Life at acidic pH imposes an increased energetic cost for a eukaryotic acidophile.
Messerli, Mark A; Amaral-Zettler, Linda A; Zettler, Erik; Jung, Sung-Kwon; Smith, Peter J S; Sogin, Mitchell L
2005-07-01
Organisms growing in acidic environments, pH<3, would be expected to possess fundamentally different molecular structures and physiological controls in comparison with similar species restricted to neutral pH. We begin to investigate this premise by determining the magnitude of the transmembrane electrochemical H+ gradient in an acidophilic Chlamydomonas sp. (ATCC PRA-125) isolated from the Rio Tinto, a heavy metal laden, acidic river (pH 1.7-2.5). This acidophile grows most rapidly at pH 2 but is capable of growth over a wide pH range (1.5-7.0), while Chlamydomonas reinhardtii is restricted to growth at pH>or=3 with optimal growth between pH 5.5 and 8.5. With the fluorescent H+ indicator, 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF), we show that the acidophilic Chlamydomonas maintains an average cytosolic pH of 6.6 in culture medium at both pH 2 and pH 7 while Chlamydomonas reinhardtii maintains an average cytosolic pH of 7.1 in pH 7 culture medium. The transmembrane electric potential difference of Chlamydomonas sp., measured using intracellular electrodes at both pH 2 and 7, is close to 0 mV, a rare value for plants, animals and protists. The 40,000-fold difference in [H+] could be the result of either active or passive mechanisms. Evidence for active maintenance was detected by monitoring the rate of ATP consumption. At the peak, cells consume about 7% more ATP per second in medium at pH 2 than at pH 7. This increased rate of consumption is sufficient to account for removal of H+ entering the cytosol across a membrane with relatively high permeability to H+ (7x10(-8) cm s-1). Our results indicate that the small increase in the rate of ATP consumption can account for maintenance of the transmembrane H+ gradient without the imposition of cell surface H+ barriers.
Kozin, S V; Shkarin, P; Gerweck, L E
2001-06-15
The extracellular pH is lower in tumor than in normal tissue, whereas their intracellular pH is similar. In this study, we show that the tumor-specific pH gradient may be exploited for the treatment of cancer by weak acid chemotherapeutics. i.v.-injected glucose substantially decreased the electrode estimated extracellular pH in a xenografted human tumor while its intracellular pH, evaluated by (31)P magnetic resonance spectroscopy, remained virtually unchanged. The resulting increase in the average cell pH gradient caused a parallel increase in tumor growth delay by the weak acid chlorambucil (CHL). Regardless of glucose administration, the effect of CHL was significantly greater in tumors preirradiated with a large dose of ionizing radiation. This suggests that CHL was especially pronounced in radioresistant hypoxic cells possessing a larger transmembrane pH gradient. These results indicate that the naturally occurring cell pH gradient difference between tumor and normal tissue is a major and exploitable determinant of the uptake of weak acids in the complex tumor microenvironment. The use of such drugs may be especially effective in combination with radiation.
Johnson, R G; Pfister, D; Carty, S E; Scarpa, A
1979-11-10
The effect of the transmembrane proton gradient (delta pH) and potential gradient (delta psi) upon the rate and extent of amine accumulation was investigated in chromaffin ghosts. The chromaffin ghosts were formed by hypo-osmotic lysis of isolated bovine chromaffin granules and extensive dialysis in order to remove intragranular binding components and dissipate the endogenous electrochemical gradients. Upon ATP addition to suspensions of chromaffin ghosts, a transmembrane proton gradient alone, a transmembrane gradient alone, or both, could be established, depending upon the compositions of the media in which the ghosts were formed and resuspended. When chloride was present in the medium, addition of ATP resulted in the generation of a transmembrane proton gradient, acidic inside of 1 pH unit (measured by [14C]methylamine distribution), and no transmembrane potential (measured by [14C]-thiocyanate distribution). When ATP was added to chromaffin ghosts suspended in a medium in which chloride was substituted by isethionate, a transmembrane potential, inside positive, of 45 mV and no transmembrane proton gradient, was measured. In each medium, the addition of agents known to affect proton or potential gradients, respectively, exerted a predictable mechanism of action. Accumulation of [14C]epinephrine or [14C]5-hydroxytryptamine was over 1 order of magnitude greater in the presence of the transmembrane proton gradient or the transmembrane potential than in the absence of any gradient and, moreover, was related to the magnitude of the proton or potential gradient in a dose-dependent manner. When ghosts were added to a medium containing chloride and isethionate, both a delta pH and delta psi could be generated upon addition of ATP. In this preparation, the maximal rate of amine accumulation was observed. The results indicate that amine accumulation into chromaffin ghosts can occur in the presence of either a transmembrane proton gradient, or a transmembrane potential gradient, and that the maximal rate of accumulation may exist when both components of the protonmotive force are present.
Papa, S; Lorusso, M; Izzo, G; Capuano, F
1981-02-15
1. A study is presented of the effects of pH, transmembrane pH gradient and electrical potential on oxidoreductions of b and c cytochromes in ox heart mitochondria and 'inside-out' submitochondrial particles. 2. Kinetic analysis shows that, in mitochondria at neutral pH, there is a restraint on the aerobic oxidation of cytochrome b566 with respect to cytochrome b562. Valinomycin plus K+ accelerates cytochrome b566 oxidation and retards net oxidation of cytochrome b562. At alkaline pH the rate of cytochrome b566 oxidation approaches that of cytochrome b562 and the effects of valinomycin on b cytochromes are impaired. 3. At slightly acidic pH, oxygenation of antimycin-supplemented mitochondria causes rapid reduction of cytochrome b566 and small delayed reduction of cytochrome b562. Valinomycin or a pH increase in the medium promote reduction of cytochrome b562 and decrease net reduction of cytochrome b566. 4. Addition of valinomycin to mitochondria and submitochondrial particles in the respiring steady state causes, at pH values around neutrality, preferential oxidation of cytochrome b566 with respect to cytochrome b562. The differential effect of valinomycin on oxidation of cytochromes b566 and b562 is enhanced by substitution of 1H2O of the medium with 2H2O and tends to disappear as the pH of the medium is raised to alkaline values. 5. Nigericin addition in the aerobic steady state causes, both in mitochondria and submitochondrial particles, preferential oxidation of cytochrome b562 with respect to cytochrome b566. This is accompanied by c cytochrome oxidation in mitochondria but c cytochrome reduction in submitochondrial particles. 6. In mitochondria as well as in submitochondrial particles, the aerobic transmembrane potential (delta psi) does not change by raising the pH of the external medium from neutrality to alkalinity. The transmembrane pH gradient (delta pH) on the other hand, decrease slightly. 7. The results presented provide evidence that the delta psi component of the aerobic delta microH+ (the sum of the proton chemical and electrical activities) exerts a pH-dependent constraint on forward electron flow from cytochrome b566 to cytochrome b562. This effect is explained as a consequence of anisotropic location of cytochromes b566 and b562 in the membrane and the pH-dependence of the redox function of these cytochromes. Transmembrane delta pH, on the other hand, exerts control on electron flow from cytochrome b562 to c cytochromes.
Biomineralization in foraminifera
NASA Astrophysics Data System (ADS)
Nooijer, L. D.; Toyofuku, T.; Bijma, J.; Reichart, G. J.
2015-12-01
Foraminifera are popular tools in paleoceanography since incorporation of minor/ major elements and fractionation of stable isotopes into their carbonate shells depend on environmental conditions (e.g. temperature, salinity, pH). Their shell chemistry is markedly different from that of inorganically precipitated CaCO3, reflecting that calcification is a process under strong biological control. The cellular components responsible for calcification are only partly identified in foraminifera and include the involvement of organic templates, trans-membrane ion transporters and selective ion removal. Recent results suggest that transmembrane exchange of H+ for Ca2+ is directly responsible for calcification. The resulting high pH inside and lowered pH outside the foraminifer results in an efficient CO2 'trap' after which carbon dioxide is converted to carbonate prior to calcification. Amongst others, this explains how some foraminifera are able to calcify in undersaturated seawater and may explain their moderate response to ocean acidification. Minor and trace metals incorporated into test carbonate reflect the processes involved in biomineralization and can thus be used to unravel the different factors and processes involved. Still, a more detailed understanding of the processes involved in foraminiferal calcification is needed to explain observed (inter-species) differences in partition coefficients for the incorporation of minor and trace metals and isotopic fractionation.
High-Resolution pH Imaging of Living Bacterial Cells To Detect Local pH Differences
Morimoto, Yusuke V.; Kami-ike, Nobunori; Miyata, Tomoko; Kawamoto, Akihiro; Kato, Takayuki
2016-01-01
ABSTRACT Protons are utilized for various biological activities such as energy transduction and cell signaling. For construction of the bacterial flagellum, a type III export apparatus utilizes ATP and proton motive force to drive flagellar protein export, but the energy transduction mechanism remains unclear. Here, we have developed a high-resolution pH imaging system to measure local pH differences within living Salmonella enterica cells, especially in close proximity to the cytoplasmic membrane and the export apparatus. The local pH near the membrane was ca. 0.2 pH unit higher than the bulk cytoplasmic pH. However, the local pH near the export apparatus was ca. 0.1 pH unit lower than that near the membrane. This drop of local pH depended on the activities of both transmembrane export components and FliI ATPase. We propose that the export apparatus acts as an H+/protein antiporter to couple ATP hydrolysis with H+ flow to drive protein export. PMID:27923921
Magalhães, Pedro R; Oliveira, A Sofia F; Campos, Sara R R; Soares, Cláudio M; Baptista, António M
2017-02-27
Cytochrome c oxidase (CcO) couples the reduction of dioxygen to water with transmembrane proton pumping, which leads to the generation of an electrochemical gradient. In this study we analyze how one of the components of the electrochemical gradient, the difference in pH across the membrane, or ΔpH, influences the protonation states of residues in CcO. We modified our continuum electrostatics/Monte Carlo (CE/MC) method in order to include the ΔpH and applied it to the study of CcO, in what is, to our best knowledge, the first CE/MC study of CcO in the presence of a pH gradient. The inclusion of a transmembrane pH gradient allows for the identification of residues whose titration behavior depends on the pH on both sides of the membrane. Among the several residues with unusual titration profiles, three are well-known key residues in the proton transfer process of CcO: E286 I , Y288 I , and K362 I . All three residues have been previously identified as being critical for the catalytic or proton pumping functions of CcO. Our results suggest that when the pH gradient increases, these residues may be part of a regulatory mechanism to stem the proton flow.
A pH-dependent conformational ensemble mediates proton transport through the influenza A/M2 protein†
Polishchuk, Alexei L.; Lear, James D.; Ma, Chunlong; Lamb, Robert A.; Pinto, Lawrence H.; DeGrado, William F.
2010-01-01
The influenza A M2 protein exhibits inwardly rectifying, pH-activated proton transport that saturates at low pH. A comparison of high-resolution structures of the transmembrane domain at high and low pH suggests that pH-dependent conformational changes may facilitate proton conduction by alternately changing the accessibility of the N-terminal and C-terminal regions of the channel as a proton transits through the transmembrane domain. Here, we show that M2 functionally reconstituted in liposomes populates at least three different conformational states over a physiologically relevant pH range, with transition midpoints that are consistent with previously reported His37 pKas. We then develop and test two similar, quantitative mechanistic models of proton transport, where protonation shifts the equilibrium between structural states having different proton affinities and solvent accessibilities. The models account well for a collection of experimental data sets over a wide range of pHs and voltages and require only a small number of adjustable parameters to accurately describe the data. While the kinetic models do not require any specific conformation for the protein, they nevertheless are consistent with a large body of structural information based on high-resolution NMR and crystallographic structures, optical spectroscopy, and MD calculations. PMID:20968306
Near-IR Resonance Raman Spectroscopy of Archaerhodopsin 3: Effects of Transmembrane Potential
Saint Clair, Erica C.; Ogren, John I.; Mamaev, Sergey; Russano, Daniel; Kralj, Joel M.; Rothschild, Kenneth J.
2013-01-01
Archaerhodopsin 3 (AR3) is a light driven proton pump from Halorubrum sodomense that has been used as a genetically targetable neuronal silencer and an effective fluorescent sensor of transmembrane potential. Unlike the more extensively studied bacteriorhodopsin (BR) from Halobacterium salinarum, AR3 readily incorporates into the plasma membrane of both E. coli and mammalian cells. Here, we used near-IR resonance Raman confocal microscopy to study the effects of pH and membrane potential on the AR3 retinal chromophore structure. Measurements were performed both on AR3 reconstituted into E. coli polar lipids and in vivo in E. coli expressing AR3 in the absence and presence of a negative transmembrane potential. The retinal chromophore structure of AR3 is in an all-trans configuration almost identical to BR over the entire pH range from 3–11. Small changes are detected in the retinal ethylenic stretching frequency and Schiff Base (SB) hydrogen bonding strength relative to BR which may be related to a different water structure near the SB. In the case of the AR3 mutant D95N, at neutral pH an all-trans retinal O-like species (Oall-trans) is found. At higher pH a second 13-cis retinal N-like species (N13-cis) is detected which is attributed to a slowly decaying intermediate in the red-light photocycle of D95N. However, the amount of N13-cis detected is less in E. coli cells but is restored upon addition of carbonyl cyanide m-chlorophenyl hydrazone (CCCP) or sonication, both of which dissipate the normal negative membrane potential. We postulate that these changes are due to the effect of membrane potential on the N13-cis to M13-cis levels accumulated in the D95N red-light photocycle and on a molecular level by the effects of the electric field on the protonation/deprotonation of the cytoplasmic accessible SB. This mechanism also provides a possible explanation for the observed fluorescence dependence of AR3 and other microbial rhodopsins on transmembrane potential. PMID:23189985
Protein fouling in microfiltration: deposition mechanism as a function of pressure for different pH.
Velasco, C; Ouammou, M; Calvo, J I; Hernández, A
2003-10-01
The influence of applied pressure on the fouling mechanism during bovine serum albumin (BSA) dead-end microfiltration (MF) has been investigated for a polyethersulfone acidic negatively charged membrane (ICE-450) from Pall Co. BSA solutions at pH values of 4, 5 (almost equal to the protein isoelectric point, IEP), and 6 were microfiltered through the membrane at different applied transmembrane pressures. Results have been analyzed in terms of the usual blocking filtration laws and a substantial change in the fouling mechanism was observed as the pressure was increased, this change can be related to the specific membrane-protein and protein-protein interactions.
Hu, Fanghao; Luo, Wenbin; Cady, Sarah D.; Hong, Mei
2010-01-01
Membrane proteins change their conformations to respond to environmental cues, thus conformational plasticity is important for function. The influenza A M2 protein forms an acid-activated proton channel important for the virus lifecycle. Here we have used solid-state NMR spectroscopy to examine the conformational plasticity of membrane-bound transmembrane domain of M2 (M2TM). 13C and 15N chemical shifts indicate coupled conformational changes of several pore-facing residues due to changes in bilayer thickness, drug binding and pH. The structural changes are attributed to the formation of a well-defined helical kink at G34 in the drug-bound state and in thick lipid bilayers, non-ideal backbone conformation of the secondary-gate residue V27 in the presence of drug, and non-ideal conformation of the proton-sensing residue H37 at high pH. The chemical shifts constrained the (ϕ, ψ) torsion angles for three basis states, the equilibrium among which explains the multiple resonances per site in the NMR spectra under different combinations of bilayer thickness, drug binding and pH conditions. Thus, conformational plasticity is important for the proton conduction and inhibition of M2TM. The study illustrates the utility of NMR chemical shifts for probing the structural plasticity and folding of membrane proteins. PMID:20883664
Ormazabal, Valeska; Zuñiga, Felipe A; Escobar, Elizabeth; Aylwin, Carlos; Salas-Burgos, Alexis; Godoy, Alejandro; Reyes, Alejandro M; Vera, Juan Carlos; Rivas, Coralia I
2010-11-19
Na(+)-coupled ascorbic acid transporter-2 (SVCT2) activity is impaired at acid pH, but little is known about the molecular determinants that define the transporter pH sensitivity. SVCT2 contains six histidine residues in its primary sequence, three of which are exofacial in the transporter secondary structure model. We used site-directed mutagenesis and treatment with diethylpyrocarbonate to identify histidine residues responsible for SVCT2 pH sensitivity. We conclude that five histidine residues, His(109), His(203), His(206), His(269), and His(413), are central regulators of SVCT2 function, participating to different degrees in modulating pH sensitivity, transporter kinetics, Na(+) cooperativity, conformational stability, and subcellular localization. Our results are compatible with a model in which (i) a single exofacial histidine residue, His(413), localized in the exofacial loop IV that connects transmembrane helices VII-VIII defines the pH sensitivity of SVCT2 through a mechanism involving a marked attenuation of the activation by Na(+) and loss of Na(+) cooperativity, which leads to a decreased V(max) without altering the transport K(m); (ii) exofacial histidine residues His(203), His(206), and His(413) may be involved in maintaining a functional interaction between exofacial loops II and IV and influence the general folding of the transporter; (iii) histidines 203, 206, 269, and 413 affect the transporter kinetics by modulating the apparent transport K(m); and (iv) histidine 109, localized at the center of transmembrane helix I, might be fundamental for the interaction of SVCT2 with the transported substrate ascorbic acid. Thus, histidine residues are central regulators of SVCT2 function.
Shi, Feng; Wang, Yanwei; Li, Yongfu; Wang, Xiaoyuan
2016-09-01
To investigate the mode of action of leucocin K7 against Listeria monocytogenes and to assess its inhibitory effect on Lis. monocytogenes in refrigerated milk. A bacteriocin-producing strain, Leuconostoc mesenteroides K7, was isolated from a fermented pickle. The bacteriocin, leucocin K7, exhibited antagonistic activity against Lis. monocytogenes with an MIC of 28 µg/ml. It was sensitive to proteaseS and displayed good thermal stability and broad active pH range. Leucocin K7 had no effect on the efflux of ATP from Lis. monocytogenes but triggered the efflux of K(+) and the intracellular hydrolysis of ATP. It also dissipated the transmembrane electrical potential completely and transmembrane pH gradient partially. It 80 AU/ml inhibited the growth of Lis. monocytogenes by 2.3-3.9 log units in milk; when combined with glycine (5 mg/ml), it completely eliminated viable Lis. monocytogenes over 7 days Leucocin K7 shows different mode of action from nisin and may have potential application in milk preservation.
Physiological responses of bacteria in biofilms to disinfection.
Yu, F P; McFeters, G A
1994-01-01
In situ enumeration methods using fluorescent probes and a radioisotope labelling technique were applied to evaluate physiological changes of Klebsiella pneumoniae within biofilms after disinfection treatment. Chlorine (0.25 mg of free chlorine per liter [pH 7.2]) and monochloramine (1 mg/liter [pH 9.0]) were employed as disinfectants in the study. Two fluorgenic compounds, 5-cyano-2,3-ditolyl tetrazolium chloride and rhodamine 123, and tritiated uridine incorporation were chosen for assessment of physiological activities. Results obtained by these methods were compared with those from the plate count and direct viable count methods. 5-Cyano-2,3-ditolyl tetrazolium chloride is an indicator of bacterial respiratory activity, rhodamine 123 is incorporated into bacteria in response to transmembrane potential, and the incorporation of uridine represents the global RNA turnover rate. The results acquired by these methods following disinfection exposure showed a range of responses and suggested different physiological reactions in biofilms exposed to chlorine and monochloramine. The direct viable count response and respiratory activity were affected more by disinfection than were the transmembrane potential and RNA turnover rate on the basis of comparable efficiency as evaluated by plate count enumeration. Information revealed by these approaches can provide different physiological insights that may be used in evaluating the efficacy of biofilm disinfection. PMID:8074525
Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient.
Fritze, Andreas; Hens, Felicitas; Kimpfler, Andrea; Schubert, Rolf; Peschka-Süss, Regine
2006-10-01
This study examines a new method for the remote loading of doxorubicin into liposomes. It was shown that doxorubicin can be loaded to a level of up to 98% into large unilamellar vesicles composed of egg phosphatidylcholine/cholesterol (7/3 mol/mol) with a transmembrane phosphate gradient. The different encapsulation efficiencies which were achieved with ammonium salts (citrate 100%, phosphate 98%, sulfate 95%, acetate 77%) were significantly higher as compared to the loading via sodium salts (citrate 54%, phosphate 52%, sulfate 44%, acetate 16%). Various factors, including pH-value, buffer capacity, solubility of doxorubicin in different salt solutions and base counter-flow, which likely has an influence on drug accumulation in the intraliposomal interior are taken into account. In contrast to other methods, the newly developed remote loading method exhibits a pH-dependent drug release property which may be effective in tumor tissues. At physiological pH-value doxorubicin is retained in the liposomes, whereas drug release is achieved by lowering the pH to 5.5 (approximately 25% release at 25 degrees C or 30% at 37 degrees C within two h). The DXR release of liposomes which were loaded via a sulfate gradient showed a maximum of 3% at pH 5.5.
Electrostatic interactions as governing the fouling in protein microfiltration
NASA Astrophysics Data System (ADS)
Ouammou, M.; Tijani, N.; Calvo, J. I.; Palacio, L.; Prádanos, P.; Hernández, A.
2005-03-01
The influence of pH and electrostatic interactions on the fouling mechanism during protein dead-end microfiltration (MF) has been investigated for two charged membranes. Polyethersulfone acidic membranes (ICE-450), being negatively charged, and basic ones (SB-6407), these positively charged, both from Pall Co., have been used in the investigations. BSA and Lysozyme solutions at different pH values (3.0, 5.0, 7.0, 8.5 and 10.0) were microfiltered through the membranes at a constant applied transmembrane pressure. Results have been analysed in terms of usual blocking filtration laws and a substantial change in the fouling behaviour has been observed when solution pH and/or membrane charge as the pressure was changed, this change being clearly related with the specific membrane-protein and protein-protein interactions.
Branched-chain amino acid transport in Streptococcus mutans Ingbritt.
Dashper, S G; Reynolds, E C
1993-06-01
Leucine transport in glucose-energized cells of Streptococcus mutans exhibited Michaelis-Menten-type kinetics at low extracellular concentrations, with a K1 of 15.3 microM and a Vmax of 6.1 nmol/mg dry weight/min. At high extracellular leucine concentrations, the transmembrane diffusion of leucine was not saturable, indicating that passive diffusion becomes a significant mechanism of leucine transmembrane movement under these conditions. The proton motive force (PMF) was measured in glucose-energized cells of S. mutans and was found to have a maximum value of 126 mV at an extracellular pH (pH0) of 5.0; this decreased to 45 mV at pH0 8.0. The intracellular accumulation of leucine was significantly correlated with the magnitude of the PMF. The addition of excess isoleucine or valine caused a marked decrease in the leucine transport rate. Maximal rates of leucine transport occurred at pH0 6.0, and the rate of leucine transport was independent of the growth medium. The results suggest that there is a PMF-driven, branched-chain amino acid carrier in S. mutans with a proton: substrate stoichiometry of 1.
Renault, Sylvie; Bonnemain, Jean Louis; Faye, Loïc; Gaudillere, Jean Pierre
1992-01-01
The sporophyte of bryophytes is dependent on the gametophyte for its carbon nutrition. This is especially true of the sporophytes of Polytrichum species, and it was generally thought that sucrose was the main form of sugar for long distance transport in the leptom. In Polytrichum formosum, sucrose was the main soluble sugar of the sporophyte and gametophyte tissues, and the highest concentration (about 230 mm) was found in the haustorium. In contrast, sugars collected from the vaginula apoplast were mainly hexoses, with traces of sucrose and trehalose. p-Chloromercuribenzene sulfonate, a nonpermeant inhibitor of the cell wall invertase, strongly reduced the hexose to sucrose ratio. The highest cell wall invertase activity (pH 4.5) was located in the vaginula, whereas the highest activity of a soluble invertase (pH 7.0) was found in both the vaginula and the haustorium. Glucose uptake was carrier-mediated but only weakly dependent on the external pH and the transmembrane electrical gradient, in contrast to amino acid uptake (S. Renault, C. Despeghel-Caussin, J.L. Bonnemain, S. Delrot [1989] Plant Physiol 90: 913-920). Furthermore, addition of 5 or 50 mm glucose to the incubation medium induced a marginal depolarization of the transmembrane potential difference of the transfer cells and had no effect on the pH of this medium. Glucose was converted to sucrose after its absorption into the haustorium. These results demonstrate the noncontinuity of sucrose at the gametophyte/sporophyte interface. They suggest that its conversion to glucose and fructose at this interface, and the subsequent reconversion to sucrose after hexose absorption by haustorium cells, mainly governs sugar accumulation in this latter organ. PMID:16653202
Thermodynamics of membrane insertion and refolding of the diphtheria toxin T-domain
Vargas-Uribe, Mauricio; Rodnin, Mykola V.; Öjemalm, Karin; Holgado, Aurora; Kyrychenko, Alexander; Nilsson, IngMarie; Posokhov, Yevgen O.; Makhatadze, George; von Heijne, Gunnar; Ladokhin, Alexey S.
2014-01-01
The diphtheria toxin translocation (T) domain inserts into the endosomal membrane in response to the endosomal acidification and enables the delivery of the catalytic domain into the cell. The insertion pathway consists of a series of conformational changes that occur in solution and in the membrane and leads to the conversion of a water-soluble state into a transmembrane state. In this work, we utilize various biophysical techniques to characterize the insertion pathway from the thermodynamic perspective. Thermal and chemical unfolding measured by differential scanning calorimetry, circular dichroism and tryptophan fluorescence reveal that the free energy of unfolding of the T-domain at neutral and mildly acidic pH differ by 3–5 kcal/mol, depending on the experimental conditions. Fluorescence correlation spectroscopy measurements show that the free energy change from the membrane-competent state to the interfacial state is approximately −8 kcal/mol and is pH-independent, while that from the membrane-competent state to the transmembrane state ranges between −9.5 to −12 kcal/mol, depending on the membrane lipid composition and pH. Finally, the thermodynamics of transmembrane insertion of individual helices was tested using an in vitro assay that measures the translocon-assisted integration of test sequences into the microsomal membrane. These experiments suggest that even the most hydrophobic helix TH8 has only a small favorable free energy of insertion. The free energy for the insertion of the consensus insertion unit TH8-TH9 is slightly more favorable, yet less favorable than that measured for the entire protein, suggesting a cooperative effect for the membrane insertion of the helices of the T-domain. PMID:25281329
Structure and substrate ion binding in the sodium/proton antiporter PaNhaP
Wöhlert, David; Kühlbrandt, Werner; Yildiz, Özkan
2014-01-01
Sodium/proton antiporters maintain intracellular pH and sodium levels. Detailed structures of antiporters with bound substrate ions are essential for understanding how they work. We have resolved the substrate ion in the dimeric, electroneutral sodium/proton antiporter PaNhaP from Pyrococcus abyssi at 3.2 Å, and have determined its structure in two different conformations at pH 8 and pH 4. The ion is coordinated by three acidic sidechains, a water molecule, a serine and a main-chain carbonyl in the unwound stretch of trans-membrane helix 5 at the deepest point of a negatively charged cytoplasmic funnel. A second narrow polar channel may facilitate proton uptake from the cytoplasm. Transport activity of PaNhaP is cooperative at pH 6 but not at pH 5. Cooperativity is due to pH-dependent allosteric coupling of protomers through two histidines at the dimer interface. Combined with comprehensive transport studies, the structures of PaNhaP offer unique new insights into the transport mechanism of sodium/proton antiporters. DOI: http://dx.doi.org/10.7554/eLife.03579.001 PMID:25426802
Liger, D; Nizard, P; Gaillard, C; vanderSpek, J C; Murphy, J R; Pitard, B; Gillet, D
1998-11-01
We have constructed two fusion proteins T-hIL-2 and T-mIL-3 in which human interleukin-2 (hIL-2) or murine interleukin-3 (mIL-3) are fused to the C-terminus of the diphtheria toxin transmembrane domain (T domain). Two additional fusion proteins, T-(Gly4-Ser)2-hIL-2 and T-(Gly4-Ser)2-mIL-3, were derived by introduction of the (Gly4-Ser)2 spacer between the T domain and cytokine components. Recognition of the hIL-2 receptor or the mIL-3 receptor by the corresponding recombinant proteins was demonstrated by their capacity to stimulate cytokine-dependent cell lines. All proteins retained the capacity of the T domain to insert into phospholipid membranes at acidic pH. Finally, anchoring of both cytokines to the membrane of lipid vesicles or living cells was assessed by specific antibody recognition. Our results show that the T domain fused to the N-terminus of a given protein can function as a pH sensitive membrane anchor for that protein.
Arrestin-related proteins mediate pH signaling in fungi.
Herranz, Silvia; Rodríguez, José M; Bussink, Henk-Jan; Sánchez-Ferrero, Juan C; Arst, Herbert N; Peñalva, Miguel A; Vincent, Olivier
2005-08-23
Metazoan arrestins bind to seven-transmembrane (7TM) receptors to regulate function. Aspergillus nidulans PalF, a protein involved in the fungal ambient pH signaling pathway, contains arrestin N-terminal and C-terminal domains and binds strongly to two different regions within the C-terminal cytoplasmic tail of the 7TM, putative pH sensor PalH. Upon exposure to alkaline ambient pH, PalF is phosphorylated and, like mammalian beta-arrestins, ubiquitinated in a signal-dependent and 7TM protein-dependent manner. Substitution in PalF of a highly conserved arrestin N-terminal domain Ser residue prevents PalF-PalH interaction and pH signaling in vivo. Thus, PalF is the first experimentally documented fungal arrestin-related protein, dispelling the notion that arrestins are restricted to animal proteomes. Epistasis analyses demonstrate that PalF posttranslational modification is partially dependent on the 4TM protein PalI but independent of the remaining pH signal transduction pathway proteins PalA, PalB, and PalC, yielding experimental evidence bearing on the order of participation of the six components of the pH signal transduction pathway. Our data strongly implicate PalH as an ambient pH sensor, possibly with the cooperation of PalI.
Enterocin P Causes Potassium Ion Efflux from Enterococcus faecium T136 Cells
Herranz, Carmen; Cintas, Luis M.; Hernández, Pablo E.; Moll, Gert N.; Driessen, Arnold J. M.
2001-01-01
Enterocin P is a bacteriocin produced by Enterococcus faecium P13. We studied the mechanism of its bactericidal action using enterocin-P-sensitive E. faecium T136 cells. The bacteriocin is incapable of dissipating the transmembrane pH gradient. On the other hand, depending on the buffer used, enterocin P dissipates the transmembrane potential. Enterocin P efficiently elicits efflux of potassium ions, but not of intracellularly accumulated anions like phosphate and glutamate. Taken together, these data demonstrate that enterocin P forms specific, potassium ion-conducting pores in the cytoplasmic membrane of target cells. PMID:11181377
Incorporation of transmembrane hydroxide transport into the chemiosmotic theory.
de Grey, A D
1999-10-01
A cornerstone of textbook bioenergetics is that oxidative ATP synthesis in mitochondria requires, in normal conditions of internal and external pH, a potential difference (delta psi) of well over 100 mV between the aqueous compartments that the energy-transducing membrane separates. Measurements of delta psi inferred from diffusion of membrane-permeant ions confirm this, but those using microelectrodes consistently find no such delta psi--a result ostensibly irreconcilable with the chemiosmotic theory. Transmembrane hydroxide transport necessarily accompanies mitochondrial ATP synthesis, due to the action of several carrier proteins; this nullifies some of the proton transport by the respiratory chain. Here, it is proposed that these carriers' structure causes the path of this "lost" proton flow to include a component perpendicular to the membrane but within the aqueous phases, so maintaining a steady-state proton-motive force between the water at each membrane surface and in the adjacent bulk medium. The conflicting measurements of delta psi are shown to be consistent with the response of this system to its chemical environment.
Bacteriophage Infectivity Against Pseudomonas aeruginosa in Saline Conditions
Scarascia, Giantommaso; Yap, Scott A.; Kaksonen, Anna H.; Hong, Pei-Ying
2018-01-01
Pseudomonas aeruginosa is a ubiquitous member of marine biofilm, and reduces thiosulfate to produce toxic hydrogen sulfide gas. In this study, lytic bacteriophages were isolated and applied to inhibit the growth of P. aeruginosa in planktonic mode at different temperature, pH, and salinity. Bacteriophages showed optimal infectivity at a multiplicity of infection of 10 in saline conditions, and demonstrated lytic abilities over all tested temperature (25, 30, 37, and 45°C) and pH 6–9. Planktonic P. aeruginosa exhibited significantly longer lag phase and lower specific growth rates upon exposure to bacteriophages. Bacteriophages were subsequently applied to P. aeruginosa-enriched biofilm and were determined to lower the relative abundance of Pseudomonas-related taxa from 0.17 to 5.58% in controls to 0.01–0.61% in treated microbial communities. The relative abundance of Alphaproteobacteria, Pseudoalteromonas, and Planococcaceae decreased, possibly due to the phage-induced disruption of the biofilm matrix. Lastly, when applied to mitigate biofouling of ultrafiltration membranes, bacteriophages were determined to reduce the transmembrane pressure increase by 18% when utilized alone, and by 49% when used in combination with citric acid. The combined treatment was more effective compared with the citric acid treatment alone, which reported ca. 30% transmembrane pressure reduction. Collectively, the findings demonstrated that bacteriophages can be used as a biocidal agent to mitigate undesirable P. aeruginosa-associated problems in seawater applications. PMID:29770130
Damiano, E; Bassilana, M; Rigaud, J L; Leblanc, G
1984-01-23
Measurements of the fluorescent properties of 8-hydroxy-1,3,6-pyrenetrisulfonate (pyranine) enclosed within the internal space of Escherichia coli membrane vesicles enable recordings and quantitative analysis of: (i) changes in intravesicular pH taking place during oxidation of electron donors by the membrane respiratory chain; (ii) transient alkalization of the internal aqueous space resulting from the creation of outwardly directed acetate diffusion gradients across the vesicular membrane. Quantitation of the fluorescence variations recorded during the creation of transmembrane acetate gradients shows a close correspondence between the measured shifts in internal pH value and those expected from the amplitude of the imposed acetate gradients.
Jacot, Damien; Tosetti, Nicolò; Pires, Isa; Stock, Jessica; Graindorge, Arnault; Hung, Yu-Fu; Han, Huijong; Tewari, Rita; Kursula, Inari; Soldati-Favre, Dominique
2016-12-14
Apicomplexa exhibit a unique form of substrate-dependent gliding motility central for host cell invasion and parasite dissemination. Gliding is powered by rearward translocation of apically secreted transmembrane adhesins via their interaction with the parasite actomyosin system. We report a conserved armadillo and pleckstrin homology (PH) domain-containing protein, termed glideosome-associated connector (GAC), that mediates apicomplexan gliding motility, invasion, and egress by connecting the micronemal adhesins with the actomyosin system. TgGAC binds to and stabilizes filamentous actin and specifically associates with the transmembrane adhesin TgMIC2. GAC localizes to the apical pole in invasive stages of Toxoplasma gondii and Plasmodium berghei, and apical positioning of TgGAC depends on an apical lysine methyltransferase, TgAKMT. GAC PH domain also binds to phosphatidic acid, a lipid mediator associated with microneme exocytosis. Collectively, these findings indicate a central role for GAC in spatially and temporally coordinating gliding motility and invasion. Copyright © 2016 Elsevier Inc. All rights reserved.
Virzintiene, Egle; Moparthi, Vamsi K; Al-Eryani, Yusra; Shumbe, Leonard; Górecki, Kamil; Hägerhäll, Cecilia
2013-10-11
MrpA and MrpD are homologous to NuoL, NuoM and NuoN in complex I over the first 14 transmembrane helices. In this work, the C-terminal domain of MrpA, outside this conserved area, was investigated. The transmembrane orientation was found to correspond to that of NuoJ in complex I. We have previously demonstrated that the subunit NuoK is homologous to MrpC. The function of the MrpA C-terminus was tested by expression in a previously used Bacillus subtilis model system. At neutral pH, the truncated MrpA still worked, but at pH 8.4, where Mrp-complex formation is needed for function, the C-terminal domain of MrpA was absolutely required. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Gleissner, M; Elferink, M G; Driessen, A J; Konings, W N; Anemüller, S; Schäfer, G
1994-09-15
The terminal quinol oxidase of the cytochrome aa3 type was isolated from the extreme thermoacidophilic archaeon Sulfolobus acidocaldarius. In micellar solution, the enzyme oxidized various quinols and exerted the highest activity with the physiological substrate caldariella quinol. The enzyme was functionally reconstituted into monolayer liposomes composed of archaeal tetraether lipids also derived from S. acidocaldarius. With the electron donor system ascorbate and N,N,N',N'-tetramethyl-p-phenylenediamine, the reconstituted enzyme was more active in the archaeal lipids as compared to lipids derived from Escherichia coli at temperatures above 50 degrees C. Due to the low proton permeability of the tetraether lipids, it was possible to generate a steady-state transmembrane electrical potential (delta psi, interior negative), and transmembrane pH gradient (delta pH, interior alkaline) at temperatures up to 70 degrees C. The successful functional reconstitution of the cytochrome aa3-type quinol oxidase from Sulfolobus identifies it as the key energy converter in the respiratory system of this hyperthermophilic archaeon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wirth, Mary J
Solar energy conversion through biology would provide a renewable and nonpolluting abundance of energy. The bacterium Halobacterium salinarum converts solar to electrical energy by virtue of a transmembrane protein, bacteriorhodopsin. This transmembrane protein pumps protons across a nonconducting bilayer upon irradiation with green light. The bacterium evolved to perform this function inefficiently. If we were able to understand this process to engineer this protein for efficiency, then inexpensive energy production could be achieved. There are tens of thousands of different types of halobacteria, giving the opportunity to study different efficiencies and relating these to the protein structures. Technology does notmore » yet exist to perform such screening. The goal of this research is to generate new separation technology that can ultimately enable such screening. This involves creating a method for separating oriented and functional transmembrane proteins that remain in an electrically insulating lipid bilayer, with aqueous solutions on either side of the bilayer. A pH change across the lipid bilayer upon irradiation of a known concentration of proteins would probe function. Differences in proton pumping efficiency for different proteins variants would provide structure-function information for engineering the proteins. A schematic diagram from the original proposal is shown here. The idea is that (a) a lipid bilayer supported on a hydrophilic polymer film will make the bilayer fluid, and (b) applying an electric field will cause electrophoretic migration of the transmembrane proteins. We demonstrated this concept experimentally in a paper that was published just after this new grant period started (Lipid Bilayers on Polyacrylamide Brushes for Inclusion of Membrane Proteins, Emily A. Smith, Jason W. Coym, Scott M. Cowell, Victor J. Hruby, Henry I. Yamamura, Mary J. Wirth, Langmuir, 21, 9644-9650, 2005). The electrophoretic mobility was slow (10{sup -8} cm{sup 2}/Vs), and we project that a two order of magnitude increase would make this a practical tool. We are investigating two ways of improving electrophoretic mobility: better polymer supports, and a novel nanoporous medium that suspends the bilayer over free solution.« less
Cation-dependent nutrient transport in shrimp digestive tract.
Simmons, Tamla; Mozo, Julie; Wilson, Jennifer; Ahearn, Gregory A
2012-02-01
Purified epithelial brush border membrane vesicles (BBMV) were produced from the hepatopancreas of the Atlantic White shrimp, Litopeneaus setiferus, using standard methods originally developed for mammalian tissues and previously applied to other crustacean and echinoderm epithelia. These vesicles were used to study the cation dependency of sugar and amino acid transport across luminal membranes of hepatopancreatic epithelial cells. (3)H-D: -glucose uptake by BBMV against transient sugar concentration gradients occurred when either transmembrane sodium or potassium gradients were the only driving forces for sugar accumulation, suggesting the presence of a possible coupled transport system capable of using either cation. (3)H-L: -histidine transport was only stimulated by a transmembrane potassium gradient, while (3)H-L: -leucine uptake was enhanced by either a sodium or potassium gradient. These responses suggest the possible presence of a potassium-dependent transporter that accommodates either amino acid and a sodium-dependent system restricted only to L: -leucine. Uptake of (3)H-L: -leucine was significantly stimulated (P < 0.05) by several metallic cations (e.g., Zn(2+), Cu(2+), Mn(2+), Cd(2+), or Co(2+)) at external pH values of 7.0 or 5.0 (internal pH 7.0), suggesting a potential synergistic role of the cations in the transmembrane transfer of amino acids. (3)H-L: -histidine influxes (15 suptakes) were hyperbolic functions of external [zinc] or [manganese], following Michaelis-Menten kinetics. The apparent affinity constant (e.g., K (m)) for manganese was an order of magnitude smaller (K (m) = 0.22 μM Mn) than that for zinc (K (m) = 1.80 μM Zn), while no significant difference (P > 0.05) occurred between their maximal transport velocities (e.g., J (max)). These results suggest that a number of cation-dependent nutrient transport systems occur on the shrimp brush border membrane and aid in the absorption of these important dietary elements.
Liu, Ji; Lu, Wennan; Guha, Sonia; Baltazar, Gabriel C; Coffey, Erin E; Laties, Alan M; Rubenstein, Ronald C; Reenstra, William W; Mitchell, Claire H
2012-07-15
The role of the cystic fibrosis transmembrane conductance regulator (CFTR) in lysosomal acidification has been difficult to determine. We demonstrate here that CFTR contributes more to the reacidification of lysosomes from an elevated pH than to baseline pH maintenance. Lysosomal alkalinization is increasingly recognized as a factor in diseases of accumulation, and we previously showed that cAMP reacidified alkalinized lysosomes in retinal pigmented epithelial (RPE) cells. As the influx of anions to electrically balance proton accumulation may enhance lysosomal acidification, the contribution of the cAMP-activated anion channel CFTR to lysosomal reacidification was probed. The antagonist CFTR(inh)-172 had little effect on baseline levels of lysosomal pH in cultured human RPE cells but substantially reduced the reacidification of compromised lysosomes by cAMP. Likewise, CFTR activators had a bigger impact on cells whose lysosomes had been alkalinized. Knockdown of CFTR with small interfering RNA had a larger effect on alkalinized lysosomes than on baseline levels. Inhibition of CFTR in isolated lysosomes altered pH. While CFTR and Lamp1 were colocalized, treatment with cAMP did not increase targeting of CFTR to the lysosome. The inhibition of CFTR slowed lysosomal degradation of photoreceptor outer segments while activation of CFTR enhanced their clearance from compromised lysosomes. Activation of CFTR acidified RPE lysosomes from the ABCA4(-/-) mouse model of recessive Stargardt's disease, whose lysosomes are considerably alkalinized. In summary, CFTR contributes more to reducing lysosomal pH from alkalinized levels than to maintaining baseline pH. Treatment to activate CFTR may thus be of benefit in disorders of accumulation associated with lysosomal alkalinization.
On the function of chitin synthase extracellular domains in biomineralization.
Weiss, Ingrid M; Lüke, Florian; Eichner, Norbert; Guth, Christina; Clausen-Schaumann, Hauke
2013-08-01
Molluscs with various shell architectures evolved around 542-525 million years ago, as part of a larger phenomenon related to the diversification of metazoan phyla. Molluscs deposit minerals in a chitin matrix. The mollusc chitin is synthesized by transmembrane enzymes that contain several unique extracellular domains. Here we investigate the assembly mechanism of the chitin synthase Ar-CS1 via its extracellular domain ArCS1_E22. The corresponding transmembrane protein ArCS1_E22TM accumulates in membrane fractions of the expression host Dictyostelium discoideum. Soluble recombinant ArCS1_E22 proteins can be purified as monomers only at basic pH. According to confocal fluorescence microscopy experiments, immunolabeled ArCS1_E22 proteins adsorb preferably to aragonitic nacre platelets at pH 7.75. At pH 8.2 or pH 9.0 the fluorescence signal is less intense, indicating that protein-mineral interaction is reduced with increasing pH. Furthermore, ArCS1_E22 forms regular nanostructures on cationic substrates as revealed by atomic force microscopy (AFM) experiments on modified mica cleavage planes. These experiments suggest that the extracellular domain ArCS1_E22 is involved in regulating the multiple enzyme activities of Ar-CS1 such as chitin synthesis and myosin movements by interaction with mineral surfaces and eventually by protein assembly. The protein complexes could locally probe the status of mineralization according to pH unless ions and pCO2 are balanced with suitable buffer substances. Taking into account that the intact enzyme could act as a force sensor, the results presented here provide further evidence that shell formation is coordinated physiologically with precise adjustment of cellular activities to the structure, topography and stiffness at the mineralizing interface. Copyright © 2013 Elsevier Inc. All rights reserved.
Liu, Ji; Lu, Wennan; Guha, Sonia; Baltazar, Gabriel C.; Coffey, Erin E.; Laties, Alan M.; Rubenstein, Ronald C.; Reenstra, William W.
2012-01-01
The role of the cystic fibrosis transmembrane conductance regulator (CFTR) in lysosomal acidification has been difficult to determine. We demonstrate here that CFTR contributes more to the reacidification of lysosomes from an elevated pH than to baseline pH maintenance. Lysosomal alkalinization is increasingly recognized as a factor in diseases of accumulation, and we previously showed that cAMP reacidified alkalinized lysosomes in retinal pigmented epithelial (RPE) cells. As the influx of anions to electrically balance proton accumulation may enhance lysosomal acidification, the contribution of the cAMP-activated anion channel CFTR to lysosomal reacidification was probed. The antagonist CFTRinh-172 had little effect on baseline levels of lysosomal pH in cultured human RPE cells but substantially reduced the reacidification of compromised lysosomes by cAMP. Likewise, CFTR activators had a bigger impact on cells whose lysosomes had been alkalinized. Knockdown of CFTR with small interfering RNA had a larger effect on alkalinized lysosomes than on baseline levels. Inhibition of CFTR in isolated lysosomes altered pH. While CFTR and Lamp1 were colocalized, treatment with cAMP did not increase targeting of CFTR to the lysosome. The inhibition of CFTR slowed lysosomal degradation of photoreceptor outer segments while activation of CFTR enhanced their clearance from compromised lysosomes. Activation of CFTR acidified RPE lysosomes from the ABCA4−/− mouse model of recessive Stargardt's disease, whose lysosomes are considerably alkalinized. In summary, CFTR contributes more to reducing lysosomal pH from alkalinized levels than to maintaining baseline pH. Treatment to activate CFTR may thus be of benefit in disorders of accumulation associated with lysosomal alkalinization. PMID:22572847
Genç, Nevim; Doğan, Esra Can; Narcı, Ali Oğuzhan; Bican, Emine
2017-05-01
In this study, a multi-response optimization method using Taguchi's robust design approach is proposed for imidacloprid removal by reverse osmosis. Tests were conducted with different membrane type (BW30, LFC-3, CPA-3), transmembrane pressure (TMP = 20, 25, 30 bar), volume reduction factor (VRF = 2, 3, 4), and pH (3, 7, 11). Quality and quantity of permeate are optimized with the multi-response characteristics of the total dissolved solid (TDS), conductivity, imidacloprid, and total organic carbon (TOC) rejection ratios and flux of permeate. The optimized conditions were determined as membrane type of BW30, TMP 30 bar, VRF 3, and pH 11. Under these conditions, TDS, conductivity, imidacloprid, and TOC rejections and permeate flux were 97.50 97.41, 97.80, 98.00% and 30.60 L/m2·h, respectively. Membrane type was obtained as the most effective factor; its contribution is 64%. The difference between the predicted and observed value of multi-response signal/noise (MRSN) is within the confidence interval.
Kordyukova, Larisa
2017-01-02
Two enveloped virus families, Orthomyxoviridae and Paramyxoviridae, comprise a large number of dangerous pathogens that enter the host cell via fusion of their envelope with a target cell membrane at acidic or neutral pH. The Class I prototypic glycoproteins responsible for this reaction are the Influenza virus haemagglutinin (HA) protein or paramyxovirus fusion (F) protein. X-ray crystallography and cryoelectron microscopy data are available for the HA and F ectodomains in pre- and post-fusion conformations, revealing similar spiky architectures, albeit with clear differences in the details. In contrast, their anchoring segments, which possess a linker region, transmembrane domain and cytoplasmic tail that is specifically modified with long fatty acids (highly conserved in HA and occasional in F), are not resolved. Recent experimental, bioinformatics and molecular modelling data showing the primary, secondary and quaternary organization of the HA and F anchoring segments are summarized in this review. Some amino acid patterns that are crucial for protein thermal stability or lipid membrane order/cholesterol binding are addressed, and new achievements in vaccine practice using HA transmembrane domain chimaeras are discussed. The oligomerization properties of the transmembrane domains are considered in the context of Group-1 and Group-2 antigenic HA subtypes and various genera/subfamilies of paramyxoviruses. A specific focus is the late steps of fusion that are reportedly facilitated by (1) β-sheet-promoting β-branched amino acids (valine and isoleucine) that are enriched in the transmembrane domain of paramyxovirus F or (2) a post-translational modification of C-terminal cysteines with palmitate/stearate (differential S-acylation) that is highly conserved in Influenza virus HA. Copyright © 2016 Elsevier B.V. All rights reserved.
Infection by Zika viruses requires the transmembrane protein AXL, endocytosis and low pH.
Persaud, Mirjana; Martinez-Lopez, Alicia; Buffone, Cindy; Porcelli, Steven A; Diaz-Griffero, Felipe
2018-05-01
The recent Zika virus (ZIKV) outbreak in Brazil has suggested associations of this virus infection with neurological disorders, including microcephaly in newborn infants and Guillian-Barré syndrome in adults. Previous reports have shown that AXL, a transmembrane receptor tyrosine kinase protein, is essential for ZIKV infection of mammalian cells, but this remains controversial. Here, we have assessed the involvement of AXL in the ability of ZIKV to infect mammalian cells, and also the requirement for endocytosis and acidic pH. We demonstrated that AXL is essential for ZIKV infection of human fibroblast cell line HT1080 as the targeted deletion of the gene for AXL in HT1080 cells made them no longer susceptible to ZIKV infection. Our results also showed that infection was prevented by lysosomotropic agents such as ammonium chloride, chloroquine and bafilomycin A1, which neutralize the normally acidic pH of endosomal compartments. Infection by ZIKV was also blocked by chlorpromazine, indicating a requirement for clathrin-mediated endocytosis. Taken together, our findings suggest that AXL most likely serves as an attachment factor for ZIKV on the cell surface, and that productive infection requires endocytosis and delivery of the virus to acidified intracellular compartments. Copyright © 2018 Elsevier Inc. All rights reserved.
Nizard, P; Liger, D; Gaillard, C; Gillet, D
1998-08-14
We have constructed a fusion protein, T-ZZ, in which the IgG-Fc binding protein ZZ was fused to the C-terminus of the diphtheria toxin transmembrane domain (T domain). While soluble at neutral pH, T-ZZ retained the capacity of the T domain to bind to phospholipid membranes at acidic pH. Once anchored to the membrane, the ZZ part of the protein was capable of binding mouse monoclonal or rabbit polyclonal IgG. Our results show that the T-ZZ protein can function as a pH sensitive membrane anchor for the linkage of IgG to the membrane of lipid vesicles, adherent and non-adherent cells.
Dezi, Manuela; Di Cicco, Aurelie; Bassereau, Patricia; Lévy, Daniel
2013-01-01
Giant unilamellar vesicles (GUVs) are convenient biomimetic systems of the same size as cells that are increasingly used to quantitatively address biophysical and biochemical processes related to cell functions. However, current approaches to incorporate transmembrane proteins in the membrane of GUVs are limited by the amphiphilic nature or proteins. Here, we report a method to incorporate transmembrane proteins in GUVs, based on concepts developed for detergent-mediated reconstitution in large unilamellar vesicles. Reconstitution is performed either by direct incorporation from proteins purified in detergent micelles or by fusion of purified native vesicles or proteoliposomes in preformed GUVs. Lipid compositions of the membrane and the ionic, protein, or DNA compositions in the internal and external volumes of GUVs can be controlled. Using confocal microscopy and functional assays, we show that proteins are unidirectionally incorporated in the GUVs and keep their functionality. We have successfully tested our method with three types of transmembrane proteins. GUVs containing bacteriorhodopsin, a photoactivable proton pump, can generate large transmembrane pH and potential gradients that are light-switchable and stable for hours. GUVs with FhuA, a bacterial porin, were used to follow the DNA injection by T5 phage upon binding to its transmembrane receptor. GUVs incorporating BmrC/BmrD, a bacterial heterodimeric ATP-binding cassette efflux transporter, were used to demonstrate the protein-dependent translocation of drugs and their interactions with encapsulated DNA. Our method should thus apply to a wide variety of membrane or peripheral proteins for producing more complex biomimetic GUVs. PMID:23589883
Acidic pH increases airway surface liquid viscosity in cystic fibrosis
Tang, Xiao Xiao; Ostedgaard, Lynda S.; Hoegger, Mark J.; Moninger, Thomas O.; Karp, Philip H.; McMenimen, James D.; Choudhury, Biswa; Varki, Ajit; Stoltz, David A.; Welsh, Michael J.
2016-01-01
Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3– concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator–dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF. PMID:26808501
Martinez, Keith A.; Kitko, Ryan D.; Mershon, J. Patrick; Adcox, Haley E.; Malek, Kotiba A.; Berkmen, Melanie B.
2012-01-01
The ability of Escherichia coli and Bacillus subtilis to regulate their cytoplasmic pH is well studied in cell suspensions but is poorly understood in individual adherent cells and biofilms. We observed the cytoplasmic pH of individual cells using ratiometric pHluorin. A standard curve equating the fluorescence ratio with pH was obtained by perfusion at a range of external pH 5.0 to 9.0, with uncouplers that collapse the transmembrane pH difference. Adherent cells were acid stressed by switching the perfusion medium from pH 7.5 to pH 5.5. The E. coli cytoplasmic pH fell to a value that varied among individual cells (range of pH 6.2 to 6.8), but a majority of cells recovered (to pH 7.0 to 7.5) within 2 min. In an E. coli biofilm, cells shifted from pH 7.5 to pH 5.5 failed to recover cytoplasmic pH. Following a smaller shift (from pH 7.5 to pH 6.0), most biofilm cells recovered fully, although the pH decreased further than that of isolated adherent cells, and recovery took longer (7 min or longer). Some biofilm cells began to recover pH and then failed, a response not seen in isolated cells. B. subtilis cells were acid shifted from pH 7.5 to pH 6.0. In B. subtilis, unlike the case with E. coli, cytoplasmic pH showed no “overshoot” but fell to a level that was maintained. This level of cytoplasmic pH post-acid shift varied among individual B. subtilis cells (range of pH, 7.0 to 7.7). Overall, the cytoplasmic pHs of individual bacteria show important variation in the acid stress response, including novel responses in biofilms. PMID:22427503
Martinez, Keith A; Kitko, Ryan D; Mershon, J Patrick; Adcox, Haley E; Malek, Kotiba A; Berkmen, Melanie B; Slonczewski, Joan L
2012-05-01
The ability of Escherichia coli and Bacillus subtilis to regulate their cytoplasmic pH is well studied in cell suspensions but is poorly understood in individual adherent cells and biofilms. We observed the cytoplasmic pH of individual cells using ratiometric pHluorin. A standard curve equating the fluorescence ratio with pH was obtained by perfusion at a range of external pH 5.0 to 9.0, with uncouplers that collapse the transmembrane pH difference. Adherent cells were acid stressed by switching the perfusion medium from pH 7.5 to pH 5.5. The E. coli cytoplasmic pH fell to a value that varied among individual cells (range of pH 6.2 to 6.8), but a majority of cells recovered (to pH 7.0 to 7.5) within 2 min. In an E. coli biofilm, cells shifted from pH 7.5 to pH 5.5 failed to recover cytoplasmic pH. Following a smaller shift (from pH 7.5 to pH 6.0), most biofilm cells recovered fully, although the pH decreased further than that of isolated adherent cells, and recovery took longer (7 min or longer). Some biofilm cells began to recover pH and then failed, a response not seen in isolated cells. B. subtilis cells were acid shifted from pH 7.5 to pH 6.0. In B. subtilis, unlike the case with E. coli, cytoplasmic pH showed no "overshoot" but fell to a level that was maintained. This level of cytoplasmic pH post-acid shift varied among individual B. subtilis cells (range of pH, 7.0 to 7.7). Overall, the cytoplasmic pHs of individual bacteria show important variation in the acid stress response, including novel responses in biofilms.
Li, Zhi; Deng, Li-Qun; Chen, Jin-Xiang; Zhou, Chun-Qiong; Chen, Wen-Hua
2015-12-28
Six squaramido-functionalized bis(choloyl) conjugates were synthesized and fully characterized on the basis of NMR ((1)H and (13)C) and ESI MS (LR and HR) data. Their transmembrane anionophoric activity was investigated in detail by means of chloride ion selective electrode technique and pyranine assay. The data indicate that this set of compounds is capable of promoting the transmembrane transport of anions presumably via proton/anion symport and anion exchange processes, and that lipophilicity in terms of clog P from 3.90 to 8.32 affects the apparent ion transport rate in a concentration-dependent fashion. Detailed kinetic analysis on the data obtained from both the chloride efflux and pH discharge experiments reveals that there may exist an optimum clog P range for the intrinsic ion transport rate. However, lipophilicity exhibits little effect on the effectiveness of this set of compounds in terms of either k2/Kdiss or EC50 values.
Ryan, Renae M; Kortt, Nicholas C; Sirivanta, Tan; Vandenberg, Robert J
2010-07-01
Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system and extracellular glutamate levels are controlled by a family of transporters known as excitatory amino acid transporters (EAATs). The EAATs transport glutamate and aspartate with similar micromolar affinities and this transport is coupled to the movement of Na(+), K(+), and H(+). The crystal structure of a prokaryotic homologue of the EAATs, aspartate transporter from Pyrococcus horokoshii (Glt(Ph)), has yielded important insights into the architecture of this transporter family. Glt(Ph) is a Na(+)-dependent transporter that has significantly higher affinity for aspartate over glutamate and is not coupled to H(+) or K(+). The highly conserved carboxy-terminal domains of the EAATs and Glt(Ph) contain the substrate and ion binding sites, however, there are a couple of striking differences in this region that we have investigated to better understand the transport mechanism. An arginine residue is in close proximity to the substrate binding site of both Glt(Ph) and the EAATs, but is located in transmembrane domain (TM) 8 in the EAATs and hairpin loop 1 (HP1) of Glt(Ph). Here we report that the position of this arginine residue can explain some of the functional differences observed between the EAATs and Glt(Ph). Moving the arginine residue from TM8 to HP1 in EAAT1 results in a transporter that has significantly increased affinity for both glutamate and aspartate and is K(+) independent. Conversely, moving the arginine residue from HP1 to TM8 in Glt(Ph) results in a transporter that has reduced affinity for aspartate.
Modulating Transmembrane α-Helix Interactions through pH-Sensitive Boundary Residues.
Ng, Derek P; Deber, Charles M
2016-08-09
Changes in pH can alter the structure and activity of proteins and may be used by the cell to control molecular function. This coupling can also be used in non-native applications through the design of pH-sensitive biomolecules. For example, the pH (low) insertion peptide (pHLIP) can spontaneously insert into a lipid bilayer when the pH decreases. We have previously shown that the α-helicity and helix-helix interactions of the TM2 α-helix of the proteolipid protein (PLP) are sensitive to the local hydrophobicity at its C-terminus. Given that there is an ionizable residue (Glu-88) at the C-terminus of this transmembrane (TM) segment, we hypothesized that changing the ionization state of this residue through pH may alter the local hydrophobicity of the peptide enough to affect both its secondary structure and helix-helix interactions. To examine this phenomenon, we synthesized peptide analogues of the PLP TM2 α-helix (wild-type sequence (66)AFQYVIYGTASFFFLYGALLLAEGF(90)). Using circular dichroism and Förster resonance energy transfer in the membrane-mimetic detergent sodium dodecyl sulfate, we found that a decrease in pH increases both peptide α-helicity and the extent of self-association. This pH-dependent effect is due specifically to the presence of Glu-88 at the C-terminus. Additional experiments in which Phe-90 was mutated to residues of varying hydrophobicities indicated that the strength of this effect is dependent on the local hydrophobicity near Glu-88. Our results have implications for the design of TM peptide switches and improve our understanding of how membrane protein structure and activity can be regulated through local molecular environmental changes.
Halestrap, A P
1978-06-15
Glucagon treatment of rats allowed the isolation of liver mitochondria with enhanced rates of pyruvate metabolism measured in either sucrose or KCl media. No change in the activity of the pyruvate carrier itself was apparent, but under metabolizing conditions, use of the inhibitor of pyruvate transport, alpha-cyano-4-hydroxycinnamate, demonstrated that pyruvate transport limited the rate of pyruvate metabolism. The maximum rate of transport under metabolizing conditions was enhanced by glucagon treatment. Problems involved in measuring the transmembrane pH gradient under metabolizing conditions are discussed and a variety of techniques are used to estimate the matrix pH. From the distribution of methylamine, ammonia and D-lactate and the Ki for inhibition by alpha-cyano-4-hydroxycinnamate it is concluded that the matrix is more acid than the medium and that the pH of the matrix rises after glucagon treatment. The increase in matrix pH stimulates pyruvate transport. The membrane potential, ATP concentration and O2 uptake were also increased under metabolizing conditions in glucagon-treated mitochondria. These changes were correlated with a stimulation of the respiratory chain which can be observed in uncoupled mitochondria [Yamazaki (1975) J. Biol. Chem. 250, 7924--7930]. The mitochondrial Mg2+ content (mean +/- S.E.M.) was increased from 38.8 +/- 1.2 (n = 26) to 47.5 +/- 2.0 (n = 26) ng-atoms/mg by glucagon and the K+ content from 126.7 +/- 10.3 (n = 19) ng-atoms/mg. This may represent a change in membrane potential induced by glucagon in vivo. The physiological significance of these results in the control of gluconeogenesis is discussed.
Transport of K+ and other cations across phospholipid membranes by nonesterified fatty acids.
Sharpe, M A; Cooper, C E; Wrigglesworth, J M
1994-07-01
The rate of change of internal pH and transmembrane potential has been monitored in liposomes following the external addition of various cation salts. Oleic acid increases the transmembrane movement of H+ following the imposition of a K+ gradient. An initial fast change in internal pH is seen followed by a slower rate of alkalinization. High concentrations of the fatty acid enhance the rate comparable to that seen in the presence of nigericin in contrast to the effect of FCCP (carbonyl cyanide p-(tri-fluoromethoxy)phenyl hydrazone) which saturates at an intermediate value. The ability of nonesterified fatty acids to catalyze the movement of cations across the liposome membrane increases with the degree of unsaturation and decreases with increasing chain length. Li and Na salts cause a similar initial fast pH change but have less effect on the subsequent slower rate. Similarly, the main effect of divalent cation salts is on the initial fast change. The membrane potential can enhance or inhibit cation transport depending on its polarity with respect to the cation gradient. It is concluded that nonesterified fatty acids have the capability to complex with, and transport, a variety of cations across phospholipid bilayers. However, they do not act simply as proton/cation exchangers analogous to nigericin nor as protonophores analogous to FCCP. The full cycle of ionophoric action involves a combination of both functions.
Olkhova, Elena; Kozachkov, Lena; Padan, Etana; Michel, Hartmut
2009-08-15
Sodium proton antiporters are essential enzymes that catalyze the exchange of sodium ions for protons across biological membranes. The crystal structure of NhaA has provided a basis to explore the mechanism of ion exchange and its unique regulation by pH. Here, the mechanism of the pH activation of the antiporter is investigated through functional and computational studies of several variants with mutations in the ion-binding site (D163, D164). The most significant difference found computationally between the wild type antiporter and the active site variants, D163E and D164N, are low pK(a) values of Glu78 making them insensitive to pH. Although in the variant D163N the pK(a) of Glu78 is comparable to the physiological one, this variant cannot demonstrate the long-range electrostatic effect of Glu78 on the pH-dependent structural reorganization of trans-membrane helix X and, hence, is proposed to be inactive. In marked contrast, variant D164E remains sensitive to pH and can be activated by alkaline pH shift. Remarkably, as expected computationally and discovered here biochemically, D164E is viable and active in Na(+)/H(+) exchange albeit with increased apparent K(M). Our results unravel the unique electrostatic network of NhaA that connect the coupled clusters of the "pH sensor" with the binding site, which is crucial for pH activation of NhaA. 2009 Wiley-Liss, Inc.
Ratnayake, Punsisi U.; Ekanayaka, E. A. Prabodha; Komanduru, Sweta S.; Weliky, David P.
2015-01-01
Influenza virus is a Class I enveloped virus which is initially endocytosed into a host respiratory epithelial cell. Subsequent reduction of the pH to the 5–6 range triggers a structural change of the viral hemagglutinin II (HA2) protein, fusion of the viral and endosomal membranes, and release of the viral nucleocapsid into the cytoplasm. HA2 contains fusion peptide (FP), soluble ectodomain (SE), transmembrane (TM), and intraviral domains with respective lengths of ~25, ~160, ~25, and ~10 residues. The present work provides a straightforward protocol for producing and purifying mg quantities of full-length HA2 from expression in bacteria. Biophysical and structural comparisons are made between full-length HA2 and shorter constructs including SHA2 ≡ SE, FHA2 ≡ FP + SE, and SHA2-TM ≡ SE + TM constructs. The constructs are helical in detergent at pH 7.4 and the dominant trimer species. The proteins are highly thermostable in decylmaltoside detergent with Tm > 90 °C for HA2 with stabilization provided by the SE, FP, and TM domains. The proteins are likely in a trimer-of-hairpins structure, the final protein state during fusion. All constructs induce fusion of negatively-charged vesicles at pH 5.0 with much less fusion at pH 7.4. Attractive protein/vesicle electrostatics play a role in fusion, as the proteins are positively-charged at pH 5.0 and negatively-charged at pH 7.4 and the pH-dependence of fusion is reversed for positively-charged vesicles. Comparison of fusion between constructs supports significant contributions to fusion from the SE and the FP with little effect from the TM. PMID:26297995
Ratnayake, Punsisi U; Prabodha Ekanayaka, E A; Komanduru, Sweta S; Weliky, David P
2016-01-01
Influenza virus is a class I enveloped virus which is initially endocytosed into a host respiratory epithelial cell. Subsequent reduction of the pH to the 5-6 range triggers a structural change of the viral hemagglutinin II (HA2) protein, fusion of the viral and endosomal membranes, and release of the viral nucleocapsid into the cytoplasm. HA2 contains fusion peptide (FP), soluble ectodomain (SE), transmembrane (TM), and intraviral domains with respective lengths of ∼ 25, ∼ 160, ∼ 25, and ∼ 10 residues. The present work provides a straightforward protocol for producing and purifying mg quantities of full-length HA2 from expression in bacteria. Biophysical and structural comparisons are made between full-length HA2 and shorter constructs including SHA2 ≡ SE, FHA2 ≡ FP+SE, and SHA2-TM ≡ SE+TM constructs. The constructs are helical in detergent at pH 7.4 and the dominant trimer species. The proteins are highly thermostable in decylmaltoside detergent with Tm>90 °C for HA2 with stabilization provided by the SE, FP, and TM domains. The proteins are likely in a trimer-of-hairpins structure, the final protein state during fusion. All constructs induce fusion of negatively-charged vesicles at pH 5.0 with much less fusion at pH 7.4. Attractive protein/vesicle electrostatics play a role in fusion, as the proteins are positively-charged at pH 5.0 and negatively-charged at pH 7.4 and the pH-dependence of fusion is reversed for positively-charged vesicles. Comparison of fusion between constructs supports significant contributions to fusion from the SE and the FP with little effect from the TM. Copyright © 2015 Elsevier Inc. All rights reserved.
Molecular mechanisms for generating transmembrane proton gradients
Gunner, M.R.; Amin, Muhamed; Zhu, Xuyu; Lu, Jianxun
2013-01-01
Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side. PMID:23507617
Lim, Tong Seng; Vedula, Sri Ram Krishna; Hui, Shi; Kausalya, P Jaya; Hunziker, Walter; Lim, Chwee Teck
2008-08-15
Claudins belong to a large family of transmembrane proteins that localize at tight junctions (TJs) where they play a central role in regulating paracellular transport of solutes and nutrients across epithelial monolayers. Their ability to regulate the paracellular pathway is highly influenced by changes in extracellular pH. However, the effect of changes in pH on the strength and kinetics of claudin mediated adhesion is poorly understood. Using atomic force microscopy, we characterized the kinetic properties of homophilic trans-interactions between full length recombinant GST tagged Claudin-2 (Cldn2) under different pH conditions. In measurements covering three orders of magnitude change in force loading rate of 10(2)-10(4) pN/s, the Cldn2/Cldn2 force spectrum (i.e., unbinding force versus loading rate) revealed a fast and a slow loading regime that characterized a steep inner activation barrier and a wide outer activation barrier throughout pH range of 4.5-8. Comparing to the neutral condition (pH 6.9), differences in the inner energy barriers for the dissociation of Cldn2/Cldn2 mediated interactions at acidic and alkaline environments were found to be <0.65 k(B)T, which is much lower than the outer dissociation energy barrier (>1.37 k(B)T). The relatively stable interaction of Cldn2/Cldn2 in neutral environment suggests that electrostatic interactions may contribute to the overall adhesion strength of Cldn2 interactions. Our results provide an insight into the changes in the inter-molecular forces and adhesion kinetics of Cldn2 mediated interactions in acidic, neutral and alkaline environments.
Siletsky, Sergey A; Mamedov, Mahir D; Lukashev, Evgeniy P; Balashov, Sergei P; Dolgikh, Dmitriy A; Rubin, Andrei B; Kirpichnikov, Mikhail P; Petrovskaya, Lada E
2016-11-01
A retinal protein from Exiguobacterium sibiricum (ESR) functions as a light-driven proton pump. Unlike other proton pumps, it contains Lys96 instead of a usual carboxylic residue in the internal proton donor site. Nevertheless, the reprotonation of the Schiff base occurs fast, indicating that Lys96 facilitates proton transfer from the bulk. In this study we examined kinetics of light-induced transmembrane electrical potential difference, ΔΨ, generated in proteoliposomes reconstituted with ESR. We show that total magnitude of ΔΨ is comparable to that produced by bacteriorhodopsin but its kinetic components and their pH dependence are substantially different. The results are in agreement with the earlier finding that proton uptake precedes reprotonation of the Schiff base in ESR, suggesting that Lys96 is unprotonated in the initial state and gains a proton transiently in the photocycle. The electrogenic phases and the photocycle transitions related to proton transfer from the bulk to the Schiff base are pH dependent. At neutral pH, they occur with τ 0.5ms and 4.5ms. At alkaline pH, the fast component ceases and Schiff base reprotonation slows. At pH8.4, a spectrally silent electrogenic component with τ 0.25ms is detected, which can be attributed to proton transfer from the bulk to Lys96. At pH5.1, the amplitude of ΔΨ decreases 10 fold, reflecting a decreased yield and rate of proton transfer, apparently from protonation of the acceptor (Asp85-His57 pair) in the initial state. The features of the photoelectric potential generation correlate with the ESR structure and proposed mechanism of proton transfer. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Wang; Li, Xue; Wang, Qiuying; Zhu, Xixi; Zhang, Qingyan; Du, Linfang
2018-01-01
CP43 is closely associated with the photosystem II and exists the plant thylakoid membranes. The acidic pH-induced structural changes had been investigated by fluorescence spectrum, ANS spectrum, RLS spectrum, energy transfer experiment, acrylamide fluorescence quenching assay and MD simulation. The fluorescence spectrum indicated that the structural changes in acidic pH-induced process were a four-state model, which was nature state (N), partial unfolding state (PU), refolding state (R), and molten-globule state (M), respectively. Analysis of ANS spectrum illustrated that inner hydrophobic core exposed partially to surface below pH 2.0 and inferred also that the molten-globule state existed. The RLS spectrum showed the aggregation of apo-CP43 around the pI (pH 4.5-4.0). The alterations of apo-CP43 secondary structure with different acidic treatments were confirmed by FTIR spectrum. The energy transfer experiment and quenching research demonstrated structural change at pH 4.0 was loosest. The RMSF suggested two terminals played an important function in acidic denaturation process. The distance of two terminals shown slight difference in acidic pH-induced process during the unfolding process, both N-terminal and C-terminal occupied the dominant role. However, the N-terminal accounted for the main part in the refolding process. All kinds of SASA values corresponded to spectral results. The tertiary and secondary structure by MD simulation indicated that the part transmembrane α-helix was destroyed at low pH.
Surya, Wahyu; Torres, Jaume
2015-04-02
Analytical ultracentrifugation (AUC) can be used to study reversible interactions between macromolecules over a wide range of interaction strengths and under physiological conditions. This makes AUC a method of choice to quantitatively assess stoichiometry and thermodynamics of homo- and hetero-association that are transient and reversible in biochemical processes. In the modality of sedimentation equilibrium (SE), a balance between diffusion and sedimentation provides a profile as a function of radial distance that depends on a specific association model. Herein, a detailed SE protocol is described to determine the size and monomer-monomer association energy of a small membrane protein oligomer using an analytical ultracentrifuge. AUC-ES is label-free, only based on physical principles, and can be used on both water soluble and membrane proteins. An example is shown of the latter, the small hydrophobic (SH) protein in the human respiratory syncytial virus (hRSV), a 65-amino acid polypeptide with a single α-helical transmembrane (TM) domain that forms pentameric ion channels. NMR-based structural data shows that SH protein has two protonatable His residues in its transmembrane domain that are oriented facing the lumen of the channel. SE experiments have been designed to determine how pH affects association constant and the oligomeric size of SH protein. While the pentameric form was preserved in all cases, its association constant was reduced at low pH. These data are in agreement with a similar pH dependency observed for SH channel activity, consistent with a lumenal orientation of the two His residues in SH protein. The latter may experience electrostatic repulsion and reduced oligomer stability at low pH. In summary, this method is applicable whenever quantitative information on subtle protein-protein association changes in physiological conditions have to be measured.
NASA Astrophysics Data System (ADS)
Chung, T. W.; Chen, C. K.; Hsu, S. H.
2017-11-01
Protein concentration process using filter membrane has a significant advantage on energy saving compared to the traditional drying processes. However, fouling on large membrane area and frequent membrane cleaning will increase the energy consumption and operation cost for the protein concentration process with filter membrane. In this study, the membrane filtration for protein concentration will be conducted and compared with the recent protein concentration technology. The analysis of operating factors for protein concentration process using filter membrane was discussed. The separation mechanism of membrane filtration was developed according to the size difference between the pore of membrane and the particle of filter material. The Darcy’s Law was applied to discuss the interaction on flux, TMP (transmembrane pressure) and resistance in this study. The effect of membrane pore size, pH value and TMP on the steady-state flux (Jst) and protein rejection (R) were studied. It is observed that the Jst increases with decreasing membrane pore size, the Jst increases with increasing TMP, and R increased with decreasing solution pH value. Compare to other variables, the pH value is the most significant variable for separation between protein and water.
Sze, Heven; Chanroj, Salil
2018-04-24
Plants remodel their cells through the dynamic endomembrane system. Intracellular pH is important for membrane trafficking, but the determinants of pH homeostasis are poorly defined in plants. Electrogenic proton (H+) pumps depend on counter-ion fluxes to establish transmembrane pH gradients at the plasma membrane and endomembranes. Vacuolar-type H+-ATPase-mediated acidification of the trans-Golgi network (TGN) is crucial for secretion and membrane recycling. Pump and counter-ion fluxes are unlikely to fine-tune pH; rather, alkali cation/H+ antiporters, which can alter pH and/or cation homeostasis locally and transiently, are prime candidates. Plants have a large family of predicted cation/H+ exchangers (CHX) of obscure function, in addition to the well-studied K+(Na+)/H+ exchangers (NHX). Here, we review the regulation of cytosolic and vacuolar pH, highlighting the similarities and distinctions of NHX and CHX members. In planta, alkalinization of the TGN or vacuole by NHXs promotes membrane trafficking, endocytosis, cell expansion, and growth. CHXs localize to endomembranes and/or the plasma membrane, contribute to male fertility, pollen tube guidance, pollen wall construction, stomatal opening, and in soybean (Glycine max), tolerance to salt stress. Three-dimensional structural models and mutagenesis of Arabidopsis thaliana genes have allowed us to infer that AtCHX17 and AtNHX1 share a global architecture and a translocation core like bacterial Na+/H+ antiporters. Yet the presence of distinct residues suggests some CHXs differ from NHXs in pH sensing and electrogenicity. How H+ pumps, counter-ion fluxes, and cation/H+ antiporters are linked with signaling and membrane trafficking to remodel membranes and cell walls awaits further investigation. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.
TASK-2 K₂p K⁺ channel: thoughts about gating and its fitness to physiological function.
López-Cayuqueo, Karen I; Peña-Münzenmayer, Gaspar; Niemeyer, María Isabel; Sepúlveda, Francisco V; Cid, L Pablo
2015-05-01
TASK-2 (K2P5) was one of the earliest members of the K2P two-pore, four transmembrane domain K(+) channels to be identified. TASK-2 gating is controlled by changes in both extra- and intracellular pH through separate sensors: arginine 224 and lysine 245, located at the extra- and intracellular ends of transmembrane domain 4. TASK-2 is inhibited by a direct effect of CO2 and is regulated by and interacts with G protein subunits. TASK-2 takes part in regulatory adjustments and is a mediator in the chemoreception process in neurons of the retrotrapezoid nucleus where its pHi sensitivity could be important in regulating excitability and therefore signalling of the O2/CO2 status. Extracellular pH increases brought about by HCO3 (-) efflux from proximal tubule epithelial cells have been proposed to couple to TASK-2 activation to maintain electrochemical gradients favourable to HCO3 (-) reabsorption. We demonstrate that, as suspected previously, TASK-2 is expressed at the basolateral membrane of the same proximal tubule cells that express apical membrane Na(+)-H(+)-exchanger NHE-3 and basolateral membrane Na(+)-HCO3 (-) cotransporter NBCe1-A, the main components of the HCO3 (-) transport machinery. We also discuss critically the mechanism by which TASK-2 is modulated and impacts the process of HCO3 (-) reclaim by the proximal tubule epithelium, concluding that more than a mere shift in extracellular pH is probably involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fields, Whitney; Kielian, Margaret, E-mail: margaret.kielian@einstein.yu.edu
The alphavirus membrane protein E1 mediates low pH-triggered fusion of the viral and endosome membranes during virus entry. During virus biogenesis E1 associates as a heterodimer with the transmembrane protein p62. Late in the secretory pathway, cellular furin cleaves p62 to the mature E2 protein and a peripheral protein E3. E3 remains bound to E2 at low pH, stabilizing the heterodimer and thus protecting E1 from the acidic pH of the secretory pathway. Release of E3 at neutral pH then primes the virus for fusion during entry. Here we used site-directed mutagenesis and revertant analysis to define residues important formore » the interactions at the E3–E2 interface. Our data identified a key residue, E2 W235, which was required for E1 pH protection and alphavirus production. Our data also suggest additional residues on E3 and E2 that affect their interacting surfaces and thus influence the pH protection of E1 during alphavirus exit.« less
Biais, Matthieu; Jouffroy, Romain; Carillion, Aude; Feldman, Sarah; Jobart-Malfait, Aude; Riou, Bruno; Amour, Julien
2012-12-01
The effects of acute respiratory versus metabolic acidosis on the myocardium and their consequences on adrenoceptor stimulation remain poorly described. We compared the effects of metabolic and respiratory acidosis on inotropy and lusitropy in rat myocardium and their effects on the responses to α- and β-adrenoceptor stimulations. The effects of acute respiratory and metabolic acidosis (pH 7.10) and their interactions with α and β-adrenoceptor stimulations were studied in isolated rat left ventricular papillary muscle (n=8 per group). Intracellular pH was measured using confocal microscopy and a pH-sensitive fluorophore in isolated rat cardiomyocytes. Data are mean percentages of baseline±SD. Respiratory acidosis induced more pronounced negative inotropic effects than metabolic acidosis did both in isotonic (45±3 versus 63±6%, P<0.001) and isometric (44±5 versus 64±3%, P<0.001) conditions concomitant with a greater decrease in intracellular pH (6.85±0.07 versus 7.12±0.07, P<0.001). The response to α-adrenergic stimulation was not modified by respiratory or metabolic acidosis. The inotropic response to β-adrenergic stimulation was impaired only in metabolic acidosis (137±12 versus 200±33%, P<0.001), but this effect was not observed with administration of forskolin or dibutiryl-cyclic adenosine monophosphate. This effect might be explained by a change in transmembrane pH gradient only observed with metabolic acidosis. The lusitropic response to β-adrenergic stimulation was not modified by respiratory or metabolic acidosis. Acute metabolic and respiratory acidosis induce different myocardial effects related to different decreases in intracellular pH. Only metabolic acidosis impairs the positive inotropic effect of β-adrenergic stimulation.
Grafting PNIPAAm from β-barrel shaped transmembrane nanopores.
Charan, Himanshu; Kinzel, Julia; Glebe, Ulrich; Anand, Deepak; Garakani, Tayebeh Mirzaei; Zhu, Leilei; Bocola, Marco; Schwaneberg, Ulrich; Böker, Alexander
2016-11-01
The research on protein-polymer conjugates by grafting from the surface of proteins has gained significant interest in the last decade. While there are many studies with globular proteins, membrane proteins have remained untouched to the best of our knowledge. In this study, we established the conjugate formation with a class of transmembrane proteins and grow polymer chains from the ferric hydroxamate uptake protein component A (FhuA; a β-barrel transmembrane protein of Escherichia coli). As the lysine residues of naturally occurring FhuA are distributed over the whole protein, FhuA was reengineered to have up to 11 lysines, distributed symmetrically in a rim on the membrane exposed side (outside) of the protein channel and exclusively above the hydrophobic region. Reengineering of FhuA ensures a polymer growth only on the outside of the β-barrel and prevents blockage of the channel as a result of the polymerization. A water-soluble initiator for controlled radical polymerization (CRP) was consecutively linked to the lysine residues of FhuA and N-isopropylacrylamide (NIPAAm) polymerized under copper-mediated CRP conditions. The conjugate formation was analyzed by using MALDI-ToF mass spectrometry, SDS-PAGE, circular dichroism spectroscopy, analytical ultracentrifugation, dynamic light scattering, transmission electron microscopy and size exclusion chromatography. Such conjugates combine the specific functions of the transmembrane proteins, like maintaining membrane potential gradients or translocation of substrates with the unique properties of synthetic polymers such as temperature and pH stimuli handles. FhuA-PNIPAAm conjugates will serve as functional nanosized building blocks for applications in targeted drug delivery, self-assembly systems, functional membranes and transmembrane protein gated nanoreactors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Attanasio, Angelina; Diano, Nadia; Grano, Valentina; Sicuranza, Stefano; Rossi, Sergio; Bencivenga, Umberto; Fraconte, Luigi; Di Martino, Silvana; Canciglia, Paolo; Mita, Damiano Gustavo
2005-01-01
Laccase from Trametes versicolor was immobilized by diazotization on a nylon membrane grafted with glycidil methacrylate, using phenylenediamine as spacer and coupling agent. The behavior of these enzyme derivatives was studied under isothermal and nonisothermal conditions by using syringic acid as substrate, in view of the employment of these membranes in processes of detoxification of vegetation waters from olive oil mills. The pH and temperature dependence of catalytic activity under isothermal conditions has shown that these membranes can be usefully employed under extreme pH and temperatures. When employed under nonisothermal conditions, the membranes exhibited an increase of catalytic activity linearly proportional to the applied transmembrane temperature difference. Percentage activity increases ranging from 62% to 18% were found in the range of syringic acid concentration from 0.02 to 0.8 mM, when a difference of 1 degrees C was applied across the catalytic membrane. Because the percentage activity increase is strictly related to the reduction of the production times, the technology of nonisothermal bioreactors has been demonstrated to be an useful tool also in the treatment of vegetation waters from olive oil mills.
Slepkov, Emily R; Chow, Signy; Lemieux, M Joanne; Fliegel, Larry
2004-01-01
NHE1 (Na+/H+ exchanger isoform 1) is a ubiquitously expressed integral membrane protein that regulates intracellular pH in mammalian cells. Proline residues within transmembrane segments have unusual properties, acting as helix breakers and increasing flexibility of membrane segments, since they lack an amide hydrogen. We examined the importance of three conserved proline residues in TM IV (transmembrane segment IV) of NHE1. Pro167 and Pro168 were mutated to Gly, Ala or Cys, and Pro178 was mutated to Ala. Pro168 and Pro178 mutant proteins were expressed at levels similar to wild-type NHE1 and were targeted to the plasma membrane. However, the mutants P167G (Pro167-->Gly), P167A and P167C were expressed at lower levels compared with wild-type NHE1, and a significant portion of P167G and P167C were retained intracellularly, possibly indicating induced changes in the structure of TM IV. P167G, P167C, P168A and P168C mutations abolished NHE activity, and P167A and P168G mutations caused markedly decreased activity. In contrast, the activity of the P178A mutant was not significantly different from that of wild-type NHE1. The results indicate that both Pro167 and Pro168 in TM IV of NHE1 are required for normal NHE activity. In addition, mutation of Pro167 affects the expression and membrane targeting of the exchanger. Thus both Pro167 and Pro168 are strictly required for NHE function and may play critical roles in the structure of TM IV of the NHE. PMID:14680478
Nishigami, Misako; Mori, Takaaki; Tomita, Masahiro; Takiguchi, Kingo; Tsumoto, Kanta
2017-07-01
Giant proteoliposomes are generally useful as artificial cell membranes in biochemical and biophysical studies, and various procedures for their preparation have been reported. We present here a novel preparation technique that involves the combination of i) cell-sized lipid vesicles (giant unilamellar vesicles, GUVs) that are generated using the droplet-transfer method, where lipid monolayer-coated water-in-oil microemulsion droplets interact with oil/water interfaces to form enclosed bilayer vesicles, and ii) budded viruses (BVs) of baculovirus (Autographa californica nucleopolyhedrovirus) that express recombinant transmembrane proteins on their envelopes. GP64, a fusogenic glycoprotein on viral envelopes, is activated by weak acids and is thought to cause membrane fusion with liposomes. Using confocal laser scanning microscopy (CLSM), we observed that the single giant liposomes fused with octadecyl rhodamine B chloride (R18)-labeled wild-type BV envelopes with moderate leakage of entrapped soluble compounds (calcein), and the fusion profile depended on the pH of the exterior solution: membrane fusion occurred at pH ∼4-5. We further demonstrated that recombinant transmembrane proteins, a red fluorescent protein (RFP)-tagged GPCR (corticotropin-releasing hormone receptor 1, CRHR1) and envelope protein GP64 could be partly incorporated into membranes of the individual giant liposomes with a reduction of the pH value, though there were also some immobile fluorescent spots observed on their circumferences. This combination may be useful for preparing giant proteoliposomes containing the desired membranes and inner phases. Copyright © 2017 Elsevier B.V. All rights reserved.
