Space Radar Image of Sakura-Jima Volcano, Japan
NASA Technical Reports Server (NTRS)
1994-01-01
The active volcano Sakura-Jima on the island of Kyushu, Japan is shown in the center of this radar image. The volcano occupies the peninsula in the center of Kagoshima Bay, which was formed by the explosion and collapse of an ancient predecessor of today's volcano. The volcano has been in near continuous eruption since 1955. Its explosions of ash and gas are closely monitored by local authorities due to the proximity of the city of Kagoshima across a narrow strait from the volcano's center, shown below and to the left of the central peninsula in this image. City residents have grown accustomed to clearing ash deposits from sidewalks, cars and buildings following Sakura-jima's eruptions. The volcano is one of 15 identified by scientists as potentially hazardous to local populations, as part of the international 'Decade Volcano' program. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 9, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 31.6 degrees North latitude and 130.6 degrees East longitude. North is toward the upper left. The area shown measures 37.5 kilometers by 46.5 kilometers (23.3 miles by 28.8 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band vertically transmitted, vertically received; green is the average of L-band vertically transmitted, vertically received and C-band vertically transmitted, vertically received; blue is C-band vertically transmitted, vertically received.
Space Radar Image of Sakura-Jima Volcano, Japan
1999-04-15
The active volcano Sakura-Jima on the island of Kyushu, Japan is shown in the center of this radar image. The volcano occupies the peninsula in the center of Kagoshima Bay, which was formed by the explosion and collapse of an ancient predecessor of today's volcano. The volcano has been in near continuous eruption since 1955. Its explosions of ash and gas are closely monitored by local authorities due to the proximity of the city of Kagoshima across a narrow strait from the volcano's center, shown below and to the left of the central peninsula in this image. City residents have grown accustomed to clearing ash deposits from sidewalks, cars and buildings following Sakura-jima's eruptions. The volcano is one of 15 identified by scientists as potentially hazardous to local populations, as part of the international "Decade Volcano" program. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 9, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 31.6 degrees North latitude and 130.6 degrees East longitude. North is toward the upper left. The area shown measures 37.5 kilometers by 46.5 kilometers (23.3 miles by 28.8 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band vertically transmitted, vertically received; green is the average of L-band vertically transmitted, vertically received and C-band vertically transmitted, vertically received; blue is C-band vertically transmitted, vertically received. http://photojournal.jpl.nasa.gov/catalog/PIA01777
Space Radar Image of Saline Valley, California
NASA Technical Reports Server (NTRS)
1999-01-01
This is a three-dimensional perspective view of Saline Valley, about 30 km (19 miles) east of the town of Independence, California created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this one are helpful to scientists because they clarify the relationships of the different types of surfaces detected by the radar and the shapes of the topographic features such as mountains and valleys. The view is looking southwest across Saline Valley. The high peaks in the background are the Inyo Mountains, which rise more than 3,000 meters (10,000 feet) above the valley floor. The dark blue patch near the center of the image is an area of sand dunes. The brighter patches to the left of the dunes are the dry, salty lake beds of Saline Valley. The brown and orange areas are deposits of boulders, gravel and sand known as alluvial fans. The image was constructed by overlaying a color composite radar image on top of a digital elevation map. The radar image was taken by the Spaceborne Imaging Radar-C/X-bandSynthetic Aperture Radar (SIR-C/X-SAR) on board the space shuttleEndeavour in October 1994. The digital elevation map was producedusing radar interferometry, a process in which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. The elevation data were derived from a 1,500-km-long (930-mile) digital topographic map processed at JPL. Radar image data are draped over the topography to provide the color with the following assignments: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vetically received; and blue is the ratio of C-band vertically transmitted, vertically received to L-band vertically transmitted, vertically received. This image is centered near 36.8 degrees north latitude and 117.7 degrees west longitude. No vertical exaggeration factor has been applied to the data. SIR-C/X-SAR, a joint mission of the German, Italian, and the United States space agencies, is part of NASA's Mission to Planet Earth.
Space Radar Image of Karakax Valley, China 3-D
NASA Technical Reports Server (NTRS)
1994-01-01
This three-dimensional perspective of the remote Karakax Valley in the northern Tibetan Plateau of western China was created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this are helpful to scientists because they reveal where the slopes of the valley are cut by erosion, as well as the accumulations of gravel deposits at the base of the mountains. These gravel deposits, called alluvial fans, are a common landform in desert regions that scientists are mapping in order to learn more about Earth's past climate changes. Higher up the valley side is a clear break in the slope, running straight, just below the ridge line. This is the trace of the Altyn Tagh fault, which is much longer than California's San Andreas fault. Geophysicists are studying this fault for clues it may be able to give them about large faults. Elevations range from 4000 m (13,100 ft) in the valley to over 6000 m (19,700 ft) at the peaks of the glaciated Kun Lun mountains running from the front right towards the back. Scale varies in this perspective view, but the area is about 20 km (12 miles) wide in the middle of the image, and there is no vertical exaggeration. The two radar images were acquired on separate days during the second flight of the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour in October 1994. The interferometry technique provides elevation measurements of all points in the scene. The resulting digital topographic map was used to create this view, looking northwest from high over the valley. Variations in the colors can be related to gravel, sand and rock outcrops. This image is centered at 36.1 degrees north latitude, 79.2 degrees east longitude. Radar image data are draped over the topography to provide the color with the following assignments: Red is L-band vertically transmitted, vertically received; green is the average of L-band vertically transmitted, vertically received and C-band vertically transmitted, vertically received; and blue is C-band vertically transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth.
Space Radar Image of Owens Valley, California
NASA Technical Reports Server (NTRS)
1999-01-01
This is a three-dimensional perspective view of Owens Valley, near the town of Bishop, California that was created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this one are helpful to scientists because they clarify the relationships of the different types of surfaces detected by the radar and the shapes of the topographic features such as mountains and valleys. The view is looking southeast along the eastern edge of Owens Valley. The White Mountains are in the center of the image, and the Inyo Mountains loom in the background. The high peaks of the White Mountains rise more than 3,000 meters (10,000 feet) above the valley floor. The runways of the Bishop airport are visible at the right edge of the image. The meandering course of the Owens River and its tributaries appear light blue on the valley floor. Blue areas in the image are smooth, yellow areas are rock outcrops, and brown areas near the mountains are deposits of boulders, gravel and sand known as alluvial fans. The image was constructed by overlaying a color composite radar image on top of a digital elevation map. The radar data were taken by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on board the space shuttle Endeavour in October 1994. The digital elevation map was produced using radar interferometry, a process in which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. The elevation data were derived from a 1,500-km-long (930-mile) digital topographic map processed at JPL. Radar image data are draped over the topography to provide the color with the following assignments: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vertically received; and blue is the ratio of C-band vertically transmitted, vertically received to L-band vertically transmitted, vertically received. This image is centered near 37.4 degrees north latitude and 118.3 degrees west longitude. No vertical exaggeration factor has been applied to the data. SIR-C/X-SAR, a joint mission of the German, Italian, and the United States space agencies, is part of NASA's Mission to Planet Earth.
NASA Astrophysics Data System (ADS)
Baranski, L. A.; Rozemski, K.
TOVS/TIP digital data transmitted at the VHF-BEACON range from NOAA satellites are receiving and processing at the SDRPC. Receiving station is connected with the microcomputer IBM-PC/AT which process TOVS/TIP data via two states: initial data processing and retrieval of vertical profiles of the temperature, water vapour and ozone mixing ratio in the atmosphere. Receiving and processing equipment, retrieval methods, results and error discussion are presented.
Space Radar Image of Oil Slicks
NASA Technical Reports Server (NTRS)
1994-01-01
This is a radar image of an offshore drilling field about 150 km (93 miles) west of Bombay, India, in the Arabian Sea. The dark streaks are extensive oil slicks surrounding many of the drilling platforms, which appear as bright white spots. Radar images are useful for detecting and measuring the extent of oil seepages on the ocean surface, from both natural and industrial sources. The long, thin streaks extending from many of the platforms are spreading across the sea surface, pushed by local winds. The larger dark patches are dispersed slicks that were likely discharged earlier than the longer streaks, when the winds were probably from a different direction. The dispersed oil will eventually spread out over the more dense water and become a layer which is a single molecule thick. Many forms of oil, both from biological and from petroleum sources, smooth out the ocean surface, causing the area to appear dark in radar images. There are also two forms of ocean waves shown in this image. The dominant group of large waves (upper center) are called internal waves. These waves are formed below the ocean surface at the boundary between layers of warm and cold water and they appear in the radar image because of the way they change the ocean surface. Ocean swells, which are waves generated by winds, are shown throughout the image but are most distinct in the blue area adjacent to the internal waves. Identification of waves provide oceanographers with information about the smaller scale dynamic processes of the ocean. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on October 9, 1994. The colors are assigned to different frequencies and polarizations of the radar as follows: Red is L-band vertically transmitted, vertically received; green is the average of L-band vertically transmitted, vertically received and C-band vertically transmitted, vertically received; blue is C-band vertically transmitted, vertically received. The image is located at 19.25 degrees north latitude and 71.34 degrees east longitude and covers an area 20 km by 45 km (12.4 miles by 27.9 miles). SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth.
Comparison of three underwater antennas for use in radiotelemetry
Beeman, J.W.; Grant, C.; Haner, P.V.
2004-01-01
The radiation patterns of three versions of underwater radiotelemetry antennas were measured to compare the relative reception ranges in the horizontal and vertical planes, which are important considerations when designing detection systems. The received signal strengths of an antenna made by stripping shielding from a section of coaxial cable (stripped coax) and by two versions of a dipole antenna were measured at several orientations relative to a dipole transmit antenna under controlled field conditions. The received signal strengths were greater when the transmit and receive antennas were parallel to each other than when they were perpendicular, indicating that a parallel orientation provides optimal detection range. The horizontal plane radiation pattern of the flexible, stripped coax antenna was similar to that of a rigid dipole antenna, but movement of underwater stripped coax antennas in field applications could affect the orientation of transmit and receive antennas in some applications, resulting in decreased range and variation in received signal strengths. Compared with a standard dipole, a dipole antenna armored by housing within a polyvinyl chloride fitting had a smaller radiation pattern in the horizontal plane but a larger radiation pattern in the vertical plane. Each of these types of underwater antenna can be useful, but detection ranges can be maximized by choosing an appropriate antenna after consideration of the location, relation between transmit and receive antenna orientations, radiation patterns, and overall antenna resiliency.
Space Radar Image of Munich, Germany
NASA Technical Reports Server (NTRS)
1994-01-01
This spaceborne radar image of Munich, Germany illustrates the capability of a multi-frequency radar system to highlight different land use patterns in the area surrounding Bavaria's largest city. Central Munich is the white area at the middle of the image, on the banks of the Isar River. Pink areas are forested, while green areas indicate clear-cut and agricultural terrain. The Munich region served as a primary 'supersite' for studies in ecology, hydrology and radar calibration during the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) missions. Scientists were able to use these data to map patterns of forest damage from storms and areas affected by bark beetle infestation. The image was acquired by SIR-C/X-SAR onboard the space shuttle Endeavour on April 18, 1994. The image is 37 kilometers by 32 kilometers (23 miles by 20 miles) and is centered at 48.2 degrees North latitude, 11.5 degrees East longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, vertically transmitted and horizontally received; green is C-band, vertically transmitted and horizontally received; and blue is C-band vertically transmitted and received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.
Space Radar Image of Mississippi Delta
1999-04-15
This is a radar image of the Mississippi River Delta where the river enters into the Gulf of Mexico along the coast of Louisiana. This multi-frequency image demonstrates the capability of the radar to distinguish different types of wetlands surfaces in river deltas. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on October 2, 1995. The image is centered on latitude 29.3 degrees North latitude and 89.28 degrees West longitude. The area shown is approximately 63 kilometers by 43 kilometers (39 miles by 26 miles). North is towards the upper right of the image. As the river enters the Gulf of Mexico, it loses energy and dumps its load of sediment that it has carried on its journey through the mid-continent. This pile of sediment, or mud, accumulates over the years building up the delta front. As one part of the delta becomes clogged with sediment, the delta front will migrate in search of new areas to grow. The area shown on this image is the currently active delta front of the Mississippi. The migratory nature of the delta forms natural traps for oil and the numerous bright spots along the outside of the delta are drilling platforms. Most of the land in the image consists of mud flats and marsh lands. There is little human settlement in this area due to the instability of the sediments. The main shipping channel of the Mississippi River is the broad red stripe running northwest to southeast down the left side of the image. The bright spots within the channel are ships. The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vertically received; blue is X-band vertically transmitted, vertically received. http://photojournal.jpl.nasa.gov/catalog/PIA01784
Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach
Pan, Luan; Adamchuk, Viacheslav I.; Prasher, Shiv; Gebbers, Robin; Taylor, Richard S.; Dabas, Michel
2014-01-01
Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep) soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument. PMID:25057135
Space Radar Image of Belgrade, Serbia
NASA Technical Reports Server (NTRS)
1994-01-01
This spaceborne radar image of Belgrade, Serbia, illustrates the variety of land use patterns that can be observed with a multiple wavelength radar system. Belgrade, the capital of Serbia and former capital of Yugoslavia, is the bright area in the center of the image. The Danube River flows from the top to the bottom of the image, and the Sava River flows into the Danube from the left. Agricultural fields appear in shades of dark blue, purple and brown in outlying areas. Vegetated areas along the rivers appear in light blue-green, while dense forests in hillier areas in the lower left appear in a darker shade of green. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 2, 1994. The image is centered at 44.5 degrees north latitude and 20.5 degrees east longitude. North is toward the upper right. The image shows an area 36 kilometers by 32 kilometers 22 miles by 20 miles). The colors are assigned to different frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted, horizontally received; green is L-band, horizontally transmitted, vertically received; blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.
1996-11-13
This is a space radar image of the area around the Unzen volcano, on the west coast of Kyushu Island in southwestern Japan. Unzen, which appears in this image as a large triangular peak with a white flank near the center of the peninsula, has been continuously active since a series of powerful eruptions began in 1991. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 93rd orbit on April 15, 1994. The image shows an area 41.5 kilometers by 32.8 kilometers (25.7 miles by 20.3 miles) that is centered at 32.75 degrees north latitude and 130.15 degrees east longitude. North is toward the upper left of the image. The radar illumination is from the top of the image. The colors in this image were obtained using the following radar channels: red represents the L-band (vertically transmitted and received); green represents the average of L-band and C-band (vertically transmitted and received); blue represents the C-band (vertically transmitted and received). Unzen is one of 15 "Decade" volcanoes identified by the scientific community as posing significant potential threats to large local populations. The city of Shimabara sits along the coast at the foot of Unzen on its east and northeast sides. At the summit of Unzen a dome of thick lava has been growing continuously since 1991. Collapses of the sides of this dome have generated deadly avalanches of hot gas and rock known as pyroclastic flows. Volcanologists can use radar image data to monitor the growth of lava domes, to better understand and predict potentially hazardous collapses. http://photojournal.jpl.nasa.gov/catalog/PIA00504
Adsorption to Fish Sperm of Vertically Transmitted Fish Viruses
NASA Astrophysics Data System (ADS)
Mulcahy, Dan; Pascho, Ronald J.
1984-07-01
More than 99 percent of a vertically transmitted fish rhabdovirus, infectious hematopoietic necrosis virus, was removed from suspension in less than 1 minute by adsorption to the surface membrane of sperm from two genera of salmonid fishes. The vertically transmitted, infectious pancreatic necrosis virus adsorbed to a lesser degree, but no adsorption occurred with a second fish rhabdovirus that is not vertically transmitted. Such adsorption may be involved in vertical transmission of these viruses.
Adsorption to fish sperm of vertically transmitted fish viruses
Mulcahy, D.; Pascho, R.J.
1984-01-01
More than 99 percent of a vertically transmitted fish rhabdovirus, infectious hematopoietic necrosis virus, was removed from suspension in less than 1 minute by adsorption to the surface membrane of sperm from two genera of salmonid fishes. The vertically transmitted, infectious pancreatic necrosis virus adsorbed to a lesser degree, but no adsorption occurred with a second fish rhabdovirus that is not vertically transmitted. Such adsorption may be involved in vertical transmission of these viruses.
Space Radar Image of Lisbon, Portugal
NASA Technical Reports Server (NTRS)
1994-01-01
This radar image of Lisbon, Portugal illustrates the different land use patterns that are present in coastal Portugal. Lisbon, the national capital, lies on the north bank of the Rio Tejo where the river enters the Atlantic Ocean. The city center appears as the bright area in the center of the image. The green area west of the city center is a large city park called the Parque Florestal de Monsanto. The Lisbon Airport is visible east of the city. The Rio Tejo forms a large bay just east of the city. Many agricultural fields are visible as a patchwork pattern east of the bay. Suburban housing can be seen on the southern bank of the river. Spanning the river is the Ponte 25 de Abril, a large suspension bridge similar in architecture to San Francisco's Golden Gate Bridge. The image was acquired on April 19, 1994 and is centered at 38.8 degrees north latitude, 9.2 degrees west longitude. North is towards the upper right. The image is 50 kilometers by 30 kilometers (31 miles by 19 miles). The colors in this image represent the following radar channels and polarizations: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and the United States space agencies, is part of NASA's Mission to Planet Earth.
Space Radar Image of Victoria, Canada
NASA Technical Reports Server (NTRS)
1994-01-01
This three-frequency spaceborne radar image shows the southern end of Vancouver Island on the west coast of Canada. The white area in the lower right is the city of Victoria, the capital of the province of British Columbia. The three radar frequencies help to distinguish different land use patterns. The bright pink areas are suburban regions, the brownish areas are forested regions, and blue areas are agricultural fields or forest clear-cuts. Founded in 1843 as a fur trading post, Victoria has grown to become one of western Canada's largest commercial centers. In the upper right is San Juan Island, in the state of Washington. The Canada/U.S. border runs through Haro Strait, on the right side of the image, between San Juan Island and Vancouver Island. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on October 6, 1994, onboard the space shuttle Endeavour. The area shown is 37 kilometers by 42 kilometers (23 miles by 26 miles) and is centered at 48.5 degrees north latitude, 123.3 degrees west longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band horizontally transmitted and received; green is C-band, vertically transmitted and received; and blue is X-band, vertically transmitted and received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.
The calibration of an HF radar used for ionospheric research
NASA Astrophysics Data System (ADS)
From, W. R.; Whitehead, J. D.
1984-02-01
The HF radar on Bribie Island, Australia, uses crossed-fan beams produced by crossed linear transmitter and receiver arrays of 10 elements each to simulate a pencil beam. The beam points vertically when all the array elements are in phase, and is steerable by up to 20 deg off vertical at the central one of the three operating frequencies. Phase and gain changes within the transmitters and receivers are compensated for by an automatic system of adjustment. The 10 transmitting antennas are, as nearly as possible, physically identical as are the 10 receiving antennas. Antenna calibration using high flying aircraft or satellites is not possible. A method is described for using the ionospheric reflections to measure the polar diagram and also to correct for errors in the direction of pointing.
Radar Image of Dublin, Ireland
2017-12-08
Visualization Date 1994-04-11 This radar image of Dublin, Ireland, shows how the radar distingishes between densely populated urban areas and nearby areas that are relatively unsettled. In the center of the image is the city's natural harbor along the Irish Sea. The pinkish areas in the center are the densely populated parts of the city and the blue/green areas are the suburbs. The two ends of the Dublin Bay are Howth Point, the circular peninsula near the upper right side of the image, and Dun Laoghaire, the point to the south. The small island just north of Howth is called "Ireland's Eye," and the larger island, near the upper right corner of the image is Lambay Island. The yellow/green mountains in the lower left of the image (south) are the Wicklow Mountains. The large lake in the lower left, nestled within these mountains, is the Poulaphouca Reservoir along River Liffey. The River Liffey, the River Dodder and the Tolka River are the three rivers that flow into Dublin. The straight features west of the city are the Grand Canal and the three rivers are the faint lines above and below these structures. The dark X-shaped feature just to the north of the city is the Dublin International Airport. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) when it flew aboard the space shuttle Endeavour on April 11, 1994. This area is centered at 53.3 degrees north latitude, 6.2 degrees west longitude. The area shown is approximately 55 kilometers by 42 kilometers (34 miles by 26 miles). The colors are assigned to different frequencies and polarizations of the radar as follows: Red is L-band horizontally transmitted, horizontally received; green is L-band vertically transmitted, vertically received; and blue is C-band vertically transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and the United States space agencies, is part of NASA's Mission to Planet Earth. Credit: NASA/GSFC For more information go to: visibleearth.nasa.gov/view_rec.php?id=467
Space Radar Image of Central Sumatra, Indonesia
NASA Technical Reports Server (NTRS)
1994-01-01
This is a radar image of the central part of the island of Sumatra in Indonesia that shows how the tropical rainforest typical of this country is being impacted by human activity. Native forest appears in green in this image, while prominent pink areas represent places where the native forest has been cleared. The large rectangular areas have been cleared for palm oil plantations. The bright pink zones are areas that have been cleared since 1989, while the dark pink zones are areas that were cleared before 1989. These radar data were processed as part of an effort to assist oil and gas companies working in the area to assess the environmental impact of both their drilling operations and the activities of the local population. Radar images are useful in these areas because heavy cloud cover and the persistent smoke and haze associated with deforestation have prevented usable visible-light imagery from being acquired since 1989. The dark shapes in the upper right (northeast) corner of the image are a chain of lakes in flat coastal marshes. This image was acquired in October 1994 by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour. Environmental changes can be easily documented by comparing this image with visible-light data that were acquired in previous years by the Landsat satellite. The image is centered at 0.9 degrees north latitude and 101.3 degrees east longitude. The area shown is 50 kilometers by 100 kilometers (31 miles by 62 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is L-band vertically transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.
Space Radar Image of Central Sumatra, Indonesia
1999-04-15
This is a radar image of the central part of the island of Sumatra in Indonesia that shows how the tropical rainforest typical of this country is being impacted by human activity. Native forest appears in green in this image, while prominent pink areas represent places where the native forest has been cleared. The large rectangular areas have been cleared for palm oil plantations. The bright pink zones are areas that have been cleared since 1989, while the dark pink zones are areas that were cleared before 1989. These radar data were processed as part of an effort to assist oil and gas companies working in the area to assess the environmental impact of both their drilling operations and the activities of the local population. Radar images are useful in these areas because heavy cloud cover and the persistent smoke and haze associated with deforestation have prevented usable visible-light imagery from being acquired since 1989. The dark shapes in the upper right (northeast) corner of the image are a chain of lakes in flat coastal marshes. This image was acquired in October 1994 by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour. Environmental changes can be easily documented by comparing this image with visible-light data that were acquired in previous years by the Landsat satellite. The image is centered at 0.9 degrees north latitude and 101.3 degrees east longitude. The area shown is 50 kilometers by 100 kilometers (31 miles by 62 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is L-band vertically transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program. http://photojournal.jpl.nasa.gov/catalog/PIA01797
Low-Profile, Dual-Wavelength, Dual-Polarized Antenna
NASA Technical Reports Server (NTRS)
Carswell, James R.
2010-01-01
A single-aperture, low-profile antenna design has been developed that supports dual-polarization and simultaneous operation at two wavelengths. It realizes multiple beams in the elevation plane, and supports radiometric, radar, and conical scanning applications. This antenna consists of multiple azimuth sticks, with each stick being a multilayer, hybrid design. Each stick forms the h-plane pattern of the C and Ku-band vertically and horizontally polarized antenna beams. By combining several azimuth sticks together, the elevation beam is formed. With a separate transceiver for each stick, the transmit phase and amplitude of each stick can be controlled to synthesize a beam at a specific incidence angle and to realize a particular side-lobe pattern. By changing the transmit phase distribution through the transceivers, the transmit antenna beam can be steered to different incidence angles. By controlling the amplitude distribution, different side lobe patterns and efficiencies can be realized. The receive beams are formed using digital beam synthesis techniques, resulting in very little loss in the receive path, thus enabling a very-low loss receive antenna to support passive measurements.
Space Radar Image of Boston, Massachusetts
NASA Technical Reports Server (NTRS)
1994-01-01
This radar image of the area surrounding Boston, Mass., shows how a spaceborne radar system distinguishes between densely populated urban areas and nearby areas that are relatively unsettled. The bright white area at the right center of the image is downtown Boston. The wide river below and to the left of the city is the Charles River in Boston's Back Bay neighborhood. The dark green patch to the right of the Back Bay is Boston Common. A bridge across the north end of Back Bay connects the cities of Boston and Cambridge. The light green areas that dominate most of the image are the suburban communities surrounding Boston. The many ponds that dot the region appear as dark irregular spots. Many densely populated urban areas show up as red in the image due to the alignment of streets and buildings to the incoming radar beam. North is toward the upper left. The image was acquired on October 9, 1994, by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) as it flew aboard the space shuttle Endeavour. This area is centered at 42.4 degrees north latitude, 71.2 degrees west longitude. The area shown is approximately 37 km by 18 km (23 miles by 11 miles). Colors are assigned to different radar frequencies and polarizations as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is C-band horizontally transmitted, vertically received. SIR-C/X-SAR, a cooperative mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.
Space Radar Image of County Kerry, Ireland
NASA Technical Reports Server (NTRS)
1994-01-01
The Iveragh Peninsula, one of the four peninsulas in southwestern Ireland, is shown in this spaceborne radar image. The lakes of Killarney National Park are the green patches on the left side of the image. The mountains to the right of the lakes include the highest peaks (1,036 meters or 3,400 feet) in Ireland. The patchwork patterns between the mountains are areas of farming and grazing. The delicate patterns in the water are caused by refraction of ocean waves around the peninsula edges and islands, including Skellig Rocks at the right edge of the image. The Skelligs are home to a 15th century monastery and flocks of puffins. The region is part of County Kerry and includes a road called the 'Ring of Kerry' that is one of the most famous tourist routes in Ireland. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the Space Shuttle Endeavour on April 12, 1994. The image is 82 kilometers by 42 kilometers (51 miles by 26 miles) and is centered at 52.0 degrees north latitude, 9.9 degrees west longitude. North is toward the lower left. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, vertically transmitted and received; and blue is C-band, vertically transmitted and received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.
Observations of frontal zone structures with a VHF Doppler radar and radiosondes, part 1.2A
NASA Technical Reports Server (NTRS)
Larsen, M. F.; Rottger, J.
1984-01-01
The SOUSY-VHF-Radar is a pulsed coherent radar operating at 53.5 MHz and located near Bad Lauterbert, West Germany. Since 1977, the facility, operated by the Max-Planck-Institut fur Aeronomie, has been used to make a series of frontal passage observations in the spring and fall. Experiments in winter have been difficult because part of the transmitting and receiving array is usually covered by snow during that part of the year. Wavelengths around 6 m are known to be sensitive to the vertical temperature structure of the atmosphere (GREEN and GAGE, 1980; RASTOGI and ROTTGER, 1982). Thus, it has been possible to use radars operating at frequencies near 500 MHz to locate the tropopause. Comparisons between radar data and radiosonde data have shown that there is a large gradient in the radar reflectivity at the height where the radiosonde tropopause occurs. An experiment carried out by ROTTGER (1979) on March 15 to 16, 1977, showed that the radar's sensitivity to the vertical temperature structure could also be used to locate the position of fronts. The SOUSY-VHF-Radar consists of a transmitting array, also used for receiving in some configurations, that can be scanned in the off-vertical direction but not at sufficiently low elevation angles to study the horizontal extent of structures.
NASA Technical Reports Server (NTRS)
Norikane, L.
1994-01-01
MacMultiview is an interactive tool for the Macintosh II family which allows one to display and make computations utilizing polarimetric radar data collected by the Jet Propulsion Laboratory's imaging SAR (synthetic aperture radar) polarimeter system. The system includes the single-frequency L-band sensor mounted on the NASA CV990 aircraft and its replacement, the multi-frequency P-, L-, and C-band sensors mounted on the NASA DC-8. MacMultiview provides two basic functions: computation of synthesized polarimetric images and computation of polarization signatures. The radar data can be used to compute a variety of images. The total power image displays the sum of the polarized and unpolarized components of the backscatter for each pixel. The magnitude/phase difference image displays the HH (horizontal transmit and horizontal receive polarization) to VV (vertical transmit and vertical receive polarization) phase difference using color. Magnitude is displayed using intensity. The user may also select any transmit and receive polarization combination from which an image is synthesized. This image displays the backscatter which would have been observed had the sensor been configured using the selected transmit and receive polarizations. MacMultiview can also be used to compute polarization signatures, three dimensional plots of backscatter versus transmit and receive polarizations. The standard co-polarization signatures (transmit and receive polarizations are the same) and cross-polarization signatures (transmit and receive polarizations are orthogonal) can be plotted for any rectangular subset of pixels within a radar data set. In addition, the ratio of co- and cross-polarization signatures computed from different subsets within the same data set can also be computed. Computed images can be saved in a variety of formats: byte format (headerless format which saves the image as a string of byte values), MacMultiview (a byte image preceded by an ASCII header), and PICT2 format (standard format readable by MacMultiview and other image processing programs for the Macintosh). Images can also be printed on PostScript output devices. Polarization signatures can be saved in either a PICT format or as a text file containing PostScript commands and printed on any QuickDraw output device. The associated Stokes matrices can be stored in a text file. MacMultiview is written in C-language for Macintosh II series computers. MacMultiview will only run on Macintosh II series computers with 8-bit video displays (gray shades or color). The program also requires a minimum configuration of System 6.0, Finder 6.1, and 1Mb of RAM. MacMultiview is NOT compatible with System 7.0. It requires 32-Bit QuickDraw. Note: MacMultiview may not be fully compatible with preliminary versions of 32-Bit QuickDraw. Macintosh Programmer's Workshop and Macintosh Programmer's Workshop C (version 3.0) are required for recompiling and relinking. The standard distribution medium for this package is a set of three 800K 3.5 inch diskettes in Macintosh format. This program was developed in 1989 and updated in 1991. MacMultiview is a copyrighted work with all copyright vested in NASA. QuickDraw, Finder, Macintosh, and System 7 are trademarks of Apple Computer, Inc.
Space radar image of Galeras Volcano, Colombia
NASA Technical Reports Server (NTRS)
1995-01-01
This radar image of the area surrounding the Galeras volcano in southern Colombia shows the ability of a multi-frequency radar to map volcanic structures that can be dangerous to study on the ground. Galeras has erupted more than 20 times since the area was first visited by European explorers in the 1500s. Volcanic activity levels have been high in the last five years, including an eruption in January 1993 that killed nine people on a scientific expedition to the volcano summit. Galeras is the light green area near the center of the image. The active cone, with a small summit pit, is the red feature nestled against the lower right edge of the caldera (crater) wall. The city of Pasto, with a population of 300,000, is shown in orange near the bottom of the image, just 8 kilometers (5 miles) from the volcano. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/ X-SAR) aboard the space shuttle Endeavour on its 96th orbit on April 15, 1994. North is toward the upper right. The area shown is 49.1 by 36.0 kilometers (30.5 by 22.3 miles), centered at 1.2 degrees north latitude and 77.4 degrees west longitude. The radar illumination is from the top of the image. The false colors in this image were created using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted, vertically received); blue represents the C-band (horizontally transmitted, vertically received). Galeras is one of 15 volcanoes worldwide that are being monitored by the scientific community as an 'International Decade Volcano' because of the hazard that it represents to the local population.
Space Radar Image of Rhine River, France and Germany
NASA Technical Reports Server (NTRS)
1994-01-01
This spaceborne radar image shows a segment of the Rhine River where it forms the border between the Alsace region of northeastern France on the left and the Black Forest region of Germany on the right. The Rhine, one of the largest and most used waterways in central Europe, winds its way through five countries from the Swiss-Austrian Alps to the North Sea coast of the Netherlands. The river valley is densely populated, as seen in this image, which shows the French city of Strasbourg, the light blue and orange area in the upper left center; and the German cities of Kehl, across the river from Strasbourg and Offenburg, the bright area in right center. The fertile valley is famous for its wine production and most of the agricultural areas in the image, shown in purple patches, are vineyards. The light green areas are forest. Scientists can use radar images like this one to monitor the effects of urban and agricultural development on sensitive ecosystems such as the Rhine River valley. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 2, 1994. The image is 34.2 kilometers by 33.2 kilometers (21.2 miles by 20.6 miles) and is centered at 48.5 degrees north latitude, 7.7 degrees east longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.
Space Radar Image of Washington D.C.
NASA Technical Reports Server (NTRS)
1994-01-01
The city of Washington, D.C., is shown is this space radar image. Images like these are useful tools for urban planners and managers, who use them to map and monitor land use patterns. Downtown Washington is the bright area between the Potomac (upper center to lower left) and Anacostia (middle right) rivers. The dark cross shape that is formed by the National Mall, Tidal Basin, the White House and Ellipse is seen in the center of the image. Arlington National Cemetery is the dark blue area on the Virginia (left) side of the Potomac River near the center of the image. The Pentagon is visible in bright white and red, south of the cemetery. Due to the alignment of the radar and the streets, the avenues that form the boundary between Washington and Maryland appear as bright red lines in the top, right and bottom parts of the image, parallel to the image borders. This image is centered at 38.85 degrees north latitude, 77.05 degrees west longitude. North is toward the upper right. The area shown is approximately 29 km by 26 km (18 miles by 16 miles). Colors are assigned to different frequencies and polarizations of the radar as follows: Red is the L-band horizontally transmitted, horizontally received; green is the L-band horizontally transmitted, vertically received; blue is the C-band horizontally transmitted, vertically received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on April 18, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.
Space Radar Image of Florence, Italy
1999-04-15
This radar image shows land use patterns in and around the city of Florence, Italy, shown here in the center of the image. Florence is situated on a plain in the Chianti Hill region of Central Italy. The Arno River flows through town and is visible as the dark line running from the upper right to the bottom center of the image. The city is home to some of the world's most famous art museums. The bridges seen crossing the Arno, shown as faint red lines in the upper right portion of the image, were all sacked during World War II with the exception of the Ponte Vecchio, which remains as Florence's only covered bridge. The large, black V-shaped feature near the center of the image is the Florence Railroad Station. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the Space Shuttle Endeavour on April 14, 1994. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth. This image is centered at 43.7 degrees north latitude and 11.15 degrees east longitude with North toward the upper left of the image. The area shown measures 20 kilometers by 17 kilometers (12.4 miles by 10.6 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is C-band horizontally transmitted, vertically received. http://photojournal.jpl.nasa.gov/catalog/PIA01795
Space Radar Image of Samara, Russia
NASA Technical Reports Server (NTRS)
1994-01-01
This three-frequency space radar image shows the city of Samara, Russia in pink and light green right of center. Samara is at the junction of the Volga and Samara Rivers approximately 800 kilometers (500 miles) southeast of Moscow. The wide river in the center of the image is the Volga. Samara, formerly Kuybyshev, is a busy industrial city known for its chemical, mechanical and petroleum industries. Northwest of the Volga (upper left corner of the image) are deciduous forests of the Samarskaya Luka National Park. Complex patterns in the floodplain of the Volga are caused by 'cut-off' lakes and channels from former courses of the meandering river. The three radar frequencies allow scientists to distinguish different types of agricultural fields in the lower right side of the image. For example, fields which appear light blue are short grass or cleared fields. Purple and green fields contain taller plants or rough plowed soil. Scientists hope to use radar data such as these to understand the environmental consequences of industrial, agricultural and natural preserve areas coexisting in close proximity. This image is 50 kilometers by 26 kilometers (31 by 16 miles) and is centered at 53.2 degrees north latitude, 50.1 degrees east longitude. North is toward the top of the image. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is C-band, horizontally transmitted and vertically received; and blue is X-band, vertically transmitted and received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on October 1, 1994 onboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth.
Space Radar Image of Mammoth Mountain, California
1999-05-01
This false-color composite radar image of the Mammoth Mountain area in the Sierra Nevada Mountains, California, was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 67th orbit on October 3, 1994. The image is centered at 37.6 degrees north latitude and 119.0 degrees west longitude. The area is about 39 kilometers by 51 kilometers (24 miles by 31 miles). North is toward the bottom, about 45 degrees to the right. In this image, red was created using L-band (horizontally transmitted/vertically received) polarization data; green was created using C-band (horizontally transmitted/vertically received) polarization data; and blue was created using C-band (horizontally transmitted and received) polarization data. Crawley Lake appears dark at the center left of the image, just above or south of Long Valley. The Mammoth Mountain ski area is visible at the top right of the scene. The red areas correspond to forests, the dark blue areas are bare surfaces and the green areas are short vegetation, mainly brush. The purple areas at the higher elevations in the upper part of the scene are discontinuous patches of snow cover from a September 28 storm. New, very thin snow was falling before and during the second space shuttle pass. In parallel with the operational SIR-C data processing, an experimental effort is being conducted to test SAR data processing using the Jet Propulsion Laboratory's massively parallel supercomputing facility, centered around the Cray Research T3D. These experiments will assess the abilities of large supercomputers to produce high throughput Synthetic Aperture Radar processing in preparation for upcoming data-intensive SAR missions. The image released here was produced as part of this experimental effort. http://photojournal.jpl.nasa.gov/catalog/PIA01746
Space Radar Image of Canberra, Australia
NASA Technical Reports Server (NTRS)
1994-01-01
Australia's capital city, Canberra, is shown in the center of this spaceborne radar image. Images like this can help urban planners assess land use patterns. Heavily developed areas appear in bright patchwork patterns of orange, yellow and blue. Dense vegetation appears bright green, while cleared areas appear in dark blue or black. Located in southeastern Australia, the site of Canberra was selected as the capital in 1901 as a geographic compromise between Sydney and Melbourne. Design and construction of the city began in 1908 under the supervision of American architect Walter Burley-Griffin. Lake Burley-Griffin is located above and to the left of the center of the image. The bright pink area is the Parliament House. The city streets, lined with government buildings, radiate like spokes from the Parliament House. The bright purple cross in the lower left corner of the image is a reflection from one of the large dish-shaped radio antennas at the Tidbinbilla, Canberra Deep Space Network Communication Complex, operated jointly by NASA and the Australian Space Office. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 10, 1994, onboard the space shuttle Endeavour. The image is 28 kilometers by 25 kilometers (17 miles by 15 miles) and is centered at 35.35 degrees south latitude, 149.17 degrees east longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Office of Mission to Planet Earth.
An active K/Ka-band antenna array for the NASA ACTS mobile terminal
NASA Technical Reports Server (NTRS)
Tulintseff, A.; Crist, R.; Densmore, Art; Sukamto, L.
1993-01-01
An active K/Ka-band antenna array is currently under development for NASA's ACTS Mobile Terminal (AMT). The AMT task will demonstrate voice, data, and video communications to and from the AMT vehicle in Los Angeles, California, and a base station in Cleveland, Ohio, via the ACTS satellite at 30 and 20 GHz. Satellite tracking for the land-mobile vehicular antenna system involves 'mechanical dithering' of the antenna, where the antenna radiates a fixed beam 46 deg. above the horizon. The antenna is to transmit horizontal polarization and receive vertical polarization at 29.634 plus or minus 0.15 GHz and 19.914 plus or minus 0.15 GHz, respectively. The active array will provide a minimum of 22 dBW EIRP transmit power density and a -8 dB/K deg. receive sensitivity.
Day, Jonathan P.; Schulz, Nora; Leftwich, Philip T.; de Jong, Maaike A.; Wilfert, Lena; Smith, Sophia C. L.; McGonigle, John E.; Houslay, Thomas M.; Livraghi, Luca; Evans, Luke C.; Friend, Lucy A.; Vontas, John; Kambouraki, Natasa
2017-01-01
A small number of free-living viruses have been found to be obligately vertically transmitted, but it remains uncertain how widespread vertically transmitted viruses are and how quickly they can spread through host populations. Recent metagenomic studies have found several insects to be infected with sigma viruses (Rhabdoviridae). Here, we report that sigma viruses that infect Mediterranean fruit flies (Ceratitis capitata), Drosophila immigrans, and speckled wood butterflies (Pararge aegeria) are all vertically transmitted. We find patterns of vertical transmission that are consistent with those seen in Drosophila sigma viruses, with high rates of maternal transmission, and lower rates of paternal transmission. This mode of transmission allows them to spread rapidly in populations, and using viral sequence data we found the viruses in D. immigrans and C. capitata had both recently swept through host populations. The viruses were common in nature, with mean prevalences of 12% in C. capitata, 38% in D. immigrans and 74% in P. aegeria. We conclude that vertically transmitted rhabdoviruses may be widespread in a broad range of insect taxa, and that these viruses can have dynamic interactions with their hosts. PMID:28100819
Longdon, Ben; Day, Jonathan P; Schulz, Nora; Leftwich, Philip T; de Jong, Maaike A; Breuker, Casper J; Gibbs, Melanie; Obbard, Darren J; Wilfert, Lena; Smith, Sophia C L; McGonigle, John E; Houslay, Thomas M; Wright, Lucy I; Livraghi, Luca; Evans, Luke C; Friend, Lucy A; Chapman, Tracey; Vontas, John; Kambouraki, Natasa; Jiggins, Francis M
2017-01-25
A small number of free-living viruses have been found to be obligately vertically transmitted, but it remains uncertain how widespread vertically transmitted viruses are and how quickly they can spread through host populations. Recent metagenomic studies have found several insects to be infected with sigma viruses (Rhabdoviridae). Here, we report that sigma viruses that infect Mediterranean fruit flies (Ceratitis capitata), Drosophila immigrans, and speckled wood butterflies (Pararge aegeria) are all vertically transmitted. We find patterns of vertical transmission that are consistent with those seen in Drosophila sigma viruses, with high rates of maternal transmission, and lower rates of paternal transmission. This mode of transmission allows them to spread rapidly in populations, and using viral sequence data we found the viruses in D. immigrans and C. capitata had both recently swept through host populations. The viruses were common in nature, with mean prevalences of 12% in C. capitata, 38% in D. immigrans and 74% in P. aegeria We conclude that vertically transmitted rhabdoviruses may be widespread in a broad range of insect taxa, and that these viruses can have dynamic interactions with their hosts. © 2017 The Authors.
Electromagnetic wave method for mapping subterranean earth formations
Shuck, Lowell Z.; Fasching, George E.; Balanis, Constantine A.
1977-01-01
The present invention is directed to a method for remotely mapping subterranean coal beds prior to and during in situ gasification operations. This method is achieved by emplacing highly directional electromagnetic wave transmitters and receivers in bore holes penetrating the coal beds and then mapping the anomalies surrounding each bore hole by selectively rotating and vertically displacing the directional transmitter in a transmitting mode within the bore hole, and thereafter, initiating the gasification of the coal at bore holes separate from those containing the transmitters and receivers and then utilizing the latter for monitoring the burn front as it progresses toward the transmitters and receivers.
Radar Detection Performance in Medium Grazing Angle X-band Sea-clutter
2015-12-01
polarisation HV: Horizontal transmit and Vertical receive polarisation IRSG: Imagery Radar Systems Group MAST06: Maritime Surveillance Trial 2006 PDF...different combinations of the polarisation, collection geometry and environmental conditions. Relevant models include the imaging radar systems group (IRSG...atmospheric and system losses respectively and pulse compression adds a gain given by the pulse length - bandwidth product, TpB. The thermal noise power in the
Space Radar Image of Long Valley, California - 3-D view
1999-05-01
This is a three-dimensional perspective view of Long Valley, California by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. This view was constructed by overlaying a color composite SIR-C image on a digital elevation map. The digital elevation map was produced using radar interferometry, a process by which radar data are acquired on different passes of the space shuttle and, which then, are compared to obtain elevation information. The data were acquired on April 13, 1994 and on October 3, 1994, during the first and second flights of the SIR-C/X-SAR radar instrument. The color composite radar image was produced by assigning red to the C-band (horizontally transmitted and vertically received) polarization; green to the C-band (vertically transmitted and received) polarization; and blue to the ratio of the two data sets. Blue areas in the image are smooth and yellow areas are rock outcrops with varying amounts of snow and vegetation. The view is looking north along the northeastern edge of the Long Valley caldera, a volcanic collapse feature created 750,000 years ago and the site of continued subsurface activity. Crowley Lake is off the image to the left. http://photojournal.jpl.nasa.gov/catalog/PIA01757
Simmons, H.E.; Dunham, J.P.; Zinn, K. E.; Munkvold, G.P.; Holmes, E.C.; Stephenson, A.G.
2013-01-01
The role played by seed transmission in the evolution and epidemiology of viral crop pathogens remains unclear. We determined the seed infection and vertical transmission rates of zucchini yellow mosaic virus (ZYMV), in addition to undertaking Illumina sequencing of nine vertically transmitted ZYMV populations. We previously determined the seed-to-seedling transmission rate of ZYMV in Cucurbita pepo ssp. texana (a wild gourd) to be 1.6%, and herein observed a similar rate (1.8%) in the subsequent generation. We also observed that the seed infection rate is substantially higher (21.9%) than the seed-to-seedling transmission rate, suggesting that a major population bottleneck occurs during seed germination and seedling growth. In contrast, that two thirds of the variants present in the horizontally transmitted inoculant population were also present in the vertically transmitted populations implies that the bottleneck at vertical transmission may not be particularly severe. Strikingly, all of the vertically infected plants were symptomless in contrast to those infected horizontally, suggesting that vertical infection may be cryptic. Although no known virulence determining mutations were observed in the vertically infected samples, the 5’ untranslated region was highly variable, with at least 26 different major haplotypes in this region compared to the two major haplotypes observed in the horizontally transmitted population. That the regions necessary for vector transmission are retained in the vertically infected populations, combined with the cryptic nature of vertical infection, suggests that seed transmission may be a significant contributor to the spread of ZYMV. PMID:23845301
Host-switching by a vertically transmitted rhabdovirus in Drosophila.
Longdon, Ben; Wilfert, Lena; Osei-Poku, Jewelna; Cagney, Heather; Obbard, Darren J; Jiggins, Francis M
2011-10-23
A diverse range of endosymbionts are found within the cells of animals. As these endosymbionts are normally vertically transmitted, we might expect their evolutionary history to be dominated by host-fidelity and cospeciation with the host. However, studies of bacterial endosymbionts have shown that while this is true for some mutualists, parasites often move horizontally between host lineages over evolutionary timescales. For the first time, to our knowledge, we have investigated whether this is also the case for vertically transmitted viruses. Here, we describe four new sigma viruses, a group of vertically transmitted rhabdoviruses previously known in Drosophila. Using sequence data from these new viruses, and the previously described sigma viruses, we show that they have switched between hosts during their evolutionary history. Our results suggest that sigma virus infections may be short-lived in a given host lineage, so that their long-term persistence relies on rare horizontal transmission events between hosts.
Space Radar Image of Teide Volcano
1999-04-15
This radar image shows the Teide volcano on the island of Tenerife in the Canary Islands. The Canary Islands, part of Spain, are located in the eastern Atlantic Ocean off the coast of Morocco. Teide has erupted only once in the 20th Century, in 1909, but is considered a potentially threatening volcano due to its proximity to the city of Santa Cruz de Tenerife, shown in this image as the purple and white area on the lower right edge of the island. The summit crater of Teide, clearly visible in the left center of the image, contains lava flows of various ages and roughnesses that appear in shades of green and brown. Different vegetation zones, both natural and agricultural, are detected by the radar as areas of purple, green and yellow on the volcano's flanks. Scientists are using images such as this to understand the evolution of the structure of Teide, especially the formation of the summit caldera and the potential for collapse of the flanks. The volcano is one of 15 identified by scientists as potentially hazardous to local populations, as part of the international The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 11, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 28.3 degrees North latitude and 16.6 degrees West longitude. North is toward the upper right. The area shown measures 90 kilometers by 54.5 kilometers (55.8 miles by 33.8 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is C-band horizontally transmitted, vertically received. http://photojournal.jpl.nasa.gov/catalog/PIA01779
Space Radar Image of Pinacate Volcanic Field, Mexico
NASA Technical Reports Server (NTRS)
1994-01-01
This spaceborne radar image shows the Pinacate Volcanic Field in the state of Sonora, Mexico, about 150 kilometers (93 miles) southeast of Yuma, Arizona. The United States/Mexico border runs across the upper right corner of the image. More than 300 volcanic vents occur in the Pinacate field, including cinder cones that experienced small eruptions as recently as 1934. The larger circular craters seen in the image are a type of volcano known as a 'maar', which erupts violently when rising magma encounters groundwater, producing highly pressurized steam that powers explosive eruptions. The highest elevations in the volcanic field, about 1200 meters (4000 feet), occur in the 'shield volcano' structure shown in bright white, occupying most of the left half of the image. Numerous cinder cones dot the flanks of the shield. The yellow patches to the right of center are newer, rough-textured lava flows that strongly reflect the long wavelength radar signals. Along the left edge of the image are sand dunes of the Gran Desierto. The dark areas are smooth sand and the brighter brown and purple areas have vegetation on the surface. Radar data provide a unique means to study the different types of lava flows and wind-blown sands. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on April 18, 1994. The image is 57 kilometers by 48 kilometers (35 miles by 30 miles) and is centered at 31.7 degrees north latitude, 113.4 degrees West longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.
