has been the lack of control of helix direction, which results in a defect-rich, mosaic-like domain structure. Herein, a method for guiding the helix during film formation is introduced, which yields dramatically improved uniformity, as confirmed by using polarizing optical and scanning electron microscopy. By raising the CNC concentration in the initial suspension to the fully liquid crystalline range, a vertical helix orientation is promoted, as directed by the macroscopic phase boundaries. Further control of the helix orientation is achieved by subjecting the suspension to a circular shear flow during drying.

  1. Highly twisted double-helix carbon nanotube yarns.

    PubMed

    Shang, Yuanyuan; Li, Yibin; He, Xiaodong; Du, Shanyi; Zhang, Luhui; Shi, Enzheng; Wu, Shiting; Li, Zhen; Li, Peixu; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai; Cao, Anyuan

    2013-02-26

    The strength and flexibility of carbon nanotubes (CNTs) allow them to be constructed into a variety of innovated architectures with fascinating properties. Here, we show that CNTs can be made into a highly twisted yarn-derived double-helix structure by a conventional twist-spinning process. The double-helix is a stable and hierarchical configuration consisting of two single-helical yarn segments, with controlled pitch and unique mechanical properties. While one of the yarn components breaks early under tension due to the highly twisted state, the second yarn produces much larger tensile strain and significantly prolongs the process until ultimate fracture. In addition, these elastic and conductive double-helix yarns show simultaneous and reversible resistance change in response to a wide range of input sources (mechanical, photo, and thermal) such as applied strains or stresses, light illumination, and environmental temperature. Our results indicate that it is possible to create higher-level, more complex architectures from CNT yarns and fabricate multifunctional nanomaterials with potential applications in many areas. PMID:23289799

  2. Nonlinear analysis of helix traveling wave tubes

    SciTech Connect

    Freund, H.P.; Zaidman, E.G.; Mankofsky, A.; Vanderplaats, N.R.; Kodis, M.A.

    1995-10-01

    A time-dependent nonlinear formulation of the interaction in the helix traveling wave tube is presented for a configuration in which an electron beam propagates through a sheath helix surrounded by a conducting wall. In order to describe both the variation in the wave dispersion and in the transverse inhomogeneity of the electromagnetic field with wave number, the field is represented as a superposition of waves in a vacuum sheath helix. An overall explicit sinusoidal variation of the form exp({ital ikz}{minus}{ital i}{omega}{ital t}) is assumed (where {omega} denotes the angular frequency corresponding to the wave number {ital k} in the vacuum sheath helix), and the polarization and radial variation of each wave is determined by the boundary conditions in a vacuum sheath helix. Thus, while the field is three-dimensional in nature, it is azimuthally symmetric. The propagation of each wave {ital in} {ital vacuo} as well as the interaction of each wave with the electron beam is included by allowing the amplitudes of the waves to vary in {ital z} and {ital t}. A dynamical equation for the field amplitudes is derived analogously to Poynting`s equation, and solved in conjunction with the three-dimensional Lorentz force equations for an ensemble of electrons. Numerical examples are presented corresponding to both single- and multiwave interactions. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  3. Direct imaging of DNA fibers: the visage of double helix.

    PubMed

    Gentile, Francesco; Moretti, Manola; Limongi, Tania; Falqui, Andrea; Bertoni, Giovanni; Scarpellini, Alice; Santoriello, Stefania; Maragliano, Luca; Proietti Zaccaria, Remo; di Fabrizio, Enzo

    2012-12-12

    Direct imaging becomes important when the knowledge at few/single molecule level is requested and where the diffraction does not allow to get structural and functional information. Here we report on the direct imaging of double stranded (ds) λ-DNA in the A conformation, obtained by combining a novel sample preparation method based on super hydrophobic DNA molecules self-aggregation process with transmission electron microscopy (TEM). The experimental breakthrough is the production of robust and highly ordered paired DNA nanofibers that allowed its direct TEM imaging and the double helix structure revealing.

  4. An α-Helix-Mimicking 12,13-Helix: Designed α/β/γ-Foldamers as Selective Inhibitors of Protein-Protein Interactions.

    PubMed

    Grison, Claire M; Miles, Jennifer A; Robin, Sylvie; Wilson, Andrew J; Aitken, David J

    2016-09-01

    A major current challenge in bioorganic chemistry is the identification of effective mimics of protein secondary structures that act as inhibitors of protein-protein interactions (PPIs). In this work, trans-2-aminocyclobutanecarboxylic acid (tACBC) was used as the key β-amino acid component in the design of α/β/γ-peptides to structurally mimic a native α-helix. Suitably functionalized α/β/γ-peptides assume an α-helix-mimicking 12,13-helix conformation in solution, exhibit enhanced proteolytic stability in comparison to the wild-type α-peptide parent sequence from which they are derived, and act as selective inhibitors of the p53/hDM2 interaction.

  5. TMRPres2D: high quality visual representation of transmembrane protein models.

    PubMed

    Spyropoulos, Ioannis C; Liakopoulos, Theodore D; Bagos, Pantelis G; Hamodrakas, Stavros J

    2004-11-22

    The 'TransMembrane protein Re-Presentation in 2-Dimensions' (TMRPres2D) tool, automates the creation of uniform, two-dimensional, high analysis graphical images/models of alpha-helical or beta-barrel transmembrane proteins. Protein sequence data and structural information may be acquired from public protein knowledge bases, emanate from prediction algorithms, or even be defined by the user. Several important biological and physical sequence attributes can be embedded in the graphical representation. PMID:15201184

  6. Epicyclic Twin-Helix Ionization Cooling Simulations

    SciTech Connect

    Vasiliy Morozov, Yaroslav Derbenev, A. Afanaciev, R.P. Johnson

    2011-04-01

    Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a highluminosity muon collider. For the implementation of PIC, we earlier developed an epicyclic twin-helix channel with correlated behavior of the horizontal and vertical betatron motions and dispersion. We now insert absorber plates with short energy-recovering units located next to them at the appropriate locations in the twin-helix channel. We first demonstrate conventional ionization cooling in such a system with the optics uncorrelated. We then adjust the correlated optics state and induce a parametric resonance to study ionization cooling under the resonant condition.

  7. Relativistic helix traveling wave tube amplifiers

    SciTech Connect

    Freund, H.P.; Vanderplaats, N.R.; Kodis, M.A. )

    1992-07-01

    A relativistic field theory of a helix traveling wave tube (TWT) is described for the case in which a thin annular beam propagates through a sheath helix enclosed within a loss-free wall. The theory is applied to the study of a TWT with an intense relativistic electron beam. The analysis implicitly includes beam space-charge effects and is valid for arbitrary azimuthal mode number, and the coupled-wave Pierce theory is recovered in the [ital near]-[ital resonant] limit. The results indicate that impressive gains and efficiencies are possible in this regime. In addition, the interaction is relatively insensitive to the effects of a beam energy spread.

  8. Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry

    NASA Technical Reports Server (NTRS)

    Wang, N.; Ingber, D. E.

    1995-01-01

    We recently developed a magnetic twisting cytometry technique that allows us to apply controlled mechanical stresses to specific cell surface receptors using ligand-coated ferromagnetic microbeads and to simultaneously measure the mechanical response in living cells. Using this technique, we have previously shown the following: (i) beta 1 integrin receptors mediate mechanical force transfer across the cell surface and to the cytoskeleton, whereas other transmembrane receptors (e.g., scavenger receptors) do not; (ii) cytoskeletal stiffness increases in direct proportion to the level of stress applied to integrins; and (iii) the slope of this linear stiffening response differs depending on the shape of the cell. We now show that different integrins (beta 1, alpha V beta 3, alpha V, alpha 5, alpha 2) and other transmembrane receptors (scavenger receptor, platelet endothelial cell adhesion molecule) differ in their ability to mediate force transfer across the cell surface. In addition, the linear stiffening behavior previously observed in endothelial cells was found to be shared by other cell types. Finally, we demonstrate that dynamic changes in cell shape that occur during both cell spreading and retraction are accompanied by coordinate changes in cytoskeletal stiffness. Taken together, these results suggest that the magnetic twisting cytometry technique may be a powerful and versatile tool for studies analyzing the molecular basis of transmembrane mechanical coupling to the cytoskeleton as well as dynamic relations between changes in cytoskeletal structure and alterations in cell form and function.

  9. Basic amino-acid side chains regulate transmembrane integrin signalling.

    PubMed

    Kim, Chungho; Schmidt, Thomas; Cho, Eun-Gyung; Ye, Feng; Ulmer, Tobias S; Ginsberg, Mark H

    2011-12-18

    Side chains of Lys/Arg near transmembrane domain (TMD) membrane-water interfaces can 'snorkel', placing their positive charge near negatively charged phospholipid head groups; however, snorkelling's functional effects are obscure. Integrin β TMDs have such conserved basic amino acids. Here we use NMR spectroscopy to show that integrin β(3)(Lys 716) helps determine β(3) TMD topography. The α(ΙΙb)β(3) TMD structure indicates that precise β(3) TMD crossing angles enable the assembly of outer and inner membrane 'clasps' that hold the αβ TMD together to limit transmembrane signalling. Mutation of β(3)(Lys 716) caused dissociation of α(ΙΙb)β(3) TMDs and integrin activation. To confirm that altered topography of β(3)(Lys 716) mutants activated α(ΙΙb)β(3), we used directed evolution of β(3)(K716A) to identify substitutions restoring default state. Introduction of Pro(711) at the midpoint of β(3) TMD (A711P) increased α(ΙΙb)β(3) TMD association and inactivated integrin α(ΙΙb)β(3)(A711P,K716A). β(3)(Pro 711) introduced a TMD kink of 30 ± 1° precisely at the border of the outer and inner membrane clasps, thereby decoupling the tilt between these segments. Thus, widely occurring snorkelling residues in TMDs can help maintain TMD topography and membrane-embedding, thereby regulating transmembrane signalling.

  10. Bidirectional Transformation of a Metamorphic Protein between the Water-Soluble and Transmembrane Native States.

    PubMed

    Tanaka, Koji; Caaveiro, Jose M M; Tsumoto, Kouhei

    2015-11-24

    The bidirectional transformation of a protein between its native water-soluble and integral transmembrane conformations is demonstrated for FraC, a hemolytic protein of the family of pore-forming toxins. In the presence of biological membranes, the water-soluble conformation of FraC undergoes a remarkable structural reorganization generating cytolytic transmembrane nanopores conducive to cell death. So far, the reverse transformation from the native transmembrane conformation to the native water-soluble conformation has not been reported. We describe the use of detergents with different physicochemical properties to achieve the spontaneous conversion of transmembrane pores of FraC back into the initial water-soluble state. Thermodynamic and kinetic stability data suggest that specific detergents cause an asymmetric change in the energy landscape of the protein, allowing the bidirectional transformation of a membrane protein.

  11. Elevated temperature triggers human respiratory syncytial virus F protein six-helix bundle formation

    SciTech Connect

    Yunus, Abdul S.; Jackson, Trent P.; Crisafi, Katherine; Burimski, Irina; Kilgore, Nicole R.; Zoumplis, Dorian; Allaway, Graham P.; Wild, Carl T.; Salzwedel, Karl

    2010-01-20

    Human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infection in infants, immunocompromised patients, and the elderly. The RSV fusion (F) protein mediates fusion of the viral envelope with the target cell membrane during virus entry and is a primary target for antiviral drug and vaccine development. The F protein contains two heptad repeat regions, HR1 and HR2. Peptides corresponding to these regions form a six-helix bundle structure that is thought to play a critical role in membrane fusion. However, characterization of six-helix bundle formation in native RSV F protein has been hindered by the fact that a trigger for F protein conformational change has yet to be identified. Here we demonstrate that RSV F protein on the surface of infected cells undergoes a conformational change following exposure to elevated temperature, resulting in the formation of the six-helix bundle structure. We first generated and characterized six-helix bundle-specific antibodies raised against recombinant peptides modeling the RSV F protein six-helix bundle structure. We then used these antibodies as probes to monitor RSV F protein six-helix bundle formation in response to a diverse array of potential triggers of conformational changes. We found that exposure of 'membrane-anchored' RSV F protein to elevated temperature (45-55 deg. C) was sufficient to trigger six-helix bundle formation. Antibody binding to the six-helix bundle conformation was detected by both flow cytometry and cell-surface immunoprecipitation of the RSV F protein. None of the other treatments, including interaction with a number of potential receptors, resulted in significant binding by six-helix bundle-specific antibodies. We conclude that native, untriggered RSV F protein exists in a metastable state that can be converted in vitro to the more stable, fusogenic six-helix bundle conformation by an increase in thermal energy. These findings help to better define the mechanism of

  12. The C-Terminal RpoN Domain of sigma54 Forms an unpredictedHelix-Turn-Helix Motif Similar to domains of sigma70

    SciTech Connect

    Doucleff, Michaeleen; Malak, Lawrence T.; Pelton, Jeffrey G.; Wemmer, David E.

    2005-11-01

    The ''{delta}'' subunit of prokaryotic RNA-polymerase allows gene-specific transcription initiation. Two {sigma} families have been identified, {sigma}{sup 70} and {sigma}{sup 54}, which use distinct mechanisms to initiate transcription and share no detectable sequence homology. Although the {sigma}{sup 70}-type factors have been well characterized structurally by x-ray crystallography, no high-resolution structural information is available for the {sigma}{sup 54}-type factors. Here we present the NMR derived structure of the C-terminal domain of {sigma}{sup 54} from Aquifex aeolicus. This domain (Thr323 to Gly389), which contains the highly conserved RpoN box sequence, consists of a poorly structured N-terminal tail followed by a three-helix bundle, which is surprisingly similar to domains of the {sigma}{sup 70}-type proteins. Residues of the RpoN box, which have previously been shown to be critical for DNA binding, form the second helix of an unpredicted helix-turn-helix motif. This structure's homology with other DNA binding proteins, combined with previous biochemical data, suggest how the C-terminal domain of {sigma}{sup 54} binds to DNA.