Site-Directed Spin-Labeling Analysis of Reconstituted Mscl in the Closed State
Perozo, Eduardo; Kloda, Anna; Cortes, D. Marien; Martinac, Boris
2001-01-01
The mechanosensitive channel from Escherichia coli (Eco-MscL) responds to membrane lateral tension by opening a large, water-filled pore that serves as an osmotic safety valve. In an attempt to understand the structural dynamics of MscL in the closed state and under physiological conditions, we have performed a systematic site-directed spin labeling study of this channel reconstituted in a membrane bilayer. Structural information was derived from an analysis of probe mobility, residue accessibility to O2 or NiEdda and overall intersubunit proximity. For the majority of the residues studied, mobility and accessibility data showed a remarkable agreement with the Mycobacterium tuberculosis crystal structure, clearly identifying residues facing the large water-filled vestibule at the extracellular face of the molecule, the narrowest point along the permeation pathway (residues 21–26 of Eco-MscL), and the lipid-exposed residues in the peripheral transmembrane segments (TM2). Overall, the present dataset demonstrates that the transmembrane regions of the MscL crystal structure (obtained in detergent and at low pH) are, in general, an accurate representation of its structure in a membrane bilayer under physiological conditions. However, significant differences between the EPR data and the crystal structure were found toward the COOH-terminal end of TM2. PMID:11479346
Chen, Gunng-Shinng; Lee, Shiao-Pieng; Huang, Shu-Fu; Chao, Shih-Chi; Chang, Chung-Yi; Wu, Gwo-Jang; Li, Chung-Hsing; Loh, Shih-Hurng
2018-06-01
Homeostasis of intracellular pH (pH i ) plays vital roles in many cell functions, such as proliferation, apoptosis, differentiation and metastasis. Thus far, Na + -H + exchanger (NHE), Na + -HCO 3 - co-transporter (NBC), Cl - /HCO 3 - exchanger (AE) and Cl - /OH - exchanger (CHE) have been identified to co-regulate pH i homeostasis. However, functional and biological pH i -regulators in human dental pulp stem cells (hDPSCs) have yet to be identified. Microspectrofluorimetry technique with pH-sensitive fluorescent dye, BCECF, was used to detect pH i changes. NH 4 Cl and Na + -acetate pre-pulse were used to induce intracellular acidosis and alkalosis, respectively. Isoforms of pH i -regulators were detected by Western blot technique. The resting pH i was no significant difference between that in HEPES-buffered (nominal HCO 3 - -free) solution or CO 2 /HCO 3 -buffered system (7.42 and 7.46, respectively). The pH i recovery following the induced-intracellular acidosis was blocked completely by removing [Na + ] o , while only slowed (-63%) by adding HOE694 (a NHE1 specific inhibitor) in HEPES-buffered solution. The pH i recovery was inhibited entirely by removing [Na + ] o , while adding HOE 694 pulse DIDS (an anion-transporter inhibitor) only slowed (-55%) the acid extrusion. Both in HEPES-buffered and CO 2 /HCO 3 -buffered system solution, the pH i recovery after induced-intracellular alkalosis was entirely blocked by removing [Cl - ] o . Western blot analysis showed the isoforms of pH i regulators, including NHE1/2, NBCe1/n1, AE1/2/3/4 and CHE in the hDPSCs. We demonstrate for the first time that resting pH i is significantly higher than 7.2 and meditates functionally by two Na + -dependent acid extruders (NHE and NBC), two Cl - -dependent acid loaders (CHE and AE) and one Na + -independent acid extruder(s) in hDPSCs. These findings provide novel insight for basic and clinical treatment of dentistry. Copyright © 2018 Elsevier Ltd. All rights reserved.
Biocompatible click chemistry enabled compartment-specific pH measurement inside E. coli.
Yang, Maiyun; Jalloh, Abubakar S; Wei, Wei; Zhao, Jing; Wu, Peng; Chen, Peng R
2014-09-19
Bioorthogonal reactions, especially the Cu(I)-catalysed azide-alkyne cycloaddition, have revolutionized our ability to label and manipulate biomolecules under living conditions. The cytotoxicity of Cu(I) ions, however, has hindered the application of this reaction in the internal space of living cells. By systematically surveying a panel of Cu(I)-stabilizing ligands in promoting protein labelling within the cytoplasm of Escherichia coli, we identify a highly efficient and biocompatible catalyst for intracellular modification of proteins by azide-alkyne cycloaddition. This reaction permits us to conjugate an environment-sensitive fluorophore site specifically onto HdeA, an acid-stress chaperone that adopts pH-dependent conformational changes, in both the periplasm and cytoplasm of E. coli. The resulting protein-fluorophore hybrid pH indicators enable compartment-specific pH measurement to determine the pH gradient across the E. coli cytoplasmic membrane. This construct also allows the measurement of E. coli transmembrane potential, and the determination of the proton motive force across its inner membrane under normal and acid-stress conditions.
Repurposing tromethamine as inhaled therapy to treat CF airway disease
Alaiwa, Mahmoud H. Abou; Launspach, Janice L.; Sheets, Kelsey A.; Rivera, Jade A.; Gansemer, Nicholas D.; Taft, Peter J.; Thorne, Peter S.; Welsh, Michael J.; Stoltz, David A.
2016-01-01
In cystic fibrosis (CF), loss of CF transmembrane conductance regulator (CFTR) anion channel activity causes airway surface liquid (ASL) pH to become acidic, which impairs airway host defenses. One potential therapeutic approach is to correct the acidic pH in CF airways by aerosolizing HCO3– and/or nonbicarbonate pH buffers. Here, we show that raising ASL pH with inhaled HCO3– increased pH. However, the effect was transient, and pH returned to baseline values within 30 minutes. Tromethamine (Tham) is a buffer with a long serum half-life used as an i.v. formulation to treat metabolic acidosis. We found that Tham aerosols increased ASL pH in vivo for at least 2 hours and enhanced bacterial killing. Inhaled hypertonic saline (7% NaCl) is delivered to people with CF in an attempt to promote mucus clearance. Because an increased ionic strength inhibits ASL antimicrobial factors, we added Tham to hypertonic saline and applied it to CF sputum. We found that Tham alone and in combination with hypertonic saline increased pH and enhanced bacterial killing. These findings suggest that aerosolizing the HCO3–-independent buffer Tham, either alone or in combination with hypertonic saline, might be of therapeutic benefit in CF airway disease. PMID:27390778
Bouix, M; Ghorbal, S
2015-01-16
The aim of this study is to highlight the changes in the physiological cellular state of Oenococcus oeni during malolactic fermentation (MLF), and to use its cellular parameters to improve existing knowledge of O. oeni behaviour and to more effectively control the performance of the bacteria during MLF in wine. To do this, measurements of intracellular pH, transmembrane potential and vitality were performed using flow cytometry with different fluorescent probes: CFDA-SE and CDCF, DiBAC and CFDA, respectively. The kinetics of the cellular changes in these parameters were determined during MLF in FT80 synthetic medium and in white wine, as were the kinetics of malic acid consumption. pHin measurement throughout the entire growth shows that the pH was equal to the pH of the culture medium during the early stage, increased to pH6 in the exponential phase, and then decreased to equilibrate with the pH of the medium in the late stationary phase. Membrane potential increased in early MLF and then decreased. The decrease in pHin and membrane potential occurred when all of the malic acid was consumed. Finally, we showed that the higher the ΔpH (pHin-pHex) in O. oeni cells was, the shorter the lag phase of the MLF was. To better manage the initiation of MLF in wines, the physiological state of O. oeni cells must be taken into account. These results allow us to understand the sometimes random initiation of MLF in wines inoculated with O. oeni and to suggest ways to improve this control. Copyright © 2014 Elsevier B.V. All rights reserved.
The chemistry, physiology and pathology of pH in cancer
Swietach, Pawel; Vaughan-Jones, Richard D.; Harris, Adrian L.; Hulikova, Alzbeta
2014-01-01
Cell survival is conditional on the maintenance of a favourable acid–base balance (pH). Owing to intensive respiratory CO2 and lactic acid production, cancer cells are exposed continuously to large acid–base fluxes, which would disturb pH if uncorrected. The large cellular reservoir of H+-binding sites can buffer pH changes but, on its own, is inadequate to regulate intracellular pH. To stabilize intracellular pH at a favourable level, cells control trans-membrane traffic of H+-ions (or their chemical equivalents, e.g. ) using specialized transporter proteins sensitive to pH. In poorly perfused tumours, additional diffusion-reaction mechanisms, involving carbonic anhydrase (CA) enzymes, fine-tune control extracellular pH. The ability of H+-ions to change the ionization state of proteins underlies the exquisite pH sensitivity of cellular behaviour, including key processes in cancer formation and metastasis (proliferation, cell cycle, transformation, migration). Elevated metabolism, weakened cell-to-capillary diffusive coupling, and adaptations involving H+/H+-equivalent transporters and extracellular-facing CAs give cancer cells the means to manipulate micro-environmental acidity, a cancer hallmark. Through genetic instability, the cellular apparatus for regulating and sensing pH is able to adapt to extracellular acidity, driving disease progression. The therapeutic potential of disturbing this sequence by targeting H+/H+-equivalent transporters, buffering or CAs is being investigated, using monoclonal antibodies and small-molecule inhibitors. PMID:24493747
The chemistry, physiology and pathology of pH in cancer.
Swietach, Pawel; Vaughan-Jones, Richard D; Harris, Adrian L; Hulikova, Alzbeta
2014-03-19
Cell survival is conditional on the maintenance of a favourable acid-base balance (pH). Owing to intensive respiratory CO2 and lactic acid production, cancer cells are exposed continuously to large acid-base fluxes, which would disturb pH if uncorrected. The large cellular reservoir of H(+)-binding sites can buffer pH changes but, on its own, is inadequate to regulate intracellular pH. To stabilize intracellular pH at a favourable level, cells control trans-membrane traffic of H(+)-ions (or their chemical equivalents, e.g. ) using specialized transporter proteins sensitive to pH. In poorly perfused tumours, additional diffusion-reaction mechanisms, involving carbonic anhydrase (CA) enzymes, fine-tune control extracellular pH. The ability of H(+)-ions to change the ionization state of proteins underlies the exquisite pH sensitivity of cellular behaviour, including key processes in cancer formation and metastasis (proliferation, cell cycle, transformation, migration). Elevated metabolism, weakened cell-to-capillary diffusive coupling, and adaptations involving H(+)/H(+)-equivalent transporters and extracellular-facing CAs give cancer cells the means to manipulate micro-environmental acidity, a cancer hallmark. Through genetic instability, the cellular apparatus for regulating and sensing pH is able to adapt to extracellular acidity, driving disease progression. The therapeutic potential of disturbing this sequence by targeting H(+)/H(+)-equivalent transporters, buffering or CAs is being investigated, using monoclonal antibodies and small-molecule inhibitors.
Structural and functional analysis of the putative pH sensor in the Kir1.1 (ROMK) potassium channel.
Rapedius, Markus; Haider, Shozeb; Browne, Katharine F; Shang, Lijun; Sansom, Mark S P; Baukrowitz, Thomas; Tucker, Stephen J
2006-06-01
The pH-sensitive renal potassium channel Kir1.1 is important for K+ homeostasis. Disruption of the pH-sensing mechanism causes type II Bartter syndrome. The pH sensor is thought to be an anomalously titrated lysine residue (K80) that interacts with two arginine residues as part of an 'RKR triad'. We show that a Kir1.1 orthologue from Fugu rubripes lacks this lysine and yet is still highly pH sensitive, indicating that K80 is not the H+ sensor. Instead, K80 functionally interacts with A177 on transmembrane domain 2 at the 'helix-bundle crossing' and controls the ability of pH-dependent conformational changes to induce pore closure. Although not required for pH inhibition, K80 is indispensable for the coupling of pH gating to the extracellular K+ concentration, explaining its conservation in most Kir1.1 orthologues. Furthermore, we demonstrate that instead of interacting with K80, the RKR arginine residues form highly conserved inter- and intra-subunit interactions that are important for Kir channel gating and influence pH sensitivity indirectly.
Capacious and programmable multi-liposomal carriers
NASA Astrophysics Data System (ADS)
Yaroslavov, Alexander A.; Sybachin, Andrey V.; Zaborova, Olga V.; Migulin, Vasiliy A.; Samoshin, Vyacheslav V.; Ballauff, Matthias; Kesselman, Ellina; Schmidt, Judith; Talmon, Yeshayahu; Menger, Fredric M.
2015-01-01
Spherical polycationic brushes (SPBs) were synthesized by grafting polycationic chains onto 100 nm polystyrene particles. These particles were exposed to unilamellar egg-lecithin (EL) liposomes with a mean diameter of 40 nm that had been rendered anionic via the presence of 10 molar% of phosphatidylserine (PS1-). The liposomes also contained 30 mole% of a morpholinocyclohexanol-based lipid (MOCH) that undergoes a conformational flip when the pH is decreased from 7.0 to 5.0. Mixtures of SPBs and liposomes at pH 7 gave an electrostatically-driven complex possessing, on average, about 40 liposomes for each SPB particle. It was found that the bound liposomes rapidly release much of their contents when the pH is reduced from 7.0 to 5.0 owing mostly to a MOCH conformational change that creates defects in the bilayer membrane. The drop in pH does not, however, induce a separation of the liposomes from the SPBs. Around 50-60% of the liposome contents escape before, it is reasoned, lateral and transmembrane motion of the membrane components heals the defects and prevents further release. Remarkably, the liposomes complexed with SPB release their cargo much faster than the identical but non-complexed liposomes.Spherical polycationic brushes (SPBs) were synthesized by grafting polycationic chains onto 100 nm polystyrene particles. These particles were exposed to unilamellar egg-lecithin (EL) liposomes with a mean diameter of 40 nm that had been rendered anionic via the presence of 10 molar% of phosphatidylserine (PS1-). The liposomes also contained 30 mole% of a morpholinocyclohexanol-based lipid (MOCH) that undergoes a conformational flip when the pH is decreased from 7.0 to 5.0. Mixtures of SPBs and liposomes at pH 7 gave an electrostatically-driven complex possessing, on average, about 40 liposomes for each SPB particle. It was found that the bound liposomes rapidly release much of their contents when the pH is reduced from 7.0 to 5.0 owing mostly to a MOCH conformational change that creates defects in the bilayer membrane. The drop in pH does not, however, induce a separation of the liposomes from the SPBs. Around 50-60% of the liposome contents escape before, it is reasoned, lateral and transmembrane motion of the membrane components heals the defects and prevents further release. Remarkably, the liposomes complexed with SPB release their cargo much faster than the identical but non-complexed liposomes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06037g
Surya, Wahyu; Torres, Jaume
2015-01-01
Analytical ultracentrifugation (AUC) can be used to study reversible interactions between macromolecules over a wide range of interaction strengths and under physiological conditions. This makes AUC a method of choice to quantitatively assess stoichiometry and thermodynamics of homo- and hetero-association that are transient and reversible in biochemical processes. In the modality of sedimentation equilibrium (SE), a balance between diffusion and sedimentation provides a profile as a function of radial distance that depends on a specific association model. Herein, a detailed SE protocol is described to determine the size and monomer-monomer association energy of a small membrane protein oligomer using an analytical ultracentrifuge. AUC-ES is label-free, only based on physical principles, and can be used on both water soluble and membrane proteins. An example is shown of the latter, the small hydrophobic (SH) protein in the human respiratory syncytial virus (hRSV), a 65-amino acid polypeptide with a single α-helical transmembrane (TM) domain that forms pentameric ion channels. NMR-based structural data shows that SH protein has two protonatable His residues in its transmembrane domain that are oriented facing the lumen of the channel. SE experiments have been designed to determine how pH affects association constant and the oligomeric size of SH protein. While the pentameric form was preserved in all cases, its association constant was reduced at low pH. These data are in agreement with a similar pH dependency observed for SH channel activity, consistent with a lumenal orientation of the two His residues in SH protein. The latter may experience electrostatic repulsion and reduced oligomer stability at low pH. In summary, this method is applicable whenever quantitative information on subtle protein-protein association changes in physiological conditions have to be measured. PMID:25867485
Chekmenev, Eduard Y; Gor'kov, Peter L; Cross, Timothy A; Alaouie, Ali M; Smirnov, Alex I
2006-10-15
A novel method for studying membrane proteins in a native lipid bilayer environment by solid-state NMR spectroscopy is described and tested. Anodic aluminum oxide (AAO) substrates with flow-through 175 nm wide and 60-mum-long nanopores were employed to form macroscopically aligned peptide-containing lipid bilayers that are fluid and highly hydrated. We demonstrate that the surfaces of both leaflets of such bilayers are fully accessible to aqueous solutes. Thus, high hydration levels as well as pH and desirable ion and/or drug concentrations could be easily maintained and modified as desired in a series of experiments with the same sample. The method allows for membrane protein NMR experiments in a broad pH range that could be extended to as low as 1 and as high as 12 units for a period of up to a few hours and temperatures as high as 70 degrees C without losing the lipid alignment or bilayers from the nanopores. We demonstrate the utility of this method by a solid-state 19.6 T (17)O NMR study of reversible binding effects of mono- and divalent ions on the chemical shift properties of the Leu(10) carbonyl oxygen of transmembrane pore-forming peptide gramicidin A (gA). We further compare the (17)O shifts induced by binding metal ions to the binding of protons in the pH range from 1 to 12 and find a significant difference. This unexpected result points to a difference in mechanisms for ion and proton conduction by the gA pore. We believe that a large number of solid-state NMR-based studies, including structure-function, drug screening, proton exchange, pH, and other titration experiments, will benefit significantly from the method described here.
Kline, Chelsey D; Gambill, Benjamin F; Mayfield, Mary; Lutsenko, Svetlana; Blackburn, Ninian J
2016-08-01
Cuproproteins such as PHM and DBM mature in late endosomal vesicles of the mammalian secretory pathway where changes in vesicle pH are employed for sorting and post-translational processing. Colocation with the P1B-type ATPase ATP7A suggests that the latter is the source of copper and supports a mechanism where selectivity in metal transfer is achieved by spatial colocation of partner proteins in their specific organelles or vesicles. In previous work we have suggested that a lumenal loop sequence located between trans-membrane helices TM1 and TM2 of the ATPase, and containing five histidines and four methionines, acts as an organelle-specific chaperone for metallation of the cuproproteins. The hypothesis posits that the pH of the vesicle regulates copper ligation and loop conformation via a mechanism which involves His to Met ligand switching induced by histidine protonation. Here we report the effect of pH on the HM loop copper coordination using X-ray absorption spectroscopy (XAS), and show via selenium substitution of the Met residues that the HM loop undergoes similar conformational switching to that found earlier for its partner PHM. We hypothesize that in the absence of specific chaperones, HM motifs provide a template for building a flexible, pH-sensitive transfer site whose structure and function can be regulated to accommodate the different active site structural elements and pH environments of its partner proteins.
Novel thioredoxin-related transmembrane protein TMX4 has reductase activity.
Sugiura, Yoshimi; Araki, Kazutaka; Iemura, Shun-ichiro; Natsume, Tohru; Hoseki, Jun; Nagata, Kazuhiro
2010-03-05
In the endoplasmic reticulum (ER), a number of thioredoxin (Trx) superfamily proteins are present to enable correct disulfide bond formation of secretory and membrane proteins via Trx-like domains. Here, we identified a novel transmembrane Trx-like protein 4 (TMX4), in the ER of mammalian cells. TMX4, a type I transmembrane protein, was localized to the ER and possessed a Trx-like domain that faced the ER lumen. A maleimide alkylation assay showed that a catalytic CXXC motif in the TMX4 Trx-like domain underwent changes in its redox state depending on cellular redox conditions, and, in the normal state, most of the endogenous TMX4 existed in the oxidized form. Using a purified recombinant protein containing the Trx-like domain of TMX4 (TMX4-Trx), we confirmed that this domain had reductase activity in vitro. The redox potential of this domain (-171.5 mV; 30 degrees C at pH 7.0) indicated that TMX4 could work as a reductase in the environment of the ER. TMX4 had no effect on the acceleration of ER-associated degradation. Because TMX4 interacted with calnexin and ERp57 by co-immunoprecipitation assay, the role of TMX4 may be to enable protein folding in cooperation with these proteins consisting of folding complex in the ER.
Ivanov, Sergey V.; Kuzmin, Igor; Wei, Ming-Hui; Pack, Svetlana; Geil, Laura; Johnson, Bruce E.; Stanbridge, Eric J.; Lerman, Michael I.
1998-01-01
To discover genes involved in von Hippel-Lindau (VHL)-mediated carcinogenesis, we used renal cell carcinoma cell lines stably transfected with wild-type VHL-expressing transgenes. Large-scale RNA differential display technology applied to these cell lines identified several differentially expressed genes, including an alpha carbonic anhydrase gene, termed CA12. The deduced protein sequence was classified as a one-pass transmembrane CA possessing an apparently intact catalytic domain in the extracellular CA module. Reintroduced wild-type VHL strongly inhibited the overexpression of the CA12 gene in the parental renal cell carcinoma cell lines. Similar results were obtained with CA9, encoding another transmembrane CA with an intact catalytic domain. Although both domains of the VHL protein contribute to regulation of CA12 expression, the elongin binding domain alone could effectively regulate CA9 expression. We mapped CA12 and CA9 loci to chromosome bands 15q22 and 17q21.2 respectively, regions prone to amplification in some human cancers. Additional experiments are needed to define the role of CA IX and CA XII enzymes in the regulation of pH in the extracellular microenvironment and its potential impact on cancer cell growth. PMID:9770531
Singh, Arpita; Rella, Antonella; Schwacke, John; Vacchi-Suzzi, Caterina; Luberto, Chiara; Del Poeta, Maurizio
2015-11-16
The sphingolipid glucosylceramide (GlcCer) and factors involved in the fungal GlcCer pathways were shown earlier to be an integral part of fungal virulence, especially in fungal replication at 37 °C, in neutral/alkaline pH and 5 % CO2 environments (e.g. alveolar spaces). Two mutants, ∆gcs 1 lacking glucosylceramide synthase 1 gene (GCS1) which catalyzes the formation of sphingolipid GlcCer from the C9-methyl ceramide and ∆smt1 lacking sphingolipid C9 methyltransferase gene (SMT1), which adds a methyl group to position nine of the sphingosine backbone of ceramide, of this pathway were attenuated in virulence and have a growth defect at the above-mentioned conditions. These mutants with either no or structurally modified GlcCer located on the cell-membrane have reduced membrane rigidity, which may have altered not only the physical location of membrane proteins but also their expression, as the pathogen's mode of adaptation to changing need. Importantly, pathogens are known to adapt themselves to the changing host environments by altering their patterns of gene expression. By transcriptional analysis of gene expression, we identified six genes whose expression was changed from their wild-type counterpart grown in the same conditions, i.e. they became either down regulated or up regulated in these two mutants. The microarray data was validated by real-time PCR, which confirmed their fold change in gene expression. All the six genes we identified, viz siderochrome-iron transporter (CNAG_02083), monosaccharide transporter (CNAG_05340), glucose transporter (CNAG_03772), membrane protein (CNAG_03912), membrane transport protein (CNAG_00539), and sugar transporter (CNAG_06963), are membrane-localized and have significantly altered gene expression levels. Therefore, we hypothesize that these genes function either independently or in tandem with a structurally modified cell wall/plasma membrane resulting from the modifications of the GlcCer pathway and thus possibly disrupt transmembrane signaling complex, which in turn contributes to cryptococcal osmotic, pH, ion homeostasis and its pathobiology. Six genes identified from gene expression microarrays by gene set enrichment analysis and validated by RT-PCR, are membrane located and associated with the growth defect at neutral-alkaline pH due to the absence and or presence of a structurally modified GlcCer. They may be involved in the transmembrane signaling network in Cryptococcus neoformans, and therefore the pathobiology of the fungus in these conditions.
Maurer, Lisa M; Yohannes, Elizabeth; Bondurant, Sandra S; Radmacher, Michael; Slonczewski, Joan L
2005-01-01
Gene expression profiles of Escherichia coli K-12 W3110 were compared as a function of steady-state external pH. Cultures were grown to an optical density at 600 nm of 0.3 in potassium-modified Luria-Bertani medium buffered at pH 5.0, 7.0, and 8.7. For each of the three pH conditions, cDNA from RNA of five independent cultures was hybridized to Affymetrix E. coli arrays. Analysis of variance with an alpha level of 0.001 resulted in 98% power to detect genes showing a twofold difference in expression. Normalized expression indices were calculated for each gene and intergenic region (IG). Differential expression among the three pH classes was observed for 763 genes and 353 IGs. Hierarchical clustering yielded six well-defined clusters of pH profiles, designated Acid High (highest expression at pH 5.0), Acid Low (lowest expression at pH 5.0), Base High (highest at pH 8.7), Base Low (lowest at pH 8.7), Neutral High (highest at pH 7.0, lower in acid or base), and Neutral Low (lowest at pH 7.0, higher at both pH extremes). Flagellar and chemotaxis genes were repressed at pH 8.7 (Base Low cluster), where the cell's transmembrane proton potential is diminished by the maintenance of an inverted pH gradient. High pH also repressed the proton pumps cytochrome o (cyo) and NADH dehydrogenases I and II. By contrast, the proton-importing ATP synthase F1Fo and the microaerophilic cytochrome d (cyd), which minimizes proton export, were induced at pH 8.7. These observations are consistent with a model in which high pH represses synthesis of flagella, which expend proton motive force, while stepping up electron transport and ATPase components that keep protons inside the cell. Acid-induced genes, on the other hand, were coinduced by conditions associated with increased metabolic rate, such as oxidative stress. All six pH-dependent clusters included envelope and periplasmic proteins, which directly experience external pH. Overall, this study showed that (i) low pH accelerates acid consumption and proton export, while coinducing oxidative stress and heat shock regulons; (ii) high pH accelerates proton import, while repressing the energy-expensive flagellar and chemotaxis regulons; and (iii) pH differentially regulates a large number of periplasmic and envelope proteins.
Maurer-Spurej, E; Wong, K F; Maurer, N; Fenske, D B; Cullis, P R
1999-01-12
The level of uptake and retention of amino-containing drugs in large unilamellar vesicles (LUVs) following uptake in response to a transmembrane pH gradient (DeltapH) can vary dramatically depending on the drug. For example, the anticancer drugs doxorubicin and epirubicin can be readily retained, whereas the anticancer drug vincristine and the antibiotic ciprofloxacin tend to leak out rapidly. In this investigation, we examine the influence of the hydrophobicity of the entrapped amines (that induce the DeltapH) and the anionic lipid content of the LUV on drug retention. It is shown that entrapment of increasingly hydrophobic monoamines (methylamine to amylamine) all lead to an induced DeltapH of 3 units and essentially complete drug uptake under the conditions employed, but do not lead to improved retention of vincristine and ciprofloxacin. However, significantly improved retention could be achieved by substitution of the anionic lipid distearoylphosphatidylglycerol (DSPG) for distearoylphosphatidylcholine (DSPC) in the LUV bilayer. Further, it is shown that if the induced DeltapH is reduced to 1.4 units (driven by entrapped diamine) nearly 100% accumulation of doxorubicin and epirubicin could be achieved, whereas only 25% loading for vincristine and ciprofloxacin was observed. Taken together these results provide methodology for improving (weak base) drug retention in liposomes and indicate that drugs that can partition into the lipid bilayer exhibit improved uptake and retention characteristics.
Kumar, Ramesh; Chakrabortty, Sankha; Pal, Parimal
2015-04-01
A modelling and simulation study with economic evaluation was carried out for an advanced membrane-integrated hybrid treatment process that ensures reuse of water with recovery of ammoniacal nitrogen as struvite from coke-oven wastewater. Linearized transport model was developed based on extended Nernst-Plank and concentration polarization modulus equation. Effects of pH, transmembrane pressure and cross-flow rate of interest on membrane charge density, solute rejection and solvent flux were investigated. The membrane module was successful in yielding a pure water flux as high as 120 L m(-2) h(-1) removing more than 95 and 96% of the cyanide and phenol, respectively, while permeating more than 90% NH4 (+)-N at a transmembrane pressure of only 15 × 10(2) KPa and at a pH of 10 for a volumetric cross-flow rate of 800 L h(-1). The Fenton's reagents were used to degrade more than 99% of pollutants present in the concentrated stream. The developed model could successfully predict the plant performance as reflected in the very low relative error (0.01-0.12) and overall high correlation coefficient (R(2) > 0.96). Economic analysis indicated that such a membrane-integrated hybrid system could be quite promising in coke wastewater treatment at low cost i.e. $0.934/m(2) of wastewater.
Tanaka, Koji; Caaveiro, Jose M M; Tsumoto, Kouhei
2015-11-24
The bidirectional transformation of a protein between its native water-soluble and integral transmembrane conformations is demonstrated for FraC, a hemolytic protein of the family of pore-forming toxins. In the presence of biological membranes, the water-soluble conformation of FraC undergoes a remarkable structural reorganization generating cytolytic transmembrane nanopores conducive to cell death. So far, the reverse transformation from the native transmembrane conformation to the native water-soluble conformation has not been reported. We describe the use of detergents with different physicochemical properties to achieve the spontaneous conversion of transmembrane pores of FraC back into the initial water-soluble state. Thermodynamic and kinetic stability data suggest that specific detergents cause an asymmetric change in the energy landscape of the protein, allowing the bidirectional transformation of a membrane protein.
Barkla, B. J.; Zingarelli, L.; Blumwald, E.; Smith, JAC.
1995-01-01
Tonoplast vesicles were isolated from leaf mesophyll tissue of the inducible Crassulacean acid metabolism plant Mesembryanthemum crystallinum to investigate the mechanism of vacuolar Na+ accumulation in this halophilic species. In 8-week-old plants exposed to 200 mM NaCl for 2 weeks, tonoplast H+-ATPase activity was approximately doubled compared with control plants of the same age, as determined by rates of both ATP hydrolysis and ATP-dependent H+ transport. Evidence was also obtained for the presence of an electroneutral Na+/H+ antiporter at the tonoplast that is constitutively expressed, since extravesicular Na+ was able to dissipate a pre-existing transmembrane pH gradient. Initial rates of H+ efflux showed saturation kinetics with respect to extravesicular Na+ concentration and were 2.1-fold higher from vesicles of salt-treated plants compared with the controls. Na+-dependent H+ efflux also showed a high selectivity for Na+ over K+, was insensitive to the transmembrane electrical potential difference, and was more than 50% inhibited by 200 [mu]M N-amidino-3,5-diamino-6-chloropyrazinecarboxamide hydrochloride. The close correlation between increased Na+/H+ antiport and H+-ATPase activities in response to salt treatment suggests that accumulation of the very high concentrations of vacuolar Na+ found in M. crystallinum is energized by the H+ electrochemical gradient across the tonoplast. PMID:12228611
Barkla, B. J.; Zingarelli, L.; Blumwald, E.; Smith, JAC.
1995-10-01
Tonoplast vesicles were isolated from leaf mesophyll tissue of the inducible Crassulacean acid metabolism plant Mesembryanthemum crystallinum to investigate the mechanism of vacuolar Na+ accumulation in this halophilic species. In 8-week-old plants exposed to 200 mM NaCl for 2 weeks, tonoplast H+-ATPase activity was approximately doubled compared with control plants of the same age, as determined by rates of both ATP hydrolysis and ATP-dependent H+ transport. Evidence was also obtained for the presence of an electroneutral Na+/H+ antiporter at the tonoplast that is constitutively expressed, since extravesicular Na+ was able to dissipate a pre-existing transmembrane pH gradient. Initial rates of H+ efflux showed saturation kinetics with respect to extravesicular Na+ concentration and were 2.1-fold higher from vesicles of salt-treated plants compared with the controls. Na+-dependent H+ efflux also showed a high selectivity for Na+ over K+, was insensitive to the transmembrane electrical potential difference, and was more than 50% inhibited by 200 [mu]M N-amidino-3,5-diamino-6-chloropyrazinecarboxamide hydrochloride. The close correlation between increased Na+/H+ antiport and H+-ATPase activities in response to salt treatment suggests that accumulation of the very high concentrations of vacuolar Na+ found in M. crystallinum is energized by the H+ electrochemical gradient across the tonoplast.
Mechanisms of Hop Inhibition Include the Transmembrane Redox Reaction▿
Behr, Jürgen; Vogel, Rudi F.
2010-01-01
In this work, a novel mechanistic model of hop inhibition beyond the proton ionophore action toward (beer spoiling) bacteria was developed. Investigations were performed with model systems using cyclic voltammetry for the determination of redox processes/conditions in connection with growth challenges with hop-sensitive and -resistant Lactobacillus brevis strains in the presence of oxidants. Cyclic voltammetry identified a transmembrane redox reaction of hop compounds at low pH (common in beer) and in the presence of manganese (present in millimolar levels in lactic acid bacteria). The antibacterial action of hop compounds could be extended from the described proton ionophore activity, lowering the intracellular pH, to pronounced redox reactivity, causing cellular oxidative damage. Accordingly, a correlation between the resistance of L. brevis strains to a sole oxidant to their resistance to hop could not be expected and was not detected. However, in connection with our recent study concerning hop ionophore properties and the resistance of hop-sensitive and -tolerant L. brevis strains toward proton ionophores (J. Behr and R. F. Vogel, J. Agric. Food Chem. 57:6074-6081, 2009), we suggest that both ionophore and oxidant resistance are required for survival under hop stress conditions and confirmed this correlation according to the novel mechanistic model. In consequence, the expression of several published hop resistance mechanisms involved in manganese binding/transport and intracellular redox balance, as well as that of proteins involved in oxidative stress under “highly reducing” conditions (cf. anaerobic cultivation and “antioxidative” hop compounds in the growth medium), is now comprehensible. Accordingly, hop resistance as a multifactorial dynamic property at least implies distinct resistance levels against two different mechanisms of hop inhibition, namely, proton ionophore-induced and oxidative stress-induced mechanisms. Beyond this specific model of hop inhibition, these investigations provide general insight on the role of electrophysiology and ion homeostasis in bacterial stress responses to membrane-active drugs. PMID:19880646
Transport rates of a glutamate transporter homologue are influenced by the lipid bilayer.
McIlwain, Benjamin C; Vandenberg, Robert J; Ryan, Renae M
2015-04-10
The aspartate transporter from Pyrococcus horikoshii (GltPh) is a model for the structure of the SLC1 family of amino acid transporters. Crystal structures of GltPh provide insight into mechanisms of ion coupling and substrate transport; however, structures have been solved in the absence of a lipid bilayer so they provide limited information regarding interactions that occur between the protein and lipids of the membrane. Here, we investigated the effect of the lipid environment on aspartate transport by reconstituting GltPh into liposomes of defined lipid composition where the primary lipid is phosphatidylethanolamine (PE) or its methyl derivatives. We showed that the rate of aspartate transport and the transmembrane orientation of GltPh were influenced by the primary lipid in the liposomes. In PE liposomes, we observed the highest transport rate and showed that 85% of the transporters were orientated right-side out, whereas in trimethyl PE liposomes, 50% of transporters were right-side out, and we observed a 4-fold reduction in transport rate. Differences in orientation can only partially explain the lipid composition effect on transport rate. Crystal structures of GltPh revealed a tyrosine residue (Tyr-33) that we propose interacts with lipid headgroups during the transport cycle. Based on site-directed mutagenesis, we propose that a cation-π interaction between Tyr-33 and the lipid headgroups can influence conformational flexibility of the trimerization domain and thus the rate of transport. These results provide a specific example of how interactions between membrane lipids and membrane-bound proteins can influence function and highlight the importance of the role of the membrane in transporter function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Transport Rates of a Glutamate Transporter Homologue Are Influenced by the Lipid Bilayer*
McIlwain, Benjamin C.; Vandenberg, Robert J.; Ryan, Renae M.
2015-01-01
The aspartate transporter from Pyrococcus horikoshii (GltPh) is a model for the structure of the SLC1 family of amino acid transporters. Crystal structures of GltPh provide insight into mechanisms of ion coupling and substrate transport; however, structures have been solved in the absence of a lipid bilayer so they provide limited information regarding interactions that occur between the protein and lipids of the membrane. Here, we investigated the effect of the lipid environment on aspartate transport by reconstituting GltPh into liposomes of defined lipid composition where the primary lipid is phosphatidylethanolamine (PE) or its methyl derivatives. We showed that the rate of aspartate transport and the transmembrane orientation of GltPh were influenced by the primary lipid in the liposomes. In PE liposomes, we observed the highest transport rate and showed that 85% of the transporters were orientated right-side out, whereas in trimethyl PE liposomes, 50% of transporters were right-side out, and we observed a 4-fold reduction in transport rate. Differences in orientation can only partially explain the lipid composition effect on transport rate. Crystal structures of GltPh revealed a tyrosine residue (Tyr-33) that we propose interacts with lipid headgroups during the transport cycle. Based on site-directed mutagenesis, we propose that a cation-π interaction between Tyr-33 and the lipid headgroups can influence conformational flexibility of the trimerization domain and thus the rate of transport. These results provide a specific example of how interactions between membrane lipids and membrane-bound proteins can influence function and highlight the importance of the role of the membrane in transporter function. PMID:25713135
Biocompatible click chemistry enabled compartment-specific pH measurement inside E. coli
Yang, Maiyun; Jalloh, Abubakar S.; Wei, Wei
2014-01-01
Bioorthogonal reactions, especially the Cu(I)-catalyzed azide-alkyne cycloaddition, have revolutionized our ability to label and manipulate biomolecules under living conditions. The cytotoxicity of Cu(I) ions, however, has hindered the application of this reaction in the internal space of living cells. By systematically surveying a panel of Cu(I)-stabilizing ligands in promoting protein labeling within the cytoplasm of E. coli, here we identify a highly efficient and biocompatible catalyst for intracellular modification of proteins by azide-alkyne cycloaddition. This reaction permits us to conjugate an environment-sensitive fluorophore site-specifically onto HdeA, an acid-stress chaperone that adopts pH-dependent conformational changes, in both the periplasm and cytoplasm of E. coli. The resulting protein-fluorophore hybrid pH indicators enable compartment-specific pH measurement to determine the pH gradient across the E. coli cytoplasmic membrane. This construct also allows the measurement of E. coli transmembrane potential, and the determination of the proton motive force across its inner membrane under normal and acid-stress conditions. PMID:25236616
Histidine168 is crucial for ΔpH-dependent gating of the human voltage-gated proton channel, hHV1.
Cherny, Vladimir V; Morgan, Deri; Thomas, Sarah; Smith, Susan M E; DeCoursey, Thomas E
2018-05-09
We recently identified a voltage-gated proton channel gene in the snail Helisoma trivolvis , HtH V 1, and determined its electrophysiological properties. Consistent with early studies of proton currents in snail neurons, HtH V 1 opens rapidly, but it unexpectedly exhibits uniquely defective sensitivity to intracellular pH (pH i ). The H + conductance ( g H )- V relationship in the voltage-gated proton channel (H V 1) from other species shifts 40 mV when either pH i or pH o (extracellular pH) is changed by 1 unit. This property, called ΔpH-dependent gating, is crucial to the functions of H V 1 in many species and in numerous human tissues. The HtH V 1 channel exhibits normal pH o dependence but anomalously weak pH i dependence. In this study, we show that a single point mutation in human hH V 1-changing His 168 to Gln 168 , the corresponding residue in HtH V 1-compromises the pH i dependence of gating in the human channel so that it recapitulates the HtH V 1 response. This location was previously identified as a contributor to the rapid gating kinetics of H V 1 in Strongylocentrotus purpuratus His 168 mutation in human H V 1 accelerates activation but accounts for only a fraction of the species difference. H168Q, H168S, or H168T mutants exhibit normal pH o dependence, but changing pH i shifts the g H - V relationship on average by <20 mV/unit. Thus, His 168 is critical to pH i sensing in hH V 1. His 168 , located at the inner end of the pore on the S3 transmembrane helix, is the first residue identified in H V 1 that significantly impairs pH sensing when mutated. Because pH o dependence remains intact, the selective erosion of pH i dependence supports the idea that there are distinct internal and external pH sensors. Although His 168 may itself be a pH i sensor, the converse mutation, Q229H, does not normalize the pH i sensitivity of the HtH V 1 channel. We hypothesize that the imidazole group of His 168 interacts with nearby Phe 165 or other parts of hH V 1 to transduce pH i into shifts of voltage-dependent gating. © 2018 Cherny et al.
Kawasaki-Nishi, Shoko; Nishi, Tsuyoshi; Forgac, Michael
2003-10-24
Proton translocation by the vacuolar (H+)-ATPase (or V-ATPase) has been shown by mutagenesis to be dependent upon charged residues present within transmembrane segments of subunit a as well as the three proteolipid subunits (c, c', and c"). Interaction between R735 in TM7 of subunit a and the glutamic acid residue in the middle of TM4 of subunits c and c' or TM2 of subunit c" has been proposed to be essential for proton release to the luminal compartment. In order to determine whether the helical face of TM7 of subunit a containing R735 is capable of interacting with the helical face of TM4 of subunit c' containing the essential glutamic acid residue (Glu-145), cysteine-mediated cross-linking between these subunits in yeast has been performed. Cys-less forms of subunits a and c' as well as forms containing unique cysteine residues were constructed, introduced together into a strain disrupted in both endogenous subunits, and tested for growth at neutral pH, for assembly competence and for cross-linking in the presence of cupric-phenanthroline by SDS-PAGE and Western blot analysis. Four different cysteine mutants of subunit a were each tested pairwise with ten different unique cysteine mutants of subunit c'. Strong cross-linking was observed for the pairs aS728C/c'I142C, aA731C/c'E145C, aA738C/c'F143C, aA738C/c'L147C, and aL739C/c'L147C. Partial cross-linking was observed for an additional 13 of 40 pairs analyzed. When arrayed on a helical wheel diagram, the results suggest that the helical face of TM7 of subunit a containing Arg-735 interacts with the helical face of TM4 of subunit c' centered on Val-146 and bounded by Glu-145 and Leu-147. The results are consistent with a possible rotational flexibility of one or both of these transmembrane segments as well as some flexibility of movement perpendicular to the membrane.
Liu, Fang; Liu, Mei; Du, Lihui; Wang, Daoying; Geng, Zhiming; Zhang, Muhan; Sun, Chong; Xu, Xiaoxi; Zhu, Yongzhi; Xu, Weimin
2015-12-01
This study evaluated the antibacterial effect of the combination of ε-polylysine (ε-PL) and nisin against Enterococcus faecalis strains. The combination of ε-PL and nisin showed synergistic antibacterial activity against three Enterococcus strains. Scanning electron microscopy and a membrane permeability assay revealed that the combined treatment with ε-PL and nisin synergistically damaged the cell morphology of E. faecalis strain R612Z1 cells. Both ε-PL and nisin can dissipate the transmembrane electric potential of E. faecalis R612Z1 cells, but these peptides did not affect the transmembrane pH gradient. The combination of ε-PL and nisin can produce a high reactive oxygen species level in E. faecalis R612Z1 cells. The results indicated that the uptake of ε-PL into cells was promoted through nisin and that the combination of ε-PL and nisin could produce a high reactive oxygen species level in E. faecalis R612Z1 cells, leading to cell growth inhibition.
Transport of Proteins Dissolved in Organic Solvents Across Biomimetic Membranes
NASA Astrophysics Data System (ADS)
Bromberg, Lev E.; Klibanov, Alexander M.
1995-02-01
Using lipid-impregnated porous cellulose membranes as biomimetic barriers, we tested the hypothesis that to afford effective transmembrane transfer of proteins and nucleic acids, the vehicle solvent should be able to dissolve both the biopolymers and the lipids. While the majority of solvents dissolve one or the other, ethanol and methanol were found to dissolve both, especially if the protein had been lyophilized from an aqueous solution of a pH remote from the protein's isoelectric point. A number of proteins, as well as RNA and DNA, dissolved in these alcohols readily crossed the lipidized membranes, whereas the same biopolymers placed in nondissolving solvents (e.g., hexane and ethyl acetate) or in those unable to dissolve lipids (e.g., water and dimethyl sulfoxide) exhibited little transmembrane transport. The solubility of biopolymers in ethanol and methanol was further enhanced by complexation with detergents and poly(ethylene glycol); significant protein and nucleic acid transport through the lipidized membranes was observed from these solvents but not from water.
A Novel Soluble Peptide with pH-Responsive Membrane Insertion.
Nguyen, Vanessa P; Alves, Daiane S; Scott, Haden L; Davis, Forrest L; Barrera, Francisco N
2015-11-03
Several diseases, such as cancer, are characterized by acidification of the extracellular environment. Acidosis can be employed as a target to specifically direct therapies to the diseased tissue. We have used first principles to design an acidity-triggered rational membrane (ATRAM) peptide with high solubility in solution that is able to interact with lipid membranes in a pH-dependent fashion. Biophysical studies show that the ATRAM peptide binds to the surface of lipid membranes at pH 8.0. However, acidification leads to the peptide inserting into the lipid bilayer as a transmembrane α-helix. The insertion of ATRAM into membranes occurs at a moderately acidic pH (with a pK of 6.5), similar to the extracellular pH found in solid tumors. Studies with human cell lines showed a highly efficient pH-dependent membrane targeting, without causing toxicity. Here we show that it is possible to rationally design a soluble peptide that selectively targets cell membranes in acidic environments.
Cohen, Joshua L.; Barile, Daniela; Liu, Yan; de Moura Bell, Juliana M. L. N.
2016-01-01
Milk oligosaccharides are associated with improved health outcomes in infants. Nanofiltration (NF) is used for isolation of bovine milk oligosaccharides (BMO). The study aim was to improve the recovery of BMO from lactose-hydrolyzed colostrum whey permeate. The retention factors of carbohydrates at various pH and transmembrane pressures were determined for a nanofiltration membrane, which was used at pilot scale to purify BMO. Carbohydrates were quantified by liquid chromatography and characterized using nano-LC-Chip-QToF mass spectrometry. BMO purity was improved from an initial 4% in colostrum whey permeate to 98%, with 99.8% permeation of monosaccharides and 96% recovery of oligosaccharides, represented by 23 unique BMO compounds identified in the final retentate. The pH during NF was a determining factor in the selectivity of carbohydrate separation. This NF method can be applied to conventional cheese-whey permeate and other milk types for extraction of bioactive oligosaccharides providing new options for the dairy industry. PMID:28652648
Rimon, Abraham; Kozachkov-Magrisso, Lena; Padan, Etana
2012-11-27
pH and Na(+) homeostasis in all cells requires Na(+)/H(+) antiporters. The crystal structure of NhaA, the main antiporter of Escherichia coli, has provided general insights into antiporter mechanisms and their pH regulation. Functional studies of NhaA in the membrane have yielded valuable information regarding its functionality in situ at physiological pH. Here, we Cys-scanned the discontinuous transmembrane segment (TM) IV (helices IVp and IVc connected by an extended chain) of NhaA to explore its functionality at physiological pH. We then tested the accessibility of the Cys replacements to the positively charged SH reagent [2-(trimethylammonium)ethyl] methanethiosulfonate bromide (MTSET) and the negatively charged 2-sulfonatoethyl methanethiosulfonate (MTSES) in intact cells at pH 8.5 and 6.5 and in parallel tested their accessibility to MTSET in high-pressure membranes at both pH values. We found that the outer membrane of E. coli TA16 acts as a partially permeable barrier to MTSET. Overcoming this technical problem, we revealed that (a) Cys replacement of the most conserved residues of TM IV strongly increases the apparent K(m) of NhaA to both Na(+) and Li(+), (b) the cationic passage of NhaA at physiological pH is lined by the most conserved and functionally important residues of TM IV, and (c) a pH shift from 6.5 to 8.5 induces conformational changes in helix IVp and in the extended chain at physiological pH.
On the self-association potential of transmembrane tight junction proteins.
Blasig, I E; Winkler, L; Lassowski, B; Mueller, S L; Zuleger, N; Krause, E; Krause, G; Gast, K; Kolbe, M; Piontek, J
2006-02-01
Tight junctions seal intercellular clefts via membrane-related strands, hence, maintaining important organ functions. We investigated the self-association of strand-forming transmembrane tight junction proteins. The regulatory tight junction protein occludin was differently tagged and cotransfected in eucaryotic cells. These occludins colocalized within the plasma membrane of the same cell, coprecipitated and exhibited fluorescence resonance energy transfer. Differently tagged strand-forming claudin-5 also colocalized in the plasma membrane of the same cell and showed fluorescence resonance energy transfer. This demonstrates self-association in intact cells both of occludin and claudin-5 in one plasma membrane. In search of dimerizing regions of occludin, dimerization of its cytosolic C-terminal coiledcoil domain was identified. In claudin-5, the second extracellular loop was detected as a dimer. Since the transmembrane junctional adhesion molecule also is known to dimerize, the assumption that homodimerization of transmembrane tight junction proteins may serve as a common structural feature in tight junction assembly is supported.
Ni, S; Boone, J E; Boone, D R
1994-01-01
Methanolobus taylorii GS-16, a moderately halophilic and alkaliphilic methanogen, grows over a wide pH range, from 6.8 to 9.0. Cells suspended in medium with a pH above 8.2 reversed their transmembrane pH gradient (delta pH), making their cytosol more acidic than the medium. The decreased energy in the proton motive force due to the reversed delta pH was partly compensated by an increased electric membrane potential (delta psi). The cytosolic acidification by M. taylorii at alkaline pH values was accompanied by K+ extrusion. The cytosolic K+ concentration was 110 mM in cells suspended at pH 8.7, but it was 320 mM in cells suspended at neutral pH values. High external K+ concentrations (210 mM or higher) inhibited the growth of M. taylorii at alkaline pH values, perhaps by preventing K+ extrusion. Cells suspended at pH 8.5 and 300 mM external K+ failed to acidify their cytosol. The key observation indicative of the involvement of K+ transport in cytosolic acidification was that valinomycin (0.8 microM), a K+ uniporter, inhibited the growth of M. taylorii only at alkaline pH values. Experiments with resting cells indicated that at alkaline pH values valinomycin uncoupled catabolic reactions from ATP synthesis. Thus, K+/H+ antiport activity was proposed to account for the K+ extrusion and the uncoupling effect of valinomycin at alkaline pH values. Such antiport activity was demonstrated by the sharp drop in pH of the bulk medium of the cell suspension upon the addition of 0.1 M KCl. The antiporter appeared to be active only at alkaline pH values, which was in accordance with a possible role in pH homeostasis by M. taylorii growing at alkaline pH values. PMID:7961499
Idrees, Danish; Rahman, Safikur; Shahbaaz, Mohd; Haque, Md Anzarul; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz
2017-12-01
Carbonic anhydrase IX (CAIX) is a transmembrane glycoprotein, overexpressed in cancer cells under hypoxia condition. In cancerous cells, CAIX plays an important role to combat the deleterious effects of a high rate of glycolytic metabolism. In order to favor tumor survival, CAIX maintains intracellular pH neutral or slightly alkaline and extracellular acidic pH. The equilibrium unfolding and conformational stability of CAIX were measured in the presence of increasing urea concentrations to understand it's structural features under stressed conditions. Two different spectroscopic techniques were used to follow urea-induced denaturation and observed that urea induces a reversible denaturation of CAIX. Coincidence of the normalized transition curves of both optical properties suggesting that denaturation of CAIX is a two-state process, i.e., native state ↔ denatured state. Each denaturation curve was analyzed to estimate thermodynamic parameters, ΔG D 0 ,value of Gibbs free energy change (ΔG D ) associated with the urea-induced denaturation, C m (midpoint of denaturation) and m (=δΔG D /δ[urea]). We further performed molecular dynamics simulation of CAIX for 50ns to see the dynamics of protein structure in the presence of different urea concentrations. An excellent agreement was observed between in silico and in vitro studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Gjetting, Kisten Sisse Krag; Ytting, Cecilie Karkov; Schulz, Alexander; Fuglsang, Anja Thoe
2012-01-01
Changes in pH are now widely accepted as a signalling mechanism in cells. In plants, proton pumps in the plasma membrane and tonoplast play a key role in regulation of intracellular pH homeostasis and maintenance of transmembrane proton gradients. Proton transport in response to external stimuli can be expected to be finely regulated spatially and temporally. With the ambition to follow such changes live, a new genetically encoded sensor, pHusion, has been developed. pHusion is especially designed for apoplastic pH measurements. It was constitutively expressed in Arabidopsis and targeted for expression in either the cytosol or the apoplast including intracellular compartments. pHusion consists of the tandem concatenation of enhanced green fluorescent protein (EGFP) and monomeric red fluorescent protein (mRFP1), and works as a ratiometric pH sensor. Live microscopy at high spatial and temporal resolution is highly dependent on appropriate immobilization of the specimen for microscopy. Medical adhesive often used in such experiments destroys cell viability in roots. Here a novel system for immobilizing Arabidopsis seedling roots for perfusion experiments is presented which does not impair cell viability. With appropriate immobilization, it was possible to follow changes of the apoplastic and cytosolic pH in mesophyll and root tissue. Rapid pH homeostasis upon external pH changes was reflected by negligible cytosolic pH fluctuations, while the apoplastic pH changed drastically. The great potential for analysing pH regulation in a whole-tissue, physiological context is demonstrated by the immediate alkalinization of the subepidermal apoplast upon external indole-3-acetic acid administration. This change is highly significant in the elongation zone compared with the root hair zone and control roots. PMID:22407646
Gjetting, Kisten Sisse Krag; Ytting, Cecilie Karkov; Schulz, Alexander; Fuglsang, Anja Thoe
2012-05-01
Changes in pH are now widely accepted as a signalling mechanism in cells. In plants, proton pumps in the plasma membrane and tonoplast play a key role in regulation of intracellular pH homeostasis and maintenance of transmembrane proton gradients. Proton transport in response to external stimuli can be expected to be finely regulated spatially and temporally. With the ambition to follow such changes live, a new genetically encoded sensor, pHusion, has been developed. pHusion is especially designed for apoplastic pH measurements. It was constitutively expressed in Arabidopsis and targeted for expression in either the cytosol or the apoplast including intracellular compartments. pHusion consists of the tandem concatenation of enhanced green fluorescent protein (EGFP) and monomeric red fluorescent protein (mRFP1), and works as a ratiometric pH sensor. Live microscopy at high spatial and temporal resolution is highly dependent on appropriate immobilization of the specimen for microscopy. Medical adhesive often used in such experiments destroys cell viability in roots. Here a novel system for immobilizing Arabidopsis seedling roots for perfusion experiments is presented which does not impair cell viability. With appropriate immobilization, it was possible to follow changes of the apoplastic and cytosolic pH in mesophyll and root tissue. Rapid pH homeostasis upon external pH changes was reflected by negligible cytosolic pH fluctuations, while the apoplastic pH changed drastically. The great potential for analysing pH regulation in a whole-tissue, physiological context is demonstrated by the immediate alkalinization of the subepidermal apoplast upon external indole-3-acetic acid administration. This change is highly significant in the elongation zone compared with the root hair zone and control roots.
The lysosomal potassium channel TMEM175 adopts a novel tetrameric architecture.
Lee, Changkeun; Guo, Jiangtao; Zeng, Weizhong; Kim, Sunghoon; She, Ji; Cang, Chunlei; Ren, Dejian; Jiang, Youxing
2017-07-27
TMEM175 is a lysosomal K + channel that is important for maintaining the membrane potential and pH stability in lysosomes. It contains two homologous copies of a six-transmembrane-helix (6-TM) domain, which has no sequence homology to the canonical tetrameric K + channels and lacks the TVGYG selectivity filter motif found in these channels. The prokaryotic TMEM175 channel, which is present in a subset of bacteria and archaea, contains only a single 6-TM domain and functions as a tetramer. Here, we present the crystal structure of a prokaryotic TMEM175 channel from Chamaesiphon minutus, CmTMEM175, the architecture of which represents a completely different fold from that of canonical K + channels. All six transmembrane helices of CmTMEM175 are tightly packed within each subunit without undergoing domain swapping. The highly conserved TM1 helix acts as the pore-lining inner helix, creating an hourglass-shaped ion permeation pathway in the channel tetramer. Three layers of hydrophobic residues on the carboxy-terminal half of the TM1 helices form a bottleneck along the ion conduction pathway and serve as the selectivity filter of the channel. Mutagenesis analysis suggests that the first layer of the highly conserved isoleucine residues in the filter is primarily responsible for channel selectivity. Thus, the structure of CmTMEM175 represents a novel architecture of a tetrameric cation channel whose ion selectivity mechanism appears to be distinct from that of the classical K + channel family.
Cholic acid accumulation and its diminution by short-chain fatty acids in bifidobacteria.
Kurdi, Peter; Tanaka, Hiroshi; Van Veen, Hendrik W; Asano, Kozo; Tomita, Fusao; Yokota, Atsushi
2003-08-01
Cholic acid (CA) transport was investigated in nine intestinal Bifidobacterium strains. Upon energization with glucose, all of the bifidobacteria accumulated CA. The driving force behind CA accumulation was found to be the transmembrane proton gradient (Delta pH, alkaline interior). The levels of accumulated CA generally coincided with the theoretical values, which were calculated by the Henderson-Hasselbalch equation using the measured internal pH values of the bifidobacteria, and a pK(a) value of 6.4 for CA. These results suggest that the mechanism of CA accumulation is based on the diffusion of a hydrophobic weak acid across the bacterial cell membrane, and its dissociation according to the Delta pH value. A mixture of short-chain fatty acids (acetate, propionate and butyrate) at the appropriate colonic concentration (117 mM in total) reduced CA accumulation in Bifidobacterium breve JCM 1192(T). These short-chain fatty acids, which are weak acids, reduced the Delta pH, thereby decreasing CA accumulation in a dose-dependent manner. The bifidobacteria did not alter or modify the CA molecule. The probiotic potential of CA accumulation in vivo is discussed in relation to human bile acid metabolism.
Nishio, J. N.; Whitmarsh, J.
1993-01-01
The potency of various uncouplers for collapsing the light-induced pH gradient across thylakoid membranes in intact chloroplasts was investigated by time-resolved optical spectroscopy. The thylakoid transmembrane pH gradient ([delta]pH) was monitored indirectly by measuring the rate of cytochrome (Cyt) f reduction following a light flash of sufficient duration to create a sizable [delta]pH. The results show that the rate of Cyt f reduction is controlled in part by the internal pH of the thylakoid inner aqueous space. At pH values from 6.5 to 8.0, the Cyt f reduction rate was maximal, whereas at lower pH values from 6.5 to 5.5 the reduction rate decreased to 25% of the maximal rate. The ability of three uncouplers, nigericin, carbonylcyanide m-chlorophenylhydrazone, and gramicidin, to accelerate the rate of Cyt f reduction was determined for intact chloroplasts isolated from spinach (Spinacia oleracea). The efficacy of the uncouplers for collapsing the [delta]pH was determined using the empirical relationship between the [delta]pH and the Cyt f reduction rate. For intact chloroplasts, nigericin was the most effective uncoupler, followed by carbonylcyanide m-chlorophenylhydrazone, which interacted strongly with bovine serum albumin. Gramicidin D, even at high gramicidin:chlorophyll ratios, did not completely collapse the pH gradient, probably because it partitions in the envelope membranes and does not enter the intact chloroplast. PMID:12231669
Cystic fibrosis respiratory tract salt concentration: An Exploratory Cohort Study.
Grandjean Lapierre, Simon; Phelippeau, Michael; Hakimi, Cyrine; Didier, Quentin; Reynaud-Gaubert, Martine; Dubus, Jean-Christophe; Drancourt, Michel
2017-11-01
In cystic fibrosis patients, electrolytic and osmolality imbalance secondary to cystic fibrosis transmembrane conductance regulator mutations may impact on mucoid secretion accumulation and secondary colonization by opportunistic pathogens such as nontuberculous mycobacteria.We performed a noninvasive exploratory prospective controlled clinical study comparing sputum salinity and acid-base characteristics of cystic fibrosis and noncystic fibrosis control patients. A total of 57 patients and 62 controls were included.Sputum salt concentrations were 10.5 g/L (95% CI: 7.7-13.3) in patients and 7.4 g/L (95% CI: 5.9-8.9) in aged-matched controls, a difference that was found to be statistically significant (P < .05). No difference in pH was observed between patients and controls.These differences in respiratory secretions salt concentrations could influence host-pathogen interactions in the context of cystic fibrosis respiratory infections. We propose to include respiratory secretion salt measurement as a routine analysis on cystic fibrosis patients' sputum submitted for bacterial culture. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Zhong, Sheng; Navaratnam, Dhasakumar; Santos-Sacchi, Joseph
2014-01-01
Background Chloride is the major anion in cells, with many diseases arising from disordered Cl− regulation. For the non-invasive investigation of Cl− flux, YFP-H148Q and its derivatives chameleon and Cl-Sensor previously were introduced as genetically encoded chloride indicators. Neither the Cl− sensitivity nor the pH-susceptibility of these modifications to YFP is optimal for precise measurements of Cl− under physiological conditions. Furthermore, the relatively poor photostability of YFP derivatives hinders their application for dynamic and quantitative Cl− measurements. Dynamic and accurate measurement of physiological concentrations of chloride would significantly affect our ability to study effects of chloride on cellular events. Methodology/Principal Findings In this study, we developed a series of YFP derivatives to remove pH interference, increase photostability and enhance chloride sensitivity. The final product, EYFP-F46L/Q69K/H148Q/I152L/V163S/S175G/S205V/A206K (monomeric Cl-YFP), has a chloride Kd of 14 mM and pKa of 5.9. The bleach time constant of 175 seconds is over 15-fold greater than wild-type EYFP. We have used the sensor fused to the transmembrane protein prestin (gerbil prestin, SLC26a5), and shown for the first time physiological (mM) chloride flux in HEK cells expressing this protein. This modified fluorescent protein will facilitate investigations of dynamics of chloride ions and their mediation of cell function. Conclusions Modifications to YFP (EYFP-F46L/Q69K/H148Q/I152L/V163S/S175G/S205V/A206K (monomeric Cl-YFP) results in a photostable fluorescent protein that allows measurement of physiological changes in chloride concentration while remaining minimally affected by changes in pH. PMID:24901231
Zhong, Sheng; Navaratnam, Dhasakumar; Santos-Sacchi, Joseph
2014-01-01
Chloride is the major anion in cells, with many diseases arising from disordered Cl- regulation. For the non-invasive investigation of Cl- flux, YFP-H148Q and its derivatives chameleon and Cl-Sensor previously were introduced as genetically encoded chloride indicators. Neither the Cl- sensitivity nor the pH-susceptibility of these modifications to YFP is optimal for precise measurements of Cl- under physiological conditions. Furthermore, the relatively poor photostability of YFP derivatives hinders their application for dynamic and quantitative Cl- measurements. Dynamic and accurate measurement of physiological concentrations of chloride would significantly affect our ability to study effects of chloride on cellular events. In this study, we developed a series of YFP derivatives to remove pH interference, increase photostability and enhance chloride sensitivity. The final product, EYFP-F46L/Q69K/H148Q/I152L/V163S/S175G/S205V/A206K (monomeric Cl-YFP), has a chloride Kd of 14 mM and pKa of 5.9. The bleach time constant of 175 seconds is over 15-fold greater than wild-type EYFP. We have used the sensor fused to the transmembrane protein prestin (gerbil prestin, SLC26a5), and shown for the first time physiological (mM) chloride flux in HEK cells expressing this protein. This modified fluorescent protein will facilitate investigations of dynamics of chloride ions and their mediation of cell function. Modifications to YFP (EYFP-F46L/Q69K/H148Q/I152L/V163S/S175G/S205V/A206K (monomeric Cl-YFP) results in a photostable fluorescent protein that allows measurement of physiological changes in chloride concentration while remaining minimally affected by changes in pH.
Keiser, Nicholas W; Birket, Susan E; Evans, Idil A; Tyler, Scott R; Crooke, Adrianne K; Sun, Xingshen; Zhou, Weihong; Nellis, Joseph R; Stroebele, Elizabeth K; Chu, Kengyeh K; Tearney, Guillermo J; Stevens, Mark J; Harris, J Kirk; Rowe, Steven M; Engelhardt, John F
2015-06-01
Mucociliary clearance (MCC) and submucosal glands are major components of airway innate immunity that have impaired function in cystic fibrosis (CF). Although both of these defense systems develop postnatally in the ferret, the lungs of newborn ferrets remain sterile in the presence of a functioning cystic fibrosis transmembrane conductance regulator gene. We evaluated several components of airway innate immunity and inflammation in the early CF ferret lung. At birth, the rates of MCC did not differ between CF and non-CF animals, but the height of the airway surface liquid was significantly reduced in CF newborn ferrets. CF ferrets had impaired MCC after 7 days of age, despite normal rates of ciliogenesis. Only non-CF ferrets eradicated Pseudomonas directly introduced into the lung after birth, whereas both genotypes could eradicate Staphylococcus. CF bronchoalveolar lavage fluid (BALF) had significantly lower antimicrobial activity selectively against Pseudomonas than non-CF BALF, which was insensitive to changes in pH and bicarbonate. Liquid chromatography-tandem mass spectrometry and cytokine analysis of BALF from sterile Caesarean-sectioned and nonsterile naturally born animals demonstrated CF-associated disturbances in IL-8, TNF-α, and IL-β, and pathways that control immunity and inflammation, including the complement system, macrophage functions, mammalian target of rapamycin signaling, and eukaryotic initiation factor 2 signaling. Interestingly, during the birth transition, IL-8 was selectively induced in CF BALF, despite no genotypic difference in bacterial load shortly after birth. These results suggest that newborn CF ferrets have defects in both innate immunity and inflammatory signaling that may be important in the early onset and progression of lung disease in these animals.
Keiser, Nicholas W.; Birket, Susan E.; Evans, Idil A.; Tyler, Scott R.; Crooke, Adrianne K.; Sun, Xingshen; Zhou, Weihong; Nellis, Joseph R.; Stroebele, Elizabeth K.; Chu, Kengyeh K.; Tearney, Guillermo J.; Stevens, Mark J.; Harris, J. Kirk; Rowe, Steven M.
2015-01-01
Mucociliary clearance (MCC) and submucosal glands are major components of airway innate immunity that have impaired function in cystic fibrosis (CF). Although both of these defense systems develop postnatally in the ferret, the lungs of newborn ferrets remain sterile in the presence of a functioning cystic fibrosis transmembrane conductance regulator gene. We evaluated several components of airway innate immunity and inflammation in the early CF ferret lung. At birth, the rates of MCC did not differ between CF and non-CF animals, but the height of the airway surface liquid was significantly reduced in CF newborn ferrets. CF ferrets had impaired MCC after 7 days of age, despite normal rates of ciliogenesis. Only non-CF ferrets eradicated Pseudomonas directly introduced into the lung after birth, whereas both genotypes could eradicate Staphylococcus. CF bronchoalveolar lavage fluid (BALF) had significantly lower antimicrobial activity selectively against Pseudomonas than non-CF BALF, which was insensitive to changes in pH and bicarbonate. Liquid chromatography–tandem mass spectrometry and cytokine analysis of BALF from sterile Caesarean-sectioned and nonsterile naturally born animals demonstrated CF-associated disturbances in IL-8, TNF-α, and IL-β, and pathways that control immunity and inflammation, including the complement system, macrophage functions, mammalian target of rapamycin signaling, and eukaryotic initiation factor 2 signaling. Interestingly, during the birth transition, IL-8 was selectively induced in CF BALF, despite no genotypic difference in bacterial load shortly after birth. These results suggest that newborn CF ferrets have defects in both innate immunity and inflammatory signaling that may be important in the early onset and progression of lung disease in these animals. PMID:25317669
Water bicarbonate modulates the response of the shore crab Carcinus maenas to ocean acidification.
Maus, Bastian; Bock, Christian; Pörtner, Hans-O
2018-05-23
Ocean acidification causes an accumulation of CO 2 in marine organisms and leads to shifts in acid-base parameters. Acid-base regulation in gill breathers involves a net increase of internal bicarbonate levels through transmembrane ion exchange with the surrounding water. Successful maintenance of body fluid pH depends on the functional capacity of ion-exchange mechanisms and associated energy budget. For a detailed understanding of the dependence of acid-base regulation on water parameters, we investigated the physiological responses of the shore crab Carcinus maenas to 4 weeks of ocean acidification [OA, P(CO 2 ) w = 1800 µatm], at variable water bicarbonate levels, paralleled by changes in water pH. Cardiovascular performance was determined together with extra-(pH e ) and intracellular pH (pH i ), oxygen consumption, haemolymph CO 2 parameters, and ion composition. High water P(CO 2 ) caused haemolymph P(CO 2 ) to rise, but pH e and pH i remained constant due to increased haemolymph and cellular [HCO 3 - ]. This process was effective even under reduced seawater pH and bicarbonate concentrations. While extracellular cation concentrations increased throughout, anion levels remained constant or decreased. Despite similar levels of haemolymph pH and ion concentrations under OA, metabolic rates, and haemolymph flow were significantly depressed by 40 and 30%, respectively, when OA was combined with reduced seawater [HCO 3 - ] and pH. Our findings suggest an influence of water bicarbonate levels on metabolic rates as well as on correlations between blood flow and pH e . This previously unknown phenomenon should direct attention to pathways of acid-base regulation and their potential feedback on whole-animal energy demand, in relation with changing seawater carbonate parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bame, K.J.
1986-01-01
Acetyl-CoA:..cap alpha..-glucosaminide N-acetyltransferase is a lysosomal membrane enzyme, deficient in the genetic disease Sanfilippo C syndrome. The enzyme catalyzes the transfer of an acetyl group from cytoplasmic acetyl-CoA to terminal ..cap alpha..-glucosamine residues of heparan sulfate within the organelle. The reaction mechanism was examined using high purified lysosomal membranes from rat liver and human fibroblasts. The N-acetyltransferase reaction is optimal above pH 5.5 and a 2-3 fold stimulation of activity is observed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicate that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. The bindingmore » of acetyl-CoA to the enzyme is measured by exchange label from (/sup 3/H)CoA to acetyl-CoA, and is optimal at pH's above 7.0. The acetyl-enzyme intermediate is formed by incubating membranes with (/sup 3/H)acetyl-CoA. The acetyl group can be transferred to glucosamine, forming (/sup 3/H)N-acetylglucosamine; the transfer is optimal between pH 4 and 5. Lysosomal membranes from Sanfilippo C fibroblasts confirm that these half reactions carried out by the N-acetyltransferase. The enzyme is inactivated by N-bromosuccinimide and diethylpyrocarbonate, indicating that a histidine is involved in the reaction. These results suggest that the histidine residue is at the active site of the enzyme. The properties of the N-acetyltransferase in the membrane, the characterization of the enzyme kinetics, the chemistry of a histidine mediated acetylation and the pH difference across the lysosomal membrane all support a transmembrane acetylation mechanism.« less
Niemeyer, María Isabel; Cid, L. Pablo; Peña-Münzenmayer, Gaspar; Sepúlveda, Francisco V.
2010-01-01
TASK-2 (KCNK5 or K2P5.1) is a background K+ channel that is opened by extracellular alkalinization and plays a role in renal bicarbonate reabsorption and central chemoreception. Here, we demonstrate that in addition to its regulation by extracellular protons (pHo) TASK-2 is gated open by intracellular alkalinization. The following pieces of evidence suggest that the gating process controlled by intracellular pH (pHi) is independent from that under the command of pHo. It was not possible to overcome closure by extracellular acidification by means of intracellular alkalinization. The mutant TASK-2-R224A that lacks sensitivity to pHo had normal pHi-dependent gating. Increasing extracellular K+ concentration acid shifts pHo activity curve of TASK-2 yet did not affect pHi gating of TASK-2. pHo modulation of TASK-2 is voltage-dependent, whereas pHi gating was not altered by membrane potential. These results suggest that pHo, which controls a selectivity filter external gate, and pHi act at different gating processes to open and close TASK-2 channels. We speculate that pHi regulates an inner gate. We demonstrate that neutralization of a lysine residue (Lys245) located at the C-terminal end of transmembrane domain 4 by mutation to alanine abolishes gating by pHi. We postulate that this lysine acts as an intracellular pH sensor as its mutation to histidine acid-shifts the pHi-dependence curve of TASK-2 as expected from its lower pKa. We conclude that intracellular pH, together with pHo, is a critical determinant of TASK-2 activity and therefore of its physiological function. PMID:20351106
Li, Zhi; Chen, Yun; Yuan, De-Qi; Chen, Wen-Hua
2017-03-28
A dimeric 3α-hydroxy-7α,12α-diamino-5β-cholan-24-oate conjugate and its derivatives having alkyl chains of varying length from methyl to n-pentyl groups on the amido bonds were synthesized and fully characterized on the basis of NMR ( 1 H and 13 C) and ESI MS (LR and HR) data. Their transmembrane anion transport activities were investigated in detail by means of a chloride ion selective electrode technique and the pyranine assay. The data indicate that this set of compounds is capable of promoting the transmembrane transport of anions, presumably via an anion exchange process and a mobile carrier mechanism. Detailed kinetic analysis on the data obtained from both chloride efflux and pH discharge experiments reveals that an optimum log P range may exist for the transport effectiveness in terms of both k 2 /K diss and EC 50 values. The present finding highlights the importance of high anionophoric activity in clarifying the effect of lipophilicity on ion-transport effectiveness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao Maofu; Kielian, Margaret
2005-02-05
The alphavirus Semliki Forest virus (SFV) infects cells via a low pH-triggered fusion reaction mediated by the viral E1 protein. Both the E1 fusion peptide and transmembrane (TM) domain are essential for membrane fusion, but the functional requirements for the TM domain are poorly understood. Here we explored the role of the five TM domain glycine residues, including the highly conserved glycine pair at E1 residues 415/416. SFV mutants with alanine substitutions for individual or all five glycine residues (5G/A) showed growth kinetics and fusion pH dependence similar to those of wild-type SFV. Mutants with increasing substitution of glycine residuesmore » showed an increasingly more stringent requirement for cholesterol during fusion. The 5G/A mutant showed decreased fusion kinetics and extent in fluorescent lipid mixing assays. TM domain glycine residues thus are not required for efficient SFV fusion or assembly but can cause subtle effects on the properties of membrane fusion.« less
NASA Astrophysics Data System (ADS)
Wu, Sangwook
2016-04-01
The three transmembrane and the four transmembrane helix models are suggested for human vitamin K epoxide reductase (VKOR). In this study, we investigate the stability of the human three transmembrane/four transmembrane VKOR models by employing a coarse-grained normal mode analysis and molecular dynamics simulation. Based on the analysis of the mobility of each transmembrane domain, we suggest that the three transmembrane human VKOR model is more stable than the four transmembrane human VKOR model.
Zhao, Qun; Liang, Yu; Yuan, Huiming; Sui, Zhigang; Wu, Qi; Liang, Zhen; Zhang, Lihua; Zhang, Yukui
2013-09-17
Combining good dissolving ability of formic acid (FA) for membrane proteins and excellent complementary retention behavior of proteins on strong cation exchange (SCX) and strong anion exchange (SAX) materials, a biphasic microreactor was established to pretreat membrane proteins at microgram and even nanogram levels. With membrane proteins solubilized by FA, all of the proteomics sample processing procedures, including protein preconcentration, pH adjustment, reduction, and alkylation, as well as tryptic digestion, were integrated into an "SCX-SAX" biphasic capillary column. To evaluate the performance of the developed microreactor, a mixture of bovine serum albumin, myoglobin, and cytochrome c was pretreated. Compared with the results obtained by the traditional in-solution process, the peptide recovery (93% vs 83%) and analysis throughput (3.5 vs 14 h) were obviously improved. The microreactor was further applied for the pretreatment of 14 μg of membrane proteins extracted from rat cerebellums, and 416 integral membrane proteins (IMPs) (43% of total protein groups) and 103 transmembrane peptides were identified by two-dimensional nanoliquid chromatography-electrospray ionization tandem mass spectrometry (2D nano-LC-ESI-MS/MS) in triplicate analysis. With the starting sample preparation amount decreased to as low as 50 ng, 64 IMPs and 17 transmembrane peptides were identified confidently, while those obtained by the traditional in-solution method were 10 and 1, respectively. All these results demonstrated that such an "SCX-SAX" based biphasic microreactor could offer a promising tool for the pretreatment of trace membrane proteins with high efficiency and throughput.
Conformational equilibria of light-activated rhodopsin in nanodiscs
Van Eps, Ned; Caro, Lydia N.; Morizumi, Takefumi; Kusnetzow, Ana Karin; Szczepek, Michal; Hofmann, Klaus Peter; Bayburt, Timothy H.; Sligar, Stephen G.; Ernst, Oliver P.; Hubbell, Wayne L.
2017-01-01
Conformational equilibria of G-protein–coupled receptors (GPCRs) are intimately involved in intracellular signaling. Here conformational substates of the GPCR rhodopsin are investigated in micelles of dodecyl maltoside (DDM) and in phospholipid nanodiscs by monitoring the spatial positions of transmembrane helices 6 and 7 at the cytoplasmic surface using site-directed spin labeling and double electron–electron resonance spectroscopy. The photoactivated receptor in DDM is dominated by one conformation with weak pH dependence. In nanodiscs, however, an ensemble of pH-dependent conformational substates is observed, even at pH 6.0 where the MIIbH+ form defined by proton uptake and optical spectroscopic methods is reported to be the sole species present in native disk membranes. In nanodiscs, the ensemble of substates in the photoactivated receptor spontaneously decays to that characteristic of the inactive state with a lifetime of ∼16 min at 20 °C. Importantly, transducin binding to the activated receptor selects a subset of the ensemble in which multiple substates are apparently retained. The results indicate that in a native-like lipid environment rhodopsin activation is not analogous to a simple binary switch between two defined conformations, but the activated receptor is in equilibrium between multiple conformers that in principle could recognize different binding partners. PMID:28373559
Galloway, Summer E; Reed, Mark L; Russell, Charles J; Steinhauer, David A
2013-02-01
The influenza A virus (IAV) HA protein must be activated by host cells proteases in order to prime the molecule for fusion. Consequently, the availability of activating proteases and the susceptibility of HA to protease activity represents key factors in facilitating virus infection. As such, understanding the intricacies of HA cleavage by various proteases is necessary to derive insights into the emergence of pandemic viruses. To examine these properties, we generated a panel of HAs that are representative of the 16 HA subtypes that circulate in aquatic birds, as well as HAs representative of the subtypes that have infected the human population over the last century. We examined the susceptibility of the panel of HA proteins to trypsin, as well as human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2). Additionally, we examined the pH at which these HAs mediated membrane fusion, as this property is related to the stability of the HA molecule and influences the capacity of influenza viruses to remain infectious in natural environments. Our results show that cleavage efficiency can vary significantly for individual HAs, depending on the protease, and that some HA subtypes display stringent selectivity for specific proteases as activators of fusion function. Additionally, we found that the pH of fusion varies by 0.7 pH units among the subtypes, and notably, we observed that the pH of fusion for most HAs from human isolates was lower than that observed from avian isolates of the same subtype. Overall, these data provide the first broad-spectrum analysis of cleavage-activation and membrane fusion characteristics for all of the IAV HA subtypes, and also show that there are substantial differences between the subtypes that may influence transmission among hosts and establishment in new species.
Galloway, Summer E.; Reed, Mark L.; Russell, Charles J.; Steinhauer, David A.
2013-01-01
The influenza A virus (IAV) HA protein must be activated by host cells proteases in order to prime the molecule for fusion. Consequently, the availability of activating proteases and the susceptibility of HA to protease activity represents key factors in facilitating virus infection. As such, understanding the intricacies of HA cleavage by various proteases is necessary to derive insights into the emergence of pandemic viruses. To examine these properties, we generated a panel of HAs that are representative of the 16 HA subtypes that circulate in aquatic birds, as well as HAs representative of the subtypes that have infected the human population over the last century. We examined the susceptibility of the panel of HA proteins to trypsin, as well as human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2). Additionally, we examined the pH at which these HAs mediated membrane fusion, as this property is related to the stability of the HA molecule and influences the capacity of influenza viruses to remain infectious in natural environments. Our results show that cleavage efficiency can vary significantly for individual HAs, depending on the protease, and that some HA subtypes display stringent selectivity for specific proteases as activators of fusion function. Additionally, we found that the pH of fusion varies by 0.7 pH units among the subtypes, and notably, we observed that the pH of fusion for most HAs from human isolates was lower than that observed from avian isolates of the same subtype. Overall, these data provide the first broad-spectrum analysis of cleavage-activation and membrane fusion characteristics for all of the IAV HA subtypes, and also show that there are substantial differences between the subtypes that may influence transmission among hosts and establishment in new species. PMID:23459660
The Structure of Carbonic Anhydrase IX Is Adapted for Low-pH Catalysis.
Mahon, Brian P; Bhatt, Avni; Socorro, Lilien; Driscoll, Jenna M; Okoh, Cynthia; Lomelino, Carrie L; Mboge, Mam Y; Kurian, Justin J; Tu, Chingkuang; Agbandje-McKenna, Mavis; Frost, Susan C; McKenna, Robert
2016-08-23
Human carbonic anhydrase IX (hCA IX) expression in many cancers is associated with hypoxic tumors and poor patient outcome. Inhibitors of hCA IX have been used as anticancer agents with some entering Phase I clinical trials. hCA IX is transmembrane protein whose catalytic domain faces the extracellular tumor milieu, which is typically associated with an acidic microenvironment. Here, we show that the catalytic domain of hCA IX (hCA IX-c) exhibits the necessary biochemical and biophysical properties that allow for low pH stability and activity. Furthermore, the unfolding process of hCA IX-c appears to be reversible, and its catalytic efficiency is thought to be correlated directly with its stability between pH 3.0 and 8.0 but not above pH 8.0. To rationalize this, we determined the X-ray crystal structure of hCA IX-c to 1.6 Å resolution. Insights from this study suggest an understanding of hCA IX-c stability and activity in low-pH tumor microenvironments and may be applicable to determining pH-related effects on enzymes.
The voltage-gated proton channel: a riddle, wrapped in a mystery, inside an enigma
DeCoursey, Thomas E.
2016-01-01
The main properties of voltage gated proton channels are described, along with what is known about how the channel protein structure accomplishes these functions. Just as protons are unique among ions, proton channels are unique among ion channels. Their four transmembrane helices sense voltage, the pH gradient, and conduct protons exclusively. Selectivity is achieved by the unique ability of H3O+ to protonate an Asp-Arg salt bridge. Pathognomonic sensitivity of gating to the pH gradient ensures channel opening only when acid extrusion will result, which is crucial to most biological functions. An exception occurs in dinoflagellates in which H+ influx through HV1 triggers the bioluminescent flash. Pharmacological interventions that promise to ameliorate cancer, asthma, brain damage in ischemic stroke, Alzheimer’s disease, autoimmune diseases, and numerous other conditions, await future progress. PMID:25964989
Structure elucidation of dimeric transmembrane domains of bitopic proteins.
Bocharov, Eduard V; Volynsky, Pavel E; Pavlov, Konstantin V; Efremov, Roman G; Arseniev, Alexander S
2010-01-01
The interaction between transmembrane helices is of great interest because it directly determines biological activity of a membrane protein. Either destroying or enhancing such interactions can result in many diseases related to dysfunction of different tissues in human body. One much studied form of membrane proteins known as bitopic protein is a dimer containing two membrane-spanning helices associating laterally. Establishing structure-function relationship as well as rational design of new types of drugs targeting membrane proteins requires precise structural information about this class of objects. At present time, to investigate spatial structure and internal dynamics of such transmembrane helical dimers, several strategies were developed based mainly on a combination of NMR spectroscopy, optical spectroscopy, protein engineering and molecular modeling. These approaches were successfully applied to homo- and heterodimeric transmembrane fragments of several bitopic proteins, which play important roles in normal and in pathological conditions of human organism.