Space Radar Image of Pishan, China
NASA Technical Reports Server (NTRS)
1994-01-01
This radar image is centered near the small town of Pishan in northwest China, about 280 km (174 miles) southeast of the city of Kashgar along the ancient Silk Route in the Taklamakan desert of the Xinjiang Province. Geologists are using this radar image as a map to study past climate changes and tectonics of the area. The irregular lavender branching patterns in the center of the image are the remains of ancient alluvial fans, gravel deposits that have accumulated at the base of the mountains during times of wetter climate. The subtle striped pattern cutting across the ancient fans are caused by thrusting of the Kun Lun Mountains north. This motion is caused by the continuing plate-tectonic collision of India with Asia. Modern fans show up as large lavender triangles above the ancient fan deposits. Yellow areas on the modern fans are vegetated oases. The gridded pattern results from the alignment of poplar trees that have been planted as wind breaks. The reservoir at the top of the image is part of a sophisticated irrigation system that supplies water to the oases. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour in April 1994. This image is centered at 37.4 degrees north latitude, 78.3 degrees east longitude and shows an area approximately 50 km by 100 km (31 miles by 62 miles). The colors are assigned to different frequencies and polarizations of the radar as follows: Red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; and blue is C-band horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and the United States space agencies, is part of NASA's Mission to Planet Earth.
Space Radar Image of Wenatchee, Washington
NASA Technical Reports Server (NTRS)
1994-01-01
This spaceborne radar image shows a segment of the Columbia River as it passes through the area of Wenatchee, Washington, about 220 kilometers (136 miles) east of Seattle. The Wenatchee Mountains, part of the Cascade Range, are shown in green at the lower left of the image. The Cascades create a 'rain shadow' for the region, limiting rainfall east of the range to less than 26 centimeters (10 inches) per year. The radar's ability to see different types of vegetation is highlighted in the contrast between the pine forests, that appear in green and the dry valley plain that shows up as dark purple. The cities of Wenatchee and East Wenatchee are the grid-like areas straddling the Columbia River in the left center of the image. With a population of about 60,000, the region produces about half of Washington state's lucrative apple crop. Several orchard areas appear as green rectangular patches to the right of the river in the lower right center. Radar images such as these can be used to monitor land use patterns in areas such as Wenatchee, that have diverse and rapidly changing urban, agricultural and wild land pressures. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 10, 1994. The image is 38 kilometers by 45 kilometers (24 miles by 30 miles) and is centered at 47.3 degrees North latitude, 120.1 degrees West longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.
Space Radar Image of Calcutta, West Bengal, India
NASA Technical Reports Server (NTRS)
1994-01-01
This radar image of Calcutta, India, illustrates different urban land use patterns. Calcutta, the largest city in India, is located on the banks of the Hugli River, shown as the thick, dark line in the upper portion of the image. The surrounding area is a flat swampy region with a subtropical climate. As a result of this marshy environment, Calcutta is a compact city, concentrated along the fringes of the river. The average elevation is approximately 9 meters (30 feet) above sea level. Calcutta is located 154 kilometers (96 miles) upstream from the Bay of Bengal. Central Calcutta is the light blue and orange area below the river in the center of the image. The bridge spanning the river at the city center is the Howrah Bridge which links central Calcutta to Howrah. The dark region just below the river and to the left of the city center is Maidan, a large city park housing numerous cultural and recreational facilities. The international airport is in the lower right of the image. The bridge in the upper right is the Bally Bridge which links the suburbs of Bally and Baranagar. This image is 30 kilometers by 10 kilometers (19 miles by 6 miles)and is centered at 22.3 degrees north latitude, 88.2 degrees east longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on October 5, 1994, onboard the Space Shuttle Endeavour. SIR-C/X SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.
Space Radar Image of Great Wall of China
1999-04-15
These radar images show two segments of the Great Wall of China in a desert region of north-central China, about 700 kilometers (434 miles) west of Beijing. The wall appears as a thin orange band, running from the top to the bottom of the left image, and from the middle upper-left to the lower-right of the right image. These segments of the Great Wall were constructed in the 15th century, during the Ming Dynasty. The wall is between 5 and 8 meters high (16 to 26 feet) in these areas. The entire wall is about 3,000 kilometers (1,864 miles) long and about 150 kilometers (93 miles) of the wall appear in these two images. The wall is easily detected from space by radar because its steep, smooth sides provide a prominent surface for reflection of the radar beam. Near the center of the left image, two dry lake beds have been developed for salt extraction. Rectangular patterns in both images indicate agricultural development, primarily wheat fields. The images were acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on April 10, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The left image is centered at 37.7 degrees North latitude and 107.5 degrees East longitude. The right image is centered at 37.5 degrees North latitude and 108.1 degrees East longitude. North is toward the upper right. Each area shown measures 25 kilometers by 75 kilometers (15.5 miles by 45.5 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is C-band horizontally transmitted, vertically received. http://photojournal.jpl.nasa.gov/catalog/PIA01794
Space Radar Image of Taal Volcano, Philippines
1999-05-01
This is an image of Taal volcano, near Manila on the island of Luzon in the Philippines. The black area in the center is Taal Lake, which nearly fills the 30-kilometer-diameter (18-mile) caldera. The caldera rim consists of deeply eroded hills and cliffs. The large island in Taal Lake, which itself contains a crater lake, is known as Volcano Island. The bright yellow patch on the southwest side of the island marks the site of an explosion crater that formed during a deadly eruption of Taal in 1965. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 78th orbit on October 5, 1994. The image shows an area approximately 56 kilometers by 112 kilometers (34 miles by 68 miles) that is centered at 14.0 degrees north latitude and 121.0 degrees east longitude. North is toward the upper right of the image. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). Since 1572, Taal has erupted at least 34 times. Since early 1991, the volcano has been restless, with swarms of earthquakes, new steaming areas, ground fracturing, and increases in water temperature of the lake. Volcanologists and other local authorities are carefully monitoring Taal to understand if the current activity may foretell an eruption. Taal is one of 15 "Decade Volcanoes" that have been identified by the volcanology community as presenting large potential hazards to population centers. The bright area in the upper right of the image is the densely populated city of Manila, only 50 kilometers (30 miles) north of the central crater. http://photojournal.jpl.nasa.gov/catalog/PIA01768
South Africa, Namibia Diamond Deposits (close-up)
NASA Technical Reports Server (NTRS)
1998-01-01
This radar image shows a close up view of a portion of the Richtersveld National Park and Orange River (top of image) in the Northern Cape Province of the Republic of South Africa. The Orange River marks the boundary between South Africa to the south and Namibia to the north. This is an area of active mining for diamonds, which were washed downstream from the famous Kimberley Diamond Area, millions of years ago when the river was much larger. The mining is focused on ancient drainages of the Orange River which are currently buried by think layers of sand and gravel. Scientists are investigating whether these ancient drainages can be seen with the radar's ability to penetrate sand cover in extremely dry regions. A mine, shown in yellow, is on the southern bank of the river in an abandoned bend which is known as an 'oxbow.' The small bright circular areas (left edge of image) west of the mine circles are fields of a large ostrich farm that are being watered with pivot irrigation. The large dark area in the center of the image is the Kubus Pluton, a body of granite rock that broke through the surrounding rocks about 550 million years ago. North is toward the upper right. The area shown is about 35 by 25 kilometers (21.8 by 15.5 miles) centered at 28.4 degrees south latitude, 16.8 degrees east longitude. Colors are assigned to different radar frequencies and polarizations as follows: red is L-band horizontally transmitted and horizontally received; green is L-band horizontally transmitted and vertically received; blue is C-band horizontally transmitted and vertically received. The image was acquired on April 18, 1994 by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour. SIR-C/X-SAR is a joint mission of the U.S./German and Italian space agencies.
South Africa, Namibia Diamond Deposits
NASA Technical Reports Server (NTRS)
1998-01-01
This radar image covers a portion of the Richtersveld National Park and Orange River (top of image) in the Northern Cape Province of the Republic of South Africa. The Orange River marks the boundary between South Africa to the south and Namibia to the north. This is an area of active mining for diamonds, which were washed downstream from the famous Kimberley Diamond Area, millions of years ago when the river was much larger. The mining is focused on ancient drainages of the Orange River which are currently buried by think layers of sand and gravel. Scientists are investigating whether these ancient drainages can be seen with the radar's ability to penetrate sand cover in extremely dry regions. A mine, shown in yellow, is on the southern bank of the river in an abandoned bend which is known as an 'oxbow.' The small bright circular areas (left edge of image) west of the mine circles are fields of a large ostrich farm that are being watered with pivot irrigation. The large dark area in the center of the image is the Kubus Pluton, a body of granite rock that broke through the surrounding rocks about 550 million years ago. North is toward the upper right. The area shown is about 55 by 60 kilometers (34 by 37 miles) centered at 28.4 degrees south latitude, 16.8 degrees east longitude. Colors are assigned to different radar frequencies and polarizations as follows: red is L-band horizontally transmitted and horizontally received; green is L-band horizontally transmitted and vertically received; blue is C-band horizontally transmitted and vertically received. The image was acquired on April 18, 1994 by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour. SIR-C/X-SAR is a joint mission of the U.S./German and Italian space agencies.
Space Radar Image of Pishan, China
1999-04-15
This radar image is centered near the small town of Pishan in northwest China, about 280 km (174 miles) southeast of the city of Kashgar along the ancient Silk Route in the Taklamakan desert of the Xinjiang Province. Geologists are using this radar image as a map to study past climate changes and tectonics of the area. The irregular lavender branching patterns in the center of the image are the remains of ancient alluvial fans, gravel deposits that have accumulated at the base of the mountains during times of wetter climate. The subtle striped pattern cutting across the ancient fans are caused by thrusting of the Kun Lun Mountains north. This motion is caused by the continuing plate-tectonic collision of India with Asia. Modern fans show up as large lavender triangles above the ancient fan deposits. Yellow areas on the modern fans are vegetated oases. The gridded pattern results from the alignment of poplar trees that have been planted as wind breaks. The reservoir at the top of the image is part of a sophisticated irrigation system that supplies water to the oases. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour in April 1994. This image is centered at 37.4 degrees north latitude, 78.3 degrees east longitude and shows an area approximately 50 km by 100 km (31 miles by 62 miles). The colors are assigned to different frequencies and polarizations of the radar as follows: Red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; and blue is C-band horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and the United States space agencies, is part of NASA's Mission to Planet Earth. http://photojournal.jpl.nasa.gov/catalog/PIA01796
Space Radar Image of Kliuchevskoi Volcano, Russia
1999-05-01
This is an image of the Kliuchevskoi volcano, Kamchatka, Russia, which began to erupt on September 30, 1994. Kliuchevskoi is the bright white peak surrounded by red slopes in the lower left portion of the image. The image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 25th orbit on October 1, 1994. The image shows an area approximately 30 kilometers by 60 kilometers (18.5 miles by 37 miles) that is centered at 56.18 degrees north latitude and 160.78 degrees east longitude. North is toward the top of the image. The Kamchatka volcanoes are among the most active volcanoes in the world. The volcanic zone sits above a tectonic plate boundary, where the Pacific plate is sinking beneath the northeast edge of the Eurasian plate. The Endeavour crew obtained dramatic video and photographic images of this region during the eruption, which will assist scientists in analyzing the dynamics of the current activity. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). The Kamchatka River runs from left to right across the image. An older, dormant volcanic region appears in green on the north side of the river. The current eruption included massive ejections of gas, vapor and ash, which reached altitudes of 20,000 meters (65,000 feet). New lava flows are visible on the flanks of Kliuchevskoi, appearing yellow/green in the image, superimposed on the red surfaces in the lower center. Melting snow triggered mudflows on the north flank of the volcano, which may threaten agricultural zones and other settlements in the valley to the north. http://photojournal.jpl.nasa.gov/catalog/PIA01731
Space Radar Image of Craters of the Moon, Idaho
NASA Technical Reports Server (NTRS)
1994-01-01
Ancient lava flows dating back 2,000 to 15,000 years are shown in light green and red on the left side of this space radar image of the Craters of the Moon National Monument area in Idaho. The volcanic cones that produced these lava flows are the dark points shown within the light green area. Craters of the Moon National Monument is part of the Snake River Plain volcanic province. Geologists believe this area was formed as the North American tectonic plate moved across a 'hot spot' which now lies beneath Yellowstone National Park. The irregular patches, shown in red, green and purple in the lower half of the image are lava flows of different ages and surface roughnesses. One of these lava flows is surrounded by agricultural fields, the blue and purple geometric features, in the right center of the image. The town of Arco, Idaho is the bright yellow area on the right side of the agricultural area. The peaks along the top of the image are the White Knob Mountains. The Big Lost River flows out of the canyon at the top right of the image. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) when it flew aboard the space shuttle Endeavour on October 5, 1994. This image is centered at 43.58 degrees north latitude, 113.42 degrees west longitude. The area shown is approximately 33 kilometers by 48 kilometers 20.5 miles by 30 miles). Colors are assigned to different frequencies and polarizations of the radar as follows: red is the L-band horizontally transmitted, horizontally received; green is the L-band horizontally transmitted, vertically received; blue is the C-band horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.
Vertically transmitted viral endosymbionts of insects: do sigma viruses walk alone?
Longdon, Ben; Jiggins, Francis M
2012-10-07
Insects are host to a wide range of vertically transmitted bacterial endosymbionts, but we know relatively little about their viral counterparts. Here, we discuss the vertically transmitted viral endosymbionts of insects, firstly examining the diversity of this group, and then focusing on the well-studied sigma viruses that infect dipterans. Despite limited sampling, evidence suggests that vertically transmitted viruses may be common in insects. Unlike bacteria, viruses can be transmitted through sperm and eggs, a trait that allows them to rapidly spread through host populations even when infection is costly to the host. Work on Drosophila melanogaster has shown that sigma viruses and their hosts are engaged in a coevolutionary arms race, in which the spread of resistance genes in the host population is followed by the spread of viral genotypes that can overcome host resistance. In the long-term, associations between sigma viruses and their hosts are unstable, and the viruses persist by occasionally switching to new host species. It therefore seems likely that viral endosymbionts have major impacts on the evolution and ecology of insects.
Vertically transmitted viral endosymbionts of insects: do sigma viruses walk alone?
Longdon, Ben; Jiggins, Francis M.
2012-01-01
Insects are host to a wide range of vertically transmitted bacterial endosymbionts, but we know relatively little about their viral counterparts. Here, we discuss the vertically transmitted viral endosymbionts of insects, firstly examining the diversity of this group, and then focusing on the well-studied sigma viruses that infect dipterans. Despite limited sampling, evidence suggests that vertically transmitted viruses may be common in insects. Unlike bacteria, viruses can be transmitted through sperm and eggs, a trait that allows them to rapidly spread through host populations even when infection is costly to the host. Work on Drosophila melanogaster has shown that sigma viruses and their hosts are engaged in a coevolutionary arms race, in which the spread of resistance genes in the host population is followed by the spread of viral genotypes that can overcome host resistance. In the long-term, associations between sigma viruses and their hosts are unstable, and the viruses persist by occasionally switching to new host species. It therefore seems likely that viral endosymbionts have major impacts on the evolution and ecology of insects. PMID:22859592
Rhabdoviruses in two species of Drosophila: vertical transmission and a recent sweep.
Longdon, Ben; Wilfert, Lena; Obbard, Darren J; Jiggins, Francis M
2011-05-01
Insects are host to a diverse range of vertically transmitted micro-organisms, but while their bacterial symbionts are well-studied, little is known about their vertically transmitted viruses. We have found that two sigma viruses (Rhabdoviridae) recently discovered in Drosophila affinis and Drosophila obscura are both vertically transmitted. As is the case for the sigma virus of Drosophila melanogaster, we find that both males and females can transmit these viruses to their offspring. Males transmit lower viral titers through sperm than females transmit through eggs, and a lower proportion of their offspring become infected. In natural populations of D. obscura in the United Kingdom, we found that 39% of flies were infected and that the viral population shows clear evidence of a recent expansion, with extremely low genetic diversity and a large excess of rare polymorphisms. Using sequence data we estimate that the virus has swept across the United Kingdom within the past ∼11 years, during which time the viral population size doubled approximately every 9 months. Using simulations based on our lab estimates of transmission rates, we show that the biparental mode of transmission allows the virus to invade and rapidly spread through populations at rates consistent with those measured in the field. Therefore, as predicted by our simulations, the virus has undergone an extremely rapid and recent increase in population size. In light of this and earlier studies of a related virus in D. melanogaster, we conclude that vertically transmitted rhabdoviruses may be common in insects and that these host-parasite interactions can be highly dynamic.
Simmons, H E; Dunham, J P; Zinn, K E; Munkvold, G P; Holmes, E C; Stephenson, A G
2013-09-01
The role played by seed transmission in the evolution and epidemiology of viral crop pathogens remains unclear. We determined the seed infection and vertical transmission rates of zucchini yellow mosaic virus (ZYMV), in addition to undertaking Illumina sequencing of nine vertically transmitted ZYMV populations. We previously determined the seed-to-seedling transmission rate of ZYMV in Cucurbita pepo ssp. texana (a wild gourd) to be 1.6%, and herein observed a similar rate (1.8%) in the subsequent generation. We also observed that the seed infection rate is substantially higher (21.9%) than the seed-to-seedling transmission rate, suggesting that a major population bottleneck occurs during seed germination and seedling growth. In contrast, that two thirds of the variants present in the horizontally transmitted inoculant population were also present in the vertically transmitted populations implies that the bottleneck at vertical transmission may not be particularly severe. Strikingly, all of the vertically infected plants were symptomless in contrast to those infected horizontally, suggesting that vertical infection may be cryptic. Although no known virulence determining mutations were observed in the vertically infected samples, the 5' untranslated region was highly variable, with at least 26 different major haplotypes in this region compared to the two major haplotypes observed in the horizontally transmitted population. That the regions necessary for vector transmission are retained in the vertically infected populations, combined with the cryptic nature of vertical infection, suggests that seed transmission may be a significant contributor to the spread of ZYMV. Copyright © 2013 Elsevier B.V. All rights reserved.
A dual polarized antenna system using a meanderline polarizer
NASA Technical Reports Server (NTRS)
Burger, H. A.
1978-01-01
Certain applications of synthetic aperture radars require transmitting on one linear polarization and receiving on two orthogonal linear polarizations for adequate characterization of the surface. To meet the current need at minimum cost, it was desirable to use two identical horizontally polarized shaped beam antennas and to change the polarization of one of them by a polarization conversion plate. The plate was realized as a four-layer meanderline polarizer designed to convert horizontal polarization to vertical.
Space Radar Image of Long Valley, California in 3-D
1999-05-01
This three-dimensional perspective view of Long Valley, California was created from data taken by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. This image was constructed by overlaying a color composite SIR-C radar image on a digital elevation map. The digital elevation map was produced using radar interferometry, a process by which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. The interferometry data were acquired on April 13,1994 and on October 3, 1994, during the first and second flights of the SIR-C/X-SAR instrument. The color composite radar image was taken in October and was produced by assigning red to the C-band (horizontally transmitted and vertically received) polarization; green to the C-band (vertically transmitted and received) polarization; and blue to the ratio of the two data sets. Blue areas in the image are smooth and yellow areas are rock outcrops with varying amounts of snow and vegetation. The view is looking north along the northeastern edge of the Long Valley caldera, a volcanic collapse feature created 750,000 years ago and the site of continued subsurface activity. Crowley Lake is the large dark feature in the foreground. http://photojournal.jpl.nasa.gov/catalog/PIA01769
Space Radar Image of Niya Ruins, Taklamakan Desert
1999-05-01
This radar image is of an area thought to contain the ruins of the ancient settlement of Niya. It is located in the southwestern corner of the Taklamakan Desert in China Sinjiang Province. This oasis was part of the famous Silk Road, an ancient trade route from one of China's earliest capitols, Xian, to the West. The image shows a white linear feature trending diagonally from the upper left to the lower right. Scientists believe this newly [sic] discovered feature is a man-made canal which presumably diverted river waters toward the settlement of Niya for irrigation purposes. The image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 106th orbit on April 16, 1994, and is centered at 37.78 degrees north latitude and 82.41 degrees east longitude. The false-color radar image was created by displaying the C-band (horizontally transmitted and received) return in red, the L-band (horizontally transmitted and received) return in green, and the L-band (horizontally transmitted and vertically received) return in blue. Areas in mottled white and purple are low-lying floodplains of the Niya River. Dark green and black areas between river courses are higher ridges or dunes confining the water flow. http://photojournal.jpl.nasa.gov/catalog/PIA01725
Xue, Ling; Scoglio, Caterina
2013-05-01
A wide range of infectious diseases are both vertically and horizontally transmitted. Such diseases are spatially transmitted via multiple species in heterogeneous environments, typically described by complex meta-population models. The reproduction number, R0, is a critical metric predicting whether the disease can invade the meta-population system. This paper presents the reproduction number for a generic disease vertically and horizontally transmitted among multiple species in heterogeneous networks, where nodes are locations, and links reflect outgoing or incoming movement flows. The metapopulation model for vertically and horizontally transmitted diseases is gradually formulated from two species, two-node network models. We derived an explicit expression of R0, which is the spectral radius of a matrix reduced in size with respect to the original next generation matrix. The reproduction number is shown to be a function of vertical and horizontal transmission parameters, and the lower bound is the reproduction number for horizontal transmission. As an application, the reproduction number and its bounds for the Rift Valley fever zoonosis, where livestock, mosquitoes, and humans are the involved species are derived. By computing the reproduction number for different scenarios through numerical simulations, we found the reproduction number is affected by livestock movement rates only when parameters are heterogeneous across nodes. To summarize, our study contributes the reproduction number for vertically and horizontally transmitted diseases in heterogeneous networks. This explicit expression is easily adaptable to specific infectious diseases, affording insights into disease evolution. Copyright © 2013 Elsevier Inc. All rights reserved.
Space Radar Image of Mississippi Delta
NASA Technical Reports Server (NTRS)
1999-01-01
This is a radar image of the Mississippi River Delta where the river enters into the Gulf of Mexico along the coast of Louisiana. This multi-frequency image demonstrates the capability of the radar to distinguish different types of wetlands surfaces in river deltas. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on October 2, 1995. The image is centered on latitude 29.3 degrees North latitude and 89.28 degrees West longitude. The area shown is approximately 63 kilometers by 43 kilometers (39 miles by 26 miles). North is towards the upper right of the image. As the river enters the Gulf of Mexico, it loses energy and dumps its load of sediment that it has carried on its journey through the mid-continent. This pile of sediment, or mud, accumulates over the years building up the delta front. As one part of the delta becomes clogged with sediment, the delta front will migrate in search of new areas to grow. The area shown on this image is the currently active delta front of the Mississippi. The migratory nature of the delta forms natural traps for oil and the numerous bright spots along the outside of the delta are drilling platforms. Most of the land in the image consists of mud flats and marsh lands. There is little human settlement in this area due to the instability of the sediments. The main shipping channel of the Mississippi River is the broad red stripe running northwest to southeast down the left side of the image. The bright spots within the channel are ships. The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vertically received; blue is X-band vertically transmitted, vertically received. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.
Wu, Xueling; Parast, Adam B.; Richardson, Barbra A.; Nduati, Ruth; John-Stewart, Grace; Mbori-Ngacha, Dorothy; Rainwater, Stephanie M. J.; Overbaugh, Julie
2006-01-01
Maternal passive immunity typically plays a critical role in protecting infants from new infections; however, the specific contribution of neutralizing antibodies in limiting mother-to-child transmission of human immunodeficiency virus type 1 is unclear. By examining cloned envelope variants from 12 transmission pairs, we found that vertically transmitted variants were more resistant to neutralization by maternal plasma than were maternal viral variants near the time of transmission. The vertically transmitted envelope variants were poorly neutralized by monoclonal antibodies biz, 2G12, 2F5, and 4E10 individually or in combination. Despite the fact that the infant viruses were among the most neutralization resistant in the mother, they had relatively few glycosylation sites. Moreover, the transmitted variants elicited de novo neutralizing antibodies in the infants, indicating that they were not inherently difficult to neutralize. The neutralization resistance of vertically transmitted viruses is in contrast to the relative neutralization sensitivity of viruses sexually transmitted within discordant couples, suggesting that the antigenic properties of viruses that are favored for transmission may differ depending upon mode of transmission. PMID:16378985
Space Radar Image of Sudan Collision Zone
NASA Technical Reports Server (NTRS)
1994-01-01
This is a radar image of a region in northern Sudan called the Keraf Suture that reveals newly discovered geologic features buried beneath layers of sand. This discovery is being used to guide field studies of the region and has opened up new perspectives on old problems, such as what controls the course of the Nile, a question that has perplexed geologists for centuries. The Nile is the yellowish/green line that runs from the top to the bottom of the image. A small town, Abu Dis, can be seen as the bright, white area on the east (right) bank of the Nile (about a third of the way down from the top) at the mouth of a dry stream valley or 'wadi' that drains into the river. Wadis flowing into the Nile from both east and west stand out as dark, reddish branch-like drainage patterns. The bright pink area on the west (left) side of the Nile is a region where rocks are exposed, but the area east (right) of the Nile is obscured by layers of sand, a few inches to several feet thick. Virtually everything visible on the right side of this radar image is invisible when standing on the ground or when viewing photographs or satellite images such as the United States' Landsat or the French SPOT satellite. A sharp, straight fault cuts diagonally across the image, to the right of the Nile river. The area between the fault and the Nile is part of the collision zone where the ancient continents of East and West Gondwana crashed into each other to form the supercontinent Greater Gondwana more than 600 million years ago. On this image, the Nile approaches but never crosses the fault, indicating that this fault seems to be controlling the course of the Nile in this part of Sudan. The image is centered at 19.5 degrees north latitude, 33.35 degrees east longitude, and shows an area approximately 18 km by 20 km (10 miles by 12 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: Red is L-band, vertically transmitted and vertically received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) when it flew aboard the space shuttle Endeavour in April 1994. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth.
A prototype fully polarimetric 160-GHz bistatic ISAR compact radar range
NASA Astrophysics Data System (ADS)
Beaudoin, C. J.; Horgan, T.; DeMartinis, G.; Coulombe, M. J.; Goyette, T.; Gatesman, A. J.; Nixon, William E.
2017-05-01
We present a prototype bistatic compact radar range operating at 160 GHz and capable of collecting fullypolarimetric radar cross-section and electromagnetic scattering measurements in a true far-field facility. The bistatic ISAR system incorporates two 90-inch focal length, 27-inch-diameter diamond-turned mirrors fed by 160 GHz transmit and receive horns to establish the compact range. The prototype radar range with its modest sized quiet zone serves as a precursor to a fully developed compact radar range incorporating a larger quiet zone capable of collecting X-band bistatic RCS data and 3D imagery using 1/16th scale objects. The millimeter-wave transmitter provides 20 GHz of swept bandwidth in the single linear (Horizontal/Vertical) polarization while the millimeter-wave receiver, that is sensitive to linear Horizontal and Vertical polarization, possesses a 7 dB noise figure. We present the design of the compact radar range and report on test results collected to validate the system's performance.
TV audio and video on the same channel
NASA Technical Reports Server (NTRS)
Hopkins, J. B.
1979-01-01
Transmitting technique adds audio to video signal during vertical blanking interval. SIVI (signal in the vertical interval) is used by TV networks and stations to transmit cuing and automatic-switching tone signals to augment automatic and manual operations. It can also be used to transmit one-way instructional information, such as bulletin alerts, program changes, and commercial-cutaway aural cues from the networks to affiliates. Additonally, it can be used as extra sound channel for second-language transmission to biligual stations.
Digital core based transmitted ultrasonic wave simulation and velocity accuracy analysis
NASA Astrophysics Data System (ADS)
Zhu, Wei; Shan, Rui
2016-06-01
Transmitted ultrasonic wave simulation (TUWS) in a digital core is one of the important elements of digital rock physics and is used to study wave propagation in porous cores and calculate equivalent velocity. When simulating wave propagates in a 3D digital core, two additional layers are attached to its two surfaces vertical to the wave-direction and one planar wave source and two receiver-arrays are properly installed. After source excitation, the two receivers then record incident and transmitted waves of the digital rock. Wave propagating velocity, which is the velocity of the digital core, is computed by the picked peak-time difference between the two recorded waves. To evaluate the accuracy of TUWS, a digital core is fully saturated with gas, oil, and water to calculate the corresponding velocities. The velocities increase with decreasing wave frequencies in the simulation frequency band, and this is considered to be the result of scattering. When the pore fluids are varied from gas to oil and finally to water, the velocity-variation characteristics between the different frequencies are similar, thereby approximately following the variation law of velocities obtained from linear elastic statics simulation (LESS), although their absolute values are different. However, LESS has been widely used. The results of this paper show that the transmission ultrasonic simulation has high relative precision.
H. E. Simmons; Holly Prendeville; J. P. Dunham; M. J. Ferrari; J. D. Earnest; D. Pilson; G. P. Munkvold; E. C. Holmes; A. G. Stephenson
2015-01-01
Zucchini yellow mosaic virus (ZYMV) is an economically important pathogen of cucurbits that is transmitted both horizontally and vertically. Although ZYMV is seed-transmitted in Cucurbita pepo, the potential for seed transmission in virus-resistant transgenic cultivars is not known. We crossed and backcrossed a transgenic...
Space Radar Image of Salt Lake City, Utah
NASA Technical Reports Server (NTRS)
1994-01-01
This radar image of Salt Lake City, Utah, illustrates the different land use patterns that are present in the Utah Valley. Salt Lake City lies between the shores of the Great Salt Lake (the dark area on the left side of the image) and the Wasatch Front Range (the mountains in the upper half of the image). The Salt Lake City area is of great interest to urban planners because of the combination of lake, valley and alpine environments that coexist in the region. Much of the southern shore of the Great Salt Lake is a waterfowl management area. The green grid pattern in the right center of the image is Salt Lake City and its surrounding communities. The Salt Lake City airport is visible as the brown rectangle near the center of the image. Interstate Highway 15 runs from the middle right edge to the upper left of the image. The bright white patch east of Interstate 15 is the downtown area, including Temple Square and the state capitol. The University of Utah campus is the yellowish area that lies at the base of the mountains, east of Temple Square. The large reservoir in the lower left center is a mine tailings pond. The semi-circular feature in the mountains at the bottom edge of the image is the Kennecott Copper Mine. The area shown is 60 kilometers by 40 kilometers (37 miles by 25 miles) and is centered at 40.6 degrees north latitude, 112.0 degrees west longitude. North is toward the upper left. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 10, 1994. The colors in this image represent the following radar channels and polarizations: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.
Roter Kamm Impact Crater in Namibia
1996-11-13
This space radar image shows the Roter Kamm impact crater in southwest Namibia. The crater rim is seen in the lower center of the image as a radar-bright, circular feature. Geologists believe the crater was formed by a meteorite that collided with Earth approximately 5 million years ago. The data were acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) instrument onboard space shuttle Endeavour on April 14, 1994. The area is located at 27.8 degrees south latitude and 16.2 degrees east longitude in southern Africa. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); and blue represents the C-band (horizontally transmitted and vertically received). The area shown is approximately 25.5 kilometers (15.8 miles) by 36.4 kilometers (22.5 miles), with north toward the lower right. The bright white irregular feature in the lower left corner is a small hill of exposed rock outcrop. Roter Kamm is a moderate sized impact crater, 2.5 kilometers (1.5 miles) in diameter rim to rim, and is 130 meters (400 feet) deep. However, its original floor is covered by sand deposits at least 100 meters (300 feet) thick. In a conventional aerial photograph, the brightly colored surfaces immediately surrounding the crater cannot be seen because they are covered by sand. The faint blue surfaces adjacent to the rim may indicate the presence of a layer of rocks ejected from the crater during the impact. The darkest areas are thick windblown sand deposits which form dunes and sand sheets. The sand surface is smooth relative to the surrounding granite and limestone rock outcrops and appears dark in radar image. The green tones are related primarily to larger vegetation growing on sand soil, and the reddish tones are associated with thinly mantled limestone outcrops. Studies of impact craters on the surface of the Earth help geologists understand the role of the impact process in the Earth's evolution, including effects on the atmosphere and on biological evolution. http://photojournal.jpl.nasa.gov/catalog/PIA00503
Space Radar Image of Houston, Texas
1999-04-15
This image of Houston, Texas, shows the amount of detail that is possible to obtain using spaceborne radar imaging. Images such as this -- obtained by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavor last fall -- can become an effective tool for urban planners who map and monitor land use patterns in urban, agricultural and wetland areas. Central Houston appears pink and white in the upper portion of the image, outlined and crisscrossed by freeways. The image was obtained on October 10, 1994, during the space shuttle's 167th orbit. The area shown is 100 kilometers by 60 kilometers (62 miles by 38 miles) and is centered at 29.38 degrees north latitude, 95.1 degrees west longitude. North is toward the upper left. The pink areas designate urban development while the green-and blue-patterned areas are agricultural fields. Black areas are bodies of water, including Galveston Bay along the right edge and the Gulf of Mexico at the bottom of the image. Interstate 45 runs from top to bottom through the image. The narrow island at the bottom of the image is Galveston Island, with the city of Galveston at its northeast (right) end. The dark cross in the upper center of the image is Hobby Airport. Ellington Air Force Base is visible below Hobby on the other side of Interstate 45. Clear Lake is the dark body of water in the middle right of the image. The green square just north of Clear Lake is Johnson Space Center, home of Mission Control and the astronaut training facilities. The black rectangle with a white center that appears to the left of the city center is the Houston Astrodome. The colors in this image were obtained using the follow radar channels: red represents the L-band (horizontally transmitted, vertically received); green represents the C-band (horizontally transmitted, vertically received); blue represents the C-band (horizontally transmitted and received). http://photojournal.jpl.nasa.gov/catalog/PIA01783
Space radar image of New York City
NASA Technical Reports Server (NTRS)
1995-01-01
This radar image of the New York city metropolitan area. The island of Manhattan appears in the center of the image. The green-colored rectangle on Manhattan is Central Park. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/ X-SAR) aboard the space shuttle Endeavour on October 10, 1994. North is toward the upper right. The area shown is 75.0 kilometers by 48.8 kilometers (46.5 miles by 30.2 miles). The image is centered at 40.7 degrees north latitude and 73.8 degrees west longitude. In general, light blue areas correspond to dense urban development, green areas to moderately vegetated zones and black areas to bodies of water. The Hudson River is the black strip that runs from the left edge to the upper right corner of the image. It separates New Jersey, in the upper left of the image, from New York. The Atlantic Ocean is at the bottom of the image where two barrier islands along the southern shore of Long Island are also visible. John F. Kennedy International Airport is visible above these islands. Long Island Sound, separating Long Island from Connecticut, is the dark area right of the center of the image. Many bridges are visible in the image, including the Verrazano Narrows, George Washington and Brooklyn bridges. The radar illumination is from the left of the image; this causes some urban zones to appear red because the streets are at a perpendicular angle to the radar pulse. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted, vertically received); blue represents the C-band (horizontally transmitted, vertically received). Radar images like this one could be used as a tool for city planners and resource managers to map and monitor land use patterns. The radar imaging systems can clearly detect the variety of landscapes in the area, as well as the density of urban development.
Space Radar Image of Colorado River
NASA Technical Reports Server (NTRS)
1994-01-01
This space radar image illustrates the recent rapid urban development occurring along the lower Colorado River at the Nevada/Arizona state line. Lake Mojave is the dark feature that occupies the river valley in the upper half of the image. The lake is actually a reservoir created behind Davis Dam, the bright white line spanning the river near the center of the image. The dam, completed in 1953, is used both for generating electric power and regulating the river's flow downstream. Straddling the river south of Davis Dam, shown in white and bright green, are the cities of Laughlin, Nevada (west of the river) and Bullhead City, Arizona (east of the river). The runway of the Laughlin, Bullhead City Airport is visible as a dark strip just east of Bullhead City. The area has experienced rapid growth associated with the gambling industry in Laughlin and on the Fort Mojave Indian Reservation to the south. The community of Riviera is the bright green area in a large bend of the river in the lower left part of the image. Complex drainage patterns and canyons are the dark lines seen throughout the image. Radar is a useful tool for studying these patterns because of the instrument's sensitivity to roughness, vegetation and subtle topographic differences. This image is 50 kilometers by 35 kilometers (31 miles by 22 miles) and is centered at 35.25 degrees north latitude, 114.67 degrees west longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 13, 1994, onboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Office of Mission to Planet Earth.
Space Radar Image of Salt Lake City, Utah
1999-04-15
This radar image of Salt Lake City, Utah, illustrates the different land use patterns that are present in the Utah Valley. Salt Lake City lies between the shores of the Great Salt Lake (the dark area on the left side of the image) and the Wasatch Front Range (the mountains in the upper half of the image). The Salt Lake City area is of great interest to urban planners because of the combination of lake, valley and alpine environments that coexist in the region. Much of the southern shore of the Great Salt Lake is a waterfowl management area. The green grid pattern in the right center of the image is Salt Lake City and its surrounding communities. The Salt Lake City airport is visible as the brown rectangle near the center of the image. Interstate Highway 15 runs from the middle right edge to the upper left of the image. The bright white patch east of Interstate 15 is the downtown area, including Temple Square and the state capitol. The University of Utah campus is the yellowish area that lies at the base of the mountains, east of Temple Square. The large reservoir in the lower left center is a mine tailings pond. The semi-circular feature in the mountains at the bottom edge of the image is the Kennecott Copper Mine. The area shown is 60 kilometers by 40 kilometers (37 miles by 25 miles) and is centered at 40.6 degrees north latitude, 112.0 degrees west longitude. North is toward the upper left. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 10, 1994. The colors in this image represent the following radar channels and polarizations: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program. http://photojournal.jpl.nasa.gov/catalog/PIA01798
Space Radar Image of Manaus, Brazil
1999-05-01
These two false-color images of the Manaus region of Brazil in South America were acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar on board the space shuttle Endeavour. The image at left was acquired on April 12, 1994, and the image at right was acquired on October 3, 1994. The area shown is approximately 8 kilometers by 40 kilometers (5 miles by 25 miles). The two large rivers in this image, the Rio Negro (at top) and the Rio Solimoes (at bottom), combine at Manaus (west of the image) to form the Amazon River. The image is centered at about 3 degrees south latitude and 61 degrees west longitude. North is toward the top left of the images. The false colors were created by displaying three L-band polarization channels: red areas correspond to high backscatter, horizontally transmitted and received, while green areas correspond to high backscatter, horizontally transmitted and vertically received. Blue areas show low returns at vertical transmit/receive polarization; hence the bright blue colors of the smooth river surfaces can be seen. Using this color scheme, green areas in the image are heavily forested, while blue areas are either cleared forest or open water. The yellow and red areas are flooded forest or floating meadows. The extent of the flooding is much greater in the April image than in the October image and appears to follow the 10-meter (33-foot) annual rise and fall of the Amazon River. The flooded forest is a vital habitat for fish, and floating meadows are an important source of atmospheric methane. These images demonstrate the capability of SIR-C/X-SAR to study important environmental changes that are impossible to see with optical sensors over regions such as the Amazon, where frequent cloud cover and dense forest canopies block monitoring of flooding. Field studies by boat, on foot and in low-flying aircraft by the University of California at Santa Barbara, in collaboration with Brazil's Instituto Nacional de Pesguisas Estaciais, during the first and second flights of the SIR-C/X-SAR system have validated the interpretation of the radar images. http://photojournal.jpl.nasa.gov/catalog/PIA01735
Coherent acoustic communication in a tidal estuary with busy shipping traffic.
van Walree, Paul A; Neasham, Jeffrey A; Schrijver, Marco C
2007-12-01
High-rate acoustic communication experiments were conducted in a dynamic estuarine environment. Two current profilers deployed in a shipping lane were interfaced with acoustic modems, which modulated and transmitted the sensor readings every 200 s over a period of four days. QPSK modulation was employed at a raw data rate of 8 kbits on a 12-kHz carrier. Two 16-element hydrophone arrays, one horizontal and one vertical, were deployed near the shore. A multichannel decision-feedback equalizer was used to demodulate the modem signals received on both arrays. Long-term statistical analysis reveals the effects of the tidal cycle, subsea unit location, attenuation by the wake of passing vessels, and high levels of ship-generated noise on the fidelity of the communication links. The use of receiver arrays enables vast improvement in the overall reliability of data delivery compared with a single-receiver system, with performance depending strongly on array orientation. The vertical array offers the best performance overall, although the horizontal array proves more robust against shipping noise. Spatial coherence estimates, variation of array aperture, and inspection of array angular responses point to adaptive beamforming and coherent combining as the chief mechanisms of array gain.
Adaptive ground implemented phase array
NASA Technical Reports Server (NTRS)
Spearing, R. E.
1973-01-01
The simulation of an adaptive ground implemented phased array of five antenna elements is reported for a very high frequency system design that is tolerant to the radio frequency interference environment encountered by a tracking data relay satellite. Signals originating from satellites are received by the VHF ring array and both horizontal and vertical polarizations from each of the five elements are multiplexed and transmitted down to ground station. A panel on the transmitting end of the simulation chamber contains up to 10 S-band RFI sources along with the desired signal to simulate the dynamic relationship between user and TDRS. The 10 input channels are summed, and desired and interference signals are separated and corrected until the resultant sum signal-to-interference ratio is maximized. Testing performed with this simulation equipment demonstrates good correlation between predicted and actual results.
Modal processing for acoustic communications in shallow water experiment.
Morozov, Andrey K; Preisig, James C; Papp, Joseph
2008-09-01
Acoustical array data from the Shallow Water Acoustics experiment was processed to show the feasibility of broadband mode decomposition as a preprocessing method to reduce the effective channel delay spread and concentrate received signal energy in a small number of independent channels. The data were collected by a vertical array designed at the Woods Hole Oceanographic Institution. Phase-shift Keying (PSK) m-sequence modulated signals with different carrier frequencies were transmitted at a distance 19.2 km from the array. Even during a strong internal waves activity a low bit error rate was achieved.
Space Radar Image of Long Island Optical/Radar
NASA Technical Reports Server (NTRS)
1994-01-01
This pair of images of the Long Island, New York region is a comparison of an optical photograph (top) and a radar image (bottom), both taken in darkness in April 1994. The photograph at the top was taken by the Endeavour astronauts at about 3 a.m. Eastern time on April 20, 1994. The image at the bottom was acquired at about the same time four days earlier on April 16,1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) system aboard the space shuttle Endeavour. Both images show an area approximately 100 kilometers by 40 kilometers (62 miles by 25 miles) that is centered at 40.7 degrees North latitude and 73.5 degrees West longitude. North is toward the upper right. The optical image is dominated by city lights, which are particularly bright in the densely developed urban areas of New York City located on the left half of the photo. The brightest white zones appear on the island of Manhattan in the left center, and Central Park can be seen as a darker area in the middle of Manhattan. To the northeast (right) of the city, suburban Long Island appears as a less densely illuminated area, with the brightest zones occurring along major transportation and development corridors. Since radar is an active sensing system that provides its own illumination, the radar image shows a great amount of surface detail, despite the night-time acquisition. The colors in the radar image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In this image, the water surface - the Atlantic Ocean along the bottom edge and Long Island Sound shown at the top edge - appears red because small waves at the surface strongly reflect the horizontally transmitted and received L-band radar signal. Networks of highways and railroad lines are clearly visible in the radar image; many of them can also be seen as bright lines i the optical image. The runways of John F. Kennedy International Airport appear as a dark rectangle in Jamaica Bay on the left side of the image. Developed areas appear generally as bright green and orange, while agricultural, protected and undeveloped areas appear darker blue or purple. This contrast can be seen on the barrier islands along the south coast of Long Island, which are heavily developed in the Rockaway and Long Beach areas south and east of Jamaica Bay, but further to the east, the islands are protected and undeveloped.
Space Radar Image of Long Island Optical/Radar
1999-05-01
This pair of images of the Long Island, New York region is a comparison of an optical photograph (top) and a radar image (bottom), both taken in darkness in April 1994. The photograph at the top was taken by the Endeavour astronauts at about 3 a.m. Eastern time on April 20, 1994. The image at the bottom was acquired at about the same time four days earlier on April 16,1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) system aboard the space shuttle Endeavour. Both images show an area approximately 100 kilometers by 40 kilometers (62 miles by 25 miles) that is centered at 40.7 degrees North latitude and 73.5 degrees West longitude. North is toward the upper right. The optical image is dominated by city lights, which are particularly bright in the densely developed urban areas of New York City located on the left half of the photo. The brightest white zones appear on the island of Manhattan in the left center, and Central Park can be seen as a darker area in the middle of Manhattan. To the northeast (right) of the city, suburban Long Island appears as a less densely illuminated area, with the brightest zones occurring along major transportation and development corridors. Since radar is an active sensing system that provides its own illumination, the radar image shows a great amount of surface detail, despite the night-time acquisition. The colors in the radar image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In this image, the water surface - the Atlantic Ocean along the bottom edge and Long Island Sound shown at the top edge - appears red because small waves at the surface strongly reflect the horizontally transmitted and received L-band radar signal. Networks of highways and railroad lines are clearly visible in the radar image; many of them can also be seen as bright lines i the optical image. The runways of John F. Kennedy International Airport appear as a dark rectangle in Jamaica Bay on the left side of the image. Developed areas appear generally as bright green and orange, while agricultural, protected and undeveloped areas appear darker blue or purple. This contrast can be seen on the barrier islands along the south coast of Long Island, which are heavily developed in the Rockaway and Long Beach areas south and east of Jamaica Bay, but further to the east, the islands are protected and undeveloped. http://photojournal.jpl.nasa.gov/catalog/PIA01785
Kai, M; Aoki, O; Hiraga, A; Oki, H; Tokuriki, M
2000-08-01
To develop an instrument that could be sandwiched between the hoof and shoe of horses and that would reliably measure vertical ground reaction forces and three-dimensional acceleration at the walk, trot, and canter. 5 clinically sound Thoroughbreds. The recording instrument (weight, 350 g) consisted of 2 metal plates, 2 bolts, 4 load cells, and 3 accelerometers. It was mounted to the hoof with a glue-on shoe and devised to support as much load exerted by a limb as possible. The load cells and accelerometers were wired to a 16-channel transmitter, and transmitted signals were received and amplified with a telemetry receiver. The recording instrument could measure in real time the 4 components of the ground reaction force or their resultant force along with acceleration in 3 dimensions as horses walked, trotted, or cantered on a treadmill. Patterns of force-time curves recorded for consecutive strides were similar to each other and to those previously reported, using a force plate. The recording instrument developed for use in the present study allowed us to record vertical ground reaction force and acceleration in 3 dimensions in horses at the walk, trot, and canter.
Auto-positioning ultrasonic transducer system
NASA Technical Reports Server (NTRS)
Buchanan, Randy K. (Inventor)
2010-01-01
An ultrasonic transducer apparatus and process for determining the optimal transducer position for flow measurement along a conduit outer surface. The apparatus includes a transmitting transducer for transmitting an ultrasonic signal, said transducer affixed to a conduit outer surface; a guide rail attached to a receiving transducer for guiding movement of a receiving transducer along the conduit outer surface, wherein the receiving transducer receives an ultrasonic signal from the transmitting transducer and sends a signal to a data acquisition system; and a motor for moving the receiving transducer along the guide rail, wherein the motor is controlled by a controller. The method includes affixing a transmitting transducer to an outer surface of a conduit; moving a receiving transducer on the conduit outer surface, wherein the receiving transducer is moved along a guide rail by a motor; transmitting an ultrasonic signal from the transmitting transducer that is received by the receiving transducer; communicating the signal received by the receiving transducer to a data acquisition and control system; and repeating the moving, transmitting, and communicating along a length of the conduit.
Helicopter approach capability using the differential global positioning system. M.S. Thesis
NASA Technical Reports Server (NTRS)
Kaufmann, David N.
1993-01-01
The results of flight tests to determine the feasibility of using the Global Positioning System (GPS) in the differential mode (DGPS) to provide high accuracy, precision navigation, and guidance for helicopter approaches to landing are presented. The airborne DGPS receiver and associated equipment is installed in a NASA UH-60 Black Hawk helicopter. The ground-based DGPS reference receiver is located at a surveyed test site and is equipped with a real-time VHF data link to transmit correction information to the airborne DGPS receiver. The corrected airborne DGPS information, together with the preset approach geometry, is used to calculate guidance commands which are sent to the aircraft's approach guidance instruments. The use of DGPS derived guidance for helicopter approaches to landing is evaluated by comparing the DGPS data with the laser tracker truth data. Both standard (3 deg) and steep (6 deg and 9 deg) glideslope straight-in approaches were flown. DGPS positioning accuracy based on a time history analysis of the entire approach was 0.2 m (mean) +/- 1.8 m (2 sigma) laterally and -2.0 m (mean) +/- 3.5 m (2 sigma) vertically for 3 deg glideslope approaches, -0.1 m (mean) +/- 1.5 m (2 sigma) laterally and -1.1 m (mean) +/- 3.5 m (2 sigma) vertically for 6 deg glideslope approaches and 0.2 m (mean) +/- 1.3 m (2 sigma) laterally and -1.0 m (mean) +/- 2.8 m (2 sigma) vertically for 9 deg glideslope approaches. DGPS positioning accuracy at the 200 ft decision height (DH) on a standard 3 deg slideslope approach was 0.3 m (mean) +/- 1.5 m (2 sigma) laterally and -2.3 m (mean) +/- 1.6 m (2 sigma) vertically. These errors indicate that the helicopter position based on DGPS guidance satisfies the International Civil Aviation Organization (ICAO) Category 1 (CAT 1) lateral and vertical navigational accuracy requirements.