  13. Nonlinear analysis of helix traveling wave tubes

    SciTech Connect

    Freund, H.P.; Zaidman, E.G.; Vanderplaats, N.R.; Kodis, M.A.

    1994-12-31

    A nonlinear formulation of the interaction in a helix traveling wave tube (TWT) is presented. The formulation is intended to treat a wide class of helix TWTs including both emission-gated and multi-tone operation. The essential feature of each of these configurations is that multiple waves must be included in the formulation. As a result, a fully time-dependent analysis is required. The numerical procedure for this in a helix TWT is complicated by the fact that the radial profile of the field varies with frequency. This contrasts, for example, with the case of a smooth bore waveguide in which the radial profile for each TE{sub ln} or TM{sub ln} mode is invariant in frequency. Because of this, a complete self-consistent particle-in-cell (PIC) formulation must be three-dimensional. In order to circumvent the computational expense of a 3D PIC formulation, the authors adopt an approach in which the electromagnetic field is represented as a superposition of azimuthally symmetric modes in a vacuum sheath helix. The specific electron distributions are chosen to model either a continuous beam for the multi-tone TWT and a pulsed beam for the emission-gated TWT. Numerical results of the simulation for examples of interest to an emission-gated TWT experiment at NRL will be presented.

  14. A Triple Helix-Loop-Helix/Basic Helix-Loop-Helix Cascade Controls Cell Elongation Downstream of Multiple Hormonal and Environmental Signaling Pathways in Arabidopsis[C][W

    PubMed Central

    Bai, Ming-Yi; Fan, Min; Oh, Eunkyoo; Wang, Zhi-Yong

    2012-01-01

    Environmental and endogenous signals, including light, temperature, brassinosteroid (BR), and gibberellin (GA), regulate cell elongation largely by influencing the expression of the paclobutrazol-resistant (PRE) family helix-loop-helix (HLH) factors, which promote cell elongation by interacting antagonistically with another HLH factor, IBH1. However, the molecular mechanism by which PREs and IBH1 regulate gene expression has remained unknown. Here, we show that IBH1 interacts with and inhibits a DNA binding basic helix-loop-helix (bHLH) protein, HBI1, in Arabidopsis thaliana. Overexpression of HBI1 increased hypocotyl and petiole elongation, whereas dominant inactivation of HBI1 and its homologs caused a dwarf phenotype, indicating that HBI1 is a positive regulator of cell elongation. In vitro and in vivo experiments showed that HBI1 directly bound to the promoters and activated two EXPANSIN genes encoding cell wall–loosening enzymes; HBI1’s DNA binding and transcriptional activities were inhibited by IBH1, but the inhibitory effects of IBH1 were abolished by PRE1. The results indicate that PREs activate the DNA binding bHLH factor HBI1 by sequestering its inhibitor IBH1. Altering each of the three factors affected plant sensitivities to BR, GA, temperature, and light. Our study demonstrates that PREs, IBH1, and HBI1 form a chain of antagonistic switches that regulates cell elongation downstream of multiple external and endogenous signals. PMID:23221598

  15. Structural dynamics of soluble chloride intracellular channel protein CLIC1 examined by amide hydrogen-deuterium exchange mass spectrometry.

    PubMed

    Stoychev, Stoyan H; Nathaniel, Christos; Fanucchi, Sylvia; Brock, Melissa; Li, Sheng; Asmus, Kyle; Woods, Virgil L; Dirr, Heini W

    2009-09-01

    Chloride intracellular channel protein 1 (CLIC1) functions as an anion channel in plasma and nuclear membranes when its soluble monomeric form converts to an integral-membrane form. The transmembrane region of CLIC1 is located in its thioredoxin-like domain 1, but the mechanism whereby the protein converts to its membrane conformation has yet to be determined. Since channel formation in membranes is enhanced at low pH (5 to 5.5), a condition that is found at the surface of membranes, the structural dynamics of soluble CLIC1 was studied at pH 7 and at pH 5.5 in the absence of membranes by amide hydrogen-deuterium exchange mass spectrometry (DXMS). Rapid hydrogen exchange data indicate that CLIC1 displays a similar core structure at these pH values. Domain 1 is less stable than the all-helical domain 2, and, while the structure of domain 1 remains intact, its conformational flexibility is further increased in an acidic environment (pH 5.5). In the absence of membrane, an acidic environment appears to prime the solution structure of CLIC1 by destabilizing domain 1 in order to lower the activation energy barrier for its conversion to the membrane-insertion conformation. The significantly enhanced H/D-exchange rates at pH 5.5 displayed by two segments (peptides 11-31 and 68-82) could be due to the protonation of acidic residues in salt bridges. One of these segments (peptide 11-31) includes part of the transmembrane region which, in the solution structure, consists of helix alpha1. This helix is intrinsically stable and is most likely retained in the membrane conformation. Strand beta2, another element of the transmembrane region, displays a propensity to form a helical structure and has putative N- and C-capping motifs, suggesting that it too most likely forms a helix in a lipid bilayer.

  16. Helix A Stabilization Precedes Amino-terminal Lobe Activation upon Calcium Binding to Calmodulin

    SciTech Connect

    Chen, Baowei; Lowry, David; Mayer, M. Uljana; Squier, Thomas C.

    2008-08-09

    The structural coupling between opposing domains of CaM was investigated using the conformationally sensitive biarsenical probe 4,5-bis(1,3,2-dithioarsolan-2-yl)-resorufin (ReAsH), which upon binding to an engineered tetracysteine binding motif near the end of helix A (Thr-5 to Phe-19) becomes highly fluorescent. Changes in conformation and dynamics are reflective of the native CaM structure, as there is no change in the 1H-15N HSQC NMR spectrum in comparison to wild-type CaM. We find evidence of a conformational intermediate associated with CaM activation, where calcium occupancy of sites in the amino-terminal and carboxyl-terminal lobes of CaM differentially affect the fluorescence intensity of bound ReAsH. Insight into the structure of the conformational intermediate is possible from a consideration of calcium-dependent changes in rates of ReAsH binding and helix A mobility, which respectively distinguish secondary structural changes associated with helix A stabilization from the tertiary structural reorganization of the amino-terminal lobe of CaM necessary for high-affinity binding to target proteins. Helix A stabilization is associated with calcium occupancy of sites in the carboxyl-terminal lobe (Kd = 0.36 ± 0.04 μM), which results in a reduction in the rate of ReAsH binding from 4900 M-1 sec-1 to 370 M-1 sec-1. In comparison, tertiary structural changes involving helix A and other structural elements in the amino-terminal lobe requires calcium-occupancy of amino-terminal sites (Kd = 18 ± 3 μM). Observed secondary and tertiary structural changes involving helix A in response to the sequential calcium occupancy of carboxyl- and amino-terminal lobe calcium binding sites suggest an important involvement of helix A in mediating the structural coupling between the opposing domains of CaM. These results are discussed in terms of a model in which carboxyl-terminal lobe calcium activation induces

  17. The double helix and immunology

    NASA Astrophysics Data System (ADS)

    Nossal, Gustav J. V.

    2003-01-01

    The immune system can recognize and produce antibodies to virtually any molecule in the Universe. This enormous diversity arises from the ingenious reshuffling of DNA sequences encoding components of the immune system. Immunology is an example of a field completely transformed during the past 50 years by the discovery of the structure of DNA and the emergence of DNA technologies that followed.

  18. Thermodynamics of helix-coil transitions studied by multicanonical algorithms

    SciTech Connect

    Okamoto, Yuko; Hansmann, U.H.E.

    1995-07-13

    Thermodynamics of helix-coil transitions in amino acid homo-oligomers are studied by the recently proposed multicanonical algorithms. Homo-oligomers of length 10 are considered for three characteristic amino acids, alanine (helix former), valine (helix indifferent), and glycine (helix breaker). For alanine other lengths (15 and 20) are also considered in order to examine the length dependence. From one multicanonical production run with completely random initial conformations, we have obtained the lowest-energy conformations and various thermodynamic quantities (average helicity, Zimm-Bragg s and {sigma} parameters, free energy differences between helix and coil states, etc.) as functions of temperature. The results confirm the fact that alanine is helix-forming, valine is helix-indifferent, and glycine is helix-breaking. 36 refs., 10 figs., 5 tabs.

  19. Role of terminal dipole charges in aggregation of α-helix pair in the voltage gated K(+) channel.

    PubMed

    Adhya, Lipika; Mapder, Tarunendu; Adhya, Samit

    2013-02-01

    The voltage sensor domain (VSD) of the potassium ion channel KvAP is comprised of four (S1-S4) α-helix proteins, which are encompassed by several charged residues. Apart from these charges, each peptide α-helix having two inherent equal and opposite terminal dipolar charges behave like a macrodipole. The activity of voltage gated ion channel is electrostatic, where all the charges (charged residues and dipolar terminal charges) interact with each other and with the transmembrane potential. There are evidences that the role of the charged residues dominate the stabilization of the conformation and the gating process of the ion channel, but the role of the terminal dipolar charges are never considered in such analysis. Here, using electrostatic theory, we have studied the role of the dipolar terminal charges in aggregation of the S3b-S4 helix pair of KvAP in the absence of any external field (V=0). A system attains stability, when its potential energy reaches minimum values. We have shown that the presence of terminal dipole charges (1) change the total potential energy of the charges on S3b-S4, affecting the stabilization of the α-helix pair within the bilayer lipid membrane and (2) the C- and the N-termini of the α-helices favor a different dielectric medium for enhanced stability. Thus, the dipolar terminal charges play a significant role in the aggregation of the two neighboring α-helices.

  20. Molecular Insights into the Transmembrane Domain of the Thyrotropin Receptor

    PubMed Central

    Chantreau, Vanessa; Taddese, Bruck; Munier, Mathilde; Gourdin, Louis; Henrion, Daniel; Rodien, Patrice; Chabbert, Marie

    2015-01-01

    The thyrotropin receptor (TSHR) is a G protein-coupled receptor (GPCR) that is member of the leucine-rich repeat subfamily (LGR). In the absence of crystal structure, the success of rational design of ligands targeting the receptor internal cavity depends on the quality of the TSHR models built. In this subfamily, transmembrane helices (TM) 2 and 5 are characterized by the absence of proline compared to most receptors, raising the question of the structural conformation of these helices. To gain insight into the structural properties of these helices, we carried out bioinformatics and experimental studies. Evolutionary analysis of the LGR family revealed a deletion in TM5 but provided no information on TM2. Wild type residues at positions 2.58, 2.59 or 2.60 in TM2 and/or at position 5.50 in TM5 were substituted to proline. Depending on the position of the proline substitution, different effects were observed on membrane expression, glycosylation, constitutive cAMP activity and responses to thyrotropin. Only proline substitution at position 2.59 maintained complex glycosylation and high membrane expression, supporting occurrence of a bulged TM2. The TSHR transmembrane domain was modeled by homology with the orexin 2 receptor, using a protocol that forced the deletion of one residue in the TM5 bulge of the template. The stability of the model was assessed by molecular dynamics simulations. TM5 straightened during the equilibration phase and was stable for the remainder of the simulations. Our data support a structural model of the TSHR transmembrane domain with a bulged TM2 and a straight TM5 that is specific of glycoprotein hormone receptors. PMID:26545118

  1. Molecular Insights into the Transmembrane Domain of the Thyrotropin Receptor.

    PubMed

    Chantreau, Vanessa; Taddese, Bruck; Munier, Mathilde; Gourdin, Louis; Henrion, Daniel; Rodien, Patrice; Chabbert, Marie

    2015-01-01

    The thyrotropin receptor (TSHR) is a G protein-coupled receptor (GPCR) that is member of the leucine-rich repeat subfamily (LGR). In the absence of crystal structure, the success of rational design of ligands targeting the receptor internal cavity depends on the quality of the TSHR models built. In this subfamily, transmembrane helices (TM) 2 and 5 are characterized by the absence of proline compared to most receptors, raising the question of the structural conformation of these helices. To gain insight into the structural properties of these helices, we carried out bioinformatics and experimental studies. Evolutionary analysis of the LGR family revealed a deletion in TM5 but provided no information on TM2. Wild type residues at positions 2.58, 2.59 or 2.60 in TM2 and/or at position 5.50 in TM5 were substituted to proline. Depending on the position of the proline substitution, different effects were observed on membrane expression, glycosylation, constitutive cAMP activity and responses to thyrotropin. Only proline substitution at position 2.59 maintained complex glycosylation and high membrane expression, supporting occurrence of a bulged TM2. The TSHR transmembrane domain was modeled by homology with the orexin 2 receptor, using a protocol that forced the deletion of one residue in the TM5 bulge of the template. The stability of the model was assessed by molecular dynamics simulations. TM5 straightened during the equilibration phase and was stable for the remainder of the simulations. Our data support a structural model of the TSHR transmembrane domain with a bulged TM2 and a straight TM5 that is specific of glycoprotein hormone receptors. PMID:26545118

  2. Homolog Structure of the SLAC1 Anion Channel for Closing Stomata in Leaves

    PubMed Central

    Chen, Yuhang; Hu, Lei; Punta, Marco; Bruni, Renato; Hillerich, Brandan; Kloss, Brian; Rost, Burkhard; Love, James; Siegelbaum, Steven A.; Hendrickson, Wayne A.