NASA Astrophysics Data System (ADS)
Maity, Sourav; Mazzolini, Monica; Arcangeletti, Manuel; Valbuena, Alejandro; Fabris, Paolo; Lazzarino, Marco; Torre, Vincent
2015-05-01
Cyclic nucleotide-gated (CNG) channels are activated by binding of cyclic nucleotides. Although structural studies have identified the channel pore and selectivity filter, conformation changes associated with gating remain poorly understood. Here we combine single-molecule force spectroscopy (SMFS) with mutagenesis, bioinformatics and electrophysiology to study conformational changes associated with gating. By expressing functional channels with SMFS fingerprints in Xenopus laevis oocytes, we were able to investigate gating of CNGA1 in a physiological-like membrane. Force spectra determined that the S4 transmembrane domain is mechanically coupled to S5 in the closed state, but S3 in the open state. We also show there are multiple pathways for the unfolding of the transmembrane domains, probably caused by a different degree of α-helix folding. This approach demonstrates that CNG transmembrane domains have dynamic structure and establishes SMFS as a tool for probing conformational change in ion channels.
Impact of pH on the structure and function of neural cadherin.
Jungles, Jared M; Dukes, Matthew P; Vunnam, Nagamani; Pedigo, Susan
2014-12-02
Neural (N-) cadherin is a transmembrane protein within adherens junctions that mediates cell-cell adhesion. It has 5 modular extracellular domains (EC1-EC5) that bind 3 calcium ions between each of the modules. Calcium binding is required for dimerization. N-Cadherin is involved in diverse processes including tissue morphogenesis, excitatory synapse formation and dynamics, and metastasis of cancer. During neurotransmission and tumorigenesis, fluctuations in extracellular pH occur, causing tissue acidosis with associated physiological consequences. Studies reported here aim to determine the effect of pH on the dimerization properties of a truncated construct of N-cadherin containing EC1-EC2. Since N-cadherin is an anionic protein, we hypothesized that acidification of solution would cause an increase in stability of the apo protein, a decrease in the calcium-binding affinity, and a concomitant decrease in the formation of adhesive dimer. The stability of the apo monomer was increased and the calcium-binding affinity was decreased at reduced pH, consistent with our hypothesis. Surprisingly, analytical SEC studies showed an increase in calcium-induced dimerization as solution pH decreased from 7.4 to 5.0. Salt-dependent dimerization studies indicated that electrostatic repulsion attenuates dimerization affinity. These results point to a possible electrostatic mechanism for moderating dimerization affinity of the Type I cadherin family. Extrapolating these results to cell adhesion in vivo leads to the assertion that decreased pH promotes adhesion by N-cadherin, thereby stabilizing synaptic junctions.
González, Wendy; Riedelsberger, Janin; Morales-Navarro, Samuel E; Caballero, Julio; Alzate-Morales, Jans H; González-Nilo, Fernando D; Dreyer, Ingo
2012-02-15
The uptake of potassium ions (K+) accompanied by an acidification of the apoplasm is a prerequisite for stomatal opening. The acidification (approximately 2-2.5 pH units) is perceived by voltage-gated inward potassium channels (K(in)) that then can open their pores with lower energy cost. The sensory units for extracellular pH in stomatal K(in) channels are proposed to be histidines exposed to the apoplasm. However, in the Arabidopsis thaliana stomatal K(in) channel KAT1, mutations in the unique histidine exposed to the solvent (His267) do not affect the pH dependency. We demonstrate in the present study that His267 of the KAT1 channel cannot sense pH changes since the neighbouring residue Phe266 shifts its pKa to undetectable values through a cation-π interaction. Instead, we show that Glu240 placed in the extracellular loop between transmembrane segments S5 and S6 is involved in the extracellular acid activation mechanism. Based on structural models we propose that this region may serve as a molecular link between the pH- and the voltage-sensor. Like Glu240, several other titratable residues could contribute to the pH-sensor of KAT1, interact with each other and even connect such residues far away from the voltage-sensor with the gating machinery of the channel.
Altering intracellular pH reveals the kinetic basis of intraburst gating in the CFTR Cl− channel
Xu, Weiyi; Sheppard, David N.
2017-01-01
Key points The cystic fibrosis transmembrane conductance regulator (CFTR), which is defective in the genetic disease cystic fibrosis (CF), forms a gated pathway for chloride movement regulated by intracellular ATP.To understand better CFTR function, we investigated the regulation of channel openings by intracellular pH.We found that short‐lived channel closures during channel openings represent subtle changes in the structure of CFTR that are regulated by intracellular pH, in part, at ATP‐binding site 1 formed by the nucleotide‐binding domains.Our results provide a framework for future studies to understand better the regulation of channel openings, the dysfunction of CFTR in CF and the action of drugs that repair CFTR gating defects. Abstract Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP‐gated Cl− channel defective in the genetic disease cystic fibrosis (CF). The gating behaviour of CFTR is characterized by bursts of channel openings interrupted by brief, flickery closures, separated by long closures between bursts. Entry to and exit from an open burst is controlled by the interaction of ATP with two ATP‐binding sites, sites 1 and 2, in CFTR. To understand better the kinetic basis of CFTR intraburst gating, we investigated the single‐channel activity of human CFTR at different intracellular pH (pHi) values. When compared with the control (pHi 7.3), acidifying pHi to 6.3 or alkalinizing pHi to 8.3 and 8.8 caused small reductions in the open‐time constant (τo) of wild‐type CFTR. By contrast, the fast closed‐time constant (τcf), which describes the short‐lived closures that interrupt open bursts, was greatly increased at pHi 5.8 and 6.3. To analyse intraburst kinetics, we used linear three‐state gating schemes. All data were satisfactorily modelled by the C1 ↔ O ↔ C2 kinetic scheme. Changing the intracellular ATP concentration was without effect on τo, τcf and their responses to pHi changes. However, mutations that disrupt the interaction of ATP with ATP‐binding site 1, including K464A, D572N and the CF‐associated mutation G1349D all abolished the prolongation of τcf at pHi 6.3. Taken together, our data suggest that the regulation of CFTR intraburst gating is distinct from the ATP‐dependent mechanism that controls channel opening and closing. However, our data also suggest that ATP‐binding site 1 modulates intraburst gating. PMID:27779763
Cell-Free Synthetic Biology Chassis for Nanocatalytic Photon-to-Hydrogen Conversion
Wang, Peng; Chang, Angela Y.; Novosad, Valentyn; ...
2017-06-11
We report on entirely man-made nanobio hybrid fabricated through assembly of cell-free expressed transmembrane proton pump and semiconductor nanoparticles as an efficient nanocatalysis for photocatalytic H 2 evolution. The system produces H 2 at a turnover rate of 239 (μmole protein) -1 h -1 under green and 17742 (μmole protein) -1 h -1 under white light at ambient conditions, in water at neutral pH with methanol as a sacrificial electron donor. Robustness and flexibility of this approach allows for systemic manipulation at nanoparticle-bio interface toward directed evolution of energy transformation materials and artificial systems.
Cell-Free Synthetic Biology Chassis for Nanocatalytic Photon-to-Hydrogen Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Peng; Chang, Angela Y.; Novosad, Valentyn
We report on entirely man-made nanobio hybrid fabricated through assembly of cell-free expressed transmembrane proton pump and semiconductor nanoparticles as an efficient nanocatalysis for photocatalytic H 2 evolution. The system produces H 2 at a turnover rate of 239 (μmole protein) -1 h -1 under green and 17742 (μmole protein) -1 h -1 under white light at ambient conditions, in water at neutral pH with methanol as a sacrificial electron donor. Robustness and flexibility of this approach allows for systemic manipulation at nanoparticle-bio interface toward directed evolution of energy transformation materials and artificial systems.
Richards, Ryan; Dempski, Robert E.
2012-01-01
Channelrhodopsin-2 (ChR2) is a microbial-type rhodopsin found in the green algae Chlamydomonas reinhardtii. Under physiological conditions, ChR2 is an inwardly rectifying cation channel that permeates a wide range of mono- and divalent cations. Although this protein shares a high sequence homology with other microbial-type rhodopsins, which are ion pumps, ChR2 is an ion channel. A sequence alignment of ChR2 with bacteriorhodopsin, a proton pump, reveals that ChR2 lacks specific motifs and residues, such as serine and threonine, known to contribute to non-covalent interactions within transmembrane domains. We hypothesized that reintroduction of the eight transmembrane serine residues present in bacteriorhodopsin, but not in ChR2, will restrict the conformational flexibility and reduce the pore diameter of ChR2. In this work, eight single serine mutations were created at homologous positions in ChR2. Additionally, an endogenous transmembrane serine was replaced with alanine. We measured kinetics, changes in reversal potential, and permeability ratios in different alkali metal solutions using two-electrode voltage clamp. Applying excluded volume theory, we calculated the minimum pore diameter of ChR2 constructs. An analysis of the results from our experiments show that reintroducing serine residues into the transmembrane domain of ChR2 can restrict the minimum pore diameter through inter- and intrahelical hydrogen bonds while the removal of a transmembrane serine results in a larger pore diameter. Therefore, multiple positions along the intracellular side of the transmembrane domains contribute to the cation permeability of ChR2. PMID:23185520
A novel pair of immunoglobulin-like receptors expressed by B cells and myeloid cells
Kubagawa, Hiromi; Burrows, Peter D.; Cooper, Max D.
1997-01-01
An Fcα receptor probe of human origin was used to identify novel members of the Ig gene superfamily in mice. Paired Ig-like receptors, named PIR-A and PIR-B, are predicted from sequence analysis of the cDNAs isolated from a mouse splenic library. Both type I transmembrane proteins possess similar ectodomains with six Ig-like loops, but have different transmembrane and cytoplasmic regions. The predicted PIR-A protein has a short cytoplasmic tail and a charged Arg residue in the transmembrane region that, by analogy with the FcαR relative, suggests the potential for association with an additional transmembrane protein to form a signal transducing unit. In contrast, the PIR-B protein has an uncharged transmembrane region and a long cytoplasmic tail containing four potential immunoreceptor tyrosine-based inhibitory motifs. These features are shared by the related killer inhibitory receptors. PIR-A proteins appear to be highly variable, in that predicted peptide sequences differ for seven randomly selected PIR-A clones, whereas PIR-B cDNA clones are invariant. Southern blot analysis with PIR-B and PIR-A-specific probes suggests only one PIR-B gene and multiple PIR-A genes. The PIR-A and PIR-B genes are expressed in B lymphocytes and myeloid lineage cells, wherein both are expressed simultaneously. The characteristics of the highly-conserved PIR-A and PIR-B genes and their coordinate cellular expression suggest a potential regulatory role in humoral, inflammatory, and allergic responses. PMID:9144225
Semithiobambus[6]uril is a transmembrane anion transporter.
Lang, Chao; Mohite, Amar; Deng, Xiaoli; Yang, Feihu; Dong, Zeyuan; Xu, Jiayun; Liu, Junqiu; Keinan, Ehud; Reany, Ofer
2017-07-04
Semithiobambus[6]uril is shown to be an efficient transmembrane anion transporter. Although all bambusuril analogs (having either O, S or N atoms in their portals) are excellent anion binders, only the sulfur analog is also an effective anion transporter capable of polarizing lipid membranes through selective anion uniport. This notable divergence reflects significant differences in the lipophilic character of the bambusuril analogs.
Genome-Wide Analysis Reveals the Vacuolar pH-Stat of Saccharomyces cerevisiae
Brett, Christopher L.; Kallay, Laura; Hua, Zhaolin; Green, Richard; Chyou, Anthony; Zhang, Yongqiang; Graham, Todd R.; Donowitz, Mark; Rao, Rajini
2011-01-01
Protons, the smallest and most ubiquitous of ions, are central to physiological processes. Transmembrane proton gradients drive ATP synthesis, metabolite transport, receptor recycling and vesicle trafficking, while compartmental pH controls enzyme function. Despite this fundamental importance, the mechanisms underlying pH homeostasis are not entirely accounted for in any organelle or organism. We undertook a genome-wide survey of vacuole pH (pHv) in 4,606 single-gene deletion mutants of Saccharomyces cerevisiae under control, acid and alkali stress conditions to reveal the vacuolar pH-stat. Median pHv (5.27±0.13) was resistant to acid stress (5.28±0.14) but shifted significantly in response to alkali stress (5.83±0.13). Of 107 mutants that displayed aberrant pHv under more than one external pH condition, functional categories of transporters, membrane biogenesis and trafficking machinery were significantly enriched. Phospholipid flippases, encoded by the family of P4-type ATPases, emerged as pH regulators, as did the yeast ortholog of Niemann Pick Type C protein, implicated in sterol trafficking. An independent genetic screen revealed that correction of pHv dysregulation in a neo1ts mutant restored viability whereas cholesterol accumulation in human NPC1−/− fibroblasts diminished upon treatment with a proton ionophore. Furthermore, while it is established that lumenal pH affects trafficking, this study revealed a reciprocal link with many mutants defective in anterograde pathways being hyperacidic and retrograde pathway mutants with alkaline vacuoles. In these and other examples, pH perturbations emerge as a hitherto unrecognized phenotype that may contribute to the cellular basis of disease and offer potential therapeutic intervention through pH modulation. PMID:21423800
Molecular mechanism of acetylcholine receptor-controlled ion translocation across cell membranes
Cash, Derek J.; Hess, George P.
1980-01-01
Two molecular processes, the binding of acetylcholine to the membrane-bound acetylcholine receptor protein and the receptor-controlled flux rates of specific inorganic ions, are essential in determining the electrical membrane potential of nerve and muscle cells. The measurements reported establish the relationship between the two processes: the acetylcholine receptor-controlled transmembrane ion flux of 86Rb+ and the concentration of carbamoylcholine, a stable analog of acetylcholine. A 200-fold concentration range of carbamoylcholine was used. The flux was measured in the millisecond-to-minute time region by using a quench flow technique with membrane vesicles prepared from the electric organ of Electrophorus electricus in eel Ringer's solution at pH 7.0 and 1°C. The technique makes possible the study of the transmembrane transport of specific ions, with variable known internal and external ion concentrations, in a system in which a determinable number of receptors is exposed to a known concentration of ligand. The response curve of ion flux to ligand was sigmoidal with an average maximum rate of 84 sec-1. Carbamoylcholine induced inactivation of the receptor with a maximum rate of 2.7 sec-1 and a different ligand dependence so that it was fast relative to ion flux at low ligand concentration but slow relative to ion flux at high ligand concentration. The simplest model that fits the data consists of receptor in the active and inactive states in ligand-controlled equilibria. Receptor inactivation occurs with one or two ligand molecules bound. For channel opening, two ligand molecules bound to the active state are required, and cooperativity results from the channel opening process itself. With carbamoylcholine, apparently, the equilibrium position for the channel opening step is only one-fourth open. The integrated rate equation, based on the model, predicts the time dependence of receptor-controlled ion flux over the concentration range of carbamoylcholine investigated. The values of the constants in the rate equation form the basis for predicting receptor-controlled changes in the transmembrane potential of cells and the conditions leading to transmission of signals between cells. PMID:6928684
Dawut, Keatisuda; Sirisattha, Sophon; Hibino, Takashi; Kageyama, Hakuto; Waditee-Sirisattha, Rungaroon
2018-07-01
Transmembrane ion transport is a critical process in the cellular response to salt stress. Among the known functional membrane transporters that are involved in the salt stress response, Na + /H + antiporters have been extensively studied. These ubiquitous membrane proteins are crucial for salt tolerance and are associated with the regulation of internal pH, cell volume, morphogenesis, and vesicular trafficking. Molecular and functional analyses of Na + /H + antiporters have been characterized among taxa but little is known about algal Na + /H + antiporters. Here, we analyzed putative Na + /H + antiporters from the complete genome sequence of the marine picoalga Ostreococcus tauri. At least 10 putative Na + /H + antiporters belonging to the SOS1, NHX, and KEA/Kef families were found. Surprisingly, a bacterial type NhaA sequence (OtNhaA) was also found. Topological modeling of OtNhaA predicted 12 possible transmembrane segments with a long N-terminus. The full-length (FL_OtNhaA) and N-terminal truncated (ΔN112_OtNhaA) versions of OtNhaA were constructed, expressed in the salt-sensitive mutant Escherichia coli TO114, and functionally characterized. Complementation analysis revealed that FL_OtNhaA- and ΔN112_OtNhaA-expressing cells exhibited increased tolerance to high NaCl concentrations up to 700 mM. Antiporter activity assays showed that both FL_OtNhaA and ΔN112_OtNhaA proteins predominantly exhibited Na + /H + and Ca 2+ /H + antiporter activities at alkaline pH conditions. Intriguingly, the ΔN112_OtNhaA exhibited higher Na + /H + and Ca 2+ /H + antiporter activities compared to FL_OtNhaA. Kinetic analysis revealed that FL_OtNhaA has a high affinity for Na + and Ca 2+ ions with a K m of 1.1 ± 0.23 mM for Na + (at pH 8.5) and a K m of 0.3 ± 0.07 mM for Ca 2+ (at pH 8.5). Since NhaA has shown striking diversity among taxa, our results provide insight into the functional properties of the algal NhaA Na + /H + antiporter. These results will contribute to the understanding of Na + /H + antiporters that have various implications in all kingdoms of life. Copyright © 2018 Elsevier Inc. All rights reserved.
The lysosomal potassium channel TMEM175 adopts a novel tetrameric architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Changkeun; Guo, Jiangtao; Zeng, Weizhong
TMEM175 is a lysosomal K+ channel that is important for maintaining the membrane potential and pH stability in lysosomes1. It contains two homologous copies of a six-transmembrane-helix (6-TM) domain, which has no sequence homology to the canonical tetrameric K+ channels and lacks the TVGYG selectivity filter motif found in these channels2, 3, 4. The prokaryotic TMEM175 channel, which is present in a subset of bacteria and archaea, contains only a single 6-TM domain and functions as a tetramer. Here, we present the crystal structure of a prokaryotic TMEM175 channel from Chamaesiphon minutus, CmTMEM175, the architecture of which represents a completelymore » different fold from that of canonical K+ channels. All six transmembrane helices of CmTMEM175 are tightly packed within each subunit without undergoing domain swapping. The highly conserved TM1 helix acts as the pore-lining inner helix, creating an hourglass-shaped ion permeation pathway in the channel tetramer. Three layers of hydrophobic residues on the carboxy-terminal half of the TM1 helices form a bottleneck along the ion conduction pathway and serve as the selectivity filter of the channel. Mutagenesis analysis suggests that the first layer of the highly conserved isoleucine residues in the filter is primarily responsible for channel selectivity. Thus, the structure of CmTMEM175 represents a novel architecture of a tetrameric cation channel whose ion selectivity mechanism appears to be distinct from that of the classical K+ channel family.« less
Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore
Severin, Fedor F.; Severina, Inna I.; Antonenko, Yury N.; Rokitskaya, Tatiana I.; Cherepanov, Dmitry A.; Mokhova, Elena N.; Vyssokikh, Mikhail Yu.; Pustovidko, Antonina V.; Markova, Olga V.; Yaguzhinsky, Lev S.; Korshunova, Galina A.; Sumbatyan, Nataliya V.; Skulachev, Maxim V.; Skulachev, Vladimir P.
2010-01-01
A unique phenomenon of mitochondria-targeted protonophores is described. It consists in a transmembrane H+-conducting fatty acid cycling mediated by penetrating cations such as 10-(6’-plastoquinonyl)decyltriphenylphosphonium (SkQ1) or dodecyltriphenylphosphonium (C12TPP). The phenomenon has been modeled by molecular dynamics and directly proved by experiments on bilayer planar phospholipid membrane, liposomes, isolated mitochondria, and yeast cells. In bilayer planar phospholipid membrane, the concerted action of penetrating cations and fatty acids is found to result in conversion of a pH gradient (ΔpH) to a membrane potential (Δψ) of the Nernstian value (about 60 mV Δψ at ΔpH = 1). A hydrophobic cation with localized charge (cetyltrimethylammonium) failed to substitute for hydrophobic cations with delocalized charge. In isolated mitochondria, SkQ1 and C12TPP, but not cetyltrimethylammonium, potentiated fatty acid-induced (i) uncoupling of respiration and phosphorylation, and (ii) inhibition of H2O2 formation. In intact yeast cells, C12TPP stimulated respiration regardless of the extracellular pH value, whereas a nontargeted protonophorous uncoupler (trifluoromethoxycarbonylcyanide phenylhydrazone) stimulated respiration at pH 5 but not at pH 3. Hydrophobic penetrating cations might be promising to treat obesity, senescence, and some kinds of cancer that require mitochondrial hyperpolarization. PMID:20080732
Preiss, Laura; Hicks, David B.; Suzuki, Shino; Meier, Thomas; Krulwich, Terry Ann
2015-01-01
Alkaliphilic bacteria typically grow well at pH 9, with the most extremophilic strains growing up to pH values as high as pH 12–13. Interest in extreme alkaliphiles arises because they are sources of useful, stable enzymes, and the cells themselves can be used for biotechnological and other applications at high pH. In addition, alkaline hydrothermal vents represent an early evolutionary niche for alkaliphiles and novel extreme alkaliphiles have also recently been found in alkaline serpentinizing sites. A third focus of interest in alkaliphiles is the challenge raised by the use of proton-coupled ATP synthases for oxidative phosphorylation by non-fermentative alkaliphiles. This creates a problem with respect to tenets of the chemiosmotic model that remains the core model for the bioenergetics of oxidative phosphorylation. Each of these facets of alkaliphilic bacteria will be discussed with a focus on extremely alkaliphilic Bacillus strains. These alkaliphilic bacteria have provided a cogent experimental system to probe adaptations that enable their growth and oxidative phosphorylation at high pH. Adaptations are clearly needed to enable secreted or partially exposed enzymes or protein complexes to function at the high external pH. Also, alkaliphiles must maintain a cytoplasmic pH that is significantly lower than the pH of the outside medium. This protects cytoplasmic components from an external pH that is alkaline enough to impair their stability or function. However, the pH gradient across the cytoplasmic membrane, with its orientation of more acidic inside than outside, is in the reverse of the productive orientation for bioenergetic work. The reversed gradient reduces the trans-membrane proton-motive force available to energize ATP synthesis. Multiple strategies are hypothesized to be involved in enabling alkaliphiles to circumvent the challenge of a low bulk proton-motive force energizing proton-coupled ATP synthesis at high pH. PMID:26090360
Preiss, Laura; Hicks, David B; Suzuki, Shino; Meier, Thomas; Krulwich, Terry Ann
2015-01-01
Alkaliphilic bacteria typically grow well at pH 9, with the most extremophilic strains growing up to pH values as high as pH 12-13. Interest in extreme alkaliphiles arises because they are sources of useful, stable enzymes, and the cells themselves can be used for biotechnological and other applications at high pH. In addition, alkaline hydrothermal vents represent an early evolutionary niche for alkaliphiles and novel extreme alkaliphiles have also recently been found in alkaline serpentinizing sites. A third focus of interest in alkaliphiles is the challenge raised by the use of proton-coupled ATP synthases for oxidative phosphorylation by non-fermentative alkaliphiles. This creates a problem with respect to tenets of the chemiosmotic model that remains the core model for the bioenergetics of oxidative phosphorylation. Each of these facets of alkaliphilic bacteria will be discussed with a focus on extremely alkaliphilic Bacillus strains. These alkaliphilic bacteria have provided a cogent experimental system to probe adaptations that enable their growth and oxidative phosphorylation at high pH. Adaptations are clearly needed to enable secreted or partially exposed enzymes or protein complexes to function at the high external pH. Also, alkaliphiles must maintain a cytoplasmic pH that is significantly lower than the pH of the outside medium. This protects cytoplasmic components from an external pH that is alkaline enough to impair their stability or function. However, the pH gradient across the cytoplasmic membrane, with its orientation of more acidic inside than outside, is in the reverse of the productive orientation for bioenergetic work. The reversed gradient reduces the trans-membrane proton-motive force available to energize ATP synthesis. Multiple strategies are hypothesized to be involved in enabling alkaliphiles to circumvent the challenge of a low bulk proton-motive force energizing proton-coupled ATP synthesis at high pH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Xuhua; Hew, Choy Leong, E-mail: dbshewcl@nus.edu.sg
2007-07-01
The crystallization of the N-terminal transmembrane region-truncated VP26 and VP28 of white spot syndrome virus is described. White spot syndrome virus (WSSV) is a major virulent pathogen known to infect penaeid shrimp and other crustaceans. VP26 and VP28, two major envelope proteins from WSSV, have been identified and overexpressed in Escherichia coli. In order to facilitate purification and crystallization, predicted N-terminal transmembrane regions of approximately 35 amino acids have been truncated from both VP26 and VP28. Truncated VP26 and VP28 and their corresponding SeMet-labelled proteins were purified and the SeMet proteins were crystallized by the hanging-drop vapour-diffusion method. Crystals ofmore » SeMet-labelled VP26 were obtained using a reservoir consisting of 0.1 M citric acid pH 3.5, 3.0 M sodium chloride and 1%(w/v) polyethylene glycol 3350, whereas SeMet VP28 was crystallized using a reservoir solution consisting of 25% polyethylene glycol 8000, 0.2 M calcium acetate, 0.1 M Na HEPES pH 7.5 and 1.5%(w/v) 1,2,3-heptanetriol. Crystals of SeMet-labelled VP26 diffract to 2.2 Å resolution and belong to space group R32, with unit-cell parameters a = b = 73.92, c = 199.31 Å. SeMet-labelled VP28 crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 105.33, b = 106.71, c = 200.37 Å, and diffracts to 2.0 Å resolution.« less
Heltshe, Sonya L.; Gonska, Tanja; Donaldson, Scott H.; Borowitz, Drucy; Gelfond, Daniel; Sagel, Scott D.; Khan, Umer; Mayer-Hamblett, Nicole; Van Dalfsen, Jill M.; Joseloff, Elizabeth; Ramsey, Bonnie W.
2014-01-01
Rationale: Ivacaftor is a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator recently approved for patients with CF age 6 and older with the G551D mutation. Objectives: To evaluate ivacaftor in a postapproval setting and determine mechanism of action and response of clinically relevant markers. Methods: We conducted a longitudinal cohort study in 2012–2013 in G551D CF patients age 6 and older with no prior exposure to ivacaftor. Study assessments were performed at baseline, 1, 3, and 6 months after ivacaftor initiation. Substudies evaluated mucociliary clearance, β-adrenergic sweat secretion rate, gastrointestinal pH, and sputum inflammation and microbiology Measurements and Main Results: A total of 151 of 153 subjects were prescribed ivacaftor and 88% completed the study through 6 months. FEV1 % predicted improved from baseline to 6 months (mean absolute change, 6.7%; P < 0.001). Similarly, body mass index improved from baseline to 6 months (mean change, 0.8 kg/m2; P < 0.001). Sweat chloride decreased from baseline to 6 months (mean change, −53.8 mmol/L; 95% confidence interval, −57.7 to −49.9; P < 0.001), reflecting augmented CFTR function. There was significant improvement in hospitalization rate (P < 0.001) and Pseudomonas aeruginosa burden (P < 0.01). Significant improvements in mucociliary clearance (P < 0.001), gastrointestinal pH (P = 0.001), and microbiome were also observed, providing clinical mechanisms underlying the therapeutic benefit of ivacaftor. Conclusions: Significant clinical and physiologic improvements were observed on initiation of ivacaftor in a broad patient population, including reduced infection with P. aeruginosa. Biomarker studies substantially improve the understanding of the mechanistic consequences of CFTR modulation on pulmonary and gastrointestinal physiology. PMID:24927234
Stavrou, Brigitte M; Beck, Caroline; Flores, Nicholas A
2001-01-01
The structural conformation of diadenosine tetraphosphate (Ap4A) and pentaphosphate (Ap5A) has been reported to alter as pH is reduced. As such, it is possible that the cardiac effects of Ap4A and Ap5A vary during acidosis and myocardial ischaemia due to changes in ligand structure, receptor proteins or intracellular signalling. We investigated whether the cardiac electrophysiological and coronary vasomotor effects of Ap4A and Ap5A are preserved under conditions of extracellular acidosis (pH 6.5) and alkalosis (pH 8.5) and whether Ap4A has any electrophysiological or antiarrhythmic effects during ischaemia. Transmembrane right ventricular action potentials, refractory periods and coronary perfusion pressure were recorded from isolated, Langendorff-perfused guinea-pig hearts under constant flow conditions. The effects of 1 nM and 1 μM Ap4A and Ap5A were studied at pH 7.4, 6.5 and 8.5. The effects of 1 μM Ap4A were studied during global low-flow ischaemia and reperfusion. At pH 7.4, Ap4A and Ap5A increased action potential duration (APD95) and refractory period (RP) and reduced coronary perfusion pressure. The electrophysiological effects were absent at pH 6.5 while the reductions in perfusion pressure were attenuated. At pH 8.5, Ap4A increased RP but the effects of Ap4A and Ap5A on perfusion pressure were attenuated. During ischaemia, Ap4A had no antiarrhythmic or electrophysiological effects. These data demonstrate the importance of extracellular pH in influencing the effects of Ap4A and Ap5A on the heart and indicate that any potentially cardioprotective effects of these compounds during normal perfusion at physiological pH are absent during ischaemia. PMID:11588119
Structure of FGFR3 transmembrane domain dimer: implications for signaling and human pathologies.
Bocharov, Eduard V; Lesovoy, Dmitry M; Goncharuk, Sergey A; Goncharuk, Marina V; Hristova, Kalina; Arseniev, Alexander S
2013-11-05
Fibroblast growth factor receptor 3 (FGFR3) transduces biochemical signals via lateral dimerization in the plasma membrane, and plays an important role in human development and disease. Eight different pathogenic mutations, implicated in cancers and growth disorders, have been identified in the FGFR3 transmembrane segment. Here, we describe the dimerization of the FGFR3 transmembrane domain in membrane-mimicking DPC/SDS (9/1) micelles. In the solved NMR structure, the two transmembrane helices pack into a symmetric left-handed dimer, with intermolecular stacking interactions occurring in the dimer central region. Some pathogenic mutations fall within the helix-helix interface, whereas others are located within a putative alternative interface. This implies that although the observed dimer structure is important for FGFR3 signaling, the mechanism of FGFR3-mediated transduction across the membrane is complex. We propose an FGFR3 signaling mechanism that is based on the solved structure, available structures of isolated soluble FGFR domains, and published biochemical and biophysical data. Copyright © 2013 Elsevier Ltd. All rights reserved.
Perálvarez-Marín, Alex; Bourdelande, José-Luis; Querol, Enric; Padrós, Esteve
2006-01-01
Proline residues in transmembrane helices have been found to have important roles in the functioning of membrane proteins. Moreover, Pro residues occur with high frequency in transmembrane alpha-helices, as compared to alpha-helices for soluble proteins. Here, we report several properties of the bacteriorhodopsin mutants P50A (helix B), P91A (helix C) and P186A (helix F). Compared to wild type, strongly perturbed behaviour has been found for these mutants. In the resting state, increased hydroxylamine accessibility and altered Asp-85 pKa and light-dark adaptation were observed. On light activation, hydroxylamine accessibility was increased and proton transport activity, M formation kinetics and FTIR difference spectra of M and N intermediates showed clear distortions. On the basis of these alterations and the near identity of the crystalline structures of mutants with that of wild type, we conclude that the transmembrane proline residues of bacteriorhodopsin fulfil a dynamic role in both the resting and the light-activated states. Our results are consistent with the notion that mutation of Pro to Ala allows the helix to increase its flexibility towards the direction originally hindered by the steric clash between the ring Cgamma and the carbonyl O of the i-4 residue, at the same time decreasing the mobility towards the opposite direction. Due to their properties, transmembrane Pro residues may serve as transmission elements of conformational changes during the transport process. We propose that these concepts can be extended to other transmembrane proteins.
CO2/HCO3−- and Calcium-regulated Soluble Adenylyl Cyclase as a Physiological ATP Sensor*
Zippin, Jonathan H.; Chen, Yanqiu; Straub, Susanne G.; Hess, Kenneth C.; Diaz, Ana; Lee, Dana; Tso, Patrick; Holz, George G.; Sharp, Geoffrey W. G.; Levin, Lonny R.; Buck, Jochen
2013-01-01
The second messenger molecule cAMP is integral for many physiological processes. In mammalian cells, cAMP can be generated from hormone- and G protein-regulated transmembrane adenylyl cyclases or via the widely expressed and structurally and biochemically distinct enzyme soluble adenylyl cyclase (sAC). sAC activity is uniquely stimulated by bicarbonate ions, and in cells, sAC functions as a physiological carbon dioxide, bicarbonate, and pH sensor. sAC activity is also stimulated by calcium, and its affinity for its substrate ATP suggests that it may be sensitive to physiologically relevant fluctuations in intracellular ATP. We demonstrate here that sAC can function as a cellular ATP sensor. In cells, sAC-generated cAMP reflects alterations in intracellular ATP that do not affect transmembrane AC-generated cAMP. In β cells of the pancreas, glucose metabolism generates ATP, which corresponds to an increase in cAMP, and we show here that sAC is responsible for an ATP-dependent cAMP increase. Glucose metabolism also elicits insulin secretion, and we further show that sAC is necessary for normal glucose-stimulated insulin secretion in vitro and in vivo. PMID:24100033
Gutiérrez-Sanz, Oscar; Forbrig, Enrico; Batista, Ana P; Pereira, Manuela M; Salewski, Johannes; Mroginski, Maria A; Götz, Robert; De Lacey, Antonio L; Kozuch, Jacek; Zebger, Ingo
2018-05-22
Respiratory complex I (CpI) is a key player in the way organisms obtain energy, being an energy transducer, which couples nicotinamide adenine dinucleotide (NADH)/quinone oxidoreduction with proton translocation by a mechanism that remains elusive so far. In this work, we monitored the function of CpI in a biomimetic, supported lipid membrane system assembled on a 4-aminothiophenol (4-ATP) self-assembled monolayer by surface-enhanced infrared absorption spectroscopy. 4-ATP serves not only as a linker molecule to a nanostructured gold surface but also as pH sensor, as indicated by concomitant density functional theory calculations. In this way, we were able to monitor NADH/quinone oxidoreduction-induced transmembrane proton translocation via the protonation state of 4-ATP, depending on the net orientation of CpI molecules induced by two complementary approaches. An associated change of the amide I/amide II band intensity ratio indicates conformational modifications upon catalysis which may involve movements of transmembrane helices or other secondary structural elements, as suggested in the literature [ Di Luca , Proc. Natl. Acad. Sci. U.S.A. , 2017 , 114 , E6314 - E6321 ].
Hu, Jun; Fu, Riqiang; Cross, Timothy A
2007-07-01
The M(2) proton channel plays a vital role in the life cycle of the influenza A virus. His(37), the key residue in the M(2) transmembrane domain (M(2)-TMD), plays a central role in the proton conductance mechanism. The anti-influenza drug, amantadine, inhibits the channel activity through binding to the pore of the M(2) channel. The nuclear spin relaxation data and polarization inversion spin exchange at the magic angle spectra show that both the polypeptide backbone and His(37) side chain are more constrained in the presence of amantadine. Using (15)N cross polarization magic-angle spinning NMR spectroscopy, the protonation of His(37) of M(2)-TMD in lipid bilayers was monitored in the absence and presence of amantadine as a function of pH. Binding amantadine lowers the His(37) pK(a) values by approximately three orders of magnitude compared with the first pK(a) of histidine in amantadine-free M(2)-TMD. Amantadine's influence on the His(37) chemical properties suggests a novel mechanism by which amantadine may inhibit proton conductance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmandt, Nicolaus; Velisetty, Phanindra; Chalamalasetti, Sreevatsa V.
Recent high resolution structures of several pentameric ligand–gated ion channels have provided unprecedented details of their molecular architecture. However, the conformational dynamics and structural rearrangements that underlie gating and allosteric modulation remain poorly understood. We used a combination of electrophysiology, double electron–electron resonance (DEER) spectroscopy, and x-ray crystallography to investigate activation mechanisms in a novel functional chimera with the extracellular domain (ECD) of amine-gated Erwinia chrysanthemi ligand–gated ion channel, which is activated by primary amines, and the transmembrane domain of Gloeobacter violaceus ligand–gated ion channel, which is activated by protons. We found that the chimera was independently gated by primarymore » amines and by protons. The crystal structure of the chimera in its resting state, at pH 7.0 and in the absence of primary amines, revealed a closed-pore conformation and an ECD that is twisted with respect to the transmembrane region. Amine- and pH-induced conformational changes measured by DEER spectroscopy showed that the chimera exhibits a dual mode of gating that preserves the distinct conformational changes of the parent channels. Collectively, our findings shed light on both conserved and divergent features of gating mechanisms in this class of channels, and will facilitate the design of better allosteric modulators.« less
Rasmussen, Jacob K; Boedtkjer, Ebbe
2018-03-01
The CO 2 /HCO 3 - buffer minimizes pH changes in response to acid-base loads, HCO 3 - provides substrate for Na + ,HCO 3 - -cotransporters and Cl - /HCO 3 - -exchangers, and H + and HCO 3 - modify vasomotor responses during acid-base disturbances. We show here that rat middle cerebral arteries express cytosolic, mitochondrial, extracellular, and secreted carbonic anhydrase isoforms that catalyze equilibration of the CO 2 /HCO 3 - buffer. Switching from CO 2 /HCO 3 - -free to CO 2 /HCO 3 - -containing extracellular solution results in initial intracellular acidification due to hydration of CO 2 followed by gradual alkalinization due to cellular HCO 3 - uptake. Carbonic anhydrase inhibition decelerates the initial acidification and attenuates the associated transient vasoconstriction without affecting intracellular pH or artery tone at steady-state. Na + ,HCO 3 - -cotransport and Na + /H + -exchange activity after NH 4 + -prepulse-induced intracellular acidification are unaffected by carbonic anhydrase inhibition. Extracellular surface pH transients induced by transmembrane NH 3 flux are evident under CO 2 /HCO 3 - -free conditions but absent when the buffer capacity and apparent H + mobility increase in the presence of CO 2 /HCO 3 - even after the inhibition of carbonic anhydrases. We conclude that (a) intracellular carbonic anhydrase activity accentuates pH transients and vasoconstriction in response to acute elevations of pCO 2 , (b) CO 2 /HCO 3 - minimizes extracellular surface pH transients without requiring carbonic anhydrase activity, and (c) carbonic anhydrases are not rate limiting for acid-base transport across cell membranes during recovery from intracellular acidification.
Biophysical comparison of ATP synthesis mechanisms shows a kinetic advantage for the rotary process.
Anandakrishnan, Ramu; Zhang, Zining; Donovan-Maiye, Rory; Zuckerman, Daniel M
2016-10-04
The ATP synthase (F-ATPase) is a highly complex rotary machine that synthesizes ATP, powered by a proton electrochemical gradient. Why did evolution select such an elaborate mechanism over arguably simpler alternating-access processes that can be reversed to perform ATP synthesis? We studied a systematic enumeration of alternative mechanisms, using numerical and theoretical means. When the alternative models are optimized subject to fundamental thermodynamic constraints, they fail to match the kinetic ability of the rotary mechanism over a wide range of conditions, particularly under low-energy conditions. We used a physically interpretable, closed-form solution for the steady-state rate for an arbitrary chemical cycle, which clarifies kinetic effects of complex free-energy landscapes. Our analysis also yields insights into the debated "kinetic equivalence" of ATP synthesis driven by transmembrane pH and potential difference. Overall, our study suggests that the complexity of the F-ATPase may have resulted from positive selection for its kinetic advantage.
2015-01-01
The translocation (T) domain of diphtheria toxin plays a critical role in moving the catalytic domain across the endosomal membrane. Translocation/insertion is triggered by a decrease in pH in the endosome where conformational changes of T domain occur through several kinetic intermediates to yield a final trans-membrane form. High-resolution structural studies are only applicable to the static T-domain structure at physiological pH, and studies of the T-domain translocation pathway are hindered by the simultaneous presence of multiple conformations. Here, we report the application of hydrogen–deuterium exchange mass spectrometry (HDX-MS) for the study of the pH-dependent conformational changes of the T domain in solution. Effects of pH on intrinsic HDX rates were deconvolved by converting the on-exchange times at low pH into times under our “standard condition” (pH 7.5). pH-Dependent HDX kinetic analysis of T domain clearly reveals the conformational transition from the native state (W-state) to a membrane-competent state (W+-state). The initial transition occurs at pH 6 and includes the destabilization of N-terminal helices accompanied by the separation between N- and C-terminal segments. The structural rearrangements accompanying the formation of the membrane-competent state expose a hydrophobic hairpin (TH8–9) to solvent, prepare it to insert into the membrane. At pH 5.5, the transition is complete, and the protein further unfolds, resulting in the exposure of its C-terminal hydrophobic TH8–9, leading to subsequent aggregation in the absence of membranes. This solution-based study complements high resolution crystal structures and provides a detailed understanding of the pH-dependent structural rearrangement and acid-induced oligomerization of T domain. PMID:25290210
Li, Jing; Rodnin, Mykola V; Ladokhin, Alexey S; Gross, Michael L
2014-11-04
The translocation (T) domain of diphtheria toxin plays a critical role in moving the catalytic domain across the endosomal membrane. Translocation/insertion is triggered by a decrease in pH in the endosome where conformational changes of T domain occur through several kinetic intermediates to yield a final trans-membrane form. High-resolution structural studies are only applicable to the static T-domain structure at physiological pH, and studies of the T-domain translocation pathway are hindered by the simultaneous presence of multiple conformations. Here, we report the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) for the study of the pH-dependent conformational changes of the T domain in solution. Effects of pH on intrinsic HDX rates were deconvolved by converting the on-exchange times at low pH into times under our "standard condition" (pH 7.5). pH-Dependent HDX kinetic analysis of T domain clearly reveals the conformational transition from the native state (W-state) to a membrane-competent state (W(+)-state). The initial transition occurs at pH 6 and includes the destabilization of N-terminal helices accompanied by the separation between N- and C-terminal segments. The structural rearrangements accompanying the formation of the membrane-competent state expose a hydrophobic hairpin (TH8-9) to solvent, prepare it to insert into the membrane. At pH 5.5, the transition is complete, and the protein further unfolds, resulting in the exposure of its C-terminal hydrophobic TH8-9, leading to subsequent aggregation in the absence of membranes. This solution-based study complements high resolution crystal structures and provides a detailed understanding of the pH-dependent structural rearrangement and acid-induced oligomerization of T domain.
Hart, Francis X; Easterly, Clay E
2004-05-01
The electric field pulse shape and change in transmembrane potential produced at various points within a sphere by an intense, ultrawideband pulse are calculated in a four stage, analytical procedure. Spheres of two sizes are used to represent the head of a human and the head of a rat. In the first stage, the pulse is decomposed into its Fourier components. In the second stage, Mie scattering analysis (MSA) is performed for a particular point in the sphere on each of the Fourier components, and the resulting electric field pulse shape is obtained for that point. In the third stage, the long wavelength approximation (LWA) is used to obtain the change in transmembrane potential in a cell at that point. In the final stage, an energy analysis is performed. These calculations are performed at 45 points within each sphere. Large electric fields and transmembrane potential changes on the order of a millivolt are produced within the brain, but on a time scale on the order of nanoseconds. The pulse shape within the brain differs considerably from that of the incident pulse. Comparison of the results for spheres of different sizes indicates that scaling of such pulses across species is complicated. Published 2004 Wiley-Liss, Inc.
Zheng, Yu; Gao, Yang; Chen, Ruijuan; Wang, Huiquan; Dong, Lei; Dou, Junrong
2016-10-01
Time-varying electromagnetic fields (EMF) can induce some physiological effects in neuronal tissues, which have been explored in many applications such as transcranial magnetic stimulation. Although transmembrane potentials and induced currents have already been the subjects of many theoretical studies, most previous works about this topic are mainly completed by utilizing Maxwell's equations, often by solving a Laplace equation. In previous studies, cells were often considered to be three-compartment models with different electroconductivities in different regions (three compartments are often intracellular regions, membrane, and extracellular regions). However, models like that did not take dynamic ion channels into consideration. Therefore, one cannot obtain concrete ionic current changes such as potassium current change or sodium current change by these models. The aim of the present work is to present a new and more detailed model for calculating transmembrane potentials and ionic currents induced by time-varying EMF. Equations used in the present paper originate from Nernst-Plank equations, which are ionic current-related equations. The main work is to calculate ionic current changes induced by EMF exposure, and then transmembrane potential changes are calculated with Hodgkin-Huxley model. Bioelectromagnetics. 37:481-492, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Papini, R; De Michelis, M I
1997-07-01
The effect of aging on the plasma membrane (PM) H(+)-ATPase of red beet (Beta vulgaris L.) parenchyma discs was analyzed in PM purified by aqueous two-phase partitioning. Aging increased both the activity in the amount of immunodetectable H(+)-ATPase in the PM. The activity assayed at slightly alkaline pH values increased earlier and more strongly than that assayed at acidic pH values, so that the pH curve of the enzyme from aged beet discs was shifted toward more alkaline values. Aging decreased the stimulation of the PM H(+)-ATPase activity by controlled trypsin treatments or by lysophosphatidylcholine. After trypsin treatment the pH dependence of H(+)-ATPase from dormant or aged beet discs became equal. These results indicate that aging not only increases the level of H(+)-ATPase in the PM, but also determines its activation, most likely by modifying the interaction between the autoinhibitory carboxyl-terminal domain and the catalytic site. When the PM H(+)-ATPase activity was assayed at a slightly alkaline pH, the tyrosine modifier N-acetylimidazole inhibited the H(+)-ATPase in the PM from dormant beet discs much less than in the PM from aged discs, suggesting that modification of a tyrosine residue may be involved in the activation of the PM H(+)-ATPase induced by aging. The results are discussed with regard to aging-induced development of transmembrane transport activities.
pH during non-synaptic epileptiform activity-computational simulations.
Rodrigues, Antônio Márcio; Santos, Luiz Eduardo Canton; Covolan, Luciene; Hamani, Clement; de Almeida, Antônio-Carlos Guimarães
2015-09-02
The excitability of neuronal networks is strongly modulated by changes in pH. The origin of these changes, however, is still under debate. The high complexity of neural systems justifies the use of computational simulation to investigate mechanisms that are possibly involved. Simulated neuronal activity includes non-synaptic epileptiform events (NEA) induced in hippocampal slices perfused with high-K(+) and zero-Ca(2+), therefore in the absence of the synaptic circuitry. A network of functional units composes the NEA model. Each functional unit represents one interface of neuronal/extracellular space/glial segments. Each interface contains transmembrane ionic transports, such as ionic channels, cotransporters, exchangers and pumps. Neuronal interconnections are mediated by gap-junctions, electric field effects and extracellular ionic fluctuations modulated by extracellular electrodiffusion. Mechanisms investigated are those that change intracellular and extracellular ionic concentrations and are able to affect [H(+)]. Our simulations suggest that the intense fluctuations in intra and extracellular concentrations of Na(+), K(+) and Cl(-) that accompany NEA are able to affect the combined action of the Na(+)/H(+) exchanger (NHE), [HCO(-)(3)]/Cl(-) exchanger (HCE), H(+) pump and the catalytic activity of intra and extracellular carbonic anhydrase. Cellular volume changes and extracellular electrodiffusion are responsible for modulating pH.
Kim, Tae-Wan; Slowing, Igor I; Chung, Po-Wen; Lin, Victor Shang-Yi
2011-01-25
A two-dimensional hexagonal ordered mesoporous polymer-silica hybrid nanoparticle (PSN) material was synthesized by polymerization of acrylate monomers on the surface of SBA-15 mesoporous silica nanoparticles. The structure of the PSN material was analyzed using a series of different techniques, including transmission electron microscopy, powder X-ray diffraction, and N(2) sorption analysis. These structurally ordered mesoporous polymer-silica hybrid nanoparticles were used for the controlled release of membrane-impermeable macromolecules inside eukaryotic cells. The cellular uptake efficiency and biocompatibility of PSN with human cervical cancer cells (HeLa) were investigated. Our results show that the inhibitory concentration (IC(50)) of PSN is very high (>100 μg/mL per million cells), while the median effective concentration for the uptake (EC(50)) of PSN is low (EC(50) = 4.4 μg/mL), indicating that PSNs are fairly biocompatible and easily up-taken in vitro. A membrane-impermeable macromolecule, 40 kDa FITC-Dextran, was loaded into the mesopores of PSNs at low pH. We demonstrated that the PSN material could indeed serve as a transmembrane carrier for the controlled release of FITC-Dextran at the pH level inside live HeLa cells. We believe that further developments of this PSN material will lead to a new generation of nanodevices for intracellular controlled delivery applications.
Porcine parvovirus flocculation and removal in the presence of osmolytes.
Gencoglu, Maria F; Pearson, Eric; Heldt, Caryn L
2014-09-30
Viruses can be modified into viral vaccines or gene therapy vectors in order to treat acquired or genetic diseases. To satisfy the current market demand, an improvement in current vaccine manufacturing is needed. Chromatography and nanofiltration are not suitable for all types of viruses. In this study, we propose to use virus flocculation with osmolytes, followed by microfiltration, as a potential virus purification process. We hypothesize that osmolytes strongly bind to water, thus leading to the formation of a hydration layer around the virus particles and stimulation of aggregation. We have discovered that osmolytes, including sugars, sugar alcohols and amino acids, preferentially flocculate porcine parvovirus (PPV), and demonstrate a >80% removal with a 0.2 μm filter while leaving model proteins in solution. This large pore size filter increases the flux and decreases the transmembrane pressure of typical virus filters. The best flocculants were tested for their ability to aggregate PPV at different concentrations, shear stress, pH and ionic strength. We were able to remove 96% of PPV in 3.0M glycine at a pH of 5. Glycine is also an excipient, and therefore may not require removal later in the process. Virus flocculation using osmolytes, followed by microfiltration could be used as an integrated process for virus purification. Copyright © 2014 Elsevier B.V. All rights reserved.
Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry
NASA Technical Reports Server (NTRS)
Wang, N.; Ingber, D. E.
1995-01-01
We recently developed a magnetic twisting cytometry technique that allows us to apply controlled mechanical stresses to specific cell surface receptors using ligand-coated ferromagnetic microbeads and to simultaneously measure the mechanical response in living cells. Using this technique, we have previously shown the following: (i) beta 1 integrin receptors mediate mechanical force transfer across the cell surface and to the cytoskeleton, whereas other transmembrane receptors (e.g., scavenger receptors) do not; (ii) cytoskeletal stiffness increases in direct proportion to the level of stress applied to integrins; and (iii) the slope of this linear stiffening response differs depending on the shape of the cell. We now show that different integrins (beta 1, alpha V beta 3, alpha V, alpha 5, alpha 2) and other transmembrane receptors (scavenger receptor, platelet endothelial cell adhesion molecule) differ in their ability to mediate force transfer across the cell surface. In addition, the linear stiffening behavior previously observed in endothelial cells was found to be shared by other cell types. Finally, we demonstrate that dynamic changes in cell shape that occur during both cell spreading and retraction are accompanied by coordinate changes in cytoskeletal stiffness. Taken together, these results suggest that the magnetic twisting cytometry technique may be a powerful and versatile tool for studies analyzing the molecular basis of transmembrane mechanical coupling to the cytoskeleton as well as dynamic relations between changes in cytoskeletal structure and alterations in cell form and function.
Kaba, Nubia K.; Schultz, Joanne; Law, Foon-Yee; Lefort, Craig T.; Martel-Gallegos, Guadalupe; Kim, Minsoo; Waugh, Richard E.; Arreola, Jorge; Knauf, Philip A.
2008-01-01
Ischemia-reperfusion injury is a common pathological occurrence causing tissue damage in heart attack and stroke. Entrapment of neutrophils in the vasculature during ischemic events has been implicated in this process. In this study, we examine the effects that lactacidosis and consequent reductions in intracellular pH (pHi) have on surface expression of adhesion molecules on neutrophils. When human neutrophils were exposed to pH 6 lactate, there was a marked decrease in surface L-selectin (CD62L) levels, and the decrease was significantly enhanced by inclusion of Na+/H+ exchanger (NHE) inhibitor 5-(N,N-hexamethylene)amiloride (HMA). Similar effects were observed when pHi was reduced while maintaining normal extracellular pH, by using an NH4Cl prepulse followed by washes and incubation in pH 7.4 buffer containing NHE inhibitors [HMA, cariporide, or 5-(N,N-dimethyl)amiloride (DMA)]. The amount of L-selectin shedding induced by different concentrations of NH4Cl in the prepulse correlated with the level of intracellular acidification with an apparent pK of 6.3. In contrast, β2-integrin (CD11b and CD18) was only slightly upregulated in the low-pHi condition and was enhanced by NHE inhibition to a much lesser extent. L-selectin shedding was prevented by treating human neutrophils with inhibitors of extracellular metalloproteases (RO-31-9790 and KD-IX-73-4) or with inhibitors of intracellular signaling via p38 MAP kinase (SB-203580 and SB-239063), implying a transmembrane effect of pHi. Taken together, these data suggest that the ability of NHE inhibitors such as HMA to reduce ischemia-reperfusion injury may be related to the nearly complete removal of L-selectin from the neutrophil surface. PMID:18829897
Cherepanov, Dmitry A.; Junge, Wolfgang; Mulkidjanian, Armen Y.
2004-01-01
Crossing the membrane/water interface is an indispensable step in the transmembrane proton transfer. Elsewhere we have shown that the low dielectric permittivity of the surface water gives rise to a potential barrier for ions, so that the surface pH can deviate from that in the bulk water at steady operation of proton pumps. Here we addressed the retardation in the pulsed proton transfer across the interface as observed when light-triggered membrane proton pumps ejected or captured protons. By solving the system of diffusion equations we analyzed how the proton relaxation depends on the concentration of mobile pH buffers, on the surface buffer capacity, on the form and size of membrane particles, and on the height of the potential barrier. The fit of experimental data on proton relaxation in chromatophore vesicles from phototropic bacteria and in bacteriorhodopsin-containing membranes yielded estimates for the interfacial potential barrier for H+/OH− ions of ∼120 meV. We analyzed published data on the acceleration of proton equilibration by anionic pH buffers and found that the height of the interfacial barrier correlated with their electric charge ranging from 90 to 120 meV for the singly charged species to >360 meV for the tetra-charged pyranine. PMID:14747306
Modeling pH variation in reverse osmosis.
Nir, Oded; Bishop, Noga Fridman; Lahav, Ori; Freger, Viatcheslav
2015-12-15
The transport of hydronium and hydroxide ions through reverse osmosis membranes constitutes a unique case of ionic species characterized by uncommonly high permeabilities. Combined with electromigration, this leads to complex behavior of permeate pH, e.g., negative rejection, as often observed for monovalent ions in nanofiltration of salt mixtures. In this work we employed a rigorous phenomenological approach combined with chemical equilibrium to describe the trans-membrane transport of hydronium and hydroxide ions along with salt transport and calculate the resulting permeate pH. Starting from the Nernst-Planck equation, a full non-linear transport equation was derived, for which an approximate solution was proposed based on the analytical solution previously developed for trace ions in a dominant salt. Using the developed approximate equation, transport coefficients were deduced from experimental results obtained using a spiral wound reverse osmosis module operated under varying permeate flux (2-11 μm/s), NaCl feed concentrations (0.04-0.18 M) and feed pH values (5.5-9.0). The approximate equation agreed well with the experimental results, corroborating the finding that diffusion and electromigration, rather than a priori neglected convection, were the major contributors to the transport of hydronium and hydroxide. The approach presented here has the potential to improve the predictive capacity of reverse osmosis transport models for acid-base species, thereby improving process design/control. Copyright © 2015 Elsevier Ltd. All rights reserved.
Transmembrane Helices Tilt, Bend, Slide, Torque, and Unwind between Functional States of Rhodopsin
Ren, Zhong; Ren, Peter X.; Balusu, Rohith; Yang, Xiaojing
2016-01-01
The seven-helical bundle of rhodopsin and other G-protein coupled receptors undergoes structural rearrangements as the transmembrane receptor protein is activated. These structural changes are known to involve tilting and bending of various transmembrane helices. However, the cause and effect relationship among structural events leading to a cytoplasmic crevasse for G-protein binding is less well defined. Here we present a mathematical model of the protein helix and a simple procedure to determine multiple parameters that offer precise depiction of a helical conformation. A comprehensive survey of bovine rhodopsin structures shows that the helical rearrangements during the activation of rhodopsin involve a variety of angular and linear motions such as torsion, unwinding, and sliding in addition to the previously reported tilting and bending. These hitherto undefined motion components unify the results obtained from different experimental approaches, and demonstrate conformational similarity between the active opsin structure and the photoactivated structures in crystallo near the retinal anchor despite their marked differences. PMID:27658480
Dopson, Mark; Ossandon, Francisco J; Lövgren, Lars; Holmes, David S
2014-01-01
All metals are toxic at high concentrations and consequently their intracellular concentrations must be regulated. Extremely acidophilic microorganisms have an optimum growth of pH <3 and proliferate in natural and anthropogenic low pH environments. Some acidophiles are involved in the catalysis of sulfide mineral dissolution, resulting in high concentrations of metals in solution. Acidophiles are often described as highly metal resistant via mechanisms such as multiple and/or more efficient active resistance systems than are present in neutrophiles. However, this is not the case for all acidophiles and we contend that their growth in high metal concentrations is partially due to an intrinsic tolerance as a consequence of the environment in which they live. In this perspective, we highlight metal tolerance via complexation of free metals by sulfate ions and passive tolerance to metal influx via an internal positive cytoplasmic transmembrane potential. These tolerance mechanisms have been largely ignored in past studies of acidophile growth in the presence of metals and should be taken into account.
Bonnet, Udo; Scherbaum, Norbert; Wiemann, Martin
2008-02-15
The endogenous alkaloid harmane is enriched in plasma of patients with neurodegenerative or addictive disorders. As harmane affects neuronal activity and viability and because both parameters are strongly influenced by intracellular pH (pH(i)), we tested whether effects of harmane are correlated with altered pH(i) regulation. Pyramidal neurons in the CA3 field of hippocampal slices were investigated under bicarbonate-buffered conditions. Harmane (50 and 100 microM) reversibly decreased spontaneous firing of action potentials and caffeine-induced bursting of CA3 neurons. In parallel experiments, 50 and 100 microM harmane evoked a neuronal acidification of 0.12+/-0.08 and 0.18+/-0.07 pH units, respectively. Recovery from intracellular acidification subsequent to an ammonium prepulse was also impaired, suggesting an inhibition of transmembrane acid extrusion by harmane. Harmane may modulate neuronal functions via altered pH(i)-regulation. Implications of these findings for neuronal survival are discussed.
NO3 −-induced pH Changes in Mammalian Cells
Chow, Chung-Wai; Kapus, Andras; Romanek, Robert; Grinstein, Sergio
1997-01-01
The effect of NO3 − on intracellular pH (pHi) was assessed microfluorimetrically in mammalian cells in culture. In cells of human, hamster, and murine origin addition of extracellular NO3 − induced an intracellular acidification. This acidification was eliminated when the cytosolic pH was clamped using ionophores or by perfusing the cytosol with highly buffered solutions using patch-pipettes, ruling out spectroscopic artifacts. The NO3 −- induced pH change was not due to modulation of Na+/H+ exchange, since it was also observed in Na+/H+ antiport-deficient mutants. Though NO3 − is known to inhibit vacuolar-type (V) H+-ATPases, this effect was not responsible for the acidification since it persisted in the presence of the potent V-ATPase inhibitor bafilomycin A1. NO3 −/HCO3 − exchange as the underlying mechanism was ruled out because acidification occurred despite nominal removal of HCO3 −, despite inhibition of the anion exchanger with disulfonic stilbenes and in HEK 293 cells, which seemingly lack anion exchangers (Lee, B.S., R.B. Gunn, and R.R. Kopito. 1991. J. Biol. Chem. 266:11448– 11454). Accumulation of intracellular NO3 −, measured by the Greiss method after reduction to NO2 −, indicated that the anion is translocated into the cells along with the movement of acid equivalents. The simplest model to explain these observations is the cotransport of NO3 − with H+ (or the equivalent counter-transport of NO3 − for OH−). The transporter appears to be bi-directional, operating in the forward as well as reverse directions. A rough estimate of the fluxes of NO3 − and acid equivalents suggests a one-to-one stoichiometry. Accordingly, the rate of transport was unaffected by sizable changes in transmembrane potential. The cytosolic acidification was a saturable function of the extracellular concentration of NO3 − and was accentuated by acidification of the extracellular space. The putative NO3 −-H+ cotransport was inhibited markedly by ethacrynic acid and by α-cyano-4-hydroxycinnamate, but only marginally by 4,4′-diisothiocyanostilbene-2,2′ disulfonate or by p-chloromercuribenzene sulfonate. The transporter responsible for NO3 −-induced pH changes in mammalian cells may be related, though not identical, to the NO3 −-H+ cotransporter described in Arabidopsis and Aspergillus. The mammalian cotransporter may be important in eliminating the products of NO metabolism, particularly in cells that generate vast amounts of this messenger. By cotransporting NO3 − with H+ the cells would additionally eliminate acid equivalents from activated cells that are metabolizing actively, without added energetic investment and with minimal disruption of the transmembrane potential, inasmuch as the cotransporter is likely electroneutral. PMID:9236211
Technical Breakthroughs in the Wearable Artificial Kidney (WAK)
Macy, Alexandra S.; Beizai, Masoud; Ezon, Carlos; Golper, Thomas A.
2009-01-01
Background: The wearable artificial kidney (WAK) has been a holy grail in kidney failure for decades. Described herein are the breakthroughs that made possible the creation of the WAK V1.0 and its advanced versions V 1.1 and 1.2. Design: The battery-powered WAK pump has a double channel pulsatile counter phase flow. This study clarifies the role of pulsatile blood and dialysate flow, a high-flux membrane with a larger surface area, and the optimization of the dialysate pH. Flows and clearances from the WAK pump were compared with conventional pumps and with gravity steady flow. Results: Raising dialysate pH to 7.4 increased adsorption of ammonia. Clearances were higher with pulsatile flow as compared with steady flow. The light WAK pump, geometrically suitable for wearability, delivered the same clearances as larger and heavier pumps that cannot be battery operated. Beta2 microglobulin (β2M) was removed from human blood in vitro. Activated charcoal adsorbed most β2M in the dialysate. The WAK V1.0 delivered an effective creatinine clearance of 18.5 ± 3.2 ml/min and the WAK V1.1 27.0 ± 4.0 ml/min in uremic pigs. Conclusions: Half-cycle differences between blood and dialysate, alternating transmembrane pressures (TMP), higher amplitude pulsations, and a push-pull flow increased convective transport. This creates a yet undescribed type of hemodiafiltration. Further improvements were achieved with a larger surface area high-flux dialyzer and a higher dialysate pH. The data suggest that the WAK might be an efficient way of providing daily dialysis and optimizing end stage renal disease (ESRD) treatment. PMID:19696219
Kohl, Beate; Wagner, Carsten A; Huelseweh, Birgit; Busch, Andreas E; Werner, Andreas
1998-01-01
Renal handling of inorganic phosphate (Pi) involves a Na+-Pi cotransport system which is well conserved between vertebrates. The members of this protein family, denoted NaPi-II, share a topology with, it is thought, eight transmembrane domains. The transporter is proposed to be proteolytically cleaved within a large hydrophilic loop in vivo. The consequences of an interrupted backbone were tested by constructing cDNA clones encoding different N- (1-3 and 1-5) and C-terminal (4-8 and 6-8) complementary fragments of NaPi-II from winter flounder. When the cognate fragments were used in combination (1-3 plus 4-8; 1-5 plus 6-8) they comprised the full complement of the putative transporter domains. None of the four individual fragments or the 1-5 plus 6-8 combination when expressed in Xenopus oocytes increased Pi flux. Coexpression of fragments 1-3 plus 4-8 stimulated transport activity identical to that for expressed wild-type NaPi-II with regard to pH dependency and Km for Na+ and Pi binding; however, the maximal transport rate (vmax) was lower. Immunohistochemistry on cryosections confined the functionally active 1-3 plus 4-8 combination to the oocyte membrane. This was not the case for the 1-5 plus 6-8 combination or any of the individual fragments, all of which failed to induce fluorescence. A second immunohistochemical approach using intact oocytes allowed determination of the extracellular regions of the protein. Epitopes within the loop between transmembrane domains 3 and 4 enhanced fluorescence. Neither N- nor C-terminal tags induced fluorescence. PMID:9508800
Cytoplasmic Acidification and the Benzoate Transcriptome in Bacillus subtilis
Kitko, Ryan D.; Cleeton, Rebecca L.; Armentrout, Erin I.; Lee, Grace E.; Noguchi, Ken; Berkmen, Melanie B.; Jones, Brian D.; Slonczewski, Joan L.
2009-01-01
Background Bacillus subtilis encounters a wide range of environmental pH. The bacteria maintain cytoplasmic pH within a narrow range. Response to acid stress is a poorly understood function of external pH and of permeant acids that conduct protons into the cytoplasm. Methods and Principal Findings Cytoplasmic acidification and the benzoate transcriptome were observed in Bacillus subtilis. Cytoplasmic pH was measured with 4-s time resolution using GFPmut3b fluorimetry. Rapid external acidification (pH 7.5 to 6.0) acidified the B. subtilis cytoplasm, followed by partial recovery. Benzoate addition up to 60 mM at external pH 7 depressed cytoplasmic pH but left a transmembrane ΔpH permitting growth; this robust adaptation to benzoate exceeds that seen in E. coli. Cytoplasmic pH was depressed by 0.3 units during growth with 30 mM benzoate. The transcriptome of benzoate-adapted cells was determined by comparing 4,095 gene expression indices following growth at pH 7, +/− 30 mM benzoate. 164 ORFs showed ≥2-fold up-regulation by benzoate (30 mM benzoate/0 mM), and 102 ORFs showed ≥2-fold down-regulation. 42% of benzoate-dependent genes are regulated up or down, respectively, at pH 6 versus pH 7; they are candidates for cytoplasmic pH response. Acid-stress genes up-regulated by benzoate included drug resistance genes (yhbI, yhcA, yuxJ, ywoGH); an oligopeptide transporter (opp); glycine catabolism (gcvPA-PB); acetate degradation (acsA); dehydrogenases (ald, fdhD, serA, yrhEFG, yjgCD); the TCA cycle (citZ, icd, mdh, sucD); and oxidative stress (OYE-family yqjM, ohrB). Base-stress genes down-regulated by benzoate included malate metabolism (maeN), sporulation control (spo0M, spo0E), and the SigW alkali shock regulon. Cytoplasmic pH could mediate alkali-shock induction of SigW. Conclusions B. subtilis maintains partial pH homeostasis during growth, and withstands high concentrations of permeant acid stress, higher than for gram-negative neutralophile E. coli. The benzoate adaptation transcriptome substantially overlaps that of external acid, contributing to a cytoplasmic pH transcriptome. PMID:20011599
Mohammadiarani, Hossein; Vashisth, Harish
2016-01-01
The receptor tyrosine kinase superfamily comprises many cell-surface receptors including the insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF1R) that are constitutively homodimeric transmembrane glycoproteins. Therefore, these receptors require ligand-triggered domain rearrangements rather than receptor dimerization for activation. Specifically, binding of peptide ligands to receptor ectodomains transduces signals across the transmembrane domains for trans-autophosphorylation in cytoplasmic kinase domains. The molecular details of these processes are poorly understood in part due to the absence of structures of full-length receptors. Using MD simulations and enhanced conformational sampling algorithms, we present all-atom structural models of peptides containing 51 residues from the transmembrane and juxtamembrane regions of IR and IGF1R. In our models, the transmembrane regions of both receptors adopt helical conformations with kinks at Pro961 (IR) and Pro941 (IGF1R), but the C-terminal residues corresponding to the juxtamembrane region of each receptor adopt unfolded and flexible conformations in IR as opposed to a helix in IGF1R. We also observe that the N-terminal residues in IR form a kinked-helix sitting at the membrane–solvent interface, while homologous residues in IGF1R are unfolded and flexible. These conformational differences result in a larger tilt-angle of the membrane-embedded helix in IGF1R in comparison to IR to compensate for interactions with water molecules at the membrane–solvent interfaces. Our metastable/stable states for the transmembrane domain of IR, observed in a lipid bilayer, are consistent with a known NMR structure of this domain determined in detergent micelles, and similar states in IGF1R are consistent with a previously reported model of the dimerized transmembrane domains of IGF1R. Our all-atom structural models suggest potentially unique structural organization of kinase domains in each receptor. PMID:27379020
Na+-coupled bicarbonate transporters in duodenum, collecting ducts and choroid plexus.
Praetorius, Jeppe
2010-01-01
Epithelia cover the internal and external surfaces of the organism and form barriers between the various compartments. Some of these epithelia are specialized for effective transmembrane or even transepithelial movement of acid-base equivalents. Certain epithelia with a high rate of HCO3- transport express a few potent Na+-coupled acid-base transporters to gain a net HCO3- movement across the epithelium. Examples of such epithelia are renal proximal tubules and pancreatic ducts. In contrast, multiple Na+-coupled HCO3- transporters are expressed in other HCO3- secreting epithelia, such as the duodenal mucosa or the choroid plexus, which maintain suitable intracellular pH despite a variable demand for secreting HCO3-. In the duodenum, the epithelial cells must secrete HCO3- for neutralization of the gastric acid, and at the same time prevent cellular acidification. During the neutralization, large quantities of CO2 are formed in the duodenal lumen, which enter the epithelial cells. This would tend to lower intracellular pH and require effective counteracting mechanisms to avoid cell death and to maintain HCO3- secretion. The choroid plexus secretes the cerebrospinal fluid (CSF) and controls the pH of the otherwise poorly buffered CSF. The pCO2 of CSF fluctuates with plasma pCO2, and the choroid plexus must regulate the HCO3- secretion to minimize the effects of these fluctuations on CSF pH. This is done while maintaining pH neutrality in the epithelial cells. Thus, the Na+-HCO3- cotransporters appear to be involved in HCO3- import in more epithelia, where Na+/H+ exchangers were until recently thought to be sufficient for maintaining intracellular pH.
All-Atom Continuous Constant pH Molecular Dynamics With Particle Mesh Ewald and Titratable Water.
Huang, Yandong; Chen, Wei; Wallace, Jason A; Shen, Jana
2016-11-08
Development of a pH stat to properly control solution pH in biomolecular simulations has been a long-standing goal in the community. Toward this goal recent years have witnessed the emergence of the so-called constant pH molecular dynamics methods. However, the accuracy and generality of these methods have been hampered by the use of implicit-solvent models or truncation-based electrostatic schemes. Here we report the implementation of the particle mesh Ewald (PME) scheme into the all-atom continuous constant pH molecular dynamics (CpHMD) method, enabling CpHMD to be performed with a standard MD engine at a fractional added computational cost. We demonstrate the performance using pH replica-exchange CpHMD simulations with titratable water for a stringent test set of proteins, HP36, BBL, HEWL, and SNase. With the sampling time of 10 ns per replica, most pK a 's are converged, yielding the average absolute and root-mean-square deviations of 0.61 and 0.77, respectively, from experiment. Linear regression of the calculated vs experimental pK a shifts gives a correlation coefficient of 0.79, a slope of 1, and an intercept near 0. Analysis reveals inadequate sampling of structure relaxation accompanying a protonation-state switch as a major source of the remaining errors, which are reduced as simulation prolongs. These data suggest PME-based CpHMD can be used as a general tool for pH-controlled simulations of macromolecular systems in various environments, enabling atomic insights into pH-dependent phenomena involving not only soluble proteins but also transmembrane proteins, nucleic acids, surfactants, and polysaccharides.
Hu, Fanghao; Schmidt-Rohr, Klaus; Hong, Mei
2012-02-29
The acid-activated proton channel formed by the influenza M2 protein is important for the life cycle of the virus. A single histidine, His37, in the M2 transmembrane domain (M2TM) is responsible for pH activation and proton selectivity of the channel. Recent studies suggested three models for how His37 mediates proton transport: a shuttle mechanism involving His37 protonation and deprotonation, a H-bonded imidazole-imidazolium dimer model, and a transporter model involving large protein conformational changes in synchrony with proton conduction. Using magic-angle-spinning (MAS) solid-state NMR spectroscopy, we examined the proton exchange and backbone conformational dynamics of M2TM in a virus-envelope-mimetic membrane. At physiological temperature and pH, (15)N NMR spectra show fast exchange of the imidazole (15)N between protonated and unprotonated states. To quantify the proton exchange rates, we measured the (15)N T(2) relaxation times and simulated them for chemical-shift exchange and fluctuating N-H dipolar fields under (1)H decoupling and MAS. The exchange rate is 4.5 × 10(5) s(-1) for Nδ1 and 1.0 × 10(5) s(-1) for Nε2, which are approximately synchronized with the recently reported imidazole reorientation. Binding of the antiviral drug amantadine suppressed both proton exchange and ring motion, thus interfering with the proton transfer mechanism. By measuring the relative concentrations of neutral and cationic His as a function of pH, we determined the four pK(a) values of the His37 tetrad in the viral membrane. Fitting the proton current curve using the charge-state populations from these pK(a)'s, we obtained the relative conductance of the five charge states, which showed that the +3 channel has the highest time-averaged unitary conductance. At physiologically relevant pH, 2D correlation spectra indicated that the neutral and cationic histidines do not have close contacts, ruling out the H-bonded dimer model. Moreover, a narrowly distributed nonideal helical structure coexists with a broadly distributed ideal helical conformation without interchange on the sub-10 ms time scale, thus excluding the transporter model in the viral membrane. These data support the shuttle mechanism of proton conduction, whose essential steps involve His-water proton exchange facilitated by imidazole ring reorientations. © 2011 American Chemical Society
Flinner, Nadine; Mirus, Oliver; Schleiff, Enrico
2014-08-15
The hydrophobic thickness of membranes, which is manly defined by fatty acids, influences the packing of transmembrane domains of proteins and thus can modulate the activity of these proteins. We analyzed the dynamics of the dimerization of Glycophorin A (GpA) by molecular dynamics simulations to describe the fatty acid dependence of the transmembrane region assembly. GpA represents a well-established model for dimerization of single transmembrane helices containing a GxxxG motif in vitro and in silico. We performed simulations of the dynamics of the NMR-derived dimer as well as self-assembly simulations of monomers in membranes composed of different fatty acid chains and monitored the formed interfaces and their transitions. The observed dimeric interfaces, which also include the one known from NMR, are highly dynamic and converted into each other. The frequency of interface formation and the preferred transitions between interfaces similar to the interface observed by NMR analysis strongly depend on the fatty acid used to build the membrane. Molecular dynamic simulations after adaptation of the helix topology parameters to better represent NMR derived structures of single transmembrane helices yielded an enhanced occurrence of the interface determined by NMR in molecular dynamics simulations. Taken together we give insights into the influence of fatty acids and helix conformation on the dynamics of the transmembrane domain of GpA.
Flinner, Nadine; Mirus, Oliver; Schleiff, Enrico
2014-01-01
The hydrophobic thickness of membranes, which is manly defined by fatty acids, influences the packing of transmembrane domains of proteins and thus can modulate the activity of these proteins. We analyzed the dynamics of the dimerization of Glycophorin A (GpA) by molecular dynamics simulations to describe the fatty acid dependence of the transmembrane region assembly. GpA represents a well-established model for dimerization of single transmembrane helices containing a GxxxG motif in vitro and in silico. We performed simulations of the dynamics of the NMR-derived dimer as well as self-assembly simulations of monomers in membranes composed of different fatty acid chains and monitored the formed interfaces and their transitions. The observed dimeric interfaces, which also include the one known from NMR, are highly dynamic and converted into each other. The frequency of interface formation and the preferred transitions between interfaces similar to the interface observed by NMR analysis strongly depend on the fatty acid used to build the membrane. Molecular dynamic simulations after adaptation of the helix topology parameters to better represent NMR derived structures of single transmembrane helices yielded an enhanced occurrence of the interface determined by NMR in molecular dynamics simulations. Taken together we give insights into the influence of fatty acids and helix conformation on the dynamics of the transmembrane domain of GpA. PMID:25196522
Amelogenins as Potential Buffers during Secretory-stage Amelogenesis
Guo, J.; Lyaruu, D.M.; Takano, Y.; Gibson, C.W.; DenBesten, P.K.
2015-01-01
Amelogenins are the most abundant protein species in forming dental enamel, taken to regulate crystal shape and crystal growth. Unprotonated amelogenins can bind protons, suggesting that amelogenins could regulate the pH in enamel in situ. We hypothesized that without amelogenins the enamel would acidify unless ameloblasts were buffered by alternative ways. To investigate this, we measured the mineral and chloride content in incisor enamel of amelogenin-knockout (AmelX-/-) mice and determined the pH of enamel by staining with methyl-red. Ameloblasts were immunostained for anion exchanger-2 (Ae2), a transmembrane pH regulator sensitive for acid that secretes bicarbonate in exchange for chloride. The enamel of AmelX-/- mice was 10-fold thinner, mineralized in the secretory stage 1.8-fold more than wild-type enamel and containing less chloride (suggesting more bicarbonate secretion). Enamel of AmelX-/- mice stained with methyl-red contained no acidic bands in the maturation stage as seen in wild-type enamel. Secretory ameloblasts of AmelX-/- mice, but not wild-type mice, were immunopositive for Ae2, and stained more intensely in the maturation stage compared with wild-type mice. Exposure of AmelX-/- mice to fluoride enhanced the mineral content in the secretory stage, lowered chloride, and intensified Ae2 immunostaining in the enamel organ in comparison with non-fluorotic mutant teeth. The results suggest that unprotonated amelogenins may regulate the pH of forming enamel in situ. Without amelogenins, Ae2 could compensate for the pH drop associated with crystal formation. PMID:25535204
Amelogenins as potential buffers during secretory-stage amelogenesis.
Guo, J; Lyaruu, D M; Takano, Y; Gibson, C W; DenBesten, P K; Bronckers, A L J J
2015-03-01
Amelogenins are the most abundant protein species in forming dental enamel, taken to regulate crystal shape and crystal growth. Unprotonated amelogenins can bind protons, suggesting that amelogenins could regulate the pH in enamel in situ. We hypothesized that without amelogenins the enamel would acidify unless ameloblasts were buffered by alternative ways. To investigate this, we measured the mineral and chloride content in incisor enamel of amelogenin-knockout (AmelX(-/-)) mice and determined the pH of enamel by staining with methyl-red. Ameloblasts were immunostained for anion exchanger-2 (Ae2), a transmembrane pH regulator sensitive for acid that secretes bicarbonate in exchange for chloride. The enamel of AmelX(-/-) mice was 10-fold thinner, mineralized in the secretory stage 1.8-fold more than wild-type enamel and containing less chloride (suggesting more bicarbonate secretion). Enamel of AmelX(-/-) mice stained with methyl-red contained no acidic bands in the maturation stage as seen in wild-type enamel. Secretory ameloblasts of AmelX(-/-) mice, but not wild-type mice, were immunopositive for Ae2, and stained more intensely in the maturation stage compared with wild-type mice. Exposure of AmelX(-/-) mice to fluoride enhanced the mineral content in the secretory stage, lowered chloride, and intensified Ae2 immunostaining in the enamel organ in comparison with non-fluorotic mutant teeth. The results suggest that unprotonated amelogenins may regulate the pH of forming enamel in situ. Without amelogenins, Ae2 could compensate for the pH drop associated with crystal formation. © International & American Associations for Dental Research 2014.
Villalona, Seiichi; Glover-López, Guillermo; Ortega-García, Juan Antonio; Moya-Quiles, Rosa; Mondejar-López, Pedro; Martínez-Romero, Maria C; Rigabert-Montiel, Mariano; Pastor-Vivero, María D; Sánchez-Solís, Manuel
2017-02-15
Mutational combinations of the cystic fibrosis transmembrane conductance regulator, CFTR, gene have different phenotypic manifestations at the molecular level with varying clinical consequences for individuals possessing such mutations. Reporting cystic fibrosis transmembrane conductance regulator mutations is important in understanding the genotype-phenotype correlations and associated clinical presentations in patients with cystic fibrosis. Understanding the effects of mutations is critical in developing appropriate treatments for individuals affected with cystic fibrosis, non-classic cystic fibrosis, or cystic fibrosis transmembrane conductance regulator-related disorders. This is the first report of related individuals possessing the R248G missense cystic fibrosis transmembrane conductance regulator mutation and we present their associated clinical histories. All three patients are of Spanish descent. Deoxyribonucleic acid analysis revealed that all three siblings possessed a novel c.742A>G mutation, resulting in a p.Arg248Gly (R248G) amino acid change in exon 6 in trans with the known N1303K mutant allele. Case 1 patient is a 39-year-old infertile man presenting with congenital unilateral absence of the vas deferens and recurrent episodes of epigastric pain. Case 2 patient is a 32-year-old woman presenting with periods of infertility, two previous spontaneous abortions, recurrent epigastric pain, and recurrent pancreatitis. Case 3 patient is a 29-year-old woman presenting with recurrent pancreatitis and epigastric pain. We report the genotype-phenotype correlations and clinical manifestations of a novel R248G cystic fibrosis transmembrane conductance regulator mutation: congenital unilateral absence of the vas deferens in males, reduced female fertility, and recurrent acute pancreatitis. In addition, we discuss the possible functional consequences of the mutations at the molecular level.
Minato, Yuichi; Suzuki, Shiho; Hara, Tomoaki; Kofuku, Yutaka; Kasuya, Go; Fujiwara, Yuichiro; Igarashi, Shunsuke; Suzuki, Ei-Ichiro; Nureki, Osamu; Hattori, Motoyuki; Ueda, Takumi; Shimada, Ichio
2016-04-26
Ligand-gated ion channels are partially activated by their ligands, resulting in currents lower than the currents evoked by the physiological full agonists. In the case of P2X purinergic receptors, a cation-selective pore in the transmembrane region expands upon ATP binding to the extracellular ATP-binding site, and the currents evoked by α,β-methylene ATP are lower than the currents evoked by ATP. However, the mechanism underlying the partial activation of the P2X receptors is unknown although the crystal structures of zebrafish P2X4 receptor in the apo and ATP-bound states are available. Here, we observed the NMR signals from M339 and M351, which were introduced in the transmembrane region, and the endogenous alanine and methionine residues of the zebrafish P2X4 purinergic receptor in the apo, ATP-bound, and α,β-methylene ATP-bound states. Our NMR analyses revealed that, in the α,β-methylene ATP-bound state, M339, M351, and the residues that connect the ATP-binding site and the transmembrane region, M325 and A330, exist in conformational equilibrium between closed and open conformations, with slower exchange rates than the chemical shift difference (<100 s(-1)), suggesting that the small population of the open conformation causes the partial activation in this state. Our NMR analyses also revealed that the transmembrane region adopts the open conformation in the state bound to the inhibitor trinitrophenyl-ATP, and thus the antagonism is due to the closure of ion pathways, except for the pore in the transmembrane region: i.e., the lateral cation access in the extracellular region.
Minato, Yuichi; Suzuki, Shiho; Hara, Tomoaki; Kofuku, Yutaka; Kasuya, Go; Fujiwara, Yuichiro; Igarashi, Shunsuke; Suzuki, Ei-ichiro; Nureki, Osamu; Hattori, Motoyuki; Ueda, Takumi; Shimada, Ichio
2016-01-01
Ligand-gated ion channels are partially activated by their ligands, resulting in currents lower than the currents evoked by the physiological full agonists. In the case of P2X purinergic receptors, a cation-selective pore in the transmembrane region expands upon ATP binding to the extracellular ATP-binding site, and the currents evoked by α,β-methylene ATP are lower than the currents evoked by ATP. However, the mechanism underlying the partial activation of the P2X receptors is unknown although the crystal structures of zebrafish P2X4 receptor in the apo and ATP-bound states are available. Here, we observed the NMR signals from M339 and M351, which were introduced in the transmembrane region, and the endogenous alanine and methionine residues of the zebrafish P2X4 purinergic receptor in the apo, ATP-bound, and α,β-methylene ATP-bound states. Our NMR analyses revealed that, in the α,β-methylene ATP-bound state, M339, M351, and the residues that connect the ATP-binding site and the transmembrane region, M325 and A330, exist in conformational equilibrium between closed and open conformations, with slower exchange rates than the chemical shift difference (<100 s−1), suggesting that the small population of the open conformation causes the partial activation in this state. Our NMR analyses also revealed that the transmembrane region adopts the open conformation in the state bound to the inhibitor trinitrophenyl-ATP, and thus the antagonism is due to the closure of ion pathways, except for the pore in the transmembrane region: i.e., the lateral cation access in the extracellular region. PMID:27071117
Species differences in unlocking B-side electron transfer in bacterial reaction centers
Dylla, Nicholas P.; Faries, Kaitlyn M.; Wyllie, Ryan M.; ...
2016-06-21
The structure of the bacterial photosynthetic reaction center (RC) reveals symmetry-related electron transfer (ET) pathways, but only one path is used in native RCs. Analogous mutations have been made in two Rhodobacter (R.) species. A glutamic acid at position 133 in the M subunit increases transmembrane charge separation via the naturally inactive (B-side) path through impacts on primary ET in mutant R. sphaeroidesRCs. Prior work showed that the analogous substitution in the R. capsulatusRC also increases B-side activity, but mainly affects secondary ET. Finally, the overall yields of transmembrane ET are similar, but enabled in fundamentally different ways.
Species differences in unlocking B-side electron transfer in bacterial reaction centers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dylla, Nicholas P.; Faries, Kaitlyn M.; Wyllie, Ryan M.
The structure of the bacterial photosynthetic reaction center (RC) reveals symmetry-related electron transfer (ET) pathways, but only one path is used in native RCs. Analogous mutations have been made in two Rhodobacter (R.) species. A glutamic acid at position 133 in the M subunit increases transmembrane charge separation via the naturally inactive (B-side) path through impacts on primary ET in mutant R. sphaeroidesRCs. Prior work showed that the analogous substitution in the R. capsulatusRC also increases B-side activity, but mainly affects secondary ET. Finally, the overall yields of transmembrane ET are similar, but enabled in fundamentally different ways.