Helicopter approach capability using the differential Global Positioning System
NASA Technical Reports Server (NTRS)
Kaufmann, David N.
1993-01-01
The results of flight tests to determine the feasibility of using the Global Positioning System (GPS) in the differential mode (DGPS) to provide high accuracy, precision navigation and guidance for helicopter approaches to landing are presented. The airborne DGPS receiver and associated equipment is installed in a NASA UH-60 Black Hawk helicopter. The ground-based DGPS reference receiver is located at a surveyed test site and is equipped with a real-time VHF data link to transmit correction information to the airborne DGPS receiver. The corrected airborne DGPS information, together with the preset approach geometry, is used to calculate guidance commands which are sent to the aircraft's approach guidance instruments. The use of DGPS derived guidance for helicopter approaches to landing is evaluated by comparing the DGPS data with the laser tracker truth data. Both standard (3 degrees) and steep (6 degrees and 9 degrees) glidescope straight-in approaches were flown. DGPS positioning accuracy based on a time history analysis of the entire approach was 0.2 m (mean) +/- 1.8 m (2 sigma) laterally and -2.0 m (mean) +/- 3.5 m (2 sigma) vertically for 3 degree glidescope approaches, -0.1 m (mean) +/- 1.5 m (2 sigma) laterally and -1.1 m (mean) +/- 3.5 m (2 sigma) vertically for 6 degree glidescope approaches, and 0.2 m (mean) +/- 1.3 m (2 sigma) laterally and -1.0 m (mean) +/- 2.8 (2 sigma) vertically for 9 degree glidescope approaches. DGPS positioning accuracy at the 200 ft decision height on a standard 3 degree glidescope approach was 0.3 m (mean) +/- 1.5 m (2 sigma) laterally and -2.3 m (mean) +/- 1.6 m (2 sigma) vertically. These errors indicate that the helicopter position based on DGPS guidance satisfies the International Civil Aviation Organization Category 1 lateral and vertical accuracy requirements.
NASA Technical Reports Server (NTRS)
1995-01-01
This is a space radar image of the area around the Unzen volcano, on the west coast of Kyushu Island in southwestern Japan. Unzen, which appears in this image as a large triangular peak with a white flank near the center of the peninsula, has been continuously active since a series of powerful eruptions began in 1991. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 93rd orbit on April 15, 1994. The image shows an area 41.5 kilometers by 32.8 kilometers (25.7 miles by 20.3 miles) that is centered at 32.75 degrees north latitude and 130.15 degrees east longitude. North is toward the upper left of the image. The radar illumination is from the top of the image. The colors in this image were obtained using the following radar channels: red represents the L-band (vertically transmitted and received); green represents the average of L-band and C-band (vertically transmitted and received); blue represents the C-band (vertically transmitted and received). Unzen is one of 15 'Decade' volcanoes identified by the scientific community as posing significant potential threats to large local populations. The city of Shimabara sits along the coast at the foot of Unzen on its east and northeast sides. At the summit of Unzen a dome of thick lava has been growing continuously since 1991. Collapses of the sides of this dome have generated deadly avalanches of hot gas and rock known as pyroclastic flows. Volcanologists can use radar image data to monitor the growth of lava domes, to better understand and predict potentially hazardous collapses.
Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).NASA Astrophysics Data System (ADS)
James, H. G.; Frolov, V. L.; Padokhin, A. M.; Siefring, C. L.
2015-12-01
High-frequency pump waves have been transmitted from the Russian heating facility Sura to the Radio Receiver Instrument (RRI) in the e-POP payload on the Canadian small satellite CASSIOPE. This experiment has been carried out 24 times, under a variety of circumstances. In some cases, the ePOP VHF-UHF beacon CERTO was on, and ground receivers near Sura recorded total electron content. Subsequent tomographic processing has allowed the two-dimensional electron density distribution to be determined in the altitude-latitude space between Sura and CASSIOPE. We present some details from a night-time pass on 9 Sept. 2014 when the fixed pump frequency 4.3 MHz was slightly smaller than foF2 above Sura. This was an instance in which conversion between the O and Z cold plasma modes may have been required to achieve transmission. Explanation could be elaborated in terms of underdense, heater-created, field-aligned irregularities that are "artificial radio windows". The Sura heater radiation pattern maximum was tilted 12° south of the vertical, toward the terrestrial magnetic field axis, potentially enhancing the power transmitted through radio windows. The observations are interpreted in the light of competing concepts of transmission.
Space Radar Image of Kiluchevskoi, Volcano, Russia
1999-05-01
This is an image of the area of Kliuchevskoi volcano, Kamchatka, Russia, which began to erupt on September 30, 1994. Kliuchevskoi is the blue triangular peak in the center of the image, towards the left edge of the bright red area that delineates bare snow cover. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 88th orbit on October 5, 1994. The image shows an area approximately 75 kilometers by 100 kilometers (46 miles by 62 miles) that is centered at 56.07 degrees north latitude and 160.84 degrees east longitude. North is toward the bottom of the image. The radar illumination is from the top of the image. The Kamchatka volcanoes are among the most active volcanoes in the world. The volcanic zone sits above a tectonic plate boundary, where the Pacific plate is sinking beneath the northeast edge of the Eurasian plate. The Endeavour crew obtained dramatic video and photographic images of this region during the eruption, which will assist scientists in analyzing the dynamics of the recent activity. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In addition to Kliuchevskoi, two other active volcanoes are visible in the image. Bezymianny, the circular crater above and to the right of Kliuchevskoi, contains a slowly growing lava dome. Tolbachik is the large volcano with a dark summit crater near the upper right edge of the red snow covered area. The Kamchatka River runs from right to left across the bottom of the image. The current eruption of Kliuchevskoi included massive ejections of gas, vapor and ash, which reached altitudes of 15,000 meters (50,000 feet). Melting snow mixed with volcanic ash triggered mud flows on the flanks of the volcano. Paths of these flows can be seen as thin lines in various shades of blue and green on the north flank in the center of the image. http://photojournal.jpl.nasa.gov/catalog/PIA01765
Space Radar Image of North Atlantic Ocean
1999-04-15
This is a radar image showing surface features on the open ocean in the northeast Atlantic Ocean. There is no land mass in this image. The purple line in the lower left of the image is the stern wake of a ship. The ship creating the wake is the bright white spot on the middle, left side of the image. The ship's wake is about 28 kilometers (17 miles) long in this image and investigators believe that is because the ship may be discharging oil. The oil makes the wake last longer and causes it to stand out in this radar image. A fairly sharp boundary or front extends from the lower left to the upper right corner of the image and separates two distinct water masses that have different temperatures. The different water temperature affects the wind patterns on the ocean. In this image, the light green area depicts rougher water with more wind, while the purple area is calmer water with less wind. The dark patches are smooth areas of low wind, probably related to clouds along the front, and the bright green patches are likely due to ice crystals in the clouds that scatter the radar waves. The overall "fuzzy" look of this image is caused by long ocean waves, also called swells. Ocean radar imagery allows the fine detail of ocean features and interactions to be seen, such as the wake, swell, ocean front and cloud effects, which can then be used to enhance the understanding of ocean dynamics on smaller and smaller scales. The image is centered at 42.8 degrees north latitude, 26.2 degrees west longitude and shows an area approximately 35 kilometers by 65 kilometers (22 by 40 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is C-band horizontally transmitted, horizontally received; blue is L-band vertically transmitted, vertically received. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on April 11, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth. http://photojournal.jpl.nasa.gov/catalog/PIA01799
NASA Technical Reports Server (NTRS)
1998-01-01
This radar image shows the dramatic landscape in the Phang Hoei Range of north central Thailand, about 40 kilometers (25 miles) northeast of the city of Lom Sak. The plateau, shown in green to the left of center, is the area of Phu Kradung National Park. This plateau is a remnant of a once larger plateau, another portion of which is seen along the right side of the image. The plateaus have been dissected by water erosion over thousands of years. Forest areas appear green on the image; agricultural areas and settlements appear as red and blue. North is toward the lower right. The area shown is 38 by 50 kilometers (24 by 31 miles) and is centered at 16.96 degrees north latitude, 101.67 degrees east longitude. Colors are assigned to different radar frequencies and polarizations as follows: red is L-band horizontally transmitted and horizontally received; green is L-band horizontally transmitted and vertically received; blue is C-band horizontally transmitted and vertically received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar on October 3, 1994, when it flew aboard the space shuttle Endeavour. SIR-C/X-SAR is a joint mission of the U.S./German and Italian space agencies.
Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.Space Radar Image of Harvard Forest
NASA Technical Reports Server (NTRS)
1999-01-01
This is a radar image of the area surrounding the Harvard Forest in north-central Massachusetts that has been operated as a ecological research facility by Harvard University since 1907. At the center of the image is the Quabbin Reservoir, and the Connecticut River is at the lower left of the image. The Harvard Forest itself is just above the reservoir. Researchers are comparing the naturally occurring physical disturbances in the forest and the recent and projected chemical disturbances and their effects on the forest ecosystem. Agricultural land appears dark blue/purple, along with low shrub vegetation and some wetlands. Urban development is bright pink; the yellow to green tints are conifer-dominated vegetation with the pitch pine sand plain at the middle left edge of the image appearing very distinctive. The green tint may indicate pure pine plantation stands, and deciduous broadleaf trees appear gray/pink with perhaps wetter sites being pinker. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 42.50 degrees North latitude and 72.33 degrees West longitude and covers an area of 53 kilometers 63 by kilometers (33 miles by 39 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted and horizontally received; green is L-band horizontally transmitted and vertically received; and blue is C-band horizontally transmitted and horizontally received.
Space Radar Image of Santa Cruz Island, California
NASA Technical Reports Server (NTRS)
1994-01-01
This space radar image shows the rugged topography of Santa Cruz Island, part of the Channel Islands National Park in the Pacific Ocean off the coast of Santa Barbara and Ventura, Calif. Santa Cruz, the largest island of the national park, is host to hundreds of species of plants, animals and birds, at least eight of which are known nowhere else in the world. The island is bisected by the Santa Cruz Island fault, which appears as a prominent line running from the upper left to the lower right in this image. The fault is part of the Transverse Range fault system, which extends eastward from this area across Los Angeles to near Palm Springs, Calif. Color variations in this image are related to the different types of vegetation and soils at the surface. For example, grass-covered coastal lowlands appear gold, while chaparral and other scrub areas appear pink and blue. The image is 35 kilometers by 32 kilometers (22 miles by 20 miles) and is centered at 33.8 degrees north latitude, 119.6 degrees west longitude. North is toward upper right. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is C-band, horizontally transmitted and received; and blue is C-band, horizontally transmitted and vertically received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on October 10, 1994, onboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.
Space Radar Image of Harvard Forest
1999-04-15
This is a radar image of the area surrounding the Harvard Forest in north-central Massachusetts that has been operated as a ecological research facility by Harvard University since 1907. At the center of the image is the Quabbin Reservoir, and the Connecticut River is at the lower left of the image. The Harvard Forest itself is just above the reservoir. Researchers are comparing the naturally occurring physical disturbances in the forest and the recent and projected chemical disturbances and their effects on the forest ecosystem. Agricultural land appears dark blue/purple, along with low shrub vegetation and some wetlands. Urban development is bright pink; the yellow to green tints are conifer-dominated vegetation with the pitch pine sand plain at the middle left edge of the image appearing very distinctive. The green tint may indicate pure pine plantation stands, and deciduous broadleaf trees appear gray/pink with perhaps wetter sites being pinker. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 42.50 degrees North latitude and 72.33 degrees West longitude and covers an area of 53 kilometers 63 by kilometers (33 miles by 39 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted and horizontally received; green is L-band horizontally transmitted and vertically received; and blue is C-band horizontally transmitted and horizontally received. http://photojournal.jpl.nasa.gov/catalog/PIA01788
The use of a laser ceilometer for sky condition determination
NASA Astrophysics Data System (ADS)
Nadolski, Vickie L.; Bradley, James T.
The use of a laser ceilometer for determining sky condition is presented, with emphasis on the operation of the ceilometer, the sky-condition-reporting algorithm, and how the laser ceilometer and the sky-condition algorithm are used to give a report suitable for aircraft operations and meteorological application. The sampling and processing features of the Vaisala ceilometer produced a detailed and accurate cloud base 'signature' by taking 254 measurement samples of the energy scattered back from a single laser pulse as the pulse traveled from the surface to 12,000 ft. The transmit time from the projection of the laser pulse to its backscattering from a cloud element and subsequent return to a collocated receiver is measured and a cloud height element computed. Attention is given to the development of a vertical visibility concept and of a vertical-visibility algorithm, as well as the strengths and limitations of the sky condition report.
A Quasi-Optical Transmit/Receive Switch for the Goldstone Solar System Radar
NASA Technical Reports Server (NTRS)
Bhanji, Al
1997-01-01
A novel quasi-optical transmit/receive switch design for use with a high transmit power, low receive noise planetary imaging radar system is described. Design tradeoffs and implementation are discussed.
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin (Inventor); Pierrottet, Diego F. (Inventor)
2015-01-01
A Doppler lidar sensor system includes a laser generator that produces a highly pure single frequency laser beam, and a frequency modulator that modulates the laser beam with a highly linear frequency waveform. A first portion of the frequency modulated laser beam is amplified, and parts thereof are transmitted through at least three separate transmit/receive lenses. A second portion of the laser beam is used as a local oscillator beam for optical heterodyne detection. Radiation from the parts of the laser beam transmitted via the transmit/receive lenses is received by the respective transmit/receive lenses that transmitted the respective part of the laser beam. The received reflected radiation is compared with the local oscillator beam to calculate the frequency difference there between to determine various navigational data.
Noya, Belkisyolé Alarcón de; Pérez-Chacón, Gladymar; Díaz-Bello, Zoraida; Dickson, Sonia; Muñoz-Calderón, Arturo; Hernández, Carlos; Pérez, Yadira; Mauriello, Luciano; Moronta, Eyleen
2017-08-01
We describe the eleventh major outbreak of foodborne Trypanosoma cruzi transmission in urban Venezuela, including evidence for vertical transmission from the index case to her fetus. After confirming fetal death at 24 weeks of gestation, pregnancy interruption was performed. On direct examination of the amniotic fluid, trypomastigotes were detected. T. cruzi specific-polymerase chain reaction (PCR) also proved positive when examining autopsied fetal organs. Finally, microscopic fetal heart examination revealed amastigote nests. Acute orally transmitted Chagas disease can be life threatening or even fatal for pregnant women and unborn fetuses owing to vertical transmission. There is therefore an urgent need to improve national epidemiologic control measures.
NASA Astrophysics Data System (ADS)
Bullett, Terry; Jee, Geonhwa; Livingston, Robert; Kim, Jeong-Han; Zabotin, Nikolay; Lee, Chang-Sup; Grubb, Richard; Mabie, Justin; Kwon, Hyuck-Jin
2016-04-01
The Korean Polar Research Institute has established the Jang Bogo research station in Antarctica on Terra Nova Bay (74.62°S, 164.23°E). One of the space environment sensors installed in 2014 is a world class research ionosonde facility consisting of a Vertical Incidence Pulsed Ionospheric Radar (VIPIR) with Dynasonde signal processing. The VIPIR is an MF/HF radar oeprating from 0.5 to 25 MHz. The transmit antenna is a 36x75x75m dual vertical incidence log periodic design and the receive antenna is a 70x70m array of 8 orthogonal 4m active dipoles attached to 8 coherent digital receivers. Full resolution In-Phase and Quadrature data are recorded for post analysis. The low atmospheric noise and low interference combine with the high system performance to produce ionogram data of very high quality and allow measurements with high time resolution. The 2015 data were taken using the first generation VIPIR electronics on loan from Boulder. Antenna repairs and the installation of the second generation VIPIR electronics were completed at the end of 2015. Phase based Dynasonde analysis techniques are applied to the VIPIR data to perform echo detection and to derive electron density profiles and velocity vectors.
Simultaneous Transmit and Receive Performance of an 8-channel Digital Phased Array
2017-01-16
Lincoln Laboratory Lexington, Massachusetts, USA Abstract—The Aperture- Level Simultaneous Transmit and Re- ceive (ALSTAR) architecture enables extremely...In [1], the Aperture- Level Simultaneous Transmit and Receive (ALSTAR) architecture was proposed for achieving STAR using a fully digital phased array...Aperture- Level Simultaneous Transmit and Receive (ALSTAR) architecture enables STAR functionality in a digital phased array without the use of specialized
NASA Technical Reports Server (NTRS)
Bonk, Ted (Inventor); Hall, Brendan (Inventor); Smithgall, William Todd (Inventor); Varadarajan, Srivatsan (Inventor); DeLay, Benjamin F. (Inventor)
2017-01-01
Systems and methods for network bandwidth, buffers and timing management using hybrid scheduling of traffic with different priorities and guarantees are provided. In certain embodiments, a method of managing network scheduling and configuration comprises, for each transmitting end station, reserving one exclusive buffer for each virtual link to be transmitted from the transmitting end station; for each receiving end station, reserving exclusive buffers for each virtual link to be received at the receiving end station; and for each switch, reserving a exclusive buffer for each virtual link to be received at an input port of the switch. The method further comprises determining if each respective transmitting end station, receiving end station, and switch has sufficient capability to support the reserved buffers; and reporting buffer infeasibility if each respective transmitting end station, receiving end station, and switch does not have sufficient capability to support the reserved buffers.
Space Radar Image of Sydney, Australia
NASA Technical Reports Server (NTRS)
1994-01-01
This spaceborne radar image is dominated by the metropolitan area of Australia's largest city, Sydney. Sydney Harbour, with numerous coves and inlets, is seen in the upper center of the image, and the roughly circular Botany Bay is shown in the lower right. The downtown business district of Sydney appears as a bright white area just above the center of the image. The Sydney Harbour Bridge is a white line adjacent to the downtown district. The well-known Sydney Opera House is the small, white dot to the right of the bridge. Urban areas appear yellow, blue and brown. The purple areas are undeveloped areas and park lands. Manly, the famous surfing beach, is shown in yellow at the top center of the image. Runways from the Sydney Airport are the dark features that extend into Botany Bay in the lower right. Botany Bay is the site where Captain James Cook first landed his ship, Endeavour, in 1770. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 20, 1994, onboard the space shuttle Endeavour. The area shown is 33 kilometers by 38kilometers (20 miles by 23 miles) and is centered at 33.9 degrees south latitude, 151.2 degrees east longitude. North is toward the upper left. The colors are assigned to different radar frequenciesand polarizations as follows: red is L-band, vertically transmittedand horizontally received; green is C-band, vertically transmitted and horizontally received; and blue is C-band, vertically transmittedand received. SIR-C/X-SAR, a joint mission of the German, Italianand United States space agencies, is part of NASA's Mission to Planet Earth. #####
A Vertical Differential Configuration in GPR prospecting
NASA Astrophysics Data System (ADS)
Persico, Raffaele; Pochanin, Gennadiy; Varianytsia-Roshchupkina, Liudmyla; Catapano, Ilaria; Gennarelli, Gianluca; Soldovieri, Francesco
2015-04-01
The rejection of the direct coupling between the antennas is an issue of interest in several GPR applications, especially when it is important to distinguish the targets of interest from the clutter and the signal reflected from the air soil interface. Therefore, in this framework several hardware and software strategies have been proposed. Among the software strategies, probably the most common one is the background removal [1], whereas as an hardware strategy the differential configuration has been introduced in [2-3] and then further on studied in [4] with respect to the spatial filtering properties of the relevant mathematical operator. In particular, the studies proposed in [1] and [4] have shown that, in general, all the strategies for the rejection of the direct coupling have necessarily some drawback, essentially because it is not possible to erase all and only the undesired contributions leaving "untouched" the contributions of the targets of interest to the gathered signal. With specific regard to the differential configuration, in [2-3], the differential configuration consisted in a couple of receiving antennas symmetrically placed around the transmitting one, being the three antennas placed along the same horizontal segment. Therefore, we might define that configuration as a "horizontal differential configuration". Here, we propose a novel differential GPR configuration, where the two receiving antennas are still symmetrically located with respect to the transmitting one, but are placed piled on each other at different heights from the air-soil interface, whereas the transmitting antenna is at the medium height between the two receiving one (however, it is not at the same abscissa but at a fixed horizontal offset from the receiving antennas). Such a differential configuration has been previously presented in [5-6] and allows a good isolation between the antennas, while preserving the possibility to collect backscattered signals from both electrically small objects and interfaces. This configuration can be labeled as a vertical differential configuration. At the conference, the reconstruction capabilities of this differential GPR configuration system will be discussed by means of an analysis of the problem based on a properly designed microwave tomographic inversion approach. The proposed approach exploits the Born approximation and faces the imaging as the solution of a linear inverse scattering problem. In this way, the problem of the local minima is avoided [7] and it is possible to impose some regularization to the problem in an easy way problem [8-9]. At the conference, a theoretical analysis of the mathematical propserties of the scattering operator under the vertical differential configuration will be presented showing that, with respect to the horizontal differential configuration, the vertical one allows to reject the direct coupling between the antennas but not the coupling of the antennas occurring through the air-soil interface. On the other hand, the filtering properties of the operator at hand con be considered, let say, less severe in some cases. At the conference, both some numerical and experimental results will be shown. References [1] R. Persico, F. Soldovieri, "Effects of the background removal in linear inverse scattering", IEEE Trans. Geosci. Remote Sens, vol. 46, pp. 1104-1114, April 2008. [2] L. Gurel, U. Oguz, "Three-Dimensional FDTD modeling of a ground penetrating radar", IEEE Trans. Geosci. Remote Sens, vol. 38, pp. 1513-1521, July 2000. [3] L. Gurel, U. Oguz, "Optimization of the transmitter-receiver separation in the ground penetrating radar", IEEE Trans. Antennas and Propag., vol. 51, no 3, pp. 362-370, March 2003. [4] R. Persico, F. Soldovieri, "A microwave tomography approach for a differential configuration in GPR prospecting", IEEE Trans. Antennas and Propag., vol. 54, pp. 3541 - 3548, 2006. [5] Y.A. Kopylov, S.A. Masalov, G.P. Pochanin, "The way of isolation between transmitting and receiving modules of antenna", Patent 81652 Ukraine: IPC (2006) H01Q 9/00 H01Q 19/10 / publ. 25.01.08, Bull. N. 2 [6] G.P. Pochanin, "Some Advances in UWB GPR," in "Unexploded Ordnance Detection and Mitigation, - NATO Science for Peace and Security Series -B: Physics and Biophysics - Ed. by Jim Byrnes, Springer: Dordrecht, (The Nederland), 2009. pp.223-233. [7] R. Persico, F. Soldovieri, R. Pierri, "Convergence Properties of a Quadratic Approach to the Inverse Scattering Problem", Journal of Optical Society of America Part A, vol. 19, n. 12, pp. 2424-2428, December 2002. [8] R. Pierri, G. Leone, F. Soldovieri, R. Persico, "Electromagnetic inversion for subsurface applications under the distorted Born approximation" Nuovo Cimento, vol. 24C, N. 2, pp 245-261, March-April 2001. [9] R. Persico, Introduction to ground penetrating Radar: Inverse Scattering and data Processing, in print on Wiley and Sons, 2014, ISBN 9781118305003.
EM Diffusion for a Time-Domain Airborne EM System
NASA Astrophysics Data System (ADS)
Yin, C.; Qiu, C.; Liu, Y.; Cai, J.
2014-12-01
Visualization of EM diffusion for an airborne EM (AEM) system is important for understanding the transient procedure of EM diffusion. The current distribution and diffusion features also provide effective means to evaluate EM footprint, depth of exploration and further help AEM system design and data interpretation. Most previous studies on EM diffusion (or "smoke ring" effect) are based on the static presentation of EM field, where the dynamic features of EM diffusion were not visible. For visualizing the dynamic feature of EM diffusion, we first calculate in this paper the frequency-domain EM field by downward continuation of the EM field at the EM receiver to the deep earth. After that, we transform the results to time-domain via a Fourier transform. We take a homogeneous half-space and a two-layered earth induced by a step pulse to calculate the EM fields and display the EM diffusion in the earth as 3D animated vectors or time-varying contours. The "smoke ring" effect of EM diffusion, dominated by the resistivity distribution of the earth, is clearly observed. The numerical results for an HCP (vertical magnetic dipole) and a VCX (horizontal magnetic dipole) transmitting coil above a homogeneous half-space of 100 ohm-m are shown in Fig.1. We display as example only the distribution of EM field inside the earth for the diffusion time of 0.05ms. The detailed EM diffusion will be shown in our future presentation. From the numerical experiments for different models, we find that 1) the current for either an HCP or a VCX transmitting dipole propagates downward and outward with time, becoming wider and more diffuse, forming a "smoke ring"; 2) for a VCX transmitter, the underground current forms two ellipses, corresponding to the two polarities of the magnetic flux of a horizontal magnetic dipole, injecting into or ejected from the earth; 3) for a HCP transmitter, however, the underground current forms only one circle, corresponding to the polarity of the magnetic flux for a vertical magnetic dipole, injecting into the earth; 4) there exists no vertical current in an isotropic homogeneous half-space. The currents for both HCP and VCX transmitting dipole flow horizontally.
Helicopter Approach Capability Using the Differential Global Positioning System
NASA Technical Reports Server (NTRS)
Kaufmann, David N.
1994-01-01
The results of flight tests to determine the feasibility of using the Global Positioning System (GPS) in the Differential mode (DGPS) to provide high accuracy, precision navigation and guidance for helicopter approaches to landing are presented. The airborne DGPS receiver and associated equipment is installed in a NASA UH-60 Black Hawk helicopter. The ground-based DGPS reference receiver is located at a surveyed test site and is equipped with a real-time VHF data link to transmit correction information to the airborne DGPS receiver. The corrected airborne DGPS information, together with the preset approach geometry, is used to calculate guidance commands which are sent to the aircraft's approach guidance instruments. The use of DGPS derived guidance for helicopter approaches to landing is evaluated by comparing the DGPS data with the laser tracker truth data. The errors indicate that the helicopter position based on DGPS guidance satisfies the International Civil Aviation Organization (ICAO) Category 1 (CAT 1) lateral and vertical navigational accuracy requirements.
Brown, Ryan; Deniz, Cem Murat; Zhang, Bei; Chang, Gregory; Sodickson, Daniel K.; Wiggins, Graham C.
2014-01-01
Objective The objective of the study was to investigate the feasibility of 7-T shoulder magnetic resonance imaging by developing transmit and receive radiofrequency (RF) coil arrays and exploring RF shim methods. Materials and Methods A mechanically flexible 8-channel transmit array and an anatomically conformable 10-channel receive array were designed and implemented. The transmit performance of various RF shim methods was assessed through local flip angle measurements in the right and left shoulders of 6 subjects. The receive performance was assessed through signal-to-noise ratio measurements using the developed 7-T coil and a baseline commercial 3-T coil. Results The 7-T transmit array driven with phase-coherent RF shim weights provided adequate B1+ efficiency and uniformity for turbo spin echo shoulder imaging. B1+ twisting that is characteristic of high-field loop coils necessitates distinct RF shim weights in the right and left shoulders. The 7-T receive array provided a 2-fold signal-to-noise ratio improvement over the 3-T array in the deep articular shoulder cartilage. Conclusions Shoulder imaging at 7-T is feasible with a custom transmit/receive array either in a single-channel transmit mode with a fixed RF shim or in a parallel transmit mode with a subject-specific RF shim. PMID:24056112
Multibeam monopulse radar for airborne sense and avoid system
NASA Astrophysics Data System (ADS)
Gorwara, Ashok; Molchanov, Pavlo
2016-10-01
The multibeam monopulse radar for Airborne Based Sense and Avoid (ABSAA) system concept is the next step in the development of passive monopulse direction finder proposed by Stephen E. Lipsky in the 80s. In the proposed system the multibeam monopulse radar with an array of directional antennas is positioned on a small aircaraft or Unmanned Aircraft System (UAS). Radar signals are simultaneously transmitted and received by multiple angle shifted directional antennas with overlapping antenna patterns and the entire sky, 360° for both horizontal and vertical coverage. Digitizing of amplitude and phase of signals in separate directional antennas relative to reference signals provides high-accuracy high-resolution range and azimuth measurement and allows to record real time amplitude and phase of reflected from non-cooperative aircraft signals. High resolution range and azimuth measurement provides minimal tracking errors in both position and velocity of non-cooperative aircraft and determined by sampling frequency of the digitizer. High speed sampling with high-accuracy processor clock provides high resolution phase/time domain measurement even for directional antennas with wide Field of View (FOV). Fourier transform (frequency domain processing) of received radar signals provides signatures and dramatically increases probability of detection for non-cooperative aircraft. Steering of transmitting power and integration, correlation period of received reflected signals for separate antennas (directions) allows dramatically decreased ground clutter for low altitude flights. An open architecture, modular construction allows the combination of a radar sensor with Automatic Dependent Surveillance - Broadcast (ADS-B), electro-optic, acoustic sensors.
NASA Technical Reports Server (NTRS)
Robinson, W. J., Jr. (Inventor)
1974-01-01
A microwave, wireless, power transmission system is described in which the transmitted power level is adjusted to correspond with power required at a remote receiving station. Deviations in power load produce an antenna impedance mismatch causing variations in energy reflected by the power receiving antenna employed by the receiving station. The variations in reflected energy are sensed by a receiving antenna at the transmitting station and used to control the output power of a power transmitter.
1996-11-13
This is an image of the area around the city of Angkor, Cambodia. The city houses an ancient complex of more than 60 temples dating back to the 9th century. The principal complex, Angkor Wat, is the bright square just left of the center of the image. It is surrounded by a reservoir that appears in this image as a thick black line. The larger bright square above Angkor Wat is another temple complex called Angkor Thom. Archeologists studying this image believe the blue-purple area slightly north of Angkor Thom may be previously undiscovered structures. In the lower right is a bright rectangle surrounded by a dark reservoir, which houses the temple complex Chau Srei Vibol. In its heyday, Angkor had a population of 1 million residents and was the spiritual center for the Khmer people until it was abandoned in the 15th century. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on the 15th orbit of the space shuttle Endeavour on September 30, 1994. The image shows an area approximately 55 kilometers by 85 kilometers (34 miles by 53 miles) that is centered at 13.43 degrees north latitude and 103.9 degrees east longitude. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). The body of water in the south-southwest corner is Tonle Sap, Cambodia's great central lake. The urban area at the lower left of the image is the present-day town of Siem Reap. The adjoining lines are both modern and ancient roads and the remains of Angkor's vast canal system that was used for both irrigation and transportation. The large black rectangles are ancient reservoirs. Today the Angkor complex is hidden beneath a dense rainforest canopy, making it difficult for researchers on the ground to study the ancient city. The SIR-C/X-SAR data are being used by archaeologists at the World Monuments Fund and the Royal Angkor Foundation to understand how the city grew, flourished and later fell into disuse over an 800-year period. The data are also being used to help reconstruct the vast system of hydrological works, canals and reservoirs, which have gone out of use over time. Research teams from more than 11 countries will be using this data to study the Angkor complex. http://photojournal.jpl.nasa.gov/catalog/PIA00505
Space Radar Image of Star City, Russia
NASA Technical Reports Server (NTRS)
1994-01-01
This radar image shows the Star City cosmonaut training center, east of Moscow, Russia. Four American astronauts are training here for future long-duration flights aboard the Russian Mir space station. These joint flights are giving NASA and the Russian Space Agency experience necessary for the construction of the international Alpha space station, beginning in late 1997. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR), on its 62nd orbit on October 3, 1994. This Star City image is centered at 55.55 degrees north latitude and 38.0 degrees east longitude. The area shown is approximately 32 kilometers by 49 kilometers (20 miles by 30 miles). North is to the top in this image. The radar illumination is from the top of the image. The image was produced using three channels of SIR-C radar data: red indicates L-band (23 cm wavelength, horizontally transmitted and received); green indicates L-band (horizontally transmitted and vertically received); blue indicates C-band (6 cm wavelength, horizontally transmitted and vertically received). In general, dark pink areas are agricultural; pink and light blue areas are urban communities; black areas represent lakes and rivers; dark blue areas are cleared forest; and light green areas are forested. The prominent black runways just right of center are Shchelkovo Airfield, about 4 km long. The textured pale blue-green area east and southeast of Shchelkovo Airfield is forest. Just east of the runways is a thin railroad line running southeast; the Star City compound lies just east of the small bend in the rail line. Star City contains the living quarters and training facilities for Russian cosmonauts and their families. Moscow's inner loop road is visible at the lower left edge of the image. The Kremlin is just off the left edge, on the banks of the meandering Moskva River. The Klyazma River snakes to the southeast from the reservoir in the upper left (shown in bright red), passing just east of Star City and flowing off the lower right edge of the image. The dark blue band of the Vorya River runs north-south in the upper right quadrant, east of Star City. SIR-C/X-SAR radar images are being compared with data from the Russian radar satellite Almaz to evaluate the usefulness of a permanent orbital radar platform in monitoring Earth s environment and ecology.
Space Radar Image of Rabaul Volcano, New Guinea
1999-05-01
This is a radar image of the Rabaul volcano on the island of New Britain, Papua, New Guinea taken almost a month after its September 19, 1994, eruption that killed five people and covered the town of Rabaul and nearby villages with up to 75 centimeters (30 inches) of ash. More than 53,000 people have been displaced by the eruption. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 173rd orbit on October 11, 1994. This image is centered at 4.2 degrees south latitude and 152.2 degrees east longitude in the southwest Pacific Ocean. The area shown is approximately 21 kilometers by 25 kilometers (13 miles by 15.5 miles). North is toward the upper right. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). Most of the Rabaul volcano is underwater and the caldera (crater) creates Blanche Bay, the semi-circular body of water that occupies most of the center of the image. Volcanic vents within the caldera are visible in the image and include Vulcan, on a peninsula on the west side of the bay, and Rabalanakaia and Tavurvur (the circular purple feature near the mouth of the bay) on the east side. Both Vulcan and Tavurvur were active during the 1994 eruption. Ash deposits appear red-orange on the image, and are most prominent on the south flanks of Vulcan and north and northwest of Tavurvur. A faint blue patch in the water in the center of the image is a large raft of floating pumice fragments that were ejected from Vulcan during the eruption and clog the inner bay. Visible on the east side of the bay are the grid-like patterns of the streets of Rabaul and an airstrip, which appears as a dark northwest-trending band at the right-center of the image. Ashfall and subsequent rains caused the collapse of most buildings in the town of Rabaul. Mudflows and flooding continue to pose serious threats to the town and surrounding villages. Volcanologists and local authorities expect to use data such as this radar image to assist them in identifying the mechanisms of the eruption and future hazardous conditions that may be associated with the vigorously active volcano. http://photojournal.jpl.nasa.gov/catalog/PIA01767
Radar multipath study for rain-on-radome experiments at the Aircraft Landing Dynamics Facility
NASA Technical Reports Server (NTRS)
Mackenzie, Anne I.; Staton, Leo D.
1990-01-01
An analytical study to determine the feasibility of a rain-on-radome experiment at the Aircraft Landing Dynamics Facility (ALDF) at the Langley Research Center is described. The experiment would measure the effects of heavy rain on the transmission of X-band weather radar signals, looking in particular for sources of anomalous attenuation. Feasibility is determined with regard to multipath signals arising from the major structural components of the ALDF. A computer program simulates the transmit and receive antennas, direct-path and multipath signals, and expected attenuation by rain. In the simulation, antenna height, signal polarization, and rainfall rate are variable parameters. The study shows that the rain-on-radome experiment is feasible with regard to multipath signals. The total received signal, taking into account multipath effects, could be measured by commercially available equipment. The study also shows that horizontally polarized signals would produce better experimental results than vertically polarized signals.
Broadcasting a message in a parallel computer
Archer, Charles J; Faraj, Ahmad A
2013-04-16
Methods, systems, and products are disclosed for broadcasting a message in a parallel computer that includes: transmitting, by the logical root to all of the nodes directly connected to the logical root, a message; and for each node except the logical root: receiving the message; if that node is the physical root, then transmitting the message to all of the child nodes except the child node from which the message was received; if that node received the message from a parent node and if that node is not a leaf node, then transmitting the message to all of the child nodes; and if that node received the message from a child node and if that node is not the physical root, then transmitting the message to all of the child nodes except the child node from which the message was received and transmitting the message to the parent node.
Broadcasting a message in a parallel computer
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Methods, systems, and products are disclosed for broadcasting a message in a parallel computer that includes: transmitting, by the logical root to all of the nodes directly connected to the logical root, a message; and for each node except the logical root: receiving the message; if that node is the physical root, then transmitting the message to all of the child nodes except the child node from which the message was received; if that node received the message from a parent node and if that node is not a leaf node, then transmitting the message to all of the childmore » nodes; and if that node received the message from a child node and if that node is not the physical root, then transmitting the message to all of the child nodes except the child node from which the message was received and transmitting the message to the parent node.« less
Phase coded, micro-power impulse radar motion sensor
McEwan, Thomas E.
1996-01-01
A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a "IF homodyne" receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses.
Phase coded, micro-power impulse radar motion sensor
McEwan, T.E.
1996-05-21
A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a ``IF homodyne`` receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses. 5 figs.
RF Device for Acquiring Images of the Human Body
NASA Technical Reports Server (NTRS)
Gaier, Todd C.; McGrath, William R.
2010-01-01
A safe, non-invasive method for forming images through clothing of large groups of people, in order to search for concealed weapons either made of metal or not, has been developed. A millimeter wavelength scanner designed in a unique, ring-shaped configuration can obtain a full 360 image of the body with a resolution of less than a millimeter in only a few seconds. Millimeter waves readily penetrate normal clothing, but are highly reflected by the human body and concealed objects. Millimeter wave signals are nonionizing and are harmless to human tissues when used at low power levels. The imager (see figure) consists of a thin base that supports a small-diameter vertical post about 7 ft (=2.13 m) tall. Attached to the post is a square-shaped ring 2 in. (=5 cm) wide and 3 ft (=91 cm) on a side. The ring is oriented horizontally, and is supported halfway along one side by a connection to a linear bearing on the vertical post. A planar RF circuit board is mounted to the inside of each side of the ring. Each circuit board contains an array of 30 receivers, one transmitter, and digitization electronics. Each array element has a printed-circuit patch antenna coupled to a pair of mixers by a 90 coupler. The mixers receive a reference local oscillator signal to a subharmonic of the transmitter frequency. A single local oscillator line feeds all 30 receivers on the board. The resulting MHz IF signals are amplified and carried to the edge of the board where they are demodulated and digitized. The transmitted signal is derived from the local oscillator at a frequency offset determined by a crystal oscillator. One antenna centrally located on each side of the square ring provides the source illumination power. The total transmitted power is less than 100 mW, resulting in an exposure level that is completely safe to humans. The output signals from all four circuit boards are fed via serial connection to a data processing computer. The computer processes the approximately 1-MB data set into a three-dimensional image in a matter of seconds. The innovation is to configure the receiver array in a ring topology surrounding the scanned object. The ring is then scanned vertically to cover the necessary two-dimensional surface. This fabrication of the ring is made possible by using planar antenna and circuit technology. A planar circuit board serves as a medium for both antennas and signal processing components. Using this technique, parts counts are kept low, and the cost per element is a small fraction of a waveguide-based system.
Downhole pipe selection for acoustic telemetry
Drumheller, Douglas S.
1995-01-01
A system for transmitting signals along a downhole string including a plurality of serially connected tubular pipes such as drill or production pipes, a transmitter for transmitting a signal along the string and a receiver for receiving the signal placed along the string at a location spaced from said transmitting means, wherein the pipes between the transmitter and the receiver are ordered according to length of tube to minimize loss of signal from said transmitter to said receiver.
Space Radar Image of New Orleans, Louisiana
1998-04-14
This image of the area surrounding the city of New Orleans, Louisiana in the southeastern United States demonstrates the ability of multi-frequency imaging radar to distinguish different types of land cover. The dark area in the center is Lake Pontchartrain. The thin line running across the lake is a causeway connecting New Orleans to the city of Mandeville. Lake Borgne is the dark area in the lower right of the image. The Mississippi River appears as a dark, wavy line in the lower left. The white dots on the Mississippi are ships. The French Quarter is the brownish square near the left center of the image. Lakefront Airport, a field used mostly for general aviation, is the bright spot near the center, jutting out into Lake Pontchartrain. The image was acquired by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) during orbit 39 of space shuttle Endeavour on October 2, 1994. The area is located at 30.10 degrees north latitude and 89.1 degrees west longitude. The area shown is approximately 100 kilometers (60 miles) by 50 kilometers (30 miles). The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the C-band (horizontally transmitted and received); blue represents the L-band (vertically transmitted and received). The green areas are primarily vegetation consisting of swamp land and swamp forest (bayou) growing on sandy soil, while the pink areas are associated with reflections from buildings in urban and suburban areas. Different tones and colors in the vegetation areas will be studied by scientists to see how effective imaging radar data is in discriminating between different types of wetlands. Accurate maps of coastal wetland areas are important to ecologists studying wild fowl and the coastal environment. http://photojournal.jpl.nasa.gov/catalog/PIA01300
Downhole pipe selection for acoustic telemetry
Drumheller, D.S.
1995-12-19
A system is described for transmitting signals along a downhole string including a plurality of serially connected tubular pipes such as drill or production pipes, a transmitter for transmitting a signal along the string and a receiver for receiving the signal placed along the string at a location spaced from said transmitting means, wherein the pipes between the transmitter and the receiver are ordered according to length of tube to minimize loss of signal from said transmitter to said receiver. 7 figs.
Herrmann, Tim; Mallow, Johannes; Plaumann, Markus; Luchtmann, Michael; Stadler, Jörg; Mylius, Judith; Brosch, Michael; Bernarding, Johannes
2015-01-01
Neuroimaging of macaques at ultra-high field (UHF) is usually conducted by combining a volume coil for transmit (Tx) and a phased array coil for receive (Rx) tightly enclosing the monkey's head. Good results have been achieved using vertical or horizontal magnets with implanted or near-surface coils. An alternative and less costly approach, the travelling-wave (TW) excitation concept, may offer more flexible experimental setups on human whole-body UHF magnetic resonance imaging (MRI) systems, which are now more widely available. Goal of the study was developing and validating the TW concept for in vivo primate MRI. The TW Primate System (TWPS) uses the radio frequency shield of the gradient system of a human whole-body 7 T MRI system as a waveguide to propagate a circularly polarized B1 field represented by the TE11 mode. This mode is excited by a specifically designed 2-port patch antenna. For receive, a customized neuroimaging monkey head receive-only coil was designed. Field simulation was used for development and evaluation. Signal-to-noise ratio (SNR) was compared with data acquired with a conventional monkey volume head coil consisting of a homogeneous transmit coil and a 12-element receive coil. The TWPS offered good image homogeneity in the volume-of-interest Turbo spin echo images exhibited a high contrast, allowing a clear depiction of the cerebral anatomy. As a prerequisite for functional MRI, whole brain ultrafast echo planar images were successfully acquired. The TWPS presents a promising new approach to fMRI of macaques for research groups with access to a horizontal UHF MRI system.
Herrmann, Tim; Mallow, Johannes; Plaumann, Markus; Luchtmann, Michael; Stadler, Jörg; Mylius, Judith; Brosch, Michael; Bernarding, Johannes
2015-01-01
Introduction Neuroimaging of macaques at ultra-high field (UHF) is usually conducted by combining a volume coil for transmit (Tx) and a phased array coil for receive (Rx) tightly enclosing the monkey’s head. Good results have been achieved using vertical or horizontal magnets with implanted or near-surface coils. An alternative and less costly approach, the travelling-wave (TW) excitation concept, may offer more flexible experimental setups on human whole-body UHF magnetic resonance imaging (MRI) systems, which are now more widely available. Goal of the study was developing and validating the TW concept for in vivo primate MRI. Methods The TW Primate System (TWPS) uses the radio frequency shield of the gradient system of a human whole-body 7 T MRI system as a waveguide to propagate a circularly polarized B1 field represented by the TE11 mode. This mode is excited by a specifically designed 2-port patch antenna. For receive, a customized neuroimaging monkey head receive-only coil was designed. Field simulation was used for development and evaluation. Signal-to-noise ratio (SNR) was compared with data acquired with a conventional monkey volume head coil consisting of a homogeneous transmit coil and a 12-element receive coil. Results The TWPS offered good image homogeneity in the volume-of-interest Turbo spin echo images exhibited a high contrast, allowing a clear depiction of the cerebral anatomy. As a prerequisite for functional MRI, whole brain ultrafast echo planar images were successfully acquired. Conclusion The TWPS presents a promising new approach to fMRI of macaques for research groups with access to a horizontal UHF MRI system. PMID:26066653
Simulation of ultrasonic focus aberration and correction through human tissue.
Tabei, Makoto; Mast, T Douglas; Waag, Robert C
2003-02-01
Ultrasonic focusing in two dimensions has been investigated by calculating the propagation of ultrasonic pulses through cross-sectional models of human abdominal wall and breast. Propagation calculations used a full-wave k-space method that accounts for spatial variations in density, sound speed, and frequency-dependent absorption and includes perfectly matched layer absorbing boundary conditions. To obtain a distorted receive wavefront, propagation from a point source through the tissue path was computed. Receive focusing used an angular spectrum method. Transmit focusing was accomplished by propagating a pressure wavefront from a virtual array through the tissue path. As well as uncompensated focusing, focusing that employed time-shift compensation and time-shift compensation after backpropagation was investigated in both transmit and receive and time reversal was investigated for transmit focusing in addition. The results indicate, consistent with measurements, that breast causes greater focus degradation than abdominal wall. The investigated compensation methods corrected the receive focus better than the transmit focus. Time-shift compensation after backpropagation improved the focus from that obtained using time-shift compensation alone but the improvement was less in transmit focusing than in receive focusing. Transmit focusing by time reversal resulted in lower sidelobes but larger mainlobes than the other investigated transmit focus compensation methods.
Multi-channel time-reversal receivers for multi and 1-bit implementations
Candy, James V.; Chambers, David H.; Guidry, Brian L.; Poggio, Andrew J.; Robbins, Christopher L.
2008-12-09
A communication system for transmitting a signal through a channel medium comprising digitizing the signal, time-reversing the digitized signal, and transmitting the signal through the channel medium. In one embodiment a transmitter is adapted to transmit the signal, a multiplicity of receivers are adapted to receive the signal, a digitizer digitizes the signal, and a time-reversal signal processor is adapted to time-reverse the digitized signal. An embodiment of the present invention includes multi bit implementations. Another embodiment of the present invention includes 1-bit implementations. Another embodiment of the present invention includes a multiplicity of receivers used in the step of transmitting the signal through the channel medium.
Cannibalism amplifies the spread of vertically transmitted pathogens.
Sadeh, Asaf; Rosenheim, Jay A
2016-08-01
Cannibalism is a widespread behavior. Abundant empirical evidence demonstrates that cannibals incur a risk of contracting pathogenic infections when they consume infected conspecifics. However, current theory suggests that cannibalism generally impedes disease spread, because each victim is usually consumed by a single cannibal, such that cannibalism does not function as a spreading process. Consequently, cannibalism cannot be the only mode of transmission of most parasites. We develop simple, but general epidemiological models to analyze the interaction of cannibalism and vertical transmission. We show that cannibalism increases the prevalence of vertically transmitted pathogens whenever the host population density is not solely regulated by cannibalism. This mechanism, combined with additional, recently published, theoretical mechanisms, presents a strong case for the role of cannibalism in the spread of infectious diseases across a wide range of parasite-host systems. © 2016 by the Ecological Society of America.
A 32-channel lattice transmission line array for parallel transmit and receive MRI at 7 tesla.
Adriany, Gregor; Auerbach, Edward J; Snyder, Carl J; Gözübüyük, Ark; Moeller, Steen; Ritter, Johannes; Van de Moortele, Pierre-François; Vaughan, Tommy; Uğurbil, Kâmil
2010-06-01
Transmit and receive RF coil arrays have proven to be particularly beneficial for ultra-high-field MR. Transmit coil arrays enable such techniques as B(1) (+) shimming to substantially improve transmit B(1) homogeneity compared to conventional volume coil designs, and receive coil arrays offer enhanced parallel imaging performance and SNR. Concentric coil arrangements hold promise for developing transceiver arrays incorporating large numbers of coil elements. At magnetic field strengths of 7 tesla and higher where the Larmor frequencies of interest can exceed 300 MHz, the coil array design must also overcome the problem of the coil conductor length approaching the RF wavelength. In this study, a novel concentric arrangement of resonance elements built from capacitively-shortened half-wavelength transmission lines is presented. This approach was utilized to construct an array with whole-brain coverage using 16 transceiver elements and 16 receive-only elements, resulting in a coil with a total of 16 transmit and 32 receive channels. (c) 2010 Wiley-Liss, Inc.