    2012-01-01

    Summary The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating exchange of water vapor and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. We determined the crystal structure of a bacterial homolog of SLAC1 at 1.20Å resolution, and we have used structure-inspired mutagenesis to analyze the conductance properties of SLAC1 channels. SLAC1 is a symmetric trimer composed from quasi-symmetric subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated by an extremely conserved phenylalanine residue. Conformational features suggest a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics suggest that selectivity among different anions is largely a function of the energetic cost of ion dehydration. PMID:20981093

  3. Homologue Structure of the SLAC1 Anion Channel for Closing Stomata in Leaves

    SciTech Connect

    Y Chen; L Hu; M Punta; R Bruni; B Hillerich; B Kloss; B Rost; J Love; S Siegelbaum; W Hendrickson

    2011-12-31

    The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. Here we determine the crystal structure of a bacterial homologue (Haemophilus influenzae) of SLAC1 at 1.20 {angstrom} resolution, and use structure-inspired mutagenesis to analyse the conductance properties of SLAC1 channels. SLAC1 is a symmetrical trimer composed from quasi-symmetrical subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated by an extremely conserved phenylalanine residue. Conformational features indicate a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics indicate that selectivity among different anions is largely a function of the energetic cost of ion dehydration.

  4. Designing Covalently Linked Heterodimeric Four-Helix Bundles.

    PubMed

    Chino, M; Leone, L; Maglio, O; Lombardi, A

    2016-01-01

    De novo design has proven a powerful methodology for understanding protein folding and function, and for mimicking or even bettering the properties of natural proteins. Extensive progress has been made in the design of helical bundles, simple structural motifs that can be nowadays designed with a high degree of precision. Among helical bundles, the four-helix bundle is widespread in nature, and is involved in numerous and fundamental processes. Representative examples are the carboxylate bridged diiron proteins, which perform a variety of different functions, ranging from reversible dioxygen binding to catalysis of dioxygen-dependent reactions, including epoxidation, desaturation, monohydroxylation, and radical formation. The "Due Ferri" (two-irons; DF) family of proteins is the result of a de novo design approach, aimed to reproduce in minimal four-helix bundle models the properties of the more complex natural diiron proteins, and to address how the amino acid sequence modulates their functions. The results so far obtained point out that asymmetric metal environments are essential to reprogram functions, and to achieve the specificity and selectivity of the natural enzymes. Here, we describe a design method that allows constructing asymmetric four-helix bundles through the covalent heterodimerization of two different α-helical harpins. In particular, starting from the homodimeric DF3 structure, we developed a protocol for covalently linking the two α2 monomers by using the Cu(I) catalyzed azide-alkyne cycloaddition. The protocol was then generalized, in order to include the construction of several linkers, in different protein positions. Our method is fast, low cost, and in principle can be applied to any couple of peptides/proteins we desire to link. PMID:27586346

  5. Structural Basis for the Trembler-J Phenotype of Charcot-Marie-Tooth Disease

    PubMed Central

    Sakakura, Masayoshi; Hadziselimovic, Arina; Wang, Zhen; Schey, Kevin L.; Sanders, Charles R.

    2011-01-01

    Summary Mutations in peripheral myelin protein 22 (PMP22) can result in the common peripheral neuropathy, Charcot-Marie-Tooth disease (CMTD). The Leu16Pro mutation in PMP22 results in misassembly of the protein, which causes the Trembler-J (TrJ) disease phenotype. Here we elucidate the structural defects present in a partially folded state of TrJ PMP22 that are decisive in promoting CMTD-causing misfolding. In this state transmembrane helices 2-4 (TM2-4) form a molten-globular bundle while transmembrane helix 1 (TM1) is dissociated from this bundle. The TrJ mutation was seen to profoundly disrupt the TM1 helix, resulting in increased backbone dynamics and changes in the tertiary interactions of TM1 with the PMP22 TM2-4 core in the folded state. Consequently, TM1 undergoes enhanced dissociation from the other transmembrane segments in TrJ PMP22, becoming available for recognition and sequestration by protein folding quality control, leading to loss of function and toxic accumulation of aggregates that results in CMTD. PMID:21827951

  6. Conformational Response of Influenza A M2 Transmembrane Domain to Amantadine Drug Binding at Low pH (pH 5.5).

    PubMed

    Georgieva, Elka R; Borbat, Peter P; Grushin, Kirill; Stoilova-McPhie, Svetla; Kulkarni, Nichita J; Liang, Zhichun; Freed, Jack H

    2016-01-01

    The M2 protein from influenza A plays important roles in its viral cycle. It contains a single transmembrane helix, which oligomerizes into a homotetrameric proton channel that conducts in the low-pH environment of the host-cell endosome and Golgi apparatus, leading to virion uncoating at an early stage of infection. We studied conformational rearrangements that occur in the M2 core transmembrane domain residing on the lipid bilayer, flanked by juxtamembrane residues (M2TMD21-49 fragment), upon its interaction with amantadine drug at pH 5.5 when M2 is conductive. We also tested the role of specific mutation and lipid chain length. Electron spin resonance (ESR) spectroscopy and electron microscopy were applied to M2TMD21-49, labeled at the residue L46C with either nitroxide spin-label or Nanogold® reagent, respectively. Electron microscopy confirmed that M2TMD21-49 reconstituted into DOPC/POPS at 1:10,000 peptide-to-lipid molar ratio (P/L) either with or without amantadine, is an admixture of monomers, dimers, and tetramers, confirming our model based on a dimer intermediate in the assembly of M2TMD21-49. As reported by double electron-electron resonance (DEER), in DOPC/POPS membranes amantadine shifts oligomer equilibrium to favor tetramers, as evidenced by an increase in DEER modulation depth for P/L's ranging from 1:18,000 to 1:160. Furthermore, amantadine binding shortens the inter-spin distances (for nitroxide labels) by 5-8 Å, indicating drug induced channel closure on the C-terminal side. No such effect was observed for the thinner membrane of DLPC/DLPS, emphasizing the role of bilayer thickness. The analysis of continuous wave (cw) ESR spectra of spin-labeled L46C residue provides additional support to a more compact helix bundle in amantadine-bound M2TMD 21-49 through increased motional ordering. In contrast to wild-type M2TMD21-49, the amantadine-bound form does not exhibit noticeable conformational changes in the case of G34A mutation found in certain

  7. Conformational Response of Influenza A M2 Transmembrane Domain to Amantadine Drug Binding at Low pH (pH 5.5)

    PubMed Central

    Georgieva, Elka R.; Borbat, Peter P.; Grushin, Kirill; Stoilova-McPhie, Svetla; Kulkarni, Nichita J.; Liang, Zhichun; Freed, Jack H.

    2016-01-01

    The M2 protein from influenza A plays important roles in its viral cycle. It contains a single transmembrane helix, which oligomerizes into a homotetrameric proton channel that conducts in the low-pH environment of the host-cell endosome and Golgi apparatus, leading to virion uncoating at an early stage of infection. We studied conformational rearrangements that occur in the M2 core transmembrane domain residing on the lipid bilayer, flanked by juxtamembrane residues (M2TMD21−49 fragment), upon its interaction with amantadine drug at pH 5.5 when M2 is conductive. We also tested the role of specific mutation and lipid chain length. Electron spin resonance (ESR) spectroscopy and electron microscopy were applied to M2TMD21−49, labeled at the residue L46C with either nitroxide spin-label or Nanogold® reagent, respectively. Electron microscopy confirmed that M2TMD21−49 reconstituted into DOPC/POPS at 1:10,000 peptide-to-lipid molar ratio (P/L) either with or without amantadine, is an admixture of monomers, dimers, and tetramers, confirming our model based on a dimer intermediate in the assembly of M2TMD21−49. As reported by double electron-electron resonance (DEER), in DOPC/POPS membranes amantadine shifts oligomer equilibrium to favor tetramers, as evidenced by an increase in DEER modulation depth for P/L's ranging from 1:18,000 to 1:160. Furthermore, amantadine binding shortens the inter-spin distances (for nitroxide labels) by 5–8 Å, indicating drug induced channel closure on the C-terminal side. No such effect was observed for the thinner membrane of DLPC/DLPS, emphasizing the role of bilayer thickness. The analysis of continuous wave (cw) ESR spectra of spin-labeled L46C residue provides additional support to a more compact helix bundle in amantadine-bound M2TMD 21−49 through increased motional ordering. In contrast to wild-type M2TMD21−49, the amantadine-bound form does not exhibit noticeable conformational changes in the case of G34A mutation

  8. The Arabidopsis Basic/Helix-Loop-Helix Transcription Factor FamilyW⃞

    PubMed Central

    Toledo-Ortiz, Gabriela; Huq, Enamul; Quail, Peter H.

    2003-01-01

    The basic/helix-loop-helix (bHLH) proteins are a superfamily of transcription factors that bind as dimers to specific DNA target sites and that have been well characterized in nonplant eukaryotes as important regulatory components in diverse biological processes. Based on evidence that the bHLH protein PIF3 is a direct phytochrome reaction partner in the photoreceptor's signaling network, we have undertaken a comprehensive computational analysis of the Arabidopsis genome sequence databases to define the scope and features of the bHLH family. Using a set of criteria derived from a previously defined consensus motif, we identified 147 bHLH protein–encoding genes, making this one of the largest transcription factor families in Arabidopsis. Phylogenetic analysis of the bHLH domain sequences permits classification of these genes into 21 subfamilies. The evolutionary and potential functional relationships implied by this analysis are supported by other criteria, including the chromosomal distribution of these genes relative to duplicated genome segments, the conservation of variant exon/intron structural patterns, and the predicted DNA binding activities within subfamilies. Considerable diversity in DNA binding site specificity among family members is predicted, and marked divergence in protein sequence outside of the conserved bHLH domain is observed. Together with the established propensity of bHLH factors to engage in varying degrees of homodimerization and heterodimerization, these observations suggest that the Arabidopsis bHLH proteins have the potential to participate in an extensive set of combinatorial interactions, endowing them with the capacity to be involved in the regulation of a multiplicity of transcriptional programs. We provide evidence from yeast two-hybrid and in vitro binding assays that two related phytochrome-interacting members in the Arabidopsis family, PIF3 and PIF4, can form both homodimers and heterodimers and that all three dimeric

  9. Structured and disordered facets of the GPCR fold.

    PubMed

    Venkatakrishnan, A J; Flock, Tilman; Prado, Daniel Estévez; Oates, Matt E; Gough, Julian; Madan Babu, M

    2014-08-01

    The seven-transmembrane (7TM) helix fold of G-protein coupled receptors (GPCRs) has been adapted for a wide variety of physiologically important signaling functions. Here, we discuss the diversity in the structured and disordered regions of GPCRs based on the recently published crystal structures and sequence analysis of all human GPCRs. A comparison of the structures of rhodopsin-like receptors (class A), secretin-like receptors (class B), metabotropic receptors (class C) and frizzled receptors (class F) shows that the relative arrangement of the transmembrane helices is conserved across all four GPCR classes although individual receptors can be activated by ligand binding at varying positions within and around the transmembrane helical bundle. A systematic analysis of GPCR sequences reveals the presence of disordered segments in the cytoplasmic side, abundant post-translational modification sites, evidence for alternative splicing and several putative linear peptide motifs that have the potential to mediate interactions with cytosolic proteins. While the structured regions permit the receptor to bind diverse ligands, the disordered regions appear to have an underappreciated role in modulating downstream signaling in response to the cellular state. An integrated paradigm combining the knowledge of structured and disordered regions is imperative for gaining a holistic understanding of the GPCR (un)structure-function relationship. PMID:25198166

  10. Helix dipole movement and conformational variability contribute to allosteric GDP release in Gαi subunits†‡

    PubMed Central

    Preininger, Anita M.; Funk, Michael A.; Meier, Scott M.; Oldham, William M.; Johnston, Christopher A.; Adhikary, Suraj; Kimple, Adam J.; Siderovski, David P.; Hamm, Heidi E.; Iverson, Tina M.

    2009-01-01

    Heterotrimeric G proteins (Gαβγ) transmit signals from activated G protein coupled receptors (GPCRs) to downstream effectors through a guanine nucleotide signaling cycle. Numerous studies indicate that the carboxy-terminal α5 helix of Gα subunits participate in Gα-receptor binding, and previous EPR studies suggest this receptor-mediated interaction induces a rotation and translation of the α5 helix of the Gα subunit [Oldham et al., Nat. Struct. Mol. Biol., 13: 772-7 (2006)]. Based on this result, an engineered disulfide bond was designed to constrain the α5 helix of Gαi1 into its EPR-measured receptor-associated conformation through the introduction of cysteines at positions 56 in the α1 helix and 333 in the α5 helix (I56C/Q333C Gαi1). A functional mimetic of the EPR-measured α5 helix dipole movement upon receptor association was additionally created by introduction of a positive charge at the amino-terminus of this helix, D328R Gαi1. Both proteins exhibit dramatically elevated basal nucleotide exchange. The 2.9 Å resolution crystal structure of the I56C/Q333C Gαi1 in complex with GDP-AlF4 − reveals the shift of the α5 helix toward the guanine nucleotide-binding site that is anticipated by EPR measurements. The structure of the I56C/Q333C Gαi1 subunit further revealed altered positions for the switch regions and throughout the Gαi1 subunit, accompanied by significantly elevated crystallographic temperature factors. Combined with previous evidence in the literature, the structural analysis supports the critical role of electrostatics of the α5 helix dipole and overall conformational variability during nucleotide release. PMID:19222191

  11. The 'helix clamp' in HIV-1 reverse transcriptase: a new nucleic acid binding motif common in nucleic acid polymerases.

    PubMed Central

    Hermann, T; Meier, T; Götte, M; Heumann, H

    1994-01-01

    Amino acid sequences homologous to 259KLVGKL (X)16KLLR284 of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) are conserved in several nucleotide polymerizing enzymes. This amino acid motif has been identified in the crystal structure model as an element of the enzyme's nucleic acid binding apparatus. It is part of the helix-turn-helix structure, alpha H-turn-alpha I, within the 'thumb' region of HIV-1 RT. The motif grasps the complexed nucleic acid at one side. Molecular modeling studies on HIV-1 RT in complex with a nucleic acid fragment suggest that the motif has binding function in the p66 subunit as well as in the p51 subunit, acting as a kind of 'helix clamp'. Given its wide distribution within the nucleic acid polymerases, the helix clamp motif is assumed to be a structure of general significance for nucleic acid binding. Images PMID:7527138

  12. Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides.