Small, Jennifer L.; O'Donoghue, Anthony J.; Boritsch, Eva C.; Tsodikov, Oleg V.; Knudsen, Giselle M.; Vandal, Omar; Craik, Charles S.; Ehrt, Sabine
2013-01-01
The transmembrane serine protease MarP is important for pH homeostasis in Mycobacterium tuberculosis (Mtb). Previous structural studies revealed that MarP contains a chymotrypsin fold and a disulfide bond that stabilizes the protease active site in the substrate-bound conformation. Here, we determined that MarP is located in the Mtb periplasm and showed that this localization is essential for function. Using the recombinant protease domain of MarP, we identified its substrate specificity using two independent assays: positional-scanning synthetic combinatorial library profiling and multiplex substrate profiling by mass spectrometry. These methods revealed that MarP prefers bulky residues at P4, tryptophan or leucine at P2, arginine or hydrophobic residues at P1, and alanine or asparagine at P1′. Guided by these data, we designed fluorogenic peptide substrates and characterized the kinetic properties of MarP. Finally, we tested the impact of mutating MarP cysteine residues on the peptidolytic activity of recombinant MarP and its ability to complement phenotypes of Mtb ΔMarP. Taken together, our studies provide insight into the enzymatic properties of MarP, its substrate preference, and the importance of its transmembrane helices and disulfide bond. PMID:23504313
A chimeric prokaryotic pentameric ligand–gated channel reveals distinct pathways of activation
Schmandt, Nicolaus; Velisetty, Phanindra; Chalamalasetti, Sreevatsa V.; ...
2015-09-28
Recent high resolution structures of several pentameric ligand–gated ion channels have provided unprecedented details of their molecular architecture. However, the conformational dynamics and structural rearrangements that underlie gating and allosteric modulation remain poorly understood. We used a combination of electrophysiology, double electron–electron resonance (DEER) spectroscopy, and x-ray crystallography to investigate activation mechanisms in a novel functional chimera with the extracellular domain (ECD) of amine-gated Erwinia chrysanthemi ligand–gated ion channel, which is activated by primary amines, and the transmembrane domain of Gloeobacter violaceus ligand–gated ion channel, which is activated by protons. We found that the chimera was independently gated by primarymore » amines and by protons. The crystal structure of the chimera in its resting state, at pH 7.0 and in the absence of primary amines, revealed a closed-pore conformation and an ECD that is twisted with respect to the transmembrane region. Amine- and pH-induced conformational changes measured by DEER spectroscopy showed that the chimera exhibits a dual mode of gating that preserves the distinct conformational changes of the parent channels. Collectively, our findings shed light on both conserved and divergent features of gating mechanisms in this class of channels, and will facilitate the design of better allosteric modulators.« less
Phosphatidylcholine embedded micellar systems: enhanced permeability through rat skin.
Spernath, Aviram; Aserin, Abraham; Sintov, Amnon C; Garti, Nissim
2008-02-15
Micellar and microemulsion systems are excellent potential vehicles for delivery of drugs because of their high solubilization capacity and improved transmembrane bioavailability. Mixtures of propylene glycol (PG) and nonionic surfactants with sodium diclofenac (DFC) were prepared in the presence of phosphatidylcholine (PC) as transmembrane transport enhancers. Fully dilutable systems with maximum DFC solubilization capacity (SC) at pH 7 are presented. It was demonstrated that the concentrates underwent phase transitions from reverse micelles to swollen reverse micelles and, via the bicontinuous transitional mesophase, into inverted O/W microstructures. The SC decreases as a function of dilution. DFC transdermal penetration using rat skin in vitro correlated with SC, water content, effect of phospholipid content, presence of an oil phase, and ethanol. Skin penetration from the inverted bicontinuous mesophase and the skin penetration from the O/W-like microstructure were higher than that measured from the W/O-like droplets, especially when the micellar system containing the nonionic surfactant, sugar ester L-1695, and hexaglycerol laurate. PC embedded within the micelle interface significantly increased the penetration flux across the skin compared to micellar systems without the embedded PC at their interface. Moreover, the combination of PC with HECO40 improved the permeation rate (P) and shortened the lag-time (T(L)).
Beltless translocation domain of botulinum neurotoxin A embodies a minimum ion-conductive channel.
Fischer, Audrey; Sambashivan, Shilpa; Brunger, Axel T; Montal, Mauricio
2012-01-13
Botulinum neurotoxin, the causative agent of the paralytic disease botulism, is an endopeptidase composed of a catalytic domain (or light chain (LC)) and a heavy chain (HC) encompassing the translocation domain (TD) and receptor-binding domain. Upon receptor-mediated endocytosis, the LC and TD are proposed to undergo conformational changes in the acidic endocytic environment resulting in the formation of an LC protein-conducting TD channel. The mechanism of channel formation and the conformational changes in the toxin upon acidification are important but less well understood aspects of botulinum neurotoxin intoxication. Here, we have identified a minimum channel-forming truncation of the TD, the "beltless" TD, that forms transmembrane channels with ion conduction properties similar to those of the full-length TD. At variance with the holotoxin and the HC, channel formation for both the TD and the beltless TD occurs independent of a transmembrane pH gradient. Furthermore, acidification in solution induces moderate secondary structure changes. The subtle nature of the conformational changes evoked by acidification on the TD suggests that, in the context of the holotoxin, larger structural rearrangements and LC unfolding occur preceding or concurrent to channel formation. This notion is consistent with the hypothesis that although each domain of the holotoxin functions individually, each domain serves as a chaperone for the others.
A chimeric prokaryotic pentameric ligand–gated channel reveals distinct pathways of activation
Schmandt, Nicolaus; Velisetty, Phanindra; Chalamalasetti, Sreevatsa V.; Stein, Richard A.; Bonner, Ross; Talley, Lauren; Parker, Mark D.; Mchaourab, Hassane S.; Yee, Vivien C.; Lodowski, David T.
2015-01-01
Recent high resolution structures of several pentameric ligand–gated ion channels have provided unprecedented details of their molecular architecture. However, the conformational dynamics and structural rearrangements that underlie gating and allosteric modulation remain poorly understood. We used a combination of electrophysiology, double electron–electron resonance (DEER) spectroscopy, and x-ray crystallography to investigate activation mechanisms in a novel functional chimera with the extracellular domain (ECD) of amine-gated Erwinia chrysanthemi ligand–gated ion channel, which is activated by primary amines, and the transmembrane domain of Gloeobacter violaceus ligand–gated ion channel, which is activated by protons. We found that the chimera was independently gated by primary amines and by protons. The crystal structure of the chimera in its resting state, at pH 7.0 and in the absence of primary amines, revealed a closed-pore conformation and an ECD that is twisted with respect to the transmembrane region. Amine- and pH-induced conformational changes measured by DEER spectroscopy showed that the chimera exhibits a dual mode of gating that preserves the distinct conformational changes of the parent channels. Collectively, our findings shed light on both conserved and divergent features of gating mechanisms in this class of channels, and will facilitate the design of better allosteric modulators. PMID:26415570
[Chemicals added to cigarettes and their effects on tobacco dependence].
Gonseth, S; Cornuz, J
2009-07-01
This paper summarizes data on the factors involved in addiction and dependence to cigarettes. Nicotine has been intensively studied by the tobacco industry, for instance for its addictive effect at the lowest possible rates. The addition of diammonium phosphate and urea produces an alcalinization of the pH of cigarette smoke, and promotes the absorption and the trans-membrane passage of nicotine. The taste, the smell of smoke, and the visual aspect of the pack of cigarettes are also sensory components that promote addiction. Finally, menthol, sugar, cocoa and liquorice added to cigarettes also play a role in dependence and addiction to cigarettes by, for instance, making an anesthetic effect on the airways.
Hidden markov model for the prediction of transmembrane proteins using MATLAB.
Chaturvedi, Navaneet; Shanker, Sudhanshu; Singh, Vinay Kumar; Sinha, Dhiraj; Pandey, Paras Nath
2011-01-01
Since membranous proteins play a key role in drug targeting therefore transmembrane proteins prediction is active and challenging area of biological sciences. Location based prediction of transmembrane proteins are significant for functional annotation of protein sequences. Hidden markov model based method was widely applied for transmembrane topology prediction. Here we have presented a revised and a better understanding model than an existing one for transmembrane protein prediction. Scripting on MATLAB was built and compiled for parameter estimation of model and applied this model on amino acid sequence to know the transmembrane and its adjacent locations. Estimated model of transmembrane topology was based on TMHMM model architecture. Only 7 super states are defined in the given dataset, which were converted to 96 states on the basis of their length in sequence. Accuracy of the prediction of model was observed about 74 %, is a good enough in the area of transmembrane topology prediction. Therefore we have concluded the hidden markov model plays crucial role in transmembrane helices prediction on MATLAB platform and it could also be useful for drug discovery strategy. The database is available for free at bioinfonavneet@gmail.comvinaysingh@bhu.ac.in.
Zhigaltsev, Igor V; Maurer, Norbert; Akhong, Quet-Fah; Leone, Robert; Leng, Esther; Wang, Jinfang; Semple, Sean C; Cullis, Pieter R
2005-05-05
A comparative study of the loading and retention properties of three structurally very closely related vinca alkaloids (vincristine, vinorelbine and vinblastine) in liposomal formulations has been performed. All three vinca alkaloids showed high levels of encapsulation when accumulated into egg sphingomyelin/cholesterol vesicles in response to a transmembrane pH gradient generated by the use of the ionophore A23187 and encapsulated MgSO4. However, despite the close similarities of their structures the different vinca drugs exhibited very different release behavior, with vinblastine and vinorelbine being released faster than vincristine both in vitro and in vivo. The differences in loading and retention can be related to the lipophilicity of the drugs tested, where the more hydrophobic drugs are released more rapidly. It was also found that increasing the drug-to-lipid ratio significantly enhanced the retention of vinca alkaloids when the ionophore-based method was used for drug loading. In contrast, drug retention was not dependent on the initial drug-to-lipid ratio for vinca drugs loaded into liposomes containing an acidic citrate buffer. The differences in retention can be explained on the basis of differences in the physical state of the drug inside the liposomes. The drug-to-lipid ratio dependence of retention observed for liposomes loaded with the ionophore technique may provide a way to improve the retention characteristics of liposomal formulations of vinca drugs.
Ge, Chenhao; Orosz, Kristina S.; Armstrong, Neal R.; Saavedra, S. Scott
2011-01-01
Facilitated ion transport across an artificial lipid bilayer coupled to a solid substrate is a function common to several types of bioelectronic devices based on supported membranes, including biomimetic fuel cells and ion channel biosensors. Described here is fabrication of a pH-sensitive transducer composed of a porous sol-gel layer derivatized with poly(aniline) (PANI) nanowires grown from an underlying planar indium-tin oxide (ITO) electrode. The upper sol-gel surface is hydrophilic, smooth, and compatible with deposition of a planar supported lipid bilayer (PSLB) formed via vesicle fusion. Conducting tip AFM was used to show that the PANI wires are connected to the ITO, which convert this electrode into a potentiometric pH sensor. The response to changes in the pH of the buffer contacting the PANI nanowire/sol-gel/ITO electrode is blocked by the very low ion permeability of the overlying, fluid PSLB. The feasibility of using this assembly to monitor facilitated proton transport across the PSLB was demonstrated by doping the membrane with lipophilic ionophores that respond to a transmembrane pH gradient, which produced an apparent proton permeability several orders of magnitude greater than values measured for undoped lipid bilayers. PMID:21707069
Oily wastewater treatment by ultrafiltration using Taguchi experimental design.
Salahi, A; Mohammadi, T
2011-01-01
In this research, results of an experimental investigation on separation of oil from a real oily wastewater using an ultrafiltration (UF) polymeric membrane are presented. In order to enhance the performance of UF in API separator effluent treatment and to get more permeation flux (PF), effects of operating factors on the yield of PF were studied. Five factors at four levels were investigated: trans-membrane pressure (TMP), temperature (T), cross flow velocity (CFV), pH and salt concentration (SC). Taguchi method (L(16) orthogonal array (OA)) was used. Analysis of variance (ANOVA) was applied to calculate sum of square, variance, error variance and contribution percentage of each factor on response. The optimal levels thus determined for the four influential factors were: TMP, 3 bar; T, 40˚C; CFV, 1.0 m/s; SC, 25 g/L and pH, 8. The results showed that CFV and SC are the most and the least effective factors on PF, respectively. Increasing CFV, TMP, T and pH caused the better performance of UF membrane process due to enhancement of driving force and fouling residence. Also, effects of oil concentration (OC) in the wastewater on PF and total organic carbon (TOC) rejection were investigated. Finally, the highest TOC rejection was found to be 85%.
In vitro permeation of repellent DEET and sunscreen oxybenzone across three artificial membranes.
Wang, Tao; Kasichayanula, Sreeneeranj; Gu, Xiaochen
2006-03-09
DEET and oxybenzone are two essential active ingredients in repellent and sunscreen products. We performed a series of in vitro diffusion studies to evaluate the transmembrane permeation of DEET and oxybenzone across three artificial membranes, low-density polyethylene (LDPE), low fouling composite (LFC) and mixed cellulose esters (MCE), from concurrent use of commercial repellent and sunscreen preparations. Permeation of DEET and oxybenzone across the test membranes was synergistically increased when both the repellent and the sunscreen formulations were applied simultaneously. Different application sequences and formulation types also resulted in variable permeation profiles of DEET and oxybenzone. Compared to biological piglet epidermis under the identical experimental conditions, transmembrane permeation of DEET was suppressed in LDPE and LFC membranes, but enhanced in MCE membrane; transmembrane permeation of oxybenzone was reduced in LFC membrane, but increased in LDPE and MCE membranes. Permeability coefficients of DEET and oxybenzone in all three artificial membranes were significantly different from those in piglet skin. It was concluded that the permeation profiles of the compounds were dependent upon physicochemical characteristics of the membranes and the formulations.
Biologically active LIL proteins built with minimal chemical diversity
Heim, Erin N.; Marston, Jez L.; Federman, Ross S.; Edwards, Anne P. B.; Karabadzhak, Alexander G.; Petti, Lisa M.; Engelman, Donald M.; DiMaio, Daniel
2015-01-01
We have constructed 26-amino acid transmembrane proteins that specifically transform cells but consist of only two different amino acids. Most proteins are long polymers of amino acids with 20 or more chemically distinct side-chains. The artificial transmembrane proteins reported here are the simplest known proteins with specific biological activity, consisting solely of an initiating methionine followed by specific sequences of leucines and isoleucines, two hydrophobic amino acids that differ only by the position of a methyl group. We designate these proteins containing leucine (L) and isoleucine (I) as LIL proteins. These proteins functionally interact with the transmembrane domain of the platelet-derived growth factor β-receptor and specifically activate the receptor to transform cells. Complete mutagenesis of these proteins identified individual amino acids required for activity, and a protein consisting solely of leucines, except for a single isoleucine at a particular position, transformed cells. These surprisingly simple proteins define the minimal chemical diversity sufficient to construct proteins with specific biological activity and change our view of what can constitute an active protein in a cellular context. PMID:26261320
A functional Kv1.2-hERG chimaeric channel expressed in Pichia pastoris
Dhillon, Mandeep S.; Cockcroft, Christopher J.; Munsey, Tim; Smith, Kathrine J.; Powell, Andrew J.; Carter, Paul; Wrighton, David C.; Rong, Hong-lin; Yusaf, Shahnaz P.; Sivaprasadarao, Asipu
2014-01-01
Members of the six-transmembrane segment family of ion channels share a common structural design. However, there are sequence differences between the members that confer distinct biophysical properties on individual channels. Currently, we do not have 3D structures for all members of the family to help explain the molecular basis for the differences in their biophysical properties and pharmacology. This is due to low-level expression of many members in native or heterologous systems. One exception is rat Kv1.2 which has been overexpressed in Pichia pastoris and crystallised. Here, we tested chimaeras of rat Kv1.2 with the hERG channel for function in Xenopus oocytes and for overexpression in Pichia. Chimaera containing the S1–S6 transmembrane region of HERG showed functional and pharmacological properties similar to hERG and could be overexpressed and purified from Pichia. Our results demonstrate that rat Kv1.2 could serve as a surrogate to express difficult-to-overexpress members of the six-transmembrane segment channel family. PMID:24569544
Hou, S T; Ma, A; Jones, R; Hall, L
1996-10-01
The rat sperm surface antigen, 2B1, that has been proposed to play a key role in sperm adhesion to the zona pellucida, has been cloned and its entire cDNA sequenced. Northern blot analysis indicates that 2B1 is encoded by a 2.2-kb RNA transcript that is abundantly expressed in the testis. The deduced protein sequence contains 512 amino-acid residues with a strong candidate signal sequence and C-terminal transmembrane domain. Data base searches reveal a high degree of sequence similarity to guinea pig, rabbit, monkey, and human PH20 sperm surface antigens, and a lower degree of similarity to honey bee and whiteface hornet venom hyaluronidases. Rat 2B1 antigen also possesses hyaluronidase activity, suggesting that it is a bifunctional protein with putative roles in the dispersion of cumulus oophorus cells as well as zona adhesion. However, while it would appear that 2B1 is the rat homologue of the guinea pig PH20 antigen, they differ in a number of important biochemical respects (including their mode of attachment to the sperm membrane and distribution between soluble and membrane-bound fractions), as well as in their localization on the sperm membrane. Expression of regions of the 2B1 protein in recombinant bacterial cells has allowed a preliminary mapping of the 2B1 epitope, and has provided more definitive information on the endoproteolytic processing of 2B1 during epididymal transit.
Expression of hypoxia-inducible carbonic anhydrases in brain tumors
Proescholdt, Martin A.; Mayer, Christina; Kubitza, Marion; Schubert, Thomas; Liao, Shu-Yuan; Stanbridge, Eric J.; Ivanov, Sergey; Oldfield, Edward H.; Brawanski, Alexander; Merrill, Marsha J.
2005-01-01
Malignant brain tumors exhibit distinct metabolic characteristics. Despite high levels of lactate, the intracellular pH of brain tumors is more alkaline than normal brain. Additionally, with increasing malignancy, brain tumors display intratumoral hypoxia. Carbonic anhydrase (CA) IX and XII are transmembrane isoenzymes that are induced by tissue hypoxia. They participate in regulation of pH homeostasis by catalyzing the reversible hydration of carbon dioxide. The aim of our study was to investigate whether brain tumors of different histology and grade of malignancy express elevated levels of CA IX and XII as compared to normal brain. We analyzed 120 tissue specimens from brain tumors (primary and metastatic) and normal brain for CA IX and XII expression by immunohistochemistry, Western blot, and in situ hybridization. Whereas normal brain tissue showed minimal levels of CA IX and XII expression, expression in tumors was found to be upregulated with increased level of malignancy. Hemangioblastomas, from patients with von Hippel–Lindau disease, also displayed high levels of CA IX and XII expression. Comparison of CA IX and XII staining with HIF-1α staining revealed a similar microanatomical distribution, indicating hypoxia as a major, but not the only, induction factor. The extent of CA IX and XII staining correlated with cell proliferation, as indicated by Ki67 labeling. The results demonstrate that CA IX and XII are upregulated in intrinsic and metastatic brain tumors as compared to normal brain tissue. This may contribute to the management of tumor-specific acid load and provide a therapeutic target. PMID:16212811
Trans-membrane transport of n-octadecane by Pseudomonas sp. DG17.
Hua, Fei; Wang, Hong Qi; Li, Yi; Zhao, Yi Cun
2013-12-01
The trans-membrane transport of hydrocarbons is an important and complex aspect of the process of biodegradation of hydrocarbons by microorganisms. The mechanism of transport of (14)C n-octadecane by Pseudomonas sp. DG17, an alkane-degrading bacterium, was studied by the addition of ATP inhibitors and different substrate concentrations. When the concentration of n-octadecane was higher than 4.54 μmol/L, the transport of (14)C n-octadecane was driven by a facilitated passive mechanism following the intra/extra substrate concentration gradient. However, when the cells were grown with a low concentration of the substrate, the cellular accumulation of n-octadecane, an energy-dependent process, was dramatically decreased by the presence of ATP inhibitors, and n-octadecane accumulation continually increased against its concentration gradient. Furthermore, the presence of non-labeled alkanes blocked (14)C n-octadecane transport only in the induced cells, and the trans-membrane transport of n-octadecane was specific with an apparent dissociation constant K t of 11.27 μmol/L and V max of 0.96 μmol/min/mg protein. The results indicated that the trans-membrane transport of n-octadecane by Pseudomonas sp. DG17 was related to the substrate concentration and ATP.
Hung, Huynh Minh; Hang, Tran Dieu; Nguyen, Minh Tho
2016-09-09
Hepatitis C virus (HCV) is one of the most crucial global health issues, in which the HCV non-structural protein 2 (NS2), particularly its three transmembrane segments, plays a crucial role in HCV assembly. In this context, multiscale MD simulations have been applied to investigate the preferred orientation of transmembrane domain of NS2 protein (TNS2) in a POPC bilayer, structural stability and characteristic of intramembrane protein-lipid and protein-protein interaction. Our study indicates that NS2 protein adopts three trans-membrane segments with highly stable α-helix structure in a POPC bilayer and a short helical luminal segment. While the first and second TM segment involved in continuous helical domain, the third TM segment is however cleaved into two sub-segments with different tilt angles via a kink at L87G88. Salt bridges K81-E45, R32-PO4 and R43-PO4 are determined as the key factor to stabilize the structure of TM2 and TM3 which consist of charged residues located in the hydrophobic region of the membrane. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Das, Bipasha; Bhattacharjee, Sangita; Bhattacharjee, Chiranjib
2013-09-01
In this study, ultrafiltration (UF) of pretreated casein whey was carried out in a cross-flow module fitted with 5 kDa molecular weight cut-off polyethersulfone membrane to recover whey proteins in the retentate and lactose in the permeate. Effects of processing conditions, like transmembrane pressure and pH on permeate flux and rejection were investigated and reported. The polarised layer resistance was found to increase with time during UF even in this high shear device. The lactose concentration in the permeate was measured using dinitro salicylic acid method. Enzymatic kinetic study for lactose hydrolysis was carried out at three different temperatures ranging from 30 to 50 °C using β-galactosidase enzyme. The glucose formed during lactose hydrolysis was analyzed using glucose oxidase-peroxidase method. Kinetics of enzymatic hydrolysis of lactose solution was found to follow Michaelis-Menten model and the model parameters were estimated by Lineweaver-Burk plot. The hydrolysis rate was found to be maximum (with Vmax = 5.5091 mmol/L/min) at 30 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pegos, Vanessa R.; Hey, Louis; LaMirande, Jacob
Phosphate-binding proteins (PBPs) are key proteins that belong to the bacterial ABC-type phosphate transporters. PBPs are periplasmic (or membrane-anchored) proteins that capture phosphate anions from the environment and release them to the transmembrane transporter. Recent work has suggested that PBPs have evolved for high affinity as well as high selectivity. In particular, a short, unique hydrogen bond between the phosphate anion and an aspartate residue has been shown to be critical for selectivity, yet is not strictly conserved in PBPs. Here, the PBP fromPolaromonasJS666 is focused on. Interestingly, this PBP is predicted to harbor different phosphate-binding residues to currently knownmore » PBPs. Here, it is shown that the PBP fromPolaromonasJS666 is capable of binding phosphate, with a maximal binding activity at pH 8. Its structure is expected to reveal its binding-cleft configuration as well as its phosphate-binding mode. Here, the expression, purification, characterization, crystallization and X-ray diffraction data collection to 1.35 Å resolution of the PBP fromPolaromonasJS666 are reported.« less
Sakata, Souhei; Miyawaki, Nana; McCormack, Thomas J; Arima, Hiroki; Kawanabe, Akira; Özkucur, Nurdan; Kurokawa, Tatsuki; Jinno, Yuka; Fujiwara, Yuichiro; Okamura, Yasushi
2016-12-01
The voltage-gated proton channel, Hv1, is expressed in blood cells, airway epithelium, sperm and microglia, playing important roles in diverse biological contexts including phagocytosis or sperm maturation through its regulation of membrane potential and pH. The gene encoding Hv1, HVCN1, is widely found across many species and is also conserved in unicellular organisms such as algae or dinoflagellates where Hv1 plays role in calcification or bioluminescence. Voltage-gated proton channels exhibit a large variation of activation rate among different species. Here we identify an Hv1 ortholog from sea urchin, Strongylocentrotus purpuratus, SpHv1. SpHv1 retains most of key properties of Hv1 but exhibits 20-60 times more rapid activation kinetics than mammalian orthologs upon heterologous expression in HEK293T cells. Comparison between SpHv1 and mHv1 highlights novel roles of the third transmembrane segment S3 in activation gating of Hv1. Copyright © 2016 Elsevier B.V. All rights reserved.
Molenaar, D; Bosscher, J S; ten Brink, B; Driessen, A J; Konings, W N
1993-05-01
Lactobacillus buchneri ST2A vigorously decarboxylates histidine to the biogenic amine histamine, which is excreted into the medium. Cells grown in the presence of histidine generate both a transmembrane pH gradient, inside alkaline, and an electrical potential (delta psi), inside negative, upon addition of histidine. Studies of the mechanism of histidine uptake and histamine excretion in membrane vesicles and proteoliposomes devoid of cytosolic histidine decarboxylase activity demonstrate that histidine uptake, histamine efflux, and histidine/histamine exchange are electrogenic processes. Histidine/histamine exchange is much faster than the unidirectional fluxes of these substrates, is inhibited by an inside-negative delta psi and is stimulated by an inside positive delta psi. These data suggest that the generation of metabolic energy from histidine decarboxylation results from an electrogenic histidine/histamine exchange and indirect proton extrusion due to the combined action of the decarboxylase and carrier-mediated exchange. The abundance of amino acid decarboxylation reactions among bacteria suggests that this mechanism of metabolic energy generation and/or pH regulation is widespread.
Cai, Yi-Ming; Chen, Ting; Ren, Chun-Hua; Huang, Wen; Jiang, Xiao; Gao, Yan; Huo, Da; Hu, Chao-Qun
2017-05-01
The sodium bicarbonate cotransporter (NBC) is an integral membrane ion transporter that can transport HCO 3 - (or a related species, such as CO 3 2- ) across the plasma membrane. Previous researches revealed that NBC might play an important role in the regulation of intracellular pH in vertebrates. In the present study, an NBC cDNA was identified from Pacific white shrimp (Litopenaeus vannamei) and designated as Lv-NBC. The full-length Lv-NBC cDNA is 4479 bp in size, containing a 5'-untranslated region (UTR) of 59 bp, a 3'-UTR of 835 bp and an open reading frame (ORF) of 3585 bp that encodes a protein of 1194 amino acids with a deduced molecular weight of 134.34 kDa. The Lv-NBC protein contains two functional domains (Band_3_cyto and HCO3_cotransp) and twelve transmembrane (TM) domains. Expression of the Lv-NBC mRNA was ubiquitously detected in all selected tissues, with the highest level in the gill. By in situ hybridization (ISH) with Digoxigenin-labeled probe, the Lv-NBC positive cells were shown mainly located in the secondary gill filaments. After low or high pH challenge, the transcript levels of Lv-NBC in the gill were found to be up-regulated. After knockdown of the Lv-NBC level by siRNA, the mortality of shrimp significantly increased under pH stress. Our study, as a whole, may provide evidences for the role of NBC in shrimp responding to pH stress, and give a new insight of the acid/base homeostasis mechanism in crustaceans. Copyright © 2017 Elsevier Ltd. All rights reserved.
Galindo, Antonio; Hervás-Aguilar, América; Rodríguez-Galán, Olga; Vincent, Olivier; Arst, Herbert N; Tilburn, Joan; Peñalva, Miguel A
2007-01-01
PalC, distantly related to Saccharomyces cerevisiaeperipheral endosomal sorting complexes required for transport III (ESCRT-III) component Bro1p and one of six Aspergillus nidulanspH signalling proteins, contains a Bro1 domain. Green fluorescent protein (GFP)-tagged PalC is recruited to plasma membrane-associated punctate structures upon alkalinization, when pH signalling is active. PalC recruitment to these structures is dependent on the seven transmembrane domain (7-TMD) receptor and likely pH sensor PalH. PalC is a two-hybrid interactor of the ESCRT-III Vps20/Vps32 subcomplex and binds Vps32 directly. This binding is largely impaired by Pro439Phe, Arg442Ala and Arg442His substitutions in a conserved region mediating interaction of Bro1p with Vps32p, but these substitutions do not prevent cortical punctate localization, indicating Vps32 independence. In contrast, Arg442Δ impairs Vps32 binding and prevents PalC-GFP recruitment to cortical structures. pH signalling involves a plasma membrane complex including the 7-TMD receptor PalH and the arrestin-like PalF and an endosomal membrane complex involving the PalB protease, the transcription factor PacC and the Vps32 binding, Bro1-domain-containing protein PalA. PalC, which localizes to cortical structures and can additionally bind a component of ESCRT-III, has the features required to bridge these two entities. A likely S. cerevisiaeorthologue of PalC has been identified, providing the basis for a unifying hypothesis of gene regulation by ambient pH in ascomycetes. PMID:17696968
Cell-Free Synthetic Biology Chassis for Nanocatalytic Photon-to-Hydrogen Conversion.
Wang, Peng; Chang, Angela Y; Novosad, Valentyn; Chupin, Vladimir V; Schaller, Richard D; Rozhkova, Elena A
2017-07-25
We report on an entirely man-made nano-bio architecture fabricated through noncovalent assembly of a cell-free expressed transmembrane proton pump and TiO 2 semiconductor nanoparticles as an efficient nanophotocatalyst for H 2 evolution. The system produces hydrogen at a turnover of about 240 μmol of H 2 (μmol protein) -1 h -1 and 17.74 mmol of H 2 (μmol protein) -1 h -1 under monochromatic green and white light, respectively, at ambient conditions, in water at neutral pH and room temperature, with methanol as a sacrificial electron donor. Robustness and flexibility of this approach allow for systemic manipulation at the nanoparticle-bio interface toward directed evolution of energy transformation materials and artificial systems.
Extractive Fermentation of Lactic Acid in Lactic Acid Bacteria Cultivation: A Review.
Othman, Majdiah; Ariff, Arbakariya B; Rios-Solis, Leonardo; Halim, Murni
2017-01-01
Lactic acid bacteria are industrially important microorganisms recognized for their fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Nevertheless, lactic acid fermentation often suffers end-product inhibition which decreases the cell growth rate. The inhibition of lactic acid is due to the solubility of the undissociated lactic acid within the cytoplasmic membrane and insolubility of dissociated lactate, which causes acidification of cytoplasm and failure of proton motive forces. This phenomenon influences the transmembrane pH gradient and decreases the amount of energy available for cell growth. In general, the restriction imposed by lactic acid on its fermentation can be avoided by extractive fermentation techniques, which can also be exploited for product recovery.
Extractive Fermentation of Lactic Acid in Lactic Acid Bacteria Cultivation: A Review
Othman, Majdiah; Ariff, Arbakariya B.; Rios-Solis, Leonardo; Halim, Murni
2017-01-01
Lactic acid bacteria are industrially important microorganisms recognized for their fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Nevertheless, lactic acid fermentation often suffers end-product inhibition which decreases the cell growth rate. The inhibition of lactic acid is due to the solubility of the undissociated lactic acid within the cytoplasmic membrane and insolubility of dissociated lactate, which causes acidification of cytoplasm and failure of proton motive forces. This phenomenon influences the transmembrane pH gradient and decreases the amount of energy available for cell growth. In general, the restriction imposed by lactic acid on its fermentation can be avoided by extractive fermentation techniques, which can also be exploited for product recovery. PMID:29209295
The critical role of logarithmic transformation in Nernstian equilibrium potential calculations.
Sawyer, Jemima E R; Hennebry, James E; Revill, Alexander; Brown, Angus M
2017-06-01
The membrane potential, arising from uneven distribution of ions across cell membranes containing selectively permeable ion channels, is of fundamental importance to cell signaling. The necessity of maintaining the membrane potential may be appreciated by expressing Ohm's law as current = voltage/resistance and recognizing that no current flows when voltage = 0, i.e., transmembrane voltage gradients, created by uneven transmembrane ion concentrations, are an absolute requirement for the generation of currents that precipitate the action and synaptic potentials that consume >80% of the brain's energy budget and underlie the electrical activity that defines brain function. The concept of the equilibrium potential is vital to understanding the origins of the membrane potential. The equilibrium potential defines a potential at which there is no net transmembrane ion flux, where the work created by the concentration gradient is balanced by the transmembrane voltage difference, and derives from a relationship describing the work done by the diffusion of ions down a concentration gradient. The Nernst equation predicts the equilibrium potential and, as such, is fundamental to understanding the interplay between transmembrane ion concentrations and equilibrium potentials. Logarithmic transformation of the ratio of internal and external ion concentrations lies at the heart of the Nernst equation, but most undergraduate neuroscience students have little understanding of the logarithmic function. To compound this, no current undergraduate neuroscience textbooks describe the effect of logarithmic transformation in appreciable detail, leaving the majority of students with little insight into how ion concentrations determine, or how ion perturbations alter, the membrane potential. Copyright © 2017 the American Physiological Society.
El Hiani, Yassine; Linsdell, Paul
2015-01-01
As an ion channel, the cystic fibrosis transmembrane conductance regulator must form a continuous pathway for the movement of Cl− and other anions between the cytoplasm and the extracellular solution. Both the structure and the function of the membrane-spanning part of this pathway are well defined. In contrast, the structure of the pathway that connects the cytoplasm to the membrane-spanning regions is unknown, and functional roles for different parts of the protein forming this pathway have not been described. We used patch clamp recording and substituted cysteine accessibility mutagenesis to identify positively charged amino acid side chains that attract cytoplasmic Cl− ions to the inner mouth of the pore. Our results indicate that the side chains of Lys-190, Arg-248, Arg-303, Lys-370, Lys-1041, and Arg-1048, located in different intracellular loops of the protein, play important roles in the electrostatic attraction of Cl− ions. Mutation and covalent modification of these residues have charge-dependent effects on the rate of Cl− permeation, demonstrating their functional role in maximization of Cl− flux. Other nearby positively charged side chains were not involved in electrostatic interactions with Cl−. The location of these Cl−-attractive residues suggests that cytoplasmic Cl− ions enter the pore via a lateral portal located between the cytoplasmic extensions to the fourth and sixth transmembrane helices; a secondary, functionally less relevant portal might exist between the extensions to the 10th and 12th transmembrane helices. These results define the cytoplasmic mouth of the pore and show how it attracts Cl− ions from the cytoplasm. PMID:25944907
Cholesterol-Binding Sites in GIRK Channels: The Devil is in the Details.
Rosenhouse-Dantsker, Avia
2018-01-01
In recent years, it has become evident that cholesterol plays a direct role in the modulation of a variety of ion channels. In most cases, cholesterol downregulates channel activity. In contrast, our earlier studies have demonstrated that atrial G protein inwardly rectifying potassium (GIRK) channels are upregulated by cholesterol. Recently, we have shown that hippocampal GIRK currents are also upregulated by cholesterol. A combined computational-experimental approach pointed to putative cholesterol-binding sites in the transmembrane domain of the GIRK2 channel, the primary subunit in hippocampal GIRK channels. In particular, the principal cholesterol-binding site was located in the center of the transmembrane domain in between the inner and outer α-helices of 2 adjacent subunits. Further studies pointed to a similar cholesterol-binding site in GIRK4, a major subunit in atrial GIRK channels. However, a close look at a sequence alignment of the transmembrane helices of the 2 channels reveals surprising differences among the residues that interact with the cholesterol molecule in these 2 channels. Here, we compare the residues that form putative cholesterol-binding sites in GIRK2 and GIRK4 and discuss the similarities and differences among them.
Rigidity of transmembrane proteins determines their cluster shape
NASA Astrophysics Data System (ADS)
Jafarinia, Hamidreza; Khoshnood, Atefeh; Jalali, Mir Abbas
2016-01-01
Protein aggregation in cell membrane is vital for the majority of biological functions. Recent experimental results suggest that transmembrane domains of proteins such as α -helices and β -sheets have different structural rigidities. We use molecular dynamics simulation of a coarse-grained model of protein-embedded lipid membranes to investigate the mechanisms of protein clustering. For a variety of protein concentrations, our simulations under thermal equilibrium conditions reveal that the structural rigidity of transmembrane domains dramatically affects interactions and changes the shape of the cluster. We have observed stable large aggregates even in the absence of hydrophobic mismatch, which has been previously proposed as the mechanism of protein aggregation. According to our results, semiflexible proteins aggregate to form two-dimensional clusters, while rigid proteins, by contrast, form one-dimensional string-like structures. By assuming two probable scenarios for the formation of a two-dimensional triangular structure, we calculate the lipid density around protein clusters and find that the difference in lipid distribution around rigid and semiflexible proteins determines the one- or two-dimensional nature of aggregates. It is found that lipids move faster around semiflexible proteins than rigid ones. The aggregation mechanism suggested in this paper can be tested by current state-of-the-art experimental facilities.
Different transport behaviors of NH4 (+) and NH3 in transmembrane cyclic peptide nanotubes.
Zhang, Mingming; Fan, Jianfen; Xu, Jian; Weng, Peipei; Lin, Huifang
2016-10-01
Two water-filled transmembrane cyclic peptide nanotubes (CPNTs) of 8×cyclo-(WL)n=4,5/POPE were chosen to investigate the dependences of the transport properties of the positive NH4 (+) and neutral NH3 on the channel radius. Molecular dynamic simulations revealed that molecular charge, size, ability to form H-bonds and channel radius all significantly influence the behaviors of NH4 (+) and NH3 in a CPNT. Higher electrostatic interactions, more H-bonds, and water-bridges were found in the NH4 (+) system, resulting in NH4 (+) meeting higher energy barriers, while NH3 can enter, exit and permeate the channels effortlessly. This work sheds a first light on the differences between the mechanisms of NH4 (+) and NH3 moving in a CPNT at an atomic level. Graphical Abstract Snapshot of the simulation system of NH4 (+)_octa-CPNT with an NH4 (+) initially positioned at one mouth of the tube, PMF profiles for single NH4 (+) ion and NH3 molecule moving through water-filled transmembrane CPNTs of 8×cyclo-(WL)n=4,5/POPE and sketch graphs of the possible H-bond forms of NH3 and NH4 (+) with the neighboring water.
Pullikuth, Ashok K; Aimanova, Karlygash; Kang'ethe, Wanyoike; Sanders, Heather R; Gill, Sarjeet S
2006-09-01
Transport across insect epithelia is thought to depend on the activity of a vacuolar-type proton ATPase (V-ATPase) that energizes ion transport through a secondary proton/cation exchanger. Although several of the subunits of the V-ATPase have been cloned, the molecular identity of the exchanger has not been elucidated. Here, we present the identification of sodium/proton exchanger isoform 3 (NHE3) from yellow fever mosquito, Aedes aegypti (AeNHE3). AeNHE3 localizes to the basal plasma membrane of Malpighian tubule, midgut and the ion-transporting sector of gastric caeca. Midgut expression of NHE3 shows a different pattern of enrichment between larval and adult stages, implicating it in the maintenance of regional pH in the midgut during the life cycle. In all tissues examined, NHE3 predominantly localizes to the basal membrane. In addition the limited expression in intracellular vesicles in the median Malpighian tubules may reflect a potential functional versatility of NHE3 in a tissue-specific manner. The localization of V-ATPase and NHE3, and exclusion of Na+/K+-ATPase from the distal ion-transporting sector of caeca, indicate that the role of NHE3 in ion and pH regulation is intricately associated with functions of V-ATPase. The AeNHE3 complements yeast mutants deficient in yeast NHEs, NHA1 and NHX1. To further examine the functional property of AeNHE3, we expressed it in NHE-deficient fibroblast cells. AeNHE3 expressing cells were capable of recovering intracellular pH following an acid load. The recovery was independent of the large cytoplasmic region of AeNHE3, implying this domain to be dispensable for NHE3 ion transport function. 22Na+ uptake studies indicated that AeNHE3 is relatively insensitive to amiloride and EIPA and is capable of Na+ transport in the absence of the cytoplasmic tail. Thus, the core domain containing the transmembrane regions of NHE3 is sufficient for pH recovery and ion transport. The present data facilitate refinement of the prevailing models of insect epithelial transport by incorporating basal amiloride-insensitive NHE3 as a critical mediator of transepithelial ion and fluid transport and likely in the maintenance of intracellular pH.
Hayashi, N; Ito, M; Horiike, S; Taguchi, H
2001-05-01
Random amplified polymorphic DNA (RAPD) PCR analysis of Lactobacillus brevis isolates from breweries revealed that one of the random primers could distinguish beer-spoilage strains of L. brevis from nonspoilage strains. The 1.1-kb DNA fragment amplified from all beer-spoilers included one open reading frame, termed hitA (hop-inducible cation transporter), which encodes an integral membrane protein with 11 putative trans-membrane domains and a binding protein-dependent transport signature of a non-ATP binding membrane transporter common to several prokaryotic and eukaryotic transporters. The hitA polypeptide is homologous to the natural resistance-associated macrophage protein (Nramp) family characterized as divalent-cation transport proteins in many prokaryotic and eukaryotic organisms. Northern blot analysis indicated that the hitA transcripts are expressed in cells cultivated in MRS broth supplemented with hop bitter compounds, which act as mobile-carrier ionophores, dissipating the trans-membrane pH gradient in bacteria sensitive to the hop bitter compounds by exchanging H+ for cellular divalent cations such as Mn2+. This suggests that the hitA gene products may play an important role in making the bacteria resistant to hop bitter compounds in beer by transporting metal ions such as Mn2+ into cells that no longer maintain the proton gradient.
Digestive system dysfunction in cystic fibrosis: challenges for nutrition therapy.
Li, Li; Somerset, Shawn
2014-10-01
Cystic fibrosis can affect food digestion and nutrient absorption. The underlying mutation of the cystic fibrosis trans-membrane regulator gene depletes functional cystic fibrosis trans-membrane regulator on the surface of epithelial cells lining the digestive tract and associated organs, where Cl(-) secretion and subsequently secretion of water and other ions are impaired. This alters pH and dehydrates secretions that precipitate and obstruct the lumen, causing inflammation and the eventual degradation of the pancreas, liver, gallbladder and intestine. Associated conditions include exocrine pancreatic insufficiency, impaired bicarbonate and bile acid secretion and aberrant mucus formation, commonly leading to maldigestion and malabsorption, particularly of fat and fat-soluble vitamins. Pancreatic enzyme replacement therapy is used to address this insufficiency. The susceptibility of pancreatic lipase to acidic and enzymatic inactivation and decreased bile availability often impedes its efficacy. Brush border digestive enzyme activity and intestinal uptake of certain disaccharides and amino acids await clarification. Other complications that may contribute to maldigestion/malabsorption include small intestine bacterial overgrowth, enteric circular muscle dysfunction, abnormal intestinal mucus, and intestinal inflammation. However, there is some evidence that gastric digestive enzymes, colonic microflora, correction of fatty acid abnormalities using dietary n-3 polyunsaturated fatty acid supplementation and emerging intestinal biomarkers can complement nutrition management in cystic fibrosis. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Subach, Fedor V; Patterson, George H; Renz, Malte; Lippincott-Schwartz, Jennifer; Verkhusha, Vladislav V
2010-05-12
Rapidly emerging techniques of super-resolution single-molecule microscopy of living cells rely on the continued development of genetically encoded photoactivatable fluorescent proteins. On the basis of monomeric TagRFP, we have developed a photoactivatable TagRFP protein that is initially dark but becomes red fluorescent after violet light irradiation. Compared to other monomeric dark-to-red photoactivatable proteins including PAmCherry, PATagRFP has substantially higher molecular brightness, better pH stability, substantially less sensitivity to blue light, and better photostability in both ensemble and single-molecule modes. Spectroscopic analysis suggests that PATagRFP photoactivation is a two-step photochemical process involving sequential one-photon absorbance by two distinct chromophore forms. True monomeric behavior, absence of green fluorescence, and single-molecule performance in live cells make PATagRFP an excellent protein tag for two-color imaging techniques, including conventional diffraction-limited photoactivation microscopy, super-resolution photoactivated localization microscopy (PALM), and single particle tracking PALM (sptPALM) of living cells. Two-color sptPALM imaging was demonstrated using several PATagRFP tagged transmembrane proteins together with PAGFP-tagged clathrin light chain. Analysis of the resulting sptPALM images revealed that single-molecule transmembrane proteins, which are internalized into a cell via endocytosis, colocalize in space and time with plasma membrane domains enriched in clathrin light-chain molecules.
Riazi, Shadi; Dover, Sara E.; Chikindas, Michael L.
2012-01-01
Aims To determine the mechanism of action of antimicrobial protein, lactosporin, against Gardnerella vaginalis and to evaluate its safety in-vitro. Methods and Results Bacillus coagulans ATCC 7050 was grown at 37 °C for 18 hours. The cell free supernatant was concentrated 10-fold and screened for antimicrobial activity against indicator strain Micrococcus luteus. The mode of action of lactosporin was determined by measuring the potassium release and monitoring the changes in transmembrane potential (Δψ) and transmembrane pH (ΔpH) of the sensitive cells. Lactosporin caused efflux of potassium ions from M. luteus cells and dissipation of ΔpH in G. vaginalis while it had no effect on the Δψ. The safety of lactosporin was evaluated by using EpiVaginal™ ectocervical (VEC-100) tissue model. Over 80% of the cells in the vaginal tissue remained viable after exposure to lactosporin for 24 hours. Conclusions Lactosporin potentially exerts its antimicrobial activity by selective dissipation of ΔpH and/or by causing leakage of ions from the sensitive cells. Safety studies suggest that lactosporin is a non-cytotoxix antimicrobial for vaginal application. Significance and Impact of the Study This study revealed that lactosporin is an effective and safe antimicrobial preparation with potential application for control of bacterial vaginosis. PMID:22737982
NASA Technical Reports Server (NTRS)
Lanyi, J. K.
1978-01-01
Active serine accumulation in cell envelope vesicles from Halobacterium halobium proceeds by co-transport with Na(+) and can be induced by either transmembrane electrical potential or transmembrane Na(+) concentration difference. It was shown earlier that in the former case the initial transport rate is a fourth-power function of the magnitude of the electrochemical potential difference of sodium ions, and in the latter, a second-power function. A possible interpretation of this finding is cooperativity of sodium-transporting sites in the transport carrier. When both kinds of driving force are imposed simultaneously on the vesicles, fourth-power dependence on the total potential difference of sodium ions is obtained, suggesting that the transport carrier is regulated by the electrical potential. Heat treatment of the vesicles at 48 C partially inactivates transport and abolishes this effect of the electrical potential.
Blitzer, B L; Terzakis, C; Scott, K A
1986-09-15
In order to characterize the driving forces for the concentrative uptake of unconjugated bile acids by the hepatocyte, the effects of pH gradients on the uptake of [3H]cholate by rat basolateral liver plasma membrane vesicles were studied. In the presence of an outwardly directed hydroxyl gradient (pH 6.0 outside and pH 7.5 inside the vesicle), cholate uptake was markedly stimulated and the bile acid was transiently accumulated at a concentration 1.5- to 2-fold higher than at equilibrium ("overshoot"). In the absence of a pH gradient (pH 6.0 or 7.5 both inside and outside the vesicle), uptake was relatively slower and no overshoot was seen. Reductions in the magnitude of the transmembrane pH gradient were associated with slower initial uptake rates and smaller overshoots. Cholate uptake under pH gradient conditions was inhibited by furosemide and bumetanide but not by 4, 4'-diisothiocyano-2,2'-disulfonic stilbene (SITS), 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (DIDS), or probenecid. In the absence of a pH gradient, an inside-positive valinomycin-induced K+ diffusion potential caused a slight increase in cholate uptake which was insensitive to furosemide. Moreover, in the presence of an outwardly directed hydroxyl gradient, uphill cholate transport was observed even under voltage clamped conditions. These findings suggest that pH gradient-driven cholate uptake was not due to associated electrical potentials. Despite an identical pKa to that of cholate, an outwardly directed hydroxyl gradient did not drive uphill transport of three other unconjugated bile acids (deoxycholate, chenodeoxycholate, ursodeoxycholate), suggesting that a non-ionic diffusion mechanism cannot account for uphill cholate transport. In canalicular vesicles, although cholate uptake was relatively faster in the presence of a pH gradient than in the absence of a gradient, peak uptake was only slightly above that found at equilibrium under voltage clamped conditions. These findings suggest a specific carrier on the basolateral membrane of the hepatocyte which mediates hydroxyl/cholate exchange (or H+-cholate co-transport). A model for uphill cholate transport is discussed in which the Na+ pump would ultimately drive Na+/H+ exchange which in turn would drive hydroxyl/cholate exchange.
Langó, Tamás; Róna, Gergely; Hunyadi-Gulyás, Éva; Turiák, Lilla; Varga, Julia; Dobson, László; Várady, György; Drahos, László; Vértessy, Beáta G; Medzihradszky, Katalin F; Szakács, Gergely; Tusnády, Gábor E
2017-02-13
Transmembrane proteins play crucial role in signaling, ion transport, nutrient uptake, as well as in maintaining the dynamic equilibrium between the internal and external environment of cells. Despite their important biological functions and abundance, less than 2% of all determined structures are transmembrane proteins. Given the persisting technical difficulties associated with high resolution structure determination of transmembrane proteins, additional methods, including computational and experimental techniques remain vital in promoting our understanding of their topologies, 3D structures, functions and interactions. Here we report a method for the high-throughput determination of extracellular segments of transmembrane proteins based on the identification of surface labeled and biotin captured peptide fragments by LC/MS/MS. We show that reliable identification of extracellular protein segments increases the accuracy and reliability of existing topology prediction algorithms. Using the experimental topology data as constraints, our improved prediction tool provides accurate and reliable topology models for hundreds of human transmembrane proteins.
Braun, Y; Hassidim, M; Lerner, H R; Reinhold, L
1986-08-01
Membrane vesicles were isolated from the roots of the halophyte Atriplex nummularia Lindl. H(+)-translocating Mg(2+)-ATPase activity was manifested by the establishment of a positive membrane potential (measured as SCN(-) accumulation); and also by the establishment of a transmembrane pH gradient (measured by quinacrine fluorescence quenching). H(+)-translocation was highly specific to ATP and was stable to oligomycin. Growing the plants in the presence of 400 millimolar NaCl doubled the proton-translocating activity per milligram of membrane protein and otherwise modulated it in the following ways. First, the flat pH profile observed in non-salt-grown plants was transformed to one showing a peak at about pH 6.2. Second, the lag effect observed at low ATP concentration in curves relating SCN(-) accumulation to ATP concentration was abolished; the concave curvature shown in the double reciprocal plot was diminished. Third, sensitivity to K-2 (N-morpholino)ethanesulfonic acid stimulation was shown in salt-grown plants (about 40% stimulation) but was absent in non-salt-grown plants. Fourth, the KCl concentration bringing about 50% dissipation of ATP-dependent SCN(-) accumulation was 20 millimolar for salt-grown plants and 50 millimolar for non-salt-grown plants. Vanadate sensitivity was shown in both cases. No clear NO(3) (-) inhibition was observed.
Studies on H+-Translocating ATPases in Plants of Varying Resistance to Salinity 1
Braun, Yael; Hassidim, Miriam; Lerner, Henri R.; Reinhold, Leonora
1986-01-01
Membrane vesicles were isolated from the roots of the halophyte Atriplex nummularia Lindl. H+-translocating Mg2+-ATPase activity was manifested by the establishment of a positive membrane potential (measured as SCN− accumulation); and also by the establishment of a transmembrane pH gradient (measured by quinacrine fluorescence quenching). H+-translocation was highly specific to ATP and was stable to oligomycin. Growing the plants in the presence of 400 millimolar NaCl doubled the proton-translocating activity per milligram of membrane protein and otherwise modulated it in the following ways. First, the flat pH profile observed in non-salt-grown plants was transformed to one showing a peak at about pH 6.2. Second, the lag effect observed at low ATP concentration in curves relating SCN− accumulation to ATP concentration was abolished; the concave curvature shown in the double reciprocal plot was diminished. Third, sensitivity to K-2 (N-morpholino)ethanesulfonic acid stimulation was shown in salt-grown plants (about 40% stimulation) but was absent in non-salt-grown plants. Fourth, the KCl concentration bringing about 50% dissipation of ATP-dependent SCN− accumulation was 20 millimolar for salt-grown plants and 50 millimolar for non-salt-grown plants. Vanadate sensitivity was shown in both cases. No clear NO3− inhibition was observed. Images Fig. 3 PMID:16664942
Araye, Anne; Goudet, Amélie; Barbier, Julien; Pichard, Sylvain; Baron, Bruno; England, Patrick; Pérez, Javier; Zinn-Justin, Sophie; Chenal, Alexandre; Gillet, Daniel
2016-01-01
Botulinum neurotoxin A (BoNT/A) is composed of three domains: a catalytic domain (LC), a translocation domain (HN) and a receptor-binding domain (HC). Like most bacterial toxins BoNT/A is an amphitropic protein, produced in a soluble form that is able to interact, penetrate and/or cross a membrane to achieve its toxic function. During intoxication BoNT/A is internalized by the cell by receptor-mediated endocytosis. Then, LC crosses the membrane of the endocytic compartment and reaches the cytosol. This translocation is initiated by the low pH found in this compartment. It has been suggested that LC passes in an unfolded state through a transmembrane passage formed by HN. We report here that acidification induces no major conformational change in either secondary or tertiary structures of LC and HN of BoNT/A in solution. GdnHCl-induced denaturation experiments showed that the stability of LC and HN increases as pH drops, and that HN further stabilizes LC. Unexpectedly we found that LC has a high propensity to interact with and permeabilize anionic lipid bilayers upon acidification without the help of HN. This property is downplayed when LC is linked to HN. HN thus acts as a chaperone for LC by enhancing its stability but also as a moderator of the membrane interaction of LC. PMID:27070312
Gerlach, Thomas; Hensen, Luca; Matrosovich, Tatyana; Bergmann, Janina; Winkler, Michael; Peteranderl, Christin; Klenk, Hans-Dieter; Weber, Friedemann; Herold, Susanne; Pöhlmann, Stefan; Matrosovich, Mikhail
2017-06-01
The replication and pathogenicity of influenza A viruses (IAVs) critically depend on their ability to tolerate the antiviral interferon (IFN) response. To determine a potential role for the IAV hemagglutinin (HA) in viral sensitivity to IFN, we studied the restriction of IAV infection in IFN-β-treated human epithelial cells by using 2:6 recombinant IAVs that shared six gene segments of A/Puerto Rico/8/1934 virus (PR8) and contained HAs and neuraminidases of representative avian, human, and zoonotic H5N1 and H7N9 viruses. In A549 and Calu-3 cells, viruses displaying a higher pH optimum of HA-mediated membrane fusion, H5N1-PR8 and H7N9-PR8, were less sensitive to the IFN-induced antiviral state than their counterparts with HAs from duck and human viruses, which fused at a lower pH. The association between a high pH optimum of fusion and reduced IFN sensitivity was confirmed by using HA point mutants of A/Hong Kong/1/1968-PR8 that differed solely by their fusion properties. Furthermore, similar effects of the viral fusion pH on IFN sensitivity were observed in experiments with (i) primary human type II alveolar epithelial cells and differentiated cultures of human airway epithelial cells, (ii) nonrecombinant zoonotic and pandemic IAVs, and (iii) preparations of IFN-α and IFN-λ1. A higher pH of membrane fusion and reduced sensitivity to IFN correlated with lower restriction of the viruses in MDCK cells stably expressing the IFN-inducible transmembrane proteins IFITM2 and IFITM3, which are known to inhibit viral fusion. Our results reveal that the pH optimum of HA-driven membrane fusion of IAVs is a determinant of their sensitivity to IFN and IFITM proteins. IMPORTANCE The IFN system constitutes an important innate defense against viral infection. Substantial information is available on how IAVs avoid detection by sensors of the IFN system and disable IFN signaling pathways. Much less is known about the ability of IAVs to tolerate the antiviral activity of IFN-induced cellular proteins. The IFN-induced proteins of the IFITM family block IAV entry into target cells and can restrict viral spread and pathogenicity. Here we show for the first time that the sensitivity of IAVs to the IFN-induced antiviral state and IFITM2 and IFITM3 proteins depends on the pH value at which the viral HA undergoes a conformational transition and mediates membrane fusion. Our data imply that the high pH optimum of membrane fusion typical of zoonotic IAVs of gallinaceous poultry, such as H5N1 and H7N9, may contribute to their enhanced virulence in humans. Copyright © 2017 American Society for Microbiology.
Gerlach, Thomas; Hensen, Luca; Matrosovich, Tatyana; Bergmann, Janina; Winkler, Michael; Peteranderl, Christin; Klenk, Hans-Dieter; Herold, Susanne
2017-01-01
ABSTRACT The replication and pathogenicity of influenza A viruses (IAVs) critically depend on their ability to tolerate the antiviral interferon (IFN) response. To determine a potential role for the IAV hemagglutinin (HA) in viral sensitivity to IFN, we studied the restriction of IAV infection in IFN-β-treated human epithelial cells by using 2:6 recombinant IAVs that shared six gene segments of A/Puerto Rico/8/1934 virus (PR8) and contained HAs and neuraminidases of representative avian, human, and zoonotic H5N1 and H7N9 viruses. In A549 and Calu-3 cells, viruses displaying a higher pH optimum of HA-mediated membrane fusion, H5N1-PR8 and H7N9-PR8, were less sensitive to the IFN-induced antiviral state than their counterparts with HAs from duck and human viruses, which fused at a lower pH. The association between a high pH optimum of fusion and reduced IFN sensitivity was confirmed by using HA point mutants of A/Hong Kong/1/1968-PR8 that differed solely by their fusion properties. Furthermore, similar effects of the viral fusion pH on IFN sensitivity were observed in experiments with (i) primary human type II alveolar epithelial cells and differentiated cultures of human airway epithelial cells, (ii) nonrecombinant zoonotic and pandemic IAVs, and (iii) preparations of IFN-α and IFN-λ1. A higher pH of membrane fusion and reduced sensitivity to IFN correlated with lower restriction of the viruses in MDCK cells stably expressing the IFN-inducible transmembrane proteins IFITM2 and IFITM3, which are known to inhibit viral fusion. Our results reveal that the pH optimum of HA-driven membrane fusion of IAVs is a determinant of their sensitivity to IFN and IFITM proteins. IMPORTANCE The IFN system constitutes an important innate defense against viral infection. Substantial information is available on how IAVs avoid detection by sensors of the IFN system and disable IFN signaling pathways. Much less is known about the ability of IAVs to tolerate the antiviral activity of IFN-induced cellular proteins. The IFN-induced proteins of the IFITM family block IAV entry into target cells and can restrict viral spread and pathogenicity. Here we show for the first time that the sensitivity of IAVs to the IFN-induced antiviral state and IFITM2 and IFITM3 proteins depends on the pH value at which the viral HA undergoes a conformational transition and mediates membrane fusion. Our data imply that the high pH optimum of membrane fusion typical of zoonotic IAVs of gallinaceous poultry, such as H5N1 and H7N9, may contribute to their enhanced virulence in humans. PMID:28356532
Expression and Purification of a Matrix Metalloprotease Transmembrane Domain in Escherichia coli.
Galea, Charles A
2017-01-01
Membrane tethered matrix metalloproteases are bound to the plasma membrane by a glycosylphosphatidylinositol-anchor or a transmembrane domain. To date, most studies of membrane-bound matrix metalloprotease have focused on the globular catalytic and protein-protein interaction domains of these enzymes. However, the transmembrane domains have been poorly studied even though they are known to mediate intracellular signaling via interaction with various cellular proteins. The expression and purification of the transmembrane domain of these proteins can be challenging due to their hydrophobic nature. In this chapter we describe the purification of a transmembrane domain for a membrane-bound matrix metalloprotease expressed in E. coli and its initial characterization by NMR spectroscopy.
Vergara-Jaque, Ariela; Fenollar-Ferrer, Cristina; Kaufmann, Desirée; Forrest, Lucy R.
2015-01-01
Secondary active transporters are critical for neurotransmitter clearance and recycling during synaptic transmission and uptake of nutrients. These proteins mediate the movement of solutes against their concentration gradients, by using the energy released in the movement of ions down pre-existing concentration gradients. To achieve this, transporters conform to the so-called alternating-access hypothesis, whereby the protein adopts at least two conformations in which the substrate binding sites are exposed to one or other side of the membrane, but not both simultaneously. Structures of a bacterial homolog of neuronal glutamate transporters, GltPh, in several different conformational states have revealed that the protein structure is asymmetric in the outward- and inward-open states, and that the conformational change connecting them involves a elevator-like movement of a substrate binding domain across the membrane. The structural asymmetry is created by inverted-topology repeats, i.e., structural repeats with similar overall folds whose transmembrane topologies are related to each other by two-fold pseudo-symmetry around an axis parallel to the membrane plane. Inverted repeats have been found in around three-quarters of secondary transporter folds. Moreover, the (a)symmetry of these systems has been successfully used as a bioinformatic tool, called “repeat-swap modeling” to predict structural models of a transporter in one conformation using the known structure of the transporter in the complementary conformation as a template. Here, we describe an updated repeat-swap homology modeling protocol, and calibrate the accuracy of the method using GltPh, for which both inward- and outward-facing conformations are known. We then apply this repeat-swap homology modeling procedure to a concentrative nucleoside transporter, VcCNT, which has a three-dimensional arrangement related to that of GltPh. The repeat-swapped model of VcCNT predicts that nucleoside transport also occurs via an elevator-like mechanism. PMID:26388773
Tsai, Yi-Ting; Liu, Jah-Yao; Lee, Chung-Yi; Tsai, Chien-Sung; Chen, Ming-Hurng; Ou, Chien-Chih; Chen, Wei-Hwa; Loh, Shih-Hurng
2011-12-01
Changing intracellular pH (pHi) exerts considerable influence on many cellular functions. Different pHi regulators, such as the Na-H exchanger (NHE), Na/(Equation is included in full-text article.)symporter, and Cl/OH exchanger (CHE), have been identified in mature mammalian cells. The aims of the present study were to investigate the physiological mechanisms of pHi recovery and to further explore the effects of alcohol on the pHi in human umbilical cord blood CD34 stem cell-like cells (HUCB-CD34STs). HUCB-CD34STs were loaded with the pH-sensitive dye, 2',7'-bis(2-carboxethyl)-5(6)-carboxyfluorescein, to examine pHi. In isolated HUCB-CD34STs, we found that (1) the resting pHi is 7.03 ± 0.02; (2) 2 Na-dependent acid extruders and a Cl-dependent acid loading carrier exist and are functional; (3) alcohol functions in a concentration-dependent manner to reduce pHi and increase NHE activity, but it does not affect CHE activity; and (4) fomepizole, a specific alcohol dehydrogenase inhibitor, does not change the intracellular acidosis and NHE activity-induced by alcohol, whereas 3-amino-1, 2,4-trizole, a specific catalase inhibitor, entirely abolishes these effects. In conclusion, we demonstrate that 2 acid extruders and 1 acid loader (most likely NHE, NBC, and CHE, respectively) functionally existed in HUCB-CD34STs. Additionally, the intracellular acidosis is mainly caused by catalase-mediated alcohol metabolites, which provoke the activity of NHE.
Refined structure of dimeric diphtheria toxin at 2.0 A resolution.
Bennett, M. J.; Choe, S.; Eisenberg, D.
1994-01-01
The refined structure of dimeric diphtheria toxin (DT) at 2.0 A resolution, based on 37,727 unique reflections (F > 1 sigma (F)), yields a final R factor of 19.5% with a model obeying standard geometry. The refined model consists of 523 amino acid residues, 1 molecule of the bound dinucleotide inhibitor adenylyl 3'-5' uridine 3' monophosphate (ApUp), and 405 well-ordered water molecules. The 2.0-A refined model reveals that the binding motif for ApUp includes residues in the catalytic and receptor-binding domains and is different from the Rossmann dinucleotide-binding fold. ApUp is bound in part by a long loop (residues 34-52) that crosses the active site. Several residues in the active site were previously identified as NAD-binding residues. Glu 148, previously identified as playing a catalytic role in ADP-ribosylation of elongation factor 2 by DT, is about 5 A from uracil in ApUp. The trigger for insertion of the transmembrane domain of DT into the endosomal membrane at low pH may involve 3 intradomain and 4 interdomain salt bridges that will be weakened at low pH by protonation of their acidic residues. The refined model also reveals that each molecule in dimeric DT has an "open" structure unlike most globular proteins, which we call an open monomer. Two open monomers interact by "domain swapping" to form a compact, globular dimeric DT structure. The possibility that the open monomer resembles a membrane insertion intermediate is discussed. PMID:7833807
A model of ion transport processes along and across the neuronal membrane.
Xiang, Z X; Liu, G Z; Tang, C X; Yan, L X
2017-01-01
In this study, we provide a foundational model of ion transport processes in the intracellular and extracellular compartments of neurons at the nanoscale. There are two different kinds of ionic transport processes: (i) ionic transport across the neuronal membrane (trans-membrane), and (ii) ionic transport along both the intracellular and extracellular surfaces of the membrane. Brownian dynamics simulations are used to give a description of ionic trans-membrane transport. Electro-diffusion is used to model ion transport along the membrane surface, and the two transport processes can be linked analytically. In our model, we found that the interactions between ions and ion channels result in high-frequency ionic oscillations during trans-membrane transport. In ion transport along the membrane, high-frequency ionic oscillations may be evoked on both the intracellular and extracellular surfaces of the plasma membrane. The electric field caused by Coulomb interactions between the ions is found to be the most likely origin of those ionic oscillations.
Pantazis, Antonios
2012-01-01
Voltage-activated proteins can sense, and respond to, changes in the electric field pervading the cell membrane by virtue of a transmembrane helix bundle, the voltage-sensing domain (VSD). Canonical VSDs consist of four transmembrane helices (S1–S4) of which S4 is considered a principal component because it possesses charged residues immersed in the electric field. Membrane depolarization compels the charges, and by extension S4, to rearrange with respect to the field. The VSD of large-conductance voltage- and Ca-activated K+ (BK) channels exhibits two salient inconsistencies from the canonical VSD model: (1) the BK channel VSD possesses an additional nonconserved transmembrane helix (S0); and (2) it exhibits a “decentralized” distribution of voltage-sensing charges, in helices S2 and S3, in addition to S4. Considering these unique features, the voltage-dependent rearrangements of the BK VSD could differ significantly from the standard model of VSD operation. To understand the mode of operation of this unique VSD, we have optically tracked the relative motions of the BK VSD transmembrane helices during activation, by manipulating the quenching environment of site-directed fluorescent labels with native and introduced Trp residues. Having previously reported that S0 and S4 diverge during activation, in this work we demonstrate that S4 also diverges from S1 and S2, whereas S2, compelled by its voltage-sensing charged residues, moves closer to S1. This information contributes spatial constraints for understanding the BK channel voltage-sensing process, revealing the structural rearrangements in a non-canonical VSD. PMID:22802360
El Hiani, Yassine; Linsdell, Paul
2015-06-19
As an ion channel, the cystic fibrosis transmembrane conductance regulator must form a continuous pathway for the movement of Cl(-) and other anions between the cytoplasm and the extracellular solution. Both the structure and the function of the membrane-spanning part of this pathway are well defined. In contrast, the structure of the pathway that connects the cytoplasm to the membrane-spanning regions is unknown, and functional roles for different parts of the protein forming this pathway have not been described. We used patch clamp recording and substituted cysteine accessibility mutagenesis to identify positively charged amino acid side chains that attract cytoplasmic Cl(-) ions to the inner mouth of the pore. Our results indicate that the side chains of Lys-190, Arg-248, Arg-303, Lys-370, Lys-1041, and Arg-1048, located in different intracellular loops of the protein, play important roles in the electrostatic attraction of Cl(-) ions. Mutation and covalent modification of these residues have charge-dependent effects on the rate of Cl(-) permeation, demonstrating their functional role in maximization of Cl(-) flux. Other nearby positively charged side chains were not involved in electrostatic interactions with Cl(-). The location of these Cl(-)-attractive residues suggests that cytoplasmic Cl(-) ions enter the pore via a lateral portal located between the cytoplasmic extensions to the fourth and sixth transmembrane helices; a secondary, functionally less relevant portal might exist between the extensions to the 10th and 12th transmembrane helices. These results define the cytoplasmic mouth of the pore and show how it attracts Cl(-) ions from the cytoplasm. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Yang, H; Egan, J M; Rodgers, B D; Bernier, M; Montrose-Rafizadeh, C
1999-06-01
To identify novel seven transmembrane domain proteins from 3T3-L1 adipocytes, we used PCR to amplify 3T3-L1 adipocyte complementary DNA (cDNA) with primers homologous to the N- and C-termini of pancreatic glucagon-like peptide-1 (GLP-1) receptor. We screened a cDNA library prepared from fully differentiated 3T3-L1 adipocytes using a 500-bp cDNA PCR product probe. Herein describes the isolation and characterization of a 1.6-kb cDNA clone that encodes a novel 298-amino acid protein that we termed TPRA40 (transmembrane domain protein of 40 kDa regulated in adipocytes). TPRA40 has seven putative transmembrane domains and shows little homology with the known GLP-1 receptor or with other G protein-coupled receptors. The levels of TPRA40 mRNA and protein were higher in 3T3-L1 adipocytes than in 3T3-L1 fibroblasts. TPRA40 is present in a number of mouse and human tissues. Interestingly, TPRA40 mRNA levels were significantly increased by 2- to 3-fold in epididymal fat of 24-month-old mice vs. young controls as well as in db/db and ob/ob mice vs. nondiabetic control littermates. No difference in TPRA40 mRNA levels was observed in brain, heart, skeletal muscle, liver, or kidney. Furthermore, no difference in TPRA40 expression was detected in brown fat of ob/ob mice when compared with age-matched controls. Taken together, these data suggest that TPRA40 represents a novel membrane-associated protein whose expression in white adipose tissue is altered with aging and type 2 diabetes.
Öjemalm, Karin; Halling, Katrin K.; Nilsson, IngMarie; von Heijne, Gunnar
2013-01-01
Summary α-helical integral membrane proteins critically depend on the correct insertion of their transmembrane α-helices into the lipid bilayer for proper folding, yet a surprisingly large fraction of the transmembrane α-helices in multispanning integral membrane proteins are not sufficiently hydrophobic to insert into the target membrane by themselves. How can such marginally hydrophobic segments nevertheless form transmembrane helices in the folded structure? Here, we show that a transmembrane helix with a strong orientational preference (Ncyt-Clum or Nlum-Ccyt) can both increase and decrease the hydrophobicity threshold for membrane insertion of a neighboring, marginally hydrophobic helix. This effect helps explain the ‘missing hydrophobicity’ in polytopic membrane proteins. PMID:22281052
Response of GWALP Transmembrane Peptides to Changes in the Tryptophan Anchor Positions†
Vostrikov, Vitaly V.; Koeppe, Roger E.
2011-01-01
While the interfacial partitioning of charged or aromatic anchor residues may determine the preferred orientations of transmembrane peptide helices, the dependence of helix orientation on anchor residue position is not well understood. When anchor residue locations are changed systematically, some adaptations of the peptide-lipid interactions may be required to compensate the altered interfacial interactions. Recently we have developed a novel transmembrane peptide, termed GW5,19ALP23 (acetyl-GGALW5LALALALALALALW19LAGA-ethanolamide), which proves to be a well behaved sequence for an orderly investigation of protein-lipid interactions. Its roughly symmetric nature allows for shifting the anchoring Trp residues by one Leu-Ala pair inward (GW7,17ALP23) or outward (GW3,21ALP23), thus providing fine adjustments of the formal distance between the tryptophan residues. With no other obvious anchoring features present, we postulate that the inter-Trp distance may be crucial for aspects of the peptide-lipid interaction. Importantly, the amino acid composition is identical for each of the resulting related GWALP23 sequences, and the radial separation between the pairs of Trp residues on each side of the transmembrane α-helix remains similar. Here we address the adaptation of the aforementioned peptides to the varying Trp locations by means of solid-state 2H NMR experiments in varying lipid bilayer membrane environments. All of the GWx,yALP23 sequence isomers adopt transmembrane orientations in DOPC, DMPC and DLPC environments, even when the Trp residues are quite closely spaced, in GW7,17ALP23. Furthermore, the dynamics for each peptide isomer are less extensive than for peptides possessing additional interfacial Trp residues. The helical secondary structure is maintained more strongly within the Trp-flanked core region than outside of the Trp boundaries. Deuterium labeled tryptophan indole rings in the GWx,yALP23 peptides provide additional insights into the behavior of the Trp side chains. A Trp side chain near the C-terminus adopts a different orientation and undergoes somewhat faster dynamics than a corresponding Trp side chain located an equivalent distance from the N-terminus. In contrast, as the inter-Trp distance changes, the variations among the average orientations of the Trp indole rings at either terminus are systematic yet fairly small. We conclude that subtle adjustments to the peptide tilt, and to the N- and C-terminal Trp side-chain torsion angles, permit the GWx,yALP23 peptides to maintain preferred transmembrane orientations while adapting to lipid bilayers of differing hydrophobic thickness. PMID:21800919
Morera, Francisco J.; Alioua, Abderrahmane; Kundu, Pallob; Salazar, Marcelo; Gonzalez, Carlos; Martinez, Agustin D.; Stefani, Enrico; Toro, Ligia; Latorre, Ramon
2012-01-01
The BK channel is one of the most broadly expressed ion channels in mammals. In many tissues, the BK channel pore-forming α-subunit is associated to an auxiliary β-subunit that modulates the voltage- and Ca2+-dependent activation of the channel. Structural components present in β-subunits that are important for the physical association with the α-subunit are yet unknown. Here, we show through co-immunoprecipitation that the intracellular C-terminus, the second transmembrane domain (TM2) and the extracellular loop of the β2-subunit are dispensable for association with the α-subunit pointing transmembrane domain 1 (TM1) as responsible for the interaction. Indeed, the TOXCAT assay for transmembrane protein–protein interactions demonstrated for the first time that TM1 of the β2-subunit physically binds to the transmembrane S1 domain of the α-subunit. PMID:22710124
Fu, Yankai; Yan, Tingxuan; Xu, Xia
2017-09-28
Transmembrane self-assembling cyclic peptide (SCP) nanotubes are promising candidates for delivering specific molecules through cell membranes. The detailed mechanisms behind the transmembrane processes, as well as stabilization factors of transmembrane structures, are difficult to elucidate through experiments. In this study, the effects of peptide sequence and oligomeric state on the transmembrane capabilities of SCP nanotubes and the perturbation of embedded SCP nanotubes acting on the membrane were investigated based on coarse grained molecular dynamics simulation. The simulation results reveal that hydrophilic SCP oligomers result in the elevation of the energy barrier while the oligomerization of hydrophobic SCPs causes the reduction of the energy barrier, further leading to membrane insertion. Once SCP nanotubes are embedded, membrane properties such as density, thickness, ordering state and lateral mobility are adjusted along the radial direction. This study provides insight into the transmembrane strategy of SCP nanotubes and sheds light on designing novel transport systems.
Błachnio, Karina
2010-01-01
Detergents commonly used for solubilization of membrane proteins may be ionic or non-ionic. Exposing membrane proteins to detergents, however, can adversely affect their native structure, which can be a major hindrance for functional studies. This is especially true for proteins with multiple transmembrane domains. The ProteoExtract Transmembrane Protein Extraction Kit (TM-PEK), offered by Merck, provides a detergent-free novel reagents to enable the mild and efficient extraction of proteins containing seven transmembrane domains, such as GPCRs (G-Protein Coupled Receptors) e.g.: Frizzled-4 and CELSR-3, from mammalian cells. The fraction enriched in transmembrane proteins using TM-PEK is directly compatible with enzyme assays, non-denaturing gel electrophoresis, 1- and 2-D SDS-PAGE, MS analysis, Western blotting, immunoprecipitation and ELISA. Unlike many alternatives, TM-PEK extraction procedure does not require sonication, extended rigorous vortexing, ultracentrifugation, or incubation of samples at elevated temperatures--thus minimizing the risk of post-extraction degradation or modifications.
Palmer, J E; Dikeman, D A; Fujinuma, T; Kim, B; Jones, J I; Denda, M; Martínez-Zapater, J M; Cruz-Alvarez, M
2001-04-01
The species Brassica oleracea includes several agricultural varieties characterized by the proliferation of different types of meristems. Using a combination of subtractive hybridization and PCR (polymerase chain reaction) techniques we have identified several genes which are expressed in the reproductive meristems of the cauliflower curd (B. oleracea var. botrytis) but not in the vegetative meristems of Brussels sprouts (B. oleracea var. gemmifera) axillary buds. One of the cloned genes, termed CCE1 (CAULIFLOWER CURD EXPRESSION 1) shows specific expression in the botrytis variety. Preferential expression takes place in this variety in the meristems of the curd and in the stem throughout the vegetative and reproductive stages of plant growth. CCE1 transcripts are not detected in any of the organs of other B. oleracea varieties analyzed. Based on the nucleotide sequence of a cDNA encompassing the complete coding region, we predict that this gene encodes a transmembrane protein, with three transmembrane domains. The deduced amino acid sequence includes motifs conserved in G-protein-coupled receptors (GPCRs) from yeast and animal species. Our results suggest that the cloned gene encodes a protein belonging to a new, so far unidentified, family of transmembrane receptors in plants. The expression pattern of the gene suggests that the receptor may be involved in the control of meristem development/arrest that takes place in cauliflower.
Therien, J P Daniel; Baenziger, John E
2017-03-27
Although transmembrane helix-helix interactions must be strong enough to drive folding, they must still permit the inter-helix movements associated with conformational change. Interactions between the outermost M4 and adjacent M1 and M3 α-helices of pentameric ligand-gated ion channels have been implicated in folding and function. Here, we evaluate the role of different physical interactions at this interface in the function of two prokaryotic homologs, GLIC and ELIC. Strikingly, disruption of most interactions in GLIC lead to either a reduction or a complete loss of expression and/or function, while analogous disruptions in ELIC often lead to gains in function. Structural comparisons suggest that GLIC and ELIC represent distinct transmembrane domain archetypes. One archetype, exemplified by GLIC, the glycine and GABA receptors and the glutamate activated chloride channel, has extensive aromatic contacts that govern M4-M1/M3 interactions and that are essential for expression and function. The other archetype, exemplified by ELIC and both the nicotinic acetylcholine and serotonin receptors, has relatively few aromatic contacts that are detrimental to function. These archetypes likely have evolved different mechanisms to balance the need for strong M4 "binding" to M1/M3 to promote folding/expression, and the need for weaker interactions that allow for greater conformational flexibility.
Xu, Qian; Black, Wesley P.; Ward, Scott M.; Yang, Zhaomin
2005-01-01
Myxococcus xanthus fibril exopolysaccharide (EPS), essential for the social gliding motility and development of this bacterium, is regulated by the Dif chemotaxis-like pathway. DifA, an MCP homolog, is proposed to mediate signal input to the Dif pathway. However, DifA lacks a prominent periplasmic domain, which in classical chemoreceptors is responsible for signal perception and for initiating transmembrane signaling. To investigate the signaling properties of DifA, we constructed a NarX-DifA (NafA) chimera from the sensory module of Escherichia coli NarX and the signaling module of M. xanthus DifA. We report here the first functional chimeric signal transducer constructed using genes from organisms in two different phylogenetic subdivisions. When expressed in M. xanthus, NafA restored fruiting body formation, EPS production, and S-motility to difA mutants in the presence of nitrate. Studies with various double mutants indicate that NafA requires the downstream Dif proteins to function. We propose that signal inputs to the Dif pathway and transmembrane signaling by DifA are essential for the regulation of EPS production in M. xanthus. Despite the apparent structural differences, DifA appears to share similar transmembrane signaling mechanisms with enteric sensor kinases and chemoreceptors. PMID:16159775
Synaptobrevin Transmembrane Domain Dimerization Studied by Multiscale Molecular Dynamics Simulations
Han, Jing; Pluhackova, Kristyna; Wassenaar, Tsjerk A.; Böckmann, Rainer A.
2015-01-01
Synaptic vesicle fusion requires assembly of the SNARE complex composed of SNAP-25, syntaxin-1, and synaptobrevin-2 (sybII) proteins. The SNARE proteins found in vesicle membranes have previously been shown to dimerize via transmembrane (TM) domain interactions. While syntaxin homodimerization is supposed to promote the transition from hemifusion to complete fusion, the role of synaptobrevin’s TM domain association in the fusion process remains poorly understood. Here, we combined coarse-grained and atomistic simulations to model the homodimerization of the sybII transmembrane domain and of selected TM mutants. The wild-type helix is shown to form a stable, right-handed dimer with the most populated helix-helix interface, including key residues predicted in a previous mutagenesis study. In addition, two alternative binding interfaces were discovered, which are essential to explain the experimentally observed higher-order oligomerization of sybII. In contrast, only one dimerization interface was found for a fusion-inactive poly-Leu mutant. Moreover, the association kinetics found for this mutant is lower as compared to the wild-type. These differences in dimerization between the wild-type and the poly-Leu mutant are suggested to be responsible for the reported differences in fusogenic activity between these peptides. This study provides molecular insight into the role of TM sequence specificity for peptide aggregation in membranes. PMID:26287628
AlignMe—a membrane protein sequence alignment web server
Stamm, Marcus; Staritzbichler, René; Khafizov, Kamil; Forrest, Lucy R.
2014-01-01
We present a web server for pair-wise alignment of membrane protein sequences, using the program AlignMe. The server makes available two operational modes of AlignMe: (i) sequence to sequence alignment, taking two sequences in fasta format as input, combining information about each sequence from multiple sources and producing a pair-wise alignment (PW mode); and (ii) alignment of two multiple sequence alignments to create family-averaged hydropathy profile alignments (HP mode). For the PW sequence alignment mode, four different optimized parameter sets are provided, each suited to pairs of sequences with a specific similarity level. These settings utilize different types of inputs: (position-specific) substitution matrices, secondary structure predictions and transmembrane propensities from transmembrane predictions or hydrophobicity scales. In the second (HP) mode, each input multiple sequence alignment is converted into a hydrophobicity profile averaged over the provided set of sequence homologs; the two profiles are then aligned. The HP mode enables qualitative comparison of transmembrane topologies (and therefore potentially of 3D folds) of two membrane proteins, which can be useful if the proteins have low sequence similarity. In summary, the AlignMe web server provides user-friendly access to a set of tools for analysis and comparison of membrane protein sequences. Access is available at http://www.bioinfo.mpg.de/AlignMe PMID:24753425
Engineering Lipid Bilayer Membranes for Protein Studies
Khan, Muhammad Shuja; Dosoky, Noura Sayed; Williams, John Dalton
2013-01-01
Lipid membranes regulate the flow of nutrients and communication signaling between cells and protect the sub-cellular structures. Recent attempts to fabricate artificial systems using nanostructures that mimic the physiological properties of natural lipid bilayer membranes (LBM) fused with transmembrane proteins have helped demonstrate the importance of temperature, pH, ionic strength, adsorption behavior, conformational reorientation and surface density in cellular membranes which all affect the incorporation of proteins on solid surfaces. Much of this work is performed on artificial templates made of polymer sponges or porous materials based on alumina, mica, and porous silicon (PSi) surfaces. For example, porous silicon materials have high biocompatibility, biodegradability, and photoluminescence, which allow them to be used both as a support structure for lipid bilayers or a template to measure the electrochemical functionality of living cells grown over the surface as in vivo. The variety of these media, coupled with the complex physiological conditions present in living systems, warrant a summary and prospectus detailing which artificial systems provide the most promise for different biological conditions. This study summarizes the use of electrochemical impedance spectroscopy (EIS) data on artificial biological membranes that are closely matched with previously published biological systems using both black lipid membrane and patch clamp techniques. PMID:24185908
André, Pascal; Debray, Marcel; Scherrmann, Jean-Michel; Cisternino, Salvatore
2009-07-01
Identifying drug transporters and their in vivo significance will help to explain why some central nervous system (CNS) drugs cross the blood-brain barrier (BBB) and reach the brain parenchyma. We characterized the transport of the drug clonidine at the luminal BBB by in situ mouse brain perfusion. Clonidine influx was saturable, followed by Michaelis-Menten kinetics (K(m)=0.62 mmol/L, V(max)=1.76 nmol/sec per g at pH 7.40), and was insensitive to both sodium and trans-membrane potential. In vivo manipulation of intracellular and/or extracellular pH and trans-stimulation showed that clonidine was transported by an H+-coupled antiporter regulated by both proton and clonidine gradients, and that diphenhydramine was also a substrate. Organic cation transporters (Oct1-3), P-gp, and Bcrp did not alter clonidine transport at the BBB in knockout mice. Secondary or tertiary amine CNS compounds such as oxycodone, morphine, diacetylmorphine, methylenedioxyamphetamine (MDMA), cocaine, and nicotine inhibited clonidine transport. However, cationic compounds that interact with choline, Mate, Octn, and Pmat transporters did not. This suggests that clonidine is transported at the luminal mouse BBB by a new H+-coupled reversible antiporter.
Structural model of the open–closed–inactivated cycle of prokaryotic voltage-gated sodium channels
Bagnéris, Claire; Naylor, Claire E.; McCusker, Emily C.