Space Radar Image of Tuva, Central Asia
NASA Technical Reports Server (NTRS)
1994-01-01
This spaceborne radar image shows part of the remote central Asian region of Tuva, an autonomous republic of the Russian Federation. Tuva is a mostly mountainous region that lies between western Mongolia and southern Siberia. This image shows the area just south of the republic's capital of Kyzyl. Most of the red, pink and blue areas in the image are agricultural fields of a large collective farming complex that was developed during the era of the Soviet Union. Traditional agricultural activity in the region, still active in remote areas, revolves around practices of nomadic livestock herding. White areas on the image are north-facing hillsides, which develop denser forests than south-facing slopes. The river in the upper right is one of the two major branches of the Yenesey River. Tuva has received some notoriety in recent years due to the intense interest of the celebrated Caltech physicist Dr. Richard Feynman, chronicled in the book 'Tuva or Bust' by Ralph Leighton. The image was acquired by Spaceborne Imaging Radar-C/X-Band SyntheticAperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour onOctober 1, 1994. The image is 56 kilometers by 74 kilometers (35 miles by 46 miles) and is centered at 51.5 degrees north latitude, 95.1 degrees east longitude. North is toward the upper right. The colors are assigned to different radar fequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted andreceived; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and verticallyreceived. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to PlanetEarth program.
The emerging diversity of Rickettsia
Perlman, Steve J; Hunter, Martha S; Zchori-Fein, Einat
2006-01-01
The best-known members of the bacterial genus Rickettsia are associates of blood-feeding arthropods that are pathogenic when transmitted to vertebrates. These species include the agents of acute human disease such as typhus and Rocky Mountain spotted fever. However, many other Rickettsia have been uncovered in recent surveys of bacteria associated with arthropods and other invertebrates; the hosts of these bacteria have no relationship with vertebrates. It is therefore perhaps more appropriate to consider Rickettsia as symbionts that are transmitted vertically in invertebrates, and secondarily as pathogens of vertebrates. In this review, we highlight the emerging diversity of Rickettsia species that are not associated with vertebrate pathogenicity. Phylogenetic analysis suggests multiple transitions between symbionts that are transmitted strictly vertically and those that exhibit mixed (horizontal and vertical) transmission. Rickettsia may thus be an excellent model system in which to study the evolution of transmission pathways. We also focus on the emergence of Rickettsia as a diverse reproductive manipulator of arthropods, similar to the closely related Wolbachia, including strains associated with male-killing, parthenogenesis, and effects on fertility. We emphasize some outstanding questions and potential research directions, and suggest ways in which the study of non-pathogenic Rickettsia can advance our understanding of their disease-causing relatives. PMID:16901827
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nekoogar, Faranak; Reynolds, Matthew; Lefton, Scott
A secure passive RFID tag system comprises at least one base station and at least one passive RFID tag. The tag includes a fiber optic cable with the cable ends sealed within the tag and the middle portion forming an external loop. The loop may be secured to at least portions of an object. The tag transmits and receives an optical signal through the fiber optic cable, and the cable is configured to be damaged or broken in response to removal or tampering attempts, wherein the optical signal is significantly altered if the cable is damaged or broken. The tagmore » transmits the optical signal in response to receiving a radio signal from the base station and compares the transmitted optical signal to the received optical signal. If the transmitted optical signal and the received optical signal are identical, the tag transmits an affirmative radio signal to the base station.« less
Measuring Differential Delays With Sine-Squared Pulses
NASA Technical Reports Server (NTRS)
Hurst, Robert N.
1994-01-01
Technique for measuring differential delays among red, green, and blue components of video signal transmitted on different parallel channels exploits sine-squared pulses that are parts of standard test signals transmitted during vertical blanking interval of frame period. Technique does not entail expense of test-signal generator. Also applicable to nonvideo signals including sine-squared pulses.
Space Radar Image of Colima Volcano, Jalisco, Mexico
1999-05-01
This is an image of the Colima volcano in Jalisco, Mexico, a vigorously active volcano that erupted as recently as July 1994. The eruption partially destroyed a lava dome at the summit and deposited a new layer of ash on the volcano's southern slopes. Surrounding communities face a continuing threat of ash falls and volcanic mudflows from the volcano, which has been designated one of 15 high-risk volcanoes for scientific study during the next decade. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 24th orbit on October 1, 1994. The image is centered at 19.4 degrees north latitude, 103.7 degrees west longitude. The area shown is approximately 35.7 kilometers by 37.5 kilometers (22 miles by 23 miles). This single-frequency, multi-polarized SIR-C image shows: red as L-band horizontally transmitted and received; green as L-band horizontally transmitted and vertically received; and blue as the ratio of the two channels. The summit area appears orange and the recent deposits fill the valleys along the south and southwest slopes. Observations from space are helping scientists understand the behavior of dangerous volcanoes and will be used to mitigate the effects of future eruptions on surrounding populations. http://photojournal.jpl.nasa.gov/catalog/PIA01739
NASA Technical Reports Server (NTRS)
Campbell, James R.; Hlavka, Dennis L.; Welton, Ellsworth J.; Flynn, Connor J.; Turner, David D.; Spinhirne, James D.; Scott, V. Stanley, III; Hwang, I. H.; Einaudi, Franco (Technical Monitor)
2001-01-01
Atmospheric radiative forcing, surface radiation budget, and top of the atmosphere radiance interpretation involves a knowledge of the vertical height structure of overlying cloud and aerosol layers. During the last decade, the U.S. Department of Energy through I the Atmospheric Radiation Measurement (ARM) program has constructed four long- term atmospheric observing sites in strategic climate regimes (north central Oklahoma, In Barrow. Alaska, and Nauru and Manus Islands in the tropical western Pacific). Micro Pulse Lidar (MPL) systems provide continuous, autonomous observation of all significant atmospheric cloud and aerosol at each of the central ARM facilities. Systems are compact and transmitted pulses are eye-safe. Eye-safety is achieved by expanding relatively low-powered outgoing Pulse energy through a shared, coaxial transmit/receive telescope. ARM NIPL system specifications, and specific unit optical designs are discussed. Data normalization and calibration techniques are presented. A multiple cloud boundary detection algorithm is also described. These techniques in tandem represent an operational value added processing package used to produce normalized data products for Cloud and aerosol research and the historical ARM data archive.
Effects of melting layer on Ku-band signal depolarization
NASA Astrophysics Data System (ADS)
Sarkar, Thumree; Das, Saurabh; Maitra, Animesh
2014-09-01
Propagation effects on Ku-band over an earth-space path is carried out at Kolkata, India, a tropical location, by receiving a Ku-band signal with horizontal plane polarization transmitted from the geostationary satellite NSS-6 (at 95°E). The amplitude of co-polar attenuation has been monitored along with the measurements of rain rate, rain drop size distribution and height profile of rain rate. The cross-polar enhancement of the signal is also monitored by receiving the same signal in orthogonal direction with another identical receiver. The experimental observations are used to study the effect of melting layer on both co-polar attenuation and cross-polar enhancement for the rain events observed during 2012-2013. Melting layer is indicated by the bright band signature in vertical profile of rain rate. The ground based drop size measurements indicate that the stratiform rain has more number of small drops whereas convective rain composed of large rain drops. The results indicate that the depolarization due to melting layer is more dominant compared to that due to the drop deformation mechanism at low rain rates.
McEwan, Thomas E.
1998-01-01
A "laser tape measure" for measuring distance which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%.
McEwan, T.E.
1998-06-16
A ``laser tape measure`` for measuring distance is disclosed which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%. 7 figs.
Space Radar Image of Mammoth Mountain, California
1999-05-01
These two false-color composite images of the Mammoth Mountain area in the Sierra Nevada Mountains, Calif., show significant seasonal changes in snow cover. The image at left was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 67th orbit on April 13, 1994. The image is centered at 37.6 degrees north latitude and 119 degrees west longitude. The area is about 36 kilometers by 48 kilometers (22 miles by 29 miles). In this image, red is L-band (horizontally transmitted and vertically received) polarization data; green is C-band (horizontally transmitted and vertically received) polarization data; and blue is C-band (horizontally transmitted and received) polarization data. The image at right was acquired on October 3, 1994, on the space shuttle Endeavour's 67th orbit of the second radar mission. Crowley Lake appears dark at the center left of the image, just above or south of Long Valley. The Mammoth Mountain ski area is visible at the top right of the scene. The red areas correspond to forests, the dark blue areas are bare surfaces and the green areas are short vegetation, mainly brush. The changes in color tone at the higher elevations (e.g. the Mammoth Mountain ski area) from green-blue in April to purple in September reflect changes in snow cover between the two missions. The April mission occurred immediately following a moderate snow storm. During the mission the snow evolved from a dry, fine-grained snowpack with few distinct layers to a wet, coarse-grained pack with multiple ice inclusions. Since that mission, all snow in the area has melted except for small glaciers and permanent snowfields on the Silver Divide and near the headwaters of Rock Creek. On October 3, 1994, only discontinuous patches of snow cover were present at very high elevations following the first snow storm of the season on September 28, 1994. For investigations in hydrology and land-surface climatology, seasonal snow cover and alpine glaciers are critical to the radiation and water balances. SIR-C/X-SAR is a powerful tool because it is sensitive to most snowpack conditions and is less influenced by weather conditions than other remote sensing instruments, such as Landsat. In parallel with the operational SIR-C data processing, an experimental effort is being conducted to test SAR data processing using the Jet Propulsion Laboratory's massively parallel supercomputing facility, centered around the Cray Research T3D. These experiments will assess the abilities of large supercomputers to produce high throughput SAR processing in preparation for upcoming data-intensive SAR missions. The images released here were produced as part of this experimental effort. http://photojournal.jpl.nasa.gov/catalog/PIA01753
Space radar image of Mauna Loa, Hawaii
NASA Technical Reports Server (NTRS)
1995-01-01
This image of the Mauna Loa volcano on the Big Island of Hawaii shows the capability of imaging radar to map lava flows and other volcanic structures. Mauna Loa has erupted more than 35 times since the island was first visited by westerners in the early 1800s. The large summit crater, called Mokuaweoweo Caldera, is clearly visible near the center of the image. Leading away from the caldera (towards top right and lower center) are the two main rift zones shown here in orange. Rift zones are areas of weakness within the upper part of the volcano that are often ripped open as new magma (molten rock) approaches the surface at the start of an eruption. The most recent eruption of Mauna Loa was in March and April 1984, when segments of the northeast rift zones were active. If the height of the volcano was measured from its base on the ocean floor instead of from sea level, Mauna Loa would be the tallest mountain on Earth. Its peak (center of the image) rises more than 8 kilometers (5 miles) above the ocean floor. The South Kona District, known for cultivation of macadamia nuts and coffee, can be seen in the lower left as white and blue areas along the coast. North is toward the upper left. The area shown is 41.5 by 75 kilometers (25.7 by 46.5 miles), centered at 19.5 degrees north latitude and 155.6 degrees west longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/ X-SAR) aboard the space shuttle Endeavour on its 36th orbit on October 2, 1994. The radar illumination is from the left of the image. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted, vertically received); blue represents the C-band (horizontally transmitted, vertically received). The resulting color combinations in this radar image are caused by differences in surface roughness of the lava flows. Smoother flows, called pahoehoe flows, are depicted in red, and rougher flows, called a'a flows in volcanology terminology that originated in the Hawaiian language, are shown in yellow and white. Mauna Loa is one of 15 volcanoes worldwide that are being monitored by the scientific community as an 'International Decade Volcano' because of the hazard that it represents to the local towns of Hilo and Kona. The Kilauea volcano is located off to the right of Mauna Loa and is not visible in this image.
Electromagnetic spectrum management system
Seastrand, Douglas R.
2017-01-31
A system for transmitting a wireless countermeasure signal to disrupt third party communications is disclosed that include an antenna configured to receive wireless signals and transmit wireless counter measure signals such that the wireless countermeasure signals are responsive to the received wireless signals. A receiver processes the received wireless signals to create processed received signal data while a spectrum control module subtracts known source signal data from the processed received signal data to generate unknown source signal data. The unknown source signal data is based on unknown wireless signals, such as enemy signals. A transmitter is configured to process the unknown source signal data to create countermeasure signals and transmit a wireless countermeasure signal over the first antenna or a second antenna to thereby interfere with the unknown wireless signals.
0.5-45GHz Simultaneous Transmit and Receive (STAR) Antenna System for Electronic Attack
2016-03-17
0.5-45GHz Simultaneous Transmit and Receive (STAR) Antenna System for Electronic Attack Mohamed Elmansouri, Prathap Valaleprasannakumar, Elie...Colorado, US, 80309 Abstract: A shared antenna aperture for simultaneous transmit and receive (STAR) operating from 0.5 to 45GHz with isolation...50dB over the entire band is discussed. The co-located antenna aperture system is designed across 4 overlapping bands: 0.5-2.5GHz, 2-7GHz, 6-19GHz
Lytle, R. Jeffrey; Lager, Darrel L.; Laine, Edwin F.; Davis, Donald T.
1979-01-01
Underground anomalies or discontinuities, such as holes, tunnels, and caverns, are located by lowering an electromagnetic signal transmitting antenna down one borehole and a receiving antenna down another, the ground to be surveyed for anomalies being situated between the boreholes. Electronic transmitting and receiving equipment associated with the antennas is activated and the antennas are lowered in unison at the same rate down their respective boreholes a plurality of times, each time with the receiving antenna at a different level with respect to the transmitting antenna. The transmitted electromagnetic waves diffract at each edge of an anomaly. This causes minimal signal reception at the receiving antenna. Triangulation of the straight lines between the antennas for the depths at which the signal minimums are detected precisely locates the anomaly. Alternatively, phase shifts of the transmitted waves may be detected to locate an anomaly, the phase shift being distinctive for the waves directed at the anomaly.
Kim, Gyungock; Park, Hyundai; Joo, Jiho; Jang, Ki-Seok; Kwack, Myung-Joon; Kim, Sanghoon; Kim, In Gyoo; Oh, Jin Hyuk; Kim, Sun Ae; Park, Jaegyu; Kim, Sanggi
2015-06-10
When silicon photonic integrated circuits (PICs), defined for transmitting and receiving optical data, are successfully monolithic-integrated into major silicon electronic chips as chip-level optical I/Os (inputs/outputs), it will bring innovative changes in data computing and communications. Here, we propose new photonic integration scheme, a single-chip optical transceiver based on a monolithic-integrated vertical photonic I/O device set including light source on bulk-silicon. This scheme can solve the major issues which impede practical implementation of silicon-based chip-level optical interconnects. We demonstrated a prototype of a single-chip photonic transceiver with monolithic-integrated vertical-illumination type Ge-on-Si photodetectors and VCSELs-on-Si on the same bulk-silicon substrate operating up to 50 Gb/s and 20 Gb/s, respectively. The prototype realized 20 Gb/s low-power chip-level optical interconnects for λ ~ 850 nm between fabricated chips. This approach can have a significant impact on practical electronic-photonic integration in high performance computers (HPC), cpu-memory interface, hybrid memory cube, and LAN, SAN, data center and network applications.
Asnicar, Francesco; Manara, Serena; Zolfo, Moreno; Truong, Duy Tin; Scholz, Matthias; Armanini, Federica; Ferretti, Pamela; Gorfer, Valentina; Pedrotti, Anna; Tett, Adrian; Segata, Nicola
2017-01-01
The gut microbiome becomes shaped in the first days of life and continues to increase its diversity during the first months. Links between the configuration of the infant gut microbiome and infant health are being shown, but a comprehensive strain-level assessment of microbes vertically transmitted from mother to infant is still missing. We collected fecal and breast milk samples from multiple mother-infant pairs during the first year of life and applied shotgun metagenomic sequencing followed by computational strain-level profiling. We observed that several specific strains, including those of Bifidobacterium bifidum , Coprococcus comes , and Ruminococcus bromii , were present in samples from the same mother-infant pair, while being clearly distinct from those carried by other pairs, which is indicative of vertical transmission. We further applied metatranscriptomics to study the in vivo gene expression of vertically transmitted microbes and found that transmitted strains of Bacteroides and Bifidobacterium species were transcriptionally active in the guts of both adult and infant. By combining longitudinal microbiome sampling and newly developed computational tools for strain-level microbiome analysis, we demonstrated that it is possible to track the vertical transmission of microbial strains from mother to infants and to characterize their transcriptional activity. Our work provides the foundation for larger-scale surveys to identify the routes of vertical microbial transmission and its influence on postinfancy microbiome development. IMPORTANCE Early infant exposure is important in the acquisition and ultimate development of a healthy infant microbiome. There is increasing support for the idea that the maternal microbial reservoir is a key route of microbial transmission, and yet much is inferred from the observation of shared species in mother and infant. The presence of common species, per se , does not necessarily equate to vertical transmission, as species exhibit considerable strain heterogeneity. It is therefore imperative to assess whether shared microbes belong to the same genetic variant (i.e., strain) to support the hypothesis of vertical transmission. Here we demonstrate the potential of shotgun metagenomics and strain-level profiling to identify vertical transmission events. Combining these data with metatranscriptomics, we show that it is possible not only to identify and track the fate of microbes in the early infant microbiome but also to investigate the actively transcribing members of the community. These approaches will ultimately provide important insights into the acquisition, development, and community dynamics of the infant microbiome.
Manara, Serena; Truong, Duy Tin; Armanini, Federica; Ferretti, Pamela; Gorfer, Valentina; Pedrotti, Anna
2017-01-01
ABSTRACT The gut microbiome becomes shaped in the first days of life and continues to increase its diversity during the first months. Links between the configuration of the infant gut microbiome and infant health are being shown, but a comprehensive strain-level assessment of microbes vertically transmitted from mother to infant is still missing. We collected fecal and breast milk samples from multiple mother-infant pairs during the first year of life and applied shotgun metagenomic sequencing followed by computational strain-level profiling. We observed that several specific strains, including those of Bifidobacterium bifidum, Coprococcus comes, and Ruminococcus bromii, were present in samples from the same mother-infant pair, while being clearly distinct from those carried by other pairs, which is indicative of vertical transmission. We further applied metatranscriptomics to study the in vivo gene expression of vertically transmitted microbes and found that transmitted strains of Bacteroides and Bifidobacterium species were transcriptionally active in the guts of both adult and infant. By combining longitudinal microbiome sampling and newly developed computational tools for strain-level microbiome analysis, we demonstrated that it is possible to track the vertical transmission of microbial strains from mother to infants and to characterize their transcriptional activity. Our work provides the foundation for larger-scale surveys to identify the routes of vertical microbial transmission and its influence on postinfancy microbiome development. IMPORTANCE Early infant exposure is important in the acquisition and ultimate development of a healthy infant microbiome. There is increasing support for the idea that the maternal microbial reservoir is a key route of microbial transmission, and yet much is inferred from the observation of shared species in mother and infant. The presence of common species, per se, does not necessarily equate to vertical transmission, as species exhibit considerable strain heterogeneity. It is therefore imperative to assess whether shared microbes belong to the same genetic variant (i.e., strain) to support the hypothesis of vertical transmission. Here we demonstrate the potential of shotgun metagenomics and strain-level profiling to identify vertical transmission events. Combining these data with metatranscriptomics, we show that it is possible not only to identify and track the fate of microbes in the early infant microbiome but also to investigate the actively transcribing members of the community. These approaches will ultimately provide important insights into the acquisition, development, and community dynamics of the infant microbiome. PMID:28144631
NASA Astrophysics Data System (ADS)
Young, Tun Jan; Christoffersen, Poul; Nicholls, Keith; Bun Lok, Lai; Doyle, Samuel; Hubbard, Bryn; Stewart, Craig; Hofstede, Coen; Bougamont, Marion; Todd, Joseph; Brennan, Paul; Hubbard, Alun
2016-04-01
Fast-flowing outlet glaciers terminating in the sea drain 90% of the Greenland Ice Sheet. It is well-known that these glaciers flow rapidly due to fast basal motion, but its contributing processes and mechanisms are, however, poorly understood. In particular, there is a paucity of data to quantify the extent to which basal sliding and internal ice deformation by viscous creep contribute to the fast motion of Greenland outlet glaciers. To study these processes, we installed a network of global positioning system (GPS) receivers around an autonomous phase-sensitive radio-echo sounder (ApRES) capable of imaging internal reflectors and the glacier bed. The ApRES system, including antennas, were custom-designed to monitor and image ice sheets and ice shelves in monostatic and multiple-input multiple-output (MIMO) modes. Specifically, the system transmits a frequency-modulated continuous-wave (FMCW) that increases linearly from 200 to 400 MHz over a period of 1 second. We installed this system 30 km up-flow of the tidewater terminus of Store Glacier, which flows into Uummannaq Fjord in West Greenland, and data were recorded every hour from 06 May to 16 July 2014 and every 4 hours from 26 July to 11 December 2014. The same site was used to instrument 600 m deep boreholes drilled to the bed as part of the SAFIRE research programme. With range and reflector distances captured at high temporal (hourly) and spatial (millimetre) resolutions, we obtained a unique, 6-month-long time series of strain through the vertical ice column at the drill site where tilt was independently recorded in a borehole. Our results show variable, but persistently high vertical strain. In the upper three-fourths of the ice column, we have calculated strain rates on the order of a few percent per year, and the strain regime curiously shifts from vertical thinning in winter to vertical thickening at the onset of summer melt. In the basal ice layer we observed high-magnitude vertical strain rates on the order of 10-20 percent per year due to significant horizontal compression. With eight transmitting antennas and eight receiving antennas, we were also able to analyse strain in 2 and 3 dimensions. This imagery revealed the spatial dimensions of the two ice layers as well as the ice-bed interface, and with the system advecting with the ice flow we were able to track key features, e.g. moulins and internal layers, over the period of observation. Here, we present a complete record of the internal and basal contributions to ice sheet motion and we visualise the variability of ice deformation on a major outlet glacier in Greenland. The results demonstrate the potential of using ApRES to image strain in high temporal resolution and multiple spatial dimensions.
Measurements of rain effects on an 18-GHz dual-polarized propagation link
NASA Technical Reports Server (NTRS)
Bostian, C. W.; Stutzman, W. L.; Wiley, P. H.; Marshall, R. E.
1976-01-01
The paper presents highlights of rain attenuation and depolarization data collected between August 1972 and March 1974 in an experimental setup consisting of a 1.43-km line-of-sight path with 1.22-m diam dual-polarized parabolic reflector antennas at each end. The antennas used question-mark mounted scalar feeds oriented to transmit or receive linearly polarized 17.65-GHz signals having electric field vectors at +45 deg and -45 deg from the vertical. Rain data were collected and analyzed for 24 individual storms in which the rain rate exceeded 10 mm/hr. Received signal levels were sampled once each second and stored by a small digital computer which controlled the experiment and performed preliminary data processing. The results are compared with a theoretical model presented by Wiley et al. (1974). Experimental cross-polarization isolation data are found to agree well with theoretical values, especially at high rain rates where the antenna effects are the least significant.
Molecular and cellular insights into Zika virus-related neuropathies.
Zhou, Kai; Wang, Long; Yu, Di; Huang, Hesuyuan; Ji, Hong; Mo, Xuming
2017-06-01
Zika virus (ZIKV), a relatively elusive Aedes mosquito-transmitted flavivirus, had been brought into spotlight until recent widespread outbreaks accompanied by unexpectedly severe clinical neuropathies, including fetal microcephaly and Guillain-Barré syndrome (GBS) in the adult. In this review, we focus on the underlying cellular and molecular mechanisms by which vertically transmitted microorganisms reach the fetus and trigger neuropathies.
Improved Timing Scheme for Spaceborne Precipitation Radar
NASA Technical Reports Server (NTRS)
Berkun, Andrew; Fischman, Mark
2004-01-01
An improved timing scheme has been conceived for operation of a scanning satellite-borne rain-measuring radar system. The scheme allows a real-time-generated solution, which is required for auto targeting. The current timing scheme used in radar satellites involves pre-computing a solution that allows the instrument to catch all transmitted pulses without transmitting and receiving at the same time. Satellite altitude requires many pulses in flight at any time, and the timing solution to prevent transmit and receive operations from colliding is usually found iteratively. The proposed satellite has a large number of scanning beams each with a different range to target and few pulses per beam. Furthermore, the satellite will be self-targeting, so the selection of which beams are used will change from sweep to sweep. The proposed timing solution guarantees no echo collisions, can be generated using simple FPGA-based hardware in real time, and can be mathematically shown to deliver the maximum number of pulses per second, given the timing constraints. The timing solution is computed every sweep, and consists of three phases: (1) a build-up phase, (2) a feedback phase, and (3) a build-down phase. Before the build-up phase can begin, the beams to be transmitted are sorted in numerical order. The numerical order of the beams is also the order from shortest range to longest range. Sorting the list guarantees no pulse collisions. The build-up phase begins by transmitting the first pulse from the first beam on the list. Transmission of this pulse starts a delay counter, which stores the beam number and the time delay to the beginning of the receive window for that beam. The timing generator waits just long enough to complete the transmit pulse plus one receive window, then sends out the second pulse. The second pulse starts a second delay counter, which stores its beam number and time delay. This process continues until an output from the first timer indicates there is less than one transmit pulse width until the start of the next receive event. This blocks future transmit pulses in the build-up phase. The feedback phase begins with the first timer paying off and starting the first receive window. When the first receive window is complete, the timing generator transmits the next beam from the list. When the second timer pays off, the second receive event is started. Following the second receive event, the timing generator will transmit the next beam on the list and start an additional timer. The timers work in a circular buffer fashion so there only need to be enough to cover the maximum number of echoes in flight.
Electromagnetic spectrum management system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seastrand, Douglas R.
A system for transmitting a wireless countermeasure signal to disrupt third party communications is disclosed that include an antenna configured to receive wireless signals and transmit wireless counter measure signals such that the wireless countermeasure signals are responsive to the received wireless signals. A receiver processes the received wireless signals to create processed received signal data while a spectrum control module subtracts known source signal data from the processed received signal data to generate unknown source signal data. The unknown source signal data is based on unknown wireless signals, such as enemy signals. A transmitter is configured to process themore » unknown source signal data to create countermeasure signals and transmit a wireless countermeasure signal over the first antenna or a second antenna to thereby interfere with the unknown wireless signals.« less
Nelms, Brittany M.; Kothera, Linda; Thiemann, Tara; Macedo, Paula A.; Savage, Harry M.; Reisen, William K.
2013-01-01
The vector competence and bionomics of Culex pipiens form pipiens L. and Cx. pipiens f. molestus Forskäl were evaluated for populations from the Sacramento Valley. Both f. pipiens and f. molestus females became infected, produced disseminated infections, and were able to transmit West Nile virus. Form molestus females also transmitted West Nile virus vertically to egg rafts and F1 progeny, whereas f. pipiens females only transmitted to egg rafts. Culex pipiens complex from urban Sacramento blood-fed on seven different avian species and two mammalian species. Structure analysis of blood-fed mosquitoes identified K = 4 genetic clusters: f. molestus, f. pipiens, a group of genetically similar hybrids (Cluster X), and admixed individuals. When females were exposed as larvae to midwinter conditions in bioenvironmental chambers, 85% (N = 79) of aboveground Cx. pipiens complex females and 100% (N = 34) of underground f. molestus females did not enter reproductive diapause. PMID:24043690
Design, Fabrication and Characterization of A Bi-Frequency Co-Linear Array
Wang, Zhuochen; Li, Sibo; Czernuszewicz, Tomasz J; Gallippi, Caterina M.; Liu, Ruibin; Geng, Xuecang
2016-01-01
Ultrasound imaging with high resolution and large penetration depth has been increasingly adopted in medical diagnosis, surgery guidance, and treatment assessment. Conventional ultrasound works at a particular frequency, with a −6 dB fractional bandwidth of ~70 %, limiting the imaging resolution or depth of field. In this paper, a bi-frequency co-linear array with resonant frequencies of 8 MHz and 20 MHz was investigated to meet the requirements of resolution and penetration depth for a broad range of ultrasound imaging applications. Specifically, a 32-element bi-frequency co-linear array was designed and fabricated, followed by element characterization and real-time sectorial scan (S-scan) phantom imaging using a Verasonics system. The bi-frequency co-linear array was tested in four different modes by switching between low and high frequencies on transmit and receive. The four modes included the following: (1) transmit low, receive low, (2) transmit low, receive high, (3) transmit high, receive low, (4) transmit high, receive high. After testing, the axial and lateral resolutions of all modes were calculated and compared. The results of this study suggest that bi-frequency co-linear arrays are potential aids for wideband fundamental imaging and harmonic/sub-harmonic imaging. PMID:26661069
O`Rourke, P.E.; Livingston, R.R.
1995-03-28
A fiber optic probe is disclosed for detecting scattered light, with transmitting and receiving fibers having slanted ends and bundled together to form a bevel within the tip of the probe. The probe comprises a housing with a transparent window across its tip for protecting the transmitting and receiving fibers held therein. The endfaces of the fibers are slanted, by cutting, polishing and the like, so that they lie in a plane that is not perpendicular to the longitudinal axis of the respective fiber. The fibers are held in the tip of the probe using an epoxy and oriented so that lines normal to the slanted endfaces are divergent with respect to one another. The epoxy, which is positioned substantially between the transmitting and receiving fibers, is tapered so that the transmitting fiber, the epoxy and the receiving fiber form a bevel of not more than 20 degrees. The angled fiber endfaces cause directing of the light cones toward each other, resulting in improved light coupling efficiency. A light absorber, such as carbon black, is contained in the epoxy to reduce crosstalk between the transmitting and receiving fibers. 3 figures.
O'Rourke, Patrick E.; Livingston, Ronald R.
1995-01-01
A fiber optic probe for detecting scattered light, with transmitting and receiving fibers having slanted ends and bundled together to form a bevel within the tip of the probe. The probe comprises a housing with a transparent window across its tip for protecting the transmitting and receiving fibers held therein. The endfaces of the fibers are slanted, by cutting, polishing and the like, so that they lie in a plane that is not perpendicular to the longitudinal axis of the respective fiber. The fibers are held in the tip of the probe using an epoxy and oriented so that lines normal to the slanted endfaces are divergent with respect to one another. The epoxy, which is positioned substantially between the transmitting and receiving fibers, is tapered so that the transmitting fiber, the epoxy and the receiving fiber form a bevel of not more than 20 degrees. The angled fiber endfaces cause directing of the light cones toward each other, resulting in improved light coupling efficiency. A light absorber, such as carbon black, is contained in the epoxy to reduce crosstalk between the transmitting and receiving fibers.
Large General Purpose Frame for Studying Force Vectors
ERIC Educational Resources Information Center
Heid, Christy; Rampolla, Donald
2011-01-01
Many illustrations and problems on the vector nature of forces have weights and forces in a vertical plane. One of the common devices for studying the vector nature of forces is a horizontal "force table," in which forces are produced by weights hanging vertically and transmitted to cords in a horizontal plane. Because some students have…
Space Radar Image of Mt. Rainer, Washington
1999-05-01
This is a radar image of Mount Rainier in Washington state. The volcano last erupted about 150 years ago and numerous large floods and debris flows have originated on its slopes during the last century. Today the volcano is heavily mantled with glaciers and snowfields. More than 100,000 people live on young volcanic mudflows less than 10,000 years old and, consequently, are within the range of future, devastating mudslides. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 20th orbit on October 1, 1994. The area shown in the image is approximately 59 kilometers by 60 kilometers (36.5 miles by 37 miles). North is toward the top left of the image, which was composed by assigning red and green colors to the L-band, horizontally transmitted and vertically, and the L-band, horizontally transmitted and vertically received. Blue indicates the C-band, horizontally transmitted and vertically received. In addition to highlighting topographic slopes facing the space shuttle, SIR-C records rugged areas as brighter and smooth areas as darker. The scene was illuminated by the shuttle's radar from the northwest so that northwest-facing slopes are brighter and southeast-facing slopes are dark. Forested regions are pale green in color; clear cuts and bare ground are bluish or purple; ice is dark green and white. The round cone at the center of the image is the 14,435-foot (4,399-meter) active volcano, Mount Rainier. On the lower slopes is a zone of rock ridges and rubble (purple to reddish) above coniferous forests (in yellow/green). The western boundary of Mount Rainier National Park is seen as a transition from protected, old-growth forest to heavily logged private land, a mosaic of recent clear cuts (bright purple/blue) and partially regrown timber plantations (pale blue). The prominent river seen curving away from the mountain at the top of the image (to the northwest) is the White River, and the river leaving the mountain at the bottom right of the image (south) is the Nisqually River, which flows out of the Nisqually glacier on the mountain. The river leaving to the left of the mountain is the Carbon River, leading west and north toward heavily populated regions near Tacoma. The dark patch at the top right of the image is Bumping Lake. Other dark areas seen to the right of ridges throughout the image are radar shadow zones. Radar images can be used to study the volcanic structure and the surrounding regions with linear rock boundaries and faults. In addition, the recovery of forested lands from natural disasters and the success of reforestation programs can also be monitored. Ultimately this data may be used to study the advance and retreat of glaciers and other forces of global change. http://photojournal.jpl.nasa.gov/catalog/PIA01727
Shiba, Kenji
2015-08-01
We proposed an electrically induced energy transmission method for implantable medical devices deep inside the body. This method makes it possible to transmit energy deep inside the body using only a couple of titanium electrodes attached to the surface of the implantable medical device. In this study, electromagnetic simulations in which the area and distance of the receiving electrodes were changed were conducted. Then, experimental measurements of the received voltage were conducted in which electric energy was transmitted from the surface of the human phantom to an implantable device inside it (transmitting distance: 12 cm). As a result of the electromagnetic simulation, the area and distance of the receiving electrodes were roughly proportional to the received voltage, respectively. As a result of the experimental measurement, a received voltage of 2460 mV could be obtained with a load resistance of 100 Ω. We confirmed that our energy transmission method could be a powerful method for transmitting energy to a deeply implanted medical device.
On the performance of a code division multiple access scheme with transmit/receive conflicts
NASA Astrophysics Data System (ADS)
Silvester, J. A.
One of the benefits of spread spectrum is that by assigning each user a different orthogonal signal set, multiple transmissions can occur simultaneously. This possibility is utilized in new access schemes called Code Division Multiple Access (CDMA). The present investigation is concerned with a particular CDMA implementation in which the transmit times for each symbol are exactly determined in a distributed manner such that both sender and receiver know them. In connection with a decision whether to transmit or receive, the loss of a symbol in one of the channels results. The system employs thus a coding technique which permits correct decoding of a codeword even if some constituent symbols are missing or in error. The technique used is Reed Solomon coding. The performance of this system is analyzed, and attention is given to the optimum strategy which should be used in deciding whether to receive or transmit.
Space Radar Image of the Silk Route in Niya, Taklamak, China
1999-05-01
This composite image is of an area thought to contain the ruins of the ancient settlement of Niya. It is located in the southwest corner of the Taklamakan Desert in China Sinjiang Province. This region was part of some of China's earliest dynasties and from the third century BC on was traversed by the famous Silk Road. The Silk Road, passing east-west through this image, was an ancient trade route that led across Central Asia's desert to Persia, Byzantium and Rome. The multi-frequency, multi-polarized radar imagery was acquired on orbit 106 of the space shuttle Endeavour on April 16, 1994 by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar. The image is centered at 37.78 degrees north latitude and 82.41 degrees east longitude. The area shown is approximately 35 kilometers by 83 kilometers (22 miles by 51 miles). The image is a composite of an image from an Earth-orbiting satellite called Systeme Probatoire d'Observation de la Terre (SPOT) and a SIR-C multi-frequency, multi-polarized radar image. The false-color radar image was created by displaying the C-band (horizontally transmitted and received) return in red, the L-band (horizontally transmitted and received) return in green, and the L-band (horizontally transmitted and vertically received) return in blue. The prominent east/west pink formation at the bottom of the image is most likely a ridge of loosely consolidated sedimentary rock. The Niya River -- the black feature in the lower right of the French satellite image -- meanders north-northeast until it clears the sedimentary ridge, at which point it abruptly turns northwest. Sediment and evaporite deposits left by the river over millennia dominate the center and upper right of the radar image (in light pink). High ground, ridges and dunes are seen among the riverbed meanderings as mottled blue. Through image enhancement and analysis, a new feature probably representing a man-made canal has been discovered and mapped. http://photojournal.jpl.nasa.gov/catalog/PIA01726
Space Radar Image of Cape Cod, Massachusetts
NASA Technical Reports Server (NTRS)
1994-01-01
This spaceborne radar image shows the famous 'hook' of Cape Cod, Massachusetts. The Cape, which juts out into the Atlantic Ocean about 100 kilometers (62 miles) southeast of Boston, actually consists of sandy debris left behind by the great continental ice sheets when they last retreated from southern New England about 20,000 years ago. Today's landscape consists of sandy forests, fields of scrub oak and other bushes and grasses, salt marshes, freshwater ponds, as well as the famous beaches and sand dunes. In this image, thickly forested areas appear green, marshes are dark blue, ponds and sandy areas are black, and developed areas are mostly pink. The dark L-shape in the lower center is the airport runways in Hyannis, the Cape's largest town. The dark X-shape left of the center is Otis Air Force Base. The Cape Cod Canal, above and left of center, connects Buzzards Bay on the left with Cape Cod Bay on the right. The northern tip of the island of Martha's Vineyard is seen in the lower left. The tip of the Cape, in the upper right, includes the community of Provincetown, which appears pink, and the protected National Seashore areas of sand dunes that parallel the Atlantic coast east of Provincetown. Scientists are using radar images like this one to study delicate coastal environments and the effects of human activities on the ecosystem and landscape. This image was acquired by Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on April 15, 1994. The image is 81.7 kilometers by 43.1 kilometers (50.7 miles by 26.7 miles) and is centered at 41.8 degrees north latitude, 70.3 degrees west longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is C-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted and received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.
Space Radar Image of Safsaf Oasis, Egypt
NASA Technical Reports Server (NTRS)
1994-01-01
This three-frequency space radar image of south-central Egypt demonstrates the unique capability of imaging radar to penetrate thin sand cover in arid regions to reveal hidden details below the surface. Nearly all of the structures seen in this image are invisible to the naked eye and to conventional optical satellite sensors. Features appear in various colors because the three separate radar wavelengths are able to penetrate the sand to different depths. Areas that appear red or orange are places that can be seen only by the longest wavelength, L-band, and they are the deepest of the buried structures. Field studies in this area indicate L-band can penetrate as much as 2 meters (6.5 feet) of very dry sand to image buried rock structures. Ancient drainage channels at the bottom of the image are filled with sand more than 2 meters (6.5 feet) thick and therefore appear dark because the radar waves cannot penetrate them. The fractured orange areas at the top of the image and the blue circular structures in the center of the image are granitic areas that may contain mineral ore deposits. Scientists are using the penetrating capabilities of radar imaging in desert areas in studies of structural geology, mineral exploration, ancient climates, water resources and archaeology. This image is 51.9 kilometers by 30.2 kilometers (32.2 miles by 18.7 miles) and is centered at 22.7 degrees north latitude, 29.3degrees east longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is C-band, horizontally transmitted and received; and blue is X-band, vertically transmitted and received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 16, 1994, on board the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.
Space Radar Image of Giza Egypt - with enlargement
NASA Technical Reports Server (NTRS)
1994-01-01
This radar image shows the area west of the Nile River near Cairo, Egypt. The Nile River is the dark band along the right side of the image and it flows approximately due North from the bottom to the right. The boundary between dense urbanization and the desert can be clearly seen between the bright and dark areas in the center of the image. This boundary represents the approximate extent of yearly Nile flooding which played an important part in determining where people lived in ancient Egypt. This land usage pattern persists to this day. The pyramids at Giza appear as three bright triangles aligned with the image top just at the boundary of the urbanized area. They are also shown enlarged in the inset box in the top left of the image. The Great Pyramid of Khufu (Cheops in Greek) is the northern most of the three Giza pyramids. The side-looking radar illuminates the scene from the top, the two sides of the pyramids facing the radar reflect most of the energy back to the antenna and appear radar bright; the two sides away from the radar reflect less energy back and appear dark Two additional pyramids can be seen left of center in the lower portion of the image. The modern development in the desert on the left side of the image is the Sixth of October City, an area of factories and residences started by Anwar Sadat to relieve urban crowding. The image was taken on April 19, 1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered on latitude 29.72 degrees North latitude and 30.83 degrees East longitude. The area shown is approximately 20 kilometers by 30 kilometers. The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is C-band horizontally transmitted, horizontally received; blue is C-band horizontally transmitted, vertically received.
Space Radar Image of Ubar Optical/Radar
1998-04-28
This pair of images from space shows a portion of the southern Empty Quarter of the Arabian Peninsula in the country of Oman. On the left is a radar image of the region around the site of the fabled Lost City of Ubar, discovered in 1992 with the aid of remote sensing data. On the right is an enhanced optical image taken by the shuttle astronauts. Ubar existed from about 2800 BC to about 300 AD. and was a remote desert outpost where caravans were assembled for the transport of frankincense across the desert. The actual site of the fortress of the Lost City of Ubar, currently under excavation, is too small to show in either image. However, tracks leading to the site, and surrounding tracks, show as prominent, but diffuse, reddish streaks in the radar image. Although used in modern times, field investigations show many of these tracks were in use in ancient times as well. Mapping of these tracks on regional remote sensing images provided by the Landsat satellite was a key to recognizing the site as Ubar. The prominent magenta colored area is a region of large sand dunes. The green areas are limestone rocks, which form a rocky desert floor. A major wadi, or dry stream bed, runs across the scene and appears as a white line. The radar images, and ongoing field investigations, will help shed light on an early civilization about which little in known. The radar image was taken by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) and is centered at 18 degrees North latitude and 53 degrees East longitude. The image covers an area about 50 kilometers by 100 kilometers (31 miles by 62 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted, horizontally received; blue is C-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. http://photojournal.jpl.nasa.gov/catalog/PIA01302
Millimeter Wave Sensor For On-Line Inspection Of Thin Sheet Dielectrics
Bakhtiari, Sasan; Gopalsami, Nachappa; Raptis, Apostolos C.
1999-03-23
A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components. A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components.
Crane, H.R.; Bourne, M.E.; Nieset, R.T.; Gratian, J.W.; Gratian, A.C.
1961-04-18
A super-generative radar system is described having alternate phases of transmission and reception and being adapted to transmit for unequal durations in the absence of receiving energy and to transmit for equal and longer durations when energy of proper phase is received.
Microprogramming for real-time data acquisition
NASA Technical Reports Server (NTRS)
Patella, F. J.
1977-01-01
Transmit microcode trap logic is conditioned by preset clock. Measurement request or issuance of command is controlled by set of software-initialized polling tables. Receive microcode trap logic is conditioned by transmit/receive hardware when response is returned on data bus.
Dolphin sonar detection and discrimination capabilities
NASA Astrophysics Data System (ADS)
Au, Whitlow W. L.
2004-05-01
Dolphins have a very sophisticated short range sonar that surpasses all technological sonar in its capabilities to perform complex target discrimination and recognition tasks. The system that the U.S. Navy has for detecting mines buried under ocean sediment is one that uses Atlantic bottlenose dolphins. However, close examination of the dolphin sonar system will reveal that the dolphin acoustic hardware is fairly ordinary and not very special. The transmitted signals have peak-to-peak amplitudes as high as 225-228 dB re 1 μPa which translates to an rms value of approximately 210-213 dB. The transmit beamwidth is fairly broad at about 10o in both the horizontal and vertical planes and the receiving beamwidth is slightly broader by several degrees. The auditory filters are not very narrow with Q values of about 8.4. Despite these fairly ordinary features of the acoustic system, these animals still demonstrate very unusual and astonishing capabilities. Some of the capabilities of the dolphin sonar system will be presented and the reasons for their keen sonar capabilities will be discussed. Important features of their sonar include the broadband clicklike signals used, adaptive sonar search capabilities and large dynamic range of its auditory system.
Thompson, D.O.; Hsu, D.K.
1993-12-14
The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses. 25 figures.
Thompson, Donald O.; Hsu, David K.
1993-12-14
The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses.
Reconstruction method for data protection in telemedicine systems
NASA Astrophysics Data System (ADS)
Buldakova, T. I.; Suyatinov, S. I.
2015-03-01
In the report the approach to protection of transmitted data by creation of pair symmetric keys for the sensor and the receiver is offered. Since biosignals are unique for each person, their corresponding processing allows to receive necessary information for creation of cryptographic keys. Processing is based on reconstruction of the mathematical model generating time series that are diagnostically equivalent to initial biosignals. Information about the model is transmitted to the receiver, where the restoration of physiological time series is performed using the reconstructed model. Thus, information about structure and parameters of biosystem model received in the reconstruction process can be used not only for its diagnostics, but also for protection of transmitted data in telemedicine complexes.
A Specialized Multi-Transmit Head Coil for High Resolution fMRI of the Human Visual Cortex at 7T.
Sengupta, Shubharthi; Roebroeck, Alard; Kemper, Valentin G; Poser, Benedikt A; Zimmermann, Jan; Goebel, Rainer; Adriany, Gregor
2016-01-01
To design, construct and validate radiofrequency (RF) transmit and receive phased array coils for high-resolution visual cortex imaging at 7 Tesla. A 4 channel transmit and 16 channel receive array was constructed on a conformal polycarbonate former. Transmit field efficiency and homogeneity were simulated and validated, along with the Specific Absorption Rate, using [Formula: see text] mapping techniques and electromagnetic simulations. Receiver signal-to-noise ratio (SNR), temporal SNR (tSNR) across EPI time series, g-factors for accelerated imaging and noise correlations were evaluated and compared with a commercial 32 channel whole head coil. The performance of the coil was further evaluated with human subjects through functional MRI (fMRI) studies at standard and submillimeter resolutions of upto 0.8mm isotropic. The transmit and receive sections were characterized using bench tests and showed good interelement decoupling, preamplifier decoupling and sample loading. SNR for the 16 channel coil was ∼ 1.5 times that of the commercial coil in the human occipital lobe, and showed better g-factor values for accelerated imaging. fMRI tests conducted showed better response to Blood Oxygen Level Dependent (BOLD) activation, at resolutions of 1.2mm and 0.8mm isotropic. The 4 channel phased array transmit coil provides homogeneous excitation across the visual cortex, which, in combination with the dual row 16 channel receive array, makes for a valuable research tool for high resolution anatomical and functional imaging of the visual cortex at 7T.
Computation of transmitted and received B1 fields in magnetic resonance imaging.
Milles, Julien; Zhu, Yue Min; Chen, Nan-Kuei; Panych, Lawrence P; Gimenez, Gérard; Guttmann, Charles R G
2006-05-01
Computation of B1 fields is a key issue for determination and correction of intensity nonuniformity in magnetic resonance images. This paper presents a new method for computing transmitted and received B1 fields. Our method combines a modified MRI acquisition protocol and an estimation technique based on the Levenberg-Marquardt algorithm and spatial filtering. It enables accurate estimation of transmitted and received B1 fields for both homogeneous and heterogeneous objects. The method is validated using numerical simulations and experimental data from phantom and human scans. The experimental results are in agreement with theoretical expectations.
Vyas, Ashish Kumar; Ramakrishna, Usha; Sen, Bijoya; Islam, Mojahidul; Ramakrishna, Gayatri; Patra, Sharda; Rastogi, Archana; Sarin, Shiv Kumar; Trehanpati, Nirupma
2018-04-30
Asialoglycoprotein receptor expression on hepatocytes has been associated with endocytosis, binding and uptake of hepatitis B virus. The role of asialoglycoprotein receptor in hepatitis B virus vertical transmission and its expression on placenta has not yet been studied. Thirty-four HBsAg+ve and 13 healthy pregnant mothers along with their newborns were enrolled. The former were categorized into transmitting and non-transmitting mothers based on their newborns being hepatitis B surface antigen and hepatitis B virus DNA positive. Expression of asialoglycoprotein receptor and hepatitis B surface antigen in placenta and isoform of asialoglycoprotein receptor on dendritic cell in peripheral and cord blood dendritic cells were analysed using flowcytometry, immune histochemistry, immune florescence and qRT-PCR. Twelve HBsAg+ve mothers transmitted hepatitis B virus to their newborns whereas the rest (n = 22) did not. Hepatitis B virus-transmitting mothers showed increased expression of asialoglycoprotein receptor in trophoblasts of placenta. Immunofluorescence microscopy revealed colocalization of hepatitis B surface antigen and asialoglycoprotein receptor in placenta as well as in DCs of transmitting mothers. There was no significant difference in the expression of asialoglycoprotein receptor on peripheral blood mononuclear cells or chord blood mononuclear cells between the 2 groups. However, hepatitis B virus-transmitting mothers and their HBsAg+ve newborns showed increased mRNA levels of isoform of asialoglycoprotein receptor on dendritic cell in peripheral blood mononuclear cells. Hepatitis B virus-transmitting mothers and their HBsAg+ve newborns showed an increased expression of isoform of asialoglycoprotein receptor on dendritic cell on circulating dendritic cells compared to hepatitis B virus non-transmitting mothers and their negative newborns. This study revealed that increased expression of asialoglycoprotein receptor in placenta and colocalization with hepatitis B surface antigen strongly indicates its role in intrauterine transmission of hepatitis B virus. Asialoglycoprotein receptor-blocking strategy can be used for therapeutic intervention of vertical transmission. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The recent spread of a vertically transmitted virus through populations of Drosophila melanogaster.