    PubMed

    Best, Robert B; Hummer, Gerhard

    2009-07-01

    Obtaining the correct balance of secondary structure propensities is a central priority in protein force-field development. Given that current force fields differ significantly in their alpha-helical propensities, a correction to match experimental results would be highly desirable. We have determined simple backbone energy corrections for two force fields to reproduce the fraction of helix measured in short peptides at 300 K. As validation, we show that the optimized force fields produce results in excellent agreement with nuclear magnetic resonance experiments for folded proteins and short peptides not used in the optimization. However, despite the agreement at ambient conditions, the dependence of the helix content on temperature is too weak, a problem shared with other force fields. A fit of the Lifson-Roig helix-coil theory shows that both the enthalpy and entropy of helix formation are too small: the helix extension parameter w agrees well with experiment, but its entropic and enthalpic components are both only about half the respective experimental estimates. Our structural and thermodynamic analyses point toward the physical origins of these shortcomings in current force fields, and suggest ways to address them in future force-field development.

  13. Broadband circular polarizers constructed using helix-like chiral metamaterials

    NASA Astrophysics Data System (ADS)

    Ji, Ruonan; Wang, Shao-Wei; Liu, Xingxing; Chen, Xiaoshuang; Lu, Wei

    2016-08-01

    In this paper, one kind of helix-like chiral metamaterial which can be realized by multiple conventional lithography or electron beam lithographic techniques is proposed to have a broadband bianisotropic optical response analogous to helical metamaterials. On the basis of twisted metamaterials, via tailoring the relative orientation within the lattice, the anisotropy of arcs is converted into magneto-electric coupling of closely spaced arc pairs, which leads to a broad bianisotropic optical response. By connecting the adjacent upper and lower arcs, the coupling of metasurface pairs is transformed into the coupling of the three-dimensional inclusions, and provides a much broader and higher bianisotropic optical response. For only a four-layer helix-like metamaterial, the maximum extinction ratio can reach 19.7. The operation band is in the wavelength range of 4.69 μm to 8.98 μm with an average extinction ratio of 6.9. And the transmittance for selective polarization is above 0.8 in the entire operation band. Such a structure is a promising candidate for integratable and scalable broadband circular polarizers, especially it has great potential to act as a broadband circular micropolarizer in the field of the full-Stokes division of focal plane polarimeters.In this paper, one kind of helix-like chiral metamaterial which can be realized by multiple conventional lithography or electron beam lithographic techniques is proposed to have a broadband bianisotropic optical response analogous to helical metamaterials. On the basis of twisted metamaterials, via tailoring the relative orientation within the lattice, the anisotropy of arcs is converted into magneto-electric coupling of closely spaced arc pairs, which leads to a broad bianisotropic optical response. By connecting the adjacent upper and lower arcs, the coupling of metasurface pairs is transformed into the coupling of the three-dimensional inclusions, and provides a much broader and higher bianisotropic optical

  14. Folding Dynamics of an α Helix and a β Hairpin

    NASA Astrophysics Data System (ADS)

    Hofrichter, James

    1998-03-01

    What processes limit the rate at which proteins fold? In an effort to address this question we have begun to study the dynamics of the formation of loops, α helices and the minimal β structural element, a β hairpin, which must occur on the pathway from random coils to folded proteins. Because these processes occur on time scales of 10-5-10-9 seconds and experimental access to these time scales has been limited, the kinetics of these processes have not been extensively studied. The expectation is that a more complete understanding of the dynamics of these microprocesses will provide constraints on possible mechanisms for the overall folding of more complex structures. We have explored the kinetics of the helix-coil transition of a synthetic, 21-residue peptide: Ac-WAAAH^+(AAARA)_3A-NH2 and of the folding of a 16 residue β hairpin from protein G B1 using the nanosecond temperature jump technique. Both processes were studied by monitoring tryptophan fluorescence. In the helical peptide, the quantum yield of tryptophan decreases as a result of the interaction between tryptophan in position 1 with the protonated histidine in position 5. In the native conformation of the hairpin, it increases because it forms part of a hydrophobic cluster which stabilizes the native conformation (in a peptide in which a dansylated lysine is incorporated at the C-terminus the fluorescence is quenched). At 300 K, the relaxation time for the helix-coil transition is ~ 250 ns and that for the hairpin-coil transition is ~ 2.2 μs, about 10 times slower. The apparent activation energies are 6.8 kcal/mol for the helix and 10 kcal/mol for the hairpin. We have developed simple kinetic models for these processes which incorporate the sequence- and position-dependent properties known from equilibrium studies and the single-sequence approximation. These models provide a remarkably consistent picture of the dynamics, permitting us to extract information on both the microscopic rates for the c

  15. Probing the Non-Native H Helix Translocation in Apomyoglobin Folding Intermediates

    PubMed Central

    2015-01-01

    Apomyoglobin folds via sequential helical intermediates that are formed by rapid collapse of the A, B, G, and H helix regions. An equilibrium molten globule with a similar structure is formed near pH 4. Previous studies suggested that the folding intermediates are kinetically trapped states in which folding is impeded by non-native packing of the G and H helices. Fluorescence spectra of mutant proteins in which cysteine residues were introduced at several positions in the G and H helices show differential quenching of W14 fluorescence, providing direct evidence of translocation of the H helix relative to helices A and G in both the kinetic and equilibrium intermediates. Förster resonance energy transfer measurements show that a 5-({2-[(acetyl)amino]ethyl}amino)naphthalene-1-sulfonic acid acceptor coupled to K140C (helix H) is closer to Trp14 (helix A) in the equilibrium molten globule than in the native state, by a distance that is consistent with sliding of the H helix in an N-terminal direction by approximately one helical turn. Formation of an S108C–L135C disulfide prevents H helix translocation in the equilibrium molten globule by locking the G and H helices into their native register. By enforcing nativelike packing of the A, G, and H helices, the disulfide resolves local energetic frustration and facilitates transient docking of the E helix region onto the hydrophobic core but has only a small effect on the refolding rate. The apomyoglobin folding landscape is highly rugged, with several energetic bottlenecks that frustrate folding; relief of any one of the major identified bottlenecks is insufficient to speed progression to the transition state. PMID:24857522

  16. Probing the non-native H helix translocation in apomyoglobin folding intermediates.

    PubMed

    Aoto, Phillip C; Nishimura, Chiaki; Dyson, H Jane; Wright, Peter E

    2014-06-17

    Apomyoglobin folds via sequential helical intermediates that are formed by rapid collapse of the A, B, G, and H helix regions. An equilibrium molten globule with a similar structure is formed near pH 4. Previous studies suggested that the folding intermediates are kinetically trapped states in which folding is impeded by non-native packing of the G and H helices. Fluorescence spectra of mutant proteins in which cysteine residues were introduced at several positions in the G and H helices show differential quenching of W14 fluorescence, providing direct evidence of translocation of the H helix relative to helices A and G in both the kinetic and equilibrium intermediates. Förster resonance energy transfer measurements show that a 5-({2-[(acetyl)amino]ethyl}amino)naphthalene-1-sulfonic acid acceptor coupled to K140C (helix H) is closer to Trp14 (helix A) in the equilibrium molten globule than in the native state, by a distance that is consistent with sliding of the H helix in an N-terminal direction by approximately one helical turn. Formation of an S108C-L135C disulfide prevents H helix translocation in the equilibrium molten globule by locking the G and H helices into their native register. By enforcing nativelike packing of the A, G, and H helices, the disulfide resolves local energetic frustration and facilitates transient docking of the E helix region onto the hydrophobic core but has only a small effect on the refolding rate. The apomyoglobin folding landscape is highly rugged, with several energetic bottlenecks that frustrate folding; relief of any one of the major identified bottlenecks is insufficient to speed progression to the transition state. PMID:24857522

  17. A novel target recognition revealed by calmodulin in complex with the basic helix--loop--helix transcription factor SEF2-1/E2-2.

    PubMed

    Larsson, G; Schleucher, J; Onions, J; Hermann, S; Grundström, T; Wijmenga, S S

    2001-01-01

    Calmodulin is the predominant intracellular receptor for Ca(2+) signals, mediating the regulation of numerous cellular processes. It can inhibit the DNA binding of basic helix--loop--helix transcription factors by a direct interaction of a novel type. To structurally characterize this novel calmodulin-target interaction, we decided to study the complex of calmodulin with a dimeric peptide corresponding to the DNA-binding domains of the dimeric basic helix-loop-helix transcription factor SEF2-1 (SEF2-1mp) using NMR. Here, we report that the stoichiometry of the calmodulin:SEF2-1mp complex is one dimeric peptide binding two calmodulin molecules. We also report the 1H, 13C, and 15N resonance assignments and the secondary structure of calmodulin in this for NMR large (approximately 38 kD) complex, as well as the 1H assignments and secondary structure of SEF2-1mp. In addition, we determined the amide proton exchange rates of calmodulin and measured intermolecular calmodulin:SEF2-1mp and calmodulin:calmodulin NOE contacts. The isotope-filtered experiments show a large number of SEF2-1mp to calmodulin NOE contacts indicating that a tight complex is formed, which is confirmed by an intermolecular calmodulin:calmodulin NOE contact. The secondary structure and amide proton exchange data show that the binding does not occur via the classical wraparound binding mode. Instead, the data indicate that calmodulin interacts with SEF2-1mp in a more open conformation, although the hydrophobic surfaces of the N- and C-terminal domains still form the main interaction sites. Interactions involving charged residues are also identified in agreement with the known relatively high sensitivity of the binding to ionic strength. Finally, the peptide does not form an alpha-helix as in the classical wraparound binding mode. PMID:11266605

  18. A study on the structural features of SELK, an over-expressed protein in hepatocellular carcinoma, by molecular dynamics simulations in a lipid-water system.

    PubMed

    Polo, Andrea; Guariniello, Stefano; Colonna, Giovanni; Ciliberto, Gennaro; Costantini, Susan

    2016-10-20

    Human SELK is a small trans-membrane selenoprotein characterized by a single trans-membrane helix, while the N-terminal region protrudes into the lumen and the long C-terminal domain into the cytoplasm. SELK is over-expressed in some cancers, like hepatocellular carcinoma; however its precise role in cancer development is presently unknown. SELK is involved in promoting the calcium flux, catalyzing palmitoylation reactions and protein degradation in the endoplasmic reticulum (ER). Therefore, this protein should bind many different proteins like p97/VCP in the supramolecular complex involved in the ER degradation pathway. To study the structural features of SELK in the membrane, we have modeled the protein and then subjected it to molecular dynamics simulations in a lipid-water system. The model shows a N-terminal domain with three β-strands and a short helix, a well-defined trans-membrane helix and a C-terminal domain that lacks a persistent secondary structure and contains long disordered regions. The trajectory analysis during the simulation evidences that: (i) the N-terminal region explores a limited conformational space and is stabilized by intra-peptide H-bonds as well with membrane lipids and water, (ii) the trans-membrane helix was found to be quite stable and (iii) the disordered C-terminal region is stabilized by H-bonds with clustered water molecules as well as by rapidly interchanging intra-peptidic H-bonds, with a structural tendency to compact around the four HUB residues found for this domain. Moreover, N-terminal and C-terminal clusters are distributed differently in the conformational space suggesting that their dynamics are coupled complicatedly through the membrane. Further analyses have shown that the N-terminal has a tendency to pivot around the insertion with the TM-helix through the fluctuations of the three β-strands, which, in turn, show features similar to WW-domains. These results will be useful to study the SELK, SELS and VCP complex

  19. HelixFlex: bioinspired maneuverable instrument for skull base surgery.

    PubMed

    Gerboni, Giada; Henselmans, Paul W J; Arkenbout, Ewout A; van Furth, Wouter R; Breedveld, Paul

    2015-12-01

    Endoscopic endonasal surgery is currently regarded as the 'gold standard' for operating on pituitary gland tumors, and is becoming more and more accepted for treatment of other skull base lesions. However, endoscopic surgical treatment of most skull base pathologies, including certain pituitary tumors, is severely impaired by current instruments lack of maneuverability. Especially, gaining access to, and visibility of, difficult-to-reach anatomical corners without interference with surrounding neurovascular structures or other instruments, is a challenge. In this context there is the need for instruments that are able to provide a stable shaft position, while both the orientation and the position of the end-effector can be independently controlled. Current instruments that allow for this level of maneuverability are usually mechanically complex, and hence less suitable for mass production. This study therefore focuses on the development of a new actuation technique that allows for the required maneuverability while reducing the construction complexity. This actuation technique, referred to as multi-actuation, integrates multiple cable routings into a single steerable structure. Multi-actuation has been successfully integrated and tested in a handheld prototype instrument called HelixFlex. HelixFlex contains a 4 degrees of freedom maneuverable 5.8 mm (diameter) tip and shows promising results concerning its maneuverability and potential rigidity.

  20. The three-dimensional structure of the cytoplasmic domains of EpsF from the type 2 secretion system of Vibrio cholerae

    PubMed Central

    Abendroth, Jan; Mitchell, Daniel D.; Korotkov, Konstantin V.; Johnson, Tanya L.; Kreger, Allison; Sandkvist, Maria; Hol, Wim G. J.

    2009-01-01

    The type 2 secretion system (T2SS), a multi-protein machinery that spans both the inner and the outer membranes of Gram-negative bacteria, is used for the secretion of several critically important proteins across the outer membrane. Here we report the crystal structure of the N-terminal cytoplasmic domain of EpsF, an inner membrane spanning T2SS protein from Vibrio cholerae. This domain consists of a bundle of six anti-parallel helices and adopts a fold that has not been described before. The long C-terminal helix α6 protrudes from the body of the domain and most likely continues as the first transmembrane helix of EpsF. Two N-terminal EpsF domains form a tight dimer with a conserved interface, suggesting that the observed dimer occurs in the T2SS of many bacteria. Two calcium binding sites are present in the dimer interface with ligands provided for each site by both subunits. Based on this new structure, sequence comparisons of EpsF homologs and localization studies of GFP fused with EpsF, we propose that the second cytoplasmic domain of EpsF adopts a similar fold as the first cytoplasmic domain and that full-length EpsF, and its T2SS homologs, have a three-transmembrane helix topology. PMID:19324092

  1. DNA binding, nucleotide flipping, and the helix-turn-helix motif in base repair by O6-alkylguanine-DNA alkyltransferase and its implications for cancer chemotherapy

    PubMed Central

    Tubbs, Julie L.; Pegg, Anthony E.; Tainer, John A.