2015-01-01
In excitable cells, the initiation of the action potential results from the opening of voltage-gated sodium channels. These channels undergo a series of conformational changes between open, closed, and inactivated states. Many models have been proposed for the structural transitions that result in these different functional states. Here, we compare the crystal structures of prokaryotic sodium channels captured in the different conformational forms and use them as the basis for examining molecular models for the activation, slow inactivation, and recovery processes. We compare structural similarities and differences in the pore domains, specifically in the transmembrane helices, the constrictions within the pore cavity, the activation gate at the cytoplasmic end of the last transmembrane helix, the C-terminal domain, and the selectivity filter. We discuss the observed differences in the context of previous models for opening, closing, and inactivation, and present a new structure-based model for the functional transitions. Our proposed prokaryotic channel activation mechanism is then compared with the activation transition in eukaryotic sodium channels. PMID:25512599
The use of spectral methods in bidomain studies.
Trayanova, N; Pilkington, T
1992-01-01
A Fourier transform method is developed for solving the bidomain coupled differential equations governing the intracellular and extracellular potentials on a finite sheet of cardiac cells undergoing stimulation. The spectral formulation converts the system of differential equations into a "diagonal" system of algebraic equations. Solving the algebraic equations directly and taking the inverse transform of the potentials proved numerically less expensive than solving the coupled differential equations by means of traditional numerical techniques, such as finite differences; the comparison between the computer execution times showed that the Fourier transform method was about 40 times faster than the finite difference method. By application of the Fourier transform method, transmembrane potential distributions in the two-dimensional myocardial slice were calculated. For a tissue characterized by a ratio of the intra- to extracellular conductivities that is different in all principal directions, the transmembrane potential distribution exhibits a rather complicated geometrical pattern. The influence of the different anisotropy ratios, the finite tissue size, and the stimuli configuration on the pattern of membrane polarization is investigated.
Pallagi, Petra; Venglovecz, Viktória; Rakonczay, Zoltán; Borka, Katalin; Korompay, Anna; Ózsvári, Béla; Judák, Linda; Sahin-Tóth, Miklós; Geisz, Andrea; Schnúr, Andrea; Maléth, József; Takács, Tamás; Gray, Mike A.; Argent, Barry E.; Mayerle, Julia; Lerch, Markus M.; Wittmann, Tibor; Hegyi, Péter
2012-01-01
Background & Aims The effects of trypsin on pancreatic ductal epithelial cells (PDEC) vary among species and depend on localization of proteinase-activated receptor-2 (PAR-2). Bicarbonate secretion is similar in human and guinea pig PDEC; we compared its localization in these cell types and isolated guinea pig ducts to study the effects of trypsin and a PAR-2 agonist on this process. Methods PAR-2 localization was analyzed by immunohistochemistry in guinea pig and human pancreatic tissue samples (from 15 patients with chronic pancreatitis and 15 without pancreatic disease). Functions of guinea pig PDEC were studied by microperfusion of isolated ducts, measurements of intracellular pH (pHi) and Ca2+ concentration [Ca2+]i, and patch clamp analysis. The effect of pH on trypsinogen autoactivation was assessed using recombinant human cationic trypsinogen. Results PAR-2 localized to the apical membrane of human and guinea pig PDEC. Trypsin increased [Ca2+]i and pHi, and inhibited secretion of bicarbonate by the luminal anion exchanger and the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. Autoactivation of human cationic trypsinogen accelerated when the pH was reduced from 8.5 to 6.0. PAR-2 expression was strongly down-regulated, at transcriptional and protein levels, in the ducts of patients with chronic pancreatitis, consistent with increased activity of intraductal trypsin. Importantly, in PAR-2 knockout mice, the effects of trypsin were PAR-2 dependent. Conclusions Trypsin reduces pancreatic ductal bicarbonate secretion via PAR-2–dependent inhibition of the apical anion exchanger and the CFTR Cl- channel. This could contribute to the development of chronic pancreatitis, decreasing luminal pH and promoting premature activation of trypsinogen in the pancreatic ducts. PMID:21893120
NBCe1 (SLC4A4) a potential pH Regulator in Enamel Organ Cells during Enamel Development in the Mouse
Jalali, R; Guo, J; Zandieh-Doulabi, B; Bervoets, TJM; Paine, ML; Boron, W; Parker, M; Bijvelds, MJC; Medina, JF; DenBesten, PK; Bronckers, ALJJ
2016-01-01
During formation of dental enamel maturation-stage ameloblasts express ion-transporting transmembrane proteins. The SLC4 family of ion-transporters regulates intra- and extracellular pH in eukaryotic cells by co-transporting HCO3− with Na+. Mutation in SLC4A4 (coding for the Na+ bicarbonate co-transporter NBCe1) induces developmental defects in human and murine enamel. We hypothesized that NBCe1 in dental epithelium is engaged in neutralizing protons released during crystal formation in the enamel space. We immunolocalized NBCe1 protein in mouse wild-type dental epithelium and examined the effect of NBCe1-null mutation on enamel formation in mice. Ameloblasts expressed gene transcripts for NBCe1 isoforms B/D/C/E. In wild-type mice weak to moderate immunostaining for NBCe1 with antibodies that recognize isoforms A/B/D/E and isoform C was seen in ameloblasts in secretory stage, no or very low staining in early maturation-stage but moderately to high staining in late maturation-stage. The papillary layer showed the opposite pattern and immunostained prominently at early maturation-stage but gradually showed less staining at mid- and late maturation-stage. In NBCe1−/− mice ameloblasts were disorganized, the enamel thin and severely hypomineralized. Enamel organs of CFTR−/− and AE2a,b−/− mice (believed to be pH regulators in ameloblasts) contained higher levels of NBCe1 protein than wild-type mice. Our data show that expression of NBCe1 in ameloblast and papillary layer cell depends on developmental stage and possibly responds to pH changes. PMID:25012520
Martins, Rui C; Ferreira, Ana M; Gando-Ferreira, Licínio M; Quinta-Ferreira, Rosa M
2015-10-01
With the objective of reaching suitable techniques for olive mill wastewater treatment, ozonation and ultrafiltration were studied individually and combined. A continuous reactor was run for the treatment of a phenolic mixture mimicking an actual olive mill wastewater (OMW) by ozonation. The effect of the main operating parameters was analysed (pH, liquid flow rate and ozone inlet concentration). The increase of pH and ozone dose improved ozonation efficiency. As expected, the highest residence time led to higher steady-state degradation (35 % of chemical oxygen demand (COD) abatement). Even if the rise on ozone inlet gas concentration was able to remove COD in a higher extent, it should be taken into consideration that with the lowest oxidant load (15 g O3/m(3)), the maximum steady-state biochemical oxygen demand (BOD5)/COD ratio was reached which would reduce the process costs. These operating conditions (pH 9, 1 mL/min of liquid flow rate and 15 g O3/m(3)) were applied to an actual OMW leading to 80 % of phenolic content abatement and 12 % of COD removal at the steady state. Regarding ultrafiltration, it was concluded that the best total phenolic content (TPh) and COD abatement results (55 and 15 %) are attained for pH 9 and using a transmembrane pressure drop of 1 bar. Among the integration schemes that were tested, ultrafiltration followed by ozonation was able to reach 93 and 20 % of TPh and COD depletion, respectively. Moreover, this sequence led to an effluent with a BOD5/COD ratio of about 0.55 which means that it likely can be posteriorly refined in a municipal wastewater treatment plant.
Ion Transport by Ameloblasts during Amelogenesis.
Bronckers, A L J J
2017-03-01
Hypomineralization of developing enamel is associated with changes in ameloblast modulation during the maturation stage. Modulation (or pH cycling) involves the cyclic transformation of ruffle-ended (RE) ameloblasts facing slightly acidic enamel into smooth-ended (SE) ameloblasts near pH-neutral enamel. The mechanism of ameloblast modulation is not clear. Failure of ameloblasts of Cftr-null and anion exchanger 2 ( Ae2)-null mice to transport Cl - into enamel acidifies enamel, prevents modulation, and reduces mineralization. It suggests that pH regulation is critical for modulation and for completion of enamel mineralization. This report presents a review of the major types of transmembrane molecules that ameloblasts express to transport calcium to form crystals and bicarbonates to regulate pH. The type of transporter depends on the developmental stage. Modulation is proposed to be driven by the pH of enamel fluid and the compositional and/or physicochemical changes that result from increased acidity, which may turn RE ameloblasts into SE mode. Amelogenins delay outgrowth of crystals and keep the intercrystalline space open for diffusion of mineral ions into complete depth of enamel. Modulation enables stepwise removal of amelogenins from the crystal surface, their degradation, and removal from the enamel. Removal of matrix allows slow expansion of crystals. Modulation also reduces the stress that ameloblasts experience when exposed to high acid levels generated by mineral formation or by increased intracellular Ca 2+ . By cyclically interrupting Ca 2+ transport by RE ameloblasts and their transformation into SE ameloblasts, proton production ceases shortly and enables the ameloblasts to recover. Modulation also improves enamel crystal quality by selectively dissolving immature Ca 2+ -poor crystals, removing impurities as Mg 2+ and carbonates, and recrystallizing into more acid-resistant crystals.
Heming, T A; Bidani, A
2003-01-01
The acid-base status and functional responses of alveolar macrophages (mphi) are influenced by the activity of plasmalemmal V-type H+-pump (V-ATPase), an electrogenic H+ extruder that provides a possible link between intracellular pH (pHi) and plasma membrane potential (Em). This study examined the relationships among Em, pHi, and plasmalemmal V-ATPase activity in resident alveolar mphi from rabbits. Em and pHi were measured using fluorescent probes. Em was -46 mV and pHi was 7.14 at an extracellular pH (pHo) of 7.4. The pHi declined progressively at lower pHo values. Decrements in pHo, also caused depolarization of the plasma membrane, independent of V-ATPase activity. The pH effects on Em were sensitive to external K+, and hence, probably involved pH-sensitive K+ conductance. H+ were not distributed at equilibrium across the plasma membrane. V-ATPase activity was a major determinant of the transmembrane H+ disequilibrium. Pump inhibition with bafilomycin A1 caused cytosolic acidification, due most likely to the retention of metabolically generated H+. V-ATPase inhibition also caused depolarization of the plasma membrane, but the effects were mediated indirectly via the accompanying pHi changes. V-ATPase activity was sensitive to Em. Em hyperpolarization (valinomycin-clamp) reduced V-ATPase activity, causing an acidic shift in baseline pHi under steady-state conditions and slowing pHi recovery from NH4Cl prepulse acid-loads. The findings indicate that a complex relationship exists among Em, pHi, and pHo that was partially mediated by plasmalemmal V-ATPase activity. This relationship could have important consequences for the expression of pH- and/or voltage-sensitive functions in alveolar mphi.
Human Enteroids as a Model of Upper Small Intestinal Ion Transport Physiology and Pathophysiology.
Foulke-Abel, Jennifer; In, Julie; Yin, Jianyi; Zachos, Nicholas C; Kovbasnjuk, Olga; Estes, Mary K; de Jonge, Hugo; Donowitz, Mark
2016-03-01
Human intestinal crypt-derived enteroids are a model of intestinal ion transport that require validation by comparison with cell culture and animal models. We used human small intestinal enteroids to study neutral Na(+) absorption and stimulated fluid and anion secretion under basal and regulated conditions in undifferentiated and differentiated cultures to show their functional relevance to ion transport physiology and pathophysiology. Human intestinal tissue specimens were obtained from an endoscopic biopsy or surgical resections performed at Johns Hopkins Hospital. Crypts were isolated, enteroids were propagated in culture, induced to undergo differentiation, and transduced with lentiviral vectors. Crypt markers, surface cell enzymes, and membrane ion transporters were characterized using quantitative reverse-transcription polymerase chain reaction, immunoblot, or immunofluorescence analyses. We used multiphoton and time-lapse confocal microscopy to monitor intracellular pH and luminal dilatation in enteroids under basal and regulated conditions. Enteroids differentiated upon withdrawal of WNT3A, yielding decreased crypt markers and increased villus-like characteristics. Na(+)/H(+) exchanger 3 activity was similar in undifferentiated and differentiated enteroids, and was affected by known inhibitors, second messengers, and bacterial enterotoxins. Forskolin-induced swelling was completely dependent on cystic fibrosis transmembrane conductance regulator and partially dependent on Na(+)/H(+) exchanger 3 and Na(+)/K(+)/2Cl(-) cotransporter 1 inhibition in undifferentiated and differentiated enteroids. Increases in cyclic adenosine monophosphate with forskolin caused enteroid intracellular acidification in HCO3(-)-free buffer. Cyclic adenosine monophosphate-induced enteroid intracellular pH acidification as part of duodenal HCO3(-) secretion appears to require cystic fibrosis transmembrane conductance regulator and electrogenic Na(+)/HCO3(-) cotransporter 1. Undifferentiated or crypt-like, and differentiated or villus-like, human enteroids represent distinct points along the crypt-villus axis; they can be used to characterize electrolyte transport processes along the vertical axis of the small intestine. The duodenal enteroid model showed that electrogenic Na(+)/HCO3(-) cotransporter 1 might be a target in the intestinal mucosa for treatment of secretory diarrheas. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
Ionic Liquid Confined in Mesoporous Polymer Membrane with Improved Stability for CO2/N2 Separation
Tan, Ming; Lu, Jingting; Zhang, Yang; Jiang, Heqing
2017-01-01
Supported ionic liquid membranes (SILMs) have a promising prospect of application in flue gas separation, owing to its high permeability and selectivity of CO2. However, existing SILMs have the disadvantage of poor stability due to the loss of ionic liquid from the large pores of the macroporous support. In this study, a novel SILM with high stability was developed by confining ionic liquid in a mesoporous polymer membrane. First, a mesoporous polymer membrane derived from a soluble, low-molecular-weight phenolic resin precursor was deposited on a porous Al2O3 support, and then 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4]) was immobilized inside mesopores of phenolic resin, forming the SILM under vacuum. Effects of trans-membrane pressure difference on the SILM separation performance were investigated by measuring the permeances of CO2 and N2. The SILM exhibits a high ideal CO2/N2 selectivity of 40, and an actual selectivity of approximately 25 in a mixed gas (50% CO2 and 50% N2) at a trans-membrane pressure difference of 2.5 bar. Compared to [emim][BF4] supported by polyethersulfone membrane with a pore size of around 0.45 μm, the [emim][BF4] confined in a mesoporous polymer membrane exhibits an improved stability, and its separation performance remained stable for 40 h under a trans-membrane pressure difference of 1.5 bar in a mixed gas before the measurement was intentionally stopped. PMID:28961187
Dulce, Figueiras Fierro; José, Acevedo Juan; Pablo, Martínez; Escoffier, Jessica; Sepúlveda, Francisco V.; Enrique, Balderas; Gerardo, Orta; Pablo, Visconti; Alberto, Darszon
2014-01-01
Mammalian sperm must undergo a maturational process, named capacitation, in the female reproductive tract to fertilize the egg. Sperm capacitation is regulated by a cAMP/PKA pathway and involves increases in intracellular Ca2+, pH, Cl−, protein tyrosine phosphorylation, and in mouse and some other mammals a membrane potential hyperpolarization. The cystic fibrosis transmembrane conductance regulator (CFTR), a Cl− channel modulated by cAMP/PKA and ATP, was detected in mammalian sperm and proposed to modulate capacitation. Our whole-cell patch-clamp recordings from testicular mouse sperm now reveal a Cl− selective component to membrane current that is ATP-dependent, stimulated by cAMP, cGMP and genistein (a CFTR agonist, at low concentrations), and inhibited by DPC and CFTRinh-172, two well-known CFTR antagonists. Furthermore, the Cl− current component activated by cAMP and inhibited by CFTRinh-172 is absent in recordings on testicular sperm from mice possessing the CFTR ΔF508 loss-of-function mutation, indicating that CFTR is responsible for this component. A Cl− selective like current component displaying CFTR characteristics was also found in wild type epididymal sperm bearing the cytoplasmatic droplet. Capacitated sperm treated with CFTRinh-172 undergo a shape change, suggesting that CFTR is involved in cell volume regulation. These findings indicate that functional CFTR channels are present in mouse sperm and their biophysical properties are consistent with their proposed participation in capacitation. PMID:22833409
Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube.
Siria, Alessandro; Poncharal, Philippe; Biance, Anne-Laure; Fulcrand, Rémy; Blase, Xavier; Purcell, Stephen T; Bocquet, Lydéric
2013-02-28
New models of fluid transport are expected to emerge from the confinement of liquids at the nanoscale, with potential applications in ultrafiltration, desalination and energy conversion. Nevertheless, advancing our fundamental understanding of fluid transport on the smallest scales requires mass and ion dynamics to be ultimately characterized across an individual channel to avoid averaging over many pores. A major challenge for nanofluidics thus lies in building distinct and well-controlled nanochannels, amenable to the systematic exploration of their properties. Here we describe the fabrication and use of a hierarchical nanofluidic device made of a boron nitride nanotube that pierces an ultrathin membrane and connects two fluid reservoirs. Such a transmembrane geometry allows the detailed study of fluidic transport through a single nanotube under diverse forces, including electric fields, pressure drops and chemical gradients. Using this device, we discover very large, osmotically induced electric currents generated by salinity gradients, exceeding by two orders of magnitude their pressure-driven counterpart. We show that this result originates in the anomalously high surface charge carried by the nanotube's internal surface in water at large pH, which we independently quantify in conductance measurements. The nano-assembly route using nanostructures as building blocks opens the way to studying fluid, ionic and molecule transport on the nanoscale, and may lead to biomimetic functionalities. Our results furthermore suggest that boron nitride nanotubes could be used as membranes for osmotic power harvesting under salinity gradients.
Trabanino, Rene J; Vaidehi, Nagarajan; Hall, Spencer E; Goddard, William A; Floriano, Wely
2013-02-05
The invention provides computer-implemented methods and apparatus implementing a hierarchical protocol using multiscale molecular dynamics and molecular modeling methods to predict the presence of transmembrane regions in proteins, such as G-Protein Coupled Receptors (GPCR), and protein structural models generated according to the protocol. The protocol features a coarse grain sampling method, such as hydrophobicity analysis, to provide a fast and accurate procedure for predicting transmembrane regions. Methods and apparatus of the invention are useful to screen protein or polynucleotide databases for encoded proteins with transmembrane regions, such as GPCRs.
Chasing the open-state structure of pentameric ligand-gated ion channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez-Gutierrez, Giovanni; Wang, Yuhang; Cymes, Gisela D.
Remarkable advances have been made toward the structural characterization of ion channels in the last two decades. However, the unambiguous assignment of well-defined functional states to the obtained structural models has proved challenging. In the case of the superfamily of nicotinic-receptor channels (also referred to as pentameric ligand-gated ion channels [pLGICs]), for example, two different types of model of the open-channel conformation have been proposed on the basis of structures solved to resolutions better than 4.0 Å. At the level of the transmembrane pore, the open-state models of the proton-gated pLGIC fromGloeobacter violaceus(GLIC) and the invertebrate glutamate-gated Cl –channel (GluCl)more » are very similar to each other, but that of the glycine receptor (GlyR) is considerably wider. Indeed, the mean distances between the axis of ion permeation and the Cα atoms at the narrowest constriction of the pore (position -2') differ by ~2 Å in these two classes of model, a large difference when it comes to understanding the physicochemical bases of ion conduction and charge selectivity. Here, we take advantage of the extreme open-channel stabilizing effect of mutations at pore-facing position 9'. We find that the I9'A mutation slows down entry into desensitization of GLIC to the extent that macroscopic currents decay only slightly by the end of pH 4.5 solution applications to the extracellular side for several minutes. We crystallize (at pH 4.5) two variants of GLIC carrying this mutation and solve their structures to resolutions of 3.12 Å and 3.36 Å. Furthermore, we perform all-atom molecular dynamics simulations of ion permeation and picrotoxinin block, using the different open-channel structural models. On the basis of these results, we favor the notion that the open-channel structure of pLGICs from animals is much closer to that of the narrow models (of GLIC and GluCl) than it is to that of the GlyR.« less
Midgett, Charles R; Almagro-Moreno, Salvador; Pellegrini, Maria; Taylor, Ronald K; Skorupski, Karen; Kull, F Jon
2017-07-01
ToxR is a transmembrane transcription factor that is essential for virulence gene expression and human colonization by Vibrio cholerae. ToxR requires its operon partner ToxS, a periplasmic integral membrane protein, for full activity. These two proteins are thought to interact through their respective periplasmic domains, ToxRp and ToxSp. In addition, ToxR is thought to be responsive to various environmental cues, such as bile salts and alkaline pH, but how these factors influence ToxR is not yet understood. Using NMR and reciprocal pull down assays, we present the first direct evidence that ToxR and ToxS physically interact. Furthermore, using NMR and DSF, it was shown that the bile salts cholate and chenodeoxycholate interact with purified ToxRp and destabilize it. Surprisingly, bile salt destabilization of ToxRp enhanced the interaction between ToxRp and ToxSp. In contrast, alkaline pH, which is one of the factors that leads to ToxR proteolysis, decreased the interaction between ToxRp and ToxSp. Taken together, these data suggest a model whereby bile salts or other detergents destabilize ToxR, increasing its interaction with ToxS to promote full ToxR activity. Subsequently, as V. cholerae alkalinizes its environment in late stationary phase, the interaction between the two proteins decreases, allowing ToxR proteolysis to proceed. © 2017 John Wiley & Sons Ltd.
Yan, Li; Hu, Rui; Tu, Song; Cheng, Wen-Jun; Zheng, Qiong; Wang, Jun-Wen; Kan, Wu-Sheng; Ren, Yi-Jun
2015-01-01
TNFα played a dominant role in the development and progression of rheumatoid arthritis (RA). Clinical trials proved the efficacies of anti-TNFα agents for curing RA. However, most researchers were concentrating on their abilities of neutralizing TNFα, the potencies of different anti-TNFα agents varied a lot due to the antibody-dependent cell-mediated cytotoxicity (ADCC) or complement dependent cytotoxicity (CDC). For better understanding and differentiating the potentiality of various candidate anti-TNF reagents at the stage of new drug research and development, present study established a cell model expressing the transmembrane TNFα for usage in in vitro ADCC or CDC assay, meanwhile, the assay protocol described here could provide guidelines for screening macromolecular antibody drugs. A stable cell subline bearing transmembrane TNFα was first established by conventional transfection method, the expression of transmembrane TNFα was approved by flow cytometer, and the performance of the stable subline in ADCC and CDC assay was evaluated, using human peripheral blood mononuclear cells as effector cells, and Adalimumab as the anti-TNFα reagent. The stable cell subline demonstrated high level of surface expression of transmembrane TNFα, and Adalimumab exerted both ADCC and CDC effects on this cell model. In conclusion, the stable cell line we established in present research could be used in ADCC or CDC assay for screening antibody drugs, which would provide in-depth understanding of the potencies of candidate antibody drugs in addition to the traditional TNFα neutralizing assay.
Yu, Yawei; Kuan, Ai-Seon
2014-01-01
The transmembrane protein TMEM16A forms a Ca2+-activated Cl− channel that is permeable to many anions, including SCN−, I−, Br−, Cl−, and HCO3−, and has been implicated in various physiological functions. Indeed, controlling anion permeation through the TMEM16A channel pore may be critical in regulating the pH of exocrine fluids such as the pancreatic juice. The anion permeability of the TMEM16A channel pore has recently been reported to be modulated by Ca2+-calmodulin (CaCaM), such that the pore of the CaCaM-bound channel shows a reduced ability to discriminate between anions as measured by a shift of the reversal potential under bi-ionic conditions. Here, using a mouse TMEM16A clone that contains the two previously identified putative CaM-binding motifs, we were unable to demonstrate such CaCaM-dependent changes in the bi-ionic potential. We confirmed the activity of CaCaM used in our study by showing CaCaM modulation of the olfactory cyclic nucleotide–gated channel. We suspect that the different bi-ionic potentials that were obtained previously from whole-cell recordings in low and high intracellular [Ca2+] may result from different degrees of bi-ionic potential shift secondary to a series resistance problem, an ion accumulation effect, or both. PMID:24981232
Cell cycle progression is regulated by intertwined redox oscillators.
da Veiga Moreira, Jorgelindo; Peres, Sabine; Steyaert, Jean-Marc; Bigan, Erwan; Paulevé, Loïc; Nogueira, Marcel Levy; Schwartz, Laurent
2015-05-29
The different phases of the eukaryotic cell cycle are exceptionally well-preserved phenomena. DNA decompaction, RNA and protein synthesis (in late G1 phase) followed by DNA replication (in S phase) and lipid synthesis (in G2 phase) occur after resting cells (in G0) are committed to proliferate. The G1 phase of the cell cycle is characterized by an increase in the glycolytic metabolism, sustained by high NAD+/NADH ratio. A transient cytosolic acidification occurs, probably due to lactic acid synthesis or ATP hydrolysis, followed by cytosolic alkalinization. A hyperpolarized transmembrane potential is also observed, as result of sodium/potassium pump (NaK-ATPase) activity. During progression of the cell cycle, the Pentose Phosphate Pathway (PPP) is activated by increased NADP+/NADPH ratio, converting glucose 6-phosphate to nucleotide precursors. Then, nucleic acid synthesis and DNA replication occur in S phase. Along with S phase, unpublished results show a cytosolic acidification, probably the result of glutaminolysis occurring during this phase. In G2 phase there is a decrease in NADPH concentration (used for membrane lipid synthesis) and a cytoplasmic alkalinization occurs. Mitochondria hyperfusion matches the cytosolic acidification at late G1/S transition and then triggers ATP synthesis by oxidative phosphorylation. We hypothesize here that the cytosolic pH may coordinate mitochondrial activity and thus the different redox cycles, which in turn control the cell metabolism.
Metal Transport across Biomembranes: Emerging Models for a Distinct Chemistry*
Argüello, José M.; Raimunda, Daniel; González-Guerrero, Manuel
2012-01-01
Transition metals are essential components of important biomolecules, and their homeostasis is central to many life processes. Transmembrane transporters are key elements controlling the distribution of metals in various compartments. However, due to their chemical properties, transition elements require transporters with different structural-functional characteristics from those of alkali and alkali earth ions. Emerging structural information and functional studies have revealed distinctive features of metal transport. Among these are the relevance of multifaceted events involving metal transfer among participating proteins, the importance of coordination geometry at transmembrane transport sites, and the presence of the largely irreversible steps associated with vectorial transport. Here, we discuss how these characteristics shape novel transition metal ion transport models. PMID:22389499
Metal transport across biomembranes: emerging models for a distinct chemistry.
Argüello, José M; Raimunda, Daniel; González-Guerrero, Manuel
2012-04-20
Transition metals are essential components of important biomolecules, and their homeostasis is central to many life processes. Transmembrane transporters are key elements controlling the distribution of metals in various compartments. However, due to their chemical properties, transition elements require transporters with different structural-functional characteristics from those of alkali and alkali earth ions. Emerging structural information and functional studies have revealed distinctive features of metal transport. Among these are the relevance of multifaceted events involving metal transfer among participating proteins, the importance of coordination geometry at transmembrane transport sites, and the presence of the largely irreversible steps associated with vectorial transport. Here, we discuss how these characteristics shape novel transition metal ion transport models.
Prakash, Amresh; Idrees, Danish; Haque, Md Anzarul; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz
2017-05-01
Carbonic anhydrase IX (CAIX) is a transmembrane glycoprotein, associated with tumor, acidification which leads to the cancer, and is considered as a potential biomarker for hypoxia-induced cancers. The overexpression of CAIX is linked with hypoxia condition which is mediated by the transcription of hypoxia-induced factor (HIF-1). To understand the biophysical properties of CAIX, we have carried out a reversible isothermal denaturation of CAIX-induced by GdmCl at pH 8.0 and 25°C. Three different spectroscopic probes, the far-UV CD at 222 nm ([θ] 222 ), Trp fluorescence emission at 342 nm (F 342 ) and difference molar absorption coefficient at 287 nm (Δε 287 ) were used to estimate stability parameters, [Formula: see text] (Gibbs free energy change in the absence of GdmCl; C m (midpoint of the denaturation curve), i.e. molar GdmCl concentration ([GdmCl]) at which ΔG D = 0; and m, the slope (=∂ΔG D /∂[GdmCl])). GdmCl induces a reversible denaturation of CAIX. Coincidence of the normalized transition curves of all optical properties suggests that unfolding/refolding of CAIX is a two-state process. We further performed molecular dynamics simulation of CAIX for 40 ns to see the dynamics of protein structure in different GdmCl concentrations. An excellent agreement was observed between in silico and in vitro studies.
NASA Astrophysics Data System (ADS)
Vershubskii, A. V.; Tikhonov, A. N.
2017-05-01
This paper presents a theoretical study of the effects of topological factors (density of thylakoid packing in grana) on the efficiency of energy coupling in chloroplasts. The study is based on a mathematical model of electron and proton transport processes coupled to ATP synthesis in chloroplasts. The model was developed by the authors earlier, and the nonuniform distribution of electron transport and ATP synthase complexes in the membranes of granal and intergranal thylakoids was taken into account in the model. The results of numerical experiments enabled the analysis of the distribution of lateral profiles of the transmembrane pH difference and the concentrations of mobile plastoquinone and plastocyanin electron transporters in granal and intergranal thylakoids and the dependence of this distribution on the metabolic state of class B chloroplasts (photosynthetic control state or the conditions of intensive ATP synthesis). Moreover, the influence of topological factors (the density of thylakoid packing in grana and the degree of thylakoid swelling) that affect the rate of diffusion of protons and mobile electron carriers in the intrathylakoid space and in the interthylakoidal gap was investigated. The results of numerical experiments that involved the variation of geometric parameters of the system revealed the influence of thylakoid thickness and the distance between the granal thylakoids on the lateral pH profiles inside the thylakoids (pHi) and in the interthylakoidal gap (pHo). Acidification of the intrathylakoid space characterized by the pHi value increased concomitantly to the increase of the width of the interthylakoidal gap l o and decreased concomitantly to the increase of the width of the intrathylakoidal space l i.
Jensen, Frank B; Rohde, Sabina
2010-04-01
Nitrite uptake into red blood cells (RBCs) precedes its intracellular reactions with hemoglobin (Hb) that forms nitric oxide (NO) during hypoxia. We investigated the uptake of nitrite and its reactions with Hb at different oxygen saturations (So(2)), using RBCs with (carp and rabbit) and without (hagfish and lamprey) anion exchanger-1 (AE1) in the membrane, with the aim to unravel the mechanisms and oxygenation dependencies of nitrite transport. Added nitrite rapidly diffused into the RBCs until equilibrium. The distribution ratio of nitrite across the membrane agreed with that expected from HNO(2) diffusion and AE1-mediated facilitated NO(2)(-) diffusion. Participation of HNO(2) diffusion was emphasized by rapid transmembrane nitrite equilibration also in the natural AE1 knockouts. Following the equilibration, nitrite was consumed by reacting with Hb, which created a continued inward diffusion controlled by intracellular reaction rates. Changes in nitrite uptake with So(2), pH, or species were accordingly explained by corresponding changes in reaction rates. In carp, nitrite uptake rates increased linearly with decreasing So(2) over the entire So(2) range. In rabbit, nitrite uptake rates were highest at intermediate So(2), producing a bell-shaped relationship with So(2). Nitrite consumption increased approximately 10-fold with a 1 unit decrease in pH, as expected from the involvement of protons in the reactions with Hb. The reaction of nitrite with deoxyhemoglobin was favored over that with oxyhemoglobin at intermediate So(2). We propose a model for RBC nitrite uptake that involves both HNO(2) diffusion and AE1-mediated transport and that explains both the present and previous (sometimes puzzling) results.
Effect of hyperthyroidism on the transport of pyruvate in rat-heart mitochondria.
Paradies, G; Ruggiero, F M
1988-08-17
A comparative study of the transport of pyruvate in heart mitochondria from normal and triiodothyronine-treated rats has been carried out. It has been found that the rate of carrier-mediated (alpha-cyanocinnamate-sensitive) pyruvate uptake is significantly enhanced in mitochondria from triiodothyronine-treated rats as compared with mitochondria from control rats. The kinetic parameters of the pyruvate uptake indicate that only the Vmax of this process is enhanced whilst there is no change in the Km value. The enhanced rate of pyruvate uptake is not dependent on the increase of the transmembrane delta pH value (both mitochondria from normal and triiodothyronine-treated rats exhibit the same delta pH value) neither does it depend on the increase of the pyruvate carrier molecules (titration of these last with alpha-cyanocinnamate gives the same total number of binding sites). the pyruvate-dependent oxygen uptake is stimulated by 35-40% in mitochondria from hyperthyroid rats when compared with mitochondria from control rats. There is, however, no difference in either the respiratory control ratios or in the ADP/O ratios between these two types of mitochondria. The heart mitochondrial phospholipid composition is altered significantly in hyperthyroid rats; in particular, negatively charged phospholipid such as cardiolipin and phosphatidylserine were found to increase by more than 50%. Minor alterations were found in the pattern of fatty acids with an increase of 20:4/18:2 ratio. It is suggested that the changes in the kinetic parameters of pyruvate transport in mitochondria from hyperthyroid rats involve hormone-mediated changes in the lipid composition of the mitochondrial membranes which in turn modulate the activity of the pyruvate carrier.
Khurana, Ekta; Peraro, Matteo Dal; DeVane, Russell; Vemparala, Satyavani; DeGrado, William F.; Klein, Michael L.
2009-01-01
The M2 protein of the influenza A virus is activated by low endosomal pH and performs the essential function of proton transfer into the viral interior. The resulting decrease in pH within the virion is essential for the uncoating and further replication of the viral genetic material. The x-ray crystal [Stouffer AL, et al. (2008) Nature 451:596–599] and solution NMR [Schnell JR, Chou JJ (2008) Nature 451:591–595] structures of the transmembrane region of the M2 homo-tetrameric bundle both revealed pores with narrow constrictions at one end, leaving a question as to how protons enter the channel. His-37, which is essential for proton-gating and selective conduction of protons, lies in the pore of the crystallographic and NMR structures. Here, we explore the different protonation states of the His-37 residues of the M2 bundle in a bilayer using molecular dynamics (MD) simulations. When the His-37 residues are neutral, the protein prefers an Openout-Closedin conformation in which the channel is open to the environment on the outside of the virus but closed to the interior environment of the virus. Diffusion of protons into the channel from the outside of the virus and protonation of His-37 residues in the tetramer stabilizes an oppositely gated Closedout-Openin conformation. Thus, protons might be conducted through a transporter-like mechanism, in which the protein alternates between Openout-Closedin and Closedout-Openin conformations, and His-37 is protonated/deprotonated during each turnover. The transporter-like mechanism is consistent with the known properties of the M2 bundle, including its relatively low rate of proton flux and its strong rectifying behavior. PMID:19144924
Vaartjes, W J; den Breejen, J N; Geelen, M J; van den Bergh, S G
1980-08-05
1. Preincubation of isolated rat-liver mitochondria in the presence of adenine nucleotides or Ca2+ results in definite and persistent changes in the initial rate of pyruvate transport. 2. These changes in the rate of pyruvate transport are accompanied by equally persistent changes in the opposite direction of the activity of pyruvate dehydrogenase (EC 1.2.4.1). 3. Changes of the transmembrane pH gradient and of the membrane potential, brought about by the pretreatments of the mitochondria, cannot account for the observed changes in the rate of pyruvate transport. 4. It is proposed that the pretreatment of the mitochondria directly modulates the activity of the mitochondrial pyruvate carrier. The possible regulatory role of such a modulation system is discussed.
Topology of membrane proteins-predictions, limitations and variations.
Tsirigos, Konstantinos D; Govindarajan, Sudha; Bassot, Claudio; Västermark, Åke; Lamb, John; Shu, Nanjiang; Elofsson, Arne
2017-10-26
Transmembrane proteins perform a variety of important biological functions necessary for the survival and growth of the cells. Membrane proteins are built up by transmembrane segments that span the lipid bilayer. The segments can either be in the form of hydrophobic alpha-helices or beta-sheets which create a barrel. A fundamental aspect of the structure of transmembrane proteins is the membrane topology, that is, the number of transmembrane segments, their position in the protein sequence and their orientation in the membrane. Along these lines, many predictive algorithms for the prediction of the topology of alpha-helical and beta-barrel transmembrane proteins exist. The newest algorithms obtain an accuracy close to 80% both for alpha-helical and beta-barrel transmembrane proteins. However, lately it has been shown that the simplified picture presented when describing a protein family by its topology is limited. To demonstrate this, we highlight examples where the topology is either not conserved in a protein superfamily or where the structure cannot be described solely by the topology of a protein. The prediction of these non-standard features from sequence alone was not successful until the recent revolutionary progress in 3D-structure prediction of proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dong, Zheng; Zhou, Jingru; Xu, Xia; Jiang, Shuai; Li, Yuan; Zhao, Dongbao; Yang, Chengde; Ma, Yanyun; Wang, Yi; He, Hongjun; Ji, Hengdong; Zhang, Juan; Yuan, Ziyu; Yang, Yajun; Wang, Xiaofeng; Pang, Yafei; Jin, Li; Zou, Hejian; Wang, Jiucun
2018-03-01
The aims of this study were to identify candidate pathways associated with serum urate and to explore the genetic effect of those pathways on the risk of gout. Pathway analysis of the loci identified in genome-wide association studies (GWASs) showed that the ion transmembrane transporter activity pathway (GO: 0015075) and the secondary active transmembrane transporter activity pathway (GO: 0015291) were both associated with serum urate concentrations, with P FDR values of 0.004 and 0.007, respectively. In a Chinese population of 4,332 individuals, the two pathways were also found to be associated with serum urate (P FDR = 1.88E-05 and 3.44E-04, separately). In addition, these two pathways were further associated with the pathogenesis of gout (P FDR = 1.08E-08 and 2.66E-03, respectively) in the Chinese population and a novel gout-associated gene, SLC17A2, was identified (OR = 0.83, P FDR = 0.017). The mRNA expression of candidate genes also showed significant differences among different groups at pathway level. The present study identified two transmembrane transporter activity pathways (GO: 0015075 and GO: 0015291) were associations with serum urate concentrations and the risk of gout. SLC17A2 was identified as a novel gene that influenced the risk of gout.
Qiu, Li Yan; Koenderink, Jan B; Swarts, Herman G P; Willems, Peter H G M; De Pont, Jan Joep H H M
2003-11-21
Ouabain is a glycoside that binds to and inhibits the action of Na+,K+-ATPase. Little is known, however, about the specific requirements of the protein surface for glycoside binding. Using chimeras of gastric H+,K+-ATPase and Na+,K+-ATPase, we demonstrated previously that the combined presence of transmembrane hairpins M3-M4 and M5-M6 of Na+,K+-ATPase in a backbone of H+,K+-ATPase (HN34/56) is both required and sufficient for high affinity ouabain binding. Since replacement of transmembrane hairpin M3-M4 by the N terminus up to transmembrane segment 3 (HNN3/56) resulted in a low affinity ouabain binding, hairpin M5-M6 seems to be essential for ouabain binding. To assess which residues of M5-M6 are required for ouabain action, we divided this transmembrane hairpin in seven parts and individually replaced these parts by the corresponding sequences of H+,K+-ATPase in chimera HN34/56. Three of these chimeras failed to bind ouabain following expression in Xenopus laevis oocytes. Altogether, these three chimeras contained 7 amino acids that were specific for Na+,K+-ATPase. Individual replacement of these 7 amino acids by the corresponding amino acids in H+,K+-ATPase revealed a dramatic loss of ouabain binding for F783Y, T797C, and D804E. As a proof of principle, the Na+,K+-ATPase equivalents of these 3 amino acids were introduced in different combinations in chimera HN34. The presence of all 3 amino acids appeared to be required for ouabain action. Docking of ouabain onto a three-dimensional-model of Na+,K+-ATPase suggests that Asp804, in contrast to Phe783 and Thr797, does not actually form part of the ouabain-binding pocket. Most likely, the presence of this amino acid is required for adopting of the proper conformation for ouabain binding.
Genotype-phenotype aspects of type 2 long QT syndrome.
Shimizu, Wataru; Moss, Arthur J; Wilde, Arthur A M; Towbin, Jeffrey A; Ackerman, Michael J; January, Craig T; Tester, David J; Zareba, Wojciech; Robinson, Jennifer L; Qi, Ming; Vincent, G Michael; Kaufman, Elizabeth S; Hofman, Nynke; Noda, Takashi; Kamakura, Shiro; Miyamoto, Yoshihiro; Shah, Samit; Amin, Vinit; Goldenberg, Ilan; Andrews, Mark L; McNitt, Scott
2009-11-24
The purpose of this study was to investigate the effect of location, coding type, and topology of KCNH2(hERG) mutations on clinical phenotype in type 2 long QT syndrome (LQTS). Previous studies were limited by population size in their ability to examine phenotypic effect of location, type, and topology. Study subjects included 858 type 2 LQTS patients with 162 different KCNH2 mutations in 213 proband-identified families. The Cox proportional-hazards survivorship model was used to evaluate independent contributions of clinical and genetic factors to the first cardiac events. For patients with missense mutations, the transmembrane pore (S5-loop-S6) and N-terminus regions were a significantly greater risk than the C-terminus region (hazard ratio [HR]: 2.87 and 1.86, respectively), but the transmembrane nonpore (S1-S4) region was not (HR: 1.19). Additionally, the transmembrane pore region was significantly riskier than the N-terminus or transmembrane nonpore regions (HR: 1.54 and 2.42, respectively). However, for nonmissense mutations, these other regions were no longer riskier than the C-terminus (HR: 1.13, 0.77, and 0.46, respectively). Likewise, subjects with nonmissense mutations were at significantly higher risk than were subjects with missense mutations in the C-terminus region (HR: 2.00), but that was not the case in other regions. This mutation location-type interaction was significant (p = 0.008). A significantly higher risk was found in subjects with mutations located in alpha-helical domains than in subjects with mutations in beta-sheet domains or other locations (HR: 1.74 and 1.33, respectively). Time-dependent beta-blocker use was associated with a significant 63% reduction in the risk of first cardiac events (p < 0.001). The KCNH2 missense mutations located in the transmembrane S5-loop-S6 region are associated with the greatest risk.
Friedmacher, Florian; Doi, Takashi; Gosemann, Jan-Hendrik; Fujiwara, Naho; Kutasy, Balazs; Puri, Prem
2012-02-01
Nitrofen model of congenital diaphragmatic hernia (CDH) has been widely used to investigate the pathogenesis of pulmonary hypoplasia (PH). Fibroblast growth factor (FGF) signaling pathway plays a fundamental role in fetal lung development. FGF7 and FGF10, which are critical for lung morphogenesis, have been reported to be downregulated in nitrofen-induced PH. FGF signaling is mediated by a family of four single transmembrane receptors, FGFR1-4. FGFR2 and FGFR3 have been shown to be expressed predominantly in the late stages of developing lungs. In addition, the upregulation of FGFR2 gene expression has been associated with severe defects in lung development and resulted in arrested alveologenesis similar to PH seen in the nitrofen model. Furthermore, FGFR3(-/-)FGFR4(-/-) double mutants showed thinner mesenchyme and larger air spaces. We designed this study to test the hypothesis that FGFR gene expression is upregulated in the late stages of lung development in the nitrofen CDH model. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Cesarean section was performed and fetuses were harvested on D18 and D21. Fetal lungs were divided into three groups: control, nitrofen without CDH [CDH(-)], and nitrofen with CDH [CDH(+)] (n = 24 at each time-point). Pulmonary gene expression levels of FGFR1-4 were analyzed by real-time RT-PCR. Immunohistochemistry was also performed to evaluate protein expression/distribution at each time-point. The relative messenger RNA expression levels of pulmonary FGFR2 and FGFR3 on D21 were significantly increased in CDH(-) (6.38 ± 1.93 and 7.84 ± 2.86, respectively) and CDH(+) (7.09 ± 2.50 and 7.25 ± 3.43, respectively) compared to controls (P < 0.05 and P < 0.01, respectively), whereas no significant alteration was observed on D18. There were no differences in FGFR1 and FGFR4 expression at both time-points. Increased immunoreactivity of FGFR2 and FGFR3, mainly in the distal epithelium and mesenchyme, was observed in the nitrofen-induced hypoplastic lungs on D21 compared to controls. Upregulation of FGFR2 and FGFR3 pulmonary gene expression in the late stages of fetal lung development may disrupt FGFR-mediated alveologenesis resulting in PH in the CDH model.
Poxvirus-encoded TNF decoy receptors inhibit the biological activity of transmembrane TNF.
Pontejo, Sergio M; Alejo, Ali; Alcami, Antonio
2015-10-01
Poxviruses encode up to four different soluble TNF receptors, named cytokine response modifier B (CrmB), CrmC, CrmD and CrmE. These proteins mimic the extracellular domain of the cellular TNF receptors to bind and inhibit the activity of TNF and, in some cases, other TNF superfamily ligands. Most of these ligands are released after the enzymic cleavage of a membrane precursor. However, transmembrane TNF (tmTNF) is not only a precursor of soluble TNF but also exerts specific pro-inflammatory and immunological activities. Here, we report that viral TNF receptors bound and inhibited tmTNF and describe some interesting differences in their activity against the soluble cytokine. Thus, CrmE, which does not inhibit mouse soluble TNF, could block murine tmTNF-induced cytotoxicity. We propose that this anti-tmTNF effect should be taken into consideration when assessing the role of viral TNF decoy receptors in the pathogenesis of poxvirus.
Wang, Hao; Barreyro, Laura; Provasi, Davide; Djemil, Imane; Torres-Arancivia, Celia; Filizola, Marta; Ubarretxena-Belandia, Iban
2011-01-01
The deposition of toxic amyloid-β peptide (Aβ) aggregates in the brain is a hallmark of Alzheimer's disease. The intramembrane proteolysis by γ-secretase of the amyloid precursor protein carboxy-terminal fragment (APP-βCTF) constitutes the final step in the production of Aβs. Mounting evidence suggests that APP-βCTF is a transmembrane domain (TMD) dimer, and that dimerization might modulate the production of Aβ species that are prone to aggregation, and therefore most toxic. We combined experimental and computational approaches to study the molecular determinants and thermodynamics of APP-βCTF dimerization, and produced a unifying structural model that reconciles much of the published data. Using a cell assay, which exploits a dimerization-dependent activator of transcription, we identified specific dimerization-disrupting mutations located mostly at the N-terminus of the TMD of APP-βCTF. The ability of selected mutants to disrupt the dimerization of full length APP-βCTF was confirmed by fluorescence resonance energy transfer experiments. Free-energy estimates of wild-type (WT) and mutants of the TMD of APP-βCTF derived from enhanced molecular dynamics simulations showed that the dimeric state is comprised of different arrangements, in which either 709GXXXA713 or 700GXXXG704GXXXG708 interaction motifs can engage in symmetric or asymmetric associations. Mutations along the TMD of APP-βCTF were found to modulate the relative free energy of the dimeric configurations, and to differently affect the distribution of interfaces within the dimeric state. This observation might have important biological implications, since dimers with a different arrangement of the transmembrane helices are likely to be recognized differently by γ-secretase and lead to a variation of Aβ levels. PMID:21440556
Haining, Elizabeth J.; Yang, Jing; Bailey, Rebecca L.; Khan, Kabir; Collier, Richard; Tsai, Schickwann; Watson, Steve P.; Frampton, Jon; Garcia, Paloma; Tomlinson, Michael G.
2012-01-01
A disintegrin and metalloprotease 10 (ADAM10) is a ubiquitous transmembrane metalloprotease that cleaves the extracellular regions from over 40 different transmembrane target proteins, including Notch and amyloid precursor protein. ADAM10 is essential for embryonic development and is also important in inflammation, cancer, and Alzheimer disease. However, ADAM10 regulation remains poorly understood. ADAM10 is compartmentalized into membrane microdomains formed by tetraspanins, which are a superfamily of 33 transmembrane proteins in humans that regulate clustering and trafficking of certain other transmembrane “partner” proteins. This is achieved by specific tetraspanin-partner interactions, but it is not clear which tetraspanins specifically interact with ADAM10. The aims of this study were to identify which tetraspanins interact with ADAM10 and how they regulate this metalloprotease. Co-immunoprecipitation identified specific ADAM10 interactions with Tspan5, Tspan10, Tspan14, Tspan15, Tspan17, and Tspan33/Penumbra. These are members of the largely unstudied TspanC8 subgroup of tetraspanins, all six of which promoted ADAM10 maturation. Different cell types express distinct repertoires of TspanC8 tetraspanins. Human umbilical vein endothelial cells express relatively high levels of Tspan14, the knockdown of which reduced ADAM10 surface expression and activity. Mouse erythrocytes express predominantly Tspan33, and ADAM10 expression was substantially reduced in the absence of this tetraspanin. In contrast, ADAM10 expression was normal on Tspan33-deficient mouse platelets in which Tspan14 is the major TspanC8 tetraspanin. These results define TspanC8 tetraspanins as essential regulators of ADAM10 maturation and trafficking to the cell surface. This finding has therapeutic implications because focusing on specific TspanC8-ADAM10 complexes may allow cell type- and/or substrate-specific ADAM10 targeting. PMID:23035126
Lai, Char-Chang; Edwards, Anne P B; DiMaio, Daniel
2005-02-01
The bovine papillomavirus E5 protein is a 44-amino-acid transmembrane protein that transforms cells by binding to the transmembrane region of the cellular platelet-derived growth factor (PDGF) beta receptor, resulting in sustained receptor signaling. However, there are published reports that certain mutants with amino acid substitutions in the membrane-spanning segment of the E5 protein transform cells without activating the PDGF beta receptor. We re-examined several of these transmembrane mutants, and here we present five lines of evidence that these mutants do in fact activate the PDGF beta receptor, resulting in cellular signaling and transformation.
Topology of transmembrane channel-like gene 1 protein.
Labay, Valentina; Weichert, Rachel M; Makishima, Tomoko; Griffith, Andrew J
2010-10-05
Mutations of transmembrane channel-like gene 1 (TMC1) cause hearing loss in humans and mice. TMC1 is the founding member of a family of genes encoding proteins of unknown function that are predicted to contain multiple transmembrane domains. The goal of our study was to define the topology of mouse TMC1 expressed heterologously in tissue culture cells. TMC1 was retained in the endoplasmic reticulum (ER) membrane of five tissue culture cell lines that we tested. We used anti-TMC1 and anti-HA antibodies to probe the topologic orientation of three native epitopes and seven HA epitope tags along full-length TMC1 after selective or complete permeabilization of transfected cells with digitonin or Triton X-100, respectively. TMC1 was present within the ER as an integral membrane protein containing six transmembrane domains and cytosolic N- and C-termini. There is a large cytoplasmic loop, between the fourth and fifth transmembrane domains, with two highly conserved hydrophobic regions that might associate with or penetrate, but do not span, the plasma membrane. Our study is the first to demonstrate that TMC1 is a transmembrane protein. The topologic organization revealed by this study shares some features with that of the shaker-TRP superfamily of ion channels.
Transmembrane Mucins: Signaling Receptors at the Intersection of Inflammation and Cancer
van Putten, Jos P.M.; Strijbis, Karin
2017-01-01
Mucosal surfaces line our body cavities and provide the interaction surface between commensal and pathogenic microbiota and the host. The barrier function of the mucosal layer is largely maintained by gel-forming mucin proteins that are secreted by goblet cells. In addition, mucosal epithelial cells express cell-bound mucins that have both barrier and signaling functions. The family of transmembrane mucins consists of diverse members that share a few characteristics. The highly glycosylated extracellular mucin domains inhibit invasion by pathogenic bacteria and can form a tight mesh structure that protects cells in harmful conditions. The intracellular tails of transmembrane mucins can be phosphorylated and connect to signaling pathways that regulate inflammation, cell-cell interactions, differentiation, and apoptosis. Transmembrane mucins play important roles in preventing infection at mucosal surfaces, but are also renowned for their contributions to the development, progression, and metastasis of adenocarcinomas. In general, transmembrane mucins seem to have evolved to monitor and repair damaged epithelia, but these functions can be highjacked by cancer cells to yield a survival advantage. This review presents an overview of the current knowledge of the functions of transmembrane mucins in inflammatory processes and carcinogenesis in order to better understand the diverse functions of these multifunctional proteins. PMID:28052300
Transmembrane proteins in the Protein Data Bank: identification and classification.
Tusnády, Gábor E; Dosztányi, Zsuzsanna; Simon, István
2004-11-22
Integral membrane proteins play important roles in living cells. Although these proteins are estimated to constitute 25% of proteins at a genomic scale, the Protein Data Bank (PDB) contains only a few hundred membrane proteins due to the difficulties with experimental techniques. The presence of transmembrane proteins in the structure data bank, however, is quite invisible, as the annotation of these entries is rather poor. Even if a protein is identified as a transmembrane one, the possible location of the lipid bilayer is not indicated in the PDB because these proteins are crystallized without their natural lipid bilayer, and currently no method is publicly available to detect the possible membrane plane using the atomic coordinates of membrane proteins. Here, we present a new geometrical approach to distinguish between transmembrane and globular proteins using structural information only and to locate the most likely position of the lipid bilayer. An automated algorithm (TMDET) is given to determine the membrane planes relative to the position of atomic coordinates, together with a discrimination function which is able to separate transmembrane and globular proteins even in cases of low resolution or incomplete structures such as fragments or parts of large multi chain complexes. This method can be used for the proper annotation of protein structures containing transmembrane segments and paves the way to an up-to-date database containing the structure of all known transmembrane proteins and fragments (PDB_TM) which can be automatically updated. The algorithm is equally important for the purpose of constructing databases purely of globular proteins.
Recombinant Expression Screening of P. aeruginosa Bacterial Inner Membrane Proteins
2010-01-01
Background Transmembrane proteins (TM proteins) make up 25% of all proteins and play key roles in many diseases and normal physiological processes. However, much less is known about their structures and molecular mechanisms than for soluble proteins. Problems in expression, solubilization, purification, and crystallization cause bottlenecks in the characterization of TM proteins. This project addressed the need for improved methods for obtaining sufficient amounts of TM proteins for determining their structures and molecular mechanisms. Results Plasmid clones were obtained that encode eighty-seven transmembrane proteins with varying physical characteristics, for example, the number of predicted transmembrane helices, molecular weight, and grand average hydrophobicity (GRAVY). All the target proteins were from P. aeruginosa, a gram negative bacterial opportunistic pathogen that causes serious lung infections in people with cystic fibrosis. The relative expression levels of the transmembrane proteins were measured under several culture growth conditions. The use of E. coli strains, a T7 promoter, and a 6-histidine C-terminal affinity tag resulted in the expression of 61 out of 87 test proteins (70%). In this study, proteins with a higher grand average hydrophobicity and more transmembrane helices were expressed less well than less hydrophobic proteins with fewer transmembrane helices. Conclusions In this study, factors related to overall hydrophobicity and the number of predicted transmembrane helices correlated with the relative expression levels of the target proteins. Identifying physical characteristics that correlate with protein expression might aid in selecting the "low hanging fruit", or proteins that can be expressed to sufficient levels using an E. coli expression system. The use of other expression strategies or host species might be needed for sufficient levels of expression of transmembrane proteins with other physical characteristics. Surveys like this one could aid in overcoming the technical bottlenecks in working with TM proteins and could potentially aid in increasing the rate of structure determination. PMID:21114855
Gomez, Ana; Cardoso, Christiane; Genta, Fernando A; Terra, Walter R; Ferreira, Clélia
2013-08-01
The soluble midgut trehalase from Tenebrio molitor (TmTre1) was purified after several chromatographic steps, resulting in an enzyme with 58 kDa and pH optimum 5.3 (ionizing active groups in the free enzyme: pK(e1) = 3.8 ± 0.2 pK(e2) = 7.4 ± 0.2). The purified enzyme corresponds to the deduced amino acid sequence of a cloned cDNA (TmTre1-cDNA), because a single cDNA coding a soluble trehalase was found in the T. molitor midgut transcriptome. Furthermore, the mass of the protein predicted to be coded by TmTre1-cDNA agrees with that of the purified enzyme. TmTre1 has the essential catalytic groups Asp 315 and Glu 513 and the essential Arg residues R164, R217, R282. Carbodiimide inactivation of the purified enzyme at different pH values reveals an essential carboxyl group with pKa = 3.5 ± 0.3. Phenylglyoxal modified a single Arg residue with pKa = 7.5 ± 0.2, as observed in the soluble trehalase from Spodoptera frugiperda (SfTre1). Diethylpyrocarbonate modified a His residue that resulted in a less active enzyme with pK(e1) changed to 4.8 ± 0.2. In TmTre1 the modified His residue (putatively His 336) is more exposed than the His modified in SfTre1 (putatively His 210) and that affects the ionization of an Arg residue. The architecture of the active site of TmTre1 and SfTre1 is different, as shown by multiple inhibition analysis, the meaning of which demands further research. Trehalase sequences obtained from midgut transcriptomes (pyrosequencing and Illumina data) from 8 insects pertaining to 5 different orders were used in a cladogram, together with other representative sequences. The data suggest that the trehalase gene went duplication and divergence prior to the separation of the paraneopteran and holometabolan orders and that the soluble trehalase derived from the membrane-bound one by losing the C-terminal transmembrane loop. Copyright © 2013 Elsevier Ltd. All rights reserved.
A Novel Topology of Proline-rich Transmembrane Protein 2 (PRRT2)
Rossi, Pia; Sterlini, Bruno; Castroflorio, Enrico; Marte, Antonella; Onofri, Franco; Valtorta, Flavia; Maragliano, Luca; Corradi, Anna; Benfenati, Fabio
2016-01-01
Proline-rich transmembrane protein 2 (PRRT2) has been identified as the single causative gene for a group of paroxysmal syndromes of infancy, including epilepsy, paroxysmal movement disorders, and migraine. On the basis of topology predictions, PRRT2 has been assigned to the recently characterized family of Dispanins, whose members share the two-transmembrane domain topology with a large N terminus and short C terminus oriented toward the outside of the cell. Because PRRT2 plays a role at the synapse, it is important to confirm the exact orientation of its N and C termini with respect to the plasma membrane to get clues regarding its possible function. Using a combination of different experimental approaches, including live immunolabeling, immunogold electron microscopy, surface biotinylation and computational modeling, we demonstrate a novel topology for this protein. PRRT2 is a type II transmembrane protein in which only the second hydrophobic segment spans the plasma membrane, whereas the first one is associated with the internal surface of the membrane and forms a helix-loop-helix structure without crossing it. Most importantly, the large proline-rich N-terminal domain is not exposed to the extracellular space but is localized intracellularly, and only the short C terminus is extracellular (Ncyt/Cexo topology). Accordingly, we show that PRRT2 interacts with the Src homology 3 domain-bearing protein Intersectin 1, an intracellular protein involved in synaptic vesicle cycling. These findings will contribute to the clarification of the role of PRRT2 at the synapse and the understanding of pathogenic mechanisms on the basis of PRRT2-related neurological disorders. PMID:26797119
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mercier, B.; Audrezet, M.P.; Guillermit, H.
Cystic fibrosis transmembrane conductance regulator (CFTR), the gene responsible, when mutated, for cystic fibrosis (CF), spans over 230 kb on the long arm of chromosome 7 and is composed of 27 exons. The most common mutation responsible for CF worldwide is the deletion of a phenylalanine amino acid at codon 508 in the first nucleotide-binding fold and accounts for approximately 70% of CF chromosomes studied. More than 250 other mutations have been reported through the CF Genetic Analysis Consortium. The majority of the mutations previously described lie in the two nucleotide-binding folds. To explore exhaustively other regions of the gene,more » particularly exons coding for transmembrane domains, the authors have initiated a collaborative study between different laboratories to screen 369 non-[Delta]F508 CF chromosomes of seven ethnic European populations (Belgian, French, Breton, Irish, Italian, Yugoslavian, Russian). Among these chromosomes carrying an unidentified mutation, 63 were from Brittany, 50 of various French origin, 45 of Irish origin, 56 of Italian origin, 41 of Belgian origin, 2 of Turkish origin, 38 of Yugoslavian origin, 22 of Russian origin, and 52 of Bulgarian origin. Diagnostic criteria for CF included at least one positive sweat test and pulmonary disease with or without pancreatic disease. Using a denaturing gradient gel electrophoresis (DGGE) assay, they have identified eight novel mutations in exon 17b coding for part of the second transmembrane domain of the CFTR and they describe them in this report. 8 refs., 1 fig., 1 tab.« less
McIlhinney, R A; Molnár, E
1996-04-01
To identify the location of the first transmembrane segment of the GluR1 glutamate receptor subunit artificial stop codons have been introduced into the N-terminal domain at amino acid positions 442, 510, and 563, namely just before and spanning the proposed first two transmembrane regions. The resultant truncated N-terminal fragments of GluR1, termed NT1, NT2, and NT3 respectively were expressed in Cos-7 cells and their cellular distribution and cell-surface expression analysed using an N-terminal antibody to GluR1. All of the fragments were fully glycosylated and were found to be associated with cell membranes but none was secreted. Differential extraction of the cell membranes indicated that both NT1 and NT2 behave as peripheral membrane proteins. In contrast NT3, like the full subunit, has integral membrane protein properties. Furthermore only NT3 is expressed at the cell surface as determined by immunofluorescence and cell-surface biotinylation. Protease protection assays indicated that only NT3 had a cytoplasmic tail. Binding studies using the selective ligand [(3)H]alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate ([(3)H]AMPA) demonstrated that NT3 does not bind ligand. Together these results indicate that the first transmembrane domain of the GluR1 subunit lies between residues 509 and 562, that the N-terminal domain alone cannot form a functional ligand-binding site and that this domain can be targeted to the cell surface provided that it has a transmembrane-spanning region.
Molecular dynamics simulation of the thermosensitivity of the human connexin 26 hemichannel
NASA Astrophysics Data System (ADS)
Alizadeh, Hadi; Davoodi, Jamal; Zeilinger, Carsten; Rafii-Tabar, Hashem
2018-01-01
Connexin hemichannels mediate cytoplasm and extracellular milieu communication by exchanging a variety of cytoplasmic molecules and ions. These hemichannels can be regulated by external stimuli such as mechanical stress, applied voltage, pH and temperature changes. Although there are many studies on structures and functions of connexin 26 in contexts of pH, ion concentration and voltage, employing computational methods, no such study has been performed so far involving temperature changes. In this study, using molecular dynamics simulation, we investigate thermosensitivity of the human Connexin 26 hemichannel. Our results show that the channel approaches a structurally closed state at lower temperature compared to higher temperature. This is in fair agreement with experimental results that indicate channel closure at lower temperature. Furthermore, our MD simulation results show that some regions of connexin 26 hemichannel are more sensitive to temperature compared to other regions. Whereas the intercellular half of the channel does not show any considerable response to temperature during the simulation time accessible in this study, the cytoplasmic half approaches a closed structural state at lower temperature compared to the higher temperature. Specifically, our results suggest that the cytoplasmic loop, the cytoplasmic half of the second transmembrane helix, and the N-terminus helix play a dominant role in temperature gating.
Zhang, Huiying; Zeng, Rensen; Chen, Daoyi; Liu, Jian
2016-08-08
Microalgal lipids have been considered as a promising source for biodiesel production. Alkaline pH can induce neutral lipid accumulation in microalgae cells. However, whether and how proton pumps, especially vacuolar H(+)-ATPase (V-ATPase), function in these processes is not well known. In this study, we treated Phaeodactylum tricornutum with V-ATPase specific inhibitor bafilomycin A1 (BFA1) to determine its role in lipid production. Firstly, V-ATPase activity was increased in the latter phase of microalgae growth. BFA1 treatment decreased the cell density and lipid contents. Further analysis showed that BFA1 treatment reduced the number and size of oil bodies. GC-MS analysis showed that lipid components were not affected by BFA1 treatment. Intracellular pH was decreased and nitrogen depletion was delayed after BFA1 treatment. RNA-Seq analysis showed that expression of genes involved in calcium signaling, sulfur metabolism, cell cycle, glycolysis, pentose phosphate pathway, porphyrin, chlorophyll metabolism and lipid catabolic metabolism were upregulated, while expression of genes involved in ion transmembrane transport, ubiquitin mediated proteolysis, SNARE interactions in vesicular transport, fatty acid biosynthesis were downregulated under BFA1 treatment. Our findings provided insights into the molecular mechanisms underlying lipid accumulation and the key genes involved in lipid metabolism in Phaeodactylum tricornutum in response to BFA1.
Wang, Jiang; Luo, Dongjiao; Sun, Aihua; Yan, Jie
2008-07-01
Lipoproteins LipL32 and LipL21 and transmembrane protein OMPL1 have been confirmed as the superficial genus-specific antigens of Leptospira interrogans, which can be used as antigens for developing a universal genetic engineering vaccine. In order to obtain high expression of an artificial fusion gene lipL32/1-lipL21-ompL1/2, we optimized prokaryotic expression conditions. We used surface response analysis based on the central composite design to optimize culture conditions of a new antigen protein by recombinant Escherichia coli DE3.The culture conditions included initial pH, induction start time, post-induction time, Isopropyl beta-D-thiogalactopyranoside (IPTG) concentration, and temperature. The maximal production of antigen protein was 37.78 mg/l. The optimal culture conditions for high recombinant fusion protein was determined: initial pH 7.9, induction start time 2.5 h, a post-induction time of 5.38 h, 0.20 mM IPTG, and a post-induction temperature of 31 degrees C. Surface response analysis based on CCD increased the target production. This statistical method reduced the number of experiments required for optimization and enabled rapid identification and integration of the key culture condition parameters for optimizing recombinant protein expression.
Eguchi, Yoko; Utsumi, Ryutaro
2014-09-01
Two-component signal transduction systems (TCSs) in bacteria perceive environmental stress and transmit the information via phosphorelay to adjust multiple cellular functions for adaptation. The EvgS/EvgA system is a TCS that confers acid resistance to Escherichia coli cells. Activation of the EvgS sensor initiates a cascade of transcription factors, EvgA, YdeO, and GadE, which induce the expression of a large group of acid resistance genes. We searched for signals activating EvgS and found that a high concentration of alkali metals (Na(+), K(+)) in addition to low pH was essential for the activation. EvgS is a histidine kinase, with a large periplasmic sensor region consisting of two tandem PBPb (bacterial periplasmic solute-binding protein) domains at its N terminus. The periplasmic sensor region of EvgS was necessary for EvgS activation, and Leu152, located within the first PBPb domain, was involved in the activation. Furthermore, chimeras of EvgS and PhoQ histidine kinases suggested that alkali metals were perceived at the periplasmic sensor region, whereas the cytoplasmic linker domain, connecting the transmembrane region and the histidine kinase domain, was required for low-pH perception. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Adie, E J; Kalinka, S; Smith, L; Francis, M J; Marenghi, A; Cooper, M E; Briggs, M; Michael, N P; Milligan, G; Game, S
2002-11-01
G protein-coupled receptors (GPCRs) are the largest family of proteins involved in transmembrane signal transduction and are actively studied because of their suitability as therapeutic small-molecule drug targets. Agonist activation of GPCRs almost invariably results in the receptor being desensitized. One of the key events in receptor desensitization is the sequestration of the receptor from the cell surface into acidic intracellular endosomes. Therefore, a convenient, generic, and noninvasive monitor of this process is desirable. A novel, pH-sensitive, red-excited fluorescent dye, CypHer 5, was synthesized. This dye is non-fluorescent at neutral pH and is fluorescent at acidic pH. Anti-epitope antibodies labeled with this dye were internalized in an agonist concentration- and time-dependent manner, following binding on live cells to a range of GPCRs that had been modified to incorporate the epitope tags in their extracellular N-terminal domain. This resulted in a large signal increase over background. When protonated, the red fluorescence of CypHer 5 provides a generic reagent suitable for monitoring the internalization of GPCRs into acidic vesicles. This approach should be amenable to the study of many other classes of cell surface receptors that also internalize following stimulation.
NASA Technical Reports Server (NTRS)
Chakrabarti, A. C.; Deamer, D. W.; Miller, S. L. (Principal Investigator)
1994-01-01
The flux of amino acids and other nutrient solutes such as phosphate across lipid bilayers (liposomes) is 10(5) slower than facilitated inward transport across biological membranes. This suggest that primitive cells lacking highly evolved transport systems would have difficulty transporting sufficient nutrients for cell growth to occur. There are two possible ways by which early life may have overcome this difficulty: (1) The membranes of the earliest cellular life-forms may have been intrinsically more permeable to solutes; or (2) some transport mechanism may have been available to facilitate transbilayer movement of solutes essential for cell survival and growth prior to the evolution of membrane transport proteins. Translocation of neutral species represents one such mechanism. The neutral forms of amino acids modified by methylation (creating protonated weak bases) permeate membranes up to 10(10) times faster than charged forms. This increased permeability when coupled to a transmembrane pH gradient can result in significantly increased rates of net unidirectional transport. Such pH gradients can be generated in vesicles used to model protocells that preceded and were presumably ancestral to early forms of life. This transport mechanism may still play a role in some protein translocation processes (e.g. for certain signal sequences, toxins and thylakoid proteins) in vivo.
Uchino, Yuichi; Woodward, Ashley M; Argüeso, Pablo
2016-12-01
Mucins are a group of highly glycosylated glycoproteins responsible for the protection of wet-surfaced epithelia. Recent data indicate that transmembrane mucins differ in their contribution to the protective function of the ocular surface, with MUC16 being the most effective barrier on the apical surface glycocalyx. Here, we investigated the role of the mucoprotective drug rebamipide in the regulation of transmembrane mucin biosynthesis using stratified cultures of human corneal and conjunctival epithelial cells. We find that the addition of rebamipide to corneal, but not conjunctival, epithelial cells increased MUC16 protein biosynthesis. Rebamipide did not affect the levels of MUC1, 4 and 20 compared to control. In these experiments, rebamipide had no effect on the expression levels of Notch intracellular domains, suggesting that the rebamipide-induced increase in MUC16 biosynthesis in differentiated corneal cultures is not regulated by Notch signaling. Overall these findings indicate that rebamipide induces the differential upregulation of MUC16 in stratified cultures of human corneal epithelial cells, which may have implications to the proper restoration of barrier function in ocular surface disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Allosteric regulation of rhomboid intramembrane proteolysis.
Arutyunova, Elena; Panwar, Pankaj; Skiba, Pauline M; Gale, Nicola; Mak, Michelle W; Lemieux, M Joanne
2014-09-01
Proteolysis within the lipid bilayer is poorly understood, in particular the regulation of substrate cleavage. Rhomboids are a family of ubiquitous intramembrane serine proteases that harbour a buried active site and are known to cleave transmembrane substrates with broad specificity. In vitro gel and Förster resonance energy transfer (FRET)-based kinetic assays were developed to analyse cleavage of the transmembrane substrate psTatA (TatA from Providencia stuartii). We demonstrate significant differences in catalytic efficiency (kcat/K0.5) values for transmembrane substrate psTatA (TatA from Providencia stuartii) cleavage for three rhomboids: AarA from P. stuartii, ecGlpG from Escherichia coli and hiGlpG from Haemophilus influenzae demonstrating that rhomboids specifically recognize this substrate. Furthermore, binding of psTatA occurs with positive cooperativity. Competitive binding studies reveal an exosite-mediated mode of substrate binding, indicating allostery plays a role in substrate catalysis. We reveal that exosite formation is dependent on the oligomeric state of rhomboids, and when dimers are dissociated, allosteric substrate activation is not observed. We present a novel mechanism for specific substrate cleavage involving several dynamic processes including positive cooperativity and homotropic allostery for this interesting class of intramembrane proteases. © 2014 The Authors.
Allosteric regulation of rhomboid intramembrane proteolysis
Arutyunova, Elena; Panwar, Pankaj; Skiba, Pauline M; Gale, Nicola; Mak, Michelle W; Lemieux, M Joanne
2014-01-01
Proteolysis within the lipid bilayer is poorly understood, in particular the regulation of substrate cleavage. Rhomboids are a family of ubiquitous intramembrane serine proteases that harbour a buried active site and are known to cleave transmembrane substrates with broad specificity. In vitro gel and Förster resonance energy transfer (FRET)-based kinetic assays were developed to analyse cleavage of the transmembrane substrate psTatA (TatA from Providencia stuartii). We demonstrate significant differences in catalytic efficiency (kcat/K0.5) values for transmembrane substrate psTatA (TatA from Providencia stuartii) cleavage for three rhomboids: AarA from P. stuartii, ecGlpG from Escherichia coli and hiGlpG from Haemophilus influenzae demonstrating that rhomboids specifically recognize this substrate. Furthermore, binding of psTatA occurs with positive cooperativity. Competitive binding studies reveal an exosite-mediated mode of substrate binding, indicating allostery plays a role in substrate catalysis. We reveal that exosite formation is dependent on the oligomeric state of rhomboids, and when dimers are dissociated, allosteric substrate activation is not observed. We present a novel mechanism for specific substrate cleavage involving several dynamic processes including positive cooperativity and homotropic allostery for this interesting class of intramembrane proteases. PMID:25009246
De novo selection of oncogenes.
Chacón, Kelly M; Petti, Lisa M; Scheideman, Elizabeth H; Pirazzoli, Valentina; Politi, Katerina; DiMaio, Daniel
2014-01-07
All cellular proteins are derived from preexisting ones by natural selection. Because of the random nature of this process, many potentially useful protein structures never arose or were discarded during evolution. Here, we used a single round of genetic selection in mouse cells to isolate chemically simple, biologically active transmembrane proteins that do not contain any amino acid sequences from preexisting proteins. We screened a retroviral library expressing hundreds of thousands of proteins consisting of hydrophobic amino acids in random order to isolate four 29-aa proteins that induced focus formation in mouse and human fibroblasts and tumors in mice. These proteins share no amino acid sequences with known cellular or viral proteins, and the simplest of them contains only seven different amino acids. They transformed cells by forming a stable complex with the platelet-derived growth factor β receptor transmembrane domain and causing ligand-independent receptor activation. We term this approach de novo selection and suggest that it can be used to generate structures and activities not observed in nature, create prototypes for novel research reagents and therapeutics, and provide insight into cell biology, transmembrane protein-protein interactions, and possibly virus evolution and the origin of life.
An in vivo screen reveals protein-lipid interactions crucial for gating a mechanosensitive channel
Iscla, Irene; Wray, Robin; Blount, Paul
2011-01-01
The bacterial mechanosensitive channel MscL is the best-studied mechanosensor, thus serving as a paradigm of how a protein senses and responds to mechanical force. Models for the transition of Escherichia coli MscL from closed to open states propose a tilting of the transmembrane domains in the plane of the membrane, suggesting dynamic protein-lipid interactions. Here, we used a rapid in vivo assay to assess the function of channels that were post-translationally modified at several different sites in a region just distal to the cytoplasmic end of the second transmembrane helix. We utilized multiple probes with various affinities for the membrane environment. The in vivo functional data, combined with site-directed mutagenesis, single-channel analyses, and tryptophan fluorescence measurements, confirmed that lipid interactions within this region are critical for MscL gating. The data suggest a model in which this region acts as an anchor for the transmembrane domain tilting during gating. Furthermore, the conservation of analogous motifs among many other channels suggests a conserved protein-lipid dynamic mechanism.—Iscla, I., Wray, R., Blount, P. An in vivo screen reveals protein-lipid interactions crucial for gating a mechanosensitive channel. PMID:21068398
Structure and electrical properties of DNA nanotubes embedded in lipid bilayer membranes
Maiti, Prabal K
2018-01-01
Abstract Engineering the synthetic nanopores through lipid bilayer membrane to access the interior of a cell is a long persisting challenge in biotechnology. Here, we demonstrate the stability and dynamics of a tile-based 6-helix DNA nanotube (DNT) embedded in POPC lipid bilayer using the analysis of 0.2 μs long equilibrium MD simulation trajectories. We observe that the head groups of the lipid molecules close to the lumen cooperatively tilt towards the hydrophilic sugar-phosphate backbone of DNA and form a toroidal structure around the patch of DNT protruding in the membrane. Further, we explore the effect of ionic concentrations to the in-solution structure and stability of the lipid-DNT complex. Transmembrane ionic current measurements for the constant electric field MD simulation provide the I-V characteristics of the water filled DNT lumen in lipid membrane. With increasing salt concentrations, the measured values of transmembrane ionic conductance of the porous DNT lumen vary from 4.3 to 20.6 nS. Simulations of the DNTs with ssDNA and dsDNA overhangs at the mouth of the pore show gating effect with remarkable difference in the transmembrane ionic conductivities for open and close state nanopores. PMID:29136243
Hedger, George; Shorthouse, David; Koldsø, Heidi; Sansom, Mark S P
2016-08-25
Lipid molecules can bind to specific sites on integral membrane proteins, modulating their structure and function. We have undertaken coarse-grained simulations to calculate free energy profiles for glycolipids and phospholipids interacting with modulatory sites on the transmembrane helix dimer of the EGF receptor within a lipid bilayer environment. We identify lipid interaction sites at each end of the transmembrane domain and compute interaction free energy profiles for lipids with these sites. Interaction free energies ranged from ca. -40 to -4 kJ/mol for different lipid species. Those lipids (glycolipid GM3 and phosphoinositide PIP2) known to modulate EGFR function exhibit the strongest binding to interaction sites on the EGFR, and we are able to reproduce the preference for interaction with GM3 over other glycolipids suggested by experiment. Mutation of amino acid residues essential for EGFR function reduce the binding free energy of these key lipid species. The residues interacting with the lipids in the simulations are in agreement with those suggested by experimental (mutational) studies. This approach provides a generalizable tool for characterizing the interactions of lipids that bind to specific sites on integral membrane proteins.
2016-01-01
Lipid molecules can bind to specific sites on integral membrane proteins, modulating their structure and function. We have undertaken coarse-grained simulations to calculate free energy profiles for glycolipids and phospholipids interacting with modulatory sites on the transmembrane helix dimer of the EGF receptor within a lipid bilayer environment. We identify lipid interaction sites at each end of the transmembrane domain and compute interaction free energy profiles for lipids with these sites. Interaction free energies ranged from ca. −40 to −4 kJ/mol for different lipid species. Those lipids (glycolipid GM3 and phosphoinositide PIP2) known to modulate EGFR function exhibit the strongest binding to interaction sites on the EGFR, and we are able to reproduce the preference for interaction with GM3 over other glycolipids suggested by experiment. Mutation of amino acid residues essential for EGFR function reduce the binding free energy of these key lipid species. The residues interacting with the lipids in the simulations are in agreement with those suggested by experimental (mutational) studies. This approach provides a generalizable tool for characterizing the interactions of lipids that bind to specific sites on integral membrane proteins. PMID:27109430
Berger-Müller, Sandra; Suzuki, Takashi
2011-12-01
The Flamingo/Celsr seven-transmembrane cadherins represent a conserved subgroup of the cadherin superfamily involved in multiple aspects of development. In the developing nervous system, Fmi/Celsr control axonal blueprint and dendritic morphogenesis from invertebrates to mammals. As expected from their molecular structure, seven-transmembrane cadherins can induce cell-cell homophilic interactions but also intracellular signaling. Fmi/Celsr is known to regulate planar cell polarity (PCP) through interactions with PCP proteins. In the nervous system, Fmi/Celsr can function in collaboration with or independently of other PCP genes. Here, we focus on recent studies which show that seven-transmembrane cadherins use distinct molecular mechanisms to achieve diverse functions in the development of the nervous system.
PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank.
Tusnády, Gábor E; Dosztányi, Zsuzsanna; Simon, István
2005-01-01
PDB_TM is a database for transmembrane proteins with known structures. It aims to collect all transmembrane proteins that are deposited in the protein structure database (PDB) and to determine their membrane-spanning regions. These assignments are based on the TMDET algorithm, which uses only structural information to locate the most likely position of the lipid bilayer and to distinguish between transmembrane and globular proteins. This algorithm was applied to all PDB entries and the results were collected in the PDB_TM database. By using TMDET algorithm, the PDB_TM database can be automatically updated every week, keeping it synchronized with the latest PDB updates. The PDB_TM database is available at http://www.enzim.hu/PDB_TM.
Control of Mitochondrial pH by Uncoupling Protein 4 in Astrocytes Promotes Neuronal Survival*
Perreten Lambert, Hélène; Zenger, Manuel; Azarias, Guillaume; Chatton, Jean-Yves; Magistretti, Pierre J.; Lengacher, Sylvain
2014-01-01
Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival. PMID:25237189
Nageeb El-Helaly, Sara; Habib, Basant A; Abd El-Rahman, Mohamed K
2018-07-01
This study aims to investigate factors affecting weakly basic drugs liposomal systems. Resolution V fractional factorial design (2 V 5-1 ) is used as an example of screening designs that would better be used as a wise step before proceeding with detailed factors effects or optimization studies. Five factors probable to affect liposomal systems of weakly basic drugs were investigated using Amisulpride as a model drug. Factors studied were; A: Preparation technique B: Phosphatidyl choline (PhC) amount (mg) C: Cholesterol: PhC molar ratio, D: Hydration volume (ml) and E: Sonication type. Levels investigated were; Ammonium sulphate-pH gradient technique or Transmembrane zinc chelation-pH gradient technique, 200 or 400 mg, 0 or 0.5, 10 or 20 ml and bath or probe sonication for A, B, C, D and E respectively. Responses measured were Particle size (PS) (nm), Zeta potential (ZP) (mV) and Entrapment efficiency percent (EE%). Ion selective electrode was used as a novel method for measuring unentrapped drug concentration and calculating entrapment efficiency without the need for liposomal separation. Factors mainly affecting the studied responses were Cholesterol: PhC ratio and hydration volume for PS, preparation technique for ZP and preparation technique and hydration volume for EE%. The applied 2 V 5-1 design enabled the use of only 16 trial combinations for screening the influence of five factors on weakly basic drugs liposomal systems. This clarifies the value of the use of screening experiments before extensive investigation of certain factors in detailed optimization studies. Copyright © 2018 Elsevier B.V. All rights reserved.
Yan, Feng; Zhu, Yiyong; Müller, Caroline; Zörb, Christian; Schubert, Sven
2002-05-01
White lupin (Lupinus albus) is able to adapt to phosphorus deficiency by producing proteoid roots that release a huge amount of organic acids, resulting in mobilization of sparingly soluble soil phosphate in rhizosphere. The mechanisms responsible for the release of organic acids by proteoid root cells, especially the trans-membrane transport processes, have not been elucidated. Because of high cytosolic pH, the release of undissociated organic acids is not probable. In the present study, we focused on H+ export by plasma membrane H+ ATPase in active proteoid roots. In vivo, rhizosphere acidification of active proteoid roots was vanadate sensitive. Plasma membranes were isolated from proteoid roots and lateral roots from P-deficient and -sufficient plants. In vitro, in comparison with two types of lateral roots and proteoid roots of P-sufficient plants, the following increase of the various parameters was induced in active proteoid roots of P-deficient plants: (a) hydrolytic ATPase activity, (b) Vmax and Km, (c) H+ ATPase enzyme concentration of plasma membrane, (d) H+-pumping activity, (e) pH gradient across the membrane of plasmalemma vesicles, and (f) passive H+ permeability of plasma membrane. In addition, lower vanadate sensitivity and more acidic pH optimum were determined for plasma membrane ATPase of active proteoid roots. Our data support the hypothesis that in active proteoid root cells, H+ and organic anions are exported separately, and that modification of plasma membrane H+ ATPase is essential for enhanced rhizosphere acidification by active proteoid roots.
Increased matriptase zymogen activation in inflammatory skin disorders
Chen, Cheng-Jueng; Wu, Bai-Yao; Tsao, Pai-In; Chen, Chi-Yung; Wu, Mei-Hsuan; Chan, Yee Lam E.; Lee, Herng-Sheng; Johnson, Michael D.; Eckert, Richard L.; Chen, Ya-Wen; Chou, Fengpai; Lin, Chen-Yong
2011-01-01
Matriptase, a type 2 transmembrane serine protease, and its inhibitor hepatocyte growth factor activator inhibitor (HAI)-1 are required for normal epidermal barrier function, and matriptase activity is tightly regulated during this process. We therefore hypothesized that this protease system might be deregulated in skin disease. To test this, we examined the level and activation state of matriptase in examples of 23 human skin disorders. We first examined matriptase and HAI-1 protein distribution in normal epidermis. Matriptase was detected at high levels at cell-cell junctions in the basal layer and spinous layers but was present at minimal levels in the granular layer. HAI-1 was distributed in a similar pattern, except that high-level expression was retained in the granular layer. This pattern of expression was retained in most skin disorders. We next examined the distribution of activated matriptase. Although activated matriptase is not detected in normal epidermis, a dramatic increase is seen in keratinocytes at the site of inflammation in 16 different skin diseases. To gain further evidence that activation is associated with inflammatory stimuli, we challenged HaCaT cells with acidic pH or H2O2 and observed matriptase activation. These findings suggest that inflammation-associated reactive oxygen species and tissue acidity may enhance matriptase activation in some skin diseases. PMID:21123732
Crystal structure of CD155 and electron microscopic studies of its complexes with polioviruses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ping; Mueller, Steffen; Morais, Marc C.