Carpenter, Jennifer A; Obbard, Darren J; Maside, Xulio; Jiggins, Francis M
2007-09-01
The sigma virus is a vertically transmitted pathogen that commonly infects natural populations of Drosophila melanogaster. This virus is the only known host-specific pathogen of D. melanogaster, and so offers a unique opportunity to study the genetics of Drosophila-viral interactions in a natural system. To elucidate the population genetic processes that operate in sigma virus populations, we collected D. melanogaster from 10 populations across three continents. We found that the sigma virus had a prevalence of 0-15% in these populations. Compared to other RNA viruses, we found that levels of viral genetic diversity are very low across Europe and North America. Based on laboratory measurements of the viral substitution rate, we estimate that most European and North American viral isolates shared a common ancestor approximately 200 years ago. We suggest two explanations for this: the first is that D. melanogaster has recently acquired the sigma virus; the second is that a single viral type has recently swept through D. melanogaster populations. Furthermore, in contrast to Drosophila populations, we find that the sigma viral populations are highly structured. This is surprising for a vertically transmitted pathogen that has a similar migration rate to its host. We suggest that the low structure in the viral populations can be explained by the smaller effective population size of the virus.
Real-time data acquisition and telemetry based irrigation control system
Slater, John M.; Svoboda, John M.
2005-12-13
A data acquisition and telemetry based control system for use in facilitating substantially real time management of an agricultural irrigation system. The soil moisture sensor includes a reader and a plurality of probes. The probes each include an electronic circuit having a moisture sensing capacitor in operative communication with the soil whose moisture is to be measured. Each probe also includes a receive/transmit antenna and the reader includes a transmit/receive antenna, so that as the reader passes near the probe, the reader transmits a digital excitation signal to the electronic circuit of the biodegradable probe via an inductive couple formed between the transmit/receive antenna of the reader and the receive/transmit coil of the probe. The electronic circuit uses an energy component of the excitation signal to generate a digital data signal which indicates the moisture content of the soil adjacent to the moisture sensing capacitor. The probe sends the data signal to the reader which then uses the data signal to develop a corresponding set of watering instructions which are then transmitted to a control module in communication with the irrigation system. The control module sends corresponding control signals to nozzles of the irrigation system causing the irrigation system to disperse water in a manner consistent with the moisture content data transmitted by the probes to the reader. Because the irrigation system moves continuously through the field to be irrigated, the moisture content data acquisition and resultant water dispersal by the irrigation system occur substantially in real time.
NASA Astrophysics Data System (ADS)
Ahmed, S. A.; Hassebo, Y. Y.; Gross, B.; Oo, M.; Moshary, F.
2006-09-01
We examine the potential, range of application, and limiting factors of a polarization selection technique, recently devised by us, which takes advantage of naturally occurring polarization properties of scattered sky light to minimize the detected sky background signal and which can be used in conjunction with linearly polarized elastic backscatter lidars to maximize lidar receiver SNR. In this approach, a polarization selective lidar receiver is aligned to minimize detected skylight, while the polarization of the transmitted lidar signal is rotated to maintain maximum lidar backscatter signal throughput to the receiver detector, consequently maximizing detected signal to noise ratio. Results presented include lidar elastic backscatter measurements, at 532 nm which show as much as a factor of √10 improvement in signal-to-noise ratio over conventional un-polarized schemes. For vertically pointing lidars, the largest improvements are limited to symmetric early morning and late afternoon hours. For non-vertical scanning lidars, significant improvements are achievable over much more extended time periods, depending on the specific angle between the lidar and solar axes. A theoretical model that simulates the background skylight within the single scattering approximation showed good agreement with measured SNR improvement factors. Diurnally asymmetric improvement factors, sometimes observed, are explained by measured increases in PWV and subsequent modification of aerosol optical depth by dehydration from morning to afternoon. Finally, since the polarization axis follows the solar azimuth angle even for high aerosol loading, as demonstrated using radiative transfer simulations, it is possible to conceive automation of the technique. In addition, it is shown that while multiple scattering reduces the SNR improvement, the orientation of the minimum noise state remains the same.
Transmit-receive eddy current probes for defect detection and sizing in steam generator tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obrutsky, L.S.; Cecco, V.S.; Sullivan, S.P.
1997-02-01
Inspection of steam generator tubes in aging Nuclear Generating Stations is increasingly important. Defect detection and sizing, especially in defect prone areas such as the tubesheet, support plates and U-bend regions, are required to assess the fitness-for-service of the steam generators. Information about defect morphology is required to address operational integrity issues, i.e., risk of tube rupture, number of tubes at risk, consequential leakage. A major challenge continues to be the detection and sizing of circumferential cracks. Utilities around the world have experienced this type of tube failure. Conventional in-service inspection, performed with eddy current bobbin probes, is ineffectual inmore » detecting circumferential cracks in tubing. It has been demonstrated in CANDU steam generators, with deformation, magnetite and copper deposits that multi-channel probes with transmit-receive eddy current coils are superior to those using surface impedance coils. Transmit-receive probes have strong directional properties, permitting probe optimization according to crack orientation. They are less sensitive to lift-off noise and magnetite deposits and possess good discrimination to internal defects. A single pass C3 array transmit-receive probe developed by AECL can detect and size circumferential stress corrosion cracks as shallow as 40% through-wall. Since its first trial in 1992, it has been used routinely for steam generator in-service inspection of four CANDU plants, preventing unscheduled shutdowns due to leaking steam generator tubes. More recently, a need has surfaced for simultaneous detection of both circumferential and axial cracks. The C5 probe was designed to address this concern. It combines transmit-receive array probe technology for equal sensitivity to axial and circumferential cracks with a bobbin probe for historical reference. This paper will discuss the operating principles of transmit-receive probes, along with inspection results.« less
Pediatric Pulmonary and Cardiovascular Complications of Vertically Transmitted HIV Infection (P2C2)
2016-04-13
Acquired Immunodeficiency Syndrome; Lung Diseases; Cardiovascular Diseases; Heart Diseases; Heart Failure; HIV Infections; Cytomegalovirus Infections; Pneumocystis Carinii Infections; Ebstein-Barr Virus Infections
Wang, Qian; Wang, Linhong; Fang, Liwen; Wang, Ailing; Jin, Xi; Wang, Fang; Wang, Xiaoyan; Qiao, Yaping; Sullivan, Sheena G; Rutherford, Shannon; Zhang, Lei
2016-10-10
This study investigates the improvement of the prevention of mother-to-child transmission (PMTCT) of Human Immunodeficiency Virus (HIV) in China during 2004-2011. A clinic-based prospective study was conducted among HIV-positive pregnant women and their children in eight counties across China. Associated factors of mother-to-child transmission were analyzed using regression analysis. A total of 1,387 HIV+ pregnant women and 1,377 HIV-exposed infants were enrolled. The proportion of pregnant women who received HIV testing increased significantly from 45.1% to 98.9% during 2004-2011. Among whom, the proportion that received antiretroviral (ARV) prophylaxis increased from 61% to 96%, and the corresponding coverage in children increased from 85% to 97% during the same period. In contrast, single-dose nevirapine treatment during delivery declined substantially from 97.9% to 12.7%. Vertical transmission of HIV declined from 11.1% (95% confidence interval [CI]: 5.7-23.3%) in 2004 to 1.2% (95% CI: 0.1-5.8%) in 2011. Women who had a vaginal delivery (compared to emergency caesarian section (odds ratio [OR] = 0.46; 0.23-0.96)) and mothers on multi-ARVs (OR = 0.11; 0.04-0.29) were less likely to transmit HIV to their newborns. Increasing HIV screening enabled timely HIV care and prophylaxis to reduce vertical transmission of HIV. Early and consistent treatment with multi-ARVs during pregnancy is vital for PMTCT.
Time-of-flight radio location system
McEwan, T.E.
1996-04-23
A bi-static radar configuration measures the direct time-of-flight of a transmitted RF pulse and is capable of measuring this time-of-flight with a jitter on the order of about one pico-second, or about 0.01 inch of free space distance for an electromagnetic pulse over a range of about one to ten feet. A transmitter transmits a sequence of electromagnetic pulses in response to a transmit timing signal, and a receiver samples the sequence of electromagnetic pulses with controlled timing in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the sequence of electromagnetic pulses such that the time between transmission of pulses in the sequence and sampling by the receiver sweeps over a range of delays. The receive timing signal sweeps over the range of delays in a sweep cycle such that pulses in the sequence are sampled at the pulse repetition rate, and with different delays in the range of delays to produce a sample signal representing magnitude of a received pulse in equivalent time. Automatic gain control circuitry in the receiver controls the magnitude of the equivalent time sample signal. A signal processor analyzes the sample signal to indicate the time-of-flight of the electromagnetic pulses in the sequence. 7 figs.
Time-of-flight radio location system
McEwan, Thomas E.
1996-01-01
A bi-static radar configuration measures the direct time-of-flight of a transmitted RF pulse and is capable of measuring this time-of-flight with a jitter on the order of about one pico-second, or about 0.01 inch of free space distance for an electromagnetic pulse over a range of about one to ten feet. A transmitter transmits a sequence of electromagnetic pulses in response to a transmit timing signal, and a receiver samples the sequence of electromagnetic pulses with controlled timing in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the sequence of electromagnetic pulses such that the time between transmission of pulses in the sequence and sampling by the receiver sweeps over a range of delays. The receive timing signal sweeps over the range of delays in a sweep cycle such that pulses in the sequence are sampled at the pulse repetition rate, and with different delays in the range of delays to produce a sample signal representing magnitude of a received pulse in equivalent time. Automatic gain control circuitry in the receiver controls the magnitude of the equivalent time sample signal. A signal processor analyzes the sample signal to indicate the time-of-flight of the electromagnetic pulses in the sequence.
47 CFR 79.107 - User interfaces provided by digital apparatus.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SERVICES ACCESSIBILITY OF VIDEO PROGRAMMING Apparatus § 79.107 User interfaces provided by digital... States and designed to receive or play back video programming transmitted in digital format simultaneously with sound, including apparatus designed to receive or display video programming transmitted in...
Space Radar Image of Kliuchevskoi Volcano, Russia
NASA Technical Reports Server (NTRS)
1994-01-01
This is an image of the Kliuchevskoi volcano, Kamchatka, Russia, which began to erupt on September 30, 1994. Kliuchevskoi is the bright white peak surrounded by red slopes in the lower left portion of the image. The image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 25th orbit on October 1, 1994. The image shows an area approximately 30 kilometers by 60 kilometers (18.5 miles by 37 miles) that is centered at 56.18 degrees north latitude and 160.78 degrees east longitude. North is toward the top of the image. The Kamchatka volcanoes are among the most active volcanoes in the world. The volcanic zone sits above a tectonic plate boundary, where the Pacific plate is sinking beneath the northeast edge of the Eurasian plate. The Endeavour crew obtained dramatic video and photographic images of this region during the eruption, which will assist scientists in analyzing the dynamics of the current activity. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). The Kamchatka River runs from left to right across the image. An older, dormant volcanic region appears in green on the north side of the river. The current eruption included massive ejections of gas, vapor and ash, which reached altitudes of 20,000 meters (65,000 feet). New lava flows are visible on the flanks of Kliuchevskoi, appearing yellow/green in the image, superimposed on the red surfaces in the lower center. Melting snow triggered mudflows on the north flank of the volcano, which may threaten agricultural zones and other settlements in the valley to the north. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrte.v. (DLR), the major partner in science, operations and data processing of X-SAR.
Space Radar Image of Jerusalem and the Dead Sea
NASA Technical Reports Server (NTRS)
1994-01-01
This space radar image shows the area surrounding the Dead Sea along the West Bank between Israel and Jordan. This region is of major cultural and historical importance to millions of Muslims, Jews and Christians who consider it the Holy Land. The yellow area at the top of the image is the city of Jericho. A portion of the Dead Sea is shown as the large black area at the top right side of the image. The Jordan River is the white line at the top of the image which flows into the Dead Sea. Jerusalem, which lies in the Judaean Hill Country, is the bright, yellowish area shown along the left center of the image. Just below and to the right of Jerusalem is the town of Bethlehem. The city of Hebron is the white, yellowish area near the bottom of the image. The area around Jerusalem has a history of more than 2,000 years of settlement and scientists are hoping to use these data to unveil more about this region's past. The Jordan River Valley is part of an active fault and rift system that extends from southern Turkey and connects with the east African rift zone. This fault system has produced major earthquakes throughout history and some scientists theorize that an earthquake may have caused the fall of Jericho's walls. The Dead Sea basin is formed by active earthquake faulting and contains the lowest place on the Earth's surface at about 400 meters (1,300 feet) below sea level. It was in caves along the northern shore of the Dead Sea that the Dead Sea Scrolls were found in 1947. The blue and green areas are generally regions of undeveloped hills and the dark green areas are the smooth lowlands of the Jordan River valley. This image is 73 kilometers by 45 kilometers (45 miles by 28 miles) and is centered at 31.7 degrees north latitude, 35.4 degrees east longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and vertically received; green is L-band, horizontally transmitted and horizontally received; and blue is C-band, horizontally transmitted and vertically received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on October 3, 1994 onboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth. Each flight of SIR-C/X-SAR collected data at more than 400 sites around the globe. The science team is using images like this one to help answer various scientific questions about the condition of ecosystems, the extent of snow and ice packs, geologic activity such as volcanoes and earthquakes, and measurement of ocean waves and currents.
Space Radar Image of Taal Volcano, Philippines
NASA Technical Reports Server (NTRS)
1994-01-01
This is an image of Taal volcano, near Manila on the island of Luzon in the Philippines. The black area in the center is Taal Lake, which nearly fills the 30-kilometer-diameter (18-mile) caldera. The caldera rim consists of deeply eroded hills and cliffs. The large island in Taal Lake, which itself contains a crater lake, is known as Volcano Island. The bright yellow patch on the southwest side of the island marks the site of an explosion crater that formed during a deadly eruption of Taal in 1965. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 78th orbit on October 5, 1994. The image shows an area approximately 56 kilometers by 112 kilometers (34 miles by 68 miles) that is centered at 14.0 degrees north latitude and 121.0 degrees east longitude. North is toward the upper right of the image. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). Since 1572, Taal has erupted at least 34 times. Since early 1991, the volcano has been restless, with swarms of earthquakes, new steaming areas, ground fracturing, and increases in water temperature of the lake. Volcanologists and other local authorities are carefully monitoring Taal to understand if the current activity may foretell an eruption. Taal is one of 15 'Decade Volcanoes' that have been identified by the volcanology community as presenting large potential hazards to population centers. The bright area in the upper right of the image is the densely populated city of Manila, only 50 kilometers (30 miles) north of the central crater. Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.
Non-intrusive measurement of hot gas temperature in a gas turbine engine
DeSilva, Upul P.; Claussen, Heiko; Yan, Michelle Xiaohong; Rosca, Justinian; Ulerich, Nancy H.
2016-09-27
A method and apparatus for operating a gas turbine engine including determining a temperature of a working gas at a predetermined axial location within the engine. An acoustic signal is encoded with a distinct signature defined by a set of predetermined frequencies transmitted as a non-broadband signal. Acoustic signals are transmitted from an acoustic transmitter located at a predetermined axial location along the flow path of the gas turbine engine. A received signal is compared to one or more transmitted signals to identify a similarity of the received signal to a transmitted signal to identify a transmission time for the received signal. A time-of-flight is determined for the signal and the time-of-flight for the signal is processed to determine a temperature in a region of the predetermined axial location.
Two-Element Transducer for Ultrasound
NASA Technical Reports Server (NTRS)
Lecroissette, D. H.; Heyser, R. C.
1986-01-01
Separation of transmitting and receiving units improves probing of deep tissue. Ultrasonic transducer has dual elements to increase depth at which sonic images are made of biological tissue. Transducer uses separate transmitting and receiving elements, and frequency response of receiving element independently designed to accommodate attenuation of higher frequencies by tissue. New transducer intended for pulse-echo ultrasonic systems in which reflected sound pulses reveal features in tissue.
A Specialized Multi-Transmit Head Coil for High Resolution fMRI of the Human Visual Cortex at 7T
Sengupta, Shubharthi; Roebroeck, Alard; Kemper, Valentin G.; Poser, Benedikt A.; Zimmermann, Jan; Goebel, Rainer; Adriany, Gregor
2016-01-01
Purpose To design, construct and validate radiofrequency (RF) transmit and receive phased array coils for high-resolution visual cortex imaging at 7 Tesla. Methods A 4 channel transmit and 16 channel receive array was constructed on a conformal polycarbonate former. Transmit field efficiency and homogeneity were simulated and validated, along with the Specific Absorption Rate, using B1+ mapping techniques and electromagnetic simulations. Receiver signal-to-noise ratio (SNR), temporal SNR (tSNR) across EPI time series, g-factors for accelerated imaging and noise correlations were evaluated and compared with a commercial 32 channel whole head coil. The performance of the coil was further evaluated with human subjects through functional MRI (fMRI) studies at standard and submillimeter resolutions of upto 0.8mm isotropic. Results The transmit and receive sections were characterized using bench tests and showed good interelement decoupling, preamplifier decoupling and sample loading. SNR for the 16 channel coil was ∼ 1.5 times that of the commercial coil in the human occipital lobe, and showed better g-factor values for accelerated imaging. fMRI tests conducted showed better response to Blood Oxygen Level Dependent (BOLD) activation, at resolutions of 1.2mm and 0.8mm isotropic. Conclusion The 4 channel phased array transmit coil provides homogeneous excitation across the visual cortex, which, in combination with the dual row 16 channel receive array, makes for a valuable research tool for high resolution anatomical and functional imaging of the visual cortex at 7T. PMID:27911950
SYSTEM FOR AND METHOD OF DETERMINING RANGE
Horrell, M.W.; Sanders, E.R.
1963-11-01
A system and method for indicating a predetermined altitude of an object or aircraft is described. The device utilizes a pulse transmit-receive system wherein pulses of predetermined width are transmitted towards the ground and the reflected pulses received gating only pulses having a predetermined width. (AEC)
Kim, Gyungock; Park, Hyundai; Joo, Jiho; Jang, Ki-Seok; Kwack, Myung-Joon; Kim, Sanghoon; Gyoo Kim, In; Hyuk Oh, Jin; Ae Kim, Sun; Park, Jaegyu; Kim, Sanggi
2015-01-01
When silicon photonic integrated circuits (PICs), defined for transmitting and receiving optical data, are successfully monolithic-integrated into major silicon electronic chips as chip-level optical I/Os (inputs/outputs), it will bring innovative changes in data computing and communications. Here, we propose new photonic integration scheme, a single-chip optical transceiver based on a monolithic-integrated vertical photonic I/O device set including light source on bulk-silicon. This scheme can solve the major issues which impede practical implementation of silicon-based chip-level optical interconnects. We demonstrated a prototype of a single-chip photonic transceiver with monolithic-integrated vertical-illumination type Ge-on-Si photodetectors and VCSELs-on-Si on the same bulk-silicon substrate operating up to 50 Gb/s and 20 Gb/s, respectively. The prototype realized 20 Gb/s low-power chip-level optical interconnects for λ ~ 850 nm between fabricated chips. This approach can have a significant impact on practical electronic-photonic integration in high performance computers (HPC), cpu-memory interface, hybrid memory cube, and LAN, SAN, data center and network applications. PMID:26061463
NASA Astrophysics Data System (ADS)
Yorks, J. E.; McGill, M. J.; Nowottnick, E. P.
2015-12-01
Plumes from hazardous events, such as ash from volcanic eruptions and smoke from wildfires, can have a profound impact on the climate system, human health and the economy. Global aerosol transport models are very useful for tracking hazardous plumes and predicting the transport of these plumes. However aerosol vertical distributions and optical properties are a major weakness of global aerosol transport models, yet a key component of tracking and forecasting smoke and ash. The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar designed to provide vertical profiles of clouds and aerosols while also demonstrating new in-space technologies for future Earth Science missions. CATS has been operating on the Japanese Experiment Module - Exposed Facility (JEM-EF) of the International Space Station (ISS) since early February 2015. The ISS orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three-day repeat cycle. The ISS orbit also provides CATS with excellent coverage over the primary aerosol transport tracks, mid-latitude storm tracks, and tropical convection. Data from CATS is used to derive properties of clouds and aerosols including: layer height, layer thickness, backscatter, optical depth, extinction, and depolarization-based discrimination of particle type. The measurements of atmospheric clouds and aerosols provided by the CATS payload have demonstrated several science benefits. CATS provides near-real-time observations of cloud and aerosol vertical distributions that can be used as inputs to global models. The infrastructure of the ISS allows CATS data to be captured, transmitted, and received at the CATS ground station within several minutes of data collection. The CATS backscatter and vertical feature mask are part of a customized near real time (NRT) product that the CATS processing team produces within 6 hours of collection. The continuous near real time CATS data availability is an extraordinary capability and permits vertical profiles of aerosols to flow directly into any aerosol transport model.
Measurements of Aperture Averaging on Bit-Error-Rate
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Andrews, Larry C.; Phillips, Ronald L.; Nelson, Richard A.; Ferrell, Bobby A.; Borbath, Michael R.; Galus, Darren J.; Chin, Peter G.; Harris, William G.; Marin, Jose A.;
2005-01-01
We report on measurements made at the Shuttle Landing Facility (SLF) runway at Kennedy Space Center of receiver aperture averaging effects on a propagating optical Gaussian beam wave over a propagation path of 1,000 in. A commercially available instrument with both transmit and receive apertures was used to transmit a modulated laser beam operating at 1550 nm through a transmit aperture of 2.54 cm. An identical model of the same instrument was used as a receiver with a single aperture that was varied in size up to 20 cm to measure the effect of receiver aperture averaging on Bit Error Rate. Simultaneous measurements were also made with a scintillometer instrument and local weather station instruments to characterize atmospheric conditions along the propagation path during the experiments.
Measurements of aperture averaging on bit-error-rate
NASA Astrophysics Data System (ADS)
Bastin, Gary L.; Andrews, Larry C.; Phillips, Ronald L.; Nelson, Richard A.; Ferrell, Bobby A.; Borbath, Michael R.; Galus, Darren J.; Chin, Peter G.; Harris, William G.; Marin, Jose A.; Burdge, Geoffrey L.; Wayne, David; Pescatore, Robert
2005-08-01
We report on measurements made at the Shuttle Landing Facility (SLF) runway at Kennedy Space Center of receiver aperture averaging effects on a propagating optical Gaussian beam wave over a propagation path of 1,000 m. A commercially available instrument with both transmit and receive apertures was used to transmit a modulated laser beam operating at 1550 nm through a transmit aperture of 2.54 cm. An identical model of the same instrument was used as a receiver with a single aperture that was varied in size up to 20 cm to measure the effect of receiver aperture averaging on Bit Error Rate. Simultaneous measurements were also made with a scintillometer instrument and local weather station instruments to characterize atmospheric conditions along the propagation path during the experiments.
Arlowe, H. Duane
1985-01-01
A capacitive label reader includes an outer ring transmitting portion, an inner ring transmitting portion, and a plurality of insulated receiving portions. A label is the mirror-image of the reader except that identifying portions corresponding to the receiving portions are insulated from only one of two coupling elements. Positive and negative pulses applied, respectively, to the two transmitting rings biased a CMOS shift register positively to either a 1 or 0 condition. The output of the CMOS may be read as an indication of the label.
Arlowe, H.D.
1985-11-12
A capacitive label reader includes an outer ring transmitting portion, an inner ring transmitting portion, and a plurality of insulated receiving portions. A label is the mirror-image of the reader except that identifying portions corresponding to the receiving portions are insulated from only one of two coupling elements. Positive and negative pulses applied, respectively, to the two transmitting rings biased a CMOS shift register positively to either a 1 or 0 condition. The output of the CMOS may be read as an indication of the label. 5 figs.
Arlowe, H.D.
1983-07-15
A capacitive label reader includes an outer ring transmitting portion, an inner ring transmitting portion, and a plurality of insulated receiving portions. A label is the mirror-image of the reader except that identifying portions corresponding to the receiving portions are insulated from only one of two coupling elements. Positive and negative pulses applied, respectively, to the two transmitting rings biased a CMOS shift register positively to either a 1 or 0 condition. The output of the CMOS may be read as an indication of the label.
System and method for adaptively deskewing parallel data signals relative to a clock
Jenkins, Philip Nord [Eau Claire, WI; Cornett, Frank N [Chippewa Falls, WI
2008-10-07
A system and method of reducing skew between a plurality of signals transmitted with a transmit clock is described. Skew is detected between the received transmit clock and each of received data signals. Delay is added to the clock or to one or more of the plurality of data signals to compensate for the detected skew. The delay added to each of the plurality of delayed signals is updated to adapt to changes in detected skew.
System and method for adaptively deskewing parallel data signals relative to a clock
Jenkins, Philip Nord [Redwood Shores, CA; Cornett, Frank N [Chippewa Falls, WI
2011-10-04
A system and method of reducing skew between a plurality of signals transmitted with a transmit clock is described. Skew is detected between the received transmit clock and each of received data signals. Delay is added to the clock or to one or more of the plurality of data signals to compensate for the detected skew. The delay added to each of the plurality of delayed signals is updated to adapt to changes in detected skew.
A New Indoor Positioning System Architecture Using GPS Signals.
Xu, Rui; Chen, Wu; Xu, Ying; Ji, Shengyue
2015-04-29
The pseudolite system is a good alternative for indoor positioning systems due to its large coverage area and accurate positioning solution. However, for common Global Positioning System (GPS) receivers, the pseudolite system requires some modifications of the user terminals. To solve the problem, this paper proposes a new pseudolite-based indoor positioning system architecture. The main idea is to receive real-world GPS signals, repeat each satellite signal and transmit those using indoor transmitting antennas. The transmitted GPS-like signal can be processed (signal acquisition and tracking, navigation data decoding) by the general receiver and thus no hardware-level modification on the receiver is required. In addition, all Tx can be synchronized with each other since one single clock is used in Rx/Tx. The proposed system is simulated using a software GPS receiver. The simulation results show the indoor positioning system is able to provide high accurate horizontal positioning in both static and dynamic situations.
Hudson, Angela L
2012-10-01
Adolescents in foster care are at risk for unplanned pregnancy and sexually transmitted infections, including HIV infection. A study using a qualitative method was conducted to describe how and where foster youth receive reproductive health and risk reduction information to prevent pregnancy and sexually transmitted infections. Participants also were asked to describe their relationship with their primary health care provider while they were in foster care. Nineteen young adults, recently emancipated from foster care, participated in individual interviews. Using grounded theory as the method of analysis, three thematic categories were generated: discomfort visiting and disclosing, receiving and not receiving the bare essentials, and learning prevention from community others. Recommendations include primary health care providers providing a confidential space for foster youth to disclose sexual activity and more opportunities for foster youth to receive reproductive and risk prevention information in the school setting. Copyright © 2012 Elsevier Inc. All rights reserved.
Naucke, Torsten J; Amelung, Silke; Lorentz, Susanne
2016-05-10
Canine leishmaniosis (CanL) is an important zoonosis caused by Leishmania (L.) infantum. Transmission of L. infantum to dogs (and humans) is mainly through the bite of infected sandflies, but the parasite can also be transmitted vertically, venereally and through blood transfusions of infected donors. Additionally, the direct dog-to-dog transmission through bites or wounds is suspected. In December 2015, a female eight-year-old Jack-Russell-Terrier was tested positive for CanL in Germany (ELISA 74, IFAT 1:4.000). The dog had never been in an endemic area, had never received a blood transfusion and had never been used for breeding. Another female Jack-Russell-Terrier (born 2009 in Spain) was kept in the same household between 2011 and 2012. That dog was imported to Germany in 2011 and was tested positive for leishmaniosis in 2012. The Spanish-born dog had received several bite wounds, i.a. in the neck, during fights with the German-born Terrier. This may be the first report of transmission of L. infantum through bite wounds from a naturally infected dog in Germany.
Characterization of in situ oil shale retorts prior to ignition
Turner, Thomas F.; Moore, Dennis F.
1984-01-01
Method and system for characterizing a vertical modified in situ oil shale retort prior to ignition of the retort. The retort is formed by mining a void at the bottom of a proposed retort in an oil shale deposit. The deposit is then sequentially blasted into the void to form a plurality of layers of rubble. A plurality of units each including a tracer gas cannister are installed at the upper level of each rubble layer prior to blasting to form the next layer. Each of the units includes a receiver that is responsive to a coded electromagnetic (EM) signal to release gas from the associated cannister into the rubble. Coded EM signals are transmitted to the receivers to selectively release gas from the cannisters. The released gas flows through the retort to an outlet line connected to the floor of the retort. The time of arrival of the gas at a detector unit in the outlet line relative to the time of release of gas from the cannisters is monitored. This information enables the retort to be characterized prior to ignition.
Microwave propagation constant for a vegetation canopy with vertical stalks
NASA Technical Reports Server (NTRS)
Ulaby, Fawwaz T.; Tavakoli, Ahad; Senior, Thomas B. A.
1987-01-01
An equivalent-medium model is developed to relate the propagation constant gamma, associated with propagation of the mean field through a vegetation canopy, to the geometrical and dielectric parameters of the canopy constituents. The model is intended for media containing vertical cylinders, representing the stalks, and randomly oriented disks, representing the leaves. The formulation accounts for both absorption and scattering by the cylinders, but uses a quasi-static approximation with respect to the leaves. The model was found to be in good agreement with experimental results at 1.62 and 4.75 GHz, but underestimates the extinction loss at 10.2 GHz. The experimental component of the study included measurements of the attenuation loss for horizontally polarized and vertically polarized waves transmitted through a fully grown corn canopy, and of the phase difference between the two transmitted waves. The measurements were made at incidence angles of 20, 40, 60, and 90 deg relative to normal incidence. The major conclusion of this study is that the proposed model is suitable for corn-like canopies, provided the leaves are smaller than lambda in size.
STS-68 radar image: Mt. Rainier, Washington
1994-10-01
STS068-S-052 (3 October 1994) --- This is a radar image of Mount Rainier in Washington state. The volcano last erupted about 150 years ago and numerous large floods and debris flows have originated on its slopes during the last century. Today the volcano is heavily mantled with glaciers and snow fields. More than 100,000 people live on young volcanic mud flows less than 10,000 years old and, are within the range of future, devastating mud slides. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the Space Shuttle Endeavour on its 20th orbit on October 1, 1994. The area shown in the image is approximately 59 by 60 kilometers (36.5 by 37 miles). North is toward the top left of the image, which was composed by assigning red and green colors to the L-Band, horizontally transmitted and vertically, and the L-Band, horizontally transmitted and vertically received. Blue indicates the C-Band, horizontally transmitted and vertically received. In addition to highlighting topographic slopes facing the Space Shuttle, SIR-C records rugged areas as brighter and smooth areas as darker. The scene was illuminated by the Shuttle's radar from the northwest so that northwest-facing slopes are brighter and southeast-facing slopes are dark. Forested regions are pale green in color, clear cuts and bare ground are bluish or purple; ice is dark green and white. The round cone at the center of the image is the 14,435 feet (4,399 meters) active volcano, Mount Rainier. On the lower slopes is a zone of rock ridges and rubble (purple to reddish) above coniferous forests (in yellow/green). The western boundary of Mount Rainier National Park is seen as a transition from protected, old-growth forest to heavily logged private land, a mosaic of recent clear cuts (bright purple/blue) and partially re-grown timber plantations (pale blue). The prominent river seen curving away from the mountain at the top of the image (to the northwest) is the White River, and the river leaving the mountain at the bottom right of the image (south) is the Nisqually River, which flows out of the Nisqually glacier on the mountain. The river leaving to the left of the mountain is the Carbon River, leading west and north toward heavily populated regions near Tacoma. The dark patch at the top right of the image is Bumping Lake. Other dark areas seen to the right of ridges throughout the image are radar shadow zones. Radar images can be used to study the volcanic structure and the surrounding regions with linear rock boundaries and faults. In addition, the recovery of forested lands from natural disasters and the success of re-forestation programs can also be monitored. Ultimately this data may be used to study the advance and retreat of glaciers and other forces of global change. Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. (P-44703)
Method and apparatus for free-space quantum key distribution in daylight
Hughes, Richard J.; Buttler, William T.; Lamoreaux, Steve K.; Morgan, George L.; Nordholt, Jane E.; Peterson, C. Glen; Kwiat, Paul G.
2004-06-08
A quantum cryptography apparatus securely generates a key to be used for secure transmission between a sender and a receiver connected by an atmospheric transmission link. A first laser outputs a timing bright light pulse; other lasers output polarized optical data pulses after having been enabled by a random bit generator. Output optics transmit output light from the lasers that is received by receiving optics. A first beam splitter receives light from the receiving optics, where a received timing bright light pulse is directed to a delay circuit for establishing a timing window for receiving light from the lasers and where an optical data pulse from one of the lasers has a probability of being either transmitted by the beam splitter or reflected by the beam splitter. A first polarizer receives transmitted optical data pulses to output one data bit value and a second polarizer receives reflected optical data pulses to output a second data bit value. A computer receives pulses representing receipt of a timing bright timing pulse and the first and second data bit values, where receipt of the first and second data bit values is indexed by the bright timing pulse.
Pulsed phase locked loop strain monitor
NASA Technical Reports Server (NTRS)
Froggatt, Mark E. (Inventor)
1995-01-01
A pulse phase locked loop system according to the present invention is described. A frequency generator such as a voltage controlled oscillator (VCO) generates an output signal and a reference signal having a frequency equal to that of the output signal. A transmitting gate gates the output frequency signal and this gated signal drives a transmitting transducer which transmits an acoustic wave through a material. A sample/hold samples a signal indicative of the transmitted wave which is received by a receiving transducer. Divide-by-n counters control these gating and sampling functions in response to the reference signal of the frequency generator. Specifically, the output signal is gated at a rate of F/h, wherein F is the frequency of the output signal and h is an integer; and the received signal is sampled at a delay of F/n wherein n is an integer.
Dynamic-Receive Focusing with High-Frequency Annular Arrays
NASA Astrophysics Data System (ADS)
Ketterling, J. A.; Mamou, J.; Silverman, R. H.
High-frequency ultrasound is commonly employed for ophthalmic and small-animal imaging because of the fine-resolution images it affords. Annular arrays allow improved depth of field and lateral resolution versus commonly used single-element, focused transducers. The best image quality from an annular array is achieved by using synthetic transmit-to-receive focusing while utilizing data from all transmit-to-receive element combinations. However, annular arrays must be laterally scanned to form an image and this requires one pass for each of the array elements when implementing full synthetic transmit-to-receive focusing. A dynamic-receive focusing approach permits a single pass, although at a sacrifice of depth of field and lateral resolution. A five-element, 20-MHz annular array is examined to determine the acoustic beam properties for synthetic and dynamic-receive focusing. A spatial impulse response model is used to simulate the acoustic beam properties for each focusing case and then data acquired from a human eye-bank eye are processed to demonstrate the effect of each approach on image quality.
NASA Technical Reports Server (NTRS)
Piziali, R. A.; Trenka, A. R.
1974-01-01
The results of a study to investigate the theoretical potential of a jet-flap control system for reducing the vertical and horizontal non-cancelling helicopter rotor blade root shears are presented. A computer simulation describing the jet-flap control rotor system was developed to examine the reduction of each harmonic of the transmitted shears as a function of various rotor and jet parameters, rotor operating conditions and rotor configurations. The computer simulation of the air-loads included the influences of nonuniform inflow and blade elastic motions. (no hub motions were allowed.) The rotor trim and total rotor power (including jet compressor power) were also determined. It was found that all harmonics of the transmitted horizontal and vertical shears could be suppressed simultaneously using a single jet control.
Spreading Sequence System for Full Connectivity Relay Network
NASA Technical Reports Server (NTRS)
Kwon, Hyuck M. (Inventor); Pham, Khanh D. (Inventor); Yang, Jie (Inventor)
2018-01-01
Fully connected uplink and downlink fully connected relay network systems using pseudo-noise spreading and despreading sequences subjected to maximizing the signal-to-interference-plus-noise ratio. The relay network systems comprise one or more transmitting units, relays, and receiving units connected via a communication network. The transmitting units, relays, and receiving units each may include a computer for performing the methods and steps described herein and transceivers for transmitting and/or receiving signals. The computer encodes and/or decodes communication signals via optimum adaptive PN sequences found by employing Cholesky decompositions and singular value decompositions (SVD). The PN sequences employ channel state information (CSI) to more effectively and more securely computing the optimal sequences.
Characteristic analysis of diaphragm-type transducer that is thick relative to its size
NASA Astrophysics Data System (ADS)
Ishiguro, Yuya; Zhu, Jing; Tagawa, Norio; Okubo, Tsuyoshi; Okubo, Kan
2017-07-01
In recent years, high-performance piezoelectric micromachined ultrasonic transducers (PMUTs) have been fabricated by micro electro mechanical systems (MEMS) technology. For high-resolution imaging, it is important to broaden the frequency bandwidth. By reducing the diaphragm size to increase the resonance frequency, the film thickness becomes relatively larger and hence the transmitting and receiving characteristics may different from those of a usual thin diaphragm. In this study, we examine the performance of a square-diaphragm-type lead zirconate titanate (PZT) transducer through simulations. To realize the desired resonance frequency of 20 MHz, firstly, the diaphragm size and the thickness of the layers of PZT and Si constituting a PMUT are examined, and then, three PZT/Si models with different thicknesses are selected. Subsequently, using the models, we analyze the transmitting efficiency, transmitting bandwidth, receiving sensitivity (piezoelectric voltage/electric charge), and receiving bandwidth using an FEM simulator. It is found that the proposed models can transmit ultrasound independently of the diaphragm vibration and have wide bandwidth of the receiving frequency as compared with that of a typical PMUT.
High efficiency light source using solid-state emitter and down-conversion material
Narendran, Nadarajah; Gu, Yimin; Freyssinier, Jean Paul
2010-10-26
A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.
The 'Moskva' satellite television broadcasting system
NASA Astrophysics Data System (ADS)
Kantor, L. Ia.; Minashin, V. P.; Povolotskii, I. S.; Sokolov, A. V.; Talyzin, N. V.
1980-01-01
The Moskva television broadcasting system which uses the high-power links from the Gorizont satellite is described. The transmitting device of the ground station is similar to that of the Ekran and Intersputnik systems. The system includes a special television signal processing unit, a unit for introducing dispersion signals, and transmitting equipment for the sound and radio-broadcasting channels. The signal translated by the satellite is received by a network of ground receiving stations and fed to a television transmitter with a power of 1, 10, or 100 W. The signal in the radio-broadcasting channel can be transmitted into the local radio repeater network or transmitted by a USW FM radio-broadcasting transmitter. The results of system tests are provided.
Means for ultrasonic testing when material properties vary
Beller, Laurence S.
1979-01-01
A device is provided for maintaining constant sensitivity in an ultrasonic testing device, despite varying attenuation due to the properties of the material being tested. The device includes a sensor transducer for transmitting and receiving a test signal and a monitor transducer positioned so as to receive ultrasonic energy transmitted through the material to be tested. The received signal of the monitor transducer is utilized in analyzing data obtained from the sensor transducer.
Chen, Yuling; Lou, Yang; Yen, Jesse
2017-07-01
During conventional ultrasound imaging, the need for multiple transmissions for one image and the time of flight for a desired imaging depth limit the frame rate of the system. Using a single plane wave pulse during each transmission followed by parallel receive processing allows for high frame rate imaging. However, image quality is degraded because of the lack of transmit focusing. Beamforming by spatial matched filtering (SMF) is a promising method which focuses ultrasonic energy using spatial filters constructed from the transmit-receive impulse response of the system. Studies by other researchers have shown that SMF beamforming can provide dynamic transmit-receive focusing throughout the field of view. In this paper, we apply SMF beamforming to plane wave transmissions (PWTs) to achieve both dynamic transmit-receive focusing at all imaging depths and high imaging frame rate (>5000 frames per second). We demonstrated the capability of the combined method (PWT + SMF) of achieving two-way focusing mathematically through analysis based on the narrowband Rayleigh-Sommerfeld diffraction theory. Moreover, the broadband performance of PWT + SMF was quantified in terms of lateral resolution and contrast from both computer simulations and experimental data. Results were compared between SMF beamforming and conventional delay-and-sum (DAS) beamforming in both simulations and experiments. At an imaging depth of 40 mm, simulation results showed a 29% lateral resolution improvement and a 160% contrast improvement with PWT + SMF. These improvements were 17% and 48% for experimental data with noise.
Dragonu, Iulius; Almujayyaz, Salam; Batzakis, Alex; Young, Liam A. J.; Purvis, Lucian A. B.; Clarke, William T.; Wichmann, Tobias; Lanz, Titus; Neubauer, Stefan; Robson, Matthew D.; Klomp, Dennis W. J.; Rodgers, Christopher T.
2017-01-01
Purpose Cardiac phosphorus magnetic resonance spectroscopy (31P-MRS) provides unique insight into the mechanisms of heart failure. Yet, clinical applications have been hindered by the restricted sensitivity of the surface radiofrequency-coils normally used. These permit the analysis of spectra only from the interventricular septum, or large volumes of myocardium, which may not be meaningful in focal disease. Löring et al. recently presented a prototype whole-body (52 cm diameter) transmit/receive birdcage coil for 31P at 7T. We now present a new, easily-removable, whole-body 31P transmit radiofrequency-coil built into a patient-bed extension combined with a 16-element receive array for cardiac 31P-MRS. Materials and methods A fully-removable (55 cm diameter) birdcage transmit coil was combined with a 16-element receive array on a Magnetom 7T scanner (Siemens, Germany). Electro-magnetic field simulations and phantom tests of the setup were performed. In vivo maps of B1+, metabolite signals, and saturation-band efficiency were acquired across the torsos of eight volunteers. Results The combined (volume-transmit, local receive array) setup increased signal-to-noise ratio 2.6-fold 10 cm below the array (depth of the interventricular septum) compared to using the birdcage coil in transceiver mode. The simulated coefficient of variation for B1+ of the whole-body coil across the heart was 46.7% (surface coil 129.0%); and the in vivo measured value was 38.4%. Metabolite images of 2,3-diphosphoglycerate clearly resolved the ventricular blood pools, and muscle tissue was visible in phosphocreatine (PCr) maps. Amplitude-modulated saturation bands achieved 71±4% suppression of phosphocreatine PCr in chest-wall muscles. Subjects reported they were comfortable. Conclusion This easy-to-assemble, volume-transmit, local receive array coil combination significantly improves the homogeneity and field-of-view for metabolic imaging of the human heart at 7T. PMID:29073228
Time-of-flight radio location system
McEwan, T.E.
1997-08-26
A bi-static radar configuration measures the direct time-of-flight of a transmitted RF pulse and is capable of measuring this time-of-flight with a jitter on the order of about one pico-second, or about 0.01 inch of free space distance for an electromagnetic pulse over a range of about one to ten feet. A transmitter transmits a sequence of electromagnetic pulses in response to a transmit timing signal, and a receiver samples the sequence of electromagnetic pulses with controlled timing in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the sequence of electromagnetic pulses such that the time between transmission of pulses in the sequence and sampling by the receiver sweeps over a range of delays. The receive timing signal sweeps over the range of delays in a sweep cycle such that pulses in the sequence are sampled at the pulse repetition rate, and with different delays in the range of delays to produce a sample signal representing magnitude of a received pulse in equivalent time. Automatic gain control circuitry in the receiver controls the magnitude of the equivalent time sample signal. A signal processor analyzes the sample signal to indicate the time-of-flight of the electromagnetic pulses in the sequence. The sample signal in equivalent time is passed through an envelope detection circuit, formed of an absolute value circuit followed by a low pass filter, to convert the sample signal to a unipolar signal to eliminate effects of antenna misorientation. 8 figs.
Time-of-flight radio location system
McEwan, Thomas E.
1997-01-01
A bi-static radar configuration measures the direct time-of-flight of a transmitted RF pulse and is capable of measuring this time-of-flight with a jitter on the order of about one pico-second, or about 0.01 inch of free space distance for an electromagnetic pulse over a range of about one to ten feet. A transmitter transmits a sequence of electromagnetic pulses in response to a transmit timing signal, and a receiver samples the sequence of electromagnetic pulses with controlled timing in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the sequence of electromagnetic pulses such that the time between transmission of pulses in the sequence and sampling by the receiver sweeps over a range of delays. The receive timing signal sweeps over the range of delays in a sweep cycle such that pulses in the sequence are sampled at the pulse repetition rate, and with different delays in the range of delays to produce a sample signal representing magnitude of a received pulse in equivalent time. Automatic gain control circuitry in the receiver controls the magnitude of the equivalent time sample signal. A signal processor analyzes the sample signal to indicate the time-of-flight of the electromagnetic pulses in the sequence. The sample signal in equivalent time is passed through an envelope detection circuit, formed of an absolute value circuit followed by a low pass filter, to convert the sample signal to a unipolar signal to eliminate effects of antenna misorientation.
Space Radar Image of Giza Egypt - with Enlargement
1999-04-15
This radar image shows the area west of the Nile River near Cairo, Egypt. The Nile River is the dark band along the right side of the image and it flows approximately due North from the bottom to the right. The boundary between dense urbanization and the desert can be clearly seen between the bright and dark areas in the center of the image. This boundary represents the approximate extent of yearly Nile flooding which played an important part in determining where people lived in ancient Egypt. This land usage pattern persists to this day. The pyramids at Giza appear as three bright triangles aligned with the image top just at the boundary of the urbanized area. They are also shown enlarged in the inset box in the top left of the image. The Great Pyramid of Khufu (Cheops in Greek) is the northern most of the three Giza pyramids. The side-looking radar illuminates the scene from the top, the two sides of the pyramids facing the radar reflect most of the energy back to the antenna and appear radar bright; the two sides away from the radar reflect less energy back and appear dark Two additional pyramids can be seen left of center in the lower portion of the image. The modern development in the desert on the left side of the image is the Sixth of October City, an area of factories and residences started by Anwar Sadat to relieve urban crowding. The image was taken on April 19, 1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered on latitude 29.72 degrees North latitude and 30.83 degrees East longitude. The area shown is approximately 20 kilometers by 30 kilometers. The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is C-band horizontally transmitted, horizontally received; blue is C-band horizontally transmitted, vertically received. http://photojournal.jpl.nasa.gov/catalog/PIA01793
Gómez-Meda, Belinda C; Bañales-Martínez, Luis R; Zamora-Perez, Ana L; Lemus-Varela, María de Lourdes; Trujillo, Xóchitl; Sánchez-Parada, María G; Torres-Mendoza, Blanca M; Armendáriz-Borunda, Juan; Zúñiga-González, Guillermo M
2016-01-01
Genotoxic exposure to chemical substances is common, and nursing mothers could transmit harmful substances or their metabolites to their offspring through breast milk. We explored the possibility of determining genotoxic effects in the erythrocytes of breastfeeding rat pups whose mothers received a genotoxic compound while nursing. Ten groups of female rats and five pups per dam were studied. The control group received sterile water, and the experimental groups received one of three different doses of cyclophosphamide, colchicine, or cytosine-arabinoside. Blood smears were prepared from samples taken from each dam and pup every 24 h for six days. There were increased numbers of micronucleated erythrocytes (MNEs) and micronucleated polychromatic erythrocytes (MNPCEs) in the samples from pups in the experimental groups ( P < 0.02) and increased MNPCE frequencies in the samples from the dams ( P < 0.05). These results demonstrate the vertical transmission of the genotoxic effect of the compounds tested. In conclusion, assessing MNEs in breastfeeding neonate rats to assess DNA damage may be a useful approach for identifying genotoxic compounds and/or cytotoxic effects. This strategy could help in screening for therapeutic approaches that are genotoxic during the lactation stage and these assessments might also be helpful for developing preventive strategies to counteract harmful effects.
Bañales-Martínez, Luis R.; Lemus-Varela, María de Lourdes; Trujillo, Xóchitl; Sánchez-Parada, María G.; Armendáriz-Borunda, Juan; Zúñiga-González, Guillermo M.
2016-01-01
Genotoxic exposure to chemical substances is common, and nursing mothers could transmit harmful substances or their metabolites to their offspring through breast milk. We explored the possibility of determining genotoxic effects in the erythrocytes of breastfeeding rat pups whose mothers received a genotoxic compound while nursing. Ten groups of female rats and five pups per dam were studied. The control group received sterile water, and the experimental groups received one of three different doses of cyclophosphamide, colchicine, or cytosine-arabinoside. Blood smears were prepared from samples taken from each dam and pup every 24 h for six days. There were increased numbers of micronucleated erythrocytes (MNEs) and micronucleated polychromatic erythrocytes (MNPCEs) in the samples from pups in the experimental groups (P < 0.02) and increased MNPCE frequencies in the samples from the dams (P < 0.05). These results demonstrate the vertical transmission of the genotoxic effect of the compounds tested. In conclusion, assessing MNEs in breastfeeding neonate rats to assess DNA damage may be a useful approach for identifying genotoxic compounds and/or cytotoxic effects. This strategy could help in screening for therapeutic approaches that are genotoxic during the lactation stage and these assessments might also be helpful for developing preventive strategies to counteract harmful effects. PMID:28018917
NASA Astrophysics Data System (ADS)
Wang, Zhe; Wang, Wen-Qin; Shao, Huaizong
2016-12-01
Different from the phased-array using the same carrier frequency for each transmit element, the frequency diverse array (FDA) uses a small frequency offset across the array elements to produce range-angle-dependent transmit beampattern. FDA radar provides new application capabilities and potentials due to its range-dependent transmit array beampattern, but the FDA using linearly increasing frequency offsets will produce a range and angle coupled transmit beampattern. In order to decouple the range-azimuth beampattern for FDA radar, this paper proposes a uniform linear array (ULA) FDA using Costas-sequence modulated frequency offsets to produce random-like energy distribution in the transmit beampattern and thumbtack transmit-receive beampattern. In doing so, the range and angle of targets can be unambiguously estimated through matched filtering and subspace decomposition algorithms in the receiver signal processor. Moreover, random-like energy distributed beampattern can also be utilized for low probability of intercept (LPI) radar applications. Numerical results show that the proposed scheme outperforms the standard FDA in focusing the transmit energy, especially in the range dimension.