    2007-01-01

    O6-alkylguanine-DNA alkyltransferase (AGT) is a crucial target both for the prevention of cancer and for chemotherapy, since it repairs mutagenic lesions in DNA, and it limits the effectiveness of alkylating chemotherapies. AGT catalyzes the unique, single-step, direct damage reversal repair of O6-alkylguanines by selectively transferring the O6-alkyl adduct to an internal cysteine residue. Recent crystal structures of human AGT alone and in complex with substrate DNA reveal a two-domain a/β fold and a bound zinc ion. AGT uses its helix-turn-helix motif to bind substrate DNA via the minor groove. The alkylated guanine is then flipped out from the base stack into the AGT active site for repair by covalent transfer of the alkyl adduct to Cys145. An asparagine hinge (Asn137) couples the helix-turn-helix DNA binding and active site motifs. An arginine finger (Arg128) stabilizes the extrahelical DNA conformation. With this newly improved structural understanding of AGT and its interactions with biologically relevant substrates, we can now begin to unravel the role it plays in preserving genetic integrity and discover how it promotes resistance to anticancer therapies. PMID:17485252

  2. A functional relationship between helix 1 and the 900 tetraloop of 16S ribosomal RNA within the bacterial ribosome.

    PubMed

    Bélanger, François; Théberge-Julien, Gabriel; Cunningham, Philip R; Brakier-Gingras, Léa

    2005-06-01

    The conserved 900 tetraloop that caps helix 27 of 16S ribosomal RNA (rRNA) interacts with helix 24 of 16S rRNA and also with helix 67 of 23S rRNA, forming the intersubunit bridge B2c, proximal to the decoding center. In previous studies, we investigated how the interaction between the 900 tetraloop and helix 24 participates in subunit association and translational fidelity. In the present study, we investigated whether the 900 tetraloop is involved in other undetected interactions with different regions of the Escherichia coli 16S rRNA. Using a genetic complementation approach, we selected mutations in 16S rRNA that compensate for a 900 tetraloop mutation, A900G, which severely impairs subunit association and translational fidelity. Mutations were randomly introduced in 16S rRNA, using either a mutagenic XL1-Red E. coli strain or an error-prone PCR strategy. Gain-offunction mutations were selected in vivo with a specialized ribosome system. Two mutations, the deletion of U12 and the U12C substitution, were thus independently selected in helix 1 of 16S rRNA. This helix is located in the vicinity of helix 27, but does not directly contact the 900 tetraloop in the crystal structures of the ribosome. Both mutations correct the subunit association and translational fidelity defects caused by the A900G mutation, revealing an unanticipated functional interaction between these two regions of 16S rRNA.

  3. Ion fluxes through nanopores and transmembrane channels

    NASA Astrophysics Data System (ADS)

    Bordin, J. R.; Diehl, A.; Barbosa, M. C.; Levin, Y.

    2012-03-01

    We introduce an implicit solvent Molecular Dynamics approach for calculating ionic fluxes through narrow nanopores and transmembrane channels. The method relies on a dual-control-volume grand-canonical molecular dynamics (DCV-GCMD) simulation and the analytical solution for the electrostatic potential inside a cylindrical nanopore recently obtained by Levin [Europhys. Lett.EULEEJ0295-507510.1209/epl/i2006-10240-4 76, 163 (2006)]. The theory is used to calculate the ionic fluxes through an artificial transmembrane channel which mimics the antibacterial gramicidin A channel. Both current-voltage and current-concentration relations are calculated under various experimental conditions. We show that our results are comparable to the characteristics associated to the gramicidin A pore, especially the existence of two binding sites inside the pore and the observed saturation in the current-concentration profiles.

  4. Incorporating significant amino acid pairs to identify O-linked glycosylation sites on transmembrane proteins and non-transmembrane proteins

    PubMed Central

    2010-01-01

    Background While occurring enzymatically in biological systems, O-linked glycosylation affects protein folding, localization and trafficking, protein solubility, antigenicity, biological activity, as well as cell-cell interactions on membrane proteins. Catalytic enzymes involve glycotransferases, sugar-transferring enzymes and glycosidases which trim specific monosaccharides from precursors to form intermediate structures. Due to the difficulty of experimental identification, several works have used computational methods to identify glycosylation sites. Results By investigating glycosylated sites that contain various motifs between Transmembrane (TM) and non-Transmembrane (non-TM) proteins, this work presents a novel method, GlycoRBF, that implements radial basis function (RBF) networks with significant amino acid pairs (SAAPs) for identifying O-linked glycosylated serine and threonine on TM proteins and non-TM proteins. Additionally, a membrane topology is considered for reducing the false positives on glycosylated TM proteins. Based on an evaluation using five-fold cross-validation, the consideration of a membrane topology can reduce 31.4% of the false positives when identifying O-linked glycosylation sites on TM proteins. Via an independent test, GlycoRBF outperforms previous O-linked glycosylation site prediction schemes. Conclusion A case study of Cyclic AMP-dependent transcription factor ATF-6 alpha was presented to demonstrate the effectiveness of GlycoRBF. Web-based GlycoRBF, which can be accessed at http://GlycoRBF.bioinfo.tw, can identify O-linked glycosylated serine and threonine effectively and efficiently. Moreover, the structural topology of Transmembrane (TM) proteins with glycosylation sites is provided to users. The stand-alone version of GlycoRBF is also available for high throughput data analysis. PMID:21034461

  5. Solid-state NMR investigations of peptide-lipid interactions of the transmembrane domain of a plant-derived protein, Hcf106.

    PubMed

    Zhang, Lei; Liu, Lishan; Maltsev, Sergey; Lorigan, Gary A; Dabney-Smith, Carole

    2013-01-01

    The chloroplast twin arginine translocation system transports highly folded precursor proteins across the thylakoid using the protonmotive force as its only energy source. Hcf106 and another thylakoid protein, cpTatC compose the precursor receptor complex. Hcf106 is predicted to contain a single amino terminal transmembrane domain (TMD) followed by a Pro-Gly hinge, an amphipathic α-helix, and a loosely structured carboxyl terminus. Hcf106 has been shown biochemically to insert spontaneously into thylakoid membranes; however, how this occurs is not understood. To investigate how Hcf106 inserts itself into the membrane unassisted, solid-state NMR spectroscopy was used to investigate the membrane activity of the TMD. A synthetic peptide of the Hcf106 TMD was incorporated into multilamellar vesicles made of 100% 1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine (POPC) or 85%:15% ratio with monogalactosyl diacylglycerol (POPC/MGDG) to probe peptide-lipid interaction. Solid-state (31)P NMR and (2)H NMR spectroscopic techniques were used to reveal peptide perturbations of the phospholipid membranes. Changes in spectral lineshape, chemical shift anisotropy width, (31)P T1 relaxation time and SCD order parameters demonstrated that the Hcf106 TMD peptide interacted with the phospholipids. Furthermore, the comparison between POPC and POPC/MGDG multilamellar vesicles indicated that lipid bilayer composition affected the peptide-lipid interaction with the peptide interacting preferentially with vesicles that more closely mimic the thylakoid.

  6. Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris.

    PubMed

    Roszak, Aleksander W; Howard, Tina D; Southall, June; Gardiner, Alastair T; Law, Christopher J; Isaacs, Neil W; Cogdell, Richard J

    2003-12-12

    The crystal structure at 4.8 angstrom resolution of the reaction center-light harvesting 1 (RC-LH1) core complex from Rhodopseudomonas palustris shows the reaction center surrounded by an oval LH1 complex that consists of 15 pairs of transmembrane helical alpha- and beta-apoproteins and their coordinated bacteriochlorophylls. Complete closure of the RC by the LH1 is prevented by a single transmembrane helix, out of register with the array of inner LH1 alpha-apoproteins. This break, located next to the binding site in the reaction center for the secondary electron acceptor ubiquinone (UQB), may provide a portal through which UQB can transfer electrons to cytochrome b/c1.

  7. Structure of an E. coli integral membrane sulfurtransferase and its structural transition upon SCN- binding defined by EPR-based hybrid method

    NASA Astrophysics Data System (ADS)

    Ling, Shenglong; Wang, Wei; Yu, Lu; Peng, Junhui; Cai, Xiaoying; Xiong, Ying; Hayati, Zahra; Zhang, Longhua; Zhang, Zhiyong; Song, Likai; Tian, Changlin

    2016-01-01

    Electron paramagnetic resonance (EPR)-based hybrid experimental and computational approaches were applied to determine the structure of a full-length E. coli integral membrane sulfurtransferase, dimeric YgaP, and its structural and dynamic changes upon ligand binding. The solution NMR structures of the YgaP transmembrane domain (TMD) and cytosolic catalytic rhodanese domain were reported recently, but the tertiary fold of full-length YgaP was not yet available. Here, systematic site-specific EPR analysis defined a helix-loop-helix secondary structure of the YagP-TMD monomers using mobility, accessibility and membrane immersion measurements. The tertiary folds of dimeric YgaP-TMD and full-length YgaP in detergent micelles were determined through inter- and intra-monomer distance mapping and rigid-body computation. Further EPR analysis demonstrated the tight packing of the two YgaP second transmembrane helices upon binding of the catalytic product SCN-, which provides insight into the thiocyanate exportation mechanism of YgaP in the E. coli membrane.

  8. Structure of an E. coli integral membrane sulfurtransferase and its structural transition upon SCN‑ binding defined by EPR-based hybrid method

    NASA Astrophysics Data System (ADS)

    Ling, Shenglong; Wang, Wei; Yu, Lu; Peng, Junhui; Cai, Xiaoying; Xiong, Ying; Hayati, Zahra; Zhang, Longhua; Zhang, Zhiyong; Song, Likai; Tian, Changlin

    2016-01-01

    Electron paramagnetic resonance (EPR)-based hybrid experimental and computational approaches were applied to determine the structure of a full-length E. coli integral membrane sulfurtransferase, dimeric YgaP, and its structural and dynamic changes upon ligand binding. The solution NMR structures of the YgaP transmembrane domain (TMD) and cytosolic catalytic rhodanese domain were reported recently, but the tertiary fold of full-length YgaP was not yet available. Here, systematic site-specific EPR analysis defined a helix-loop-helix secondary structure of the YagP-TMD monomers using mobility, accessibility and membrane immersion measurements. The tertiary folds of dimeric YgaP-TMD and full-length YgaP in detergent micelles were determined through inter- and intra-monomer distance mapping and rigid-body computation. Further EPR analysis demonstrated the tight packing of the two YgaP second transmembrane helices upon binding of the catalytic product SCN‑, which provides insight into the thiocyanate exportation mechanism of YgaP in the E. coli membrane.

  9. Structure of an E. coli integral membrane sulfurtransferase and its structural transition upon SCN− binding defined by EPR-based hybrid method

    PubMed Central

    Ling, Shenglong; Wang, Wei; Yu, Lu; Peng, Junhui; Cai, Xiaoying; Xiong, Ying; Hayati, Zahra; Zhang, Longhua; Zhang, Zhiyong; Song, Likai; Tian, Changlin

    2016-01-01

    Electron paramagnetic resonance (EPR)-based hybrid experimental and computational approaches were applied to determine the structure of a full-length E. coli integral membrane sulfurtransferase, dimeric YgaP, and its structural and dynamic changes upon ligand binding. The solution NMR structures of the YgaP transmembrane domain (TMD) and cytosolic catalytic rhodanese domain were reported recently, but the tertiary fold of full-length YgaP was not yet available. Here, systematic site-specific EPR analysis defined a helix-loop-helix secondary structure of the YagP-TMD monomers using mobility, accessibility and membrane immersion measurements. The tertiary folds of dimeric YgaP-TMD and full-length YgaP in detergent micelles were determined through inter- and intra-monomer distance mapping and rigid-body computation. Further EPR analysis demonstrated the tight packing of the two YgaP second transmembrane helices upon binding of the catalytic product SCN−, which provides insight into the thiocyanate exportation mechanism of YgaP in the E. coli membrane. PMID:26817826

  10. An iterative in silico and modular synthetic approach to aqueous soluble tercyclic α-helix mimetics.

    PubMed

    Lim, Zelong; Duggan, Peter J; Meyer, Adam G; Tuck, Kellie L

    2014-07-01

    Tercyclic scaffolds, designed to have improved synthetic accessibility and aqueous solubility, were evaluated as structural α-helix mimetics by using an iterative in silico approach. The synthesis of these tercyclic scaffolds was accomplished using a modular synthetic approach by employing functionalised methoxyphenyl units which were readily manipulated to allow the introduction of various nitrogen-based heterocycles. The ability of these scaffolds to mimic the key i, i + 3 and i + 7 residues of a polyalanine α-helix was ratified by in silico studies, X-ray crystallographic and NOESY analysis, and their aqueous solubility was measured by a kinetic turbidimetric method.