2010-11-02
When poliovirus (PV) recognizes its receptor, CD155, the virus changes from a 160S to a 135S particle before releasing its genome into the cytoplasm. CD155 is a transmembrane protein with 3 Ig-like extracellular domains, D1-D3, where D1 is recognized by the virus. The crystal structure of D1D2 has been determined to 3.5-{angstrom} resolution and fitted into {approx}8.5-{angstrom} resolution cryoelectron microscopy reconstructions of the virus-receptor complexes for the 3 PV serotypes. These structures show that, compared with human rhinoviruses, the virus-receptor interactions for PVs have a greater dependence on hydrophobic interactions, as might be required for a virus that can inhabitmore » environments of different pH. The pocket factor was shown to remain in the virus during the first recognition stage. The present structures, when combined with earlier mutational investigations, show that in the subsequent entry stage the receptor moves further into the canyon when at a physiological temperature, thereby expelling the pocket factor and separating the viral subunits to form 135S particles. These results provide a detailed analysis of how a nonenveloped virus can enter its host cell.« less
Soluble adenylyl cyclase is an acid-base sensor in epithelial base-secreting cells.
Roa, Jinae N; Tresguerres, Martin
2016-08-01
Blood acid-base regulation by specialized epithelia, such as gills and kidney, requires the ability to sense blood acid-base status. Here, we developed primary cultures of ray (Urolophus halleri) gill cells to study mechanisms for acid-base sensing without the interference of whole animal hormonal regulation. Ray gills have abundant base-secreting cells, identified by their noticeable expression of vacuolar-type H(+)-ATPase (VHA), and also express the evolutionarily conserved acid-base sensor soluble adenylyl cyclase (sAC). Exposure of cultured cells to extracellular alkalosis (pH 8.0, 40 mM HCO3 (-)) triggered VHA translocation to the cell membrane, similar to previous reports in live animals experiencing blood alkalosis. VHA translocation was dependent on sAC, as it was blocked by the sAC-specific inhibitor KH7. Ray gill base-secreting cells also express transmembrane adenylyl cyclases (tmACs); however, tmAC inhibition by 2',5'-dideoxyadenosine did not prevent alkalosis-dependent VHA translocation, and tmAC activation by forskolin reduced the abundance of VHA at the cell membrane. This study demonstrates that sAC is a necessary and sufficient sensor of extracellular alkalosis in ray gill base-secreting cells. In addition, this study indicates that different sources of cAMP differentially modulate cell biology. Copyright © 2016 the American Physiological Society.
Heterologous expression of an active chitin synthase from Rhizopus oryzae.
Salgado-Lugo, Holjes; Sánchez-Arreguín, Alejandro; Ruiz-Herrera, José
2016-12-01
Chitin synthases are highly important enzymes in nature, where they synthesize structural components in species belonging to different eukaryotic kingdoms, including kingdom Fungi. Unfortunately, their structure and the molecular mechanism of synthesis of their microfibrilar product remain largely unknown, probably because no fungal active chitin synthases have been isolated, possibly due to their extreme hydrophobicity. In this study we have turned to the heterologous expression of the transcript from a small chitin synthase of Rhizopus oryzae (RO3G_00942, Chs1) in Escherichia coli. The enzyme was active, but accumulated mostly in inclusion bodies. High concentrations of arginine or urea solubilized the enzyme, but their dilution led to its denaturation and precipitation. Nevertheless, use of urea permitted the purification of small amounts of the enzyme. The properties of Chs1 (Km, optimum temperature and pH, effect of GlcNAc) were abnormal, probably because it lacks the hydrophobic transmembrane regions characteristic of chitin synthases. The product of the enzyme showed that, contrasting with chitin made by membrane-bound Chs's and chitosomes, was only partially in the form of short microfibrils of low crystallinity. This approach may lead to future developments to obtain active chitin synthases that permit understanding their molecular mechanism of activity, and microfibril assembly. Copyright © 2016. Published by Elsevier Inc.
Hedayatipour, Mostafa; Jaafarzadeh, Neemat; Ahmadmoazzam, Mehdi
2017-12-01
Oil and gas well drilling industries discharge large volumes of contaminated wastewater produced during oil and gas exploration process. In this study, the effect of different operational variables, including temperature, pH and transmembrane pressure on process performance of a commercially available nanofiltration membrane (JCM-1812-50N, USA) for removing Ba, Ni, Cr, NaCl and TDS from produced wastewater by dewatering unit of an oil and gas well drilling industry was evaluated. In optimum experimental conditions (T = 25 °C, P = 170 psi and pH = 4) resulted from Thaguchi method, 85.3, 77.4, 58.5, 79.6 and 56.3% removal efficiencies were achieved for Ba, Ni, Cr, NaCl and TDS, respectively. Also, results from a comparison of the Schuller and Wilcox diagrams revealed that the effluent of the membrane system is usable for drinking water, irrigating and agriculture purposes. Moreover, the process effluent quality showed a scaling feature, according to Langelier saturation index and illustrated that the necessary proceedings should be taken to prevent scaling for industrial application. The nanofiltration membrane process with an acceptable recovery rate of 47.17% represented a good performance in the wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Luo, Wenbin; Mani, Rajeswari; Hong, Mei
2007-09-13
The M2 transmembrane peptide (M2TMP) of the influenza A virus forms a tetrameric helical bundle that acts as a proton-selective channel important in the viral life cycle. The side-chain conformation of the peptide is largely unknown and is important for elucidating the proton-conducting mechanism and the channel stability. Using a 19F spin diffusion NMR technique called CODEX, we have measured the oligomeric states and interhelical side chain-side chain 19F-19F distances at several residues using singly fluorinated M2TMP bound to DMPC bilayers. 19F CODEX data at a key residue of the proton channel, Trp41, confirm the tetrameric state of the peptide and yield a nearest-neighbor interhelical distance of approximately 11 A under both neutral and acidic pH. Since the helix orientation is precisely known from previous 15N NMR experiments and the backbone channel diameter has a narrow allowed range, this 19F distance constrains the Trp41 side-chain conformation to t90 (chi1 approximately 180 degrees , chi2 approximately 90 degrees ). This Trp41 rotamer, combined with a previously measured 15N-13C distance between His37 and Trp411, suggests that the His37 rotamer is t-160. The implication of the proposed (His37, Trp41) rotamers to the gating mechanism of the M2 proton channel is discussed. Binding of the antiviral drug amantadine to the peptide does not affect the F-F distance at Trp41. Interhelical 19F-19F distances are also measured at residues 27 and 38, each mutated to 4-19F-Phe. For V27F-M2TMP, the 19F-19F distances suggest a mixture of dimers and tetramers, whereas the L38F-M2TMP data indicate two tetramers of different sizes, suggesting side chain conformational heterogeneity at this lipid-facing residue. This work shows that 19F spin diffusion NMR is a valuable tool for determining long-range intermolecular distances that shed light on the mechanism of action and conformational heterogeneity of membrane protein oligomers.
Ultrafiltration of hemicellulose hydrolysate fermentation broth
NASA Astrophysics Data System (ADS)
Kresnowati, M. T. A. P.; Desiriani, Ria; Wenten, I. G.
2017-03-01
Hemicelulosic material is often used as the main substrate to obtain high-value products such as xylose. The five carbon sugar, xylose, could be further processed by fermentation to produce xylitol. However, not only the hemicellulose hydrolysate fermentation broth contains xylitol, but also metabolite products, residual substances, biomass and mineral salts. Therefore, in order to obtain the end products, various separation processes are required to separate and purify the desired product from the fermentation broth. One of the most promising downstream processing methods of fermentation broth clarification is ultrafiltration due to its potential for energy saving and higher purity. In addition, ultrafiltration membrane has a high performance in separating inhibitory components in the fermentation broth. This paper assesses the influence of operating conditions; including trans-membrane pressure, velocity, pH of the fermentation broth solutions, and also to the xylitol concentration in the product. The challenges of the ultrafiltration process will be pointed out.
Microfluidic droplet trapping array as nanoliter reactors for gas-liquid chemical reaction.
Zhang, Qingquan; Zeng, Shaojiang; Qin, Jianhua; Lin, Bingcheng
2009-09-01
This article presents a simple method for trapping arrays of droplets relying on the designed microstructures of the microfluidic device, and this has been successfully used for parallel gas-liquid chemical reaction. In this approach, the trapping structure is composed of main channel, lateral channel and trapping region. Under a negative pressure, array droplets can be generated and trapped in the microstructure simultaneously, without the use of surfactant and the precise control of the flow velocity. By using a multi-layer microdevice containing the microstructures, single (pH gradient) and multiple gas-liquid reactions (metal ion-NH3 complex reaction) can be performed in array droplets through the transmembrane diffusion of the gas. The droplets with quantitative concentration gradient can be formed by only replacing the specific membrane. The established method is simple, robust and easy to operate, demonstrating the potential of this device for droplet-based high-throughput screening.
NASA Astrophysics Data System (ADS)
Tsukanov, Alexey A.; Psakhie, Sergey G.
2016-08-01
Quasi-two-dimensional and hybrid nanomaterials based on layered double hydroxides (LDH), cationic clays, layered oxyhydroxides and hydroxides of metals possess large specific surface area and strong electrostatic properties with permanent or pH-dependent electric charge. Such nanomaterials may impact cellular electrostatics, changing the ion balance, pH and membrane potential. Selective ion adsorption/exchange may alter the transmembrane electrochemical gradient, disrupting potential-dependent cellular processes. Cellular proteins as a rule have charged residues which can be effectively adsorbed on the surface of layered hydroxide based nanomaterials. The aim of this study is to attempt to shed some light on the possibility and mechanisms of protein "adhesion" an LDH nanosheet and to propose a new direction in anticancer medicine, based on physical impact and strong electrostatics. An unbiased molecular dynamics simulation was performed and the combined process free energy estimation (COPFEE) approach was used.
Lv, Chao; Aitchison, Erick W.; Wu, Dongsheng; ...
2015-06-29
Hydrogen sulfide (H 2S), a commonly known toxic gas compound, possesses unique chemical features that allow this small solute molecule to quickly diffuse through cell membranes. Taking advantage of the recent orthogonal space tempering (OST) method, we comparatively mapped the transmembrane free energy landscapes of H 2S and its structural analogue, water (H 2O), seeking to decipher the molecular determinants that govern their drastically different permeabilities. Here, as revealed by our OST sampling results, in contrast to the highly polar water solute, hydrogen sulfide is evidently amphipathic, and thus inside membrane is favorably localized at the interfacial region, that is,more » the interface between the polar head-group and nonpolar acyl chain regions. Because the membrane binding affinity of H 2S is mainly governed by its small hydrophobic moiety and the barrier height inbetween the interfacial region and the membrane center is largely determined by its moderate polarity, the transmembrane free energy barriers to encounter by this toxic molecule are very small. Moreover when H2S diffuses from the bulk solution to the membrane center, the above two effects nearly cancel each other, so as to lead to a negligible free energy difference. Lastly, this study not only explains why H 2S can quickly pass through cell membranes but also provides a practical illustration on how to use the OST free energy sampling method to conveniently analyze complex molecular processes.« less
Lv, Chao; Aitchison, Erick W; Wu, Dongsheng; Zheng, Lianqing; Cheng, Xiaolin; Yang, Wei
2016-03-05
Hydrogen sulfide (H2 S), a commonly known toxic gas compound, possesses unique chemical features that allow this small solute molecule to quickly diffuse through cell membranes. Taking advantage of the recent orthogonal space tempering (OST) method, we comparatively mapped the transmembrane free energy landscapes of H2 S and its structural analogue, water (H2 O), seeking to decipher the molecular determinants that govern their drastically different permeabilities. As revealed by our OST sampling results, in contrast to the highly polar water solute, hydrogen sulfide is evidently amphipathic, and thus inside membrane is favorably localized at the interfacial region, that is, the interface between the polar head-group and nonpolar acyl chain regions. Because the membrane binding affinity of H2 S is mainly governed by its small hydrophobic moiety and the barrier height inbetween the interfacial region and the membrane center is largely determined by its moderate polarity, the transmembrane free energy barriers to encounter by this toxic molecule are very small. Moreover when H2 S diffuses from the bulk solution to the membrane center, the above two effects nearly cancel each other, so as to lead to a negligible free energy difference. This study not only explains why H2 S can quickly pass through cell membranes but also provides a practical illustration on how to use the OST free energy sampling method to conveniently analyze complex molecular processes. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Goncharuk, M V; Shul'ga, A A; Ermoliuk, Ia S; Tkach, E N; Goncharuk, S A; Pustovalova, Iu E; Mineev, K S; Bocharov, É V; Maslennikov, I V; Arsen'ev, A S; Kirpichnikov, M P
2011-01-01
A family of epidermal growth factor receptors, ErbB, represents an important class of receptor tyrosine kinases, playing a leading role in cellular growth, development and differentiation. Transmembrane domains of these receptors transduce biochemical signals across plasma membrane via lateral homo- and heterodimerization. Relatively small size of complexes of ErbB transmembrane domains with detergents or lipids allows one to study their detailed spatial structure using three-dimensional heteronuclear high-resolution NMR spectroscopy. Here, we describe the effective expression system and purification procedure for preparative-scale production of transmembrane peptides from four representatives of ErbB family, ErbB1, ErbB2, ErbB3, ErbB4, for structural studies. The recombinant peptides were produced in Escherichia coli BL21(DE3)pLysS as C-terminal extensions of thioredoxin A. The fusion protein cleavage was accomplished with the light subunit of human enterokinase. Several (10-30) milligrams of purified isotope-labeled transmembrane peptides were isolated with the use of a simple and convenient procedure, which consists of consecutive steps of immobilized metal affinity chromatography and cation-exchange chromatography. The purified peptides were reconstituted in lipid/detergent environment (micelles or bicelles) and characterized using dynamic light scattering, CD and NMR spectroscopy. The data obtained indicate that the purified ErbB transmembrane peptides are suitable for structural and dynamic studies of their homo- and heterodimer complexes using high resolution NMR spectroscopy.
Parrish, William; Eilers, Markus; Ying, Weiwen; Konopka, James B
2002-01-01
The binding of alpha-factor to its receptor (Ste2p) activates a G-protein-signaling pathway leading to conjugation of MATa cells of the budding yeast S. cerevisiae. We conducted a genetic screen to identify constitutively activating mutations in the N-terminal region of the alpha-factor receptor that includes transmembrane domains 1-5. This approach identified 12 unique constitutively activating mutations, the strongest of which affected polar residues at the cytoplasmic ends of transmembrane domains 2 and 3 (Asn84 and Gln149, respectively) that are conserved in the alpha-factor receptors of divergent yeast species. Targeted mutagenesis, in combination with molecular modeling studies, suggested that Gln149 is oriented toward the core of the transmembrane helix bundle where it may be involved in mediating an interaction with Asn84. These residues appear to play specific roles in maintaining the inactive conformation of the protein since a variety of mutations at either position cause constitutive receptor signaling. Interestingly, the activity of many mammalian G-protein-coupled receptors is also regulated by conserved polar residues (the E/DRY motif) at the cytoplasmic end of transmembrane domain 3. Altogether, the results of this study suggest a conserved role for the cytoplasmic end of transmembrane domain 3 in regulating the activity of divergent G-protein-coupled receptors. PMID:11861550
Kostyuchenko, Victor A.; Jakana, Joanita; Liu, Xiangan; Haddow, Andrew D.; Aung, Myint; Weaver, Scott C.; Chiu, Wah; Lok, Shee-Mei
2011-01-01
Barmah Forest virus (BFV) is a mosquito-borne alphavirus that infects humans. A 6-Å-resolution cryo-electron microscopy three-dimensional structure of BFV exhibits a typical alphavirus organization, with RNA-containing nucleocapsid surrounded by a bilipid membrane anchored with the surface proteins E1 and E2. The map allows details of the transmembrane regions of E1 and E2 to be seen. The C-terminal end of the E2 transmembrane helix binds to the capsid protein. Following the E2 transmembrane helix, a short α-helical endodomain lies on the inner surface of the lipid envelope. The E2 endodomain interacts with E1 transmembrane helix from a neighboring E1-E2 trimeric spike, thereby acting as a spacer and a linker between spikes. In agreement with previous mutagenesis studies, the endodomain plays an important role in recruiting other E1-E2 spikes to the budding site during virus assembly. The E2 endodomain may thus serve as a target for antiviral drug design. PMID:21752915
Attai, Hedieh; Rimbey, Jeanette; Smith, George P; Brown, Pamela J B
2017-12-01
To provide food security, innovative approaches to preventing plant disease are currently being explored. Here, we demonstrate that lytic bacteriophages and phage lysis proteins are effective at triggering lysis of the phytopathogen Agrobacterium tumefaciens Phages Atu_ph02 and Atu_ph03 were isolated from wastewater and induced lysis of C58-derived strains of A. tumefaciens The coinoculation of A. tumefaciens with phages on potato discs limited tumor formation. The genomes of Atu_ph02 and Atu_ph03 are nearly identical and are ∼42% identical to those of T7 supercluster phages. In silico attempts to find a canonical lysis cassette were unsuccessful; however, we found a putative p hage p eptidoglycan h ydrolase (PPH), which contains a C-terminal transmembrane domain. Remarkably, the endogenous expression of pph in the absence of additional phage genes causes a block in cell division and subsequent lysis of A. tumefaciens cells. When the presumed active site of the N -acetylmuramidase domain carries an inactivating mutation, PPH expression causes extensive cell branching due to a block in cell division but does not trigger rapid cell lysis. In contrast, the mutation of positively charged residues at the extreme C terminus of PPH causes more rapid cell lysis. Together, these results suggest that PPH causes a block in cell division and triggers cell lysis through two distinct activities. Finally, the potent killing activity of this single lysis protein can be modulated, suggesting that it could be engineered to be an effective enzybiotic. IMPORTANCE The characterization of bacteriophages such as Atu_ph02 and Atu_ph03, which infect plant pathogens such as Agrobacterium tumefaciens , may be the basis of new biocontrol strategies. First, cocktails of diverse bacteriophages could be used as a preventative measure to limit plant diseases caused by bacteria; a bacterial pathogen is unlikely to simultaneously develop resistances to multiple bacteriophage species. The specificity of bacteriophage treatment for the host is an asset in complex communities, such as in orchards where it would be detrimental to harm the symbiotic bacteria in the environment. Second, bacteriophages are potential sources of enzymes that efficiently lyse bacterial cells. These phage proteins may have a broad specificity, but since proteins do not replicate as phages do, their effect is highly localized, providing an alternative to traditional antibiotic treatments. Thus, studies of lytic bacteriophages that infect A. tumefaciens may provide insights for designing preventative strategies against bacterial pathogens. Copyright © 2017 American Society for Microbiology.
Attai, Hedieh; Rimbey, Jeanette; Smith, George P.
2017-01-01
ABSTRACT To provide food security, innovative approaches to preventing plant disease are currently being explored. Here, we demonstrate that lytic bacteriophages and phage lysis proteins are effective at triggering lysis of the phytopathogen Agrobacterium tumefaciens. Phages Atu_ph02 and Atu_ph03 were isolated from wastewater and induced lysis of C58-derived strains of A. tumefaciens. The coinoculation of A. tumefaciens with phages on potato discs limited tumor formation. The genomes of Atu_ph02 and Atu_ph03 are nearly identical and are ∼42% identical to those of T7 supercluster phages. In silico attempts to find a canonical lysis cassette were unsuccessful; however, we found a putative phage peptidoglycan hydrolase (PPH), which contains a C-terminal transmembrane domain. Remarkably, the endogenous expression of pph in the absence of additional phage genes causes a block in cell division and subsequent lysis of A. tumefaciens cells. When the presumed active site of the N-acetylmuramidase domain carries an inactivating mutation, PPH expression causes extensive cell branching due to a block in cell division but does not trigger rapid cell lysis. In contrast, the mutation of positively charged residues at the extreme C terminus of PPH causes more rapid cell lysis. Together, these results suggest that PPH causes a block in cell division and triggers cell lysis through two distinct activities. Finally, the potent killing activity of this single lysis protein can be modulated, suggesting that it could be engineered to be an effective enzybiotic. IMPORTANCE The characterization of bacteriophages such as Atu_ph02 and Atu_ph03, which infect plant pathogens such as Agrobacterium tumefaciens, may be the basis of new biocontrol strategies. First, cocktails of diverse bacteriophages could be used as a preventative measure to limit plant diseases caused by bacteria; a bacterial pathogen is unlikely to simultaneously develop resistances to multiple bacteriophage species. The specificity of bacteriophage treatment for the host is an asset in complex communities, such as in orchards where it would be detrimental to harm the symbiotic bacteria in the environment. Second, bacteriophages are potential sources of enzymes that efficiently lyse bacterial cells. These phage proteins may have a broad specificity, but since proteins do not replicate as phages do, their effect is highly localized, providing an alternative to traditional antibiotic treatments. Thus, studies of lytic bacteriophages that infect A. tumefaciens may provide insights for designing preventative strategies against bacterial pathogens. PMID:28970228
Self-organized criticality and color vision: A guide to water-protein landscape evolution
NASA Astrophysics Data System (ADS)
Phillips, J. C.
2013-02-01
We focus here on the scaling properties of small interspecies differences between red cone opsin transmembrane proteins, using a hydropathic elastic roughening tool previously applied to the rhodopsin rod transmembrane proteins. This tool is based on a non-Euclidean hydropathic metric realistically rooted in the atomic coordinates of 5526 protein segments, which thereby encapsulates universal non-Euclidean long-range differential geometrical features of water films enveloping globular proteins in the Protein Data Bank. Whereas the rhodopsin blue rod water films are smoothest in humans, the red cone opsins’ water films are optimized for smoothness in cats and elephants, consistent with protein species landscapes that evolve differently in different contexts. We also analyze red cone opsins in the chromatophore-containing family of chameleons, snakes, zebrafish and goldfish, where short- and long-range (BLAST and hydropathic) amino acid (aa) correlations are found with values as large as 97%-99%. We use hydropathic aa optimization to estimate the maximum number Nmax of color shades that the human eye can discriminate, and obtain 106
Transmembrane Polyproline Helix.
Kubyshkin, Vladimir; Grage, Stephan L; Bürck, Jochen; Ulrich, Anne S; Budisa, Nediljko
2018-05-03
The third most abundant polypeptide conformation in nature, the polyproline-II helix, is a polar, extended secondary structure with a local organization stabilized by intercarbonyl interactions within the peptide chain. Here we design a hydrophobic polyproline-II helical peptide based on an oligomeric octahydroindole-2-carboxylic acid scaffold and demonstrate its transmembrane alignment in model lipid bilayers by means of solid-state 19 F NMR. As result, we provide a first example of a purely artificial transmembrane peptide with a structural organization that is not based on hydrogen-bonding.
Tolerance to stress and environmental adaptability of Chromobacterium violaceum.
Hungria, Mariangela; Nicolás, Marisa Fabiana; Guimarães, Claudia Teixeira; Jardim, Sílvia Neto; Gomes, Eliane Aparecida; Vasconcelos, Ana Tereza Ribeiro de
2004-03-31
Chromobacterium violaceum is a Gram-negative bacterium, abundant in a variety of ecosystems in tropical and subtropical regions, including the water and borders of the Negro River, a major component of the Amazon Basin. As a free-living microorganism, C. violaceum is exposed to a series of variable conditions, such as different sources and abundance of nutrients, changes in temperature and pH, toxic compounds and UV rays. These variations, and the wide range of environments, require great adaptability and strong protective systems. The complete genome sequencing of this bacterium has revealed an enormous number and variety of ORFs associated with alternative pathways for energy generation, transport-related proteins, signal transduction, cell motility, secretion, and secondary metabolism. Additionally, the limited availability of iron in most environments can be overcome by iron-chelating compounds, iron-storage proteins, and by several proteins related to iron metabolism in the C. violaceum genome. Osmotically inducible proteins, transmembrane water-channel, and other membrane porins may be regulating the movement of water and maintaining the cell turgor, activities which play an important role in the adaptation to variations in osmotic pressure. Several proteins related to tolerance against antimicrobial compounds, heavy metals, temperature, acid and UV light stresses, others that promote survival under starvation conditions, and enzymes capable of detoxifying reactive oxygen species were also detected in C. violaceum. All these features together help explain its remarkable competitiveness and ability to survive under different types of environmental stress.
Modeling in conventional and supra electroporation for model cell with organelles
NASA Astrophysics Data System (ADS)
Sulaeman, Muhammad Yangki; Widita, Rena
2015-09-01
Electroporation is a formation of pores in the membrane cell due to the external electric field applied to the cell. There are two types of electroporation, conventional and supra-electroporation. The purpose of creating pores in the cell using conventional electroporation are to increase the effectiveness of chemotherapy (electrochemotherapy) and to kill cancer tissue using irreversible electroporation. Supra-electroporation shows that it can induce electroporation in the organell inside the cell, so it can kill the cell by apoptosis mechanism. Modeling of electroporation phenomenon on a model cell had been done by using software COMSOL Multiphysics 4.3b with the applied external electric field used are 1.1 kV/cm for conventional electroporation and 60 kV/cm for supra-electroporation to find the difference between transmembrane voltage and pore density for both electroporation. It can be concluded from the results that there is a big difference between transmembrane voltage and pores density on conventional and supra electroporation on model cell.
Molecular Simulations of Sequence-Specific Association of Transmembrane Proteins in Lipid Bilayers
NASA Astrophysics Data System (ADS)
Doxastakis, Manolis; Prakash, Anupam; Janosi, Lorant
2011-03-01
Association of membrane proteins is central in material and information flow across the cellular membranes. Amino-acid sequence and the membrane environment are two critical factors controlling association, however, quantitative knowledge on such contributions is limited. In this work, we study the dimerization of helices in lipid bilayers using extensive parallel Monte Carlo simulations with recently developed algorithms. The dimerization of Glycophorin A is examined employing a coarse-grain model that retains a level of amino-acid specificity, in three different phospholipid bilayers. Association is driven by a balance of protein-protein and lipid-induced interactions with the latter playing a major role at short separations. Following a different approach, the effect of amino-acid sequence is studied using the four transmembrane domains of the epidermal growth factor receptor family in identical lipid environments. Detailed characterization of dimer formation and estimates of the free energy of association reveal that these helices present significant affinity to self-associate with certain dimers forming non-specific interfaces.
Yamane, Tsutomu; Murakami, Satoshi; Ikeguchi, Mitsunori
2013-10-29
The multidrug transporter AcrB actively exports a wide variety of noxious compounds using proton-motive force as an energy source in Gram-negative bacteria. AcrB adopts an asymmetric structure comprising three protomers with different conformations that are sequentially converted during drug export; these cyclic conformational changes during drug export are referred to as functional rotation. To investigate functional rotation driven by proton-motive force, all-atom molecular dynamics simulations were performed. Using different protonation states for the titratable residues in the middle of the transmembrane domain, our simulations revealed the correlation between the specific protonation states and the side-chain configurations. Changing the protonation state for Asp408 induced a spontaneous structural transition, which suggests that the proton translocation stoichiometry may be one proton per functional rotation cycle. Furthermore, our simulations demonstrate that alternating the protonation states in the transmembrane domain induces functional rotation in the porter domain, which is primarily responsible for drug transport.
Rossi, Pia; Sterlini, Bruno; Castroflorio, Enrico; Marte, Antonella; Onofri, Franco; Valtorta, Flavia; Maragliano, Luca; Corradi, Anna; Benfenati, Fabio
2016-03-18
Proline-rich transmembrane protein 2 (PRRT2) has been identified as the single causative gene for a group of paroxysmal syndromes of infancy, including epilepsy, paroxysmal movement disorders, and migraine. On the basis of topology predictions, PRRT2 has been assigned to the recently characterized family of Dispanins, whose members share the two-transmembrane domain topology with a large N terminus and short C terminus oriented toward the outside of the cell. Because PRRT2 plays a role at the synapse, it is important to confirm the exact orientation of its N and C termini with respect to the plasma membrane to get clues regarding its possible function. Using a combination of different experimental approaches, including live immunolabeling, immunogold electron microscopy, surface biotinylation and computational modeling, we demonstrate a novel topology for this protein. PRRT2 is a type II transmembrane protein in which only the second hydrophobic segment spans the plasma membrane, whereas the first one is associated with the internal surface of the membrane and forms a helix-loop-helix structure without crossing it. Most importantly, the large proline-rich N-terminal domain is not exposed to the extracellular space but is localized intracellularly, and only the short C terminus is extracellular (N cyt/C exo topology). Accordingly, we show that PRRT2 interacts with the Src homology 3 domain-bearing protein Intersectin 1, an intracellular protein involved in synaptic vesicle cycling. These findings will contribute to the clarification of the role of PRRT2 at the synapse and the understanding of pathogenic mechanisms on the basis of PRRT2-related neurological disorders. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Piao, Hong Hua; Rajakumar, Dhanarajan; Kang, Bok Eum; Kim, Eun Ha; Baker, Bradley J
2015-01-07
ArcLight is a genetically encoded fluorescent voltage sensor using the voltage-sensing domain of the voltage-sensing phosphatase from Ciona intestinalis that gives a large but slow-responding optical signal in response to changes in membrane potential (Jin et al., 2012). Fluorescent voltage sensors using the voltage-sensing domain from other species give faster yet weaker optical signals (Baker et al., 2012; Han et al., 2013). Sequence alignment of voltage-sensing phosphatases from different species revealed conserved polar and charged residues at 7 aa intervals in the S1-S3 transmembrane segments of the voltage-sensing domain, suggesting potential coil-coil interactions. The contribution of these residues to the voltage-induced optical signal was tested using a cassette mutagenesis screen by flanking each transmembrane segment with unique restriction sites to allow for the testing of individual mutations in each transmembrane segment, as well as combinations in all four transmembrane segments. Addition of a counter charge in S2 improved the kinetics of the optical response. A double mutation in the S4 domain dramatically reduced the slow component of the optical signal seen in ArcLight. Combining that double S4 mutant with the mutation in the S2 domain yielded a probe with kinetics <10 ms. Optimization of the linker sequence between S4 and the fluorescent protein resulted in a new ArcLight-derived probe, Bongwoori, capable of resolving action potentials in a hippocampal neuron firing at 60 Hz. Additional manipulation of the voltage-sensing domain could potentially lead to fluorescent sensors capable of optically resolving neuronal inhibition and subthreshold synaptic activity. Copyright © 2015 the authors 0270-6474/15/350372-15$15.00/0.
Marburg Virus Glycoprotein GP2: pH-Dependent Stability of the Ectodomain α-Helical Bundle†
Harrison, Joseph S.; Koellhoffer, Jayne F.; Chandran, Kartik; Lai, Jonathan R.
2012-01-01
Marburg virus (MARV) and Ebola virus (EBOV) constitute the family Filoviridae of enveloped viruses (filoviruses) that cause severe hemorrhagic fever. Infection by MARV is required for fusion between the host cell and viral membranes, a process that is mediated by the two subunits of the envelope glycoprotein GP1 (surface subunit) and GP2 (transmembrane subunit). Upon viral attachment and uptake, it is believed that the MARV viral fusion machinery is triggered by host factors and environmental conditions found in the endosome. Next, conformational rearrangements in the GP2 ectodomain result in the formation of a highly stable six-helix bundle; this refolding event provides the energetic driving force for membrane fusion. Both GP1 and GP2 from EBOV have been extensively studied, but there is little information available for the MARV glycoproteins. Here we have expressed two variants of the MARV GP2 ectodomain in Escherichia coli and analyzed their biophysical properties. Circular dichroism indicates that the MARV GP2 ectodomain adopts an α-helical conformation, and one variant sediments as a trimer by equilibrium analytical ultracentrifugation. Denaturation studies indicate the α-helical structure is highly stable at pH 5.3 (unfolding energy, ΔGunf H2O, of 33.4 ± 2.5 kcal/mol and melting temperature, Tm, of 75.3 ± 2.1 °C for one variant). Furthermore, we found the α-helical stability to be strongly dependent on pH with higher stability under lower pH conditions (Tm values ranging from ~92 °C at pH 4.0 to ~38 °C at pH 8.0). Mutational analysis suggests two glutamic acid residues (E579 and E580) are partially responsible for this pH-dependent behavior. Based on these results, we hypothesize that pH-dependent folding stability of the MARV GP2 ectodomain provides a mechanism to control conformational preferences such that the six-helix bundle ‘post-fusion’ state is preferred under conditions of appropriately matured endosomes. PMID:22369502
Sood, Chetan; Marin, Mariana; Mason, Caleb S; Melikyan, Gregory B
2016-01-01
HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment-at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles). Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5900 Cystic fibrosis transmembrane conductance regulator (CFTR...
Venko, Katja; Roy Choudhury, A; Novič, Marjana
2017-01-01
The structural and functional details of transmembrane proteins are vastly underexplored, mostly due to experimental difficulties regarding their solubility and stability. Currently, the majority of transmembrane protein structures are still unknown and this present a huge experimental and computational challenge. Nowadays, thanks to X-ray crystallography or NMR spectroscopy over 3000 structures of membrane proteins have been solved, among them only a few hundred unique ones. Due to the vast biological and pharmaceutical interest in the elucidation of the structure and the functional mechanisms of transmembrane proteins, several computational methods have been developed to overcome the experimental gap. If combined with experimental data the computational information enables rapid, low cost and successful predictions of the molecular structure of unsolved proteins. The reliability of the predictions depends on the availability and accuracy of experimental data associated with structural information. In this review, the following methods are proposed for in silico structure elucidation: sequence-dependent predictions of transmembrane regions, predictions of transmembrane helix-helix interactions, helix arrangements in membrane models, and testing their stability with molecular dynamics simulations. We also demonstrate the usage of the computational methods listed above by proposing a model for the molecular structure of the transmembrane protein bilitranslocase. Bilitranslocase is bilirubin membrane transporter, which shares similar tissue distribution and functional properties with some of the members of the Organic Anion Transporter family and is the only member classified in the Bilirubin Transporter Family. Regarding its unique properties, bilitranslocase is a potentially interesting drug target.
Duka, Ada; Ahearn, Gregory A
2013-08-01
Hepatopancreatic brush border membrane vesicles (BBMV), made from Atlantic White shrimp (Litopenaeus setiferus), were used to characterize the transport properties of (3)H-L-leucine influx by these membrane systems and how other essential amino acids and the cations, sodium and potassium, interact with this transport system. (3)H-L-leucine uptake by BBMV was pH-sensitive and occurred against transient transmembrane concentration gradients in both Na(+)- and K(+)-containing incubation media, suggesting that either cation was capable of providing a driving force for amino acid accumulation. (3)H-L-leucine uptake in NaCl or KCl media were each three times greater in acidic pH (pH 5.5) than in alkaline pH (pH 8.5). The essential amino acid, L-methionine, at 20 mM significantly (p < 0.0001) inhibited the 2-min uptakes of 1 mM (3)H-L-leucine in both Na(+)- and K(+)-containing incubation media. The residual (3)H-L-leucine uptake in the two media were significantly greater than zero (p < 0.001), but not significantly different from each other (p > 0.05) and may represent an L-methionine- and cation-independent transport system. (3)H-L-leucine influxes in both NaCl and KCl incubation media were hyperbolic functions of [L-leucine], following the carrier-mediated Michaelis-Menten equation. In NaCl, (3)H-L-leucine influx displayed a low apparent K M (high affinity) and low apparent J max, while in KCl the transport exhibited a high apparent K M (low affinity) and high apparent J max. L-methionine or L-phenylalanine (7 and 20 mM) were competitive inhibitors of (3)H-L-leucine influxes in both NaCl and KCl media, producing a significant (p < 0.01) increase in (3)H-L-leucine influx K M, but no significant response in (3)H-L-leucine influx J max. Potassium was a competitive inhibitor of sodium co-transport with (3)H-L-leucine, significantly (p < 0.01) increasing (3)H-L-leucine influx K M in the presence of sodium, but having negligible effect on (3)H-L-leucine influx J max in the same medium. These results suggest that shrimp BBMV transport (3)H-L-leucine by a single L-methionine- and L-phenylalanine-shared carrier system that is enhanced by acidic pH and can be stimulated by either Na(+) or K(+) acting as co-transport drivers binding to shared activator sites.
Structural Analysis of a Peptide Fragment of Transmembrane Transporter Protein Bilitranslocase
Župerl, Špela; Sikorska, Emilia; Zhukov, Igor; Solmajer, Tom; Novič, Marjana
2012-01-01
Using a combination of genomic and post-genomic approaches is rapidly altering the number of identified human influx carriers. A transmembrane protein bilitranslocase (TCDB 2.A.65) has long attracted attention because of its function as an organic anion carrier. It has also been identified as a potential membrane transporter for cellular uptake of several drugs and due to its implication in drug uptake, it is extremely important to advance the knowledge about its structure. However, at present, only the primary structure of bilitranslocase is known. In our work, transmembrane subunits of bilitranslocase were predicted by a previously developed chemometrics model and the stability of these polypeptide chains were studied by molecular dynamics (MD) simulation. Furthermore, sodium dodecyl sulfate (SDS) micelles were used as a model of cell membrane and herein we present a high-resolution 3D structure of an 18 amino acid residues long peptide corresponding to the third transmembrane part of bilitranslocase obtained by use of multidimensional NMR spectroscopy. It has been experimentally confirmed that one of the transmembrane segments of bilitranslocase has alpha helical structure with hydrophilic amino acid residues oriented towards one side, thus capable of forming a channel in the membrane. PMID:22745694
Li, Xiaopeng; Vargas Buonfiglio, Luis G; Adam, Ryan J; Stoltz, David A; Zabner, Joseph; Comellas, Alejandro P
2017-12-01
To determine the feasibility of using a cystic fibrosis transmembrane conductance regulator potentiator, ivacaftor (VX-770/Kalydeco, Vertex Pharmaceuticals, Boston, MA), as a therapeutic strategy for treating pulmonary edema. Prospective laboratory animal investigation. Animal research laboratory. Newborn and 3 days to 1 week old pigs. Hydrostatic pulmonary edema was induced in pigs by acute volume overload. Ivacaftor was nebulized into the lung immediately after volume overload. Grams of water per grams of dry lung tissue were determined in the lungs harvested 1 hour after volume overload. Ivacaftor significantly improved alveolar liquid clearance in isolated pig lung lobes ex vivo and reduced edema in a volume overload in vivo pig model of hydrostatic pulmonary edema. To model hydrostatic pressure-induced edema in vitro, we developed a method of applied pressure to the basolateral surface of alveolar epithelia. Elevated hydrostatic pressure resulted in decreased cystic fibrosis transmembrane conductance regulator activity and liquid absorption, an effect which was partially reversed by cystic fibrosis transmembrane conductance regulator potentiation with ivacaftor. Cystic fibrosis transmembrane conductance regulator potentiation by ivacaftor is a novel therapeutic approach for pulmonary edema.
Predicting the transmembrane secondary structure of ligand-gated ion channels.
Bertaccini, E; Trudell, J R
2002-06-01
Recent mutational analyses of ligand-gated ion channels (LGICs) have demonstrated a plausible site of anesthetic action within their transmembrane domains. Although there is a consensus that the transmembrane domain is formed from four membrane-spanning segments, the secondary structure of these segments is not known. We utilized 10 state-of-the-art bioinformatics techniques to predict the transmembrane topology of the tetrameric regions within six members of the LGIC family that are relevant to anesthetic action. They are the human forms of the GABA alpha 1 receptor, the glycine alpha 1 receptor, the 5HT3 serotonin receptor, the nicotinic AChR alpha 4 and alpha 7 receptors and the Torpedo nAChR alpha 1 receptor. The algorithms utilized were HMMTOP, TMHMM, TMPred, PHDhtm, DAS, TMFinder, SOSUI, TMAP, MEMSAT and TOPPred2. The resulting predictions were superimposed on to a multiple sequence alignment of the six amino acid sequences created using the CLUSTAL W algorithm. There was a clear statistical consensus for the presence of four alpha helices in those regions experimentally thought to span the membrane. The consensus of 10 topology prediction techniques supports the hypothesis that the transmembrane subunits of the LGICs are tetrameric bundles of alpha helices.
Free energy barrier for melittin reorientation from a membrane-bound state to a transmembrane state.
Irudayam, Sheeba J; Pobandt, Tobias; Berkowitz, Max L
2013-10-31
An important step in a phospholipid membrane pore formation by melittin antimicrobial peptide is a reorientation of the peptide from a surface into a transmembrane conformation. Experiments measure the fraction of peptides in the surface state and the transmembrane state, but no computational study exists that quantifies the free energy curve for the reorientation. In this work we perform umbrella sampling simulations to calculate the potential of mean force (PMF) for the reorientation of melittin from a surface-bound state to a transmembrane state and provide a molecular level insight in understanding the peptide-lipid properties that influence the existence of the free energy barrier. The PMFs were calculated for a peptide to lipid (P/L) ratio of 1/128 and 4/128. We observe that the free energy barrier is reduced when the P/L ratio increases. In addition, we study the cooperative effect; specifically we investigate if the reorientation barrier is smaller for a second melittin, given that another neighboring melittin was already in the transmembrane orientation. We observe that indeed the barrier of the PMF curve is reduced in this case, thus confirming the presence of a cooperative effect.
Sadja, Rona; Reuveny, Eitan
2009-01-01
G-protein-coupled inwardly rectifying potassium channels (GIRK/Kir3.x) are involved in neurotransmission-mediated reduction of excitability. The gating mechanism following G protein activation of these channels likely proceeds from movement of inner transmembrane helices to allow K(+) ions movement through the pore of the channel. There is limited understanding of how the binding of G-protein betagamma subunits to cytoplasmic regions of the channel transduces the signal to the transmembrane regions. In this study, we examined the molecular basis that governs the activation kinetics of these channels, using a chimeric approach. We identified two regions as being important in determining the kinetics of activation. One region is the bottom of the outer transmembrane helix (TM1) and the cytoplasmic domain immediately adjacent (the slide helix); and the second region is the bottom of the inner transmembrane helix (TM2) and the cytoplasmic domain immediately adjacent. Interestingly, both of these regions are sufficient in mediating the kinetics of fast activation gating. This result suggests that there is a cooperative movement of either one of these domains to allow fast and efficient activation gating of GIRK channels.
Dixon, Ann M.; Drake, Lisa; Hughes, Kelly T.; Sargent, Elizabeth; Hunt, Danielle; Harton, Jonathan A.; Drake, James R.
2014-01-01
Major histocompatibility complex (MHC) class II molecules exhibit conformational heterogeneity, which influences their ability to stimulate CD4 T cells and drive immune responses. Previous studies suggest a role for the transmembrane domain of the class II αβ heterodimer in determining molecular structure and function. Our previous studies identified an MHC class II conformer that is marked by the Ia.2 epitope. These Ia.2+ class II conformers are lipid raft-associated and able to drive both tyrosine kinase signaling and efficient antigen presentation to CD4 T cells. Here, we establish that the Ia.2+ I-Ak conformer is formed early in the class II biosynthetic pathway and that differential pairing of highly conserved transmembrane domain GXXXG dimerization motifs is responsible for formation of Ia.2+ versus Ia.2− I-Ak class II conformers and controlling lipid raft partitioning. These findings provide a molecular explanation for the formation of two distinct MHC class II conformers that differ in their inherent ability to signal and drive robust T cell activation, providing new insight into the role of MHC class II in regulating antigen-presenting cell-T cell interactions critical to the initiation and control of multiple aspects of the immune response. PMID:24619409
Architecture, component, and microbiome of biofilm involved in the fouling of membrane bioreactors.
Inaba, Tomohiro; Hori, Tomoyuki; Aizawa, Hidenobu; Ogata, Atsushi; Habe, Hiroshi
2017-01-01
Biofilm formation on the filtration membrane and the subsequent clogging of membrane pores (called biofouling) is one of the most persistent problems in membrane bioreactors for wastewater treatment and reclamation. Here, we investigated the structure and microbiome of fouling-related biofilms in the membrane bioreactor using non-destructive confocal reflection microscopy and high-throughput Illumina sequencing of 16S rRNA genes. Direct confocal reflection microscopy indicated that the thin biofilms were formed and maintained regardless of the increasing transmembrane pressure, which is a common indicator of membrane fouling, at low organic-loading rates. Their solid components were primarily extracellular polysaccharides and microbial cells. In contrast, high organic-loading rates resulted in a rapid increase in the transmembrane pressure and the development of the thick biofilms mainly composed of extracellular lipids. High-throughput sequencing revealed that the biofilm microbiomes, including major and minor microorganisms, substantially changed in response to the organic-loading rates and biofilm development. These results demonstrated for the first time that the architectures, chemical components, and microbiomes of the biofilms on fouled membranes were tightly associated with one another and differed considerably depending on the organic-loading conditions in the membrane bioreactor, emphasizing the significance of alternative indicators other than the transmembrane pressure for membrane biofouling.
Obuchi, N; Takahashi, M; Nouchi, T; Satoh, M; Arimura, T; Ueda, K; Akai, J; Ota, M; Naruse, T; Inoko, H; Numano, F; Kimura, A
2001-06-01
MHC class I chain-related gene A (MICA) is located close to HLA-B gene and expressed in epithelial cells. The MICA gene is reported to be highly polymorphic as are the classical class I genes. To further assess the polymorphism in the MICA gene, we analyzed a total of 60 HLA-homozygous cells for the sequences spanning exons 2-6. In the analysis, four new MICA alleles were identified and six variations were recognized in exon 6. MICA*017, which was identified in three HLA-B57 homozygous cells (DBB, DEM and WIN), differed from MICA*002 in exon 3 and had a guanine deletion at the 3' end of exon 4. MICA*015 identified in an HLA-B45 homozygous cell (OMW) also had the same deletion that causes a frameshift mutation resulting in complete change of the transmembrane region and premature termination in the cytoplasmic tail; these alleles have a long hydrophobic leucine-rich region instead of the alanine repeat in the transmembrane region and terminate at the second position in the cytoplasmic domain. The frameshift deletion was found only in HLA-B45- or -B57-positive panels tested, suggesting a strong linkage disequilibrium between the deletion and B45 or B57. MICA*048, which was different in exon 5 from MICA*008, was identified in an HLA-B61 homozygous cell (TA21), while MICA*00901 identified in HLA-B51 homozygous cells (LUY and KT2) was distinguished from MICA*009 by exon 6.
Foo, Alexander C Y; Harvey, Brandon G R; Metz, Jeff J; Goto, Natalie K
2015-01-01
Rhomboids comprise a broad family of intramembrane serine proteases that are found in a wide range of organisms and participate in a diverse array of biological processes. High-resolution structures of the catalytic transmembrane domain of the Escherichia coli GlpG rhomboid have provided numerous insights that help explain how hydrolytic cleavage can be achieved below the membrane surface. Key to this are observations that GlpG hydrophobic domain dimensions may not be sufficient to completely span the native lipid bilayer. This formed the basis for a model where hydrophobic mismatch Induces thinning of the local membrane environment to promote access to transmembrane substrates. However, hydrophobic mismatch also has the potential to alter the functional properties of the rhomboid, a possibility we explore in the current work. For this purpose, we purified the catalytic transmembrane domain of GlpG into phosphocholine or maltoside detergent micelles of varying alkyl chain lengths, and assessed proteolytic function with a model water-soluble substrate. Catalytic turnover numbers were found to depend on detergent alkyl chain length, with saturated chains containing 10–12 carbon atoms supporting maximal activity. Similar results were obtained in phospholipid bicelles, with no proteolytic activity being detected in longer-chain lipids. Although differences in thermal stability and GlpG oligomerization could not explain these activity differences, circular dichroism spectra suggest that mismatch gives rise to a small change in structure. Overall, these results demonstrate that hydrophobic mismatch can exert an inhibitory effect on rhomboid activity, with the potential for changes in local membrane environment to regulate activity in vivo. PMID:25307614
Sandoval-Perez, Angelica; Pluhackova, Kristyna; Böckmann, Rainer A
2017-05-09
Molecular dynamics (MD) simulations offer the possibility to study biological processes at high spatial and temporal resolution often not reachable by experiments. Corresponding biomolecular force field parameters have been developed for a wide variety of molecules ranging from inorganic ligands and small organic molecules over proteins and lipids to nucleic acids. Force fields have typically been parametrized and validated on thermodynamic observables and structural characteristics of individual compounds, e.g. of soluble proteins or lipid bilayers. Less strictly, due to the added complexity and missing experimental data to compare to, force fields have hardly been tested on the properties of mixed systems, e.g. on protein-lipid systems. Their selection and combination for mixed systems is further complicated by the partially differing parametrization strategies. Additionally, the presence of other compounds in the system may shift the subtle balance of force field parameters. Here, we assessed the protein-lipid interactions as described in the four atomistic force fields GROMOS54a7, CHARMM36 and the two force field combinations Amber14sb/Slipids and Amber14sb/Lipid14. Four observables were compared, focusing on the membrane-water interface: the conservation of the secondary structure of transmembrane proteins, the positioning of transmembrane peptides relative to the lipid bilayer, the insertion depth of side chains of unfolded peptides absorbed at the membrane interface, and the ability to reproduce experimental insertion energies of Wimley-White peptides at the membrane interface. Significant differences between the force fields were observed that affect e.g. membrane insertion depths and tilting of transmembrane peptides.
Coopman, K.; Wallis, R.; Robb, G.; Brown, A. J. H.; Wilkinson, G. F.; Timms, D.
2011-01-01
The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9–39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9–39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues. PMID:21868452
Accurate computational design of multipass transmembrane proteins.
Lu, Peilong; Min, Duyoung; DiMaio, Frank; Wei, Kathy Y; Vahey, Michael D; Boyken, Scott E; Chen, Zibo; Fallas, Jorge A; Ueda, George; Sheffler, William; Mulligan, Vikram Khipple; Xu, Wenqing; Bowie, James U; Baker, David
2018-03-02
The computational design of transmembrane proteins with more than one membrane-spanning region remains a major challenge. We report the design of transmembrane monomers, homodimers, trimers, and tetramers with 76 to 215 residue subunits containing two to four membrane-spanning regions and up to 860 total residues that adopt the target oligomerization state in detergent solution. The designed proteins localize to the plasma membrane in bacteria and in mammalian cells, and magnetic tweezer unfolding experiments in the membrane indicate that they are very stable. Crystal structures of the designed dimer and tetramer-a rocket-shaped structure with a wide cytoplasmic base that funnels into eight transmembrane helices-are very close to the design models. Our results pave the way for the design of multispan membrane proteins with new functions. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Onaca, Ozana; Nallani, Madhavan; Ihle, Saskia; Schenk, Alexander; Schwaneberg, Ulrich
2006-01-01
Synthosomes are mechanically stable vesicles with a block copolymer membrane and an engineered transmembrane protein acting as selective gate. The polymer vesicles are nanometer-sized (50-1000 nm) and functionalized by loading them with enzymes for bioconversions or encapsulating charged macromolecules for selective compound recovery/release. The Synthosome system might become a novel technology platform for biocatalysis and selective product recovery. Progress in Synthosome research comprises employed block copolymers, transmembrane channel engineering, and functionalizations, which are discussed here in detail. The challenges in transmembrane protein engineering, as well as cost-effective production, in block copolymer design and the state of the art in Synthosome characterization comprising quantification of encapsulated protein, translocation efficiency, number of transmembrane channels per vesicle, and enzyme kinetics are also presented and discussed. An assessment of the Synthosome technology platform for prospective applications in industrial (white) biotechnology concludes this review.
Control of mitochondrial pH by uncoupling protein 4 in astrocytes promotes neuronal survival.
Perreten Lambert, Hélène; Zenger, Manuel; Azarias, Guillaume; Chatton, Jean-Yves; Magistretti, Pierre J; Lengacher, Sylvain
2014-11-07
Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Zulkifli, Mohammad; Bachhawat, Anand Kumar
2017-05-16
The proton gradient acts as the driving force for the transport of many metabolites across fungal and plant plasma membranes. Identifying the mechanism of proton relay is critical for understanding the mechanism of transport mediated by these transporters. We investigated two strategies for identifying residues critical for proton-dependent substrate transport in the yeast glutathione transporter, Hgt1p, a member of the poorly understood oligopeptide transporter family of transporters. In the first strategy, we tried to identify the pH-independent mutants that could grow at higher pH when dependant on glutathione transport. Screening a library of 269 alanine mutants of the transmembrane domains (TMDs) along with a random mutagenesis strategy yielded two residues (E135K on the cusp of TMD2 and N710S on TMD12) that permitted growth on glutathione at pH 8.0. Further analysis revealed that these residues were not involved in proton symport even though they conferred better transport at a higher pH. The second strategy involved a knowledge-driven approach, targeting 31 potential residues based on charge, conservation and location. Mutation of these residues followed by functional and biochemical characterization revealed E177A, Y193A, D335A, Y374A, H445A and R554A as being defective in proton transport. Further analysis enabled possible roles of these residues to be assigned in proton relay. The implications of these findings in relation to Hgt1p and the suitability of these strategic approaches for identifying such residues are discussed. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Sulfate-chloride exchange by lobster hepatopancreas is regulated by pH-sensitive modifier sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cattey, M.A.; Ahearn, G.A.; Gerencser, G.A.
1991-03-15
{sup 35}SO{sub 4}{sup 2{minus}} uptake by Atlantic lobster (Homarus americanus) hepatopancreatic epithelial brush border membrane vesicles (BBMV) was stimulated by internal Cl{sup {minus}}, but not internal HCO{sub 3}{sup {minus}}, or external Na{sup +}. Sulfate-chloride exchange was stimulated by inside positive, and inhibited by inside negative, trans-membrane K diffusion potentials. {sup 35}SO{sub 4}{sup 2{minus}}-Cl{sup {minus}} exchange was strongly inhibited by 4,4{prime} diisothiocyanostilbene-2,2{prime}-disulfonic acid (DIDS), 4-acetamido-4{prime}-isotheocynaostilbene-2,2{prime}-disulfonic acid, (SITS), and thiosulfate. Chloride, bicarbonate, furosamide, and bumetanide slightly, yet significantly, cis-inhibited {sup 35}SO{sub 4}{sup 2{minus}}-Cl{sup {minus}} exchange. Altering bilateral pH from 8.0 to 5.4 stimulated {sup 35}SO{sub 4}{sup 2{minus}}-Cl{sup {minus}} exchange when vesicles weremore » loaded with Cl{sup {minus}}, but reduced bilateral pH alone or the presence of pH gradients did not affect {sup 35}SO{sub 4}{sup 2{minus}} transport in the absence of internal Cl{sup {minus}}. {sup 36}Cl uptake into SO{sub 4}{sup 2{minus}}-loaded BBMV was stimulated by an internal negative membrane potential and inhibited when the interior was electrically positive. A model is proposed which suggests that SO{sub 4}{sup 2{minus}}-Cl{sup {minus}} exchange is regulated by internal and external pH-sensitive modifier sites on the anion antiporter and by coupling to the electrogenic 2 Na{sup +}/1 H{sup +} antiporter and by coupling to the electrogenic 2 Na{sup +}/1 H{sup +} antiporter on the same membrane.« less
Sakai, Hiromu; Li, Guangshuai; Hino, Yoshiko; Moriura, Yoshie; Kawawaki, Junko; Sawada, Makoto; Kuno, Miyuki
2013-01-01
Voltage-gated proton channels (H+ channels) are highly proton-selective transmembrane pathways. Although the primary determinants for activation are the pH and voltage gradients across the membrane, the current amplitudes fluctuate often when these gradients are constant. The aim of this study was to investigate the role of the intracellular pH (pHi) in regulating the availability of H+ channels in osteoclasts and microglia. In whole-cell clamp recordings, the pHi was elevated after exposure to NH4Cl and returned to the control level after washout. However, the H+ channel conductance did not recover fully when the exposure was prolonged (>5 min). Similar results were observed in osteoclasts and microglia, but not in COS7 cells expressing a murine H+ channel gene (mVSOP). As other electrophysiological properties, like the gating kinetics and voltage dependence for activation, were unchanged, the decreases in the H+ channel conductance were probably due to the decreases in H+ channels available at the plasma membrane. The decreases in the H+ channel conductances were accompanied by reductions in the cell capacitance. Exposure to NH4Cl increased the uptake of the endocytosis marker FM1-43, substantiating the idea that pHi increases facilitated endocytosis. In osteoclasts, whose plasma membrane expresses V-ATPases and H+ channels, pHi increases by these H+-transferring molecules in part facilitated endocytosis. The endocytosis and decreases in the H+ channel conductance were reduced by dynasore, a dynamin blocker. These results suggest that pHi increases in osteoclasts and microglia decrease the numbers of H+ channels available at the plasma membrane through facilitation of dynamin-dependent endocytosis. PMID:24081153
Rauschmeier, Martina; Schüppel, Valentina; Tetsch, Larissa; Jung, Kirsten
2014-01-09
The coordination of signal transduction and substrate transport represents a sophisticated way to integrate information on metabolite fluxes into transcriptional regulation. This widely distributed process involves protein-protein interactions between two integral membrane proteins. Here we report new insights into the molecular mechanism of the regulatory interplay between the lysine-specific permease LysP and the membrane-integrated pH sensor CadC, which together induce lysine-dependent adaptation of E. coli under acidic stress. In vivo analyses revealed that, in the absence of either stimulus, the two proteins form a stable association, which is modulated by lysine and low pH. In addition to its transmembrane helix, the periplasmic domain of CadC also participated in the interaction. Site-directed mutagenesis pinpointed Arg265 and Arg268 in CadC as well as Asp275 and Asp278 in LysP as potential periplasmic interaction sites. Moreover, a systematic analysis of 100 LysP variants with single-site replacements indicated that the lysine signal is transduced from co-sensor to sensor via lysine-dependent conformational changes (upon substrate binding and/or transport) of LysP. Our results suggest a scenario in which CadC is inhibited by LysP via intramembrane and periplasmic contacts under non-inducing conditions. Upon induction, lysine-dependent conformational changes in LysP transduce the lysine signal via a direct conformational coupling to CadC without resolving the interaction completely. Moreover, concomitant pH-dependent protonation of periplasmic amino acids in both proteins dissolves their electrostatic connections resulting in further destabilization of the CadC/LysP interaction. © 2013.
Buchner, Sophie; Schlundt, Andreas; Lassak, Jürgen; Sattler, Michael; Jung, Kirsten
2015-07-31
The pH-responsive one-component signaling system CadC in Escherichia coli belongs to the family of ToxR-like proteins, whose members share a conserved modular structure, with an N-terminal cytoplasmic winged helix-turn-helix DNA-binding domain being followed by a single transmembrane helix and a C-terminal periplasmic pH-sensing domain. In E. coli CadC, a cytoplasmic linker comprising approximately 50 amino acids is essential for transmission of the signal from the sensor to the DNA-binding domain. However, the mechanism of transduction is poorly understood. Using NMR spectroscopy, we demonstrate here that the linker region is intrinsically disordered in solution. Furthermore, mutational analyses showed that it tolerates a range of amino acid substitutions (altering polarity, rigidity and α-helix-forming propensity), is robust to extension but is sensitive to truncation. Indeed, truncations either reversed the expression profile of the target operon cadBA or decoupled expression from external pH altogether. CadC dimerizes via its periplasmic domain, but light-scattering analysis provided no evidence for dimerization of the isolated DNA-binding domain, with or without the linker region. However, bacterial two-hybrid analysis revealed that CadC forms stable dimers in a stimulus- and linker-dependent manner, interacting only at pH<6.8. Strikingly, a variant with inversed cadBA expression profile, which lacks most of the linker, dimerizes preferentially at higher pH. Thus, we propose that the disordered CadC linker is required for transducing the pH-dependent response of the periplasmic sensor into a structural rearrangement that facilitates dimerization of the cytoplasmic CadC DNA-binding domain. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Chakrabarti, A. C.; Deamer, D. W. (Principal Investigator); Miller, S. L. (Principal Investigator)
1994-01-01
The amino acid permeability of membranes is of interest because they are one of the key solutes involved in cell function. Membrane permeability coefficients (P) for amino acid classes, including neutral, polar, hydrophobic, and charged species, have been measured and compared using a variety of techniques. Decreasing lipid chain length increased permeability slightly (5-fold), while variations in pH had only minor effects on the permeability coefficients of the amino acids tested in liposomes. Increasing the membrane surface charge increased the permeability of amino acids of the opposite charge, while increasing the cholesterol content decreased membrane permeability. The permeability coefficients for most amino acids tested were surprisingly similar to those previously measured for monovalent cations such as sodium and potassium (approximately 10(-12)-10(-13) cm s-1). This observation suggests that the permeation rates for the neutral, polar and charged amino acids are controlled by bilayer fluctuations and transient defects, rather than partition coefficients and Born energy barriers. Hydrophobic amino acids were 10(2) more permeable than the hydrophilic forms, reflecting their increased partition coefficient values. External pH had dramatic effects on the permeation rates for the modified amino acid lysine methyl ester in response to transmembrane pH gradients. It was established that lysine methyl ester and other modified short peptides permeate rapidly (P = 10(-2) cm s-1) as neutral (deprotonated) molecules. It was also shown that charge distributions dramatically alter permeation rates for modified di-peptides. These results may relate to the movement of peptides through membranes during protein translocation and to the origin of cellular membrane transport on the early Earth.
Kurokawa, Tatsuki; Takasuga, Shunsuke; Sakata, Souhei; Yamaguchi, Shinji; Horie, Shigeo; Homma, Koichi J; Sasaki, Takehiko; Okamura, Yasushi
2012-06-19
Voltage-sensing phosphatases (VSPs) consist of a voltage-sensor domain and a cytoplasmic region with remarkable sequence similarity to phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor phosphatase. VSPs dephosphorylate the 5' position of the inositol ring of both phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] upon voltage depolarization. However, it is unclear whether VSPs also have 3' phosphatase activity. To gain insights into this question, we performed in vitro assays of phosphatase activities of Ciona intestinalis VSP (Ci-VSP) and transmembrane phosphatase with tensin homology (TPTE) and PTEN homologous inositol lipid phosphatase (TPIP; one human ortholog of VSP) with radiolabeled PI(3,4,5)P(3). TLC assay showed that the 3' phosphate of PI(3,4,5)P(3) was not dephosphorylated, whereas that of phosphatidylinositol 3,4-bisphosphate [PI(3,4)P(2)] was removed by VSPs. Monitoring of PI(3,4)P(2) levels with the pleckstrin homology (PH) domain from tandem PH domain-containing protein (TAPP1) fused with GFP (PH(TAPP1)-GFP) by confocal microscopy in amphibian oocytes showed an increase of fluorescence intensity during depolarization to 0 mV, consistent with 5' phosphatase activity of VSP toward PI(3,4,5)P(3). However, depolarization to 60 mV showed a transient increase of GFP fluorescence followed by a decrease, indicating that, after PI(3,4,5)P(3) is dephosphorylated at the 5' position, PI(3,4)P(2) is then dephosphorylated at the 3' position. These results suggest that substrate specificity of the VSP changes with membrane potential.
Bertaccini, Edward J.; Yoluk, Ozge; Lindahl, Erik R.; Trudell, James R.
2013-01-01
Background Anesthetics mediate portions of their activity via modulation of the γ-aminobutyric acid receptor (GABAaR). While its molecular structure remains unknown, significant progress has been made towards understanding its interactions with anesthetics via molecular modeling. Methods The structure of the torpedo acetylcholine receptor (nAChRα), the structures of the α4 and β2 subunits of the human nAChR, the structures of the eukaryotic glutamate-gated chloride channel (GluCl), and the prokaryotic pH sensing channels, from Gloeobacter violaceus and Erwinia chrysanthemi, were aligned with the SAlign and 3DMA algorithms. A multiple sequence alignment from these structures and those of the GABAaR was performed with ClustalW. The Modeler and Rosetta algorithms independently created three-dimensional constructs of the GABAaR from the GluCl template. The CDocker algorithm docked a congeneric series of propofol derivatives into the binding pocket and scored calculated binding affinities for correlation with known GABAaR potentiation EC50’s. Results Multiple structure alignments of templates revealed a clear consensus of residue locations relevant to anesthetic effects except for torpedo nAChR. Within the GABAaR models generated from GluCl, the residues notable for modulating anesthetic action within transmembrane segments 1, 2, and 3 converged on the intersubunit interface between alpha and beta subunits. Docking scores of a propofol derivative series into this binding site showed strong linear correlation with GABAaR potentiation EC50. Conclusion Consensus structural alignment based on homologous templates revealed an intersubunit anesthetic binding cavity within the transmembrane domain of the GABAaR, which showed correlation of ligand docking scores with experimentally measured GABAaR potentiation. PMID:23770602
Tuo, Biguang; Wen, Guorong; Seidler, Ursula
2009-01-01
Background and purpose: Many cystic fibrosis (CF)-associated mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channels affect CFTR-activated HCO3− transport more than Cl− transport. Targeting the CFTR HCO3− conductance, if possible, may therefore be of major therapeutic benefit. In the present study, we examined the effects of genistein and forskolin on duodenal mucosal HCO3− and Cl− secretion. Experimental approach: Murine duodenal mucosal HCO3− and Cl− secretions were examined in vitro in Ussing chambers by the pH stat and short circuit current (Isc) techniques. Key results: Genistein markedly stimulated duodenal HCO3− secretion and Isc in a dose-dependent manner in CFTR wild-type mice, but not in CFTR null mice. CFTRinh-172, a highly specific CFTR inhibitor, inhibited genistein-stimulated duodenal HCO3− secretion and Isc in wild-type mice. Genistein induced 59% net HCO3− increase and 123% net Isc increase over basal value, whereas forskolin, an activator of adenylate cyclase, induced 94% net HCO3− increase and 507% net Isc increase, indicating that, compared with forskolin, genistein induced a relatively high HCO3−/Isc ratio. Further data showed that CFTR HCO3−/Cl− conductance ratio was 1.05 after genistein stimulation, whereas after forskolin stimulation, the CFTR HCO3−/Cl− conductance ratio was 0.27. Conclusions and implications: Genistein stimulates duodenal HCO3− and Cl− secretion through CFTR, and has a relatively high selectivity for the CFTR HCO3− conductance, compared with forskolin. This may indicate the feasibility of selective targeting of the HCO3− conductance of the CFTR channels. PMID:19788494
Role of an extracellular loop in determining the stoichiometry of Na+–HCO3− cotransporters
Chen, Li-Ming; Liu, Ying; Boron, Walter F
2011-01-01
The Na+–HCO3− cotransporters (NBCs) of the solute carrier 4 family (SLC4) are critical for regulating pH in cells as well as in fluids such as blood and cerebrospinal fluid. Moreover, mutations and gene disruptions in NBC are linked to a wide range of pathologies. NBCe1 (SLC4A4) is electrogenic because it has an apparent Na+:HCO3− stoichiometry of 1:2 or 1:3, whereas NBCn1 (SLC4A7) is electroneutral because it has an apparent stoichiometry of 1:1. Because stoichiometry influences the effect of transport on membrane potential and vice versa, a central question is what structural features underlie electrogenicity versus electroneutrality. A previous study on rat NBCe1/n1 chimeras demonstrated that the structural elements determining the electrogenicity of NBCe1-A are located within the transmembrane domain, excluding the large third extracellular loop. In the present study we generated a series of chimeras of human NBCe1-A and human NBCn1-A. We found that replacing merely the predicted fourth extracellular loop (EL4) – containing 32 amino acid residues that include 7 prolines – of human NBCe1-A with EL4 of NBCn1-A creates an electroneutral NBC. The opposite switch converts an electroneutral construct to one with electrogenic properties. The introduction of an N-glycosylation site into EL4 confirms that at least a part of it is exposed to the extracellular fluid. We hypothesize that putative EL4 either contributes to the substrate-binding vestibule or indirectly influences substrate binding by interacting with one or more transmembrane segments, thereby controlling the nature of transport. PMID:21224233
2017-01-01
Summary Hypoallergenic antibacterial low-molecular-mass peptides were produced from defatted soybean meal in a membrane bioreactor. In the first step, soybean meal proteins were digested with trypsin in the bioreactor, operated in batch mode. For the tryptic digestion of soybean meal protein, optimum initial soybean meal concentration of 75 g/L, temperature of 40 °C and pH=9.0 were determined. After enzymatic digestion, low-molecular-mass peptides were purified with cross-flow flat sheet membrane (pore size 100 µm) and then with tubular ceramic ultrafiltration membrane (molecular mass cut-off 5 kDa). Effects of transmembrane pressure and the use of a static turbulence promoter to reduce the concentration polarization near the ultrafiltration membrane surface were examined and their positive effects were proven. For the filtration with ultrafiltration membrane, transmembrane pressure of 3·105 Pa with 3-stage discontinuous diafiltration was found optimal. The molecular mass distribution of purified peptides using ultrafiltration membrane was determined by a liquid chromatography–electrospray ionization quadrupole time-of-flight mass spectrometry setup. More than 96% of the peptides (calculated as relative frequency) from the ultrafiltration membrane permeate had the molecular mass M≤1.7 kDa and the highest molecular mass was found to be 3.1 kDa. The decrease of allergenic property due to the tryptic digestion and membrane filtration was determined by an enzyme-linked immunosorbent assay and it was found to exceed 99.9%. It was also found that the peptides purified in the ultrafiltration membrane promoted the growth of Pediococcus acidilactici HA6111-2 and they possessed antibacterial activity against Bacillus cereus. PMID:29089846
de la Roche, Jeanne; Eberhardt, Mirjam J; Klinger, Alexandra B; Stanslowsky, Nancy; Wegner, Florian; Koppert, Wolfgang; Reeh, Peter W; Lampert, Angelika; Fischer, Michael J M; Leffler, Andreas
2013-07-12
The surveillance of acid-base homeostasis is concerted by diverse mechanisms, including an activation of sensory afferents. Proton-evoked activation of rodent sensory neurons is mainly mediated by the capsaicin receptor TRPV1 and acid-sensing ion channels. In this study, we demonstrate that extracellular acidosis activates and sensitizes the human irritant receptor TRPA1 (hTRPA1). Proton-evoked membrane currents and calcium influx through hTRPA1 occurred at physiological acidic pH values, were concentration-dependent, and were blocked by the selective TRPA1 antagonist HC030031. Both rodent and rhesus monkey TRPA1 failed to respond to extracellular acidosis, and protons even inhibited rodent TRPA1. Accordingly, mouse dorsal root ganglion neurons lacking TRPV1 only responded to protons when hTRPA1 was expressed heterologously. This species-specific activation of hTRPA1 by protons was reversed in both mouse and rhesus monkey TRPA1 by exchange of distinct residues within transmembrane domains 5 and 6. Furthermore, protons seem to interact with an extracellular interaction site to gate TRPA1 and not via a modification of intracellular N-terminal cysteines known as important interaction sites for electrophilic TRPA1 agonists. Our data suggest that hTRPA1 acts as a sensor for extracellular acidosis in human sensory neurons and should thus be taken into account as a yet unrecognized transduction molecule for proton-evoked pain and inflammation. The species specificity of this property is unique among known endogenous TRPA1 agonists, possibly indicating that evolutionary pressure enforced TRPA1 to inherit the role as an acid sensor in human sensory neurons.
de la Roche, Jeanne; Eberhardt, Mirjam J.; Klinger, Alexandra B.; Stanslowsky, Nancy; Wegner, Florian; Koppert, Wolfgang; Reeh, Peter W.; Lampert, Angelika; Fischer, Michael J. M.; Leffler, Andreas
2013-01-01
The surveillance of acid-base homeostasis is concerted by diverse mechanisms, including an activation of sensory afferents. Proton-evoked activation of rodent sensory neurons is mainly mediated by the capsaicin receptor TRPV1 and acid-sensing ion channels. In this study, we demonstrate that extracellular acidosis activates and sensitizes the human irritant receptor TRPA1 (hTRPA1). Proton-evoked membrane currents and calcium influx through hTRPA1 occurred at physiological acidic pH values, were concentration-dependent, and were blocked by the selective TRPA1 antagonist HC030031. Both rodent and rhesus monkey TRPA1 failed to respond to extracellular acidosis, and protons even inhibited rodent TRPA1. Accordingly, mouse dorsal root ganglion neurons lacking TRPV1 only responded to protons when hTRPA1 was expressed heterologously. This species-specific activation of hTRPA1 by protons was reversed in both mouse and rhesus monkey TRPA1 by exchange of distinct residues within transmembrane domains 5 and 6. Furthermore, protons seem to interact with an extracellular interaction site to gate TRPA1 and not via a modification of intracellular N-terminal cysteines known as important interaction sites for electrophilic TRPA1 agonists. Our data suggest that hTRPA1 acts as a sensor for extracellular acidosis in human sensory neurons and should thus be taken into account as a yet unrecognized transduction molecule for proton-evoked pain and inflammation. The species specificity of this property is unique among known endogenous TRPA1 agonists, possibly indicating that evolutionary pressure enforced TRPA1 to inherit the role as an acid sensor in human sensory neurons. PMID:23709225
Physical Chemistry to the Rescue: Differentiating Nicotinic and Cholinergic Agonists
ERIC Educational Resources Information Center
King, Angela G.
2005-01-01
Researches suggest that two agonists can bind to the same binding site of an important transmembrane protein and elicit a biological response through strikingly different binding interactions. Evidence is provided which suggests two possible types of nicotinic acetylcholine receptor agonist binding like acetlycholine (cholinergic) or like nicotine…
Roy Choudhury, Amrita; Perdih, Andrej; Zuperl, Spela; Sikorska, Emilia; Solmajer, Tom; Jurga, Stefan; Zhukov, Igor; Novič, Marjana
2013-11-01
Membrane proteins represent about a third of the gene products in most organisms, as revealed by the genome sequencing projects. They account for up to two thirds of known drugable targets, which emphasizes their critical pharmaceutical importance. Here we present a study on bilitranslocase (BTL) (TCDB 2.A.65), a membrane protein primarily involved in the transport of bilirubin from blood to liver cells. Bilitranslocase has also been identified as a potential membrane transporter for cellular uptake of several drugs and due to its implication in drug uptake, it is extremely important to advance the knowledge about its 3D structure. However, at present, only a limited knowledge is available beyond the primary structure of BTL. It has been recently confirmed experimentally that one of the four computationally predicted transmembrane segments of bilitranslocase, TM3, has a helical structure with hydrophilic amino acid residues oriented towards one side, which is typical for transmembrane domains of membrane proteins. In this study we confirmed by the use of multidimensional NMR spectroscopy that the second transmembrane segment, TM2, also appears in a form of α-helix. The stability of this polypeptide chain was verified by molecular dynamics (MD) simulation in dipalmitoyl phosphatidyl choline (DPPC) and in sodium dodecyl sulfate (SDS) micelles. The two α-helices, TM2 corroborated in this study, and TM3 confirmed in our previous investigation, provide reasonable building blocks of a potential transmembrane channel for transport of bilirubin and small hydrophilic molecules, including pharmaceutically active compounds. Copyright © 2013 Elsevier B.V. All rights reserved.
CFTR, bicarbonate, and the pathophysiology of cystic fibrosis.
Borowitz, Drucy
2015-10-01
The gene that encodes for the cystic fibrosis transmembrane regulator protein (CFTR) was identified in 1989, yet major pathophysiologic questions remain unanswered. There is emerging evidence that CFTR is a bicarbonate channel, a driver of chloride-bicarbonate exchange and through its action on local pH, a regulator of other ion channels and of proteins that function optimally in a neutral environment. In both the respiratory and gastrointestinal (GI) tracts, bicarbonate drives ionic content and fluid on epithelial surfaces, allows mucins to unfold and become slippery, and contributes to innate immunity. In the GI tract bicarbonate neutralizes gastric acid to support digestion and absorption. When CFTR is dysfunctional, lack of bicarbonate secretion disrupts these normal processes and thus leads directly to the clinical symptoms and signs of CF. This article synthesizes evidence from cell, animal, and human investigations that support these concepts. Bicarbonate secretion does not seem to be the same in all tissues and varies with physiologic demand. Thus, tissue type and whether conditions are baseline or stimulated needs to be taken into account when evaluating the evidence concerning the role of bicarbonate in the pathophysiology of CF as a regulator of local pH. Basic and applied research that focuses on the role of CFTR-mediated bicarbonate secretion helps explain many of the diverse clinical manifestations that are CF. © 2015 Wiley Periodicals, Inc.
Structure of a prokaryotic virtual proton pump at 3.2 Å resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Yiling; Jayaram, Hariharan; Shane, Tania
2009-09-15
To reach the mammalian gut, enteric bacteria must pass through the stomach. Many such organisms survive exposure to the harsh gastric environment (pH 1.5-4) by mounting extreme acid-resistance responses, one of which, the arginine-dependent system of Escherichia coli, has been studied at levels of cellular physiology, molecular genetics and protein biochemistry. This multiprotein system keeps the cytoplasm above pH 5 during acid challenge by continually pumping protons out of the cell using the free energy of arginine decarboxylation. At the heart of the process is a 'virtual proton pump' in the inner membrane, called AdiC, that imports L-arginine from themore » gastric juice and exports its decarboxylation product agmatine. AdiC belongs to the APC superfamily of membrane proteins, which transports amino acids, polyamines and organic cations in a multitude of biological roles, including delivery of arginine for nitric oxide synthesis, facilitation of insulin release from pancreatic {beta}-cells, and, when inappropriately overexpressed, provisioning of certain fast-growing neoplastic cells with amino acids. High-resolution structures and detailed transport mechanisms of APC transporters are currently unknown. Here we describe a crystal structure of AdiC at 3.2 {angstrom} resolution. The protein is captured in an outward-open, substrate-free conformation with transmembrane architecture remarkably similar to that seen in four other families of apparently unrelated transport proteins.« less
The Hv1 proton channel responds to mechanical stimuli.
Pathak, Medha M; Tran, Truc; Hong, Liang; Joós, Béla; Morris, Catherine E; Tombola, Francesco
2016-11-01
The voltage-gated proton channel, Hv1, is expressed in tissues throughout the body and plays important roles in pH homeostasis and regulation of NADPH oxidase. Hv1 operates in membrane compartments that experience strong mechanical forces under physiological or pathological conditions. In microglia, for example, Hv1 activity is potentiated by cell swelling and causes an increase in brain damage after stroke. The channel complex consists of two proton-permeable voltage-sensing domains (VSDs) linked by a cytoplasmic coiled-coil domain. Here, we report that these VSDs directly respond to mechanical stimuli. We find that membrane stretch facilitates Hv1 channel opening by increasing the rate of activation and shifting the steady-state activation curve to less depolarized potentials. In the presence of a transmembrane pH gradient, membrane stretch alone opens the channel without the need for strong depolarizations. The effect of membrane stretch persists for several minutes after the mechanical stimulus is turned off, suggesting that the channel switches to a "facilitated" mode in which opening occurs more readily and then slowly reverts to the normal mode observed in the absence of membrane stretch. Conductance simulations with a six-state model recapitulate all the features of the channel's response to mechanical stimulation. Hv1 mechanosensitivity thus provides a mechanistic link between channel activation in microglia and brain damage after stroke. © 2016 Pathak et al.
Resource for structure related information on transmembrane proteins
NASA Astrophysics Data System (ADS)
Tusnády, Gábor E.; Simon, István
Transmembrane proteins are involved in a wide variety of vital biological processes including transport of water-soluble molecules, flow of information and energy production. Despite significant efforts to determine the structures of these proteins, only a few thousand solved structures are known so far. Here, we review the various resources for structure-related information on these types of proteins ranging from the 3D structure to the topology and from the up-to-date databases to the various Internet sites and servers dealing with structure prediction and structure analysis. Abbreviations: 3D, three dimensional; PDB, Protein Data Bank; TMP, transmembrane protein.
Wang, Hong; Brautigan, David L
2006-11-01
Human lemur (Lmr) kinases are predicted to be Tyr kinases based on sequences and are related to neurotrophin receptor Trk kinases. This study used homogeneous recombinant KPI-2 (Lmr2, LMTK2, Cprk, brain-enriched protein kinase) kinase domain and a library of 1,154 peptides on a microarray to analyze substrate specificity. We found that KPI-2 is strictly a Ser/Thr kinase that reacts with Ser either preceded by or followed by Pro residues but unlike other Pro-directed kinases does not strictly require an adjacent Pro residue. The most reactive peptide in the library corresponds to Ser-737 of cystic fibrosis transmembrane conductance regulator, and the recombinant R domain of cystic fibrosis transmembrane conductance regulator was a preferred substrate. Furthermore the KPI-2 kinase phosphorylated peptides corresponding to the single site in phosphorylase and purified phosphorylase b, making this only the second known phosphorylase b kinase. Phosphorylase was used as a specific substrate to show that KPI-2 is inhibited in living cells by addition of nerve growth factor or serum. The results demonstrate the utility of the peptide library to probe specificity and discover kinase substrates and offer a specific assay that reveals hormonal regulation of the activity of this unusual transmembrane kinase.
Nugent, Timothy; Jones, David T.
2010-01-01
Alpha-helical transmembrane proteins constitute roughly 30% of a typical genome and are involved in a wide variety of important biological processes including cell signalling, transport of membrane-impermeable molecules and cell recognition. Despite significant efforts to predict transmembrane protein topology, comparatively little attention has been directed toward developing a method to pack the helices together. Here, we present a novel approach to predict lipid exposure, residue contacts, helix-helix interactions and finally the optimal helical packing arrangement of transmembrane proteins. Using molecular dynamics data, we have trained and cross-validated a support vector machine (SVM) classifier to predict per residue lipid exposure with 69% accuracy. This information is combined with additional features to train a second SVM to predict residue contacts which are then used to determine helix-helix interaction with up to 65% accuracy under stringent cross-validation on a non-redundant test set. Our method is also able to discriminate native from decoy helical packing arrangements with up to 70% accuracy. Finally, we employ a force-directed algorithm to construct the optimal helical packing arrangement which demonstrates success for proteins containing up to 13 transmembrane helices. This software is freely available as source code from http://bioinf.cs.ucl.ac.uk/memsat/mempack/. PMID:20333233
Delineation of the peptide binding site of the human galanin receptor.
Kask, K; Berthold, M; Kahl, U; Nordvall, G; Bartfai, T
1996-01-01
Galanin, a neuroendocrine peptide of 29 amino acids, binds to Gi/Go-coupled receptors to trigger cellular responses. To determine which amino acids of the recently cloned seven-transmembrane domain-type human galanin receptor are involved in the high-affinity binding of the endogenous peptide ligand, we performed a mutagenesis study. Mutation of the His264 or His267 of transmembrane domain VI to alanine, or of Phe282 of transmembrane domain VII to glycine, results in an apparent loss of galanin binding. The substitution of Glu271 to serine in the extracellular loop III of the receptor causes a 12-fold loss in affinity for galanin. We combined the mutagenesis results with data on the pharmacophores (Trp2, Tyr9) of galanin and with molecular modelling of the receptor using bacteriorhodopsin as a model. Based on these studies, we propose a binding site model for the endogenous peptide ligand in the galanin receptor where the N-terminus of galanin hydrogen bonds with Glu271 of the receptor, Trp2 of galanin interacts with the Zn2+ sensitive pair of His264 and His267 of transmembrane domain VI, and Tyr9 of galanin interacts with Phe282 of transmembrane domain VII, while the C-terminus of galanin is pointing towards the N-terminus of th Images PMID:8617199
Warren, Ted J; Van Hook, Matthew J; Supuran, Claudiu T; Thoreson, Wallace B
2016-11-15
In the vertebrate retina, photoreceptors influence the signalling of neighbouring photoreceptors through lateral-inhibitory interactions mediated by horizontal cells (HCs). These interactions create antagonistic centre-surround receptive fields important for detecting edges and generating chromatically opponent responses in colour vision. The mechanisms responsible for inhibitory feedback from HCs involve changes in synaptic cleft pH that modulate photoreceptor calcium currents. However, the sources of synaptic protons involved in feedback and the mechanisms for their removal from the cleft when HCs hyperpolarize to light remain unknown. Our results indicate that Na + -H + exchangers are the principal source of synaptic cleft protons involved in HC feedback but that synaptic cleft alkalization during light-evoked hyperpolarization of HCs also involves changes in bicarbonate transport across the HC membrane. In addition to delineating processes that establish lateral inhibition in the retina, these results contribute to other evidence showing the key role for pH in regulating synaptic signalling throughout the nervous system. Lateral-inhibitory feedback from horizontal cells (HCs) to photoreceptors involves changes in synaptic cleft pH accompanying light-evoked changes in HC membrane potential. We analysed HC to cone feedback by studying surround-evoked light responses of cones and by obtaining paired whole cell recordings from cones and HCs in salamander retina. We tested three potential sources for synaptic cleft protons: (1) generation by extracellular carbonic anhydrase (CA), (2) release from acidic synaptic vesicles and (3) Na + /H + exchangers (NHEs). Neither antagonizing extracellular CA nor blocking loading of protons into synaptic vesicles eliminated feedback. However, feedback was eliminated when extracellular Na + was replaced with choline and significantly reduced by an NHE inhibitor, cariporide. Depriving NHEs of intracellular protons by buffering HC cytosol with a pH 9.2 pipette solution eliminated feedback, whereas alkalinizing the cone cytosol did not, suggesting that HCs are a major source for protons in feedback. We also examined mechanisms for changing synaptic cleft pH in response to changes in HC membrane potential. Increasing the trans-membrane proton gradient by lowering the extracellular pH from 7.8 to 7.4 to 7.1 strengthened feedback. While maintaining constant extracellular pH with 1 mm HEPES, removal of bicarbonate abolished feedback. Elevating intracellular bicarbonate levels within HCs prevented this loss of feedback. A bicarbonate transport inhibitor, 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS), also blocked feedback. Together, these results suggest that NHEs are the primary source of extracellular protons in HC feedback but that changes in cleft pH accompanying changes in HC membrane voltage also require bicarbonate flux across the HC membrane. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Buffering of protons released by mineral formation during amelogenesis in mice.