Joint Transmit and Receive Filter Optimization for Sub-Nyquist Delay-Doppler Estimation
NASA Astrophysics Data System (ADS)
Lenz, Andreas; Stein, Manuel S.; Swindlehurst, A. Lee
2018-05-01
In this article, a framework is presented for the joint optimization of the analog transmit and receive filter with respect to a parameter estimation problem. At the receiver, conventional signal processing systems restrict the two-sided bandwidth of the analog pre-filter $B$ to the rate of the analog-to-digital converter $f_s$ to comply with the well-known Nyquist-Shannon sampling theorem. In contrast, here we consider a transceiver that by design violates the common paradigm $B\\leq f_s$. To this end, at the receiver, we allow for a higher pre-filter bandwidth $B>f_s$ and study the achievable parameter estimation accuracy under a fixed sampling rate when the transmit and receive filter are jointly optimized with respect to the Bayesian Cram\\'{e}r-Rao lower bound. For the case of delay-Doppler estimation, we propose to approximate the required Fisher information matrix and solve the transceiver design problem by an alternating optimization algorithm. The presented approach allows us to explore the Pareto-optimal region spanned by transmit and receive filters which are favorable under a weighted mean squared error criterion. We also discuss the computational complexity of the obtained transceiver design by visualizing the resulting ambiguity function. Finally, we verify the performance of the optimized designs by Monte-Carlo simulations of a likelihood-based estimator.
Range-gated field disturbance sensor with range-sensitivity compensation
McEwan, T.E.
1996-05-28
A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudorandomly modulated so that bursts in the sequence of bursts have a phase which varies. 8 figs.
Range-gated field disturbance sensor with range-sensitivity compensation
McEwan, Thomas E.
1996-01-01
A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudorandomly modulated so that bursts in the sequence of bursts have a phase which varies.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... Assignments or transfers (all services) Corres & 159 1,015.00 CUT 3. Fixed Satellite Transmit/Receive Earth... 175.00 CGX 4. Fixed Satellite transmit/receive Earth Stations (2 meters or less operating in the 4/6... Only Earth Stations: a. Initial Applications for Registration or License (per station) 312 Main...
Differential emitter geolocation
Mason, John J.; Romero, Louis A.
2015-08-18
An unknown location of a transmitter of interest is determined based on wireless signals transmitted by both the transmitter of interest and a reference transmitter positioned at a known location. The transmitted signals are received at a plurality of non-earthbound platforms each moving in a known manner, and phase measurements for each received signal are used to determine the unknown location.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) (per system) 312 & 159 180.00 CGV 7. Mobile Satellite Earth Stations: a. Initial Applications of... Satellite Transmit/Receive Earth Stations: a. Initial Application (per station) 312 Main & Schedule B & 159...) 312 Main & 159 180.00 CGX 4. Fixed Satellite transmit/receive Earth Stations (2 meters or less...
Code of Federal Regulations, 2014 CFR
2014-10-01
... services. Payment can be made electronically using the Commission's electronic filing and payment system...) Corres & 159 $1,130.00 CUT 3. Fixed Satellite Transmit/Receive Earth Stations: a. Initial Application... transmit/receive Earth Stations (2 meters or less operating in the 4/6 GHz frequency band): a. Lead...
Code of Federal Regulations, 2012 CFR
2012-10-01
...) (per system) 312 & 159 180.00 CGV 7. Mobile Satellite Earth Stations: a. Initial Applications of... Satellite Transmit/Receive Earth Stations: a. Initial Application (per station) 312 Main & Schedule B & 159...) 312 Main & 159 180.00 CGX 4. Fixed Satellite transmit/receive Earth Stations (2 meters or less...
Method and system for selecting data sampling phase for self timed interface logic
Hoke, Joseph Michael; Ferraiolo, Frank D.; Lo, Tin-Chee; Yarolin, John Michael
2005-01-04
An exemplary embodiment of the present invention is a method for transmitting data among processors over a plurality of parallel data lines and a clock signal line. A receiver processor receives both data and a clock signal from a sender processor. At the receiver processor a bit of the data is phased aligned with the transmitted clock signal. The phase aligning includes selecting a data phase from a plurality of data phases in a delay chain and then adjusting the selected data phase to compensate for a round-off error. Additional embodiments include a system and storage medium for transmitting data among processors over a plurality of parallel data lines and a clock signal line.
Method for transferring data from an unsecured computer to a secured computer
Nilsen, Curt A.
1997-01-01
A method is described for transferring data from an unsecured computer to a secured computer. The method includes transmitting the data and then receiving the data. Next, the data is retransmitted and rereceived. Then, it is determined if errors were introduced when the data was transmitted by the unsecured computer or received by the secured computer. Similarly, it is determined if errors were introduced when the data was retransmitted by the unsecured computer or rereceived by the secured computer. A warning signal is emitted from a warning device coupled to the secured computer if (i) an error was introduced when the data was transmitted or received, and (ii) an error was introduced when the data was retransmitted or rereceived.
Arduino Based Weather Monitoring Telemetry System Using NRF24L01+
NASA Astrophysics Data System (ADS)
Sidqi, Rafi; Rio Rynaldo, Bagus; Hadi Suroso, Satya; Firmansyah, Rifqi
2018-04-01
Abstract-Weather is an important part of the natural environment, thus knowing weather information is needed before doing activity. The main purpose of this research was to develop a weather monitoring system which capable to transmit weather data via radio frequency by using nRF24L01+ 2,4GHz radio module. This research implement Arduino UNO as the main controller of the system which send data wirelessly using the radio module and received by a receiver system. Received data then logged and displayed using a Graphical User Interface on a personal computer. Test and experiment result show that the system was able to transmit weather data via radio wave with maximum transmitting range of 32 meters.
Guo, Xudong; Ge, Bin; Wang, Wenxing
2013-08-01
In order to detect endoleaks after endovascular aneurysm repair (EVAR), we developed an implantable micro-device based on wireless power transmission to measure aortic aneurysm sac pressure. The implantable micro-device is composed of a miniature wireless pressure sensor, an energy transmitting coil, a data recorder and a data processing platform. Power transmission without interconnecting wires is performed by a transmitting coil and a receiving coil. The coupling efficiency of wireless power transmission depends on the coupling coefficient between the transmitting coil and the receiving coil. With theoretical analysis and experimental study, we optimized the geometry of the receiving coil to increase the coupling coefficient. In order to keep efficiency balance and satisfy the maximizing conditions, we designed a closed loop power transmission circuit, including a receiving voltage feedback module based on wireless communication. The closed loop improved the stability and reliability of transmission energy. The prototype of the micro-device has been developed and the experiment has been performed. The experiments showed that the micro-device was feasible and valid. For normal operation, the distance between the transmitting coil and the receiving coil is smaller than 8cm. Besides, the distance between the micro-device and the data recorder is within 50cm.
A ring transducer system for medical ultrasound research.
Waag, Robert C; Fedewa, Russell J
2006-10-01
An ultrasonic ring transducer system has been developed for experimental studies of scattering and imaging. The transducer consists of 2048 rectangular elements with a 2.5-MHz center frequency, a 67% -6 dB bandwidth, and a 0.23-mm pitch arranged in a 150-mm-diameter ring with a 25-mm elevation. At the center frequency, the element size is 0.30lambda x 42lambda and the pitch is 0.38lambda. The system has 128 parallel transmit channels, 16 parallel receive channels, a 2048:128 transmit multiplexer, a 2048:16 receive multiplexer, independently programmable transmit waveforms with 8-bit resolution, and receive amplifiers with time variable gain independently programmable over a 40-dB range. Receive signals are sampled at 20 MHz with 12-bit resolution. Arbitrary transmit and receive apertures can be synthesized. Calibration software minimizes system nonidealities caused by noncircularity of the ring and element-to-element response differences. Application software enables the system to be used by specification of high-level parameters in control files from which low-level hardware-dependent parameters are derived by specialized code. Use of the system is illustrated by producing focused and steered beams, synthesizing a spatially limited plane wave, measuring angular scattering, and forming b-scan images.
Mullon, Charles; Lehmann, Laurent
2017-08-01
Human evolution depends on the co-evolution between genetically determined behaviors and socially transmitted information. Although vertical transmission of cultural information from parent to offspring is common in hominins, its effects on cumulative cultural evolution are not fully understood. Here, we investigate gene-culture co-evolution in a family-structured population by studying the invasion fitness of a mutant allele that influences a deterministic level of cultural information (e.g., amount of knowledge or skill) to which diploid carriers of the mutant are exposed in subsequent generations. We show that the selection gradient on such a mutant, and the concomitant level of cultural information it generates, can be evaluated analytically under the assumption that the cultural dynamic has a single attractor point, thereby making gene-culture co-evolution in family-structured populations with multigenerational effects mathematically tractable. We apply our result to study how genetically determined phenotypes of individual and social learning co-evolve with the level of adaptive information they generate under vertical transmission. We find that vertical transmission increases adaptive information due to kin selection effects, but when information is transmitted as efficiently between family members as between unrelated individuals, this increase is moderate in diploids. By contrast, we show that the way resource allocation into learning trades off with allocation into reproduction (the "learning-reproduction trade-off") significantly influences levels of adaptive information. We also show that vertical transmission prevents evolutionary branching and may therefore play a qualitative role in gene-culture co-evolutionary dynamics. More generally, our analysis of selection suggests that vertical transmission can significantly increase levels of adaptive information under the biologically plausible condition that information transmission between relatives is more efficient than between unrelated individuals. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Sachse, Glen W. (Inventor); Wang, Liang-Guo (Inventor)
1992-01-01
A non-mechanical optical switch is developed for alternately switching a monochromatic or quasi-monochromatic light beam along two optical paths. A polarizer polarizes light into a single, e.g., vertical component which is then rapidly modulated into vertical and horizontal components by a polarization modulator. A polarization beam splitter then reflects one of these components along one path and transmits the other along the second path. In the specific application of gas filter correlation radiometry, one path is directed through a vacuum cell and one path is directed through a gas correlation cell containing a desired gas. Reflecting mirrors cause these two paths to intersect at a second polarization beam splitter which reflects one component and transmits the other to recombine them into a polarization modulated beam which can be detected by an appropriate single sensor.
An assessment of WISC-IIIUK on children with HIV infection.
James, Anu Nikitha; Ittyerah, Miriam
2016-10-01
The Wechsler Intelligence Scale for Children - Third Edition UK test was administered to groups of children between the ages of 6 and 12 years with vertically transmitted HIV infection (n = 70) and a control group who were not infected by the virus (n = 70). The study was conducted in India. The two groups were matched for general verbal abilities, age and gender. The children were assessed for Verbal IQ, Performance IQ and Full-Scale IQ. The Verbal Comprehension Index, Perceptual Organization Index and Freedom from Distractibility Index were also obtained. A three-factor analysis of variance disclosed that school-age children with vertically transmitted HIV infection notched below in the areas of Verbal IQ, Performance IQ, Full-Scale IQ, Verbal Comprehension Index, Perceptual Organization Index and Freedom from Distractibility Index when collated with normal uninfected cohorts. Findings are discussed in the light of both theoretical and clinical implications. © The Author(s) 2015.
Adolescent onset of vertically transmitted untreated AIDS: A report of one case.
Wei, Hsi-Hsien; Tsai, Li-Ping; Wu, Ping-Sheng
2016-01-01
A 12-year-old adolescent girl with intractable pneumonia and desaturation was sent to our hospital. An immunocompromised state was highly suspected because of an oral thrush persisting for a year and pneumonia of unusual severity. Laboratory tests confirmed she had human immunodeficiency virus (HIV) infection and full-blown AIDS. She lived with her adopted parents and reported no history of sexual abuse, drug abuse, or blood transfusion. We contacted the Center of Disease Control and discovered that her mother had HIV and had passed away a few years ago, thus confirming that she was a case of vertically transmitted HIV patient who had only developed AIDS recently. Even though her mother had HIV, our public health department failed to follow her as a potential HIV victim, probably because routine HIV examinations for pregnant women only started in 2005, 4 years after she was born.
Experimental demonstration of multiuser communication in deep water using time reversal.
Shimura, T; Ochi, H; Song, H C
2013-10-01
Multiuser communication is demonstrated using experimental data (450-550 Hz) collected in deep water, south of Japan. The multiple users are spatially distributed either in depth or range while a 114-m long, 20-element vertical array (i.e., base station) is deployed to around the sound channel axis (~1000 m). First, signals received separately from ranges of 150 km and 180 km at various depths are combined asynchronously to generate multiuser communication sequences for subsequent processing, achieving an aggregate data rate of 300 bits/s for up to three users. Adaptive time reversal is employed to separate collided packets at the base station, followed by a single channel decision feedback equalizer. Then it is demonstrated that two users separated by 3 km in range at ~1000 m depth can transmit information simultaneously to the base station at ~500 km range with an aggregate data rate of 200 bits/s.
Enclosed, off-axis solar concentrator
Benitez, Pablo; Grip, Robert E; Minano, Juan C; Narayanan, Authi A; Plesniak, Adam; Schwartz, Joel A
2013-11-26
A solar concentrator including a housing having receiving wall, a reflecting wall and at least two end walls, the receiving, reflecting and end walls defining a three-dimensional volume having an inlet, wherein a vertical axis of the housing is generally perpendicular to the inlet, a receiver mounted on the receiving wall of the housing, the receiver including at least one photovoltaic cell, wherein a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, at least one clip disposed on the reflecting wall an optical element received within the three-dimensional volume, the optical element including at least one tab, the tab being engaged by the clip to align the optical element with the receiver, and a window received over the inlet to enclose the housing.
Fault-Tolerant Self-Stabilizing Distributed Clock Synchronization Protocol for Arbitrary Digraphs
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R. (Inventor)
2014-01-01
A self-stabilizing network in the form of an arbitrary, non-partitioned digraph includes K nodes having a synchronizer executing a protocol. K-1 monitors of each node may receive a Sync message transmitted from a directly connected node. When the Sync message is received, the logical clock value for the receiving node is set to between 0 and a communication latency value (gamma) if the clock value is less than a minimum event-response delay (D). A new Sync message is also transmitted to any directly connected nodes if the clock value is greater than or equal to both D and a graph threshold (T(sub S)). When the Sync message is not received the synchronizer increments the clock value if the clock value is less than a resynchronization period (P), and resets the clock value and transmits a new Sync message to all directly connected nodes when the clock value equals or exceeds P.
Johnson, Steve A.; English, Jr., Ronald Edward; White, Ronald K.
2001-01-01
A plurality of copper lasers, as radiant power sources, emits a beam of power carrying radiation. A plurality of fiber injection assemblies receives power from the plurality of copper lasers and injects such power into a plurality of fibers for individually transmitting the received power to a plurality of power-receiving devices. The power-transmitting fibers of the system are so arranged that power is delivered therethrough to each of the power-receiving devices such that, even if a few of the radiant power sources and/or fibers fail, the power supply to any of the power receiving devices will not completely drop to zero but will drop by the same proportionate amount.
Wireless power transmission for battery charging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mi, Chris; Li, Siqi; Nguyen, Trong-Duy
A wireless power transmission system is provided for high power applications. The power transmission system is comprised generally of a charging unit configured to generate an alternating electromagnetic field and a receive unit configured to receive the alternating electromagnetic field from the charging unit. The charging unit includes a power source; an input rectifier; an inverter; and a transmit coil. The transmit coil has a spirangle arrangement segmented into n coil segments with capacitors interconnecting adjacent coil segments. The receive unit includes a receive coil and an output rectifier. The receive coil also has a spirangle arrangement segmented into mmore » coil segments with capacitors interconnecting adjacent coil segments.« less
Secure Communication Based on a Hybrid of Chaos and Ica Encryptions
NASA Astrophysics Data System (ADS)
Chen, Wei Ching; Yuan, John
Chaos and independent component analysis (ICA) encryptions are two novel schemes for secure communications. In this paper, a new scheme combining chaos and ICA techniques is proposed to enhance the security level during communication. In this scheme, a master chaotic system is embedded at the transmitter. The message signal is mixed with a chaotic signal and a Gaussian white noise into two mixed signals and then transmitted to the receiver through the public channels. A signal for synchronization is transmitted through another public channel to the receiver where a slave chaotic system is embedded to reproduce the chaotic signal. A modified ICA is used to recover the message signal at the receiver. Since only two of the three transmitted signals contain the information of message signal, a hacker would not be able to retrieve the message signal by using ICA even though all the transmitted signals are intercepted. Spectrum analyses are used to prove that the message signal can be securely hidden under this scheme.
Vertical transmission of fatal Rift Valley fever in a newborn.
Arishi, Haider M; Aqeel, Ali Y; Al Hazmi, Mohamed M
2006-09-01
Rift Valley Fever (RVF) is a viral disease transmitted to humans by mosquito bite and contact with animals or their infected tissues. Other modes of transmission include aerosol inhalation and possibly ingestion of raw milk from infected animals. We present a 5-day-old neonate with fatal RVF. Onset of the infant's illness on the 2nd day of life combined with positive RVF-IgM and serological evidence of maternal disease supports vertical transmission.
Trellis coded multilevel DPSK system with doppler correction for mobile satellite channels
NASA Technical Reports Server (NTRS)
Divsalar, Dariush (Inventor); Simon, Marvin K. (Inventor)
1991-01-01
A trellis coded multilevel differential phase shift keyed mobile communication system. The system of the present invention includes a trellis encoder for translating input signals into trellis codes; a differential encoder for differentially encoding the trellis coded signals; a transmitter for transmitting the differentially encoded trellis coded signals; a receiver for receiving the transmitted signals; a differential demodulator for demodulating the received differentially encoded trellis coded signals; and a trellis decoder for decoding the differentially demodulated signals.
Good Daphnia parents do not control the offspring microbiome.
Douglas, Angela E
2018-03-01
In Focus: Mushegian, A. A., Walser, J. -C., Sullam, K. E., & Ebert, D. (2018). The microbiota of diapause: How host-microbe associations are formed after dormancy in an aquatic crustacean. Journal of Animal Ecology, 87, 400-413. https://doi.org/10.1111/1365-2656.12709. All animals are colonized by micro-organisms, most of which are benign or beneficial. Where do these micro-organisms come from? Theory predicts that micro-organisms which are transmitted vertically from parent to offspring are especially likely to be beneficial to the host, while horizontally acquired micro-organisms are opportunistic and more variable in their impact on host performance. In this issue, Mushegian et al. () investigate the source of bacteria that are required for the growth and development of Daphnia water fleas to reproductive adults. They find that, although vertically transmitted bacteria can occur in the capsule enclosing the Daphnia eggs, the micro-organisms that promote Daphnia performance are associated with the external surface of the capsule and are of likely environmental origin. This mode of transmission may be adaptive for Daphnia because, linked to the longevity and capacity for long-distance dispersal of these eggs, the environmental circumstances encountered by parent and offspring may be different; with the implication, the parental micro-organisms may not be optimal for the offspring. This study demonstrates that, although some animals require symbioses with specific coevolved, vertically transmitted microbial symbionts, other animals have evolved dependence on taxonomically variable micro-organisms of environmental origin. © 2018 The Author. Journal of Animal Ecology © 2018 British Ecological Society.
Preliminary Opto-Mechanical Design for the X2000 Transceiver
NASA Technical Reports Server (NTRS)
Hemmati, H.; Page, N. A.
2000-01-01
Preliminary optical design and mechanical conceptual design for a 30 cm aperture transceiver are described. A common aperture is used for both transmit and receive. Special attention was given to off-axis and scattered light rejection and isolation of the receive channel from the transmit channel. Requirements, details of the design and preliminary performance analysis of the transceiver are provided.
NMR transmit-receive system with short recovery time and effective isolation
NASA Astrophysics Data System (ADS)
Jurga, K.; Reynhardt, E. C.; Jurga, S.
A transmit-receive system with a short recovery time and excellent isolation has been developed. The system operates in conjunction with an ENI Model 3200L broadband amplifier and a spin-lock NMR pulse spectrometer. The system has been tested in the frequency range 5.5 to 52 MHz and seems not to generate any background noise.
15 CFR 30.9 - Transmitting and correcting Electronic Export Information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... in the AES and transmitting any changes to that information as soon as they are known. Corrections, cancellations, or amendments to that information shall be electronically identified and transmitted to the AES... authorized agent has received an error message from AES, the corrections shall take place as required. Fatal...
15 CFR 30.9 - Transmitting and correcting Electronic Export Information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... in the AES and transmitting any changes to that information as soon as they are known. Corrections, cancellations, or amendments to that information shall be electronically identified and transmitted to the AES... authorized agent has received an error message from AES, the corrections shall take place as required. Fatal...
15 CFR 30.9 - Transmitting and correcting Electronic Export Information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... in the AES and transmitting any changes to that information as soon as they are known. Corrections, cancellations, or amendments to that information shall be electronically identified and transmitted to the AES... authorized agent has received an error message from AES, the corrections shall take place as required. Fatal...
15 CFR 30.9 - Transmitting and correcting Electronic Export Information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... in the AES and transmitting any changes to that information as soon as they are known. Corrections, cancellations, or amendments to that information shall be electronically identified and transmitted to the AES... authorized agent has received an error message from AES, the corrections shall take place as required. Fatal...
Langlois, Gary N.
1983-09-13
Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material.
Langlois, G.N.
1983-09-13
Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material are disclosed. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material. 6 figs.
STS-68 radar image: Mt. Pinatubo, Philippines
1994-10-07
STS068-S-053 (7 October 1994) --- These are color composite radar images showing the area around Mount Pinatubo in the Philippines. The images were acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the Space Shuttle Endeavour on April 14, 1994 (left image) and October 5, 1994 (right image). The images are centered at about 15 degrees north latitude and 120.5 degrees east longitude. Both images were obtained with the same viewing geometry. The color composites were made by displaying the L-Band (horizontally transmitted and received) in red; the L-Band (horizontally transmitted and vertically received) in green; and the C-Band (horizontally transmitted and vertically received) in blue. The area shown is approximately 40 by 65 kilometers (25 by 40 miles). The main volcanic crater on Mount Pinatubo produced by the June 1991 eruptions and the steep slopes on the upper flanks of the volcano are easily seen in these images. Red on the high slopes shows the distribution of the ash deposited during the 1991 eruption, which appears red because of the low cross-polarized radar returns at C and L Bands. The dark drainage's radiating away from the summit are smooth mud flows, which even three years after the eruption continue to flood the river valleys after heavy rain. Comparing the two images shows that significant changes have occurred in the intervening five months along the Pasig-Potero rivers (the dark area in the lower right of the images). Mud flows, called "lahars", that occurred during the 1994 monsoon season filled the river valleys, allowing the lahars to spread over the surrounding countryside. Three weeks before the second image was obtained, devastating lahars more than doubled the area affected in the Pasig-Potero rivers, which is clearly visible as the increase in dark area on the lower right of the images. Migration of deposition to the east (right) has affected many communities. Newly affected areas included the community of Bacolor, Pampanga, where thousands of homes were buried in meters of hot mud and rock as 80,000 people fled the lahar-stricken area. The 1991 Mount Pinatubo eruption is well known for its near-global effects on the atmosphere and short-term climate due to the large amount of sulfur dioxide that was injected into the upper atmosphere. Locally, however, the effects will most likely continue to impact surrounding areas for as long as the next 10 to 15 years. Mud flows, quite certainly, will continue to pose severe hazards to adjacent areas. Radar observations like those obtained by SIR-C/X-SAR will play a key role in monitoring these changes because of the radar's ability to see daylight or darkness and even in the worst weather conditions. Radar imaging will be particularly useful during the monsoon season, when the lahars form. Frequent imaging of these lahar fields will allow scientists to better predict when they are likely to begin flowing again and which communities might be at risk. Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. (P-44729)
Space Radar Image of Houston, Texas
NASA Technical Reports Server (NTRS)
1994-01-01
This image of Houston, Texas, shows the amount of detail that is possible to obtain using spaceborne radar imaging. Images such as this -- obtained by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavor last fall -- can become an effective tool for urban planners who map and monitor land use patterns in urban, agricultural and wetland areas. Central Houston appears pink and white in the upper portion of the image, outlined and crisscrossed by freeways. The image was obtained on October 10, 1994, during the space shuttle's 167th orbit. The area shown is 100 kilometers by 60 kilometers (62 miles by 38 miles) and is centered at 29.38 degrees north latitude, 95.1 degrees west longitude. North is toward the upper left. The pink areas designate urban development while the green-and blue-patterned areas are agricultural fields. Black areas are bodies of water, including Galveston Bay along the right edge and the Gulf of Mexico at the bottom of the image. Interstate 45 runs from top to bottom through the image. The narrow island at the bottom of the image is Galveston Island, with the city of Galveston at its northeast (right) end. The dark cross in the upper center of the image is Hobby Airport. Ellington Air Force Base is visible below Hobby on the other side of Interstate 45. Clear Lake is the dark body of water in the middle right of the image. The green square just north of Clear Lake is Johnson Space Center, home of Mission Control and the astronaut training facilities. The black rectangle with a white center that appears to the left of the city center is the Houston Astrodome. The colors in this image were obtained using the follow radar channels: red represents the L-band (horizontally transmitted, vertically received); green represents the C-band (horizontally transmitted, vertically received); blue represents the C-band (horizontally transmitted and received). Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar(SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI) with the Deutsche Forschungsanstalt fuer luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.
System and method for adaptively deskewing parallel data signals relative to a clock
Jenkins, Philip Nord; Cornett, Frank N.
2006-04-18
A system and method of reducing skew between a plurality of signals transmitted with a transmit clock is described. Skew is detected between the received transmit clock and each of received data signals. Delay is added to the clock or to one or more of the plurality of data signals to compensate for the detected skew. Each of the plurality of delayed signals is compared to a reference signal to detect changes in the skew. The delay added to each of the plurality of delayed signals is updated to adapt to changes in the detected skew.
Modular off-axis solar concentrator
Plesniak, Adam P; Hall, John C
2015-01-27
A solar concentrator including a housing defining a vertical axis and including a receiving wall connected to a reflecting wall to define an internal volume and an opening into the internal volume, wherein the reflecting wall defines at least one primary optical element, and wherein at least a portion of the reflecting wall includes a layer of reflective material, the housing further including a cover connected to the receiving wall and the reflecting wall to seal the opening, and at least one receiver mounted on the receiving wall such that a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, the receiver including at least one photovoltaic cell.
Brink, Wyger M; Versluis, Maarten J; Peeters, Johannes M; Börnert, Peter; Webb, Andrew G
2016-12-01
To explore the effects of high permittivity dielectric pads on the transmit and receive characteristics of a 3 Tesla body coil centered at the thighs, and their implications on image uniformity in receive array applications. Transmit and receive profiles of the body coil with and without dielectric pads were simulated and measured in healthy volunteers. Parallel imaging was performed using sensitivity encoding (SENSE) with and without pads. An intensity correction filter was constructed from the measured receive profile of the body coil. Measured and simulated data show that the dielectric pads improve the transmit homogeneity of the body coil in the thighs, but decrease its receive homogeneity, which propagates into reconstruction algorithms in which the body coil is used as a reference. However, by correcting for the body coil reception profile this effect can be mitigated. Combining high permittivity dielectric pads with an appropriate body coil receive sensitivity filter improves the image uniformity substantially compared with the situation without pads. Magn Reson Med 76:1951-1956, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.
Compact Radar Transceiver with Included Calibration
NASA Technical Reports Server (NTRS)
McLinden, Matthew; Rincon, Rafael
2013-01-01
The Digital Beamforming Synthetic Aperture Radar (DBSAR) is an eight-channel phased array radar system that employs solid-state radar transceivers, a microstrip patch antenna, and a reconfigurable waveform generator and processor unit. The original DBSAR transceiver design utilizes connectorized electronic components that tend to be physically large and heavy. To achieve increased functionality in a smaller volume, PCB (printed circuit board) transceivers were designed to replace the large connectorized transceivers. One of the most challenging problems designing the transceivers in a PCB format was achieving proper performance in the calibration path. For a radar loop-back calibration path, a portion of the transmit signal is coupled out of the antenna feed and fed back into the receiver. This is achieved using passive components for stability and repeatability. Some signal also leaks through the receive path. As these two signal paths are correlated via an unpredictable phase, the leakage through the receive path during transmit must be 30 dB below the calibration path. For DBSAR s design, this requirement called for a 100-dB isolation in the receiver path during transmit. A total of 16 solid-state L-band transceivers on a PCB format were designed. The transceivers include frequency conversion stages, T/R switching, and a calibration path capable of measuring the transmit power-receiver gain product during transmit for pulse-by-pulse calibration or matched filtering. In particular, this calibration path achieves 100-dB isolation between the transmitted signal and the low-noise amplifier through the use of a switching network and a section of physical walls achieving attenuation of radiated leakage. The transceivers were designed in microstrip PCBs with lumped elements and individually packaged components for compactness. Each transceiver was designed on a single PCB with a custom enclosure providing interior walls and compartments to isolate transceiver subsystems from radiated interference. The enclosure also acts as a heat sink for the voltage regulators and power amplifiers inside the system. The PCB transceiver design produces transmit pulses of 2 W with an arbitrary duty cycle. Each transceiver is fed by an external 120-MHz signal transmit and two 1,140-MHz local oscillator signals. The received signal is amplified and down-converted to 120 MHz and is fed to the data processor. The transceiver dimensions are approximately 3.5 11.5 0.6 in. (9 29 1.5 cm). The PCB transceiver design reduces the volume and weight of the DBSAR instrument while maintaining the functionality found in the original design. Both volume and weight are critical for airborne and flight remote sensing instrumentation.
NASA Astrophysics Data System (ADS)
Isoe, G. M.; Wassin, S.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.
2017-11-01
In this work, a four-level pulse amplitude modulation (4-PAM) format with a polarization-modulated pulse per second (PPS) clock signal using a single vertical cavity surface emitting laser (VCSEL) carrier is for the first time experimentally demonstrated. We propose uncomplex alternative technique for increasing capacity and flexibility in short-reach optical communication links through multi-signal modulation onto a single VCSEL carrier. A 20 Gbps 4-PAM data signal is directly modulated onto a single mode 10 GHz bandwidth VCSEL carrier at 1310 nm, therefore, doubling the network bit rate. Carrier spectral efficiency is further maximized by exploiting the inherent orthogonal polarization switching of the VCSEL carrier with changing bias in transmission of a PPS clock signal. We, therefore, simultaneously transmit a 20 Gbps 4-PAM data signal and a polarization-based PPS clock signal using a single VCSEL carrier. It is the first time a signal VCSEL carrier is reported to simultaneously transmit a directly modulated 20 Gbps 4-PAM data signal and a polarization-based PPS clock signal. We further demonstrate on the design of a software-defined digital signal processing (DSP)-assisted receiver as an alternative to costly receiver hardware. Experimental results show that a 3.21 km fibre transmission with simultaneous 20 Gbps 4-PAM data signal and polarization-based PPS clock signal introduced a penalty of 3.76 dB. The contribution of polarization-based PPS clock signal to this penalty was found out to be 0.41 dB. Simultaneous distribution of data and timing clock signals over shared network infrastructure significantly increases the aggregated data rate at different optical network units (ONUs), without costly investment.
Monitoring of biophysical parameters of cashew plants in Cambodia using ALOS/PALSAR data.
Avtar, Ram; Takeuchi, Wataru; Sawada, Haruo
2013-02-01
An accurate estimation of a plant's age is required for the prediction of yield and management practices. This study demonstrates the relationship between backscattering properties (σ°) of Phased Array type L-band Synthetic Aperture Radar (PALSAR) dual polarimetric data with cashew plants' biophysical parameters (height, age, crown diameter, diameter at breast height, basal area, tree density, and biomass) in Cambodia. PALSAR σ° has shown a positive correlation with the biophysical parameters of cashew plants. The value of σ° increases with the age of cashew plants. At a young stage, the cashew plants show a higher rate of an increase in σ° compared to that at the mature stage. The σ° horizontal polarization transmitted and vertical received (HV) shows higher sensitivity to the plant's growth than σ° horizontal polarization transmitted and received (HH). High backscattering and low variations were observed at mature stage (8-12 years) of cashew plantation. Saturation in backscattering has shown from the age of about 13 years. The validation results indicate strong coefficient of determination (R(2) = 0.86 and 0.88) for PALSAR-predicted age and biomass of cashew plants with root mean square error = 1.8 years and 16.3 t/ha for age and biomass, respectively. The correlations of σ° (HH) with biophysical parameters observed in the dry season were better than those of the rainy season because soil moisture interferes with backscattering in the rainy season. Biomass accumulation rate of cashew plants has been predicted that would be useful for selection of plants species to enhance carbon sequestration. This study provides an insight to use PALSAR for the monitoring of growth stages of plants at the regional level.
Phased Array Focusing for Acoustic Wireless Power Transfer.
Tseng, Victor Farm-Guoo; Bedair, Sarah S; Lazarus, Nathan
2018-01-01
Wireless power transfer (WPT) through acoustic waves can achieve higher efficiencies than inductive coupling when the distance is above several times the transducer size. This paper demonstrates the use of ultrasonic phased arrays to focus power to receivers at arbitrary locations to increase the power transfer efficiency. Using a phased array consisting of 37 elements at a distance nearly 5 times the receiver transducer diameter, a factor of 2.6 increase in efficiency was achieved when compared to a case equivalent to a single large transducer with the same peak efficiency distance. The array has a total diameter of 7 cm, and transmits through air at 40 kHz to a 1.1-cm diameter receiver, achieving a peak overall efficiency of 4% at a distance of 5 cm. By adjusting the focal distance, the efficiency can also be maintained relatively constant at distances up to 9 cm. Numerical models were developed and shown to closely match the experimental energy transfer behavior; modeling results indicate that the efficiency can be further doubled by increasing the number of elements. For comparison, an inductive WPT system was also built with the diameters of the transmitting and receiving coils equivalent to the dimensions of the transmitting ultrasonic phased array and receiver transducer, and the acoustic WPT system achieved higher efficiencies than the inductive WPT system when the transmit-to-receive distance is above 5 cm. In addition, beam angle steering was demonstrated by using a simplified seven-element 1-D array, achieving power transfer less dependent on receiver placement.
NASA Astrophysics Data System (ADS)
Kornprobst, Jonas; Mittermaier, Thomas J.; Eibert, Thomas F.
2017-09-01
A new receiving scheme for self-mixing receivers is presented that overcomes the disadvantages of the self-heterodyne concept. Generally speaking, the self-mixing receiver offers immunity to phase noise and frequency offsets, especially at very high frequencies, since it does not require radio frequency local oscillators. Our proposed technique eliminates the drawbacks of the self-heterodyne transmission scheme, which are the poor power efficiency and the strong dependence on the continously transmitted carrier. A nonlinear system of equations is constructed that describes a phase retrieval problem for the reconstruction of the original transmit signal before self-mixing. Two different solution strategies, with restrictions in time and frequency domain, are presented. As a consequence, the self-mixing equation system is shown to be solvable with some a-priori information about the transmit signal. With this novel approach, the transmitted information is distributed over the full available bandwidth, and there is no special dependence on a certain subcarrier for the down-conversion. The general performance, regarding bit error ratio over signal to noise ratio, is improved by at least 2 dB as compared to the self-heterodyne transmission scheme. In the case of frequency selective channels, e.g. multi-path propagation, this improvement is shown to be much larger, because the presented approach is able to reconstruct the received subcarriers without the necessity of receiving all subcarriers.
NASA Astrophysics Data System (ADS)
Shaikh, Shahid Ali; Tian, Gang; Shi, Zhanjie; Zhao, Wenke; Junejo, S. A.
2018-02-01
Ground penetrating Radar (GPR) is an efficient tool for subsurface geophysical investigations, particularly at shallow depths. The non-destructiveness, cost efficiency, and data reliability are the important factors that make it an ideal tool for the shallow subsurface investigations. Present study encompasses; variations in central frequency of transmitting and receiving GPR antennas (Tx-Rx) have been analyzed and frequency band adjustment match filters are fabricated and tested accordingly. Normally, the frequency of both the antennas remains similar to each other whereas in this study we have experimentally changed the frequencies of Tx-Rx and deduce the response. Instead of normally adopted three pairs, a total of nine Tx-Rx pairs were made from 50 MHz, 100 MHz, and 200 MHz antennas. The experimental data was acquired at the designated near surface geophysics test site of the Zhejiang University, Hangzhou, China. After the impulse response analysis of acquired data through conventional as well as varied Tx-Rx pairs, different swap effects were observed. The frequency band and exploration depth are influenced by transmitting frequencies rather than the receiving frequencies. The impact of receiving frequencies was noticed on the resolution; the more noises were observed using the combination of high frequency transmitting with respect to low frequency receiving. On the basis of above said variable results we have fabricated two frequency band adjustment match filters, the constant frequency transmitting (CFT) and the variable frequency transmitting (VFT) frequency band adjustment match filters. By the principle, the lower and higher frequency components were matched and then incorporated with intermediate one. Therefore, this study reveals that a Tx-Rx combination of low frequency transmitting with high frequency receiving is a better choice. Moreover, both the filters provide better radargram than raw one, the result of VFT frequency band adjustment filter is much better than CFT frequency band adjustment filter.
Pulse homodyne field disturbance sensor
McEwan, Thomas E.
1997-01-01
A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudo-randomly modulated so that bursts in the sequence of bursts have a phase which varies. A second range-defining mode transmits two radio frequency bursts, where the time spacing between the bursts defines the maximum range divided by two.
Pulse homodyne field disturbance sensor
McEwan, T.E.
1997-10-28
A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudo-randomly modulated so that bursts in the sequence of bursts have a phase which varies. A second range-defining mode transmits two radio frequency bursts, where the time spacing between the bursts defines the maximum range divided by two. 12 figs.
Imaging spectrometer wide field catadioptric design
Chrisp,; Michael, P [Danville, CA
2008-08-19
A wide field catadioptric imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The catadioptric design has zero Petzval field curvature. The imaging spectrometer comprises an entrance slit for transmitting light, a system with a catadioptric lens and a dioptric lens for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through the system for receiving the light to the detector array.
Interference phenomena in the refraction of a surface polariton by vertical dielectric barriers
NASA Technical Reports Server (NTRS)
Shen, T. P.; Wallis, R. F.; Maradudin, A. A.; Stegeman, G. I.
1984-01-01
A normal mode analysis is used to calculate the transmission and reflection coefficients for a surface polariton propagating along the interface between a surface active medium and a dielectric and incident normally on a vertical dielectric barrier of finite thickness or a thin dielectric film of finite length. The efficiencies of conversion of the surface polariton into transmitted and reflected bulk waves are also determined. The radiation patterns associated with the latter waves are presented.
Portable Life Support Stretcher Unit (PLSSU) Environmental Tests: Preproduction Model.
1982-06-01
fixture was taken out by fluttering of the castering wheels since the securing straps were too soft to transmit the motion. At higher frequencies, it was...5 3.3 Proof Tests . . . 6 3.4 Vibration Tests . . . 9 3.4.1 General . . . 9 3.4.2 Pretest Inspection . . . 12 3.4.3 Vertical Vibration on Wheels ...14 3.4.4 Horizontal Vibration on Wheels . . . 15 3.4.5 Horizontal Vibration with Handle Suspension . . . 16 3.4.6 Vertical Vibration with Handle
2015-08-31
Ratio Test Equipment for High Speed Vertical Cavity Transistor Laser & MicroCavity VCSEL and Photo Receiver The views, opinions and/or findings...suggesstions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis...for High Speed Vertical Cavity Transistor Laser & MicroCavity VCSEL and Photo Receiver Report Title In the previous DURIP award (W911NF-13-1-0287
Step-off, vertical electromagnetic responses of a deep resistivity layer buried in marine sediments
NASA Astrophysics Data System (ADS)
Jang, Hangilro; Jang, Hannuree; Lee, Ki Ha; Kim, Hee Joon
2013-04-01
A frequency-domain, marine controlled-source electromagnetic (CSEM) method has been applied successfully in deep water areas for detecting hydrocarbon (HC) reservoirs. However, a typical technique with horizontal transmitters and receivers requires large source-receiver separations with respect to the target depth. A time-domain EM system with vertical transmitters and receivers can be an alternative because vertical electric fields are sensitive to deep resistive layers. In this paper, a time-domain modelling code, with multiple source and receiver dipoles that are finite in length, has been written to investigate transient EM problems. With the use of this code, we calculate step-off responses for one-dimensional HC reservoir models. Although the vertical electric field has much smaller amplitude of signal than the horizontal field, vertical currents resulting from a vertical transmitter are sensitive to resistive layers. The modelling shows a significant difference between step-off responses of HC- and water-filled reservoirs, and the contrast can be recognized at late times at relatively short offsets. A maximum contrast occurs at more than 4 s, being delayed with the depth of the HC layer.
Tyminski, John P; de la Parra-Venegas, Rafael; González Cano, Jaime; Hueter, Robert E
2015-01-01
The whale shark (Rhincodon typus) is a wide-ranging, filter-feeding species typically observed at or near the surface. This shark's sub-surface habits and behaviors have only begun to be revealed in recent years through the use of archival and satellite tagging technology. We attached pop-up satellite archival transmitting tags to 35 whale sharks in the southeastern Gulf of Mexico off the Yucatan Peninsula from 2003-2012 and three tags to whale sharks in the northeastern Gulf off Florida in 2010, to examine these sharks' long-term movement patterns and gain insight into the underlying factors influencing their vertical habitat selection. Archived data were received from 31 tags deployed on sharks of both sexes with total lengths of 5.5-9 m. Nine of these tags were physically recovered facilitating a detailed long-term view into the sharks' vertical movements. Whale sharks feeding inshore on fish eggs off the northeast Yucatan Peninsula demonstrated reverse diel vertical migration, with extended periods of surface swimming beginning at sunrise followed by an abrupt change in the mid-afternoon to regular vertical oscillations, a pattern that continued overnight. When in oceanic waters, sharks spent about 95% of their time within epipelagic depths (<200 m) but regularly undertook very deep ("extreme") dives (>500 m) that largely occurred during daytime or twilight hours (max. depth recorded 1,928 m), had V-shaped depth-time profiles, and comprised more rapid descents (0.68 m sec-1) than ascents (0.50 m sec-1). Nearly half of these extreme dives had descent profiles with brief but conspicuous changes in vertical direction at a mean depth of 475 m. We hypothesize these stutter steps represent foraging events within the deep scattering layer, however, the extreme dives may have additional functions. Overall, our results demonstrate complex and dynamic patterns of habitat utilization for R. typus that appear to be in response to changing biotic and abiotic conditions influencing the distribution and abundance of their prey.
Tyminski, John P.; de la Parra-Venegas, Rafael; González Cano, Jaime; Hueter, Robert E.
2015-01-01
The whale shark (Rhincodon typus) is a wide-ranging, filter-feeding species typically observed at or near the surface. This shark’s sub-surface habits and behaviors have only begun to be revealed in recent years through the use of archival and satellite tagging technology. We attached pop-up satellite archival transmitting tags to 35 whale sharks in the southeastern Gulf of Mexico off the Yucatan Peninsula from 2003–2012 and three tags to whale sharks in the northeastern Gulf off Florida in 2010, to examine these sharks’ long-term movement patterns and gain insight into the underlying factors influencing their vertical habitat selection. Archived data were received from 31 tags deployed on sharks of both sexes with total lengths of 5.5–9 m. Nine of these tags were physically recovered facilitating a detailed long-term view into the sharks’ vertical movements. Whale sharks feeding inshore on fish eggs off the northeast Yucatan Peninsula demonstrated reverse diel vertical migration, with extended periods of surface swimming beginning at sunrise followed by an abrupt change in the mid-afternoon to regular vertical oscillations, a pattern that continued overnight. When in oceanic waters, sharks spent about 95% of their time within epipelagic depths (<200 m) but regularly undertook very deep (“extreme”) dives (>500 m) that largely occurred during daytime or twilight hours (max. depth recorded 1,928 m), had V-shaped depth-time profiles, and comprised more rapid descents (0.68 m sec-1) than ascents (0.50 m sec-1). Nearly half of these extreme dives had descent profiles with brief but conspicuous changes in vertical direction at a mean depth of 475 m. We hypothesize these stutter steps represent foraging events within the deep scattering layer, however, the extreme dives may have additional functions. Overall, our results demonstrate complex and dynamic patterns of habitat utilization for R. typus that appear to be in response to changing biotic and abiotic conditions influencing the distribution and abundance of their prey. PMID:26580405
Antenna feed system for receiving circular polarization and transmitting linear polarization
NASA Technical Reports Server (NTRS)
Seidel, B. L.; Bathker, D. A. (Inventor)
1979-01-01
An invention is described which provides for receiving a circularly polarized signal from an antenna feed connected to orthogonally spaced antenna elements. It also provides for transmitting a linearly polarized signal through the same feed without switches, and without suffering a 3 dB polarization mismatch loss, using an arrangement of hybrid junctions. The arrangement is comprised of two dividing hybrid junctions, each connected to a different pair of antenna elements and a summing hybrid junction. In one version, a receiver is connected to the summing hybrid junction directly. A diplexer is used to connect a transmitter to only one pair of antenna elements. In another version, designated left and right circularly polarized (LCP and RCP) transmitters are connected to the summing hybrid junction by separate diplexers, and separate LCP and RCP sensitive receivers are connected to the diplexers in order to transmit linearly polarized signals using all four antenna elements while receiving circularly polarized signals as before. An orthomode junction and horn antenna may replace the two dividing hybrid junctions and antenna feed.
Accounting For Gains And Orientations In Polarimetric SAR
NASA Technical Reports Server (NTRS)
Freeman, Anthony
1992-01-01
Calibration method accounts for characteristics of real radar equipment invalidating standard 2 X 2 complex-amplitude R (receiving) and T (transmitting) matrices. Overall gain in each combination of transmitting and receiving channels assumed different even when only one transmitter and one receiver used. One characterizes departure of polarimetric Synthetic Aperture Radar (SAR) system from simple 2 X 2 model in terms of single parameter used to transform measurements into format compatible with simple 2 X 2 model. Data processed by applicable one of several prior methods based on simple model.
Acquisition of Uropygial Gland Microbiome by Hoopoe Nestlings.
Martín-Vivaldi, Manuel; Soler, Juan José; Martínez-García, Ángela; Arco, Laura; Juárez-García-Pelayo, Natalia; Ruiz-Rodríguez, Magdalena; Martínez-Bueno, Manuel
2017-12-18
Mutualistic symbioses between animals and bacteria depend on acquisition of appropriate symbionts while avoiding exploitation by non-beneficial microbes. The mode of acquisition of symbionts would determine, not only the probability of encountering but also evolutionary outcomes of mutualistic counterparts. The microbiome inhabiting the uropygial gland of the European hoopoe (Upupa epops) includes a variety of bacterial strains, some of them providing antimicrobial benefits. Here, the mode of acquisition and stability of this microbiome is analyzed by means of Automated rRNA Intergenic Spacer Analysis and two different experiments. The first experiment impeded mothers' access to their glands, thus avoiding direct transmission of microorganisms from female to offspring secretions. The second experiment explored the stability of the microbiomes by inoculating glands with secretions from alien nests. The first experiment provoked a reduction in similarity of microbiomes of mother and nestlings. Interestingly, some bacterial strains were more often detected when females had not access to their glands, suggesting antagonistic effects among bacteria from different sources. The second experiment caused an increase in richness of the microbiome of receivers in terms of prevalence of Operational Taxonomic Units (OTUs) that reduced differences in microbiomes of donors and receivers. That occurred because OTUs that were present in donors but not in receivers incorporated to the microbiome of the latter, which provoked that cross-inoculated nestlings got similar final microbiomes that included the most prevalent OTUs. The results are therefore consistent with a central role of vertical transmission in bacterial acquisition by nestling hoopoes and support the idea that the typical composition of the hoopoe gland microbiome is reached by the incorporation of some bacteria during the nestling period. This scenario suggests the existence of a coevolved core microbiome composed by a mix of specialized vertically transmitted strains and facultative symbionts able to coexist with them. The implications of this mixed mode of transmission for the evolution of the mutualism are discussed.
NASA Technical Reports Server (NTRS)
Wilson, Daniel W. (Inventor); Johnson, William R. (Inventor); Bearman, Gregory H. (Inventor)
2011-01-01
Computed tomography imaging spectrometers ("CTISs") employing a single lens are provided. The CTISs may be either transmissive or reflective, and the single lens is either configured to transmit and receive uncollimated light (in transmissive systems), or is configured to reflect and receive uncollimated light (in reflective systems). An exemplary transmissive CTIS includes a focal plane array detector, a single lens configured to transmit and receive uncollimated light, a two-dimensional grating, and a field stop aperture. An exemplary reflective CTIS includes a focal plane array detector, a single mirror configured to reflect and receive uncollimated light, a two-dimensional grating, and a field stop aperture.