  11. Broadband circular polarizers constructed using helix-like chiral metamaterials.

    PubMed

    Ji, Ruonan; Wang, Shao-Wei; Liu, Xingxing; Chen, Xiaoshuang; Lu, Wei

    2016-08-01

    In this paper, one kind of helix-like chiral metamaterial which can be realized by multiple conventional lithography or electron beam lithographic techniques is proposed to have a broadband bianisotropic optical response analogous to helical metamaterials. On the basis of twisted metamaterials, via tailoring the relative orientation within the lattice, the anisotropy of arcs is converted into magneto-electric coupling of closely spaced arc pairs, which leads to a broad bianisotropic optical response. By connecting the adjacent upper and lower arcs, the coupling of metasurface pairs is transformed into the coupling of the three-dimensional inclusions, and provides a much broader and higher bianisotropic optical response. For only a four-layer helix-like metamaterial, the maximum extinction ratio can reach 19.7. The operation band is in the wavelength range of 4.69 μm to 8.98 μm with an average extinction ratio of 6.9. And the transmittance for selective polarization is above 0.8 in the entire operation band. Such a structure is a promising candidate for integratable and scalable broadband circular polarizers, especially it has great potential to act as a broadband circular micropolarizer in the field of the full-Stokes division of focal plane polarimeters.

  12. Broadband circular polarizers constructed using helix-like chiral metamaterials.

    PubMed

    Ji, Ruonan; Wang, Shao-Wei; Liu, Xingxing; Chen, Xiaoshuang; Lu, Wei

    2016-08-01

    In this paper, one kind of helix-like chiral metamaterial which can be realized by multiple conventional lithography or electron beam lithographic techniques is proposed to have a broadband bianisotropic optical response analogous to helical metamaterials. On the basis of twisted metamaterials, via tailoring the relative orientation within the lattice, the anisotropy of arcs is converted into magneto-electric coupling of closely spaced arc pairs, which leads to a broad bianisotropic optical response. By connecting the adjacent upper and lower arcs, the coupling of metasurface pairs is transformed into the coupling of the three-dimensional inclusions, and provides a much broader and higher bianisotropic optical response. For only a four-layer helix-like metamaterial, the maximum extinction ratio can reach 19.7. The operation band is in the wavelength range of 4.69 μm to 8.98 μm with an average extinction ratio of 6.9. And the transmittance for selective polarization is above 0.8 in the entire operation band. Such a structure is a promising candidate for integratable and scalable broadband circular polarizers, especially it has great potential to act as a broadband circular micropolarizer in the field of the full-Stokes division of focal plane polarimeters. PMID:27352818

  13. The auto-inhibitory role of the EPAC hinge helix as mapped by NMR.

    PubMed

    Selvaratnam, Rajeevan; Mazhab-Jafari, Mohammad T; Das, Rahul; Melacini, Giuseppe

    2012-01-01

    The cyclic-AMP binding domain (CBD) is the central regulatory unit of exchange proteins activated by cAMP (EPAC). The CBD maintains EPAC in a state of auto-inhibition in the absence of the allosteric effector, cAMP. When cAMP binds to the CBD such auto-inhibition is released, leading to EPAC activation. It has been shown that a key feature of such cAMP-dependent activation process is the partial destabilization of a structurally conserved hinge helix at the C-terminus of the CBD. However, the role of this helix in auto-inhibition is currently not fully understood. Here we utilize a series of progressive deletion mutants that mimic the hinge helix destabilization caused by cAMP to show that such helix is also a pivotal auto-inhibitory element of apo-EPAC. The effect of the deletion mutations on the auto-inhibitory apo/inactive vs. apo/active equilibrium was evaluated using recently developed NMR chemical shift projection and covariance analysis methods. Our results show that, even in the absence of cAMP, the C-terminal region of the hinge helix is tightly coupled to other conserved allosteric structural elements of the CBD and perturbations that destabilize the hinge helix shift the auto-inhibitory equilibrium toward the apo/active conformations. These findings explain the apparently counterintuitive observation that cAMP binds more tightly to shorter than longer EPAC constructs. These results are relevant for CBDs in general and rationalize why substrates sensitize CBD-containing systems to cAMP. Furthermore, the NMR analyses presented here are expected to be generally useful to quantitatively evaluate how mutations affect conformational equilibria.

  14. Yeast screens show aromatic residues at the end of the sixth helix anchor transient receptor potential channel gate.

    PubMed

    Zhou, Xinliang; Su, Zhenwei; Anishkin, Andriy; Haynes, W John; Friske, Eric M; Loukin, Stephen H; Kung, Ching; Saimi, Yoshiro

    2007-09-25

    Transient receptor potential (TRP) channels are first elements in sensing chemicals, heat, and force and are widespread among protists and fungi as well as animals. Despite their importance, the arrangement and roles of the amino acids that constitute the TRP channel gate are unknown. The yeast TRPY1 is activated in vivo by osmotically induced vacuolar membrane deformation and by cytoplasmic Ca(2+). After a random mutagenesis, we isolated TRPY1 mutants that responded more strongly to mild osmotic upshocks. One such gain-of-function mutant has a Y458H substitution at the C terminus of the predicted sixth transmembrane helix. Direct patch-clamp examination of vacuolar membranes showed that Y458H channels were already active with little stimulus and showed marked flickers between the open and intraburst closed states. They remained responsive to membrane stretch force and to Ca(2+), indicating primary defects in the gate region but not in the sensing of gating principles. None of the other 18 amino acid replacements engineered here showed normal channel kinetics except the two aromatic substitutions, Y458F and Y458W. The Y458 of TRPY1 has its aromatic counterpart in mammalian TRPM. Furthermore, conserved aromatics one alpha-helical turn downstream from this point are also found in animal TRPC, TRPN, TRPP, and TRPML, suggesting that gate anchoring with aromatics may be common among many TRP channels. The possible roles of aromatics at the end of the sixth transmembrane helix are discussed.

  15. The Crystal Structures of Yeast Get3 Suggest a Mechanism for Tail-Anchored Protein Membrane Insertion

    SciTech Connect

    Hu, Junbin; Li, Jingzhi; Qian, Xinguo; Denic, Vlad; Sha, Bingdong

    2010-08-16

    Tail-anchored (TA) proteins represent a unique class of membrane proteins that contain a single C-terminal transmembrane helix. The post-translational insertion of the yeast TA proteins into the ER membrane requires the Golgi ER trafficking (GET) complex which contains Get1, Get2 and Get3. Get3 is an ATPase that recognizes and binds the C-terminal transmembrane domain (TMD) of the TA proteins. We have determined the crystal structures of Get3 from two yeast species, S. cerevisiae and D. hansenii, respectively. These high resolution crystal structures show that Get3 contains a nucleotide-binding domain and a 'finger' domain for binding the TA protein TMD. A large hydrophobic groove on the finger domain of S. cerevisiae Get3 structure might represent the binding site for TMD of TA proteins. A hydrophobic helix from a symmetry-related Get3 molecule sits in the TMD-binding groove and mimics the TA binding scenario. Interestingly, the crystal structures of the Get3 dimers from S. cerevisiae and D. hansenii exhibit distinct conformations. The S. cerevisiae Get3 dimer structure does not contain nucleotides and maintains an 'open' conformation, while the D. hansenii Get3 dimer structure binds ADP and stays in a 'closed' conformation. We propose that the conformational changes to switch the Get3 between the open and closed conformations may facilitate the membrane insertions for TA proteins.

  16. Helix versus sheet formation in a small peptide

    NASA Astrophysics Data System (ADS)

    Peng, Yong; Hansmann, Ulrich H.

    2003-10-01

    Segments with the amino acid sequence EKAYLRT (glutamine-lysine-alanine-tyrosine-leucine-arginine-threonine) appear in naturally occurring proteins both in α-helices and β-sheets. For this reason, we have used this peptide to study how secondary structure formation in proteins depends on the local environment. Our data rely on multicanonical Monte Carlo simulations where the interactions among all atoms are taken into account. Results in gas phase are compared with that in an implicit solvent. We find that both the solvated molecule and EKAYLRT in gas phase form an α-helix when not interacting with other molecules. However, in the vicinity of a β-strand, the peptide forms a β-strand. Because of this change in secondary structure our peptide may provide a simple model for the α→β transition that is supposedly related to the outbreak of prion diseases and similar illnesses.

  17. Role of the Lipid Environment in the Dimerization of Transmembrane Domains of Glycophorin A.

    PubMed

    Kuznetsov, A S; Volynsky, P E; Efremov, R G

    2015-01-01

    An efficient computational approach is developed to quantify the free energy of a spontaneous association of the α-helices of proteins in the membrane environment. The approach is based on the numerical decomposition of the free energy profiles of the transmembrane (TM) helices into components corresponding to protein-protein, protein-lipid, and protein-water interactions. The method was tested for the TM segments of human glycophorin A (GpA) and two mutant forms, Gly83Ala and Thr87Val. It was shown that lipids make a significant negative contribution to the free energy of dimerization, while amino acid residues forming the interface of the helix-helix contact may be unfavorable in terms of free energy. The detailed balance between different energy contributions is highly dependent on the amino acid sequence of the TM protein segment. The results show the dominant role of the environment in the interaction of membrane proteins that is changing our notion of the driving force behind the spontaneous association of TM α-helices. Adequate estimation of the contribution of the water-lipid environment thus becomes an extremely urgent task for a rational design of new molecules targeting bitopic membrane proteins, including receptor tyrosine kinases. PMID:26798499

  18. Role of the Lipid Environment in the Dimerization of Transmembrane Domains of Glycophorin A

    PubMed Central

    Kuznetsov, A. S.; Volynsky, P. E.; Efremov, R. G.

    2015-01-01

    An efficient computational approach is developed to quantify the free energy of a spontaneous association of the α-helices of proteins in the membrane environment. The approach is based on the numerical decomposition of the free energy profiles of the transmembrane (TM) helices into components corresponding to protein-protein, protein-lipid, and protein-water interactions. The method was tested for the TM segments of human glycophorin A (GpA) and two mutant forms, Gly83Ala and Thr87Val. It was shown that lipids make a significant negative contribution to the free energy of dimerization, while amino acid residues forming the interface of the helix-helix contact may be unfavorable in terms of free energy. The detailed balance between different energy contributions is highly dependent on the amino acid sequence of the TM protein segment. The results show the dominant role of the environment in the interaction of membrane proteins that is changing our notion of the driving force behind the spontaneous association of TM α-helices. Adequate estimation of the contribution of the water-lipid environment thus becomes an extremely urgent task for a rational design of new molecules targeting bitopic membrane proteins, including receptor tyrosine kinases. PMID:26798499

  19. Estimating the length of transmembrane helices using Z-coordinate predictions

    PubMed Central

    Papaloukas, Costas; Granseth, Erik; Viklund, Håkan; Elofsson, Arne

    2008-01-01

    Zpred2 is an improved version of ZPRED, a predictor for the Z-coordinates of α-helical membrane proteins, that is, the distance of the residues from the center of the membrane. Using principal component analysis and a set of neural networks, Zpred2 analyzes data extracted from the amino acid sequence, the predicted topology, and evolutionary profiles. Zpred2 achieves an average accuracy error of 2.18 Å (2.17 Å when an independent test set is used), an improvement by 15% compared to the previous version. We show that this accuracy is sufficient to enable the predictions of helix lengths with a correlation coefficient of 0.41. As a comparison, two state-of-the-art HMM-based topology prediction methods manage to predict the helix lengths with a correlation coefficient of less than 0.1. In addition, we applied Zpred2 to two other problems, the re-entrant region identification and model validation. Re-entrants were able to be detected with a certain consistency, but not better than with previous approaches, while incorrect models as well as mispredicted helices of transmembrane proteins could be distinguished based on the Z-coordinate predictions. PMID:18096645

  20. The mechanisms of HAMP-mediated signaling in transmembrane receptors.

    PubMed

    Ferris, Hedda U; Dunin-Horkawicz, Stanislaw; Mondéjar, Laura García; Hulko, Michael; Hantke, Klaus; Martin, Jörg; Schultz, Joachim E; Zeth, Kornelius; Lupas, Andrei N; Coles, Murray

    2011-03-01

    HAMP domains mediate signal transduction in over 7500 enzyme-coupled receptors represented in all kingdoms of life. The HAMP domain of the putative archaeal receptor Af1503 has a parallel, dimeric, four-helical coiled coil structure, but with unusual core packing, related to canonical packing by concerted axial rotation of the helices. This has led to the gearbox model for signal transduction, whereby the alternate packing modes correspond to signaling states. Here we present structures of a series of Af1503 HAMP variants. We show that substitution of a conserved small side chain within the domain core (A291) for larger residues induces a gradual transition in packing mode, involving both changes in helix rotation and bundle shape, which are most prominent at the C-terminal, output end of the domain. These are correlated with activity and ligand response in vitro and in vivo by incorporating Af1503 HAMP into mycobacterial adenylyl cyclase assay systems.

  1. Genome-wide identification and analysis of basic helix-loop-helix domains in dog, Canis lupus familiaris.

    PubMed

    Wang, Xu-Hua; Wang, Yong; Liu, A-Ke; Liu, Xiao-Ting; Zhou, Yang; Yao, Qin; Chen, Ke-Ping

    2015-04-01

    The basic helix-loop-helix (bHLH) domain is a highly conserved amino acid motif that defines a group of DNA-binding transcription factors. bHLH proteins play essential regulatory roles in a variety of biological processes in animal, plant, and fungus. The domestic dog, Canis lupus familiaris, is a good model organism for genetic, physiological, and behavioral studies. In this study, we identified 115 putative bHLH genes in the dog genome. Based on a phylogenetic analysis, 51, 26, 14, 4, 12, and 4 dog bHLH genes were assigned to six separate groups (A-F); four bHLH genes were categorized as ''orphans''. Within-group evolutionary relationships inferred from the phylogenetic analysis were consistent with positional conservation, other conserved domains flanking the bHLH motif, and highly conserved intron/exon patterns in other vertebrates. Our analytical results confirmed the GenBank annotations of 89 dog bHLH proteins and provided information that could be used to update the annotations of the remaining 26 dog bHLH proteins. These data will provide good references for further studies on the structures and regulatory functions of bHLH proteins in the growth and development of dogs, which may help in understanding the mechanisms that underlie the physical and behavioral differences between dogs and wolves. PMID:25403511

  2. Genome-wide identification and analysis of basic helix-loop-helix domains in dog, Canis lupus familiaris.

    PubMed

    Wang, Xu-Hua; Wang, Yong; Liu, A-Ke; Liu, Xiao-Ting; Zhou, Yang; Yao, Qin; Chen, Ke-Ping

    2015-04-01

    The basic helix-loop-helix (bHLH) domain is a highly conserved amino acid motif that defines a group of DNA-binding transcription factors. bHLH proteins play essential regulatory roles in a variety of biological processes in animal, plant, and fungus. The domestic dog, Canis lupus familiaris, is a good model organism for genetic, physiological, and behavioral studies. In this study, we identified 115 putative bHLH genes in the dog genome. Based on a phylogenetic analysis, 51, 26, 14, 4, 12, and 4 dog bHLH genes were assigned to six separate groups (A-F); four bHLH genes were categorized as ''orphans''. Within-group evolutionary relationships inferred from the phylogenetic analysis were consistent with positional conservation, other conserved domains flanking the bHLH motif, and highly conserved intron/exon patterns in other vertebrates. Our analytical results confirmed the GenBank annotations of 89 dog bHLH proteins and provided information that could be used to update the annotations of the remaining 26 dog bHLH proteins. These data will provide good references for further studies on the structures and regulatory functions of bHLH proteins in the growth and development of dogs, which may help in understanding the mechanisms that underlie the physical and behavioral differences between dogs and wolves.