Bronckers, Antonius L J J; Lyaruu, Don M; Jalali, Rozita; DenBesten, Pamela K
2016-10-01
Regulation of pH by ameloblasts during amelogenesis is critical for enamel mineralization. We examined the effects of reduced bicarbonate secretion and the presence or absence of amelogenins on ameloblast modulation and enamel mineralization. To that end, the composition of fluorotic and non-fluorotic enamel of several different mouse mutants, including enamel of cystic fibrosis transmembrane conductance regulator-deficient (Cftr null), anion exchanger-2-deficient (Ae2a,b null), and amelogenin-deficient (Amelx null) mice, was determined by quantitative X-ray microanalysis. Correlation analysis was carried out to compare the effects of changes in the levels of sulfated-matrix (S) and chlorine (Cl; for bicarbonate secretion) on mineralization and modulation. The chloride (Cl - ) levels in forming enamel determined the ability of ameloblasts to modulate, remove matrix, and mineralize enamel. In general, the lower the Cl - content, the stronger the negative effects. In Amelx-null mice, modulation was essentially normal and the calcium content was reduced least. Retention of amelogenins in enamel of kallikrein-4-deficient (Klk4-null) mice resulted in decreased mineralization and reduced the length of the first acid modulation band without changing the total length of all acidic bands. These data suggest that buffering by bicarbonates is critical for modulation, matrix removal and enamel mineralization. Amelogenins also act as a buffer but are not critical for modulation. © 2016 Eur J Oral Sci.
Horng, Ren-Yang; Hsu, Shu-Fang; Chen, Shiao-Shing; Ho, Chia-Hua
2018-01-01
More than 80% of ammonia (NH3) in the steel manufacturing process wastewater is contributed from the coking wastewater, which is usually treated by biological processes. However, the NH3 in the coking wastewater is typically too high for biological treatment due to its inhibitory concentration. Therefore, a two-stage process including a hollow fiber membrane contactor (HFMC) and a modified membrane distillation (MD) system was developed and applied to reduce and recover NH3 from coking wastewater. The objectives of this paper are to evaluate different membrane materials, receiving solutions, and operation parameters for the system, remove NH3 from the coking wastewater to less than 300 mg N/L, which is amenable to the biological process, and recover ammonia solution for reuse. As a result, the polytetrafluoroethylene (PTFE) HFMC using sulfuric acid as a receiving solution can achieve a maximum NH3-N transmembrane flux of 1.67 g N/m2·h at pH of 11.5 and reduce NH3 in the coking wastewater to less than 300 mg N/L. The NH3 in the converted ammonium sulfate ((NH4)2SO4) was then recovered by the modified MD using ice water as the receiving solution to produce ≥3% of ammonia solution for reuse. PMID:29510505
Park, M; Costa, E L V; Maciel, A T; Barbosa, E V S; Hirota, A S; Schettino, G de P; Azevedo, L C P
2014-11-01
Transmembrane pressure drop reflects the resistance of an artificial lung system to blood transit. Decreased resistance (low transmembrane pressure drop) enhances blood flow through the oxygenator, thereby, enhancing gas exchange efficiency. This study is part of a previous one where we observed the behaviour and the modulation of blood pressure drop during the passage of blood through artificial lung membranes. Before and after the induction of multi-organ dysfunction, the animals were instrumented and analysed for venous-venous extracorporeal membrane oxygenation, using a pre-defined sequence of blood flows. Blood flow and revolutions per minute (RPM) of the centrifugal pump varied in a linear fashion. At a blood flow of 5.5 L/min, pre- and post-pump blood pressures reached -120 and 450 mmHg, respectively. Transmembrane pressures showed a significant spread, particularly at blood flows above 2 L/min; over the entire range of blood flow rates, there was a positive association of pressure drop with blood flow (0.005 mmHg/mL/minute of blood flow) and a negative association of pressure drop with temperature (-4.828 mmHg/(°Celsius). These associations were similar when blood flows of below and above 2000 mL/minute were examined. During its passage through the extracorporeal system, blood is exposed to pressure variations from -120 to 450 mmHg. At high blood flows (above 2 L/min), the drop in transmembrane pressure becomes unpredictable and highly variable. Over the entire range of blood flows investigated (0-5500 mL/min), the drop in transmembrane pressure was positively associated with blood flow and negatively associated with body temperature. © The Author(s) 2014.
Halimaa, Pauliina; Lin, Ya-Fen; Ahonen, Viivi H; Blande, Daniel; Clemens, Stephan; Gyenesei, Attila; Häikiö, Elina; Kärenlampi, Sirpa O; Laiho, Asta; Aarts, Mark G M; Pursiheimo, Juha-Pekka; Schat, Henk; Schmidt, Holger; Tuomainen, Marjo H; Tervahauta, Arja I
2014-03-18
Populations of Noccaea caerulescens show tremendous differences in their capacity to hyperaccumulate and hypertolerate metals. To explore the differences that could contribute to these traits, we undertook SOLiD high-throughput sequencing of the root transcriptomes of three phenotypically well-characterized N. caerulescens accessions, i.e., Ganges, La Calamine, and Monte Prinzera. Genes with possible contribution to zinc, cadmium, and nickel hyperaccumulation and hypertolerance were predicted. The most significant differences between the accessions were related to metal ion (di-, trivalent inorganic cation) transmembrane transporter activity, iron and calcium ion binding, (inorganic) anion transmembrane transporter activity, and antioxidant activity. Analysis of correlation between the expression profile of each gene and the metal-related characteristics of the accessions disclosed both previously characterized (HMA4, HMA3) and new candidate genes (e.g., for nickel IRT1, ZIP10, and PDF2.3) as possible contributors to the hyperaccumulation/tolerance phenotype. A number of unknown Noccaea-specific transcripts also showed correlation with Zn(2+), Cd(2+), or Ni(2+) hyperaccumulation/tolerance. This study shows that N. caerulescens populations have evolved great diversity in the expression of metal-related genes, facilitating adaptation to various metalliferous soils. The information will be helpful in the development of improved plants for metal phytoremediation.
Wang, Xin; Shi, Qi; Xu, Kun; Gao, Chen; Chen, Cao; Li, Xiao-Li; Wang, Gui-Rong; Tian, Chan; Han, Jun; Dong, Xiao-Ping
2011-01-01
Background Genetic prion diseases are linked to point and inserted mutations in the prion protein (PrP) gene that are presumed to favor conversion of the cellular isoform of PrP (PrPC) to the pathogenic one (PrPSc). The pathogenic mechanisms and the subcellular sites of the conversion are not completely understood. Here we introduce several PRNP gene mutations (such as, PrP-KDEL, PrP-3AV, PrP-A117V, PrP-G114V, PrP-P102L and PrP-E200K) into the cultured cells in order to explore the pathogenic mechanism of familial prion disease. Methodology/Principal Findings To address the roles of aberrant retention of PrP in endoplasmic reticulum (ER), the recombinant plasmids expressing full-length human PrP tailed with an ER signal peptide at the COOH-terminal (PrP-KDEL) and PrP with three amino acids exchange in transmembrane region (PrP-3AV) were constructed. In the preparations of transient transfections, 18-kD COOH-terminal proteolytic resistant fragments (Ctm-PrP) were detected in the cells expressing PrP-KDEL and PrP-3AV. Analyses of the cell viabilities in the presences of tunicamycin and brefeldin A revealed that expressions of PrP-KDEL and PrP-3AV sensitized the transfected cells to ER stress stimuli. Western blots and RT-PCR identified the clear alternations of ER stress associated events in the cells expressing PrP-KDEL and PrP-3AV that induced ER mediated apoptosis by CHOP and capase-12 apoptosis pathway. Moreover, several familial CJD related PrP mutants were transiently introduced into the cultured cells. Only the mutants within the transmembrane region (G114V and A117V) induced the formation of Ctm-PrP and caused the ER stress, while the mutants outside the transmembrane region (P102L and E200K) failed. Conclusions/Significance The data indicate that the retention of PrP in ER through formation of Ctm-PrP results in ER stress and cell apoptosis. The cytopathic activities caused by different familial CJD associated PrP mutants may vary, among them the mutants within the transmembrane region undergo an ER-stress mediated cell apoptosis. PMID:21298055
Pirkmajer, Sergej; Kirchner, Henriette; Lundell, Leonidas S; Zelenin, Pavel V; Zierath, Juleen R; Makarova, Kira S; Wolf, Yuri I; Chibalin, Alexander V
2017-07-15
Small transmembrane proteins such as FXYDs, which interact with Na + ,K + -ATPase, and the micropeptides that interact with sarco/endoplasmic reticulum Ca 2+ -ATPase play fundamental roles in regulation of ion transport in vertebrates. Uncertain evolutionary origins and phylogenetic relationships among these regulators of ion transport have led to inconsistencies in their classification across vertebrate species, thus hampering comparative studies of their functions. We discovered the first FXYD homologue in sea lamprey, a basal jawless vertebrate, which suggests small transmembrane regulators of ion transport emerged early in the vertebrate lineage. We also identified 13 gene subfamilies of FXYDs and propose a revised, phylogeny-based FXYD classification that is consistent across vertebrate species. These findings provide an improved framework for investigating physiological and pathophysiological functions of small transmembrane regulators of ion transport. Small transmembrane proteins are important for regulation of cellular ion transport. The most prominent among these are members of the FXYD family (FXYD1-12), which regulate Na + ,K + -ATPase, and phospholamban, sarcolipin, myoregulin and DWORF, which regulate the sarco/endoplasmic reticulum Ca 2+ -ATPase (SERCA). FXYDs and regulators of SERCA are present in fishes, as well as terrestrial vertebrates; however, their evolutionary origins and phylogenetic relationships are obscure, thus hampering comparative physiological studies. Here we discovered that sea lamprey (Petromyzon marinus), a representative of extant jawless vertebrates (Cyclostomata), expresses an FXYD homologue, which strongly suggests that FXYDs predate the emergence of fishes and other jawed vertebrates (Gnathostomata). Using a combination of sequence-based phylogenetic analysis and conservation of local chromosome context, we determined that FXYDs markedly diversified in the lineages leading to cartilaginous fishes (Chondrichthyes) and bony vertebrates (Euteleostomi). Diversification of SERCA regulators was much less extensive, indicating they operate under different evolutionary constraints. Finally, we found that FXYDs in extant vertebrates can be classified into 13 gene subfamilies, which do not always correspond to the established FXYD classification. We therefore propose a revised classification that is based on evolutionary history of FXYDs and that is consistent across vertebrate species. Collectively, our findings provide an improved framework for investigating the function of ion transport in health and disease. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Mertz, Stuart M.; Arntzen, Charles J.
1978-01-01
The transmembrane electrical potential of root cells of Zea mays L. cv. W64A in a modified 1× Higinbotham solution was partially depolarized by semipurified toxin obtained from Bipolaris (Helminthosporium) maydis race T. At a given toxin concentration depolarization of Texas cytoplasm cells was much greater than for normal cytoplasm cells. This observation correlated directly to the differential host susceptibility to the fungus. The time course and magnitude of depolarization were dependent on toxin concentration; at high concentration the electropotential difference change was rapid. Cortex cells depolarized more slowly than epidermal cells indicating that the toxin slowly permeated intercellular regions. Toxin concentrations which affected electropotential difference were of the same magnitude as those required to inhibit root growth, ion uptake, and mitochondrial processes. Azide, cyanide, and cold temperature (5 C) gave the same partial depolarization as did the toxin. Dodecyl succinic acid caused complete depolarization. These and other data indicate that one of the primary actions of the toxin is to inhibit electrogenic ion pumps in the plasmalemma. PMID:16660605
Laane, Colja; Ford, William E.; Otvos, John W.; Calvin, Melvin
1981-01-01
The photosensitized reduction of heptylviologen in the bulk aqueous phase of phosphatidylcholine vesicles containing EDTA inside and a membrane-bound tris(2,2′-bipyridine)ruthenium(2+) derivative is enhanced by a factor of 6.5 by the addition of valinomycin in the presence of K+. A 3-fold stimulation by gramicidin and carbonyl cyanide m-chlorophenylhydrazone is observed. The results suggest that, under these conditions, the rate of photoinduced electron transfer across vesicle walls in the absence of ion carriers is limited by cotransport of cations. The rate of electron transfer across vesicle walls could be influenced further by generating transmembrane potentials with K+ gradients in the presence of valinomycin. When vesicles are made with transmembrane potentials, interior more negative, the quantum yield of heptylviologen reduction is doubled, and, conversely, when vesicles are made with transmembrane potentials, interior more positive, the quantum yield is decreased and approaches the value found in the absence of valinomycin. PMID:16593002
THGS: a web-based database of Transmembrane Helices in Genome Sequences
Fernando, S. A.; Selvarani, P.; Das, Soma; Kumar, Ch. Kiran; Mondal, Sukanta; Ramakumar, S.; Sekar, K.
2004-01-01
Transmembrane Helices in Genome Sequences (THGS) is an interactive web-based database, developed to search the transmembrane helices in the user-interested gene sequences available in the Genome Database (GDB). The proposed database has provision to search sequence motifs in transmembrane and globular proteins. In addition, the motif can be searched in the other sequence databases (Swiss-Prot and PIR) or in the macromolecular structure database, Protein Data Bank (PDB). Further, the 3D structure of the corresponding queried motif, if it is available in the solved protein structures deposited in the Protein Data Bank, can also be visualized using the widely used graphics package RASMOL. All the sequence databases used in the present work are updated frequently and hence the results produced are up to date. The database THGS is freely available via the world wide web and can be accessed at http://pranag.physics.iisc.ernet.in/thgs/ or http://144.16.71.10/thgs/. PMID:14681375
Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bokoch, Michael P.; Zou, Yaozhong; Rasmussen, Søren G.F.
G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the nativemore » ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the {beta}{sub 2} adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.« less
Linsdell, Paul
2017-01-01
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial cell anion channel. Potentiator drugs used in the treatment of cystic fibrosis act on the channel to increase overall channel function, by increasing the stability of its open state and/or decreasing the stability of its closed state. The structure of the channel in either the open state or the closed state is not currently known. However, changes in the conformation of the protein as it transitions between these two states have been studied using functional investigation and molecular modeling techniques. This review summarizes our current understanding of the architecture of the transmembrane channel pore that controls the movement of chloride and other small anions, both in the open state and in the closed state. Evidence for different kinds of changes in the conformation of the pore as it transitions between open and closed states is described, as well as the mechanisms by which these conformational changes might be controlled to regulate normal channel gating. The ways that key conformational changes might be targeted by small compounds to influence overall CFTR activity are also discussed. Understanding the changes in pore structure that might be manipulated by such small compounds is key to the development of novel therapeutic strategies for the treatment of cystic fibrosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamann, J.; Hamann, D.; Lier, R.A.W.
1995-08-15
CD97 is a monomeric glycoprotein of 75 to 85 kDa that is induced rapidly on the surface of most leukocytes upon activation. We herein report the isolation of a cDNA encoding human CD97 by expression cloning in COS cells. The 3-kb cDNA clone encodes a mature polypeptide chain of 722 amino acids with a predicted molecular mass of 79 kDa. Within the C-terminal part of the protein, a region with seven hydrophobic segments was identified, suggesting that CD97 is a seven-span transmembrane molecule. Sequence comparison indicates that CD97 is the first leukocyte Ag in a recently described superfamily that includesmore » the receptors for secretin, calcitonin, and other mammalian and insect peptide hormones. Different from these receptors, CD97 has an extended extracellular region of 433 amino acids that possesses three N-terminal epidermal growth factor-like domains, two of them with a calcium-binding site, and single Arg-Gly-Asp (RGD) motif. The existence of structural elements characteristic for extracellular matrix proteins in a seven-span transmembrane molecule makes CD97 a receptor potentially involved in both adhesion and signaling processes early after leukocyte activation. The gene encoding CD97 is localized on chromosome 19 (19p13.12-13.2).« less
Olivier-Mason, Anique; Wojtyniak, Martin; Bowie, Rachel V; Nechipurenko, Inna V; Blacque, Oliver E; Sengupta, Piali
2013-04-01
The structure and function of primary cilia are critically dependent on intracellular trafficking pathways that transport ciliary membrane and protein components. The mechanisms by which these trafficking pathways are regulated are not fully characterized. Here we identify the transmembrane protein OSTA-1 as a new regulator of the trafficking pathways that shape the morphology and protein composition of sensory cilia in C. elegans. osta-1 encodes an organic solute transporter alpha-like protein, mammalian homologs of which have been implicated in membrane trafficking and solute transport, although a role in regulating cilia structure has not previously been demonstrated. We show that mutations in osta-1 result in altered ciliary membrane volume, branch length and complexity, as well as defects in localization of a subset of ciliary transmembrane proteins in different sensory cilia types. OSTA-1 is associated with transport vesicles, localizes to a ciliary compartment shown to house trafficking proteins, and regulates both retrograde and anterograde flux of the endosome-associated RAB-5 small GTPase. Genetic epistasis experiments with sensory signaling, exocytic and endocytic proteins further implicate OSTA-1 as a crucial regulator of ciliary architecture via regulation of cilia-destined trafficking. Our findings suggest that regulation of transport pathways in a cell type-specific manner contributes to diversity in sensory cilia structure and might allow dynamic remodeling of ciliary architecture via multiple inputs.
Highly Coarse-Grained Representations of Transmembrane Proteins
2017-01-01
Numerous biomolecules and biomolecular complexes, including transmembrane proteins (TMPs), are symmetric or at least have approximate symmetries. Highly coarse-grained models of such biomolecules, aiming at capturing the essential structural and dynamical properties on resolution levels coarser than the residue scale, must preserve the underlying symmetry. However, making these models obey the correct physics is in general not straightforward, especially at the highly coarse-grained resolution where multiple (∼3–30 in the current study) amino acid residues are represented by a single coarse-grained site. In this paper, we propose a simple and fast method of coarse-graining TMPs obeying this condition. The procedure involves partitioning transmembrane domains into contiguous segments of equal length along the primary sequence. For the coarsest (lowest-resolution) mappings, it turns out to be most important to satisfy the symmetry in a coarse-grained model. As the resolution is increased to capture more detail, however, it becomes gradually more important to match modular repeats in the secondary structure (such as helix-loop repeats) instead. A set of eight TMPs of various complexity, functionality, structural topology, and internal symmetry, representing different classes of TMPs (ion channels, transporters, receptors, adhesion, and invasion proteins), has been examined. The present approach can be generalized to other systems possessing exact or approximate symmetry, allowing for reliable and fast creation of multiscale, highly coarse-grained mappings of large biomolecular assemblies. PMID:28043122
Andersson, Ulrica; Heddad, Mounia; Adamska, Iwona
2003-01-01
The superfamily of light-harvesting chlorophyll a/b-binding (Lhc) proteins in higher plants and green algae is composed of more than 20 different antenna proteins associated either with photosystem I (PSI) or photosystem II (PSII). Several distant relatives of this family with conserved chlorophyll-binding residues and proposed photoprotective functions are induced transiently under various stress conditions. Whereas “classical” Lhc proteins contain three-transmembrane α-helices, their distant relatives span the membrane with between one and four transmembrane segments. Here, we report the identification and isolation of a novel member of the Lhc family from Arabidopsis with one predicted transmembrane α-helix closely related to helix I of Lhc protein from PSI (Lhca4) that we named Ohp2 (for a second one-helix protein of Lhc family described from higher plants). We showed that the Ohp2 gene expression is triggered by light stress and that the Ohp2 transcript and protein accumulated in a light intensity-dependent manner. Other stress conditions did not up-regulate the expression of the Ohp2 gene. Localization studies revealed that Ohp2 is associated with PSI under low- or high-light conditions. Because all stress-induced Lhc relatives reported so far were found in PSII, we propose that the accumulation of Ohp2 might represent a novel photoprotective strategy induced within PSI in response to light stress. PMID:12805611
Conformational changes of the amyloid beta-peptide (1-40) adsorbed on solid surfaces.
Giacomelli, Carla E; Norde, Willem
2005-05-23
The conformational change of the 39-43 residues of the amyloid beta-peptide (Abeta) toward a beta-sheet enriched state promotes self-aggregation of the peptide molecules and constitutes the major peptide component of the amyloid plaques in Alzheimer patients. The crucial question behind the self-aggregation of Abeta is related to the different pathways the peptide may take after cleavage from the amyloid precursor proteins at cellular membranes. This work is aiming at determining the conformation of the Abeta (1-40) adsorbed on hydrophobic Teflon and hydrophilic silica particles, as model sorbent surfaces mimicking the apolar transmembrane environment and the polar, charged membrane surface, respectively. The mechanism by which the Abeta interacts with solid surfaces strongly depends on the hydrophobic/hydrophilic character of the particles. Hydrophobic and electrostatic interactions contribute differently in each case, causing a completely different conformational change of the adsorbed molecules on the two surfaces. When hydrophobic interactions between the peptide and the sorbent prevail, the adsorbed Abeta (1-40) mainly adopts an alpha-helix conformation due to H-bonding in the apolar part of the peptide that is oriented towards the surface. On the other hand, when the peptide adsorbs by electrostatic interactions beta-sheet formation is promoted due to intermolecular association between the apolar parts of the adsorbed peptide. Irrespective of the characteristics of the solid sorbent, crowding the surface results in intermolecular association between adsorbed molecules leading to a strong aggregation tendency of the Abeta (1-40). [Diagram: see text] CD spectra of Abeta (1-40) at pH 7: A) in solution ([Abeta]=0.2 mg.ml(-1)) freshly prepared (line) and after overnight incubation (symbols);B) on Teflon (Gamma=0.5 mg.m(-2)).
Liu, Xuehong; Dawson, David C
2011-11-29
Cysteine scanning has been widely used to identify pore-lining residues in mammalian ion channels, including the cystic fibrosis transmembrane conductance regulator (CFTR). These studies, however, have been typically conducted at room temperature rather than human body temperature. Reports of substantial effects of temperature on gating and anion conduction in CFTR channels as well as an unexpected pattern of cysteine reactivity in the sixth transmembrane segment (TM6) prompted us to investigate the effect of temperature on the reactivity of cysteines engineered into TM6 of CFTR. We compared reaction rates at temperatures ranging from 22 to 37 °C for cysteines placed on either side of an apparent size-selective accessibility barrier previously defined by comparing reactivity toward channel-permeant and channel-impermeant, thiol-directed reagents. The results indicate that the reactivity of cysteines at three positions extracellular to the position of the accessibility barrier, 334, 336, and 337, is highly temperature-dependent. At 37 °C, cysteines at these positions were highly reactive toward MTSES(-), whereas at 22 °C, the reaction rates were 2-6-fold slower to undetectable. An activation energy of 157 kJ/mol for the reaction at position 337 is consistent with the hypothesis that, at physiological temperature, the extracellular portion of the CFTR pore can adopt conformations that differ significantly from those that can be accessed at room temperature. However, the position of the accessibility barrier defined empirically by applying channel-permeant and channel-impermeant reagents to the extracellular aspect of the pore is not altered. The results illuminate previous scanning results and indicate that the assay temperature is a critical variable in studies designed to use chemical modification to test structural models for the CFTR anion conduction pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meshcheryakov, Vladimir A.; Kitao, Akio; Core Research for Evolutionary Science and Technology, Tokyo 113-0032
2013-05-01
Crystal structures of the cytoplasmic domain of FlhB from S. typhimurium and A. aeolicus were solved at 2.45 and 2.55 Å resolution, respectively. The deletion of a short loop in the cytoplasmic domain of Salmonella FlhB completely abolishes secretion by the type III secretion system. A molecular-dynamics simulation shows that the deletion of the loop affects the flexibility of a linker between the transmembrane and cytoplasmic domains of FlhB. The membrane protein FlhB is a highly conserved component of the flagellar secretion system. It is composed of an N-terminal transmembrane domain and a C-terminal cytoplasmic domain (FlhB{sub C}). Here, themore » crystal structures of FlhB{sub C} from Salmonella typhimurium and Aquifex aeolicus are described at 2.45 and 2.55 Å resolution, respectively. These flagellar FlhB{sub C} structures are similar to those of paralogues from the needle type III secretion system, with the major difference being in a linker that connects the transmembrane and cytoplasmic domains of FlhB. It was found that deletion of a short flexible loop in a globular part of Salmonella FlhB{sub C} leads to complete inhibition of secretion by the flagellar secretion system. Molecular-dynamics calculations demonstrate that the linker region is the most flexible part of FlhB{sub C} and that the deletion of the loop reduces this flexibility. These results are in good agreement with previous studies showing the importance of the linker in the function of FlhB and provide new insight into the relationship between the different parts of the FlhB{sub C} molecule.« less
Fleming, B P; Giles, W
1981-01-01
1. 42K efflux has been measured from small strips of turtle sinus venosus which were electrically paced. Three different procedures for altering transmembrane calcium influx have been utilized to test whether changes in 42K efflux may be modulated by changes in intracellular calcium levels. 2. No significant changes in the 42K fractional escape rate (FER) were observed when external calcium was reduced to O mM or increased to 4 x normal (10 mM). In these experiments extracellular divalent cation concentration was held constant by adding or removing magnesium ions. 3. Application of 10 mM-Ba2+ also failed to alter 42K FER consistently. In red blood cells and snail neurones addition of barium ions has been shown to reduce significantly the calcium-mediated potassium current. 4. A tenfold increase in pacing rate (0.5-5 Hz) resulted in an augmented 42K FER, but repetition of this rate change in O mM-Ca2+ indicated that this increase in 42K FER was not strongly dependent on the amount of calcium entry. 5. Attempts to load the pace-maker cells with calcium by using the ionophore A23187 (10 micrograms ml . -1 of 2.0 x 10(-5) M) consistently resulted in very large increases in 42K FER. However, this effect (i) was blocked by atropine and (ii) was markedly reduced by pretreating the tissues with hemicholinium, indicating that A23187-induced release of acetylcholine from the endogenous nerve terminals was responsible for the observed increase in 42K FER. 6. In summary, three different experimental tests indicate that the majority of the 42K efflux is not tightly linked to transmembrane calcium movement in sinus venosus pace-maker tissue. PMID:6796675
Li, Rui; Fan, Jianfen; Li, Hui; Yan, Xiliang; Yu, Yi
2013-12-05
The dynamic behaviors and transport properties of O2, CO2, and NH3 molecules through a transmembrane cyclic peptide nanotube (CPNT) of 8×cyclo-(WL)4/POPE have been investigated by steered molecular dynamics (SMD) simulations and adaptive biasing force (ABF) samplings. Different external forces are needed for three gas molecules to enter the channel. The periodic change of the pulling force curve for a gas traveling through the channel mainly arises from the regular and periodic arrangement of the composed CP subunits of the CPNT. Radial distribution functions (RDFs) between gas and water disclose the density decrease of channel water, which strongly aggravates the discontinuity of H-bond formation between a gas molecule and the neighboring water. Compared to hardly any H-bond formation between CO2 (or O2) and the framework of the CPNT, NH3 can form abundant H-bonds with the carbonyl/amide groups of the CPNT, leading to a fierce competition to NH3-water H-bonded interactions. In addition to direct H-bonded interactions, all three gases can form water bridges with the tube. The potential profile of mean force coincides with the occurring probability of a gas molecule along the tube axis. The energy barriers at two mouths of the CPNT elucidate the phenomenon that CO2 and O2 are thoroughly confined in the narrow lumen while NH3 can easily go outside the tube. Intermolecular interactions of each gas with channel water and the CPNT framework and the formation of H-bonds and water bridges illuminate the different gas translocation behaviors. The results uncover interesting and comprehensive mechanisms underlying the permeation characteristics of three gas molecules traveling through a transmembrane CPNT.
Nelson, Tarah
2017-01-01
Juvenile CLN3 (Batten) disease, a fatal, childhood neurodegenerative disorder, results from mutations in the CLN3 gene encoding a lysosomal/endosomal transmembrane protein. The exact physiological function of CLN3 is still unknown and it is unclear how CLN3 mutations lead to selective neurodegeneration. To study the tissue expression and subcellular localization of the CLN3 protein, a number of anti-CLN3 antibodies have been generated using either the whole CLN3 protein or short peptides from CLN3 for immunization. The specificity of these antibodies, however, has never been tested properly. Using immunoblot experiments, we show that commercially available or researcher-generated anti-CLN3 antibodies lack specificity: they detect the same protein bands in wild-type (WT) and Cln3−/− mouse brain and kidney extracts prepared with different detergents, in membrane proteins isolated from the cerebellum, cerebral hemisphere and kidney of WT and Cln3−/− mice, in cell extracts of WT and Cln3−/− mouse embryonic fibroblast cultures, and in lysates of BHK cells lacking or overexpressing human CLN3. Protein BLAST searches with sequences from peptides used to generate anti-CLN3 antibodies identified short motifs present in a number of different mouse and human proteins, providing a plausible explanation for the lack of specificity of anti-CLN3 antibodies. Our data provide evidence that immunization against a transmembrane protein with low to medium expression level does not necessarily generate specific antibodies. Because of the possible cross-reactivity to other proteins, the specificity of an antibody should always be checked using tissue samples from an appropriate knock-out animal or using knock-out cells. PMID:29089465
The Popeye Domain Containing Genes and Their Function as cAMP Effector Proteins in Striated Muscle.
Brand, Thomas
2018-03-13
The Popeye domain containing (POPDC) genes encode transmembrane proteins, which are abundantly expressed in striated muscle cells. Hallmarks of the POPDC proteins are the presence of three transmembrane domains and the Popeye domain, which makes up a large part of the cytoplasmic portion of the protein and functions as a cAMP-binding domain. Interestingly, despite the prediction of structural similarity between the Popeye domain and other cAMP binding domains, at the protein sequence level they strongly differ from each other suggesting an independent evolutionary origin of POPDC proteins. Loss-of-function experiments in zebrafish and mouse established an important role of POPDC proteins for cardiac conduction and heart rate adaptation after stress. Loss-of function mutations in patients have been associated with limb-girdle muscular dystrophy and AV-block. These data suggest an important role of these proteins in the maintenance of structure and function of striated muscle cells.
Functional Implications of Domain Organization Within Prokaryotic Rhomboid Proteases.
Panigrahi, Rashmi; Lemieux, M Joanne
2015-01-01
Intramembrane proteases are membrane embedded enzymes that cleave transmembrane substrates. This interesting class of enzyme and its water mediated substrate cleavage mechanism occurring within the hydrophobic lipid bilayer has drawn the attention of researchers. Rhomboids are a family of ubiquitous serine intramembrane proteases. Bacterial forms of rhomboid proteases are mainly composed of six transmembrane helices that are preceded by a soluble N-terminal domain. Several crystal structures of the membrane domain of the E. coli rhomboid protease ecGlpG have been solved. Independently, the ecGlpG N-terminal cytoplasmic domain structure was solved using both NMR and protein crystallography. Despite these structures, we still do not know the structure of the full-length protein, nor do we know the functional role of these domains in the cell. This chapter will review the structural and functional roles of the different domains associated with prokaryotic rhomboid proteases. Lastly, we will address questions remaining in the field.
Generation of neutralising antibodies against porcine endogenous retroviruses (PERVs)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaulitz, Danny; Fiebig, Uwe; Eschricht, Magdalena
2011-03-01
Antibodies neutralising porcine endogenous retroviruses (PERVs) were induced in different animal species by immunisation with the transmembrane envelope protein p15E. These antibodies recognised epitopes, designated E1, in the fusion peptide proximal region (FPPR) of p15E, and E2 in the membrane proximal external region (MPER). E2 is localised in a position similar to that of an epitope in the transmembrane envelope protein gp41 of the human immunodeficiency virus-1 (HIV-1), recognised by the monoclonal antibody 4E10 that is broadly neutralising. To detect neutralising antibodies specific for PERV, a novel assay was developed, which is based on quantification of provirus integration by real-timemore » PCR. In addition, for the first time, highly effective neutralising antibodies were obtained by immunisation with the surface envelope protein of PERV. These data indicate that neutralising antibodies can be induced by immunisation with both envelope proteins.« less
Global Analysis of Palmitoylated Proteins in Toxoplasma gondii.
Foe, Ian T; Child, Matthew A; Majmudar, Jaimeen D; Krishnamurthy, Shruthi; van der Linden, Wouter A; Ward, Gary E; Martin, Brent R; Bogyo, Matthew
2015-10-14
Post-translational modifications (PTMs) such as palmitoylation are critical for the lytic cycle of the protozoan parasite Toxoplasma gondii. While palmitoylation is involved in invasion, motility, and cell morphology, the proteins that utilize this PTM remain largely unknown. Using a chemical proteomic approach, we report a comprehensive analysis of palmitoylated proteins in T. gondii, identifying a total of 282 proteins, including cytosolic, membrane-associated, and transmembrane proteins. From this large set of palmitoylated targets, we validate palmitoylation of proteins involved in motility (myosin light chain 1, myosin A), cell morphology (PhIL1), and host cell invasion (apical membrane antigen 1, AMA1). Further studies reveal that blocking AMA1 palmitoylation enhances the release of AMA1 and other invasion-related proteins from apical secretory organelles, suggesting a previously unrecognized role for AMA1. These findings suggest that palmitoylation is ubiquitous throughout the T. gondii proteome and reveal insights into the biology of this important human pathogen. Copyright © 2015 Elsevier Inc. All rights reserved.
Karolewicz, Bozena; Pawlik-Gałczyńska, Anna; Pluta, Janusz; Ryszka, Florian
2011-01-01
The aim of this study was to prepare a thermoresponsive formulations, which are a carrier for proteins--prolactin administered directly into solid tumor and which obtain sol-gel transitions at physiological ranges of temperature. Prolactin (PRL) is a hormone that in vivo and in vitro exhibits antiangiogenic properties. Application of this protein in the proposed formulations can be particularly advantageous because of its relatively low stability and limited ability to transmembrane penetration. The paper prepared thermoresponsive carriers, based on nonionic polymer Pluronic F-127 with selected excipients such as dextran 7000, PEG 400, Tween 20 and Tween 80. The sol-gel transition temperature of the formulations was investigated and their physicochemical properties such as pH, density, osmotic pressure were studied. In the remainder of the work carried out tests of prolactin release from the proposed media. The results obtained indicate that a significant influence on the theological parameters obtained carriers and the availability of pharmaceutical composition of prolactin was developed formulation.
Jia, Z P; McCullough, N; Martel, R; Hemmingsen, S; Young, P G
1992-01-01
We have identified a new locus, sodium 2 (sod2) based on selection for increased LiCl tolerance in fission yeast, Schizosaccharomyces pombe. Tolerant strains have enhanced pH-dependent Na+ export capacity and sodium transport experiments suggest that the gene encodes an Na+/H+ antiport. The predicted sod2 gene product can be placed in the broad class of transporters which possess 12 hydrophobic transmembrane domains. The protein shows some sequence similarity to the human and bacterial Na+/H+ antiporters. Overexpression of sod2 increased Na+ export capacity and conferred sodium tolerance. Osmotolerance was not affected and sod2 cells were unaffected for growth in K+. In a sod2 disruption strain cells were incapable of exporting sodium. They were hypersensitive to Na+ or Li+ and could not grow under conditions that approximate pH7. The sod2 gene amplification could be selected stepwise and the degree of such amplification correlated with the level of Na+ or Li+ tolerance. Images PMID:1314171
Endocytic function is critical for influenza A virus infection via DC-SIGN and L-SIGN
Gillespie, Leah; Roosendahl, Paula; Ng, Wy Ching; Brooks, Andrew G.; Reading, Patrick C.; Londrigan, Sarah L.
2016-01-01
The ubiquitous presence of cell-surface sialic acid (SIA) has complicated efforts to identify specific transmembrane glycoproteins that function as bone fide entry receptors for influenza A virus (IAV) infection. The C-type lectin receptors (CLRs) DC-SIGN (CD209) and L-SIGN (CD209L) enhance IAV infection however it is not known if they act as attachment factors, passing virions to other unknown receptors for virus entry, or as authentic entry receptors for CLR-mediated virus uptake and infection. Sialic acid-deficient Lec2 Chinese Hamster Ovary (CHO) cell lines were resistant to IAV infection whereas expression of DC-SIGN/L-SIGN restored susceptibility of Lec2 cells to pH- and dynamin-dependent infection. Moreover, Lec2 cells expressing endocytosis-defective DC-SIGN/L-SIGN retained capacity to bind IAV but showed reduced susceptibility to infection. These studies confirm that DC-SIGN and L-SIGN are authentic endocytic receptors for IAV entry and infection. PMID:26763587
The role of endomembrane-localized VHA-c in plant growth.
Zhou, Aimin; Takano, Tetsuo; Liu, Shenkui
2018-01-02
In plant cells, the vacuolar-type H + -ATPase (V-ATPase), a large multis`ubunit endomembrane proton pump, plays an important role in acidification of subcellular organelles, pH and ion homeostasis, and endocytic and secretory trafficking. V-ATPase subunit c (VHA-c) is essential for V-ATPase assembly, and is directly responsible for binding and transmembrane transport of protons. In previous studies, we identified a PutVHA-c gene from Puccinellia tenuiflora, and investigated its function in plant growth. Subcellular localization revealed that PutVHA-c is mainly localized in endosomal compartments. Overexpression of PutVHA-c enhanced V-ATPase activity and promoted plant growth in transgenic Arabidopsis. Furthermore, the activity of V-ATPase affected intracellular transport of the Golgi-derived endosomes. Our results showed that endomembrane localized-VHA-c contributes to plant growth by influencing V-ATPase-dependent endosomal trafficking. Here, we discuss these recent findings and speculate on the VHA-c mediated molecular mechanisms involved in plant growth, providing a better understanding of the functions of VHA-c and V-ATPase.
Microfluidic Remote Loading for Rapid Single-Step Liposomal Drug Preparation
Hood, R.R.; Vreeland, W. N.; DeVoe, D.L.
2014-01-01
Microfluidic-directed formation of liposomes is combined with in-line sample purification and remote drug loading for single step, continuous-flow synthesis of nanoscale vesicles containing high concentrations of stably loaded drug compounds. Using an on-chip microdialysis element, the system enables rapid formation of large transmembrane pH and ion gradients, followed by immediate introduction of amphipathic drug for real-time remote loading into the liposomes. The microfluidic process enables in-line formation of drug-laden liposomes with drug:lipid molar ratios of up to 1.3, and a total on-chip residence time of approximately 3 min, representing a significant improvement over conventional bulk-scale methods which require hours to days for combined liposome synthesis and remote drug loading. The microfluidic platform may be further optimized to support real-time generation of purified liposomal drug formulations with high concentrations of drugs and minimal reagent waste for effective liposomal drug preparation at or near the point of care. PMID:25003823
pH controlled gating of toxic protein pores by dendrimers
NASA Astrophysics Data System (ADS)
Mandal, Taraknath; Kanchi, Subbarao; Ayappa, K. G.; Maiti, Prabal K.
2016-06-01
Designing effective nanoscale blockers for membrane inserted pores formed by pore forming toxins, which are expressed by several virulent bacterial strains, on a target cell membrane is a challenging and active area of research. Here we demonstrate that PAMAM dendrimers can act as effective pH controlled gating devices once the pore has been formed. We have used fully atomistic molecular dynamics (MD) simulations to characterize the cytolysin A (ClyA) protein pores modified with fifth generation (G5) PAMAM dendrimers. Our results show that the PAMAM dendrimer, in either its protonated (P) or non-protonated (NP) states can spontaneously enter the protein lumen. Protonated dendrimers interact strongly with the negatively charged protein pore lumen. As a consequence, P dendrimers assume a more expanded configuration efficiently blocking the pore when compared with the more compact configuration adopted by the neutral NP dendrimers creating a greater void space for the passage of water and ions. To quantify the effective blockage of the protein pore, we have calculated the pore conductance as well as the residence times by applying a weak force on the ions/water. Ionic currents are reduced by 91% for the P dendrimers and 31% for the NP dendrimers. The preferential binding of Cl- counter ions to the P dendrimer creates a zone of high Cl- concentration in the vicinity of the internalized dendrimer and a high concentration of K+ ions in the transmembrane region of the pore lumen. In addition to steric effects, this induced charge segregation for the P dendrimer effectively blocks ionic transport through the pore. Our investigation shows that the bio-compatible PAMAM dendrimers can potentially be used to develop therapeutic protocols based on the pH sensitive gating of pores formed by pore forming toxins to mitigate bacterial infections.Designing effective nanoscale blockers for membrane inserted pores formed by pore forming toxins, which are expressed by several virulent bacterial strains, on a target cell membrane is a challenging and active area of research. Here we demonstrate that PAMAM dendrimers can act as effective pH controlled gating devices once the pore has been formed. We have used fully atomistic molecular dynamics (MD) simulations to characterize the cytolysin A (ClyA) protein pores modified with fifth generation (G5) PAMAM dendrimers. Our results show that the PAMAM dendrimer, in either its protonated (P) or non-protonated (NP) states can spontaneously enter the protein lumen. Protonated dendrimers interact strongly with the negatively charged protein pore lumen. As a consequence, P dendrimers assume a more expanded configuration efficiently blocking the pore when compared with the more compact configuration adopted by the neutral NP dendrimers creating a greater void space for the passage of water and ions. To quantify the effective blockage of the protein pore, we have calculated the pore conductance as well as the residence times by applying a weak force on the ions/water. Ionic currents are reduced by 91% for the P dendrimers and 31% for the NP dendrimers. The preferential binding of Cl- counter ions to the P dendrimer creates a zone of high Cl- concentration in the vicinity of the internalized dendrimer and a high concentration of K+ ions in the transmembrane region of the pore lumen. In addition to steric effects, this induced charge segregation for the P dendrimer effectively blocks ionic transport through the pore. Our investigation shows that the bio-compatible PAMAM dendrimers can potentially be used to develop therapeutic protocols based on the pH sensitive gating of pores formed by pore forming toxins to mitigate bacterial infections. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02963a
[Application of a trans-membrane migration method in the study of human sperm motility: a review].
Hong, C Y
1991-09-01
Transmembrane migration method is a bioassay specifically designed to study drug effect on human sperm motility. It was first used in the study of sperm immobilizing agents which have a membrane stabilizing effect. Then it was used to investigate the relationship between calcium ion and sperm motility. Recently, this method has been used to screen drugs that stimulate sperm motility. It has also been modified for the study of porcine sperm motility. Computer assisted semen analysis showed that the transmembrane migration method is most suitable for studying drug effect on rapid and straight-forward motility of sperm.
Heidebrecht, Hans-Jürgen; Toro-Sierra, José; Kulozik, Ulrich
2018-06-28
The use of bioactive bovine milk immunoglobulins (Ig) has been found to be an alternative treatment for certain human gastrointestinal diseases. Some methodologies have been developed with bovine colostrum. These are considered in laboratory scale and are bound to high cost and limited availability of the raw material. The main challenge remains in obtaining high amounts of active IgG from an available source as mature cow milk by the means of industrial processes. Microfiltration (MF) was chosen as a process variant, which enables a gentle and effective concentration of the Ig fractions (ca. 0.06% in raw milk) while reducing casein and lactose at the same time. Different microfiltration membranes (ceramic standard and gradient), pore sizes (0.14⁻0.8 µm), transmembrane pressures (0.5⁻2.5 bar), and temperatures (10, 50 °C) were investigated. The transmission of immunoglobulin G (IgG) and casein during the filtration of raw skim milk (<0.1% fat) was evaluated during batch filtration using a single channel pilot plant. The transmission levels of IgG (~160 kDa) were measured to be at the same level as the reference major whey protein β-Lg (~18 kDa) at all evaluated pore sizes and process parameters despite the large difference in molecular mass of both fractions. Ceramic gradient membranes with a pore sizes of 0.14 µm showed IgG-transmission rates between 45% to 65% while reducing the casein fraction below 1% in the permeates. Contrary to the expectations, a lower pore size of 0.14 µm yielded fluxes up to 35% higher than 0.2 µm MF membranes. It was found that low transmembrane pressures benefit the Ig transmission. Upscaling the presented results to a continuous MF membrane process offers new possibilities for the production of immunoglobulin enriched supplements with well-known processing equipment for large scale milk protein fractionation.
Li, Kun; Wang, Jianxing; Liu, Jibao; Wei, Yuansong; Chen, Meixue
2016-05-01
Municipal sewage from an oxidation ditch was treated for reuse by nanofiltration (NF) in this study. The NF performance was optimized, and its fouling characteristics after different operational durations (i.e., 48 and 169hr) were analyzed to investigate the applicability of nanofiltration for water reuse. The optimum performance was achieved when transmembrane pressure=12bar, pH=4 and flow rate=8L/min using a GE membrane. The permeate water quality could satisfy the requirements of water reclamation for different uses and local standards for water reuse in Beijing. Flux decline in the fouling experiments could be divided into a rapid flux decline and a quasi-steady state. The boundary flux theory was used to predict the evolution of permeate flux. The expected operational duration based on the 169-hr experiment was 392.6hr which is 175% longer than that of the 48-hr one. High molecular weight (MW) protein-like substances were suggested to be the dominant foulants after an extended period based on the MW distribution and the fluorescence characteristics. The analyses of infrared spectra and extracellular polymeric substances revealed that the roles of both humic- and polysaccharide-like substances were diminished, while that of protein-like substances were strengthened in the contribution of membrane fouling with time prolonged. Inorganic salts were found to have marginally influence on membrane fouling. Additionally, alkali washing was more efficient at removing organic foulants in the long term, and a combination of water flushing and alkali washing was appropriate for NF fouling control in municipal sewage treatment. Copyright © 2015. Published by Elsevier B.V.
Connell, Jennifer Petsche; Augustini, Emily; Moise, Kenneth J; Johnson, Anthony; Jacot, Jeffrey G
2013-01-01
Amniotic fluid-derived stem cells (AFSC) have been reported to differentiate into cardiomyocyte-like cells and form gap junctions when directly mixed and cultured with neonatal rat ventricular myocytes (NRVM). This study investigated whether or not culture of AFSC on the opposite side of a Transwell membrane from NRVM, allowing for contact and communication without confounding factors such as cell fusion, could direct cardiac differentiation and enhance gap junction formation. Results were compared to shared media (Transwell), conditioned media and monoculture media controls. After a 2-week culture period, AFSC did not express cardiac myosin heavy chain or troponin T in any co-culture group. Protein expression of cardiac calsequestrin 2 was up-regulated in direct transmembrane co-cultures and media control cultures compared to the other experimental groups, but all groups were up-regulated compared with undifferentiated AFSC cultures. Gap junction communication, assessed with a scrape-loading dye transfer assay, was significantly increased in direct transmembrane co-cultures compared to all other conditions. Gap junction communication corresponded with increased connexin 43 gene expression and decreased phosphorylation of connexin 43. Our results suggest that direct transmembrane co-culture does not induce cardiomyocyte differentiation of AFSC, though calsequestrin expression is increased. However, direct transmembrane co-culture does enhance connexin-43-mediated gap junction communication between AFSC. PMID:23634988
The Crystal Structure of GXGD Membrane Protease FlaK
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Hu; Y Xue; S Lee
2011-12-31
The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 {angstrom} resolution. The structure contains six transmembrane helices.more » The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.« less
The crystal structure of GXGD membrane protease FlaK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jian; Xue, Yi; Lee, Sangwon
2011-09-20
The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 {angstrom} resolution. The structure contains six transmembrane helices.more » The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.« less
Gross, David A.; Snapp, Erik L.; Silver, David L.
2010-01-01
Fat storage-Inducing Transmembrane proteins 1 & 2 (FIT1/FITM1 and FIT2/FITM2) belong to a unique family of evolutionarily conserved proteins localized to the endoplasmic reticulum that are involved in triglyceride lipid droplet formation. FIT proteins have been shown to mediate the partitioning of cellular triglyceride into lipid droplets, but not triglyceride biosynthesis. FIT proteins do not share primary sequence homology with known proteins and no structural information is available to inform on the mechanism by which FIT proteins function. Here, we present the experimentally-solved topological models for FIT1 and FIT2 using N-glycosylation site mapping and indirect immunofluorescence techniques. These methods indicate that both proteins have six-transmembrane-domains with both N- and C-termini localized to the cytosol. Utilizing this model for structure-function analysis, we identified and characterized a gain-of-function mutant of FIT2 (FLL(157-9)AAA) in transmembrane domain 4 that markedly augmented the total number and mean size of lipid droplets. Using limited-trypsin proteolysis we determined that the FLL(157-9)AAA mutant has enhanced trypsin cleavage at K86 relative to wild-type FIT2, indicating a conformational change. Taken together, these studies indicate that FIT2 is a 6 transmembrane domain-containing protein whose conformation likely regulates its activity in mediating lipid droplet formation. PMID:20520733
Dharmaraj, N; Chapela, P J; Morgado, M; Hawkins, S M; Lessey, B A; Young, S L; Carson, D D
2014-08-01
Are the transmembrane mucins, MUC1, MUC4 and MUC16, differentially expressed in endometriosis compared with normal endometrium? This study revealed that transmembrane mucin expression does not vary significantly in normal endometrium during the menstrual cycle and is not altered in endometriosis relative to the epithelial marker, cytokeratin-18 (KRT18). Increased serum levels of the transmembrane mucin fragments MUC1, MUC4 and MUC16 that normally dominate the apical surface of simple epithelia are found in several pathological conditions, including endometriosis. Altered mucin expression in gynecologic diseases may promote infertility or endometrial pathologies. This was a laboratory-based study of samples from 12 endometriosis patients as well as non-endometriosis control samples obtained from 31 patients. Total RNA was isolated from endometrial biopsies of ectopic and eutopic endometrium from women with endometriosis and control patients from different stages of the menstrual cycle. Quantitative (q)-RT-PCR analyses were performed for the mucins, MUC1, MUC4 and MUC16, relative to the epithelial marker, cytokeratin-18 (KRT18), or β-actin (ACTB). Frozen sections from endometrial biopsies of proliferative and mid-secretory stage women with endometriosis were immunostained for MUC1, MUC4 and MUC16. qRT-PCR analyses of MUC1 and MUC16 mRNA revealed that these mucins do not vary significantly during the menstrual cycle nor are they altered in women with endometriosis relative to the epithelial marker, KRT18. MUC4 mRNA is expressed at very low levels relative to MUC1 and MUC16 under all conditions. There was little difference in MUC1 and MUC16 expression between eutopic endometrial and ectopic endometriotic tissues. MUC4 expression also was not significantly higher in the ectopic endometriotic tissues. Immunostaining for all three mucins reveals robust expression of MUC1 and MUC16 at the apical surfaces of endometrial epithelia, but little to no staining for MUC4. qRT-PCR analysis was the main method used for mucin detection. Additional studies with stage III-IV endometriotic tissue would be useful to determine if changes in MUC1 and MUC16 expression occur, or if MUC4 expression increases, at later stages of endometriosis. We report a comprehensive comparative profile of the major transmembrane mucins, MUC1, MUC4 and MUC16, relative to the epithelial marker, KRT18, in normal cycling endometrium and in endometriosis, and indicate constitutive expression. Previous studies have profiled the expression of individual mucins relative to β-actin and indicate accumulation in the luteal phase. Thus, these differences in interpretation appear to reflect the increased epithelial content of endometrium during the luteal phase. This study was supported by: NIH R01HD29963 to D.D.C.; NIH U54HD007495 to S.M.H.; and NIH R01HD067721 to S.L.Y. and B.A.L. The authors have no competing interests to declare. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Jayakar, Selwyn S.; Zhou, Xiaojuan; Savechenkov, Pavel Y.; Chiara, David C.; Desai, Rooma; Bruzik, Karol S.; Miller, Keith W.; Cohen, Jonathan B.
2015-01-01
In the process of developing safer general anesthetics, isomers of anesthetic ethers and barbiturates have been discovered that act as convulsants and inhibitors of γ-aminobutyric acid type A receptors (GABAARs) rather than potentiators. It is unknown whether these convulsants act as negative allosteric modulators by binding to the intersubunit anesthetic-binding sites in the GABAAR transmembrane domain (Chiara, D. C., Jayakar, S. S., Zhou, X., Zhang, X., Savechenkov, P. Y., Bruzik, K. S., Miller, K. W., and Cohen, J. B. (2013) J. Biol. Chem. 288, 19343–19357) or to known convulsant sites in the ion channel or extracellular domains. Here, we show that S-1-methyl-5-propyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (S-mTFD-MPPB), a photoreactive analog of the convulsant barbiturate S-MPPB, inhibits α1β3γ2 but potentiates α1β3 GABAAR responses. In the α1β3γ2 GABAAR, S-mTFD-MPPB binds in the transmembrane domain with high affinity to the γ+-β− subunit interface site with negative energetic coupling to GABA binding in the extracellular domain at the β+-α− subunit interfaces. GABA inhibits S-[3H]mTFD-MPPB photolabeling of γ2Ser-280 (γM2–15′) in this site. In contrast, within the same site GABA enhances photolabeling of β3Met-227 in βM1 by an anesthetic barbiturate, R-[3H]methyl-5-allyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (mTFD-MPAB), which differs from S-mTFD-MPPB in structure only by chirality and two hydrogens (propyl versus allyl). S-mTFD-MPPB and R-mTFD-MPAB are predicted to bind in different orientations at the γ+-β− site, based upon the distance in GABAAR homology models between γ2Ser-280 and β3Met-227. These results provide an explanation for S-mTFD-MPPB inhibition of α1β3γ2 GABAAR function and provide a first demonstration that an intersubunit-binding site in the GABAAR transmembrane domain binds negative and positive allosteric modulators. PMID:26229099
Sensitivity of sea urchin fertilization to pH varies across a natural pH mosaic.
Kapsenberg, Lydia; Okamoto, Daniel K; Dutton, Jessica M; Hofmann, Gretchen E
2017-03-01
In the coastal ocean, temporal fluctuations in pH vary dramatically across biogeographic ranges. How such spatial differences in pH variability regimes might shape ocean acidification resistance in marine species remains unknown. We assessed the pH sensitivity of the sea urchin Strongylocentrotus purpuratus in the context of ocean pH variability. Using unique male-female pairs, originating from three sites with similar mean pH but different variability and frequency of low pH (pH T ≤ 7.8) exposures, fertilization was tested across a range of pH (pH T 7.61-8.03) and sperm concentrations. High fertilization success was maintained at low pH via a slight right shift in the fertilization function across sperm concentration. This pH effect differed by site. Urchins from the site with the narrowest pH variability regime exhibited the greatest pH sensitivity. At this site, mechanistic fertilization dynamics models support a decrease in sperm-egg interaction rate with decreasing pH. The site differences in pH sensitivity build upon recent evidence of local pH adaptation in S. purpuratus and highlight the need to incorporate environmental variability in the study of global change biology.
Approaches to ab initio molecular replacement of α-helical transmembrane proteins.
Thomas, Jens M H; Simkovic, Felix; Keegan, Ronan; Mayans, Olga; Zhang, Chengxin; Zhang, Yang; Rigden, Daniel J
2017-12-01
α-Helical transmembrane proteins are a ubiquitous and important class of proteins, but present difficulties for crystallographic structure solution. Here, the effectiveness of the AMPLE molecular replacement pipeline in solving α-helical transmembrane-protein structures is assessed using a small library of eight ideal helices, as well as search models derived from ab initio models generated both with and without evolutionary contact information. The ideal helices prove to be surprisingly effective at solving higher resolution structures, but ab initio-derived search models are able to solve structures that could not be solved with the ideal helices. The addition of evolutionary contact information results in a marked improvement in the modelling and makes additional solutions possible.
Latysh, N.; Gordon, J.
2004-01-01
A study was undertaken to investigate differences between laboratory and field pH measurements for precipitation samples collected from 135 weekly precipitation-monitoring sites in the National Trends Network from 12/30/1986 to 12/28/1999. Differences in pH between field and laboratory measurements occurred for 96% of samples collected during this time period. Differences between the two measurements were evaluated for precipitation samples collected before and after January 1994, when modifications to sample-handling protocol and elimination of the contaminating bucket o-ring used in sample shipment occurred. Median hydrogen-ion and pH differences between field and laboratory measurements declined from 3.9 ??eq L-1 or 0.10 pH units before the 1994 protocol change to 1.4 ??eq L-1 or 0.04 pH units after the 1994 protocol change. Hydrogen-ion differences between field and laboratory measurements had a high correlation with the sample pH determined in the field. The largest pH differences between the two measurements occurred for high-pH samples (>5.6), typical of precipitation collected in Western United States; however low- pH samples (<5.0) displayed the highest variability in hydrogen-ion differences between field and laboratory analyses. Properly screened field pH measurements are a useful alternative to laboratory pH values for trend analysis, particularly before 1994 when laboratory pH values were influenced by sample-collection equipment.
Role of protein kinase D in Golgi exit and lysosomal targeting of the transmembrane protein, Mcoln1
Marks, David L.; Holicky, Eileen L.; Wheatley, Christine L.; Frumkin, Ayala; Bach, Gideon; Pagano, Richard E.
2012-01-01
The targeting of lysosomal transmembrane proteins from the Golgi apparatus to lysosomes is a complex process that is only beginning to be understood. Here, the lysosomal targeting of Mcoln1, the transmembrane protein defective in the autosomal recessive disease, Mucolipidosis, type IV, was studied by over-expressing full length and truncated forms of the protein in human cells, followed by detection using immunofluorescence and immunoblotting. We demonstrated that a 53 amino acid C-terminal region of Mcoln1 is required for efficient exit from the Golgi. Truncations lacking this region exhibited reduced delivery to lysosomes and decreased proteolytic cleavage of Mcoln1 into characteristic ~35 kDa fragments, suggesting that this cleavage occurs in lysosomes. In addition, we found that co-expression of full length Mcoln1 with kinase-inactive protein kinase D (PKD) 1 or 2 inhibited Mcoln1 Golgi exit and transport to lysosomes and decreased Mcoln1 cleavage. These studies suggest that PKDs play a role in the delivery of some lysosomal resident transmembrane proteins from the Golgi to the lysosomes. PMID:22268962
Selective cell-surface labeling of the molecular motor protein prestin
McGuire, Ryan M.; Silberg, Jonathan J.; Pereira, Fred A.; Raphael, Robert M.
2011-01-01
Prestin, a multipass transmembrane protein whose N- an C-termini are localized to the cytoplasm, must be trafficked to the plasma membrane to fulfill its cellular function as a molecular motor. One challenge in studying prestin sequence-function relationships within living cells is separating the effects of amino acid substitutions on prestin trafficking, plasma membrane localization and function. To develop an approach for directly assessing prestin levels at the plasma membrane, we have investigated whether fusion of prestin to a single pass transmembrane protein results in a functional fusion protein with a surface-exposed N-terminal tag that can be detected in living cells. We find that fusion of the biotin-acceptor peptide (BAP) and transmembrane domain of the platelet-derived growth factor receptor (PDGFR) to the N-terminus of prestin-GFP yields a membrane protein that can be metabolically-labeled with biotin, trafficked to the plasma membrane, and selectively detected at the plasma membrane using fluorescently-tagged streptavidin. Furthermore, we show that the addition of a surface detectable tag and a single-pass transmembrane domain to prestin does not disrupt its voltage-sensitive activity. PMID:21651892
Membrane raft association is a determinant of plasma membrane localization.
Diaz-Rohrer, Blanca B; Levental, Kandice R; Simons, Kai; Levental, Ilya
2014-06-10
The lipid raft hypothesis proposes lateral domains driven by preferential interactions between sterols, sphingolipids, and specific proteins as a central mechanism for the regulation of membrane structure and function; however, experimental limitations in defining raft composition and properties have prevented unequivocal demonstration of their functional relevance. Here, we establish a quantitative, functional relationship between raft association and subcellular protein sorting. By systematic mutation of the transmembrane and juxtamembrane domains of a model transmembrane protein, linker for activation of T-cells (LAT), we generated a panel of variants possessing a range of raft affinities. These mutations revealed palmitoylation, transmembrane domain length, and transmembrane sequence to be critical determinants of membrane raft association. Moreover, plasma membrane (PM) localization was strictly dependent on raft partitioning across the entire panel of unrelated mutants, suggesting that raft association is necessary and sufficient for PM sorting of LAT. Abrogation of raft partitioning led to mistargeting to late endosomes/lysosomes because of a failure to recycle from early endosomes. These findings identify structural determinants of raft association and validate lipid-driven domain formation as a mechanism for endosomal protein sorting.
Membrane raft association is a determinant of plasma membrane localization
Diaz-Rohrer, Blanca B.; Levental, Kandice R.; Simons, Kai; Levental, Ilya
2014-01-01
The lipid raft hypothesis proposes lateral domains driven by preferential interactions between sterols, sphingolipids, and specific proteins as a central mechanism for the regulation of membrane structure and function; however, experimental limitations in defining raft composition and properties have prevented unequivocal demonstration of their functional relevance. Here, we establish a quantitative, functional relationship between raft association and subcellular protein sorting. By systematic mutation of the transmembrane and juxtamembrane domains of a model transmembrane protein, linker for activation of T-cells (LAT), we generated a panel of variants possessing a range of raft affinities. These mutations revealed palmitoylation, transmembrane domain length, and transmembrane sequence to be critical determinants of membrane raft association. Moreover, plasma membrane (PM) localization was strictly dependent on raft partitioning across the entire panel of unrelated mutants, suggesting that raft association is necessary and sufficient for PM sorting of LAT. Abrogation of raft partitioning led to mistargeting to late endosomes/lysosomes because of a failure to recycle from early endosomes. These findings identify structural determinants of raft association and validate lipid-driven domain formation as a mechanism for endosomal protein sorting. PMID:24912166
Minamino, Tohru; Morimoto, Yusuke V.; Hara, Noritaka; Aldridge, Phillip D.; Namba, Keiichi
2016-01-01
The bacterial flagellar type III export apparatus utilizes ATP and proton motive force (PMF) to transport flagellar proteins to the distal end of the growing flagellar structure for self-assembly. The transmembrane export gate complex is a H+–protein antiporter, of which activity is greatly augmented by an associated cytoplasmic ATPase complex. Here, we report that the export gate complex can use sodium motive force (SMF) in addition to PMF across the cytoplasmic membrane to drive protein export. Protein export was considerably reduced in the absence of the ATPase complex and a pH gradient across the membrane, but Na+ increased it dramatically. Phenamil, a blocker of Na+ translocation, inhibited protein export. Overexpression of FlhA increased the intracellular Na+ concentration in the presence of 100 mM NaCl but not in its absence, suggesting that FlhA acts as a Na+ channel. In wild-type cells, however, neither Na+ nor phenamil affected protein export, indicating that the Na+ channel activity of FlhA is suppressed by the ATPase complex. We propose that the export gate by itself is a dual fuel engine that uses both PMF and SMF for protein export and that the ATPase complex switches this dual fuel engine into a PMF-driven export machinery to become much more robust against environmental changes in external pH and Na+ concentration. PMID:26943926
Minamino, Tohru; Morimoto, Yusuke V; Hara, Noritaka; Aldridge, Phillip D; Namba, Keiichi
2016-03-01
The bacterial flagellar type III export apparatus utilizes ATP and proton motive force (PMF) to transport flagellar proteins to the distal end of the growing flagellar structure for self-assembly. The transmembrane export gate complex is a H+-protein antiporter, of which activity is greatly augmented by an associated cytoplasmic ATPase complex. Here, we report that the export gate complex can use sodium motive force (SMF) in addition to PMF across the cytoplasmic membrane to drive protein export. Protein export was considerably reduced in the absence of the ATPase complex and a pH gradient across the membrane, but Na+ increased it dramatically. Phenamil, a blocker of Na+ translocation, inhibited protein export. Overexpression of FlhA increased the intracellular Na+ concentration in the presence of 100 mM NaCl but not in its absence, suggesting that FlhA acts as a Na+ channel. In wild-type cells, however, neither Na+ nor phenamil affected protein export, indicating that the Na+ channel activity of FlhA is suppressed by the ATPase complex. We propose that the export gate by itself is a dual fuel engine that uses both PMF and SMF for protein export and that the ATPase complex switches this dual fuel engine into a PMF-driven export machinery to become much more robust against environmental changes in external pH and Na+ concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang,X.; Hew, C.
2007-01-01
White spot syndrome virus (WSSV) is a major virulent pathogen known to infect penaeid shrimp and other crustaceans. VP26 and VP28, two major envelope proteins from WSSV, have been identified and overexpressed in Escherichia coli. In order to facilitate purification and crystallization, predicted N-terminal transmembrane regions of approximately 35 amino acids have been truncated from both VP26 and VP28. Truncated VP26 and VP28 and their corresponding SeMet-labelled proteins were purified and the SeMet proteins were crystallized by the hanging-drop vapor-diffusion method. Crystals of SeMet-labelled VP26 were obtained using a reservoir consisting of 0.1 M citric acid pH 3.5, 3.0 Mmore » sodium chloride and 1%(w/v) polyethylene glycol 3350, whereas SeMet VP28 was crystallized using a reservoir solution consisting of 25% polyethylene glycol 8000, 0.2 M calcium acetate, 0.1 M Na HEPES pH 7.5 and 1.5%(w/v) 1,2,3-heptanetriol. Crystals of SeMet-labelled VP26 diffract to 2.2 {angstrom} resolution and belong to space group R32, with unit-cell parameters a = b = 73.92, c = 199.31 {angstrom}. SeMet-labelled VP28 crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 105.33, b = 106.71, c = 200.37 {angstrom}, and diffracts to 2.0 {angstrom} resolution.« less
Preiss, Laura; Klyszejko, Adriana L.; Hicks, David B.; Liu, Jun; Fackelmayer, Oliver J.; Yildiz, Özkan; Krulwich, Terry A.; Meier, Thomas
2013-01-01
The c-rings of ATP synthases consist of individual c-subunits, all of which harbor a conserved motif of repetitive glycine residues (GxGxGxG) important for tight transmembrane α-helix packing. The c-ring stoichiometry determines the number of ions transferred during enzyme operation and has a direct impact on the ion-to-ATP ratio, a cornerstone parameter of cell bioenergetics. In the extreme alkaliphile Bacillus pseudofirmus OF4, the glycine motif is replaced by AxAxAxA. We performed a structural study on two mutants with alanine-to-glycine changes using atomic force microscopy and X-ray crystallography, and found that mutants form smaller c12 rings compared with the WT c13. The molar growth yields of B. pseudofirmus OF4 cells on malate further revealed that the c12 mutants have a considerably reduced capacity to grow on limiting malate at high pH. Our results demonstrate that the mutant ATP synthases with either c12 or c13 can support ATP synthesis, and also underscore the critical importance of an alanine motif with c13 ring stoichiometry for optimal growth at pH >10. The data indicate a direct connection between the precisely adapted ATP synthase c-ring stoichiometry and its ion-to-ATP ratio on cell physiology, and also demonstrate the bioenergetic challenges and evolutionary adaptation strategies of extremophiles. PMID:23613590
Tóth, Lola; Fábos, Beáta; Farkas, Katalin; Sulák, Adrienn; Tripolszki, Kornélia; Széll, Márta; Nagy, Nikoletta
2017-03-15
Oculocutaneous albinism (OCA) is a clinically and genetically heterogenic group of pigmentation abnormalities. OCA type IV (OCA4, OMIM 606574) develops due to homozygous or compound heterozygous mutations in the solute carrier family 45, member 2 (SLC45A2) gene. This gene encodes a membrane-associated transport protein, which regulates tyrosinase activity and, thus, melanin content by changing melanosomal pH and disrupting the incorporation of copper into tyrosinase. Here we report two Hungarian siblings affected by an unusual OCA4 phenotype. After genomic DNA was isolated from peripheral blood of the patients, the coding regions of the SLC45A2 gene were sequenced. In silico tools were applied to identify the functional impact of the newly detected mutations. Direct sequencing of the SLC45A2 gene revealed two novel, heterozygous mutations, one missense (c.1226G > A, p.Gly409Asp) and one nonsense (c.1459C > T, p.Gln437*), which were present in both patients, suggesting the mutations were compound heterozygous. In silico tools suggest that these variations are disease causing mutations. The newly identified mutations may affect the transmembrane domains of the protein, and could impair transport function, resulting in decreases in both melanosomal pH and tyrosinase activity. Our study provides expands on the mutation spectrum of the SLC45A2 gene and the genetic background of OCA4.
Yang, Bin; Lv, Yin; Zhu, Jing-Yi; Han, Yun-Tao; Jia, Hui-Zhen; Chen, Wei-Hai; Feng, Jun; Zhang, Xian-Zheng; Zhuo, Ren-Xi
2014-08-01
The present work reports the construction of a drug delivery nanovehicle via a pH-sensitive assembly strategy for improved cellular internalization and intracellular drug liberation. Through spontaneous formation of boronate linkage in physiological conditions, phenylboronic acid-modified cholesterol was able to attach onto catechol-pending methoxypoly(ethylene glycol)-block-poly(l-lysine). This comb-type polymer can self-organize into a micellar nanoconstruction that is able to effectively encapsulate poorly water-soluble agents. The blank micelles exhibited negligible in vitro cytotoxicity, yet doxorubicin (DOX)-loaded micelles could effectively induce cell death at a level comparable to free DOX. Owing to the acid-labile feature of the boronate linkage, a reduction in environmental pH from pH 7.4 to 5.0 could trigger the dissociation of the nanoconstruction, which in turn could accelerate the liberation of entrapped drugs. Importantly, the blockage of endosomal acidification in HeLa cells by NH4Cl treatment significantly decreased the nuclear uptake efficiency and cell-killing effect mediated by the DOX-loaded nanoassembly, suggesting that acid-triggered destruction of the nanoconstruction is of significant importance in enhanced drug efficacy. Moreover, confocal fluorescence microscopy and flow cytometry assay revealed the effective internalization of the nanoassemblies, and their cellular uptake exhibited a cholesterol dose-dependent profile, indicating the contribution of introduced cholesterol functionality to the transmembrane process of the nanoassembly. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Characterizing the variation in pH measurements with apheresis platelets.
Moroff, Gary; Seetharaman, Shalini; Kurtz, James; Wagner, Stephen J
2011-11-01
pH measurements of platelet (PLT) components remain a key parameter when assessing how storage and shipping conditions influence the retention of PLT properties. Studies were conducted to characterize variations in pH measured with two pH meters and a blood gas analyzer. Samples were obtained from apheresis PLT units that were stored with or without continuous agitation to measure a range of pH values. pH values were determined with pH meters at room temperature (20-24°C) upon placing of samples in 5-mL sterile polypropylene tubes and with the blood gas analyzer at 37°C upon injection of identical samples, with conversion to 22°C. The calculated coefficient of variation (%CV) of pH measurements using pH meters (n = 10) was 0.43% or less. The %CV values were comparable with different samples having pH values ranging from 6.0 to 7.4. The %CV levels with the blood gas analyzer were comparable to those observed with the pH meters. The difference in the mean pH values for the two pH meters was no greater than 0.10 units, with 9 of 10 samples having differences in values of 0.05 or less; however, greater differences of values (0.1 to 0.2) were observed between pH measured using the blood gas analyzer and pH meters. Our data show good precision and comparability of pH measurements with two pH meters. Differences in pH values were greater on comparison of the blood gas analyzer with the pH meters. © 2011 American Association of Blood Banks.
Broer, Rene; Boson, Bertrand; Spaan, Willy; Cosset, François-Loïc; Corver, Jeroen
2006-01-01
The spike protein (S) of severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for receptor binding and membrane fusion. It contains a highly conserved transmembrane domain that consists of three parts: an N-terminal tryptophan-rich domain, a central domain, and a cysteine-rich C-terminal domain. The cytoplasmic tail of S has previously been shown to be required for assembly. Here, the roles of the transmembrane and cytoplasmic domains of S in the infectivity and membrane fusion activity of SARS-CoV have been studied. SARS-CoV S-pseudotyped retrovirus (SARSpp) was used to measure S-mediated infectivity. In addition, the cell-cell fusion activity of S was monitored by a Renilla luciferase-based cell-cell fusion assay. Svsv-cyt, an S chimera with a cytoplasmic tail derived from vesicular stomatitis virus G protein (VSV-G), and Smhv-tmdcyt, an S chimera with the cytoplasmic and transmembrane domains of mouse hepatitis virus, displayed wild-type-like activity in both assays. Svsv-tmdcyt, a chimera with the cytoplasmic and transmembrane domains of VSV-G, was impaired in the SARSpp and cell-cell fusion assays, showing 3 to 25% activity compared to the wild type, depending on the assay and the cells used. Examination of the oligomeric state of the chimeric S proteins in SARSpp revealed that Svsv-tmdcyt trimers were less stable than wild-type S trimers, possibly explaining the lowered fusogenicity and infectivity. PMID:16415007
Hayat, Maqsood; Tahir, Muhammad
2015-08-01
Membrane protein is a central component of the cell that manages intra and extracellular processes. Membrane proteins execute a diversity of functions that are vital for the survival of organisms. The topology of transmembrane proteins describes the number of transmembrane (TM) helix segments and its orientation. However, owing to the lack of its recognized structures, the identification of TM helix and its topology through experimental methods is laborious with low throughput. In order to identify TM helix segments reliably, accurately, and effectively from topogenic sequences, we propose the PSOFuzzySVM-TMH model. In this model, evolutionary based information position specific scoring matrix and discrete based information 6-letter exchange group are used to formulate transmembrane protein sequences. The noisy and extraneous attributes are eradicated using an optimization selection technique, particle swarm optimization, from both feature spaces. Finally, the selected feature spaces are combined in order to form ensemble feature space. Fuzzy-support vector Machine is utilized as a classification algorithm. Two benchmark datasets, including low and high resolution datasets, are used. At various levels, the performance of the PSOFuzzySVM-TMH model is assessed through 10-fold cross validation test. The empirical results reveal that the proposed framework PSOFuzzySVM-TMH outperforms in terms of classification performance in the examined datasets. It is ascertained that the proposed model might be a useful and high throughput tool for academia and research community for further structure and functional studies on transmembrane proteins.
Noiray, M.; Briand, E.; Woodward, A. M.; Argüeso, P.; Molina Martínez, I. T.; Herrero-Vanrell, R.; Ponchel, G.
2013-01-01
Purpose Development of the first in vitro method based on biosensor chip technology designed for probing the interfacial interaction phenomena between transmembrane ocular mucins and adhesive polymers and dendrimers intended for ophthalmic administration. Methods The surface plasmon resonance (SPR) technique was used. A transmembrane ocular mucin surface was prepared on the chip surface and characterized by QCM-D (Quartz Crystal Microbalance with Dissipation) and XPS (X-ray photoelectron spectroscopy). The mucoadhesive molecules tested were: hyaluronic acid (HA), carboxymethyl cellulose (CMC), hydroxypropylmethyl cellulose (HPMC), chitosan (Ch) and polyamidoamine dendrimers (PAMAM). Results While Ch originated interfacial interaction with ocular transmembrane mucins, for HA, CMC and HPMC, chain interdiffusion seemed to be mandatory for bioadherence at the concentrations used in ophthalmic clinical practise. Interestingly, PAMAM dendrimers developed permanent interfacial interactions with transmembrane ocular mucins whatever their surface chemical groups, showing a relevant importance of co-operative effect of these multivalent systems. Polymers developed interfacial interactions with ocular membrane-associated mucins in the following order: Ch(1 %) > G4PAMAM-NH2(2 %) = G4PAMAM-OH(2 %) > G3.5PAMAM-COOH(2 %)≫ CMC(0.5 %) = HA(0.2 %) = HPMC(0.3 %). Conclusions The method proposed is useful to discern between the mucin-polymer chemical interactions at molecular scale. Results reinforce the usefulness of chitosan and den-drimers as polymers able to increase the retention time of drugs on the ocular surface and hence their bioavailability. PMID:22565639
Senis, Yotis A.; Tomlinson, Michael G.; García, Ángel; Dumon, Stephanie; Heath, Victoria L.; Herbert, John; Cobbold, Stephen P.; Spalton, Jennifer C.; Ayman, Sinem; Antrobus, Robin; Zitzmann, Nicole; Bicknell, Roy; Frampton, Jon; Authi, Kalwant; Martin, Ashley; Wakelam, Michael J.O.; Watson, Stephen P.
2007-01-01
Summary The platelet surface is poorly characterized due to the low abundance of many membrane proteins and the lack of specialist tools for their investigation. In this study we have identified novel human platelet and mouse megakaryocyte membrane proteins using specialist proteomic and genomic approaches. Three separate methods were used to enrich platelet surface proteins prior to identification by liquid chromatography and tandem mass spectrometry: lectin affinity chromatography; biotin/NeutrAvidin affinity chromatography; and free flow electrophoresis. Many known, abundant platelet surface transmembrane proteins and several novel proteins were identified using each receptor enrichment strategy. In total, two or more unique peptides were identified for 46, 68 and 22 surface membrane, intracellular membrane and membrane proteins of unknown sub-cellular localization, respectively. The majority of these were single transmembrane proteins. To complement the proteomic studies, we analysed the transcriptome of a highly purified preparation of mature primary mouse megakaryocytes using serial analysis of gene expression in view of the increasing importance of mutant mouse models in establishing protein function in platelets. This approach identified all of the major classes of platelet transmembrane receptors, including multi-transmembrane proteins. Strikingly, 17 of the 25 most megakaryocyte-specific genes (relative to 30 other SAGE libraries) were transmembrane proteins, illustrating the unique nature of the megakaryocyte/platelet surface. The list of novel plasma membrane proteins identified using proteomics includes the immunoglobulin superfamily member G6b, which undergoes extensive alternate splicing. Specific antibodies were used to demonstrate expression of the G6b-B isoform, which contains an immunoreceptor tyrosine-based inhibition motif. G6b-B undergoes tyrosine phosphorylation and association with the SH2-containing phosphatase, SHP-1, in stimulated platelets suggesting that it may play a novel role in limiting platelet activation. PMID:17186946
NASA Astrophysics Data System (ADS)
Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar
2016-12-01
A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values ( 4 and 11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH 14 and brown at pH 2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms ;C;, ;H; and ;Dprot; at pH 14 and Forms ;A;, ;D;, and ;P; at pH 2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH 2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450 cm- 1, 616 to 632 cm- 1, 1332 to 1343 cm- 1 etc. Again, the most enhanced peak at 1548 cm- 1 in NRS while in the SERS window this appears at 1580 cm- 1. Similar observation was also made for CZA at pH 14. For example, the 423 cm- 1 band in the NRS profile experience a blue shift and appears at 447 cm- 1 in the SERS spectrum as well as other bands at 850, 1067 and 1214 cm- 1 in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH 2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH 14). The DFT calculations for these prescribed model systems were also carried out to have a plausible understanding of their equilibrium geometries and the vibrational wavenumbers. An idea about the molecular orientation of the adsorbate over nanocolloidal gold substrate is also documented.
Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar
2016-12-05
A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values (~4 and ~11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH~14 and brown at pH~2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms "C", "H" and "Dprot" at pH~14 and Forms "A", "D", and "P" at pH~2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH~2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450cm(-1), 616 to 632cm(-1), 1332 to 1343cm(-1) etc. Again, the most enhanced peak at ~1548cm(-1) in NRS while in the SERS window this appears at ~1580cm(-1). Similar observation was also made for CZA at pH~14. For example, the 423cm(-1) band in the NRS profile experience a blue shift and appears at ~447cm(-1) in the SERS spectrum as well as other bands at ~850, ~1067 and ~1214cm(-1) in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH~2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH~14). The DFT calculations for these prescribed model systems were also carried out to have a plausible understanding of their equilibrium geometries and the vibrational wavenumbers. An idea about the molecular orientation of the adsorbate over nanocolloidal gold substrate is also documented. Copyright © 2016 Elsevier B.V. All rights reserved.
Asymmetrical electrically induced injury of rabbit ventricular myocytes.
Knisley, S B; Grant, A O
1995-05-01
Strong defibrillation-type electric field stimulation may injure myocytes when transmembrane potentials during the pulse exceed the threshold for membrane permeabilization. The location of injury may depend on intrinsic transmembrane potential or influx of calcium by "electro-osmosis" during the stimulation pulse in addition to the transmembrane potential changes induced by the pulse. We have studied injury by examining contracture and changes in transmembrane potential-sensitive dye fluorescence induced by electric field stimulation (St) with a duration of 20 ms and strength of 16-400 V/cm in isolated rabbit ventricular myocytes. St of 100-150 V/cm produced injury in myocytes oriented parallel to the St field frequently without injuring myocytes oriented perpendicular to the field. Injury required calcium in the solution and was asymmetric, occurring first at the myocyte and facing the St anode in 100% of injured myocytes in normal Tyrode's solution. Injury depended significantly on whether the product of the electric field strength and myocyte length exceeded a threshold of 1.1 V (P < 0.05). Asymmetric injury at the end facing the anode was still present in 96% of injured myocytes for stimulation after depolarization by an action potential or 20 mM or 125 mM potassium, suggesting that intrinsic transmembrane potential is not responsible for asymmetry. In 125 mM potassium, eliminating calcium from the bathing solution during the St pulse and introducing calcium after the pulse decreased the fraction of injured myocytes in which injury occurred at the end facing the anode to 62%, suggesting that calcium influx by "electro-osmosis" at the myocyte end facing the anode contributes to asymmetry. Asymmetric injury at the end facing the anode was still present in 100% of injured myocytes after adding 1 mM tetraethylammonium chloride, indicating that asymmetry is not sensitive to the potassium channel blockade. For stimulation pulses stronger than 50 V/cm given after depolarization by an action potential, transmembrane potentials at both myocyte ends decayed after the initial deflection indicating that permeabilization occurred at both ends. In conclusion, injury depends on myocyte orientation and is asymmetric occurring first at the myocyte end facing the anode. Asymmetric injury is not explained by asymmetric permeabilization, is independent of the intrinsic transmembrane potential and may result from "electro-osmosis" during the stimulation pulse.
Different domains are critical for oligomerization compatibility of different connexins
MARTÍNEZ, Agustín D.; MARIPILLÁN, Jaime; ACUÑA, Rodrigo; MINOGUE, Peter J.; BERTHOUD, Viviana M.; BEYER, Eric C.
2011-01-01
Oligomerization of connexins is a critical step in gap junction channel formation. Some members of the connexin family can oligomerize with other members and form functional heteromeric hemichannels [e.g. Cx43 (connexin 43) and Cx45], but others are incompatible (e.g. Cx43 and Cx26). To find connexin domains important for oligomerization, we constructed chimaeras between Cx43 and Cx26 and studied their ability to oligomerize with wild-type Cx43, Cx45 or Cx26. HeLa cells co-expressing Cx43, Cx45 or Cx26 and individual chimaeric constructs were analysed for interactions between the chimaeras and the wild-type connexins using cell biological (subcellular localization by immunofluorescence), functional (intercellular diffusion of microinjected Lucifer yellow) and biochemical (sedimentation velocity through sucrose gradients) assays. All of the chimaeras containing the third transmembrane domain of Cx43 interacted with wild-type Cx43 on the basis of co-localization, dominant-negative inhibition of intercellular communication, and altered sedimentation velocity. The same chimaeras also interacted with co-expressed Cx45. In contrast, immunofluorescence and intracellular diffusion of tracer suggested that other domains influenced oligomerization compatibility when chimaeras were co-expressed with Cx26. Taken together, these results suggest that amino acids in the third transmembrane domain are critical for oligomerization with Cx43 and Cx45. However, motifs in different domains may determine oligomerization compatibility in members of different connexin subfamilies. PMID:21348854
Schnick, C; Forrest, L R; Sansom, M S; Groth, G
2000-07-20
When isolated in its monomeric form, subunit c of the proton transporting ATP synthase of Escherichia coli was shown to fold in a hairpin-like structure consisting of two hydrophobic membrane spanning helices and a short connecting hydrophilic loop. In the plasma membrane of Escherichia coli, however, about 9-12 c-subunit monomers form an oligomeric complex that functions in transmembrane proton conduction and in energy transduction to the catalytic F1 domain. The arrangement of the monomers and the molecular architecture of the complex were studied by tryptophan scanning mutagenesis and restrained MD simulations. Residues 12-24 of the N-terminal transmembrane segment of subunit c were individually substituted by the large and moderately hydrophobic tryptophan side chain. Effects on the activity of the mutant proteins were studied in selective growth experiments and various ATP synthase specific activity assays. The results identify potential intersubunit contacts and structurally non-distorted, accessible residues in the c-oligomer and add constraints to the arrangement of monomers in the oligomeric complex. Results from our mutagenesis experiments were interpreted in structural models of the c-oligomer that have been obtained by restrained MD simulations. Different stoichiometries and monomer orientations were applied in these calculations. A cylindrical complex consisting of 10 monomers that are arranged in two concentric rings with the N-terminal helices of the monomers located at the periphery shows the best match with the experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandoval-Acuña, Cristian
Mitochondrion is an accepted molecular target in cancer treatment since it exhibits a higher transmembrane potential in cancer cells, making it susceptible to be targeted by lipophilic-delocalized cations of triphenylphosphonium (TPP{sup +}). Thus, we evaluated five TPP{sup +}-linked decyl polyhydroxybenzoates as potential cytotoxic agents in several human breast cancer cell lines that differ in estrogen receptor and HER2/neu expression, and in metabolic profile. Results showed that all cell lines tested were sensitive to the cytotoxic action of these compounds. The mechanism underlying the cytotoxicity would be triggered by their weak uncoupling effect on the oxidative phosphorylation system, while having amore » wider and safer therapeutic range than other uncouplers and a significant lowering in transmembrane potential. Noteworthy, while the TPP{sup +}-derivatives alone led to almost negligible losses of ATP, when these were added in the presence of an AMP-activated protein kinase inhibitor, the levels of ATP fell greatly. Overall, data presented suggest that decyl polyhydroxybenzoates-TPP{sup +} and its derivatives warrant future investigation as potential anti-tumor agents. - Highlights: • TPP{sup +}-polyhydroxybenzoates are cytotoxic to various subtypes of breast cancer cells. • Cytotoxicity is not-dependent on the expression of estrogen/growth factor receptors. • Cytotoxicity appears to be triggered by a weak mitochondrial uncoupling effect. • Effects include loss of transmembrane potential and apoptosis was detected. • TPP{sup +}-polyhydroxybenzoates inhibit migration of highly metastatic cells.« less
Assembly and mechanism of a group II ECF transporter.