Ice thickness measurements over Pine Island and Thwaites Glaciers
NASA Astrophysics Data System (ADS)
Kanagaratnam, P.; Casassa, G.; Thomas, R.; Gogineni, S.
2003-04-01
The Pine Island and Thwaites glaciers (PIG and TG) are the fastest measured glaciers in Antarctica and have been identified as the part of the West Antarctica ice sheet most prone to instability. However, the reasons for the rapid retreat of these glaciers have not been resolved due to insufficient data. In particular, the role of ice shelves in regulating the ice discharge of these glaciers has been a point of contention in the glaciology community. To help resolve this issue the Centro de Estudios Científicos (CECS) and NASA with the support of the Armada de Chile conducted four airborne remote sensing missions over the PIG/TG regions. In addition, two missions were conducted over the Antarctic Peninsula. The University of Kansas operated its Coherent Radar Depth Sounder (CORDS) to measure the thickness of the ice sheet in these regions. CORDS is a pulse-compression radar that has proven its utility in the glaciological surveys over Greenland. The combination of pulse compression and coherent processing has allowed us to obtain high-sensitivity and high-resolution in the along-track direction while keeping the transmitted power low. CORDS transmits a 140-160 MHz chirp signal with 200 Watts of peak power and has a vertical resolution of about 5 meters in ice. We used a four-element dipole array on either side of the wing to transmit and receive the radar signals. We successfully mapped the thickness of the ice sheet over 99% of the PIG/TG flight lines. In this paper we will provide a description of the radar, experiment and signal processing. We will also discuss samples results of the ice thickness, basal conditions and surface roughness.
Steering elastic SH waves in an anomalous way by metasurface
NASA Astrophysics Data System (ADS)
Cao, Liyun; Yang, Zhichun; Xu, Yanlong
2018-03-01
Metasurface, which does not exist in nature, has exhibited exotic essence on the manipulation of both electromagnetic and acoustic waves. In this paper, the concept of metasurface is extended to the field of elastic SH waves, and the anomalous refractions of SH waves across the designed elastic SH wave metasurfaces (SHWMs) are demonstrated numerically. Firstly, a SHWM is designed with supercells, each supercell is composed of four subunits. It is demonstrated that this configuration has the ability of deflecting the vertical and oblique incident waves in an arbitrary desired direction. Then, a unique SHWM with supercell composed of only two subunits is designed. Numerical simulation shows its ability of splitting the vertical and oblique incident waves into two tunable transmitted wave beams, respectively. In the process of steering SH waves, it is also found that two kinds of leakages of transmitted waves across the designed SHWM will occur in some particular situations, which will affect the desired transmitted wave. The mechanisms of the leakages, which are different from that of the common high-order diffraction mentioned in existing literatures, are revealed. The current study can offer theoretical guidance not only for designing devices of directional ultrasonic detection and splitting SH waves but also for steering other kinds of classical waves.
Stepped frequency ground penetrating radar
Vadnais, Kenneth G.; Bashforth, Michael B.; Lewallen, Tricia S.; Nammath, Sharyn R.
1994-01-01
A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.
Ultrasonic speech translator and communications system
Akerman, M.A.; Ayers, C.W.; Haynes, H.D.
1996-07-23
A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.
8. GENERAL VIEW OF TOWER 32, LEFT, AND TOWER 31, ...
8. GENERAL VIEW OF TOWER 32, LEFT, AND TOWER 31, RIGHT. VIEW LOOKING NORTH SHOWING AERIAL WIRE DESIGN WITH VERTICAL 'TOP HAT' WIRES IN CENTER. - Chollas Heights Naval Radio Transmitting Facility, 6410 Zero Road, San Diego, San Diego County, CA
Molecular characterization of an endornavirus from Cucumis spp
USDA-ARS?s Scientific Manuscript database
Endornaviruses infect hosts in the kingdoms Plantae, Fungi and Chromista. They are efficiently transmitted vertically and generally do not induce visible symptoms. In this investigation high molecular weight dsRNA, representing the genome of an endornavirus, was isolated from an unknown melon (Cucum...
Body monitoring and imaging apparatus and method
McEwan, T.E.
1998-06-16
A non-acoustic pulse-echo radar monitor is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. The monitor converts the detected voltage to an audible signal with both amplitude modulation and Doppler effect. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a grating path. The pulses transmitted along the transmit path drive Oh impulse, generator and provide corresponding transmit pulses that are applied to a transmit antenna. The gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung. The impulse generator in the transmit path can be replaced with a pulsed RF generator. 13 figs.
Body monitoring and imaging apparatus and method
McEwan, Thomas E.
1998-01-01
A non-acoustic pulse-echo radar monitor is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. The monitor converts the detected voltage to an audible signal with both amplitude modulation and Doppler effect. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a grating path. The pulses transmitted along the transmit path drive Oh impulse, generator and provide corresponding transmit pulses that are applied to a transmit antenna. The gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung. The impulse generator in the transmit path can be replaced with a pulsed RF generator.
Biological control of Fusarium moniliforme in maize.
Bacon, C W; Yates, I E; Hinton, D M; Meredith, F
2001-05-01
Fusarium moniliforme Sheldon, a biological species of the mating populations within the (italic)Gibberella fujikuroi species complex, i.e., population A [= G. moniliformis (Sheld.) Wineland], is an example of a facultative fungal endophyte. During the biotrophic endophytic association with maize, as well as during saprophytic growth, F. moniliforme produces the fumonisins. The fungus is transmitted vertically and horizontally to the next generation of plants via clonal infection of seeds and plant debris. Horizontal infection is the manner by which this fungus is spread contagiously and through which infection occurs from the outside that can be reduced by application of certain fungicides. The endophytic phase is vertically transmitted. This type infection is important because it is not controlled by seed applications of fungicides, and it remains the reservoir from which infection and toxin biosynthesis takes place in each generation of plants. Thus, vertical transmission of this fungus is just as important as horizontal transmission. A biological control system using an endophytic bacterium, Bacillus subtilis, has been developed that shows great promise for reducing mycotoxin accumulation during the endophytic (vertical transmission) growth phase. Because this bacterium occupies the identical ecological niche within the plant, it is considered an ecological homologue to F. moniliforme, and the inhibitory mechanism, regardless of the mode of action, operates on the competitive exclusion principle. In addition to this bacterium, an isolate of a species of the fungus Trichoderma shows promise in the postharvest control of the growth and toxin accumulation from F. moniliforme on corn in storage.
Biological control of Fusarium moniliforme in maize.
Bacon, C W; Yates, I E; Hinton, D M; Meredith, F
2001-01-01
Fusarium moniliforme Sheldon, a biological species of the mating populations within the (italic)Gibberella fujikuroi species complex, i.e., population A [= G. moniliformis (Sheld.) Wineland], is an example of a facultative fungal endophyte. During the biotrophic endophytic association with maize, as well as during saprophytic growth, F. moniliforme produces the fumonisins. The fungus is transmitted vertically and horizontally to the next generation of plants via clonal infection of seeds and plant debris. Horizontal infection is the manner by which this fungus is spread contagiously and through which infection occurs from the outside that can be reduced by application of certain fungicides. The endophytic phase is vertically transmitted. This type infection is important because it is not controlled by seed applications of fungicides, and it remains the reservoir from which infection and toxin biosynthesis takes place in each generation of plants. Thus, vertical transmission of this fungus is just as important as horizontal transmission. A biological control system using an endophytic bacterium, Bacillus subtilis, has been developed that shows great promise for reducing mycotoxin accumulation during the endophytic (vertical transmission) growth phase. Because this bacterium occupies the identical ecological niche within the plant, it is considered an ecological homologue to F. moniliforme, and the inhibitory mechanism, regardless of the mode of action, operates on the competitive exclusion principle. In addition to this bacterium, an isolate of a species of the fungus Trichoderma shows promise in the postharvest control of the growth and toxin accumulation from F. moniliforme on corn in storage. PMID:11359703
Ben-Ami, F; Rigaud, T; Ebert, D
2011-06-01
In many natural populations, hosts are found to be infected by more than one parasite species. When these parasites have different host exploitation strategies and transmission modes, a conflict among them may arise. Such a conflict may reduce the success of both parasites, but could work to the benefit of the host. For example, the less-virulent parasite may protect the host against the more-virulent competitor. We examine this conflict using the waterflea Daphnia magna and two of its sympatric parasites: the blood-infecting bacterium Pasteuria ramosa that transmits horizontally and the intracellular microsporidium Octosporea bayeri that can concurrently transmit horizontally and vertically after infecting ovaries and fat tissues of the host. We quantified host and parasite fitness after exposing Daphnia to one or both parasites, both simultaneously and sequentially. Under conditions of strict horizontal transmission, Pasteuria competitively excluded Octosporea in both simultaneous and sequential double infections, regardless of the order of exposure. Host lifespan, host reproduction and parasite spore production in double infections resembled those of single infection by Pasteuria. When hosts became first vertically (transovarilly) infected with O. bayeri, Octosporea was able to withstand competition with P. ramosa to some degree, but both parasites produced less transmission stages than they did in single infections. At the same time, the host suffered from reduced fecundity and longevity. Our study demonstrates that even when competing parasite species utilize different host tissues to proliferate, double infections lead to the expression of higher virulence and ultimately may select for higher virulence. Furthermore, we found no evidence that the less-virulent and vertically transmitting O. bayeri protects its host against the highly virulent P. ramosa. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.
Vibration analysis of the SA349/2 helicopter
NASA Technical Reports Server (NTRS)
Heffernan, Ruth; Precetti, Dominique; Johnson, Wayne
1991-01-01
Helicopter airframe vibration is examined using calculations and measurements for the SA349/2 research helicopter. The hub loads, which transmit excitations to the fuselage, are predicted using a comprehensive rotorcraft analysis and correlated with measuring hub loads. The predicted and measured hub loads are then coupled with finite element models representing the SA349/2 fuselage. The resulting vertical acceleration at the pilot seat is examined. Adjustments are made to the airframe structural models to examine the sensitivity of predicted vertical acceleration to the model. Changes of a few percent to the damping and frequency of specific models lead to large reductions in predicted vibration, and to major improvements in the correlations with measured pilot-seat vertical acceleration.
Modeling and design for a new ionospheric modification experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sales, G.S.; Platt, I.G.; Haines, D.M.
1990-10-01
Plans are now underway to carry out new HF oblique ionospheric modification experiments with increased radiated power using a new high gain antenna system and a 1 MW transmitter. The output of this large transmitting system will approach 90 dBW. An important part of this program is to determine the existence of a threshold for non-linear effects by varying the transmitter output. For these experiments we are introducing a new ET probe system, a low power oblique sounder, to be used along the same propagation path as the high power disturbing transmitter. This concept was first used by soviet researchersmore » to insure that this diagnostic signal always passes through the modified region of the ionosphere. The HF probe system will use a low power (150 W) CW signal shifted by approximately 40 kHz from the frequency used by the high power system. The transmitter for the probe system will be at the same location as the high power transmitter while the probe receiver will be 2400 km down range. The probe receiving system uses multiple antennas to measure the the vertical and azimuthal angle of arrival as well the Doppler frequency shift of the arriving probe signal. The three antenna array will be in an L configuration to measure the phase differences between the antennas. At the midpath point a vertical sounder will provide the ionospheric information necessary for the frequency management of the experiment. Real-time signal processing will permit the site operators to evaluate the performance of the system and make adjustments during the experiment. A special ray tracing computer will be used to provide real-time frequencies and elevation beam steering during the experiment. A description of the system and the analysis used in the design of the experiment are presented.« less
Live Site Demonstrations - Massachusetts Military Reservation
2014-09-26
from the ESTCP. It has three mutually orthogonal transmit loops in the Z, Y , and X directions and contains seven triaxial receiver antennas inside...It has three mutually orthogonal transmit loops in the Z, Y , and X directions and contains seven triaxial receiver antennas inside the Z (bottom...met if the modeled X, Y locations of the IVS seed items are within 15 centimeters (cm) of the actual locations, if the depth (Z direction ) is within
Wireless boundary monitor system and method
Haynes, H.D.; Ayers, C.W.
1997-12-09
A wireless boundary monitor system used to monitor the integrity of a boundary surrounding an area uses at least two housings having at least one transmitting means for emitting ultrasonic pressure waves to a medium. Each of the housings has a plurality of receiving means for sensing the pressure waves in the medium. The transmitting means and the receiving means of each housing are aimable and communicably linked. At least one of the housings is equipped with a local alarm means for emitting a first alarm indication whereby, when the pressure waves propagating from a transmitting means to a receiving means are sufficiently blocked by an object a local alarm means or a remote alarm means or a combination thereof emit respective alarm indications. The system may be reset either manually or automatically. This wireless boundary monitor system has useful applications in both indoor and outdoor environments. 4 figs.
Wireless boundary monitor system and method
Haynes, Howard D.; Ayers, Curtis W.
1997-01-01
A wireless boundary monitor system used to monitor the integrity of a boundary surrounding an area uses at least two housings having at least one transmitting means for emitting ultrasonic pressure waves to a medium. Each of the housings has a plurality of receiving means for sensing the pressure waves in the medium. The transmitting means and the receiving means of each housing are aimable and communicably linked. At least one of the housings is equipped with a local alarm means for emitting a first alarm indication whereby, when the pressure waves propagating from a transmitting means to a receiving means are sufficiently blocked by an object a local alarm means or a remote alarm means or a combination thereof emit respective alarm indications. The system may be reset either manually or automatically. This wireless boundary monitor system has useful applications in both indoor and outdoor environments.
NASA Astrophysics Data System (ADS)
Sessler, G. M.; Hillenbrand, J.
2013-09-01
Piezoelectret transducers may be characterized relative to other kinds of piezoelectric transducers with respect to their combined transmit-receive performance by a figure of merit (FOM). Reasonable FOMs for the specific case of broadband (non-resonant) airborne ultrasonics are discussed in this paper. These FOMs are specifically suitable for a measuring system where low input voltage to the transmitter is desirable and where the receiver is assessed by its voltage- or charge-related signal-to-noise ratio. It is found that these FOMs depend chiefly on the piezoelectric d33- and g33-coefficients.
Policy enabled information sharing system
Jorgensen, Craig R.; Nelson, Brian D.; Ratheal, Steve W.
2014-09-02
A technique for dynamically sharing information includes executing a sharing policy indicating when to share a data object responsive to the occurrence of an event. The data object is created by formatting a data file to be shared with a receiving entity. The data object includes a file data portion and a sharing metadata portion. The data object is encrypted and then automatically transmitted to the receiving entity upon occurrence of the event. The sharing metadata portion includes metadata characterizing the data file and referenced in connection with the sharing policy to determine when to automatically transmit the data object to the receiving entity.
Radial reflection diffraction tomography
Lehman, Sean K.
2012-12-18
A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.
Radial Reflection diffraction tomorgraphy
Lehman, Sean K
2013-11-19
A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.
Automatic transponder. [measurement of the internal delay time of a transponder
NASA Technical Reports Server (NTRS)
Anderson, R. E.; Brisken, A. F.; Lewis, J. R. (Inventor)
1977-01-01
A method and apparatus for the automatic, remote measurement of the internal delay time of a transponder at the time of operation is provided. A small portion of the transmitted signal of the transponder is converted to the receive signal frequency of the transponder and supplied to the input of the transponder. The elapsed time between the receive signal locally generated and the receive signal causing the transmission of the transmitted signal is measured, said time being representative of or equal to the internal delay time of the transponder at the time of operation.
Beamed microwave power transmitting and receiving subsystems radiation characteristics
NASA Technical Reports Server (NTRS)
Dickinson, R. M.
1980-01-01
Measured characteristics of the spectrum of typical converters and the distribution of radiated Radio Frequency (RF) energy from the terminals (transmitting antenna and rectenna) of a beamed microwave power subsystem are presented for small transmitting and receiving S-band (2.45 GHz) subarrays. Noise and harmonic levels of tube and solid-state RF power amplifiers are shown. The RF patterns and envelope of a 64 element slotted waveguide antenna are given for the fundamental frequency and harmonics through the fifth. Reflected fundamental and harmonic patterns through the fourth for a 42 element rectenna subarray are presented for various dc load and illumination conditions. Bandwidth measurements for the waveguide antenna and rectenna are shown.
Design of remote control alarm system by microwave detection
NASA Astrophysics Data System (ADS)
Wang, Junli
2018-04-01
A microwave detection remote control alarm system is designed, which is composed of a Microwave detectors, a radio receiving/transmitting module and a digital encoding/decoding IC. When some objects move into the surveillance area, microwave detectors will generate a control signal to start transmitting system. A radio control signal will be spread by the transmitting module, once the signal can be received, and it will be disposed by some circuits, arousing some voices that awake the watching people. The whole device is a modular configuration, it not only has some advantage of frequency stable, but also reliable and adjustment-free, and it is suitable for many kinds of demands within the distance of 100m.
Broadcast Spawning Coral Mussismilia hispida Can Vertically Transfer its Associated Bacterial Core
Leite, Deborah C. A.; Leão, Pedro; Garrido, Amana G.; Lins, Ulysses; Santos, Henrique F.; Pires, Débora O.; Castro, Clovis B.; van Elsas, Jan D.; Zilberberg, Carla; Rosado, Alexandre S.; Peixoto, Raquel S.
2017-01-01
The hologenome theory of evolution (HTE), which is under fierce debate, presupposes that parts of the microbiome are transmitted from one generation to the next [vertical transmission (VT)], which may also influence the evolution of the holobiont. Even though bacteria have previously been described in early life stages of corals, these early life stages (larvae) could have been inoculated in the water and not inside the parental colony (through gametes) carrying the parental microbiome. How Symbiodinium is transmitted to offspring is also not clear, as only one study has described this mechanism in spawners. All other studies refer to incubators. To explore the VT hypothesis and the key components being transferred, colonies of the broadcast spawner species Mussismilia hispida were kept in nurseries until spawning. Gamete bundles, larvae and adult corals were analyzed to identify their associated microbiota with respect to composition and location. Symbiodinium and bacteria were detected by sequencing in gametes and coral planula larvae. However, no cells were detected using microscopy at the gamete stage, which could be related to the absence of those cells inside the oocytes/dispersed in the mucus or to a low resolution of our approach. A preliminary survey of Symbiodinium diversity indicated that parental colonies harbored Symbiodinium clades B, C and G, whereas only clade B was found in oocytes and planula larvae [5 days after fertilization (a.f.)]. The core bacterial populations found in the bundles, planula larvae and parental colonies were identified as members of the genera Burkholderia, Pseudomonas, Acinetobacter, Ralstonia, Inquilinus and Bacillus, suggesting that these populations could be vertically transferred through the mucus. The collective data suggest that spawner corals, such as M. hispida, can transmit Symbiodinium cells and the bacterial core to their offspring by a coral gamete (and that this gamete, with its bacterial load, is released into the water), supporting the HTE. However, more data are required to indicate the stability of the transmitted populations to indicate whether the holobiont can be considered a unit of natural selection or a symbiotic assemblage of independently evolving organisms. PMID:28223979
Hierarchical microstructures in CZT
NASA Astrophysics Data System (ADS)
Sundaram, S. K.; Henager, C. H.; Edwards, D. J.; Schemer-Kohrn, A. L.; Bliss, M.; Riley, B. R.; Toloczko, M. B.; Lynn, K. G.
2011-10-01
Advanced characterization tools, such as electron backscatter diffraction and transmitted IR microscopy, are being applied to study critical microstructural features and orientation relations in as-grown CZT crystals to aid in understanding the relation between structure and properties in radiation detectors. Even carefully prepared single crystals of CZT contain regions of slight misorientation, Te-particles, and dislocation networks that must be understood for more accurate models of detector response. This paper describes initial research at PNNL into the hierarchy of microstructures observed in CZT grown via the vertical gradient freeze or vertical Bridgman method at PNNL and WSU.
Scatterometer-Calibrated Stability Verification Method
NASA Technical Reports Server (NTRS)
McWatters, Dalia A.; Cheetham, Craig M.; Huang, Shouhua; Fischman, Mark A.; CHu, Anhua J.; Freedman, Adam P.
2011-01-01
The requirement for scatterometer-combined transmit-receive gain variation knowledge is typically addressed by sampling a portion of the transmit signal, attenuating it with a known-stable attenuation, and coupling it into the receiver chain. This way, the gain variations of the transmit and receive chains are represented by this loop-back calibration signal, and can be subtracted from the received remote radar echo. Certain challenges are presented by this process, such as transmit and receive components that are outside of this loop-back path and are not included in this calibration, as well as the impracticality for measuring the transmit and receive chains stability and post fabrication separately, without the resulting measurement errors from the test set up exceeding the requirement for the flight instrument. To cover the RF stability design challenge, the portions of the scatterometer that are not calibrated by the loop-back, (e.g., attenuators, switches, diplexers, couplers, and coaxial cables) are tightly thermally controlled, and have been characterized over temperature to contribute less than 0.05 dB of calibration error over worst-case thermal variation. To address the verification challenge, including the components that are not calibrated by the loop-back, a stable fiber optic delay line (FODL) was used to delay the transmitted pulse, and to route it into the receiver. In this way, the internal loopback signal amplitude variations can be compared to the full transmit/receive external path, while the flight hardware is in the worst-case thermal environment. The practical delay for implementing the FODL is 100 s. The scatterometer pulse width is 1 ms so a test mode was incorporated early in the design phase to scale the 1 ms pulse at 100-Hz pulse repetition interval (PRI), by a factor of 18, to be a 55 s pulse with 556 s PRI. This scaling maintains the duty cycle, thus maintaining a representative thermal state for the RF components. The FODL consists of an RF-modulated fiber-optic transmitter, 20 km SMF- 28 standard single-mode fiber, and a photodetector. Thermoelectric cooling and insulating packaging are used to achieve high thermal stability of the FODL components. The chassis was insulated with 1-in. (.2.5-cm) thermal isolation foam. Nylon rods support the Micarta plate, onto which are mounted four 5-km fiber spool boxes. A copper plate heat sink was mounted on top of the fiber boxes (with thermal grease layer) and screwed onto the thermoelectric cooler plate. Another thermal isolation layer in the middle separates the fiberoptics chamber from the RF electronics components, which are also mounted on a copper plate that is screwed onto another thermoelectric cooler. The scatterometer subsystem fs overall stability was successfully verified to be calibratable to within 0.1 dB error in thermal vacuum (TVAC) testing with the fiber-optic delay line, while the scatterometer temperature was ramped from 10 to 30 C, which is a much larger temperature range than the worst-case expected seasonal variations.
Fiber optic multiplex optical transmission system
NASA Technical Reports Server (NTRS)
Bell, C. H. (Inventor)
1977-01-01
A multiplex optical transmission system which minimizes external interference while simultaneously receiving and transmitting video, digital data, and audio signals is described. Signals are received into subgroup mixers for blocking into respective frequency ranges. The outputs of these mixers are in turn fed to a master mixer which produces a composite electrical signal. An optical transmitter connected to the master mixer converts the composite signal into an optical signal and transmits it over a fiber optic cable to an optical receiver which receives the signal and converts it back to a composite electrical signal. A de-multiplexer is coupled to the output of the receiver for separating the composite signal back into composite video, digital data, and audio signals. A programmable optic patch board is interposed in the fiber optic cables for selectively connecting the optical signals to various receivers and transmitters.
Space Radar Image of Niya ruins, Taklamakan desert
NASA Technical Reports Server (NTRS)
1999-01-01
This radar image is of an area thought to contain the ruins of the ancient settlement of Niya. It is located in the southwestern corner of the Taklamakan Desert in China's Sinjiang Province. This oasis was part of the famous Silk Road, an ancient trade route from one of China's earliest capitols, Xian, to the West. The image shows a white linear feature trending diagonally from the upper left to the lower right. Scientists believe this newly discovered feature is a man-made canal which presumably diverted river waters toward the settlement of Niya for irrigation purposes. The image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 106th orbit on April 16, 1994, and is centered at 37.78 degrees north latitude and 82.41 degrees east longitude. The false-color radar image was created by displaying the C-band (horizontally transmitted and received) return in red, the L-band (horizontally transmitted and received) return in green, and the L-band (horizontally transmitted and vertically received) return in blue. Areas in mottled white and purple are low-lying floodplains of the Niya River. Dark green and black areas between river courses are higher ridges or dunes confining the water flow. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: the L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtange-legenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstaltfuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.
Space Radar Image of Patagonian Ice Fields
1999-04-15
This pair of images illustrates the ability of multi-parameter radar imaging sensors such as the Spaceborne Imaging Radar-C/X-band Synthetic Aperture radar to detect climate-related changes on the Patagonian ice fields in the Andes Mountains of Chile and Argentina. The images show nearly the same area of the south Patagonian ice field as it was imaged during two space shuttle flights in 1994 that were conducted five-and-a-half months apart. The images, centered at 49.0 degrees south latitude and 73.5degrees west longitude, include several large outlet glaciers. The images were acquired by SIR-C/X-SAR on board the space shuttle Endeavour during April and October 1994. The top image was acquired on April 14, 1994, at 10:46 p.m. local time, while the bottom image was acquired on October 5,1994, at 10:57 p.m. local time. Both were acquired during the 77th orbit of the space shuttle. The area shown is approximately 100 kilometers by 58 kilometers (62 miles by 36 miles) with north toward the upper right. The colors in the images were obtained using the following radar channels: red represents the C-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and received); blue represents the L-band (horizontally transmitted and vertically received). The overall dark tone of the colors in the central portion of the April image indicates that the interior of the ice field is covered with thick wet snow. The outlet glaciers, consisting of rough bare ice, are the brightly colored yellow and purple lobes which terminate at calving fronts into the dark waters of lakes and fiords. During the second mission the temperatures were colder and the corresponding change in snow and ice conditions is readily apparent by comparing the images. The interior of the ice field is brighter because of increased radar return from the dryer snow. The distinct green/orange boundary on the ice field indicates an abrupt change in the structure of the snowcap, a direct indication of the steep meteorological gradients known to exist in this region. The bluer color of the outlet glaciers is probably due to a thin snow cover. A portion of the terminus of the outlet glacier at the top left center of the images has advanced approximately 600 meters (1,970 feet) in the five-and-a-half months between the two missions. Because of the persistent cloud cover this observation was only possible by using the orbiting, remote imaging radar system. http://photojournal.jpl.nasa.gov/catalog/PIA01778
Beneficial effects of neotyphodium tembladerae and neotyphodium pampeanum on a wild forage grass
USDA-ARS?s Scientific Manuscript database
Asexual, vertically transmitted fungal endophytes of the genus Neotyphodium are considered to enhance growth, stress resistance and competitiveness of agronomic grasses, but have been suggested to have neutral or deleterious effects on wild grasses. We studied whether the associations between Bromus...
Beneficial effects of Neotyphodium tembladerae and Neotyphodium pampeanum on a wild forage grass
USDA-ARS?s Scientific Manuscript database
Asexual, vertically transmitted fungal endophytes of the genus Neotyphodium are considered to enhance growth, stress resistance and competitiveness of agronomic grasses, but have been suggested to have neutral or deleterious effects on wild grasses. We studied whether the associations between Bromus...
Pelosse, Perrine; Kribs-Zaleta, Christopher M
2012-11-07
Pathogens may use different routes of transmission to maximize their spread among host populations. Theoretical and empirical work conducted on directly transmitted diseases suggest that horizontal (i.e., through host contacts) and vertical (i.e., from mother to offspring) transmission modes trade off, on the ground that highly virulent pathogens, which produce larger parasite loads, are more efficiently transmitted horizontally, and that less virulent pathogens, which impair host fitness less significantly, are better transmitted vertically. Other factors than virulence such as host density could also select for different transmission modes, but they have barely been studied. In vector-borne diseases, pathogen transmission rate is strongly affected by host-vector relative densities and by processes of saturation in contacts between hosts and vectors. The parasite Trypanosoma cruzi which is transmitted by triatomine bugs to several vertebrate hosts is responsible for Chagas' disease in Latin America. It is also widespread in sylvatic cycles in the southeastern U.S. in which it typically induces no mortality costs to its customary hosts. Besides classical transmission via vector bites, alternative ways to generate infections in hosts such as vertical and oral transmission (via the consumption of vectors by hosts) have been reported in these cycles. The two major T. cruzi strains occurring in the U.S. seem to exhibit differential efficiencies at vertical and classical horizontal transmissions. We investigated whether the vector-host ratio affects the outcome of the competition between the two parasite strains using an epidemiological two-strain model considering all possible transmission routes for sylvatic T. cruzi. We were able to show that the vector-host ratio influences the evolution of transmission modes providing that oral transmission is included in the model as a possible transmission mode, that oral and classical transmissions saturate at different vector-host ratios and that the vector-host ratio is between the two saturation thresholds. Even if data on parasite strategies and demography of hosts and vectors in the field are crucially lacking to test to what extent the conditions needed for the vector-host ratio to influence evolution of transmission modes are plausible, our results open new perspectives for understanding the specialization of the two major T. cruzi strains occurring in the U.S. Our work also provides an original theoretical framework to investigate the evolution of alternative transmission modes in vector-borne diseases.
Method and apparatus for reducing radiation exposure through the use of infrared data transmission
Austin, Frank S.; Hance, Albert B.
1989-01-01
A method and apparatus is described for transmitting information, for exae, dosimetry data from a hazardous environment such as a radioactive area to a remote relatively safe location. A radiation detector senses the radiation and generates an electrical signal which is fed as a binary coded decimal signal to an infrared transmitter having a microprocessor. The microprocessor formats the detected information into digits of data and modulates a 40 kHz oscillator, the output of which is fed to and intensity modulates one or more infrared emitting diodes. The infrared signal from the diodes is transmitted to a portable hand-held infrared receiver remote from the hazardous environment. The receiver includes an infrared sensitive diode which decodes the data and generates an electrical signal which is coupled to a microcomputer. The microcomputer synchronizes itself to the transmitter, reads the digits of data as they are received, sums the digits and compares the sum with a checksum signal generated and transmitted from the transmitter. If a match of the checksum signals exists, the received data is displayed, otherwise it is described and the receiver conditions itself for the next transmission of data.
McEwan, Thomas E.
1998-01-01
A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with atypical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive and transmit cavities by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings.
McEwan, T.E.
1998-06-30
A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with atypical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive and transmit cavities by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings. 20 figs.
Body monitoring and imaging apparatus and method
McEwan, T.E.
1996-11-12
A non-acoustic pulse-echo radar monitor is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. The monitor converts the detected voltage to an audible signal with both amplitude modulation and Doppler effect. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a gating path. The pulses transmitted along the transmit path drive an impulse generator and provide corresponding transmit pulses that are applied to a transmit antenna. The gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung. 12 figs.
Body monitoring and imaging apparatus and method
McEwan, Thomas E.
1996-01-01
A non-acoustic pulse-echo radar monitor is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. The monitor converts the detected voltage to an audible signal with both amplitude modulation and Doppler effect. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a gating path. The pulses transmitted along the transmit path drive an impulse generator and provide corresponding transmit pulses that are applied to a transmit antenna. The gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung.
PHLUX: Photographic Flux Tools for Solar Glare and Flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
2010-12-02
A web-based tool to a) analytically and empirically quantify glare from reflected light and determine the potential impact (e.g., temporary flash blindness, retinal burn), and b) produce flux maps for central receivers. The tool accepts RAW digital photographs of the glare source (for hazard assessment) or the receiver (for flux mapping), as well as a photograph of the sun for intensity and size scaling. For glare hazard assessment, the tool determines the retinal irradiance (W/cm2) and subtended source angle for an observer and plots the glare source on a hazard spectrum (i.e., low-potential for flash blindness impact, potential for flashmore » blindness impact, retinal burn). For flux mapping, the tool provides a colored map of the receiver scaled by incident solar flux (W/m2) and unwraps the physical dimensions of the receiver while accounting for the perspective of the photographer (e.g., for a flux map of a cylindrical receiver, the horizontal axis denotes receiver angle in degrees and the vertical axis denotes vertical position in meters; for a flat panel receiver, the horizontal axis denotes horizontal position in meters and the vertical axis denotes vertical position in meters). The flux mapping capability also allows the user to specify transects along which the program plots incident solar flux on the receiver.« less
47 CFR 79.109 - Activating accessibility features.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ACCESSIBILITY OF VIDEO PROGRAMMING Apparatus § 79.109 Activating accessibility features. (a) Requirements... video programming transmitted in digital format simultaneously with sound, including apparatus designed to receive or display video programming transmitted in digital format using Internet protocol, with...
NASA Technical Reports Server (NTRS)
Houpt, Tracy; Ridgely, Margaret
1991-01-01
The Air Force Manufacturing Technology program is involved with the improvement of radar transmit/receive modules for use in active phased array radars for advanced fighter aircraft. Improvements in all areas of manufacture and test of these modules resulting in order of magnitude improvements in the cost of and the rate of production are addressed, as well as the ongoing transfer of this technology to the Navy.
An investigation of pre-launch and in-flight STS range safety radio signal degradation and dropout
NASA Technical Reports Server (NTRS)
Mcdonald, Malcolm W.
1991-01-01
The range safety system (RSS) transmitters operate at a frequency of 416.500 MHz. The transmitting antennas transmit left circularly polarized waves, and the shuttle range safety system (SRSS) receiving antennas onboard the shuttle vehicle receive left circular polarization. Preliminary explanations are proposed for many of the observed fluctuations in signal levels. It is recommended that experiments and further investigation be performed to test the validity of certain of these explanations.
Wireless sensors powered by microbial fuel cells.
Shantaram, Avinash; Beyenal, Haluk; Raajan, Raaja; Veluchamy, Angathevar; Lewandowski, Zbigniew
2005-07-01
Monitoring parameters characterizing water quality, such as temperature, pH, and concentrations of heavy metals in natural waters, is often followed by transmitting the data to remote receivers using telemetry systems. Such systems are commonly powered by batteries, which can be inconvenient at times because batteries have a limited lifetime and must be recharged or replaced periodically to ensure that sufficient energy is available to power the electronics. To avoid these inconveniences, a microbial fuel cell was designed to power electrochemical sensors and small telemetry systems to transmit the data acquired by the sensors to remote receivers. The microbial fuel cell was combined with low-power, high-efficiency electronic circuitry providing a stable power source for wireless data transmission. To generate enough power for the telemetry system, energy produced by the microbial fuel cell was stored in a capacitor and used in short bursts when needed. Since commercial electronic circuits require a minimum 3.3 V input and our cell was able to deliver a maximum of 2.1 V, a DC-DC converter was used to boost the potential. The DC-DC converter powered a transmitter, which gathered the data from the sensor and transmitted it wirelessly to a remote receiver. To demonstrate the utility of the system, temporal variations in temperature were measured, and the data were wirelessly transmitted to a remote receiver.
Space Radar Image of Kiluchevskoi, Volcano, Russia
NASA Technical Reports Server (NTRS)
1994-01-01
This is an image of the area of Kliuchevskoi volcano, Kamchatka, Russia, which began to erupt on September 30, 1994. Kliuchevskoi is the blue triangular peak in the center of the image, towards the left edge of the bright red area that delineates bare snow cover. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 88th orbit on October 5, 1994. The image shows an area approximately 75 kilometers by 100 kilometers (46 miles by 62 miles) that is centered at 56.07 degrees north latitude and 160.84 degrees east longitude. North is toward the bottom of the image. The radar illumination is from the top of the image. The Kamchatka volcanoes are among the most active volcanoes in the world. The volcanic zone sits above a tectonic plate boundary, where the Pacific plate is sinking beneath the northeast edge of the Eurasian plate. The Endeavour crew obtained dramatic video and photographic images of this region during the eruption, which will assist scientists in analyzing the dynamics of the recent activity. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In addition to Kliuchevskoi, two other active volcanoes are visible in the image. Bezymianny, the circular crater above and to the right of Kliuchevskoi, contains a slowly growing lava dome. Tolbachik is the large volcano with a dark summit crater near the upper right edge of the red snow covered area. The Kamchatka River runs from right to left across the bottom of the image. The current eruption of Kliuchevskoi included massive ejections of gas, vapor and ash, which reached altitudes of 15,000 meters (50,000 feet). Melting snow mixed with volcanic ash triggered mud flows on the flanks of the volcano. Paths of these flows can be seen as thin lines in various shades of blue and green on the north flank in the center of the image. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.
Space Radar Image of Manaus, Brazil
NASA Technical Reports Server (NTRS)
1994-01-01
These two false-color images of the Manaus region of Brazil in South America were acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar on board the space shuttle Endeavour. The image at left was acquired on April 12, 1994, and the image at right was acquired on October 3, 1994. The area shown is approximately 8 kilometers by 40 kilometers (5 miles by 25 miles). The two large rivers in this image, the Rio Negro (at top) and the Rio Solimoes (at bottom), combine at Manaus (west of the image) to form the Amazon River. The image is centered at about 3 degrees south latitude and 61 degrees west longitude. North is toward the top left of the images. The false colors were created by displaying three L-band polarization channels: red areas correspond to high backscatter, horizontally transmitted and received, while green areas correspond to high backscatter, horizontally transmitted and vertically received. Blue areas show low returns at vertical transmit/receive polarization; hence the bright blue colors of the smooth river surfaces can be seen. Using this color scheme, green areas in the image are heavily forested, while blue areas are either cleared forest or open water. The yellow and red areas are flooded forest or floating meadows. The extent of the flooding is much greater in the April image than in the October image and appears to follow the 10-meter (33-foot) annual rise and fall of the Amazon River. The flooded forest is a vital habitat for fish, and floating meadows are an important source of atmospheric methane. These images demonstrate the capability of SIR-C/X-SAR to study important environmental changes that are impossible to see with optical sensors over regions such as the Amazon, where frequent cloud cover and dense forest canopies block monitoring of flooding. Field studies by boat, on foot and in low-flying aircraft by the University of California at Santa Barbara, in collaboration with Brazil's Instituto Nacional de Pesguisas Estaciais, during the first and second flights of the SIR-C/X-SAR system have validated the interpretation of the radar images. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.
NASA Technical Reports Server (NTRS)
1995-01-01
This is an image of the area around the city of Angkor, Cambodia. The city houses an ancient complex of more than 60 temples dating back to the 9th century. The principal complex, Angkor Wat, is the bright square just left of the center of the image. It is surrounded by a reservoir that appears in this image as a thick black line. The larger bright square above Angkor Wat is another temple complex called Angkor Thom. Archeologists studying this image believe the blue-purple area slightly north of Angkor Thom may be previously undiscovered structures. In the lower right is a bright rectangle surrounded by a dark reservoir, which houses the temple complex Chau Srei Vibol. In its heyday, Angkor had a population of 1 million residents and was the spiritual center for the Khmer people until it was abandoned in the 15th century. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on the 15th orbit of the space shuttle Endeavour on September 30, 1994. The image shows an area approximately 55 kilometers by 85 kilometers (34 miles by 53 miles) that is centered at 13.43 degrees north latitude and 103.9 degrees east longitude. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). The body of water in the south-southwest corner is Tonle Sap, Cambodia's great central lake. The urban area at the lower left of the image is the present-day town of Siem Reap. The adjoining lines are both modern and ancient roads and the remains of Angkor's vast canal system that was used for both irrigation and transportation. The large black rectangles are ancient reservoirs. Today the Angkor complex is hidden beneath a dense rainforest canopy, making it difficult for researchers on the ground to study the ancient city. The SIR-C/X-SAR data are being used by archaeologists at the World Monuments Fund and the Royal Angkor Foundation to understand how the city grew, flourished and later fell into disuse over an 800-year period. The data are also being used to help reconstruct the vast system of hydrological works, canals and reservoirs, which have gone out of use over time. Research teams from more than 11 countries will be using this data to study the Angkor complex.
Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).Performance Analysis of Transmit Diversity Systems with Multiple Antenna Replacement
NASA Astrophysics Data System (ADS)
Park, Ki-Hong; Yang, Hong-Chuan; Ko, Young-Chai
Transmit diversity systems based on orthogonal space-time block coding (OSTBC) usually suffer from rate loss and power spreading. Proper antenna selection scheme can help to more effectively utilize the transmit antennas and transmission power in such systems. In this paper, we propose a new antenna selection scheme for such systems based on the idea of antenna switching. In particular, targeting at reducing the number of pilot channels and RF chains, the transmitter now replaces the antennas with the lowest received SNR with unused ones if the output SNR of space time decoder at the receiver is below a certain threshold. With this new scheme, not only the number of pilot channels and RF chains to be implemented is decreased, the average amount of feedback information is also reduced. To analyze the performance of this scheme, we derive the exact integral closed form for the probability density function (PDF) of the received SNR. We show through numerical examples that the proposed scheme offers better performance than traditional OSTBC systems using all available transmitting antennas, with a small amount of feedback information. We also examine the effect of different antenna configuration and feedback delay.
Moody, Katherine Lynn; Hollingsworth, Neal A.; Zhao, Feng; Nielsen, Jon-Fredrik; Noll, Douglas C.; Wright, Steven M.; McDougall, Mary Preston
2014-01-01
Parallel transmit is an emerging technology to address the technical challenges associated with MR imaging at high field strengths. When developing arrays for parallel transmit systems, one of the primary factors to be considered is the mechanism to manage coupling and create independently operating channels. Recent work has demonstrated the use of amplifiers to provide some or all of the channel-to-channel isolation, reducing the need for on-coil decoupling networks in a manner analogous to the use of isolation preamplifiers with receive coils. This paper discusses an eight-channel transmit/receive head array for use with an ultra-low output impedance (ULOI) parallel transmit system. The ULOI amplifiers eliminated the need for a complex lumped element network to decouple the eight rung array. The design and construction details of the array are discussed in addition to the measurement considerations required for appropriately characterizing an array when using ULOI amplifiers. B1 maps and coupling matrices are used to verify the performance of the system. PMID:25072190
Ultrasonic speech translator and communications system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akerman, M.A.; Ayers, C.W.; Haynes, H.D.
1996-07-23
A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulatesmore » an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.« less
NASA Astrophysics Data System (ADS)
Moody, Katherine Lynn; Hollingsworth, Neal A.; Zhao, Feng; Nielsen, Jon-Fredrik; Noll, Douglas C.; Wright, Steven M.; McDougall, Mary Preston
2014-09-01
Parallel transmit is an emerging technology to address the technical challenges associated with MR imaging at high field strengths. When developing arrays for parallel transmit systems, one of the primary factors to be considered is the mechanism to manage coupling and create independently operating channels. Recent work has demonstrated the use of amplifiers to provide some or all of the channel-to-channel isolation, reducing the need for on-coil decoupling networks in a manner analogous to the use of isolation preamplifiers with receive coils. This paper discusses an eight-channel transmit/receive head array for use with an ultra-low output impedance (ULOI) parallel transmit system. The ULOI amplifiers eliminated the need for a complex lumped element network to decouple the eight-rung array. The design and construction details of the array are discussed in addition to the measurement considerations required for appropriately characterizing an array when using ULOI amplifiers. B1 maps and coupling matrices are used to verify the performance of the system.
Ultrasonic speech translator and communications system
Akerman, M. Alfred; Ayers, Curtis W.; Haynes, Howard D.
1996-01-01
A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system (20) includes an ultrasonic transmitting device (100) and an ultrasonic receiving device (200). The ultrasonic transmitting device (100) accepts as input (115) an audio signal such as human voice input from a microphone (114) or tape deck. The ultrasonic transmitting device (100) frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device (200) converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output (250).
NASA Astrophysics Data System (ADS)
Yue, Z. K.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Liang, L. H.; Cui, S.
2017-11-01
The problem that misalignment between the transmitting coil and the receiving coil significantly impairs the transmission power and efficiency of the system has been attached more and more attention. In order to improve the uniformity of the magnetic field between the two coils to solve this problem, a new type of coil called pan-shaped coil is proposed. Three-dimension simulation models of the planar-core coil and the pan-shaped coil are established using Ansoft Maxwell software. The coupling coefficient between the transmitting coil and the receiving coil is obtained by simulating the magnetic field with the receiving coil misalignment or not. And the maximum percentage difference strength along the radial direction which is defined as the magnetic field uniformity factor is calculated. According to the simulation results of the two kinds of coil structures, it is found that the new type of coil structure can obviously improve the uniformity of the magnetic field, coupling coefficient and power transmission properties between the transmitting coil and the receiving coil.
UV Lidar Receiver Analysis for Tropospheric Sensing of Ozone
NASA Technical Reports Server (NTRS)
Pliutau, Denis; DeYoung, Russell J.
2013-01-01
A simulation of a ground based Ultra-Violet Differential Absorption Lidar (UV-DIAL) receiver system was performed under realistic daytime conditions to understand how range and lidar performance can be improved for a given UV pulse laser energy. Calculations were also performed for an aerosol channel transmitting at 3 W. The lidar receiver simulation studies were optimized for the purpose of tropospheric ozone measurements. The transmitted lidar UV measurements were from 285 to 295 nm and the aerosol channel was 527-nm. The calculations are based on atmospheric transmission given by the HITRAN database and the Modern Era Retrospective Analysis for Research and Applications (MERRA) meteorological data. The aerosol attenuation is estimated using both the BACKSCAT 4.0 code as well as data collected during the CALIPSO mission. The lidar performance is estimated for both diffuseirradiance free cases corresponding to nighttime operation as well as the daytime diffuse scattered radiation component based on previously reported experimental data. This analysis presets calculations of the UV-DIAL receiver ozone and aerosol measurement range as a function of sky irradiance, filter bandwidth and laser transmitted UV and 527-nm energy
Vertical Transmission of Hepatozoon in the Garter Snake Thamnophis elegans.
Kauffman, Kiera L; Sparkman, Amanda; Bronikowski, Anne M; Palacios, Maria G
2017-01-01
Vertical transmission of blood parasites has been demonstrated in humans and some domestic species, but it has not been well documented in wild populations. We assessed whether Hepatozoon blood parasites are vertically transmitted in naturally infected individuals of the viviparous western terrestrial garter snake ( Thamnophis elegans ). Blood smears were taken from nine wild-caught gravid female snakes at capture, preparturition, and postparturition, and then from their laboratory-born offspring at age 2 mo and 1 yr. All infected offspring were born to four infected females, although not all offspring in a given litter were necessarily infected. Parasites were not detected in offspring born to the five uninfected mothers. The highest parasite loads were found in neonates at 2 mo of age. Parasite prevalence did not vary between sexes in offspring, but females showed higher loads than did males when 2 mo old. This study supports vertical transmission of Hepatozoon in naturally infected viviparous snakes and suggests that vertical transmission of hematozoan parasites might be an overlooked mode of transmission in wildlife.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takemasa, Yuichi; Togari, Satoshi; Arai, Yoshinobu
1996-11-01
Vertical temperature differences tend to be great in a large indoor space such as an atrium, and it is important to predict variations of vertical temperature distribution in the early stage of the design. The authors previously developed and reported on a new simplified unsteady-state calculation model for predicting vertical temperature distribution in a large space. In this paper, this model is applied to predicting the vertical temperature distribution in an existing low-rise atrium that has a skylight and is affected by transmitted solar radiation. Detailed calculation procedures that use the model are presented with all the boundary conditions, andmore » analytical simulations are carried out for the cooling condition. Calculated values are compared with measured results. The results of the comparison demonstrate that the calculation model can be applied to the design of a large space. The effects of occupied-zone cooling are also discussed and compared with those of all-zone cooling.« less
Does fire maintain symbiotic, fungal endophyte infections in native grasses?
S. H. Faeth; S. M. Haase; S. S. Sackett; T. J. Sullivan; R. H. Remington; C. E. Hamilton
2002-01-01
Systemic endophytic fungi in agronomic and turf grasses are well known for conferring increased resistance to herbivores and to abiotic stresses, such as drought, and increasing competitive abilities. Many native grasses also harbor high frequencies of the asexual and vertically-transmitted endophyte, Neotyphodium. In Festuca arizonica...
A new system model for radar polarimeters
NASA Technical Reports Server (NTRS)
Freeman, Anthony
1991-01-01
The validity of the 2 x 2 receive R and transmit T model for radar polarimeter systems, first proposed by Zebker et al. (1987), is questioned. The model is found to be invalid for many practical realizations of radar polarimeters, which can lead to significant errors in the calibration of polarimetric radar images. A more general model is put forward, which addresses the system defects which cause the 2 x 2 model to break down. By measuring one simple parameter from a polarimetric active radar calibration (PARC), it is possible to transform the scattering matrix measurements made by a radar polarimeter to a format compatible with a 2 x 2 R and T matrix model. Alternatively, the PARC can be used to verify the validity of the 2 x 2 model for any polarimetric radar system. Recommendations for the use of PARCs in polarimetric calibration and to measure the orientation angle of the horizontal (H) and vertical (V) coordinate system are also presented.