  3. The basic helix-loop-helix leucine zipper transcription factor Mitf is conserved in Drosophila and functions in eye development.

    PubMed Central

    Hallsson, Jón H; Haflidadóttir, Benedikta S; Stivers, Chad; Odenwald, Ward; Arnheiter, Heinz; Pignoni, Francesca; Steingrímsson, Eiríkur

    2004-01-01

    The MITF protein is a member of the MYC family of basic helix-loop-helix leucine zipper (bHLH-Zip) transcription factors and is most closely related to the TFE3, TFEC, and TFEB proteins. In the mouse, MITF is required for the development of several different cell types, including the retinal pigment epithelial (RPE) cells of the eye. In Mitf mutant mice, the presumptive RPE cells hyperproliferate, abnormally express the retinal transcriptional regulator Pax6, and form an ectopic neural retina. Here we report the structure of the Mitf gene in Drosophila and demonstrate expression during embryonic development and in the eye-antennal imaginal disc. In vitro, transcriptional regulation by Drosophila Mitf, like its mouse counterpart, is modified by the Eyeless (Drosophila Pax6) transcription factor. In vivo, targeted expression of wild-type or dominant-negative Drosophila Mitf results in developmental abnormalities reminiscent of Mitf function in mouse eye development. Our results suggest that the Mitf gene is the original member of the Mitf-Tfe subfamily of bHLH-Zip proteins and that its developmental function is at least partially conserved between vertebrates and invertebrates. These findings further support the common origin of the vertebrate and invertebrate eyes. PMID:15166150

  4. Genome-Wide Analysis of Basic/Helix-Loop-Helix Transcription Factor Family in Rice and Arabidopsis1[W

    PubMed Central

    Li, Xiaoxing; Duan, Xuepeng; Jiang, Haixiong; Sun, Yujin; Tang, Yuanping; Yuan, Zheng; Guo, Jingkang; Liang, Wanqi; Chen, Liang; Yin, Jingyuan; Ma, Hong; Wang, Jian; Zhang, Dabing

    2006-01-01

    The basic/helix-loop-helix (bHLH) transcription factors and their homologs form a large family in plant and animal genomes. They are known to play important roles in the specification of tissue types in animals. On the other hand, few plant bHLH proteins have been studied functionally. Recent completion of whole genome sequences of model plants Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) allows genome-wide analysis and comparison of the bHLH family in flowering plants. We have identified 167 bHLH genes in the rice genome, and their phylogenetic analysis indicates that they form well-supported clades, which are defined as subfamilies. In addition, sequence analysis of potential DNA-binding activity, the sequence motifs outside the bHLH domain, and the conservation of intron/exon structural patterns further support the evolutionary relationships among these proteins. The genome distribution of rice bHLH genes strongly supports the hypothesis that genome-wide and tandem duplication contributed to the expansion of the bHLH gene family, consistent with the birth-and-death theory of gene family evolution. Bioinformatics analysis suggests that rice bHLH proteins can potentially participate in a variety of combinatorial interactions, endowing them with the capacity to regulate a multitude of transcriptional programs. In addition, similar expression patterns suggest functional conservation between some rice bHLH genes and their close Arabidopsis homologs. PMID:16896230

  5. A basic helix-loop-helix transcription factor DvIVS determines flower color intensity in cyanic dahlia cultivars.

    PubMed

    Ohno, Sho; Deguchi, Ayumi; Hosokawa, Munetaka; Tatsuzawa, Fumi; Doi, Motoaki

    2013-08-01

    The study was aimed to identify the factors that regulate the intensity of flower color in cyanic dahlia (Dahlia variabilis), using fifteen cultivars with different color intensities in their petals. The cultivars were classified into three groups based on their flavonoid composition: ivory white cultivars with flavones; purple and pink cultivars with flavones and anthocyanins; and red cultivars with flavones, anthocyanins, and chalcones. Among the purple, pink, and ivory white cultivars, an inverse relationship was detected between lightness, which was used as an indicator for color intensity and anthocyanin content. A positive correlation was detected between anthocyanin contents and the expression of some structural genes in the anthocyanin synthesis pathway that are regulated by DvIVS, a basic helix-loop-helix transcription factor. A positive correlation between anthocyanin content and expression of DvIVS was also found. The promoter region of DvIVS was classified into three types, with cultivars carrying Type 1 promoter exhibited deep coloring, those carrying Type 2 and/or Type 3 exhibited pale coloring, and those carrying Type 1 and Type 2 and/or Type 3 exhibited medium coloring. The transcripts of the genes from these promoters encoded full-length predicted proteins. These results suggested that the genotype of the promoter region in DvIVS is one of the key factors determining the flower color intensity. PMID:23689377

  6. Transmembrane domain II of the human bile acid transporter SLC10A2 coordinates sodium translocation.

    PubMed

    Sabit, Hairat; Mallajosyula, Sairam S; MacKerell, Alexander D; Swaan, Peter W

    2013-11-01

    Human apical sodium-dependent bile acid transporter (hASBT, SLC10A2) is responsible for intestinal reabsorption of bile acids and plays a key role in cholesterol homeostasis. We used a targeted and systematic approach to delineate the role of highly conserved transmembrane helix 2 on the expression and function of hASBT. Cysteine mutation significantly depressed transport activity for >60% of mutants without affecting cell surface localization of the transporter. All mutants were inaccessible toward chemical modification by membrane-impermeant MTSET reagent, strongly suggesting that transmembrane 2 (TM2) plays an indirect role in bile acid substrate translocation. Both bile acid uptake and sodium dependence of TM2 mutants revealed a distinct α-helical periodicity. Kinetic studies with conservative and non-conservative mutants of sodium sensitive residues further underscored the importance of Gln(75), Phe(76), Met(79), Gly(83), Leu(86), Phe(90), and Asp(91) in hASBT function. Computational analysis indicated that Asp(91) may coordinate with sodium during the transport cycle. Combined, our data propose that a consortium of sodium-sensitive residues along with previously reported residues (Thr(134), Leu(138), and Thr(149)) from TM3 may form the sodium binding and translocation pathway. Notably, residues Gln(75), Met(79), Thr(82), and Leu(86) from TM2 are highly conserved in TM3 of a putative remote bacterial homologue (ASBTNM), suggesting a universal mechanism for the SLC10A transporter family.

  7. Mechanical coupling of the multiple structural elements of the large-conductance mechanosensitive channel during expansion

    PubMed Central

    Li, Jie; Guo, Jianli; Ou, Xiaomin; Zhang, Mingfeng; Li, Yuezhou; Liu, Zhenfeng

    2015-01-01

    The prokaryotic mechanosensitive channel of large conductance (MscL) is a pressure-relief valve protecting the cell from lysing during acute osmotic downshock. When the membrane is stretched, MscL responds to the increase of membrane tension and opens a nonselective pore to about 30 Å wide, exhibiting a large unitary conductance of ∼3 nS. A fundamental step toward understanding the gating mechanism of MscL is to decipher the molecular details of the conformational changes accompanying channel opening. By applying fusion-protein strategy and controlling detergent composition, we have solved the structures of an archaeal MscL homolog from Methanosarcina acetivorans trapped in the closed and expanded intermediate states. The comparative analysis of these two new structures reveals significant conformational rearrangements in the different domains of MscL. The large changes observed in the tilt angles of the two transmembrane helices (TM1 and TM2) fit well with the helix-pivoting model derived from the earlier geometric analyses based on the previous structures. Meanwhile, the periplasmic loop region transforms from a folded structure, containing an ω-shaped loop and a short β-hairpin, to an extended and partly disordered conformation during channel expansion. Moreover, a significant rotating and sliding of the N-terminal helix (N-helix) is coupled to the tilting movements of TM1 and TM2. The dynamic relationships between the N-helix and TM1/TM2 suggest that the N-helix serves as a membrane-anchored stopper that limits the tilts of TM1 and TM2 in the gating process. These results provide direct mechanistic insights into the highly coordinated movement of the different domains of the MscL channel when it expands. PMID:26261325

  8. Structural Re-engineering of the α-Helix Mimetic JY-1-106 into Small Molecules: Disruption of the Mcl-1-Bak-BH3 Protein-Protein Interaction with 2,6-Di-Substituted Nicotinates.

    PubMed

    Drennen, Brandon; Scheenstra, Jacob A; Yap, Jeremy L; Chen, Lijia; Lanning, Maryanna E; Roth, Braden M; Wilder, Paul T; Fletcher, Steven

    2016-04-19

    The disruption of aberrant protein-protein interactions (PPIs) with synthetic agents remains a challenging goal in contemporary medicinal chemistry but some progress has been made. One such dysregulated PPI is that between the anti-apoptotic Bcl-2 proteins, including myeloid cell leukemia-1 (Mcl-1), and the α-helical Bcl-2 homology-3 (BH3) domains of its pro-apoptotic counterparts, such as Bak. Herein, we describe the discovery of small-molecule inhibitors of the Mcl-1 oncoprotein based on a novel chemotype. Particularly, re-engineering of our α-helix mimetic JY-1-106 into 2,6-di-substituted nicotinates afforded inhibitors of comparable potencies but with significantly decreased molecular weights. The most potent inhibitor 2-(benzyloxy)-6-(4-chloro-3,5-dimethylphenoxy)nicotinic acid (1 r: Ki =2.90 μm) likely binds in the p2 pocket of Mcl-1 and engages R263 in a salt bridge through its carboxylic acid, as supported by 2D (1) H-(15) N HSQC NMR data. Significantly, inhibitors were easily accessed in just four steps, which will facilitate future optimization efforts.

  9. Interaction of inhibitors of the vacuolar H(+)-ATPase with the transmembrane Vo-sector.

    PubMed

    Páli, Tibor; Whyteside, Graham; Dixon, Neil; Kee, Terence P; Ball, Stephen; Harrison, Michael A; Findlay, John B C; Finbow, Malcolm E; Marsh, Derek

    2004-09-28

    The macrolide antibiotic concanamycin A and a designed derivative of 5-(2-indolyl)-2,4-pentadienamide (INDOL0) are potent inhibitors of vacuolar H(+)-ATPases, with IC(50) values in the low and medium nanomolar range, respectively. Interaction of these V-ATPase inhibitors with spin-labeled subunit c in the transmembrane V(o)-sector of the ATPase was studied by using the transport-active 16-kDa proteolipid analogue of subunit c from the hepatopancreas of Nephrops norvegicus. Analogous experiments were also performed with vacuolar membranes from Saccharomyces cerevisiae. Membranous preparations of the Nephrops 16-kDa proteolipid were spin-labeled either on the unique cysteine C54, with a nitroxyl maleimide, or on the functionally essential glutamate E140, with a nitroxyl analogue of dicyclohexylcarbodiimide (DCCD). These residues were previously demonstrated to be accessible to lipid. Interaction of the inhibitors with these lipid-exposed residues was studied by using both conventional and saturation transfer EPR spectroscopy. Immobilization of the spin-labeled residues by the inhibitors was observed on both the nanosecond and microsecond time scales. The perturbation by INDOL0 was mostly greater than that by concanamycin A. Qualitatively similar but quantitatively greater effects were obtained with the same spin-label reagents and vacuolar membranes in which the Nephrops 16-kDa proteolipid was expressed in place of the native vma3p proteolipid of yeast. The spin-label immobilization corresponds to a direct interaction of the inhibitors with these intramembranous sites on the protein. A mutational analysis on transmembrane segment 4 known to give resistance to concanamycin A also gave partial resistance to INDOL0. The results are consistent with transmembrane segments 2 and 4 of the 16-kDa putative four-helix bundle, and particularly the functionally essential protonation locus, being involved in the inhibitor binding sites. Inhibition of proton transport may also

  10. The Influenza M2 Ectodomain Regulates the Conformational Equilibria of the Transmembrane Proton Channel: Insights from Solid-State Nuclear Magnetic Resonance.