Karpowich, Nathan K; Wang, Da-Neng
2013-02-12
Energy-coupling factor (ECF) transporters are a recently discovered family of primary active transporters for micronutrients and vitamins, such as biotin, thiamine, and riboflavin. Found exclusively in archaea and bacteria, including the human pathogens Listeria, Streptococcus, and Staphylococcus, ECF transporters may be the only means of vitamin acquisition in these organisms. The subunit composition of ECF transporters is similar to that of ATP binding cassette (ABC) importers, whereby both systems share two homologous ATPase subunits (A and A'), a high affinity substrate-binding subunit (S), and a transmembrane coupling subunit (T). However, the S subunit of ECF transporters is an integral membrane protein, and the transmembrane coupling subunits do not share an obvious sequence homology between the two transporter families. Moreover, the subunit stoichiometry of ECF transporters is controversial, and the detailed molecular interactions between subunits and the conformational changes during substrate translocation are unknown. We have characterized the ECF transporters from Thermotoga maritima and Streptococcus thermophilus. Our data suggests a subunit stoichiometry of 2S:2T:1A:1A' and that S subunits for different substrates can be incorporated into the same transporter complex simultaneously. In the first crystal structure of the A-A' heterodimer, each subunit contains a novel motif called the Q-helix that plays a key role in subunit coupling with the T subunits. Taken together, these findings suggest a mechanism for coupling ATP binding and hydrolysis to transmembrane transport by ECF transporters.
Zhang, M; Liu, J; Jiang, M; Wu, D-M; Sonawane, K; Guy, H R; Tseng, G-N
2005-10-01
Studies on voltage-gated K channels such as Shaker have shown that positive charges in the voltage-sensor (S4) can form salt bridges with negative charges in the surrounding transmembrane segments in a state-dependent manner, and different charge pairings can stabilize the channels in closed or open states. The goal of this study is to identify such charge interactions in the hERG channel. This knowledge can provide constraints on the spatial relationship among transmembrane segments in the channel's voltage-sensing domain, which are necessary for modeling its structure. We first study the effects of reversing S4's positive charges on channel activation. Reversing positive charges at the outer (K525D) and inner (K538D) ends of S4 markedly accelerates hERG activation, whereas reversing the 4 positive charges in between either has no effect or slows activation. We then use the 'mutant cycle analysis' to test whether D456 (outer end of S2) and D411 (inner end of S1) can pair with K525 and K538, respectively. Other positive charges predicted to be able, or unable, to interact with D456 or D411 are also included in the analysis. The results are consistent with predictions based on the distribution of these charged residues, and confirm that there is functional coupling between D456 and K525 and between D411 and K538.
NASA Astrophysics Data System (ADS)
Gatea, Florentina; Teodor, Eugenia Dumitra; Seciu, Ana-Maria; Covaci, Ovidiu Ilie; Mănoiu, Sorin; Lazăr, Veronica; Radu, Gabriel Lucian
2015-07-01
The Romanian propolis was extracted in five different media, respectively, in water (pH 6.8), glycine buffer (pH 2.5), acetate buffer (pH 5), phosphate buffer (pH 7.4) and carbonate buffer (pH 9.2). The extracts presented different amounts of flavonoids and phenolic acids, increasing pH leading to higher concentrations of active compounds. Five variants of gold nanoparticles suspensions based on different pH Romanian propolis aqueous extracts were successfully synthesized. The obtained nanoparticles presented dimensions between 20 and 60 nm in dispersion form and around 18 nm in dried form, and different morphologies (spherical, hexagonal, triangular). Fourier transform infrared spectroscopy proved the attachment of organic compounds from propolis extracts to the colloidal gold suspensions and X-ray diffraction certified that the suspensions contain metallic gold. The obtained propolis gold nanoparticles do not exhibit any antibacterial or antifungal activity, but presented different catalytic activities and toxicity on tumour cells.
USDA-ARS?s Scientific Manuscript database
Fat Storage-Inducing Transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)-localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. Here, we tested the function of FIT2 in plant cells by ectopi...
First principles design of a core bioenergetic transmembrane electron-transfer protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goparaju, Geetha; Fry, Bryan A.; Chobot, Sarah E.
Here we describe the design, Escherichia coli expression and characterization of a simplified, adaptable and functionally transparent single chain 4-α-helix transmembrane protein frame that binds multiple heme and light activatable porphyrins. Such man-made cofactor-binding oxidoreductases, designed from first principles with minimal reference to natural protein sequences, are known as maquettes. This design is an adaptable frame aiming to uncover core engineering principles governing bioenergetic transmembrane electron-transfer function and recapitulate protein archetypes proposed to represent the origins of photosynthesis. This article is part of a Special Issue entitled Biodesign for Bioenergetics — the design and engineering of electronic transfer cofactors, proteinsmore » and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.« less
Simulation of micro/nano electroporation for cell transfection
NASA Astrophysics Data System (ADS)
Zhang, Guocheng; Fan, Na; Jiang, Hai; Guo, Jian; Peng, Bei
2018-03-01
The 3D micro/nano electroporation for transfection has become a powerful biological cell research technique with the development of micro-nano manufacturing technology. The micro channels connected the cells with transfection reagents on the chip were important to the transmemnbrane potentical, which directly influences the electroporation efficiency. In this study, a two-dimensional model for electroporation of cells was designed to address the effects of channels’ sizes and number on transmembrane potential. The simulation results indicated that the transmembrane potential increased with increasing size of channels’ entrances. Moreover, compared with single channel entrance, the transmembrane potential was higher when the cells located at multiple channels entrances. These results suggest that it IS required to develop higher micro manufacturing technology to create channels as we expected size.
Process for control of cell division
NASA Technical Reports Server (NTRS)
Cone, C. D., Jr. (Inventor)
1977-01-01
A method of controlling mitosis of biological cells was developed, which involved inducing a change in the intracellular ionic hierarchy accompanying the cellular electrical transmembrane potential difference (Esubm) of the cells. The ionic hierarchy may be varied by imposing changes on the relative concentrations of Na(+), K(+) and Cl(-), or by directly imposing changes in the physical Esubm level across the cell surface.
Poon, Betty; Chen, Irvin S. Y.
1998-01-01
In vitro infection by human T-cell leukemia virus type 1 and 2 (HTLV-1 and HTLV-2) can result in syncytium formation, facilitating viral entry. Using cell lines that were susceptible to HTLV-2-mediated syncytium formation but were nonfusogenic with HTLV-1, we constructed chimeric envelopes between HTLV-1 and -2 and assayed for the ability to induce syncytia in BJAB cells and HeLa cells. We have identified a fusion domain composed of the first 64 amino acids at the amino terminus of the HTLV-2 transmembrane protein, p21, the retention of which was required for syncytium induction. Construction of replication-competent HTLV genomic clones allowed us to correlate the ability of HTLV-2 to induce syncytia with the ability to replicate in BJAB cells. Differences in the ability to induce syncytia were not due to differences in the levels of total or cell membrane-associated envelope or in the formation of multimers. Therefore, we have localized a fusion domain within the amino terminus of the transmembrane protein of HTLV-2 envelope that is necessary for syncytium induction and viral replication. PMID:9499049
Dharmaraj, N.; Chapela, P.J.; Morgado, M.; Hawkins, S.M.; Lessey, B.A.; Young, S.L.; Carson, D.D.
2014-01-01
STUDY QUESTION Are the transmembrane mucins, MUC1, MUC4 and MUC16, differentially expressed in endometriosis compared with normal endometrium? SUMMARY ANSWER This study revealed that transmembrane mucin expression does not vary significantly in normal endometrium during the menstrual cycle and is not altered in endometriosis relative to the epithelial marker, cytokeratin-18 (KRT18). WHAT IS KNOWN ALREADY Increased serum levels of the transmembrane mucin fragments MUC1, MUC4 and MUC16 that normally dominate the apical surface of simple epithelia are found in several pathological conditions, including endometriosis. Altered mucin expression in gynecologic diseases may promote infertility or endometrial pathologies. STUDY DESIGN, SIZE, DURATION This was a laboratory-based study of samples from 12 endometriosis patients as well as non-endometriosis control samples obtained from 31 patients. PARTICIPANTS/MATERIALS, SETTING, METHODS Total RNA was isolated from endometrial biopsies of ectopic and eutopic endometrium from women with endometriosis and control patients from different stages of the menstrual cycle. Quantitative (q)-RT–PCR analyses were performed for the mucins, MUC1, MUC4 and MUC16, relative to the epithelial marker, cytokeratin-18 (KRT18), or β-actin (ACTB). Frozen sections from endometrial biopsies of proliferative and mid-secretory stage women with endometriosis were immunostained for MUC1, MUC4 and MUC16. MAIN RESULTS AND THE ROLE OF CHANCE qRT–PCR analyses of MUC1 and MUC16 mRNA revealed that these mucins do not vary significantly during the menstrual cycle nor are they altered in women with endometriosis relative to the epithelial marker, KRT18. MUC4 mRNA is expressed at very low levels relative to MUC1 and MUC16 under all conditions. There was little difference in MUC1 and MUC16 expression between eutopic endometrial and ectopic endometriotic tissues. MUC4 expression also was not significantly higher in the ectopic endometriotic tissues. Immunostaining for all three mucins reveals robust expression of MUC1 and MUC16 at the apical surfaces of endometrial epithelia, but little to no staining for MUC4. LIMITATIONS, REASONS FOR CAUTION qRT–PCR analysis was the main method used for mucin detection. Additional studies with stage III–IV endometriotic tissue would be useful to determine if changes in MUC1 and MUC16 expression occur, or if MUC4 expression increases, at later stages of endometriosis. WIDER IMPLICATIONS OF THE FINDINGS We report a comprehensive comparative profile of the major transmembrane mucins, MUC1, MUC4 and MUC16, relative to the epithelial marker, KRT18, in normal cycling endometrium and in endometriosis, and indicate constitutive expression. Previous studies have profiled the expression of individual mucins relative to β-actin and indicate accumulation in the luteal phase. Thus, these differences in interpretation appear to reflect the increased epithelial content of endometrium during the luteal phase. STUDY FUNDING This study was supported by: NIH R01HD29963 to D.D.C.; NIH U54HD007495 to S.M.H.; and NIH R01HD067721 to S.L.Y. and B.A.L. The authors have no competing interests to declare. PMID:24939955
Decoding the phosphorylation code in Hedgehog signal transduction
Chen, Yongbin; Jiang, Jin
2013-01-01
Hedgehog (Hh) signaling plays pivotal roles in embryonic development and adult tissue homeostasis, and its deregulation leads to numerous human disorders including cancer. Binding of Hh to Patched (Ptc), a twelve-transmembrane protein, alleviates its inhibition of Smoothened (Smo), a seven-transmembrane protein related to G-protein-coupled receptors (GPCRs), leading to Smo phosphorylation and activation. Smo acts through intracellular signaling complexes to convert the latent transcription factor Cubitus interruptus (Ci)/Gli from a truncated repressor to a full-length activator, leading to derepression/activation of Hh target genes. Increasing evidence suggests that phosphorylation participates in almost every step in the signal relay from Smo to Ci/Gli, and that differential phosphorylation of several key pathway components may be crucial for translating the Hh morphogen gradient into graded pathway activities. In this review, we focus on the multifaceted roles that phosphorylation plays in Hh signal transduction, and discuss the conservation and difference between Drosophila and mammalian Hh signaling mechanisms. PMID:23337587
Lipids and ions traverse the membrane by the same physical pathway in the nhTMEM16 scramblase
Jiang, Tao; Yu, Kuai
2017-01-01
From bacteria to mammals, different phospholipid species are segregated between the inner and outer leaflets of the plasma membrane by ATP-dependent lipid transporters. Disruption of this asymmetry by ATP-independent phospholipid scrambling is important in cellular signaling, but its mechanism remains incompletely understood. Using MD simulations coupled with experimental assays, we show that the surface hydrophilic transmembrane cavity exposed to the lipid bilayer on the fungal scramblase nhTMEM16 serves as the pathway for both lipid translocation and ion conduction across the membrane. Ca2+ binding stimulates its open conformation by altering the structure of transmembrane helices that line the cavity. We have identified key amino acids necessary for phospholipid scrambling and validated the idea that ions permeate TMEM16 Cl- channels via a structurally homologous pathway by showing that mutation of two residues in the pore region of the TMEM16A Ca2+-activated Cl- channel convert it into a robust scramblase. PMID:28917060
Malchus, Nina; Weiss, Matthias
2010-01-01
A multitude of transmembrane proteins enters the endoplasmic reticulum (ER) as unfolded polypeptide chains. During their folding process, they interact repetitively with the ER's quality control machinery. Here, we have used fluorescence correlation spectroscopy to probe these interactions for a prototypical transmembrane protein, VSVG ts045, in vivo. While both folded and unfolded VSVG ts045 showed anomalous diffusion, the unfolded protein had a significantly stronger anomaly. This difference subsided when unfolded VSVG ts045 was in a complex with its chaperone calnexin, or when a mutant form of VSVG ts045 with only one glycan was used. Our experimental data and accompanying simulations suggest that the folding sensor of the quality control (UGT1) oligomerizes unfolded VSVG ts045, leading to a more anomalous/obstructed diffusion. In contrast, calnexin dissolves the oligomers, rendering unfolded VSVG ts045 more mobile, and hence prevents poisoning of the ER. PMID:20713018
Molecular dynamics study of ion transport through an open model of voltage-gated sodium channel.
Li, Yang; Sun, Ruining; Liu, Huihui; Gong, Haipeng
2017-05-01
Voltage-gated sodium (Na V ) channels are critical in the signal transduction of excitable cells. In this work, we modeled the open conformation for the pore domain of a prokaryotic Na V channel (Na V Rh), and used molecular dynamics simulations to track the translocation of dozens of Na + ions through the channel in the presence of a physiological transmembrane ion concentration gradient and a transmembrane electrical field that was closer to the physiological one than previous studies. Channel conductance was then estimated from simulations on the wide-type and DEKA mutant of Na V Rh. Interestingly, the conductivity predicted from the DEKA mutant agrees well with experimental measurement on eukaryotic Na V 1.4 channel. Moreover, the wide-type and DEKA mutant of Na V Rh exhibited markedly distinct ion permeation patterns, which thus implies the mechanistic difference between prokaryotic and eukaryotic Na V channels. Copyright © 2017 Elsevier B.V. All rights reserved.
Khadria, Ambalika S; Senes, Alessandro
2015-07-01
Förster resonance energy transfer (FRET) has been widely used as a spectroscopic tool in vitro to study the interactions between transmembrane (TM) helices in detergent and lipid environments. This technique has been instrumental to many studies that have greatly contributed to quantitative understanding of the physical principles that govern helix-helix interactions in the membrane. These studies have also improved our understanding of the biological role of oligomerization in membrane proteins. In this review, we focus on the combinations of fluorophores used, the membrane mimetic environments, and measurement techniques that have been applied to study model systems as well as biological oligomeric complexes in vitro. We highlight the different formalisms used to calculate FRET efficiency and the challenges associated with accurate quantification. The goal is to provide the reader with a comparative summary of the relevant literature for planning and designing FRET experiments aimed at measuring TM helix-helix associations. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhou, Huan-Xiang
2011-04-01
Ion permeation through transmembrane channels has traditionally been modeled using two different approaches. In one approach, the translocation of the permeant ion through the channel pore is modeled as continuous diffusion and the rate of ion transport is obtained from solving the steady-state diffusion equation. In the other approach, the translocation of the permeant ion through the pore is modeled as hopping along a discrete set of internal binding sites and the rate of ion transport is obtained from solving a set of steady-state rate equations. In a recent work [Zhou, J. Phys. Chem. Lett. 1, 1973 (2010)], the rate constants for binding to an internal site were further calculated by modeling binding as diffusion-influenced reactions. That work provided the foundation for bridging the two approaches. Here we show that, by representing a binding site as an energy well, the two approaches indeed give the same result for the rate of ion transport.
Homologue Structure of the SLAC1 Anion Channel for Closing Stomata in Leaves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y Chen; L Hu; M Punta
2011-12-31
The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. Here we determine the crystal structure of a bacterial homologue (Haemophilus influenzae) of SLAC1 at 1.20 {angstrom} resolution, and use structure-inspired mutagenesis to analyse the conductance properties of SLAC1 channels. SLAC1 is a symmetrical trimer composed from quasi-symmetrical subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated bymore » an extremely conserved phenylalanine residue. Conformational features indicate a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics indicate that selectivity among different anions is largely a function of the energetic cost of ion dehydration.« less
Radial symmetry in a chimeric glutamate receptor pore
NASA Astrophysics Data System (ADS)
Wilding, Timothy J.; Lopez, Melany N.; Huettner, James E.
2014-02-01
Ionotropic glutamate receptors comprise two conformationally different A/C and B/D subunit pairs. Closed channels exhibit fourfold radial symmetry in the transmembrane domain (TMD) but transition to twofold dimer-of-dimers symmetry for extracellular ligand binding and N-terminal domains. Here, to evaluate symmetry in open pores we analysed interaction between the Q/R editing site near the pore loop apex and the transmembrane M3 helix of kainate receptor subunit GluK2. Chimeric subunits that combined the GluK2 TMD with extracellular segments from NMDA receptors, which are obligate heteromers, yielded channels made up of A/C and B/D subunit pairs with distinct substitutions along M3 and/or Q/R site editing status, in an otherwise identical homotetrameric TMD. Our results indicate that Q/R site interaction with M3 occurs within individual subunits and is essentially the same for both A/C and B/D subunit conformations, suggesting that fourfold pore symmetry persists in the open state.
Analysis of cell mechanics in single vinculin-deficient cells using a magnetic tweezer
NASA Technical Reports Server (NTRS)
Alenghat, F. J.; Fabry, B.; Tsai, K. Y.; Goldmann, W. H.; Ingber, D. E.
2000-01-01
A magnetic tweezer was constructed to apply controlled tensional forces (10 pN to greater than 1 nN) to transmembrane receptors via bound ligand-coated microbeadswhile optically measuring lateral bead displacements within individual cells. Use of this system with wild-type F9 embryonic carcinoma cells and cells from a vinculin knockout mouse F9 Vin (-/-) revealed much larger differences in the stiffness of the transmembrane integrin linkages to the cytoskeleton than previously reported using related techniques that measured average mechanical properties of large cell populations. The mechanical properties measured varied widely among cells, exhibiting an approximately log-normal distribution. The median lateral bead displacement was 2-fold larger in F9 Vin (-/-) cells compared to wild-type cells whereas the arithmetic mean displacement only increased by 37%. We conclude that vinculin serves a greater mechanical role in cells than previously reported and that this magnetic tweezer device may be useful for probing the molecular basis of cell mechanics within single cells. Copyright 2000 Academic Press.
Transmembrane Topology and Signal Peptide Prediction Using Dynamic Bayesian Networks
Reynolds, Sheila M.; Käll, Lukas; Riffle, Michael E.; Bilmes, Jeff A.; Noble, William Stafford
2008-01-01
Hidden Markov models (HMMs) have been successfully applied to the tasks of transmembrane protein topology prediction and signal peptide prediction. In this paper we expand upon this work by making use of the more powerful class of dynamic Bayesian networks (DBNs). Our model, Philius, is inspired by a previously published HMM, Phobius, and combines a signal peptide submodel with a transmembrane submodel. We introduce a two-stage DBN decoder that combines the power of posterior decoding with the grammar constraints of Viterbi-style decoding. Philius also provides protein type, segment, and topology confidence metrics to aid in the interpretation of the predictions. We report a relative improvement of 13% over Phobius in full-topology prediction accuracy on transmembrane proteins, and a sensitivity and specificity of 0.96 in detecting signal peptides. We also show that our confidence metrics correlate well with the observed precision. In addition, we have made predictions on all 6.3 million proteins in the Yeast Resource Center (YRC) database. This large-scale study provides an overall picture of the relative numbers of proteins that include a signal-peptide and/or one or more transmembrane segments as well as a valuable resource for the scientific community. All DBNs are implemented using the Graphical Models Toolkit. Source code for the models described here is available at http://noble.gs.washington.edu/proj/philius. A Philius Web server is available at http://www.yeastrc.org/philius, and the predictions on the YRC database are available at http://www.yeastrc.org/pdr. PMID:18989393
Analysis of Glucose Transporter Topology and Structural Dynamics*
Blodgett, David M.; Graybill, Christopher; Carruthers, Anthony
2008-01-01
Homology modeling and scanning cysteine mutagenesis studies suggest that the human glucose transport protein GLUT1 and its distant bacterial homologs LacY and GlpT share similar structures. We tested this hypothesis by mapping the accessibility of purified, reconstituted human erythrocyte GLUT1 to aqueous probes. GLUT1 contains 35 potential tryptic cleavage sites. Fourteen of 16 lysine residues and 18 of 19 arginine residues were accessible to trypsin. GLUT1 lysine residues were modified by isothiocyanates and N-hydroxysuccinimide (NHS) esters in a substrate-dependent manner. Twelve lysine residues were accessible to sulfo-NHS-LC-biotin. GLUT1 trypsinization released full-length transmembrane helix 1, cytoplasmic loop 6–7, and the long cytoplasmic C terminus from membranes. Trypsin-digested GLUT1 retained cytochalasin B and d-glucose binding capacity and released full-length transmembrane helix 8 upon cytochalasin B (but not d-glucose) binding. Transmembrane helix 8 release did not abrogate cytochalasin B binding. GLUT1 was extensively proteolyzed by α-chymotrypsin, which cuts putative pore-forming amphipathic α-helices 1, 2, 4, 7, 8, 10, and 11 at multiple sites to release transmembrane peptide fragments into the aqueous solvent. Putative scaffolding membrane helices 3, 6, 9, and 12 are strongly hydrophobic, resistant to α-chymotrypsin, and retained by the membrane bilayer. These observations provide experimental support for the proposed GLUT1 architecture; indicate that the proposed topology of membrane helices 5, 6, and 12 requires adjustment; and suggest that the metastable conformations of transmembrane helices 1 and 8 within the GLUT1 scaffold destabilize a sugar translocation intermediate. PMID:18981181
Natural variance in pH as a complication in detecting acidification of lakes
Turk, J.T.
1988-01-01
Natural variance in the pH of three dilute lakes in the Flat Tops Wilderness Area, Colorado, complicates the detection of acidification. Variations in pH during July-September of 1983 were: 0.95 (Ned Wilson Lake), 1.36 (Upper Island Lake), and 1.53 (Oyster Lake). Mean diurnal variations in pH during 1983 were: 0.37 (Ned Wilson Lake), 0.54 (Upper Island Lake), and 0.39 (Oyster Lake). Replicate pH measurements indicate that pH can be measured with a mean variance due to measurement error of ?? 0.005. Regression analysis indicates that samples collected on the same day of different years may differ because of time of day and percentage of cloud cover. Differences in wind duration and intensity and primary productivity also may cause the pH to differ between years. Such differences can be either random or systematic. Comparisons of pH among 3 yr of data from Ned Wilson Lake indicate that natural variations in pH are much larger than variations in Colorado Lakes previously attributed to acidification by precipitation.
Anaerobic/aerobic treatment of greywater via UASB and MBR for unrestricted reuse.
Abdel-Shafy, Hussein I; Al-Sulaiman, Ahmed Makki; Mansour, Mona S M
2015-01-01
The aim of the present study was to investigate the efficiency of integrated up-flow anaerobic sludge blanket (UASB) as anaerobic system followed by membrane bioreactor (MBR) as aerobic system for the treatment of greywater for unrestricted reuse. Pilot-scale UASB and MBR units were installed and operated in the NRC, Egypt. Real raw greywater was subjected to UASB and the effluent was further treated with microfiltration MBR. The necessary trans-membrane pressure difference is applied by the water head above the membrane (gravity flow) without any energy input. The average characteristics of the raw greywater were 95, 392, 298, 10.45, 0.4, 118.5 and 28 mg/L for total suspended solids (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total phosphates, nitrates, oil and grease, and total Kjeldahl nitrogen (TKN), respectively. The pH was 6.71. The UASB treatment efficiency reached 19.3, 57.8, 67.5 and 83.7% for TSS, COD, BOD5 and oil and grease, respectively. When the UASB effluent was further treated with MBR, the overall removal rate achieved 97.7, 97.8, 97.4 and 95.8% for the same parameters successively. The characteristics of the final effluent reached 2.5, 8.5, 6.1, 0.95, 4.6 and 2.3 mg/L for TSS, COD, BOD, phosphates, oil and grease and TKN, respectively. This final treated effluent could cope with the unrestricted water reuse of local Egyptian guidelines.
Musa-Aziz, Raif; Boron, Walter F.
2014-01-01
Exposing an oocyte to CO2/HCO3− causes intracellular pH (pHi) to decline and extracellular-surface pH (pHS) to rise to a peak and decay. The two companion papers showed that oocytes injected with cytosolic carbonic anhydrase II (CA II) or expressing surface CA IV exhibit increased maximal rate of pHi change (dpHi/dt)max, increased maximal pHS changes (ΔpHS), and decreased time constants for pHi decline and pHS decay. Here we investigate these results using refinements of an earlier mathematical model of CO2 influx into a spherical cell. Refinements include 1) reduced cytosolic water content, 2) reduced cytosolic diffusion constants, 3) refined CA II activity, 4) layer of intracellular vesicles, 5) reduced membrane CO2 permeability, 6) microvilli, 7) refined CA IV activity, 8) a vitelline membrane, and 9) a new simulation protocol for delivering and removing the bulk extracellular CO2/HCO3− solution. We show how these features affect the simulated pHi and pHS transients and use the refined model with the experimental data for 1.5% CO2/10 mM HCO3− (pHo = 7.5) to find parameter values that approximate ΔpHS, the time to peak pHS, the time delay to the start of the pHi change, (dpHi/dt)max, and the change in steady-state pHi. We validate the revised model against data collected as we vary levels of CO2/HCO3− or of extracellular HEPES buffer. The model confirms the hypothesis that CA II and CA IV enhance transmembrane CO2 fluxes by maximizing CO2 gradients across the plasma membrane, and it predicts that the pH effects of simultaneously implementing intracellular and extracellular-surface CA are supra-additive. PMID:24965589
Telles, Connor J.; Decker, Sarah E.; Motley, William W.; Peters, Alexander W.; Mehr, Ali Poyan; Frizzell, Raymond A.
2016-01-01
In the shark rectal gland (SRG), apical chloride secretion through CFTR channels is electrically coupled to a basolateral K+ conductance whose type and molecular identity are unknown. We performed studies in the perfused SRG with 17 K+ channel inhibitors to begin this search. Maximal chloride secretion was markedly inhibited by low-perfusate pH, bupivicaine, anandamide, zinc, quinidine, and quinine, consistent with the properties of an acid-sensitive, four-transmembrane, two-pore-domain K+ channel (4TM-K2P). Using PCR with degenerate primers to this family, we identified a TASK-1 fragment in shark rectal gland, brain, gill, and kidney. Using 5′ and 3′ rapid amplification of cDNA ends PCR and genomic walking, we cloned the full-length shark gene (1,282 bp), whose open reading frame encodes a protein of 375 amino acids that was 80% identical to the human TASK-1 protein. We expressed shark and human TASK-1 cRNA in Xenopus oocytes and characterized these channels using two-electrode voltage clamping. Both channels had identical current-voltage relationships (outward rectifying) and a reversal potential of −90 mV. Both were inhibited by quinine, bupivicaine, and acidic pH. The pKa for current inhibition was 7.75 for shark TASK-1 vs. 7.37 for human TASK-1, values similar to the arterial pH for each species. We identified this protein in SRG by Western blot and confocal immunofluorescent microscopy and detected the protein in SRG and human airway cells. Shark TASK-1 is the major K+ channel coupled to chloride secretion in the SRG, is the oldest 4TM 2P family member identified, and is the first TASK-1 channel identified to play a role in setting the driving force for chloride secretion in epithelia. The detection of this potassium channel in mammalian lung tissue has implications for human biology and disease. PMID:27653983
The V-ATPase a2-subunit as a putative endosomal pH-sensor.
Marshansky, V
2007-11-01
V-ATPase (vesicular H(+)-ATPase)-driven intravesicular acidification is crucial for vesicular trafficking. Defects in vesicular acidification and trafficking have recently been recognized as essential determinants of various human diseases. An important role of endosomal acidification in receptor-ligand dissociation and in activation of lysosomal hydrolytic enzymes is well established. However, the molecular mechanisms by which luminal pH information is transmitted to the cytosolic small GTPases that control trafficking events such as budding, coat formation and fusion are unknown. Here, we discuss our recent discovery that endosomal V-ATPase is a pH-sensor regulating the degradative pathway. According to our model, V-ATPase is responsible for: (i) the generation of a pH gradient between vesicular membranes; (ii) sensing of intravesicular pH; and (iii) transmitting this information to the cytosolic side of the membrane. We also propose the hypothetical molecular mechanism involved in function of the V-ATPase a2-subunit as a putative pH-sensor. Based on extensive experimental evidence on the crucial role of histidine residues in the function of PSPs (pH-sensing proteins) in eukaryotic cells, we hypothesize that pH-sensitive histidine residues within the intra-endosomal loops and/or C-terminal luminal tail of the a2-subunit could also be involved in the pH-sensing function of V-ATPase. However, in order to identify putative pH-sensitive histidine residues and to test this hypothesis, it is absolutely essential that we increase our understanding of the folding and transmembrane topology of the a-subunit isoforms of V-ATPase. Thus the crucial role of intra-endosomal histidine residues in pH-dependent conformational changes of the V-ATPase a2-isoform, its interaction with cytosolic small GTPases and ultimately in its acidification-dependent regulation of the endosomal/lysosomal protein degradative pathway remain to be determined.
Muñoz Sierra, Julian D; Oosterkamp, Margreet J; Wang, Wei; Spanjers, Henri; van Lier, Jules B
2018-05-07
Industrial wastewaters are becoming increasingly associated with extreme conditions such as the presence of refractory compounds and high salinity that adversely affect biomass retention or reduce biological activity. Hence, this study evaluated the impact of long-term salinity increase to 20 gNa + .L -1 on the bioconversion performance and microbial community composition in anaerobic membrane bioreactors treating phenolic wastewater. Phenol removal efficiency of up to 99.9% was achieved at 14 gNa + .L -1 . Phenol conversion rates of 5.1 mgPh.gVSS -1 .d -1 , 4.7 mgPh.gVSS -1 .d -1 , and 11.7 mgPh.gVSS -1 .d -1 were obtained at 16 gNa + .L -1 ,18 gNa + .L -1 and 20 gNa + .L -1 , respectively. The AnMBR's performance was not affected by short-term step-wise salinity fluctuations of 2 gNa + .L -1 in the last phase of the experiment. It was also demonstrated in batch tests that the COD removal and methane production rate were higher at a K + :Na + ratio of 0.05, indicating the importance of potassium to maintain the methanogenic activity. The salinity increase adversely affected the transmembrane pressure likely due to a particle size decrease from 185 μm at 14 gNa + .L -1 to 16 μm at 20 gNa + .L -1 . Microbial community was dominated by bacteria belonging to the Clostridium genus and archaea by Methanobacterium and Methanosaeta genus. Syntrophic phenol degraders, such as Pelotomaculum genus were found to be increased when the maximum phenol conversion rate was attained at 20 gNa + .L -1 . Overall, the observed robustness of the AnMBR performance indicated an endured microbial community to salinity changes in the range of the sodium concentrations applied. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Francisco Hilário, Flaviane; Traoré, Mohamed Dit Mady; Zwick, Vincent; Berry, Laurence; Simões-Pires, Claudia A; Cuendet, Muriel; Fantozzi, Nicolas; Pereira de Freitas, Rossimiriam; Maynadier, Marjorie; Wein, Sharon; Vial, Henri; Wong, Yung-Sing
2017-02-03
A small uncharged cyclopeptide scaffold inspired by a natural product and designed to undergo postfunctionalizations was used as a new transmembrane vector. A bioactive and fluorescent triazole aminocoumarin was bound to this carrier to facilitate its moving across cell and subcellular membranes, and this led to an increase in its cell toxicity.
Transmembrane chloride flux in tissue-cultured chick heart cells
1983-01-01
To evaluate the transmembrane movement of chloride in a preparation of cardiac muscle lacking the extracellular diffusion limitations of natural specimens, intracellular chloride concentration ( [Cl] i) and transmembrane 36Cl efflux have been determined in growth-oriented embryonic chick heart cells in tissue culture. Using the method of isotopic equilibrium, [Cl]i was 25.1 +/- 7.3 mmol x (liter cell water)- 1, comparable to the value of 24.9 +/- 5.4 mmol x (liter cell water)-1 determined by coulometric titration. Two cellular 36Cl compartments were found; one exchanged with a rate constant of 0.67 +/- 0.12 min-1 and was associated with the cardiac muscle cells; the other, attributed to the fibroblasts, exchanged with a rate constant of 0.18 +/- 0.05 min- 1. At 37 degrees C, transmembrane Cl flux of cardiac muscle under steady-state conditions was 30 pmol x cm-2 x s-1. In K-free, normal, or high-Ko solutions, the responses of the membrane potential to changes in external Cl concentration suggested that chloride conductance was low. These results indicate that Cl transport across the myocardial cell membrane is more rapid than K transport and is largely electrically silent. PMID:6864192
Selective cell-surface labeling of the molecular motor protein prestin.
McGuire, Ryan M; Silberg, Jonathan J; Pereira, Fred A; Raphael, Robert M
2011-06-24
Prestin, a multipass transmembrane protein whose N- and C-termini are localized to the cytoplasm, must be trafficked to the plasma membrane to fulfill its cellular function as a molecular motor. One challenge in studying prestin sequence-function relationships within living cells is separating the effects of amino acid substitutions on prestin trafficking, plasma membrane localization and function. To develop an approach for directly assessing prestin levels at the plasma membrane, we have investigated whether fusion of prestin to a single pass transmembrane protein results in a functional fusion protein with a surface-exposed N-terminal tag that can be detected in living cells. We find that fusion of the biotin-acceptor peptide (BAP) and transmembrane domain of the platelet-derived growth factor receptor (PDGFR) to the N-terminus of prestin-GFP yields a membrane protein that can be metabolically-labeled with biotin, trafficked to the plasma membrane, and selectively detected at the plasma membrane using fluorescently-tagged streptavidin. Furthermore, we show that the addition of a surface detectable tag and a single-pass transmembrane domain to prestin does not disrupt its voltage-sensitive activity. Copyright © 2011 Elsevier Inc. All rights reserved.
Zeng, Li; Wu, Lie; Liu, Li; Jiang, Xiue
2017-11-02
The interaction of cytochrome c (cyt c) with cardiolipin (CL) plays a crucial role in apoptotic functions, however, the changes of the transmembrane potential in governing the protein behavior at the membrane-water interface have not been studied due to the difficulties in simultaneously monitoring the interaction and regulating the electric field. Herein, surface-enhanced infrared absorption (SEIRA) spectroelectrochemistry is employed to study the mechanism of how the transmembrane potentials control the interaction of cyt c with CL membranes by regulating the electrode potentials of an Au film. When the transmembrane potential decreases, the water content at the interface of the membranes can be increased to slow down protein adsorption through decreasing the hydrogen-bond and hydrophobic interactions, but regulates the redox behavior of CL-bound cyt c through a possible water-facilitated proton-coupled electron transfer process. Our results suggest that the potential drop-induced restructure of the CL conformation and the hydration state could modify the structure and function of CL-bound cyt c on the lipid membrane. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mooney, R A; Freund, G G; Way, B A; Bordwell, K L
1992-11-25
Tyrosine phosphorylation is a mechanism of signal transduction shared by many growth factor receptors and oncogene products. Phosphotyrosine phosphatases (PTPases) potentially modulate or counter-regulate these signaling pathways. To test this hypothesis, the transmembrane PTPase CD45 (leukocyte common antigen) was expressed in the murine cell line C127. Hormone-dependent autophosphorylation of the platelet-derived growth factor (PDGF) and insulin-like growth factor-1 (IGF-1) receptors was markedly reduced in cells expressing the transmembrane PTPase. Tyrosine phosphorylation of other PDGF-dependent phosphoproteins (160, 140, and 55 kDa) and IGF-1-dependent phosphoproteins (145 kDa) was similarly decreased. Interestingly, the pattern of growth factor-independent tyrosine phosphorylations was comparable in cells expressing the PTPase and control cells. This suggests a selectivity or accessibility of the PTPase limited to a subset of cellular phosphotyrosyl proteins. The maximum mitogenic response to PDGF and IGF-1 in cells expressing the PTPase was decreased by 67 and 71%, respectively. These results demonstrate that a transmembrane PTPase can both affect the tyrosine phosphorylation state of growth factor receptors and modulate proximal and distal cellular responses to the growth factors.
Kuliawat, Regina; Santambrogio, Laura
2009-01-01
Melanocytes synthesize and store melanin within tissue-specific organelles, the melanosomes. Melanin deposition takes place along fibrils found within these organelles and fibril formation is known to depend on trafficking of the membrane glycoprotein Silver/Pmel17. However, correctly targeted, full-length Silver/Pmel17 cannot form fibers. Proteolytic processing in endosomal compartments and the generation of a lumenal Mα fragment that is incorporated into amyloid-like structures is also essential. Dominant White (DWhite), a mutant form of Silver/Pmel17 first described in chicken, causes disorganized fibers and severe hypopigmentation due to melanocyte death. Surprisingly, the DWhite mutation is an insertion of three amino acids into the transmembrane domain; the DWhite-Mα fragment is unaffected. To determine the functional importance of the transmembrane domain in organized fibril assembly, we investigated membrane trafficking and multimerization of Silver/Pmel17/DWhite proteins. We demonstrate that the DWhite mutation changes lipid interactions and disulfide bond-mediated associations of lumenal domains. Thus, partitioning into membrane microdomains and effects on conformation explain how the transmembrane region may contribute to the structural integrity of Silver/Pmel17 oligomers or influence toxic, amyloidogenic properties. PMID:19679373
The transmembrane collagen COL-99 guides longitudinally extending axons in C. elegans.
Taylor, Jesse; Unsoeld, Thomas; Hutter, Harald
2018-06-01
We have identified the transmembrane collagen, COL-99, in a genetic screen for novel genes involved in axon guidance in the nematode C. elegans. COL-99 is similar to transmembrane collagens type XIII, XXIII and XXV in vertebrates. col-99 mutants exhibit guidance defects in axons extending along the major longitudinal axon tracts, most prominently the left ventral nerve cord (VNC). COL-99 is expressed in the hypodermis during the time of axon outgrowth. We provide evidence that a furin cleavage site in COL-99 is essential for function, suggesting that COL-99 is released from the cells producing it. Vertebrate homologs of COL-99 have been shown to be expressed in mammalian nervous systems and linked to various neurological disease but have not been associated with guidance of extending neurons. col-99 acts genetically with the discoidin domain receptors ddr-1 and ddr-2, which are expressed by neurons affected in col-99 mutants. Discoidin domain receptors are activated by collagens in vertebrates. DDR-1 and DDR-2 may function as receptors for COL-99. Our results establish a novel role for a transmembrane collagen in axonal guidance and asymmetry establishment of the VNC. Copyright © 2018 Elsevier Inc. All rights reserved.
Paradies, G; Ruggiero, F M
1990-04-05
The effect of aging on the activity of the pyruvate translocator and on the lipid composition in rat-heart mitochondria has been investigated. It has been found that the rate of pyruvate transport in mitochondria from aged rats (28 months old) is markedly reduced (38%) as compared with that obtained with mitochondria from young adults rats (4 months old). Kinetic analysis of the pyruvate transport shows that only the Vmax of this process is decreased, while there is no change in the Km values. The age-related decrement in the activity of the pyruvate carrier is not due to a decrease in the transmembrane delta pH value, neither does it depend on a decrease in the total number of the pyruvate carrier molecules, titrated with radioactive alpha-cyanocinnamate. The lower activity of the pyruvate translocator in mitochondria from aged rats is associated to a parallel decrement of the rate of pyruvate-dependent oxygen uptake. There is, however no appreciable difference in either the respiratory control ratios or in the ADP/O ratios between these two types of mitochondrion. The Arrhenius plot characteristics differ for pyruvate transport activity in mitochondria from aged rats as compared with young rats in that the break point of the biphasic plot is shifted to a higher temperature. The heart mitochondrial lipid composition is significantly altered in aged rats. The total cholesterol increases (43%), the phospholipids decrease (15%) and the cholesterol/phospholipid molar ratio increases (68%). Among phospholipids, cardiolipin shows the greatest alteration (28% decrease in aged rats). The lower activity of the pyruvate carrier in mitochondria from aged rats may be ascribed to changes in the lipid domain surrounding the carrier molecule in the membrane.
Rat brain gamma-secretase activity is highly influenced by detergents.
Frånberg, Jenny; Welander, Hedvig; Aoki, Mikio; Winblad, Bengt; Tjernberg, Lars O; Frykman, Susanne
2007-06-26
Gamma-secretase is important for the development of Alzheimer's disease, since it is a crucial enzyme for the generation of the pathogenic amyloid beta-peptide (Abeta). Most data on gamma-secretase is derived from studies in cell lines overexpressing gamma-secretase components or amyloid precursor protein (APP), and since gamma-secretase is a transmembrane protein complex, detergents have been frequently used to facilitate the studies. However, no extensive comparison of the influence of different detergents at different concentrations on gamma-secretase activity in preparations from brain has been made. Here, we establish the optimal conditions for gamma-secretase activity in rat brain, using an activity assay detecting endogenous production of the APP intracellular domain, which is generated when gamma-secretase cleaves the APP C-terminal fragments. We performed a subcellular fractionation and noted the highest gamma-secretase activity in the 100000g pellet and that the optimal pH was around 7. We found that gamma-secretase was active for at least 16 h at 37 degrees C and that the endogenous substrate levels were sufficient for activity measurements. The highest activity was obtained in 0.4% CHAPSO, which is slightly below the critical micelle concentration (0.5%) for this detergent, but the complex was not solubilized efficiently at this concentration. On the other hand, 1% CHAPSO solubilized a substantial amount of the gamma-secretase components, but the activity was low. The activity was fully restored by diluting the sample to 0.4% CHAPSO. Therefore, using 1% CHAPSO for solubilization and subsequently diluting the sample to 0.4% is an appropriate procedure for obtaining a soluble, highly active gamma-secretase from rat brain.
Muddugangadhar, B. C.; Sangur, Rajashekar; Rudraprasad, I. V.; Nandeeshwar, D. B.; Kumar, B. H. Dhanya
2015-01-01
Purpose: This study compared the flow rate and pH of resting (unstimulated) and stimulated whole saliva before and after complete denture placement in different age groups. Materials and Methods: Fifty healthy, non-medicated edentulous individuals of different age groups requiring complete denture prostheses were selected from the outpatient department. The resting (unstimulated) and stimulated whole saliva and pH were measured at three stages i.e., i)Before complete denture placement;ii)Immediately after complete denture placement; andiii)After 2 to 3 months of complete denture placement. Saliva production was stimulated by chewing paraffin wax. pH was determined by using a digital pH meter. Results: Statistically significant differences were seen in resting(unstimulated) and stimulated whole salivary flow rate and pH obtained before, immediately after, and after 2 to 3 months of complete denture placement. No statistically significant differences were found between the different age groups in resting (unstimulated) as well as stimulated whole salivary flow rate and pH. Conclusion: Stimulated whole salivary flow rates and pH were significantly higher than resting (unstimulated) whole salivary flow rates and pH obtained before, immediately after, and after 2 to 3 months of complete denture placement. No age related variations in whole salivary flow rate and pH were observed in healthy, non-medicated individuals. Clinical Implications: The assessment of salivary flow rate, pH in different age groups is of prognostic value, which is an important aspect to be considered in the practice of removable prosthodontics. PMID:26929540
Muddugangadhar, B C; Sangur, Rajashekar; Rudraprasad, I V; Nandeeshwar, D B; Kumar, B H Dhanya
2015-01-01
This study compared the flow rate and pH of resting (unstimulated) and stimulated whole saliva before and after complete denture placement in different age groups. Fifty healthy, non-medicated edentulous individuals of different age groups requiring complete denture prostheses were selected from the outpatient department. The resting (unstimulated) and stimulated whole saliva and pH were measured at three stages i.e., i)Before complete denture placement;ii)Immediately after complete denture placement; andiii)After 2 to 3 months of complete denture placement. Saliva production was stimulated by chewing paraffin wax. pH was determined by using a digital pH meter. Statistically significant differences were seen in resting(unstimulated) and stimulated whole salivary flow rate and pH obtained before, immediately after, and after 2 to 3 months of complete denture placement. No statistically significant differences were found between the different age groups in resting (unstimulated) as well as stimulated whole salivary flow rate and pH. Stimulated whole salivary flow rates and pH were significantly higher than resting (unstimulated) whole salivary flow rates and pH obtained before, immediately after, and after 2 to 3 months of complete denture placement. No age related variations in whole salivary flow rate and pH were observed in healthy, non-medicated individuals. The assessment of salivary flow rate, pH in different age groups is of prognostic value, which is an important aspect to be considered in the practice of removable prosthodontics.
Particularities of COPD exacerbations in different phenotypes of the disease in Tunisia.
Zendah, Ines; Ayed, Khadija; Kwas, Hamida; Khattab, Amel; Ghédira, Habib
2016-03-01
Chronic Obstructive Pulmonary Disease is defined by a limitation of airflow. This disease is characterized by exacerbations that threaten the patient's life and worsens his prognosis. Moreover, COPD patients are different according to many parameters that define different phenotypes. Characteristics of exacerbations may depend on these phenotypes according to few recent studies. To determine the characteristics and the prognosis of the exacerbations in each phenotype of COPD patients phenotype in Tunisia. Retrospective study including 153 male patients hospitalized for COPD exacerbation from January 2009 to June 2012. Patients were classified into 4 phenotypes according to Burgel's classification. Patients were divided into four phenotypes: phenotype (PH)1: (n=68), PH2: (n=33), PH3: (n=25) and PH4: (n=27). Mean age for PH1, 2, 3 and 4 was: 61, 74, 56 and 72 years. The number of exacerbations per year was higher in PH1. Dyspnea was more important in PH1 and 4. Hypercapnia on admission was higher in PH4. Non invasive ventilation and transfer to resuscitation unit were more frequently mandatory in PH3 and 4. Death occurred 2% of PH1 and 5% of PH4. Hospitalization duration was more important in PH4. COPD patients are heterogenous and belong to different phenotypes. The characteristics of the exacerbations and their prognosis widely differ according to these different groups. In Tunisia, it seems that patients who had moderate respiratory functional tests impairment are the lowest responders to treatment with a higher frequency of resuscitation unit transfer.
The Simultaneous Determination of Muscle Cell pH Using a Weak Acid and Weak Base
Adler, Sheldon
1972-01-01
Should significant pH heterogeneity exist within cells then the simultaneous calculation of intracellular pH from the distribution of a weak acid will give a value closest to the highest pH in the system, whereas calculation from the distribution of a weak base will give a value closer to the lowest pH. These two values should then differ significantly. Intact rat diaphragms were exposed in vitro to varying bicarbonate concentrations (pure metabolic) and CO2 tensions (pure respiratory), and steady-state cell pH was measured simultaneously either by distribution of the weak acid 5,5-dimethyloxazolidine-2,4-dione-14C (pH DMO) or by distribution of the weak base nicotine-14C (pH nicotine). The latter compound was found suitable to measure cell pH since it was neither metabolized nor bound by rat diaphragms. At an external pH of 7.40, pH DMO was 7.17 while pH nicotine was 6.69—a pH difference of 0.48 pH units (P < 0.001). In either respiratory or metabolic alkalosis both DMO and pH nicotine rose so that differences between them remained essentially constant. Metabolic acidosis induced a decrease in both values though they fell more slowly than did extracellular pH. In contradistinction, in respiratory acidosis, decreasing extracellular pH from 7.40 to 6.80 resulted in 0.35 pH unit drop in pH DMO while pH nicotine remained constant. In every experiment, under all external conditions, pH DMO exceeded pH nicotine. These results indicate that there is significant pH heterogeneity within diaphragm muscle, but the degree of heterogeneity may vary under different external conditions. The metabolic implications of these findings are discussed. In addition, the data show that true overall cell pH is between 6.69 and 7.17—a full pH higher than would be expected from thermodynamic considerations alone. This implies the presence of active processes to maintain cell pH. PMID:5009113
Valentin-Hansen, Louise; Frimurer, Thomas M; Mokrosinski, Jacek; Holliday, Nicholas D; Schwartz, Thue W
2015-10-02
X-ray structures, molecular dynamics simulations, and mutational analysis have previously indicated that an extended water hydrogen bond network between trans-membranes I-III, VI, and VII constitutes an allosteric interface essential for stabilizing different active and inactive helical constellations during the seven-trans-membrane receptor activation. The neurokinin-1 receptor signals efficiently through Gq, Gs, and β-arrestin when stimulated by substance P, but it lacks any sign of constitutive activity. In the water hydrogen bond network the neurokinin-1 has a unique Glu residue instead of the highly conserved AspII:10 (2.50). Here, we find that this GluII:10 occupies the space of a putative allosteric modulating Na(+) ion and makes direct inter-helical interactions in particular with SerIII:15 (3.39) and AsnVII:16 (7.49) of the NPXXY motif. Mutational changes in the interface between GluII:10 and AsnVII:16 created receptors that selectively signaled through the following: 1) Gq only; 2) β-arrestin only; and 3) Gq and β-arrestin but not through Gs. Interestingly, increased constitutive Gs but not Gq signaling was observed by Ala substitution of four out of the six core polar residues of the network, in particular SerIII:15. Three residues were essential for all three signaling pathways, i.e. the water-gating micro-switch residues TrpVI:13 (6.48) of the CWXP motif and TyrVII:20 (7.53) of the NPXXY motif plus the totally conserved AsnI:18 (1.50) stabilizing the kink in trans-membrane VII. It is concluded that the interface between position II:10 (2.50), III:15 (3.39), and VII:16 (7.49) in the center of the water hydrogen bond network constitutes a focal point for fine-tuning seven trans-membrane receptor conformations activating different signal transduction pathways. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Molecular Dynamics Simulation of Membranes and a Transmembrane Helix
NASA Astrophysics Data System (ADS)
Duong, Tap Ha; Mehler, Ernest L.; Weinstein, Harel
1999-05-01
Three molecular dynamics (MD) simulations of 1.5-ns length were carried out on fully hydrated patches of dimyristoyl phosphatidylcholine (DMPC) bilayers in the liquid-crystalline phase. The simulations were performed using different ensembles and electrostatic conditions: a microcanonical ensemble or constant pressure-temperature ensemble, with or without truncated electrostatic interactions. Calculated properties of the membrane patches from the three different protocols were compared to available data from experiments. These data include the resulting overall geometrical dimensions, the order characteristics of the lipid hydrocarbon chains, as well as various measures of the conformations of the polar head groups. The comparisons indicate that the simulation carried out within the microcanonical ensemble with truncated electrostatic interactions yielded results closest to the experimental data, provided that the initial equilibration phase preceding the production run was sufficiently long. The effects of embedding a non-ideal helical protein domain in the membrane patch were studied with the same MD protocols. This simulation was carried out for 2.5 ns. The protein domain corresponds to the seventh transmembrane segment (TMS7) of the human serotonin 5HT 2Areceptor. The peptide is composed of two α-helical segments linked by a hinge domain around a perturbing Asn-Pro motif that produces at the end of the simulation a kink angle of nearly 80° between the two helices. Several aspects of the TMS7 structure, such as the bending angle, backbone Φ and Ψ torsion angles, the intramolecular hydrogen bonds, and the overall conformation, were found to be very similar to those determined by NMR for the corresponding transmembrane segment of the tachykinin NK-1 receptor. In general, the simulations were found to yield structural and dynamic characteristics that are in good agreement with experiment. These findings support the application of simulation methods to the study of the complex biomolecular systems at the membrane interface of cells.
Cohen, B D; Goldstein, D J; Rutledge, L; Vass, W C; Lowy, D R; Schlegel, R; Schiller, J T
1993-01-01
The bovine papillomavirus E5 transforming protein appears to activate both the epidermal growth factor receptor (EGF-R) and the platelet-derived growth factor receptor (PDGF-R) by a ligand-independent mechanism. To further investigate the ability of E5 to activate receptors of different classes and to determine whether this stimulation occurs through the extracellular domain required for ligand activation, we constructed chimeric genes encoding PDGF-R and EGF-R by interchanging the extracellular, membrane, and cytoplasmic coding domains. Chimeras were transfected into NIH 3T3 and CHO(LR73) cells. All chimeras expressed stable protein which, upon addition of the appropriate ligand, could be activated as assayed by tyrosine autophosphorylation and biological transformation. Cotransfection of E5 with the wild-type and chimeric receptors resulted in the ligand-independent activation of receptors, provided that a receptor contained either the transmembrane domain of the PDGF-R or the cytoplasmic domain of the EGF-R. Chimeric receptors that contained both of these domains exhibited the highest level of E5-induced biochemical and biological stimulation. These results imply that E5 activates the PDGF-R and EGR-R by two distinct mechanisms, neither of which specifically involves the extracellular domain of the receptor. Consistent with the biochemical and biological activation data, coimmunoprecipitation studies demonstrated that E5 formed a complex with any chimera that contained a PDGF-R transmembrane domain or an EGF-R cytoplasmic domain, with those chimeras containing both domains demonstrating the greatest efficiency of complex formation. These results suggest that although different domains of the PDGF-R and EGF-R are required for E5 activation, both receptors are activated directly by formation of an E5-containing complex. Images PMID:8394451
A Triad of Molecular Regions Contribute to the Formation of Two Distinct MHC Class II Conformers
Drake, Lisa A.; Drake, James R.
2016-01-01
MHC class II molecules present antigen-derived peptides to CD4 T cells to drive the adaptive immune response. Previous work has established that class II αβ dimers can adopt two distinct conformations, driven by the differential pairing of transmembrane domain GxxxG dimerization motifs. These class II conformers differ in their ability to be loaded with antigen-derived peptide and to effectively engage CD4 T cells. Motif 1 (M1) paired I-Ak class II molecules are efficiently loaded with peptides derived from the processing of B cell receptor-bound antigen, have unique B cell signaling properties and high T cell stimulation activity. The 11-5.2 mAb selectively binds M1 paired I-Ak class II molecules. However, the molecular determinants of 11-5.2 binding are currently unclear. Here, we report the ability of a human class II transmembrane domain to drive both M1 and M2 class II conformer formation. Protease sensitivity analysis further strengthens the idea that there are conformational differences between the extracellular domains of M1 and M2 paired class II. Finally, MHC class II chain alignments and site directed mutagenesis reveals a triad of molecular regions that contributes to 11-5.2 mAb binding. In addition to transmembrane GxxxG motif domain pairing, 11-5.2 binding is influenced directly by α chain residue Glu-71 and indirectly by the region around the inter-chain salt bridge formed by α chain Arg-52 and β chain Glu-86. These findings provide insight into the complexity of 11-5.2 mAb recognition of the M1 paired I-Ak class II conformer and further highlight the molecular heterogeneity of peptide-MHC class II complexes that drive T cell antigen recognition. PMID:27148821
Free-Energy Profiles of Membrane Insertion of the M2 Transmembrane Peptide from Influenza A Virus
2008-12-01
ABSTRACT The insertion of the M2 transmembrane peptide from influenza A virus into a membrane has been studied with molecular - dynamics simulations ...performed replica-exchange molecular - dynamics simulations with umbrella-sampling techniques to characterize the probability distribution and conformation...atomic- detailed molecular dynamics (MD) simulation techniques represent a valuable complementary methodology to inves- tigate membrane-insertion of
Smart, Injury-Triggered Therapy for Ocular Trauma
2015-10-01
attachment surgery. We genetically engineered “protease activity sensor” (PAS) as chimeric transmembrane protein that can respond to increase in...results or key outcomes We genetically engineered “protease activity sensor” (PAS) as chimeric transmembrane protein that can respond to increase in...6 A B Fig. 1. The effects of ionomycin on the shedding of chimeric fractalkine constructs from HEK293 cells in vitro. (A
Taylor, Bryan J; Smetana, Michael R; Frantz, Robert P; Johnson, Bruce D
2015-08-01
We determined whether pulmonary gas exchange indices during submaximal exercise are different in heart failure (HF) patients with combined post- and pre-capillary pulmonary hypertension (PPC-PH) versus HF patients with isolated post-capillary PH (IPC-PH) or no PH. Pulmonary hemodynamics and pulmonary gas exchange were assessed during rest and submaximal exercise in 39 HF patients undergoing right heart catheterization. After hemodynamic evaluation, patients were classified as having no PH (n = 11), IPC-PH (n = 12), or PPC-PH (n = 16). At an equivalent oxygen consumption, end-tidal CO2 (PETCO2) and arterial oxygen saturation (SaO2) were greater in no-PH and IPC-PH versus PPC-PH patients (36.1 ± 3.2 vs. 31.7 ± 4.5 vs. 26.2 ± 4.7 mm Hg and 97 ± 2 vs. 96 ± 3 vs. 91 ± 1%, respectively). Conversely, dead-space ventilation (VD/VT) and the ventilatory equivalent for carbon dioxide (V˙(E)/V˙CO2 ratio) were lower in no-PH and IPC-PH versus PPC-PH patients (0.37 ± 0.05 vs. 0.38 ± 0.04 vs. 0.47 ± 0.03 and 38 ± 5 vs. 42 ± 8 vs. 51 ± 8, respectively). The exercise-induced change in V(D)/V(T), V˙(E)/V˙CO2 ratio, and PETCO2 correlated significantly with the change in mean pulmonary arterial pressure, diastolic pressure difference, and transpulmonary pressure gradient in PPC-PH patients only. Noninvasive pulmonary gas exchange indices during submaximal exercise are different in HF patients with combined post- and pre-capillary PH compared with patients with isolated post-capillary PH or no PH. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, H-G; Xu, C-M; Chen, W-Y; Shi, Q-X; Ni, Y
2012-05-01
Our previous studies have shown that the cystic fibrosis transmembrane conductance regulator (CFTR) was important for capacitation and fertilisation in mouse, guinea pig and human spermatozoa. However, it is unclear whether CFTR is correlated with ovum fertilisation rate. The present study was to test the possible relationship between spermatozoa CFTR protein expression rate in healthy men and ovum fertilisation rate during in vitro fertilisation. Ninety-four couples for female factor infertility for IVF-ET treatments were retrospectively studied. All the patients were divided into three groups based on the fertilisation rate of ovum in vitro. It was performed to explore whether there were differences in sperm CFTR protein expression rate among the three groups and the relevance between CFTR protein expression rate and ovum fertilisation rate. Our study showed that there was no significant differences in sperm CFTR protein expression rate among the three groups (F = 0.614, P = 0.544), and the relevance between spermatozoa CFTR protein expression rate and ovum fertilisation rate was not significantly different (r = 0.013, P = 0.904). These results further suggest that CFTR protein expression rate in healthy men spermatozoa was not associated with ovum fertilisation rate and thus we cannot predict ovum fertilisation results by sperm CFTR protein expression rate. © 2011 Blackwell Verlag GmbH.
Tuo, Biguang; Riederer, Brigitte; Wang, Zhaohui; Colledge, William H; Soleimani, Manoocher; Seidler, Ursula
2006-02-01
SLC26A6 is a recently identified apical Cl(-)/HCO(3)(-) exchanger with strong expression in murine duodenum. The present study was designed to examine the role of SLC26A6 in prostaglandin E(2) (PGE(2))-, forskolin-, and carbachol-induced duodenal HCO(3)(-) secretion. Murine duodenal mucosal HCO(3)(-) secretion was examined in vitro in Ussing chambers and mucosal SLC26A6 expression levels were analyzed by semiquantitative reverse-transcription polymerase chain reaction. Basal HCO(3)(-) secretion was diminished by 20%, PGE(2)-stimulated HCO(3)(-) secretory response by 59%, and carbachol-stimulated response was reduced by 35% in SLC26A6-/- compared with +/+ duodenal mucosa, whereas the forskolin-stimulated HCO(3)(-) secretory response was not different. In Cl(-)-free solutions, PGE(2)- and carbachol-stimulated HCO(3)(-) secretion was reduced by 81% and 44%, respectively, whereas forskolin-stimulated HCO(3)(-) secretion was not altered significantly. PGE(2) and carbachol, but not forskolin, were able to elicit a Cl(-)-dependent HCO(3)(-) secretory response in the absence of short-circuit current changes in cystic fibrosis transmembrane conductance regulator knockout mice. In murine duodenum, PGE(2)-mediated HCO(3)(-) secretion is strongly SLC26A6 dependent and cystic fibrosis transmembrane conductance regulator independent, whereas forskolin-stimulated HCO(3)(-) secretion is completely SLC26A6 independent and cystic fibrosis transmembrane conductance regulator dependent. Carbachol-induced secretion is less pronounced, but occurs via both transport pathways. This suggests that PGE(2) and forskolin activate distinct HCO(3)(-) transport pathways in the murine duodenum.
Barreca, Davide; Currò, Monica; Bellocco, Ersilia; Ficarra, Silvana; Laganà, Giuseppina; Tellone, Ester; Laura Giunta, Maria; Visalli, Giuseppa; Caccamo, Daniela; Galtieri, Antonio; Ientile, Riccardo
2017-07-08
Phloretin and phlorizin are the two strong natural antioxidants whose biological and pharmacological applications are rapidly growing in different human pathological conditions. The neuroprotective activity of the two flavonoids has been analyzed on cell culture of neuroblastoma cells. The neuroprotective activity of the two flavonoids has been analyzed on cell culture of neuroblastoma cells and evaluated by testing cell vitality, mitochondrial transmembrane potential and ROS production, antioxidant enzymes detection, activation of caspase 3, DNA damage, protein carbonylation, lipid peroxidation, and superoxide anion scavenging activity. Incubation of cells with rotenone caused cell death and significant increase in intracellular reactive oxygen species, activation of caspase 3, and variation in mitochondrial transmembrane potential. Although, rotenone exposure caused a significant increase of antioxidant enzymes, high levels of lipid peroxidation were also observed. Phloretin or phlorizin, at micromolar concentration, reduced rotenone-induced cell death by scavenging ability against superoxide anion radical, one of the main effectors of rotenone toxicity at level of mitochondrial respiratory chain complex I. Under our experimental conditions, a reduction of the intracellular ROS levels with consequent normalization of the aforementioned antioxidant enzymes occurred. Concomitantly, we observed the inhibition of caspase 3 activity and DNA damage. This study shows the promising neuroprotective ability of the two dihydrochalcones able to protect human differentiated neuroblastoma cells (commonly used as model of Parkinson's disease) from injury induced by rotenone, actively scavenging ROS, normalizing mitochondrial transmembrane potential and consequently avoiding energy depletion. © 2017 BioFactors, 43(4):549-557, 2017. © 2017 International Union of Biochemistry and Molecular Biology.
Thermodynamics of proton transport coupled ATP synthesis.
Turina, Paola; Petersen, Jan; Gräber, Peter
2016-06-01
The thermodynamic H(+)/ATP ratio of the H(+)-ATP synthase from chloroplasts was measured in proteoliposomes after energization of the membrane by an acid base transition (Turina et al. 2003 [13], 418-422). The method is discussed, and all published data obtained with this system are combined and analyzed as a single dataset. This meta-analysis led to the following results. 1) At equilibrium, the transmembrane ΔpH is energetically equivalent to the transmembrane electric potential difference. 2) The standard free energy for ATP synthesis (reference reaction) is ΔG°(ref)=33.8±1.3kJ/mol. 3) The thermodynamic H(+)/ATP ratio, as obtained from the shift of the ATP synthesis equilibrium induced by changing the transmembrane ΔpH (varying either pH(in) or pH(out)) is 4.0±0.1. The structural H(+)/ATP ratio, calculated from the ratio of proton binding sites on the c-subunit-ring in F(0) to the catalytic nucleotide binding sites on the β-subunits in F(1), is c/β=14/3=4.7. We infer that the energy of 0.7 protons per ATP that flow through the enzyme, but do not contribute to shifting the ATP/(ADP·Pi) ratio, is used for additional processes within the enzyme, such as activation, and/or energy dissipation, due e.g. to internal uncoupling. The ratio between the thermodynamic and the structural H(+)/ATP values is 0.85, and we conclude that this value represents the efficiency of the chemiosmotic energy conversion within the chloroplast H(+)-ATP synthase. Copyright © 2016 Elsevier B.V. All rights reserved.
Highly oriented photosynthetic reaction centers generate a proton gradient in synthetic protocells
Altamura, Emiliano; Milano, Francesco; Tangorra, Roberto R.; Trotta, Massimo; Omar, Omar Hassan; Stano, Pasquale
2017-01-01
Photosynthesis is responsible for the photochemical conversion of light into the chemical energy that fuels the planet Earth. The photochemical core of this process in all photosynthetic organisms is a transmembrane protein called the reaction center. In purple photosynthetic bacteria a simple version of this photoenzyme catalyzes the reduction of a quinone molecule, accompanied by the uptake of two protons from the cytoplasm. This results in the establishment of a proton concentration gradient across the lipid membrane, which can be ultimately harnessed to synthesize ATP. Herein we show that synthetic protocells, based on giant lipid vesicles embedding an oriented population of reaction centers, are capable of generating a photoinduced proton gradient across the membrane. Under continuous illumination, the protocells generate a gradient of 0.061 pH units per min, equivalent to a proton motive force of 3.6 mV⋅min−1. Remarkably, the facile reconstitution of the photosynthetic reaction center in the artificial lipid membrane, obtained by the droplet transfer method, paves the way for the construction of novel and more functional protocells for synthetic biology. PMID:28320948
Cryo-EM structure of the polycystic kidney disease-like channel PKD2L1.
Su, Qiang; Hu, Feizhuo; Liu, Yuxia; Ge, Xiaofei; Mei, Changlin; Yu, Shengqiang; Shen, Aiwen; Zhou, Qiang; Yan, Chuangye; Lei, Jianlin; Zhang, Yanqing; Liu, Xiaodong; Wang, Tingliang
2018-03-22
PKD2L1, also termed TRPP3 from the TRPP subfamily (polycystic TRP channels), is involved in the sour sensation and other pH-dependent processes. PKD2L1 is believed to be a nonselective cation channel that can be regulated by voltage, protons, and calcium. Despite its considerable importance, the molecular mechanisms underlying PKD2L1 regulations are largely unknown. Here, we determine the PKD2L1 atomic structure at 3.38 Å resolution by cryo-electron microscopy, whereby side chains of nearly all residues are assigned. Unlike its ortholog PKD2, the pore helix (PH) and transmembrane segment 6 (S6) of PKD2L1, which are involved in upper and lower-gate opening, adopt an open conformation. Structural comparisons of PKD2L1 with a PKD2-based homologous model indicate that the pore domain dilation is coupled to conformational changes of voltage-sensing domains (VSDs) via a series of π-π interactions, suggesting a potential PKD2L1 gating mechanism.
Ionic regulation of the cardiac sodium-calcium exchanger.
Reeves, John P; Condrescu, Madalina
2008-01-01
The Na(+)-Ca(2+) exchanger (NCX) links transmembrane movements of Ca(2+) ions to the reciprocal movement of Na(+) ions. It normally functions primarily as a Ca(2+) efflux mechanism in excitable tissues such as the heart, but it can also mediate Ca(2+) influx under certain conditions. Na(+) and Ca(2+) ions exert complex regulatory effects on NCX activity. Ca(2+) binds to two regulatory sites in the exchanger's central hydrophilic domain, and this interaction is normally essential for activation of exchange activity. High cytosolic Na(+) concentrations, however, can induce a constitutive activity that by-passes the need for allosteric Ca(2+) activation. Constitutive NCX activity can also be induced by high levels of phopshotidylinositol-4,5-bisphosphate (PIP₂) and by mutations affecting the regulatory calcium binding domains. In addition to promoting constitutive activity, high cytosolic Na(+) concentrations also induce an inactivated state of the exchanger (Na(+)-dependent inactivation) that becomes dominant when cytosolic pH and PIP₂ levels fall. Na(+)-dependent inactivation may provide a means of protecting cells from Ca(2+) overload due to NCX-mediated Ca(2+) influx during ischemia.
Hexameric and pentameric complexes of the ExbBD energizer in the Ton system.
Maki-Yonekura, Saori; Matsuoka, Rei; Yamashita, Yoshiki; Shimizu, Hirofumi; Tanaka, Maiko; Iwabuki, Fumie; Yonekura, Koji
2018-04-17
Gram-negative bacteria import essential nutrients such as iron and vitamin B 12 through outer membrane receptors. This process utilizes proton motive force harvested by the Ton system made up of three inner membrane proteins, ExbB, ExbD and TonB. ExbB and ExbD form the proton channel that energizes uptake through TonB. Recently, crystal structures suggest that the ExbB pentamer is the scaffold. Here, we present structures of hexameric complexes of ExbB and ExbD revealed by X-ray crystallography and single particle cryo-EM. Image analysis shows that hexameric and pentameric complexes coexist, with the proportion of hexamer increasing with pH. Channel current measurement and 2D crystallography support the existence and transition of the two oligomeric states in membranes. The hexameric complex consists of six ExbB subunits and three ExbD transmembrane helices enclosed within the central channel. We propose models for activation/inactivation associated with hexamer and pentamer formation and utilization of proton motive force. © 2018, Maki-Yonekura et al.
Cheng, Xiuting; Li, Na; Zhu, Mengfu; Zhang, Lili; Deng, Yu; Deng, Cheng
2016-06-01
To develop a depth filter based on the electrostatic adsorption principle, positively charged microporous ceramic membrane was prepared from a diatomaceous earth ceramic membrane. The internal surface of the highly porous ceramic membrane was coated with uniformly distributed electropositive nano-Y2O3 coating. The dye removal performance was evaluated through pressurized filtration tests using Titan Yellow aqueous solution. It showed that positively charged microporous ceramic membrane exhibited a flow rate of 421L/(m(2)·hr) under the trans-membrane pressure of 0.03bar. Moreover it could effectively remove Titan Yellow with feed concentration of 10mg/L between pH3 to 8. The removal rate increased with the enhancement of the surface charge properties with a maximum rejection of 99.6%. This study provides a new and feasible method of removing organic dyes in wastewater. It is convinced that there will be a broad market for the application of charged ceramic membrane in the field of dye removal or recovery from industry wastewater. Copyright © 2016. Published by Elsevier B.V.
Pollard, Matthew; Meredith, David; McGivan, John D
2002-04-12
Na(+)-dependent neutral amino acid transport into the bovine renal epithelial cell line NBL-1 is catalysed by a broad-specificity transporter originally termed System B(0). This transporter is shown to differ in specificity from the B(0) transporter cloned from JAR cells [J. Biol. Chem. 271 (1996) 18657] in that it interacts much more strongly with phenylalanine. Using probes designed to conserved transmembrane regions of the ASC/B(0) transporter family we have isolated a cDNA encoding the NBL-1 cell System B(0) transporter. When expressed in Xenopus oocytes the clone catalysed Na(+)-dependent alanine uptake which was inhibited by glutamine, leucine and phenylalanine. However, the clone did not catalyse Na(+)-dependent phenylalanine transport, again as in NBL-1 cells. The clone encoded a protein of 539 amino acids; the predicted transmembrane domains were almost identical in sequence to those of the other members of the B(0)/ASC transporter family. Comparison of the sequences of NBL-1 and JAR cell transporters showed some differences near the N-terminus, C-terminus and in the loop between helices 3 and 4. The NBL-1 B(0) transporter is not the same as the renal brush border membrane transporter since it does not transport phenylalanine. Differences in specificity in this protein family arise from relatively small differences in amino acid sequence.
Potetinova, Zhanna; Tantry, Subramanyam; Cohen, Leah S.; Caroccia, Katrina E.; Arshava, Boris; Becker, Jeffrey M.; Naider, Fred
2013-01-01
To conduct biophyiscal analyses on large domains of GPCRs, multi-milligram quantities of highly homogeneous proteins are necessary. This communication discusses the biosynthesis of 4 transmembrane and 5 transmembrane-containing fragments of Ste2p, a GPCR recognizing the Saccharomyces cerevisiae tridecapeptide pheromone α-factor. The target fragments contained the predicted four N-terminal Ste2p[G31-A198] (4TMN), four C-terminal Ste2p[T155-L340] (4TMC) or five C-terminal Ste2p[I120-L340] (5TMC) transmembrane segments of Ste2p. 4TMN was expressed as a fusion protein using a modified pMMHa vector in L-arabinose-induced Escherichia coli BL21-AI, and cleaved with cyanogen bromide. 4TMC and 5TMC were obtained by direct expression using a pET21a vector in IPTG-induced Escherichia coli BL21(DE3) cells. 4TMC and 5TMC were biosynthesized on a preparative scale, isolated in multi-milligram amounts, characterized by MS and investigated by biophysical methods. CD spectroscopy indicated the expected highly α-helical content for 4TMC and 5TMC in membrane mimetic environments. Tryptophan fluorescence showed that 5TMC integrated into the nonpolar region of 1-stearoyl-2-hydroxy-sn-glycero-3-phospho-(1′-rac-glycerol) micelles. HSQC-TROSY investigations revealed that [15N]-labeled 5TMC in 50% trifluoroethanol-d2/H2O/0.05% trifluoroacetic acid was stable enough to conduct long multidimensional NMR measurements. The entire Ste2p GPCR was not readily reconstituted from the first two and last five or first three and last four transmembrane domains. PMID:23203693
Liu, Han-Yuan; Chen, Wei-Liang; Ober, Christopher K; Daniel, Susan
2018-01-23
Reconstituted supported lipid bilayers (SLB) are widely used as in vitro cell-surface models because they are compatible with a variety of surface-based analytical techniques. However, one of the challenges of using SLBs as a model of the cell surface is the limited complexity in membrane composition, including the incorporation of transmembrane proteins and lipid diversity that may impact the activity of those proteins. Additionally, it is challenging to preserve the transmembrane protein native orientation, function, and mobility in SLBs. Here, we leverage the interaction between cell plasma membrane vesicles and polyelectrolyte brushes to create planar bilayers from cell plasma membrane vesicles that have budded from the cell surface. This approach promotes the direct incorporation of membrane proteins and other species into the planar bilayer without using detergent or reconstitution and preserves membrane constituents. Furthermore, the structure of the polyelectrolyte brush serves as a cushion between the planar bilayer and rigid supporting surface, limiting the interaction of the cytosolic domains of membrane proteins with this surface. Single particle tracking was used to analyze the motion of GPI-linked yellow fluorescent proteins (GPI-YFP) and neon-green fused transmembrane P2X2 receptors (P2X2-neon) and shows that this platform retains over 75% mobility of multipass transmembrane proteins in its native membrane environment. An enzyme accessibility assay confirmed that the protein orientation is preserved and results in the extracellular domain facing toward the bulk phase and the cytosolic side facing the support. Because the platform presented here retains the complexity of the cell plasma membrane and preserves protein orientation and mobility, it is a better representative mimic of native cell surfaces, which may find many applications in biological assays aimed at understanding cell membrane phenomena.
Agonist activation of α7 nicotinic acetylcholine receptors via an allosteric transmembrane site
Gill, JasKiran K.; Savolainen, Mari; Young, Gareth T.; Zwart, Ruud; Sher, Emanuele; Millar, Neil S.
2011-01-01
Conventional nicotinic acetylcholine receptor (nAChR) agonists, such as acetylcholine, act at an extracellular “orthosteric” binding site located at the interface between two adjacent subunits. Here, we present evidence of potent activation of α7 nAChRs via an allosteric transmembrane site. Previous studies have identified a series of nAChR-positive allosteric modulators (PAMs) that lack agonist activity but are able to potentiate responses to orthosteric agonists, such as acetylcholine. It has been shown, for example, that TQS acts as a conventional α7 nAChR PAM. In contrast, we have found that a compound with close chemical similarity to TQS (4BP-TQS) is a potent allosteric agonist of α7 nAChRs. Whereas the α7 nAChR antagonist metyllycaconitine acts competitively with conventional nicotinic agonists, metyllycaconitine is a noncompetitive antagonist of 4BP-TQS. Mutation of an amino acid (M253L), located in a transmembrane cavity that has been proposed as being the binding site for PAMs, completely blocks agonist activation by 4BP-TQS. In contrast, this mutation had no significant effect on agonist activation by acetylcholine. Conversely, mutation of an amino acid located within the known orthosteric binding site (W148F) has a profound effect on agonist potency of acetylcholine (resulting in a shift of ∼200-fold in the acetylcholine dose-response curve), but had little effect on the agonist dose-response curve for 4BP-TQS. Computer docking studies with an α7 homology model provides evidence that both TQS and 4BP-TQS bind within an intrasubunit transmembrane cavity. Taken together, these findings provide evidence that agonist activation of nAChRs can occur via an allosteric transmembrane site. PMID:21436053
Saether, Per C; Hoelsbrekken, Sigurd E; Fossum, Sigbjørn; Dissen, Erik
2011-12-15
Signaling by the CD94/NKG2 heterodimeric NK cell receptor family has been well characterized in the human but has remained unclear in the mouse and rat. In the human, the activating receptor CD94/NKG2C associates with DAP12 by an ionic bond between oppositely charged residues within the transmembrane regions of NKG2C and DAP12. The lysine residue responsible for DAP12 association is absent in rat and mouse NKG2C and -E, raising questions about signaling mechanisms in these species. As a possible substitute, rat and mouse NKG2C and -E contain an arginine residue in the transition between the transmembrane and stalk regions. In this article, we demonstrate that, similar to their human orthologs, NKG2A inhibits, whereas NKG2C activates, rat NK cells. Redirected lysis assays using NK cells transfected with a mutated NKG2C construct indicated that the activating function of CD94/NKG2C did not depend on the transmembrane/stalk region arginine residue. Flow cytometry and biochemical analysis demonstrated that both DAP12 and DAP10 can associate with rat CD94/NKG2C. Surprisingly, DAP12 and DAP10 did not associate with NKG2C but instead with CD94. These associations depended on a transmembrane lysine residue in CD94 that is unique to rodents. Thus, in the mouse and rat, the ability to bind activating adaptor proteins has been transferred from NKG2C/E to the CD94 chain as a result of mutation events in both chains. Remarkable from a phylogenetic perspective, this sheds new light on the evolution and function of the CD94/NKG2 receptor family.
Deber, C M; Khan, A R; Li, Z; Joensson, C; Glibowicka, M; Wang, J
1993-01-01
Val-->Ala mutations within the effective transmembrane segment of a model single-spanning membrane protein, the 50-residue major coat (gene VIII) protein of bacteriophage M13, are shown to have sequence-dependent impacts on stabilization of membrane-embedded helical dimeric structures. Randomized mutagenesis performed on the coat protein hydrophobic segment 21-39 (YIGYAWAMV-VVIVGATIGI) produced a library of viable mutants which included those in which each of the four valine residues was replaced by an alanine residue. Significant variations found among these Val-->Ala mutants in the relative populations and thermal stabilities of monomeric and dimeric helical species observed on SDS/PAGE, and in the range of their alpha-helix-->beta-sheet transition temperatures confirmed that intramembranous valine residues are not simply universal contributors to membrane anchoring. Additional analyses of (i) nonmutatable sites in the mutant protein library, (ii) the properties of the double mutant V29A-V31A obtained by recycling mutant V31A DNA through mutagenesis procedures, and (iii) energy-minimized helical dimer structures of wild-type and mutant V31A transmembrane regions indicated that the transmembrane hydrophobic core helix of the M13 coat protein can be partitioned into alternating pairs of potential protein-interactive residues (V30, V31; G34, A35; G38, I39) and membrane-interactive residues (M28, V29; I32, V33; T36, I37). The overall results consitute an experimental approach to categorizing the distinctive contributions to structure of the residues comprising a protein-protein packing interface vs. those facing lipid and confirm the sequence-dependent capacity of specific residues within the transmembrane domain to modulate protein-protein interactions which underlie regulatory events in membrane proteins. Images Fig. 2 Fig. 4 PMID:8265602
Deber, C M; Khan, A R; Li, Z; Joensson, C; Glibowicka, M; Wang, J
1993-12-15
Val-->Ala mutations within the effective transmembrane segment of a model single-spanning membrane protein, the 50-residue major coat (gene VIII) protein of bacteriophage M13, are shown to have sequence-dependent impacts on stabilization of membrane-embedded helical dimeric structures. Randomized mutagenesis performed on the coat protein hydrophobic segment 21-39 (YIGYAWAMV-VVIVGATIGI) produced a library of viable mutants which included those in which each of the four valine residues was replaced by an alanine residue. Significant variations found among these Val-->Ala mutants in the relative populations and thermal stabilities of monomeric and dimeric helical species observed on SDS/PAGE, and in the range of their alpha-helix-->beta-sheet transition temperatures confirmed that intramembranous valine residues are not simply universal contributors to membrane anchoring. Additional analyses of (i) nonmutatable sites in the mutant protein library, (ii) the properties of the double mutant V29A-V31A obtained by recycling mutant V31A DNA through mutagenesis procedures, and (iii) energy-minimized helical dimer structures of wild-type and mutant V31A transmembrane regions indicated that the transmembrane hydrophobic core helix of the M13 coat protein can be partitioned into alternating pairs of potential protein-interactive residues (V30, V31; G34, A35; G38, I39) and membrane-interactive residues (M28, V29; I32, V33; T36, I37). The overall results consitute an experimental approach to categorizing the distinctive contributions to structure of the residues comprising a protein-protein packing interface vs. those facing lipid and confirm the sequence-dependent capacity of specific residues within the transmembrane domain to modulate protein-protein interactions which underlie regulatory events in membrane proteins.
Wei, Shipeng; Roessler, Bryan C.; Chauvet, Sylvain; Guo, Jingyu; Hartman, John L.; Kirk, Kevin L.
2014-01-01
ATP-binding cassette (ABC) transporters are an ancient family of transmembrane proteins that utilize ATPase activity to move substrates across cell membranes. The ABCC subfamily of the ABC transporters includes active drug exporters (the multidrug resistance proteins (MRPs)) and a unique ATP-gated ion channel (cystic fibrosis transmembrane conductance regulator (CFTR)). The CFTR channel shares gating principles with conventional ligand-gated ion channels, but the allosteric network that couples ATP binding at its nucleotide binding domains (NBDs) with conformational changes in its transmembrane helices (TMs) is poorly defined. It is also unclear whether the mechanisms that govern CFTR gating are conserved with the thermodynamically distinct MRPs. Here we report a new class of gain of function (GOF) mutation of a conserved proline at the base of the pore-lining TM6. Multiple substitutions of this proline promoted ATP-free CFTR activity and activation by the weak agonist, 5′-adenylyl-β,γ-imidodiphosphate (AMP-PNP). TM6 proline mutations exhibited additive GOF effects when combined with a previously reported GOF mutation located in an outer collar of TMs that surrounds the pore-lining TMs. Each TM substitution allosterically rescued the ATP sensitivity of CFTR gating when introduced into an NBD mutant with defective ATP binding. Both classes of GOF mutations also rescued defective drug export by a yeast MRP (Yor1p) with ATP binding defects in its NBDs. We conclude that the conserved TM6 proline helps set the energy barrier to both CFTR channel opening and MRP-mediated drug efflux and that CFTR channels and MRP pumps utilize similar allosteric mechanisms for coupling conformational changes in their translocation pathways to ATP binding at their NBDs. PMID:24876383
Wei, Shipeng; Roessler, Bryan C; Chauvet, Sylvain; Guo, Jingyu; Hartman, John L; Kirk, Kevin L
2014-07-18
ATP-binding cassette (ABC) transporters are an ancient family of transmembrane proteins that utilize ATPase activity to move substrates across cell membranes. The ABCC subfamily of the ABC transporters includes active drug exporters (the multidrug resistance proteins (MRPs)) and a unique ATP-gated ion channel (cystic fibrosis transmembrane conductance regulator (CFTR)). The CFTR channel shares gating principles with conventional ligand-gated ion channels, but the allosteric network that couples ATP binding at its nucleotide binding domains (NBDs) with conformational changes in its transmembrane helices (TMs) is poorly defined. It is also unclear whether the mechanisms that govern CFTR gating are conserved with the thermodynamically distinct MRPs. Here we report a new class of gain of function (GOF) mutation of a conserved proline at the base of the pore-lining TM6. Multiple substitutions of this proline promoted ATP-free CFTR activity and activation by the weak agonist, 5'-adenylyl-β,γ-imidodiphosphate (AMP-PNP). TM6 proline mutations exhibited additive GOF effects when combined with a previously reported GOF mutation located in an outer collar of TMs that surrounds the pore-lining TMs. Each TM substitution allosterically rescued the ATP sensitivity of CFTR gating when introduced into an NBD mutant with defective ATP binding. Both classes of GOF mutations also rescued defective drug export by a yeast MRP (Yor1p) with ATP binding defects in its NBDs. We conclude that the conserved TM6 proline helps set the energy barrier to both CFTR channel opening and MRP-mediated drug efflux and that CFTR channels and MRP pumps utilize similar allosteric mechanisms for coupling conformational changes in their translocation pathways to ATP binding at their NBDs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.