    PubMed

    Kwon, Byungsu; Hong, Mei

    2016-09-27

    The influenza M2 protein is the target of the amantadine family of antiviral drugs, and its transmembrane (TM) domain structure and dynamics have been extensively studied. However, little is known about the structure of the highly conserved N-terminal ectodomain, which contains epitopes targeted by influenza vaccines. In this study, we synthesized an M2 construct containing the N-terminal ectodomain and the TM domain, to understand the site-specific conformation and dynamics of the ectodomain and to investigate the effect of the ectodomain on the TM structure. We incorporated (13)C- and (15)N-labeled residues into both domains and measured their chemical shifts and line widths using solid-state nuclear magnetic resonance. The data indicate that the entire ectodomain is unstructured and dynamic, but the motion is slower for residues closer to the TM domain. (13)C line shapes indicate that this ecto-TM construct undergoes fast uniaxial rotational diffusion, like the isolated TM peptide, but drug binding increases the motional rates of the TM helix while slowing the local motion of the ectodomain residues that are close to the TM domain. Moreover, (13)C and (15)N chemical shifts indicate that the ectodomain shifts the conformational equilibria of the TM residues toward the drug-bound state even in the absence of amantadine, thus providing a molecular structural basis for the lower inhibitory concentration of full-length M2 compared to that of the ectodomain-truncated M2. We propose that this conformational selection may result from electrostatic repulsion between negatively charged ectodomain residues in the tetrameric protein. Together with the recent study of the M2 cytoplasmic domain, these results show that intrinsically disordered extramembrane domains in membrane proteins can regulate the functionally relevant conformation and dynamics of the structurally ordered TM domains.

  11. The Nature of Cometary Knots in the Helix Nebula

    NASA Astrophysics Data System (ADS)

    Burkert, A.; O'dell, C. R.

    1996-12-01

    Recent HST observations have revealed heretofore unseen fine scale structure in the Helix Nebula. Thousands of well resolved neutral dark cores have been detected in extinction against the background emission of the nebula. These Cometary Knots (CK) have a remarkably uniform appearance with photoionized cusps and tails trailing away from the cusps on almost radial lines. The total mass of the CK is similar to the total mass of the ionized diffuse gas in the ring which means that they represent an important component of the nebula. We discuss the origin and future of the CK in the Helix. It has been suggested that the CK result from Rayleigh-Taylor instabilities arising at the ionization front of the nebula (Capriotti 1973, 1996). Our hydrodynamical simulations indicate that indeed Rayleigh-Taylor instabilities could lead to filamentary structures within planetary nebulae. The substructure of these fingers differs, however, from the observations in important ways. The observed CK therefore must have a different origin. The knots might represent local density fluctuations which remained behind and were compressed as the main ionization front advanced into the neutral material. Another formation scenario is a thin shell instability which results from the interaction of the nebula with a fast stellar wind. Although no stellar wind features have been detected so far, the brightness distribution of the ionized cusps of the knots indicates that this gas is in pressure equilibrium with a high-temperature surrounding gas which could be generated by a shocked stellar wind. If such a wind would have high velocities and low densities it could fall beneath the threshold for spectroscopic detection although it could be important for understanding the formation and structure of the CK. Detailed high-resolution numerical simulations which take into account a fast wind phase as well as the time variation of the Central Star's UV photon flux are presented.

  12. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy.

    PubMed

    Bechinger, B

    1999-12-15

    Linear peptide antibiotics have been isolated from amphibians, insects and humans and used as templates to design cheaper and more potent analogues for medical applications. Peptides such as cecropins or magainins are < or = 40 amino acids in length. Many of them have been prepared by solid-phase peptide synthesis with isotopic labels incorporated at selected sites. Structural analysis by solid-state NMR spectroscopy and other biophysical techniques indicates that these peptide antibiotics strongly interact with lipid membranes. In bilayer environments they exhibit amphipathic alpha-helical conformations and alignments of the helix axis parallel to the membrane surface. This contrasts the transmembrane orientations observed for alamethicin or gramicidin A. Models that have been proposed to explain the antibiotic and pore-forming activities of membrane-associated peptides, as well as other experimental results, include transmembrane helical bundles, wormholes, carpets, detergent-like effects or the in-plane diffusion of peptide-induced bilayer instabilities.

  13. LsbB Bacteriocin Interacts with the Third Transmembrane Domain of the YvjB Receptor.

    PubMed

    Miljkovic, Marija; Uzelac, Gordana; Mirkovic, Nemanja; Devescovi, Giulia; Diep, Dzung B; Venturi, Vittorio; Kojic, Milan

    2016-09-01

    The Zn-dependent membrane-located protease YvjB has previously been shown to serve as a target receptor for LsbB, a class II leaderless lactococcal bacteriocin. Although yvjB is highly conserved in the genus Lactococcus, the bacteriocin appears to be active only against the subspecies L. lactis subsp. lactis Comparative analysis of the YvjB proteins of a sensitive strain (YvjBMN) and a resistant strain (YvjBMG) showed that they differ from each other in 31 positions. In this study, we applied site-directed mutagenesis and performed directed binding studies to provide biochemical evidence that LsbB interacts with the third transmembrane helix of YvjB in susceptible cells. The site-directed mutagenesis of LsbB and YvjB proteins showed that certain amino acids and the length of LsbB are responsible for the bacteriocin activity, most probably through adequate interaction of these two proteins; the essential amino acids in LsbB responsible for the activity are tryptophan (Trp(25)) and terminal alanine (Ala(30)). It was also shown that the distance between Trp(25) and terminal alanine is crucial for LsbB activity. The crucial region in YvjB for the interaction with LsbB is the beginning of the third transmembrane helix, particularly amino acids tyrosine (Tyr(356)) and alanine (Ala(353)). In vitro experiments showed that LsbB could interact with both YvjBMN and YvjBMG, but the strength of interaction is significantly less with YvjBMG In vivo experiments with immunofluorescently labeled antibody demonstrated that LsbB specifically interacts only with cells carrying YvjBMN IMPORTANCE: The antimicrobial activity of LsbB bacteriocin depends on the correct interaction with the corresponding receptor in the bacterial membrane of sensitive cells. Membrane-located bacteriocin receptors have essential primary functions, such as cell wall synthesis or sugar transport, and it seems that interaction with bacteriocins is suicidal for cells. This study showed that the C-terminal part

  14. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.

    PubMed

    Kang, Yanyong; Zhou, X Edward; Gao, Xiang; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; Barty, Anton; White, Thomas A; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W; Ke, Jiyuan; Tan, M H Eileen; Zhang, Chenghai; Moeller, Arne; West, Graham M; Pascal, Bruce D; Van Eps, Ned; Caro, Lydia N; Vishnivetskiy, Sergey A; Lee, Regina J; Suino-Powell, Kelly M; Gu, Xin; Pal, Kuntal; Ma, Jinming; Zhi, Xiaoyong; Boutet, Sébastien; Williams, Garth J; Messerschmidt, Marc; Gati, Cornelius; Zatsepin, Nadia A; Wang, Dingjie; James, Daniel; Basu, Shibom; Roy-Chowdhury, Shatabdi; Conrad, Chelsie E; Coe, Jesse; Liu, Haiguang; Lisova, Stella; Kupitz, Christopher; Grotjohann, Ingo; Fromme, Raimund; Jiang, Yi; Tan, Minjia; Yang, Huaiyu; Li, Jun; Wang, Meitian; Zheng, Zhong; Li, Dianfan; Howe, Nicole; Zhao, Yingming; Standfuss, Jörg; Diederichs, Kay; Dong, Yuhui; Potter, Clinton S; Carragher, Bridget; Caffrey, Martin; Jiang, Hualiang; Chapman, Henry N; Spence, John C H; Fromme, Petra; Weierstall, Uwe; Ernst, Oliver P; Katritch, Vsevolod; Gurevich, Vsevolod V; Griffin, Patrick R; Hubbell, Wayne L; Stevens, Raymond C; Cherezov, Vadim; Melcher, Karsten; Xu, H Eric

    2015-07-30

    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.

  15. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

    SciTech Connect

    Kang, Yanyong; Zhou, X. Edward; Gao, Xiang; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; Barty, Anton; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Ke, Jiyuan; Tan, M. H. Eileen; Zhang, Chenghai; Moeller, Arne; West, Graham M.; Pascal, Bruce D.; Van Eps, Ned; Caro, Lydia N.; Vishnivetskiy, Sergey A.; Lee, Regina J.; Suino-Powell, Kelly M.; Gu, Xin; Pal, Kuntal; Ma, Jinming; Zhi, Xiaoyong; Boutet, Sébastien; Williams, Garth J.; Messerschmidt, Marc; Gati, Cornelius; Zatsepin, Nadia A.; Wang, Dingjie; James, Daniel; Basu, Shibom; Roy-Chowdhury, Shatabdi; Conrad, Chelsie E.; Coe, Jesse; Liu, Haiguang; Lisova, Stella; Kupitz, Christopher; Grotjohann, Ingo; Fromme, Raimund; Jiang, Yi; Tan, Minjia; Yang, Huaiyu; Li, Jun; Wang, Meitian; Zheng, Zhong; Li, Dianfan; Howe, Nicole; Zhao, Yingming; Standfuss, Jörg; Diederichs, Kay; Dong, Yuhui; Potter, Clinton S.; Carragher, Bridget; Caffrey, Martin; Jiang, Hualiang; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Ernst, Oliver P.; Katritch, Vsevolod; Gurevich, Vsevolod V.; Griffin, Patrick R.; Hubbell, Wayne L.; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric

    2015-07-22

    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ~20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. In conclusion, this structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.

  16. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

    DOE PAGES

    Kang, Yanyong; Zhou, X. Edward; Gao, Xiang; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; Barty, Anton; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; et al

    2015-07-22

    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ~20° rotationmore » between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. In conclusion, this structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.« less

  17. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.

    PubMed

    Kang, Yanyong; Zhou, X Edward; Gao, Xiang; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; Barty, Anton; White, Thomas A; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W; Ke, Jiyuan; Tan, M H Eileen; Zhang, Chenghai; Moeller, Arne; West, Graham M; Pascal, Bruce D; Van Eps, Ned; Caro, Lydia N; Vishnivetskiy, Sergey A; Lee, Regina J; Suino-Powell, Kelly M; Gu, Xin; Pal, Kuntal; Ma, Jinming; Zhi, Xiaoyong; Boutet, Sébastien; Williams, Garth J; Messerschmidt, Marc; Gati, Cornelius; Zatsepin, Nadia A; Wang, Dingjie; James, Daniel; Basu, Shibom; Roy-Chowdhury, Shatabdi; Conrad, Chelsie E; Coe, Jesse; Liu, Haiguang; Lisova, Stella; Kupitz, Christopher; Grotjohann, Ingo; Fromme, Raimund; Jiang, Yi; Tan, Minjia; Yang, Huaiyu; Li, Jun; Wang, Meitian; Zheng, Zhong; Li, Dianfan; Howe, Nicole; Zhao, Yingming; Standfuss, Jörg; Diederichs, Kay; Dong, Yuhui; Potter, Clinton S; Carragher, Bridget; Caffrey, Martin; Jiang, Hualiang; Chapman, Henry N; Spence, John C H; Fromme, Petra; Weierstall, Uwe; Ernst, Oliver P; Katritch, Vsevolod; Gurevich, Vsevolod V; Griffin, Patrick R; Hubbell, Wayne L; Stevens, Raymond C; Cherezov, Vadim; Melcher, Karsten; Xu, H Eric

    2015-07-30

    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology. PMID:26200343

  18. PROTEUS2: a web server for comprehensive protein structure prediction and structure-based annotation.

    PubMed

    Montgomerie, Scott; Cruz, Joseph A; Shrivastava, Savita; Arndt, David; Berjanskii, Mark; Wishart, David S

    2008-07-01

    PROTEUS2 is a web server designed to support comprehensive protein structure prediction and structure-based annotation. PROTEUS2 accepts either single sequences (for directed studies) or multiple sequences (for whole proteome annotation) and predicts the secondary and, if possible, tertiary structure of the query protein(s). Unlike most other tools or servers, PROTEUS2 bundles signal peptide identification, transmembrane helix prediction, transmembrane beta-strand prediction, secondary structure prediction (for soluble proteins) and homology modeling (i.e. 3D structure generation) into a single prediction pipeline. Using a combination of progressive multi-sequence alignment, structure-based mapping, hidden Markov models, multi-component neural nets and up-to-date databases of known secondary structure assignments, PROTEUS is able to achieve among the highest reported levels of predictive accuracy for signal peptides (Q2 = 94%), membrane spanning helices (Q2 = 87%) and secondary structure (Q3 score of 81.3%). PROTEUS2's homology modeling services also provide high quality 3D models that compare favorably with those generated by SWISS-MODEL and 3D JigSaw (within 0.2 A RMSD). The average PROTEUS2 prediction takes approximately 3 min per query sequence. The PROTEUS2 server along with source code for many of its modules is accessible a http://wishart.biology.ualberta.ca/proteus2.

  19. The Transmembrane Domain C of AMPA Receptors is Critically Involved in Receptor Function and Modulation

    PubMed Central

    Terhag, Jan; Gottschling, Kevin; Hollmann, Michael

    2010-01-01

    Ionotropic glutamate receptors are major players in synaptic transmission and are critically involved in many cognitive events. Although receptors of different subfamilies serve different functions, they all show a conserved domain topology. For most of these domains, structure–function relationships have been established and are well understood. However, up to date the role of the transmembrane domain C in receptor function has been investigated only poorly. We have constructed a series of receptor chimeras and point mutants designed to shed light on the structural and/or functional importance of this domain. We here present evidence that the role of transmembrane domain C exceeds that of a mere scaffolding domain and that several amino acid residues located within the domain are crucial for receptor gating and desensitization. Furthermore, our data suggest that the domain may be involved in receptor interaction with transmembrane AMPA receptor regulatory proteins. PMID:21206529

  20. Mechanical performance of PPy helix tube microactuator

    NASA Astrophysics Data System (ADS)

    Bahrami Samani, Mehrdad; Spinks, Geoffrey M.; Cook, Christopher

    2004-02-01

    Conducting polymer actuators with favourable properties such as linearity, high power density and compliance are of increasing demand in micro applications. These materials generate forces over two times larger than produced by mammalian skeletal muscles. They operate to convert electro chemical energy to mechanical stress and strain. On the other hand, the application of conducting polymers is limited by the lack of a full description of the relation between four essential parameters: stress, strain, voltage and current. In this paper, polypyrrole helix tube micr