A new system model for radar polarimeters
NASA Astrophysics Data System (ADS)
Freeman, Anthony
1991-09-01
The validity of the 2 x 2 receive R and transmit T model for radar polarimeter systems, first proposed by Zebker et al. (1987), is questioned. The model is found to be invalid for many practical realizations of radar polarimeters, which can lead to significant errors in the calibration of polarimetric radar images. A more general model is put forward, which addresses the system defects which cause the 2 x 2 model to break down. By measuring one simple parameter from a polarimetric active radar calibration (PARC), it is possible to transform the scattering matrix measurements made by a radar polarimeter to a format compatible with a 2 x 2 R and T matrix model. Alternatively, the PARC can be used to verify the validity of the 2 x 2 model for any polarimetric radar system. Recommendations for the use of PARCs in polarimetric calibration and to measure the orientation angle of the horizontal (H) and vertical (V) coordinate system are also presented.
Co-infecting Reptarenaviruses Can Be Vertically Transmitted in Boa Constrictor.
Keller, Saskia; Hetzel, Udo; Sironen, Tarja; Korzyukov, Yegor; Vapalahti, Olli; Kipar, Anja; Hepojoki, Jussi
2017-01-01
Boid inclusion body disease (BIBD) is an often fatal disease affecting mainly constrictor snakes. BIBD has been associated with infection, and more recently with coinfection, by various reptarenavirus species (family Arenaviridae). Thus far BIBD has only been reported in captive snakes, and neither the incubation period nor the route of transmission are known. Herein we provide strong evidence that co-infecting reptarenavirus species can be vertically transmitted in Boa constrictor. In total we examined five B. constrictor clutches with offspring ranging in age from embryos over perinatal abortions to juveniles. The mother and/or father of each clutch were initially diagnosed with BIBD and/or reptarenavirus infection by detection of the pathognomonic inclusion bodies (IB) and/or reptarenaviral RNA. By applying next-generation sequencing and de novo sequence assembly we determined the "reptarenavirome" of each clutch, yielding several nearly complete L and S segments of multiple reptarenaviruses. We further confirmed vertical transmission of the co-infecting reptarenaviruses by species-specific RT-PCR from samples of parental animals and offspring. Curiously, not all offspring obtained the full parental "reptarenavirome". We extended our findings by an in vitro approach; cell cultures derived from embryonal samples rapidly developed IB and promoted replication of some or all parental viruses. In the tissues of embryos and perinatal abortions, viral antigen was sometimes detected, but IB were consistently seen only in the juvenile snakes from the age of 2 mo onwards. In addition to demonstrating vertical transmission of multiple species, our results also indicate that reptarenavirus infection induces BIBD over time in the offspring.
García-Navarro, Cristina; García, Isabel; Medín, Gabriela; Ramos-Amador, José Tomás; Navarro-Gómez, Marisa; Mellado-Peña, M José; Gómez, M I de José; Cortés, Marisol; Zamora Crespo, Berta; Muñoz-Fernandez, M Angeles; Gamero, Daniel Blázquez; González-Tomé, M Isabel
2014-12-01
Thanks to advances in antiretroviral treatment, children with HIV infections through vertical transmission have improved their life expectancy. However, new challenges have emerged. We propose this study in order to determine the psychosocial aspects and knowledge of infections in a cohort of adolescents with vertically transmitted HIV infections. Patients with vertically-acquired HIV infection between 12 and 19 years old were included. Data were obtained through semi-structured interviews and a Strengths and Difficulties Questionnaire for emotional and behavioral disorders screening. We evaluated 96 patients (58% females) with a median age of 15 years (11-19.1) and a median age at diagnosis of 1.70 years (0-12.2). The median CD4 count was 626cells/mm(3) (132-998), and the viral load was<50cp/ml in 72% of patients. Among them, 90% attended school and 60% repeated at least one course. Although 81% of them knew of their diagnosis, only 30% understood their disease, with 18.2% having discussed it with friends. Six unwanted pregnancies occurred during the study period. Strengths and Difficulties Questionnaire showed hyperactivity risk in 33%. A high percentage of adolescents show difficulties in several areas (disease knowledge, peer relationship, school failure...) that can have an impact on their adult lives. Further studies are needed to evaluate their origin and development in depth, as well as interventions to modify this situation. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Frequency-Diversity Reception for Phase Modulation
NASA Technical Reports Server (NTRS)
Brockman, M. H.
1984-01-01
Signal-to-noise ratio improved. System receives phase modulation transmitted simultaneously on different carrier frequencies. Used for carriers received through different antennas or through same antenna.
Extended write combining using a write continuation hint flag
Chen, Dong; Gara, Alan; Heidelberger, Philip; Ohmacht, Martin; Vranas, Pavlos
2013-06-04
A computing apparatus for reducing the amount of processing in a network computing system which includes a network system device of a receiving node for receiving electronic messages comprising data. The electronic messages are transmitted from a sending node. The network system device determines when more data of a specific electronic message is being transmitted. A memory device stores the electronic message data and communicating with the network system device. A memory subsystem communicates with the memory device. The memory subsystem stores a portion of the electronic message when more data of the specific message will be received, and the buffer combines the portion with later received data and moves the data to the memory device for accessible storage.
Forward-Looking IED Detector Ground Penetrating Radar
NASA Technical Reports Server (NTRS)
Kim, Soon Sam; Carnes, Steven R.; Ulmer, Christopher T.
2013-01-01
There have been many developments of mine or metal detectors based on ground penetrating radar techniques, usually in hand-held or rover-mounted devices. In most mine or metal detector applications, conditions are in a stationary mode and detection speed is not an important factor. A novel, forward-looking, stepped-frequency ground penetrating radar (GPR) has been developed with a capability to detect improvised explosive devices (IEDs) at vehicular speeds of 15 to 20 mph (24 to 32 km/h), 10 to 20 m ahead of the vehicle, to ensure adequate time for response. The GPR system employs two horn antennas (1.7 to 2.6 GHz, 20 dBi) as transmit and receive. The detector system features a user-friendly instantaneous display on a laptop PC and is a low-power-consumption (3 W) compact system with minimal impact on vehicle operations. In practice, the whole GPR system and a laptop PC can be powered by plugging into a cigarette lighter of a vehicle. The stepped-frequency continuous-wave (CW) radar scans frequency from 1.7 to 2.6 GHz in 1,000 steps of 0.9 MHz, with the full frequency scan in 60 ms. The GPR uses a bi-static configuration with one horn antenna used as a transmitter and the other used as a receiver so that isolation between transmitter and receiver is improved. Since the horn antennas (20 dBi) are mounted on the roof of a vehicle at a shallow inclination angle (15 to 25 with respect to horizontal), there is a first-order reduction in ground reflection so that a significant amount of the total reflected power received by the GPR comes from the scattering of RF energy off of buried objects. The stepped-frequency technique works by transmitting a tone at a particular frequency, while the received signal is mixed with the transmitted tone. As a result, the output of the mixer produces a signal that indicates the strength of the received signal and the extent to which it is in phase or out of phase with the transmitted tone. By taking measurements of the phase relationship between the transmitted and received signals over a wide frequency range, an interference pattern is produced showing all target reflections. When a Fourier transform is performed on this pattern, the result is a time-domain representation of targets. Among the advantages of this technique over impulse radar is the ability to transmit and receive much more total energy, and to use non-damped, highly focused horn antennas. The novelty of the IED detector GPR has been achieved by miniaturization of GPR electronics (single electronics board, 10x5x2 cm), low power consumption (3 W), faster signal processing capability, and minimal impact on vehicle operations.
[A wireless power transmission system for capsule endoscope].
Xin, Wenhui; Yan, Guozheng; Wang, Wenxing
2010-06-01
In order to deliver power to the capsule endoscope, whose position and orientation are always changing when traveling along the alimentary tract, a wireless power transmission system based on electromagnetic coupling was proposed. The system is composed of Helmholtz transmitting coil and three-dimensional receiving coil. Helmholtz coil outside the body generates a uniform magnetic field covering the whole alimentary tract; three-dimensional coil inside retrieves stable power regardless of its position and orientation. The transmitter and receiver were designed and implemented, and the experiments validated the feasibility of the system. The results show that at least 320 mW of usable power can be transmitted to capsule endoscope when its position and orientation are changing at random and the transmitting power is 25W.
Echo tracker/range finder for radars and sonars
NASA Technical Reports Server (NTRS)
Constantinides, N. J. (Inventor)
1982-01-01
An echo tracker/range finder or altimeter is described. The pulse repetition frequency (PFR) of a predetermined plurality of transmitted pulses is adjusted so that echo pulses received from a reflecting object are positioned between transmitted pulses and divided their interpulse time interval into two time intervals having a predetermined ratio with respect to each other. The invention described provides a means whereby the arrival time of a plurality of echo pulses is defined as the time at which a composite echo pulse formed of a sum of the individual echo pulses has the highest amplitude. The invention is applicable to radar systems, sonar systems, or any other kind of system in which pulses are transmitted and echoes received therefrom.
OptoRadio: a method of wireless communication using orthogonal M-ary PSK (OMPSK) modulation
NASA Astrophysics Data System (ADS)
Gaire, Sunil Kumar; Faruque, Saleh; Ahamed, Md. Maruf
2016-09-01
Laser based radio communication system, i.e. OptoRadio, using Orthogonal M-ary PSK Modulation scheme is presented in this paper. In this scheme, when a block of data needs to be transmitted, the corresponding block of biorthogonal code is transmitted by means of multi-phase shift keying. At the receiver, two photo diodes are cross coupled. The effect is that the net output power due to ambient light is close to zero. The laser signal is then transmitted only into one of the receivers. With all other signals being cancelled out, the laser signal is an overwhelmingly dominant signal. The detailed design, bit error correction capabilities, and bandwidth efficiency are presented to illustrate the concept.
Detached rock evaluation device
Hanson, David R.
1986-01-01
A rock detachment evaluation device (10) having an energy transducer unit 1) for sensing vibrations imparted to a subject rock (172) for converting the sensed vibrations into electrical signals, a low band pass filter unit (12) for receiving the electrical signal and transmitting only a low frequency segment thereof, a high band pass filter unit (13) for receiving the electrical signals and for transmitting only a high frequency segment thereof, a comparison unit (14) for receiving the low frequency and high frequency signals and for determining the difference in power between the signals, and a display unit (16) for displaying indicia of the difference, which provides a quantitative measure of rock detachment.
Portable microwave instrument for non-destructive evaluation of structural characteristics
Bible, Don W.; Crutcher, Richard I.; Sohns, Carl W.; Maddox, Stephen R.
1995-01-01
A portable microwave instrument for evaluating characteristics of a structural member includes a source of microwave energy, a transmitter coupled to the source of microwave energy for transmitting a microwave signal at the structural member, and a receiver positioned on the same side of the structural member as the transmitter and being disposed to receive a microwave signal reflected by the structural member. A phase angle difference is determined between the transmitted microwave signal and the received microwave signal using a signal splitter and a balanced mixer. The difference in phase angle varies in accordance with differences in size, shape and locations of constituent materials within the structural member.
Genome sequence of the Drosophila melanogaster male-killing Spiroplasma strain MSRO endosymbiont.
Paredes, Juan C; Herren, Jeremy K; Schüpfer, Fanny; Marin, Ray; Claverol, Stéphane; Kuo, Chih-Horng; Lemaitre, Bruno; Béven, Laure
2015-03-31
Spiroplasmas are helical and motile members of a cell wall-less eubacterial group called Mollicutes. Although all spiroplasmas are associated with arthropods, they exhibit great diversity with respect to both their modes of transmission and their effects on their hosts; ranging from horizontally transmitted pathogens and commensals to endosymbionts that are transmitted transovarially (i.e., from mother to offspring). Here we provide the first genome sequence, along with proteomic validation, of an endosymbiotic inherited Spiroplasma bacterium, the Spiroplasma poulsonii MSRO strain harbored by Drosophila melanogaster. Comparison of the genome content of S. poulsonii with that of horizontally transmitted spiroplasmas indicates that S. poulsonii has lost many metabolic pathways and transporters, demonstrating a high level of interdependence with its insect host. Consistent with genome analysis, experimental studies showed that S. poulsonii metabolizes glucose but not trehalose. Notably, trehalose is more abundant than glucose in Drosophila hemolymph, and the inability to metabolize trehalose may prevent S. poulsonii from overproliferating. Our study identifies putative virulence genes, notably, those for a chitinase, the H2O2-producing glycerol-3-phosphate oxidase, and enzymes involved in the synthesis of the eukaryote-toxic lipid cardiolipin. S. poulsonii also expresses on the cell membrane one functional adhesion-related protein and two divergent spiralin proteins that have been implicated in insect cell invasion in other spiroplasmas. These lipoproteins may be involved in the colonization of the Drosophila germ line, ensuring S. poulsonii vertical transmission. The S. poulsonii genome is a valuable resource to explore the mechanisms of male killing and symbiont-mediated protection, two cardinal features of many facultative endosymbionts. Most insect species, including important disease vectors and crop pests, harbor vertically transmitted endosymbiotic bacteria. These endosymbionts play key roles in their hosts' fitness, including protecting them against natural enemies and manipulating their reproduction in ways that increase the frequency of symbiont infection. Little is known about the molecular mechanisms that underlie these processes. Here, we provide the first genome draft of a vertically transmitted male-killing Spiroplasma bacterium, the S. poulsonii MSRO strain harbored by D. melanogaster. Analysis of the S. poulsonii genome was complemented by proteomics and ex vivo metabolic experiments. Our results indicate that S. poulsonii has reduced metabolic capabilities and expresses divergent membrane lipoproteins and potential virulence factors that likely participate in Spiroplasma-host interactions. This work fills a gap in our knowledge of insect endosymbionts and provides tools with which to decipher the interaction between Spiroplasma bacteria and their well-characterized host D. melanogaster, which is emerging as a model of endosymbiosis. Copyright © 2015 Paredes et al.
Apparatus and Method for Communication over Power Lines
NASA Technical Reports Server (NTRS)
Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor); Greer, III, Lawrence C. (Inventor); Nappier, Jennifer M. (Inventor)
2017-01-01
An apparatus and method are provided for communicating over power lines. The apparatus includes a coupling modem that is situated between a power line and a device. The coupling modem is configured to demodulate a signal received from the power line into a sine signal and a cosine signal. The coupling modem is also configured to modulate a communicated bit stream received from the device into a transmitted signal in order to impose the transmitted signal onto the power line.
NASA Astrophysics Data System (ADS)
Yaw, D. F.
1984-09-01
The general design and performance characteristics of transmit and receive antennas that are currently used in electronic warfare systems are reviewed. Among transmit antennas, three-to-one bandwidth, asymmetric-beam, and circularly polarized horns are discussed, as are extremely broadband monopoles and spiral antennas. In a discussion of receive antennas, attention is given to flat and conical spirals, including cavity-backed flat spirals operating over the 2.5-18 GHz range; log periodic dipoles; and biconical horns. Finally, the design configurations and performance of interferometer direction-finding systems are briefly discussed.
2008-03-01
for military use. The L2 carrier frequency operates at 1227.6 MHz and transmits only the precise code . Each satellite transmits a unique pseudo ...random noise (PRN) code by which it is identified. GPS receivers require a LOS to four satellite signals to accurately estimate a position in three...receiver frequency errors, noise addition, and multipath ef- fects. He also developed four methods for estimating the cross- correlation peak within a sampled
Apparatus and Method for Communication over Power Lines
NASA Technical Reports Server (NTRS)
Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor); Greer, Lawrence C., III (Inventor); Nappier, Jennifer M. (Inventor)
2015-01-01
An apparatus and method are provided for communicating over power lines. The apparatus includes a coupling modem that is situated between a power line and a device. The coupling modem is configured to demodulate a signal received from the power line into a sine signal and a cosine signal. The coupling modem is also configured to modulate a communicated bit stream received from the device into a transmitted signal in order to impose the transmitted signal onto the power line.
Measurements of CO2 Concentration and Wind Profiles with A Scanning 1.6μm DIAL
NASA Astrophysics Data System (ADS)
Abo, M.; Shibata, Y.; Nagasawa, C.; Nagai, T.; Sakai, T.; Tsukamoto, M.
2012-12-01
Horizontal carbon dioxide (CO2) distribution and wind profiles are important information for understanding of the regional sink and source of CO2. The differential absorption lidar (DIAL) and the Doppler lidar with the range resolution is expected to bring several advantages over passive measurements. We have developed a new scanning 1.6μm DIAL and incoherent Doppler lidar system to perform simultaniously measurements of CO2 concentration and wind speed profiles in the atmosphere. The 1.6μm DIAL and Doppler lidar system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz). The receiving optics include the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode, a fiber Bragg grating (FBG) filter to detct Doppler shift, and a 25 cm telescope[1][2]. Laser beam is transmitted coaxially and motorized scanning mirror system can scan the laser beam and field of view 0-360deg horizontally and 0-52deg vertically. We report the results of vertical CO2 scanning measurenents and vertical wind profiles. The scanning elevation angles were from 12deg to 24deg with angular step of 4deg and CO2 concentration profiles were obtained up to 1 km altitude with 200 m altitude resolution. We also obtained vertical wind vector profiles by measuring line-of-sight wind profiles at two azimuth angles with a fixed elevation angle 52deg. Vertical wind vector profiles were obtained up to 5 km altitude with 1 km altitude rasolution. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References [1] L. B. Vann, et al., "Narrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filters for atmospheric water vapor lidar measurements", Appl. Opt., 44, pp. 7371-7377 (2005). [2] Y. Shibata, et al., "1.5μm incoherent Doppler lidar using a FBG filter", Proceedings of 25th International Laser Radar Conference (ILRC25), pp. 338-340 (2010)
Wave Coupling in the Atmosphere-Ionosphere System
NASA Astrophysics Data System (ADS)
Forbes, J. M.
2016-12-01
Vertically-propagating solar and lunar tides, Kelvin waves, gravity waves (GW) and planetary waves (PW) constitute the primary mechanism for transmitting lower atmosphere variability to the upper atmosphere and ionosphere. Vertically propagating waves grow exponentially with height into the more rarified atmosphere where they dissipate, deposit net momentum and heat, and induce net constituent transport. Some waves penetrate to the base of the exosphere (ca. 500-600 km). Over the past decade, a mature knowledge of the tidal part of the spectrum has emerged, in an average or climatological sense, up to about 110 km. This knowledge has largely accrued as a result of remote sensing observations made from the TIMED satellite. These observations have also enabled limited studies on day-to-day variability of atmospheric tides, the PW and Kelvin wave spectra up to 110 km, and PW-tide coupling. Complementary ionospheric observations made by GPS receivers, COSMIC, CHAMP, and ROCSAT contain signatures of plasma redistributions induced by these waves, and ionosphere-thermosphere (IT) general circulation models have been developed that provide a corroborating theoretical foundation. Pioneering theoretical and modeling work also demonstrate the importance of the GW part of the spectrum on thermosphere circulation and thermal structure. While significant strides have been made, critical shortcomings in our understanding of atmosphere-IT coupling remain. In particular, we are practically absent any observations of the vertical evolution and dissipation of the wave spectrum between 100 and 200 km, which is also the region where electric fields and currents are generated by dynamo action. Moreover, the day-to-day variability of the wave spectrum and secondary wave generation remain to be quantified in this critical region. In this talk, the above progress and knowledge gaps will be examined in light of imminent and potential future missions.
Method and Apparatus for Measuring Surface Air Pressure
NASA Technical Reports Server (NTRS)
Lin, Bing (Inventor); Hu, Yongxiang (Inventor)
2014-01-01
The present invention is directed to an apparatus and method for remotely measuring surface air pressure. In one embodiment, the method of the present invention utilizes the steps of transmitting a signal having multiple frequencies into the atmosphere, measuring the transmitted/reflected signal to determine the relative received power level of each frequency and then determining the surface air pressure based upon the attenuation of the transmitted frequencies.
Methods and Devices for Space Optical Communications Using Laser Beams
NASA Technical Reports Server (NTRS)
Goorjian, Peter M. (Inventor)
2018-01-01
Light is used to communicate between objects separated by a large distance. Light beams are received in a telescopic lens assembly positioned in front of a cat's-eye lens. The light can thereby be received at various angles to be output by the cat's-eye lens to a focal plane of the cat's-eye lens, the position of the light beams upon the focal plane corresponding to the angle of the beam received. Lasers and photodetectors are distributed along this focal plane. A processor receives signals from the photodetectors, and selectively signal lasers positioned proximate the photodetectors detecting light, in order to transmit light encoding data through the cat's-eye lens and also through a telescopic lens back in the direction of the received light beams, which direction corresponds to a location upon the focal plane of the transmitting lasers.
Great circle solution to polarization-based quantum communication (QC) in optical fiber
Nordholt, Jane Elizabeth; Peterson, Charles Glen; Newell, Raymond Thorson; Hughes, Richard John
2016-03-15
Birefringence in optical fibers is compensated by applying polarization modulation at a receiver. Polarization modulation is applied so that a transmitted optical signal has states of polarization (SOPs) that are equally spaced on the Poincare sphere. Fiber birefringence encountered in propagation between a transmitter and a receiver rotates the great circle on the Poincare sphere that represents the polarization bases used for modulation. By adjusting received polarizations, polarization components of the received optical signal can be directed to corresponding detectors for decoding, regardless of the magnitude and orientation of the fiber birefringence. A transmitter can be configured to transmit in conjugate polarization bases whose SOPs can be represented as equidistant points on a great circle so that the received SOPs are mapped to equidistant points on a great circle and routed to corresponding detectors.
TRANSMIT evaluation : transit application baseline data report
DOT National Transportation Integrated Search
2002-03-01
As part of the FY99 earmarked ITS Integration Program, the TRANSMIT program received funds to expand the use of the E-ZPass toll tag readers to other transportation applications in New Jersey. Operated by Transcom for agencies in NY, NJ, and CT, TRAN...
Dual stage beamforming in the absence of front-end receive focusing
NASA Astrophysics Data System (ADS)
Bera, Deep; Bosch, Johan G.; Verweij, Martin D.; de Jong, Nico; Vos, Hendrik J.
2017-08-01
Ultrasound front-end receive designs for miniature, wireless, and/or matrix transducers can be simplified considerably by direct-element summation in receive. In this paper we develop a dual-stage beamforming technique that is able to produce a high-quality image from scanlines that are produced with focused transmit, and simple summation in receive (no delays). We call this non-delayed sequential beamforming (NDSB). In the first stage, low-resolution RF scanlines are formed by simple summation of element signals from a running sub-aperture. In the second stage, delay-and-sum beamforming is performed in which the delays are calculated considering the transmit focal points as virtual sources emitting spherical waves, and the sub-apertures as large unfocused receive elements. The NDSB method is validated with simulations in Field II. For experimental validation, RF channel data were acquired with a commercial research scanner using a 5 MHz linear array, and were subsequently processed offline. For NDSB, good average lateral resolution (0.99 mm) and low grating lobe levels (<-40 dB) were achieved by choosing the transmit {{F}\\#} as 0.75 and the transmit focus at 15 mm. NDSB was compared with conventional dynamic receive focusing (DRF) and synthetic aperture sequential beamforming (SASB) with their own respective optimal settings. The full width at half maximum of the NDSB point spread function was on average 20% smaller than that of DRF except for at depths <30 mm and 10% larger than SASB considering all the depths. NDSB showed only a minor degradation in contrast-to-noise ratio and contrast ratio compared to DRF and SASB when measured on an anechoic cyst embedded in a tissue-mimicking phantom. In conclusion, using simple receive electronics front-end, NDSB can attain an image quality better than DRF and slightly inferior to SASB.
Ultrasonic imaging using optoelectronic transmitters.
Emery, C D; Casey, H C; Smith, S W
1998-04-01
Conventional ultrasound scanners utilize electronic transmitters and receivers at the scanner with a separate coaxial cable connected to each transducer element in the handle. The number of transducer elements determines the size and weight of the transducer cable assembly that connects the imaging array to the scanner. 2-D arrays that allow new imaging modalities to be introduced significantly increase the channel count making the transducer cable assembly more difficult to handle. Therefore, reducing the size and increasing the flexibility of the transducer cable assembly is a concern. Fiber optics can be used to transmit signals optically and has distinct advantages over standard coaxial cable to increase flexibility and decrease the weight of the transducer cable for larger channel numbers. The use of fiber optics to connect the array and the scanner entails the use of optoelectronics such as detectors and laser diodes to send and receive signals. In transmit, optoelectronics would have to be designed to produce high-voltage wide-bandwidth pulses across the transducer element. In this paper, we describe a 48 channel ultrasound system having 16 optoelectronic transmitters and 32 conventional electronic receivers. We investigated both silicon avalanche photodiodes (APD's) and GaAs lateral photoconductive semiconductor switches (PCSS's) for producing the transmit pulses. A Siemens SI-1200 scanner and a 2.25 MHz linear array were used to compare the optoelectronic system to a conventional electronic transmit system. Transmit signal results and images in tissue mimicking of cysts and tumors are provided for comparison.
Sadjadi, Firooz A; Mahalanobis, Abhijit
2006-05-01
We report the development of a technique for adaptive selection of polarization ellipse tilt and ellipticity angles such that the target separation from clutter is maximized. From the radar scattering matrix [S] and its complex components, in phase and quadrature phase, the elements of the Mueller matrix are obtained. Then, by means of polarization synthesis, the radar cross section of the radar scatters are obtained at different transmitting and receiving polarization states. By designing a maximum average correlation height filter, we derive a target versus clutter distance measure as a function of four transmit and receive polarization state angles. The results of applying this method on real synthetic aperture radar imagery indicate a set of four transmit and receive angles that lead to maximum target versus clutter discrimination. These optimum angles are different for different targets. Hence, by adaptive control of the state of polarization of polarimetric radar, one can noticeably improve the discrimination of targets from clutter.
Shi, Chenguang; Wang, Fei; Salous, Sana; Zhou, Jianjiang
2017-10-18
In this study, the modified Cramér-Rao lower bounds (MCRLBs) on the joint estimation of target position and velocity is investigated for a universal mobile telecommunication system (UMTS)-based passive multistatic radar system with antenna arrays. First, we analyze the log-likelihood redfunction of the received signal for a complex Gaussian extended target. Then, due to the non-deterministic transmitted data symbols, the analytically closed-form expressions of the MCRLBs on the Cartesian coordinates of target position and velocity are derived for a multistatic radar system with N t UMTS-based transmit station of L t antenna elements and N r receive stations of L r antenna elements. With the aid of numerical simulations, it is shown that increasing the number of receiving elements in each receive station can reduce the estimation errors. In addition, it is demonstrated that the MCRLB is not only a function of signal-to-noise ratio (SNR), the number of receiving antenna elements and the properties of the transmitted UMTS signals, but also a function of the relative geometric configuration between the target and the multistatic radar system.The analytical expressions for MCRLB will open up a new dimension for passive multistatic radar system by aiding the optimal placement of receive stations to improve the target parameter estimation performance.
Wang, Fei; Salous, Sana; Zhou, Jianjiang
2017-01-01
In this study, the modified Cramér-Rao lower bounds (MCRLBs) on the joint estimation of target position and velocity is investigated for a universal mobile telecommunication system (UMTS)-based passive multistatic radar system with antenna arrays. First, we analyze the log-likelihood redfunction of the received signal for a complex Gaussian extended target. Then, due to the non-deterministic transmitted data symbols, the analytically closed-form expressions of the MCRLBs on the Cartesian coordinates of target position and velocity are derived for a multistatic radar system with Nt UMTS-based transmit station of Lt antenna elements and Nr receive stations of Lr antenna elements. With the aid of numerical simulations, it is shown that increasing the number of receiving elements in each receive station can reduce the estimation errors. In addition, it is demonstrated that the MCRLB is not only a function of signal-to-noise ratio (SNR), the number of receiving antenna elements and the properties of the transmitted UMTS signals, but also a function of the relative geometric configuration between the target and the multistatic radar system.The analytical expressions for MCRLB will open up a new dimension for passive multistatic radar system by aiding the optimal placement of receive stations to improve the target parameter estimation performance. PMID:29057805
Ice/water Classification of Sentinel-1 Images
NASA Astrophysics Data System (ADS)
Korosov, Anton; Zakhvatkina, Natalia; Muckenhuber, Stefan
2015-04-01
Sea Ice monitoring and classification relies heavily on synthetic aperture radar (SAR) imagery. These sensors record data either only at horizontal polarization (RADARSAT-1) or vertically polarized (ERS-1 and ERS-2) or at dual polarization (Radarsat-2, Sentinel-1). Many algorithms have been developed to discriminate sea ice types and open water using single polarization images. Ice type classification, however, is still ambiguous in some cases. Sea ice classification in single polarization SAR images has been attempted using various methods since the beginning of the ERS programme. The robust classification using only SAR images that can provide useful results under varying sea ice types and open water tend to be not generally applicable in operational regime. The new generation SAR satellites have capability to deliver images in several polarizations. This gives improved possibility to develop sea ice classification algorithms. In this study we use data from Sentinel-1 at dual-polarization, i.e. HH (horizontally transmitted and horizontally received) and HV (horizontally transmitted, vertically received). This mode assembles wide SAR image from several narrower SAR beams, resulting to an image of 500 x 500 km with 50 m resolution. A non-linear scheme for classification of Sentinel-1 data has been developed. The processing allows to identify three classes: ice, calm water and rough water at 1 km spatial resolution. The raw sigma0 data in HH and HV polarization are first corrected for thermal and random noise by extracting the background thermal noise level and smoothing the image with several filters. At the next step texture characteristics are computed in a moving window using a Gray Level Co-occurence Matrix (GLCM). A neural network is applied at the last step for processing array of the most informative texture characteristics and ice/water classification. The main results are: * the most informative texture characteristics to be used for sea ice classification were revealed; * the best set of parameters including the window size, number of levels of quantization of sigma0 values and co-occurence distance was found; * a support vector machine (SVM) was trained on results of visual classification of 30 Sentinel-1 images. Despite the general high accuracy of the neural network (95% of true positive classification) problems with classification of young newly formed ice and rough water arise due to the similar average backscatter and texture. Other methods of smoothing and computation of texture characteristics (e.g. computation of GLCM from a variable size window) is assessed. The developed scheme will be utilized in NRT processing of Sentinel-1 data at NERSC within the MyOcean2 project.
NASA Technical Reports Server (NTRS)
Christensen, J. L.; Herbert, A. L.
1973-01-01
Inductive loop has been added to commercially available call system fitted with earphone receiver. System transmits high frequency signals to nurse's receiver to announce patient's need for help without disturbing others.
A semi-active damper in vertical secondary suspension for the comfort increase in passenger trains
NASA Astrophysics Data System (ADS)
Ripamonti, Francesco; Chiarabaglio, Andrea; Resta, Ferruccio
2017-04-01
Passive oil dampers for railway vehicles present a damping and stiffness characteristics, which depend from excitation history. This behaviour is not acceptable for many high-performance applications. A mechatronic approach, able to continuously adjust the damping coefficient according to the operation requirements, represents a very attractive and smart solution. In this paper, a control strategy for semi-active dampers of train vertical secondary suspensions is presented. The controller aims at assuring the maximum available damping at low frequencies, while at high frequencies minimizes the force transmitted to the carbody that excites the bending modes.
SweepSAR: Beam-forming on Receive Using a Reflector-Phased Array Feed Combination for Spaceborne SAR
NASA Technical Reports Server (NTRS)
Freeman, A.; Krieger, G.; Rosen, P.; Younis, M.; Johnson, W. T. K.; Huber, S.; Jordan, R.; Moreira, A.
2012-01-01
In this paper, an alternative approach is described that is suited for longer wavelength SARs in particular, employing a large, deployable reflector antenna and a much simpler phased array feed. To illuminate a wide swath, a substantial fraction of the phased array feed is excited on transmit to sub-illuminate the reflector. Shorter transmit pulses are required than for conventional SAR. On receive, a much smaller portion of the phased array feed is used to collect the return echo, so that a greater portion of the reflector antenna area is used. The locus of the portion of the phased array used on receive is adjusted using an analog beam steering network, to 'sweep' the receive beam(s) across the illuminated swath, tracking the return echo. This is similar in some respects to the whiskbroom approach to optical sensors, hence the name: SweepSAR.SweepSAR has advantages over conventional SAR in that it requires less transmit power, and if the receive beam is narrow enough, it is relatively immune to range ambiguities. Compared to direct radiating arrays with digital beam- forming, it is much simpler to implement, uses currently available technologies, is better suited for longer wavelength systems, and does not require extremely high data rates or onboard processing.
Special relativity corrections for space-based lidars.
Gudimetla, V S; Kavaya, M J
1999-10-20
The theory of special relativity is used to analyze some of the physical phenomena associated with space-based coherent Doppler lidars aimed at Earth and the atmosphere. Two important cases of diffuse scattering and retroreflection by lidar targets are treated. For the case of diffuse scattering, we show that for a coaligned transmitter and receiver on the moving satellite, there is no angle between transmitted and returned radiation. However, the ray that enters the receiver does not correspond to a retroreflected ray by the target. For the retroreflection case there is misalignment between the transmitted ray and the received ray. In addition, the Doppler shift in the frequency and the amount of tip for the receiver aperture when needed are calculated. The error in estimating wind because of the Doppler shift in the frequency due to special relativity effects is examined. The results are then applied to a proposed space-based pulsed coherent Doppler lidar at NASA's Marshall Space Flight Center for wind and aerosol backscatter measurements. The lidar uses an orbiting spacecraft with a pulsed laser source and measures the Doppler shift between the transmitted and the received frequencies to determine the atmospheric wind velocities. We show that the special relativity effects are small for the proposed system.
Special Relativity Corrections for Space-Based Lidars
NASA Technical Reports Server (NTRS)
RaoGudimetla, Venkata S.; Kavaya, Michael J.
1999-01-01
The theory of special relativity is used to analyze some of the physical phenomena associated with space-based coherent Doppler lidars aimed at Earth and the atmosphere. Two important cases of diffuse scattering and retroreflection by lidar targets are treated. For the case of diffuse scattering, we show that for a coaligned transmitter and receiver on the moving satellite, there is no angle between transmitted and returned radiation. However, the ray that enters the receiver does not correspond to a retroreflected ray by the target. For the retroreflection case there is misalignment between the transmitted ray and the received ray. In addition, the Doppler shift in the frequency and the amount of tip for the receiver aperture when needed are calculated, The error in estimating wind because of the Doppler shift in the frequency due to special relativity effects is examined. The results are then applied to a proposed space-based pulsed coherent Doppler lidar at NASA's Marshall Space Flight Center for wind and aerosol backscatter measurements. The lidar uses an orbiting spacecraft with a pulsed laser source and measures the Doppler shift between the transmitted and the received frequencies to determine the atmospheric wind velocities. We show that the special relativity effects are small for the proposed system.
Verification of ICESat-2/ATLAS Science Receiver Algorithm Onboard Databases
NASA Astrophysics Data System (ADS)
Carabajal, C. C.; Saba, J. L.; Leigh, H. W.; Magruder, L. A.; Urban, T. J.; Mcgarry, J.; Schutz, B. E.
2013-12-01
NASA's ICESat-2 mission will fly the Advanced Topographic Laser Altimetry System (ATLAS) instrument on a 3-year mission scheduled to launch in 2016. ATLAS is a single-photon detection system transmitting at 532nm with a laser repetition rate of 10 kHz, and a 6 spot pattern on the Earth's surface. A set of onboard Receiver Algorithms will perform signal processing to reduce the data rate and data volume to acceptable levels. These Algorithms distinguish surface echoes from the background noise, limit the daily data volume, and allow the instrument to telemeter only a small vertical region about the signal. For this purpose, three onboard databases are used: a Surface Reference Map (SRM), a Digital Elevation Model (DEM), and a Digital Relief Maps (DRMs). The DEM provides minimum and maximum heights that limit the signal search region of the onboard algorithms, including a margin for errors in the source databases, and onboard geolocation. Since the surface echoes will be correlated while noise will be randomly distributed, the signal location is found by histogramming the received event times and identifying the histogram bins with statistically significant counts. Once the signal location has been established, the onboard Digital Relief Maps (DRMs) will be used to determine the vertical width of the telemetry band about the signal. University of Texas-Center for Space Research (UT-CSR) is developing the ICESat-2 onboard databases, which are currently being tested using preliminary versions and equivalent representations of elevation ranges and relief more recently developed at Goddard Space Flight Center (GSFC). Global and regional elevation models have been assessed in terms of their accuracy using ICESat geodetic control, and have been used to develop equivalent representations of the onboard databases for testing against the UT-CSR databases, with special emphasis on the ice sheet regions. A series of verification checks have been implemented, including comparisons against ICESat altimetry for selected regions with tall vegetation and high relief. The extensive verification effort by the Receiver Algorithm team at GSFC is aimed at assuring that the onboard databases are sufficiently accurate. We will present the results of those assessments and verification tests, along with measures taken to implement modifications to the databases to optimize their use by the receiver algorithms. Companion presentations by McGarry et al. and Leigh et al. describe the details on the ATLAS Onboard Receiver Algorithms and databases development, respectively.
Short range spread-spectrum radiolocation system and method
Smith, Stephen F.
2003-04-29
A short range radiolocation system and associated methods that allow the location of an item, such as equipment, containers, pallets, vehicles, or personnel, within a defined area. A small, battery powered, self-contained tag is provided to an item to be located. The tag includes a spread-spectrum transmitter that transmits a spread-spectrum code and identification information. A plurality of receivers positioned about the area receive signals from a transmitting tag. The position of the tag, and hence the item, is located by triangulation. The system employs three different ranging techniques for providing coarse, intermediate, and fine spatial position resolution. Coarse positioning information is provided by use of direct-sequence code phase transmitted as a spread-spectrum signal. Intermediate positioning information is provided by the use of a difference signal transmitted with the direct-sequence spread-spectrum code. Fine positioning information is provided by use of carrier phase measurements. An algorithm is employed to combine the three data sets to provide accurate location measurements.
Argo, Paul E.; Fitzgerald, T. Joseph
1993-01-01
Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.
Communications/Electronics Receiver Performance Degradation Handbook (Second Edition)
1975-08-01
receiver to another in the Rf and IF filter characteristics modify the transfer of inter- forence power through the receiver to the IF output, and so the...modulation system the transmitted and received messages arce in general different bemaus* of small inte, forence or noise perturbations. The probability of
Isonymic Relations in the Bolivia-Argentina Border Region.
Dipierri, José Edgardo; Gomez, Emma Laura Alfaro; Rodríguez-Larralde, Alvaro; Ramallo, Virginia
2016-07-01
When migrating, people carry their cultural and genetic history, changing both the transmitting and the receiving populations. This phenomenon changes the structure of the population of a country. The question is how to analyze the impact on the border region. A demographic and geopolitical analysis of borders requires an interdisciplinary approach. An isonymic analysis can be a useful tool. Surnames are part of cultural history, sociocultural features transmitted from ancestors to their descendants through a vertical mechanism similar to that of genetic inheritance. The analysis of surname distribution can give quantitative information about the genetic structure of populations. The isonymic relations between border communities in southern Bolivia and northern Argentina were analyzed from electoral registers for 89 sections included in four major administrative divisions, two from each country, that include the international frontier. The Euclidean and geographic distance matrices where estimated for all possible pairwise comparisons between sections. The average isonymic distance was lower between Argentine than between Bolivian populations. Argentine sections formed three clusters, of which only one included a Bolivian section. The remaining clusters were exclusively formed by sections from Bolivia. The isonymic distance was greater along the border. Regardless of the intense human mobility in the past as in the present, and the presence of three major transborder conurbations, the Bolivian-Argentine international boundary functions as a geographical and administrative barrier that differentially affects the distribution and frequency of surnames. The observed pattern could possibly be a continuity of pre-Columbian regional organization.
Renta, J Y; Cadilla, C L; Vega, M E; Hillyer, G V; Estrada, C; Jiménez, E; Abreu, E; Méndez, I; Gandía, J; Meléndez-Guerrero, L M
1997-11-01
In this study, the HIV-1 variant viruses from ten pregnant women and their infants were isolated and characterized longitudinally in order to determine the role that viral envelope (gp120-V3 loop) gene variation and viral tropism play in vertical transmission. Biological phenotyping of each HIV variant was accomplished by growth in MT-2, and macrophages from healthy and non-HIV-infected donors. Genetic characterization of the variants was accomplished by DNA sequence analysis. All the women enrolled in this study received ZDV therapy. Virus was cultured from eight out of ten env V3-PCR positive mothers. HIV-1 isolates were all non-syncitium inducing variants. None of the mothers were found to transmit HIV, as determined by DNA PCR and quantitative co-cultures on their infants which were seronegative for HIV-1 through one year after birth. Viral cultures from infant blood samples were negative and infants were all healthy. However, nested env V3-PCR detected proviral DNA in five out of ten infants. In contrast, conventional gag-PCR was negative in the same five infants. Sequences of the five maternal-infant pairs were different, suggesting unique infant HIV-1 variants. The three highest maternal viral load values corresponded to infants that were env V3-PCR positive. These results suggest that HIV-1 particles are transmitted from ZDV-treated mothers to infants. Infant follow up is recommended to determine if HIV-1 has been inhibited by the immune system of the infants.
NASA Astrophysics Data System (ADS)
Nagasawa, C.; Abo, M.; Shibata, Y.; Nagai, T.; Tsukamoto, M.
2012-12-01
We report the new 1.6 μm DIAL system that can measure the temperature profiles with the CO2 concentration profiles in the atmosphere because of improvement of measurement accuracy of the CO2 density and mixing ratio (ppm). We have developed a direct detection 1.6 μm differential absorption lidar (DIAL) technique to perform range-resolved measurements of vertical CO2 concentration profiles in the atmosphere [Sakaizawa et al. 2009]. Our 1.6 μm DIAL system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz) and the receiving optics that included the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode and the telescope with larger aperture than that of the coherent detection method. Laser beams of three wavelengths around a CO2 absorption line is transmitted alternately to the atmosphere for measurements of CO2 concentration and temperature profiles. Moreover, a few retrieval algorithms of CO2-DIAL are also performed for improvement of measurement accuracy. The accurate vertical CO2 profiles in the troposphere are highly desirable in the inverse techniques to improve quantification and understanding of the global budget of CO2 and also global climate changes [Stephens et al. 2007]. In comparison with the ground-based monitoring network, CO2 measurements for vertical profiles in the troposphere have been limited to campaign-style aircraft and commercial airline observations with the limited spatial and temporal coverage. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References Sakaizawa, D., C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, H. Nagai, M. Nakazato, and T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile, Applied Optics, Vol.48, No.4, pp.748-757, 2009. Stephens, B. B. et al., Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO2, Science 316, pp.1732-1735, 2007.
A complex journey: transmission of microbial symbionts
Bright, Monika; Bulgheresi, Silvia
2010-01-01
The perpetuation of symbioses through host generations relies on symbiont transmission. Horizontally transmitted symbionts are taken up from the environment anew by each host generation, and vertically transmitted symbionts are most often transferred through the female germ line. Mixed modes also exist. In this Review we describe the journey of symbionts from the initial contact to their final residence. We provide an overview of the molecular mechanisms that mediate symbiont attraction and accumulation, interpartner recognition and selection, as well as symbiont confrontation with the host immune system. We also discuss how the two main transmission modes shape the evolution of the symbiotic partners. PMID:20157340
Code of Federal Regulations, 2011 CFR
2011-04-01
... must be capable of transmitting the vertical live and dead loads to the footings or foundation. (b... dimensions of the home, the design dead and live loads, the spacing of the piers, and the way the piers are... to the loads required to safely support the dead and live loads, as required by § 3285.301, and the...
Code of Federal Regulations, 2010 CFR
2010-04-01
... must be capable of transmitting the vertical live and dead loads to the footings or foundation. (b... dimensions of the home, the design dead and live loads, the spacing of the piers, and the way the piers are... to the loads required to safely support the dead and live loads, as required by § 3285.301, and the...
Code of Federal Regulations, 2014 CFR
2014-04-01
... must be capable of transmitting the vertical live and dead loads to the footings or foundation. (b... dimensions of the home, the design dead and live loads, the spacing of the piers, and the way the piers are... to the loads required to safely support the dead and live loads, as required by § 3285.301, and the...
Code of Federal Regulations, 2012 CFR
2012-04-01
... must be capable of transmitting the vertical live and dead loads to the footings or foundation. (b... dimensions of the home, the design dead and live loads, the spacing of the piers, and the way the piers are... to the loads required to safely support the dead and live loads, as required by § 3285.301, and the...
Code of Federal Regulations, 2013 CFR
2013-04-01
... must be capable of transmitting the vertical live and dead loads to the footings or foundation. (b... dimensions of the home, the design dead and live loads, the spacing of the piers, and the way the piers are... to the loads required to safely support the dead and live loads, as required by § 3285.301, and the...
Group delay variations of GPS transmitting and receiving antennas
NASA Astrophysics Data System (ADS)
Wanninger, Lambert; Sumaya, Hael; Beer, Susanne
2017-09-01
GPS code pseudorange measurements exhibit group delay variations at the transmitting and the receiving antenna. We calibrated C1 and P2 delay variations with respect to dual-frequency carrier phase observations and obtained nadir-dependent corrections for 32 satellites of the GPS constellation in early 2015 as well as elevation-dependent corrections for 13 receiving antenna models. The combined delay variations reach up to 1.0 m (3.3 ns) in the ionosphere-free linear combination for specific pairs of satellite and receiving antennas. Applying these corrections to the code measurements improves code/carrier single-frequency precise point positioning, ambiguity fixing based on the Melbourne-Wübbena linear combination, and determination of ionospheric total electron content. It also affects fractional cycle biases and differential code biases.
Footwear scanning systems and methods
Fernandes, Justin L.; McMakin, Douglas L.; Sheen, David M.; Tedeschi, Jonathan R.
2017-07-25
Methods and apparatus for scanning articles, such as footwear, to provide information regarding the contents of the articles are described. According to one aspect, a footwear scanning system includes a platform configured to contact footwear to be scanned, an antenna array configured to transmit electromagnetic waves through the platform into the footwear and to receive electromagnetic waves from the footwear and the platform, a transceiver coupled with antennas of the antenna array and configured to apply electrical signals to at least one of the antennas to generate the transmitted electromagnetic waves and to receive electrical signals from at least another of the antennas corresponding to the electromagnetic waves received by the others of the antennas, and processing circuitry configured to process the received electrical signals from the transceiver to provide information regarding contents within the footwear.
Ultrasonic Device for Assessing the Quality of a Wire Crimp
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Perey, Daniel F. (Inventor); Cramer, Karl E. (Inventor)
2015-01-01
A system for determining the quality of an electrical wire crimp between a wire and ferrule includes an ultrasonically equipped crimp tool (UECT) configured to transmit an ultrasonic acoustic wave through a wire and ferrule, and a signal processor in communication with the UECT. The signal processor includes a signal transmitting module configured to transmit the ultrasonic acoustic wave via an ultrasonic transducer, signal receiving module configured to receive the ultrasonic acoustic wave after it passes through the wire and ferrule, and a signal analysis module configured to identify signal differences between the ultrasonic waves. The signal analysis module is then configured to compare the signal differences attributable to the wire crimp to a baseline, and to provide an output signal if the signal differences deviate from the baseline.
NASA Technical Reports Server (NTRS)
Cramer, P. W., Jr. (Inventor)
1985-01-01
The network, which is connected to a layer of 134 feed elements that transmit and receive microwaves, consists of a pair of circuit boards parallel to the feed element layer. One of the two boards has 87 dividers that each divide a signal to be transmitted into seven portions, and the other board has 134 combiners that each collect seven transmit signal portions and deliver the sum to one of the feed elements. A similar arrangement is used to handle received signals. The large number of interconnections are made by printed circuit conductors radiating from each of the numerous dividers and combiners, and by providing interconnection pins that interconnect the ends of pairs of conductors lying on the two boards. The printed circuit conductors extend in undulating paths that provide maximum separation of conductors to minimize crosstalk.
System for transmitting low frequency analog signals over AC power lines
Baker, Steven P.; Durall, Robert L.; Haynes, Howard D.
1989-01-01
A system for transmitting low frequency analog signals over AC power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an AC power line. The modulation signal frequency range in selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the AC power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal.
System for transmitting low frequency analog signals over AC power lines
Baker, Steven P.; Durall, Robert L.; Haynes, Howard D.
1989-09-05
A system for transmitting low frequency analog signals over AC power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an AC power line. The modulation signal frequency range in selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the AC power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal.
Portable microwave instrument for non-destructive evaluation of structural characteristics
Bible, D.W.; Crutcher, R.I.; Sohns, C.W.; Maddox, S.R.
1995-01-24
A portable microwave instrument for evaluating characteristics of a structural member includes a source of microwave energy, a transmitter coupled to the source of microwave energy for transmitting a microwave signal at the structural member, and a receiver positioned on the same side of the structural member as the transmitter and being disposed to receive a microwave signal reflected by the structural member. A phase angle difference is determined between the transmitted microwave signal and the received microwave signal using a signal splitter and a balanced mixer. The difference in phase angle varies in accordance with differences in size, shape and locations of constituent materials within the structural member. 6 figures.
NASA Astrophysics Data System (ADS)
Tsuji, Hidenobu; Imaki, Masaharu; Kotake, Nobuki; Hirai, Akihito; Nakaji, Masaharu; Kameyama, Shumpei
2017-03-01
We demonstrate a range imaging pulsed laser sensor with two-dimensional scanning of a transmitted beam and a scanless receiver using a high-aspect avalanche photodiode (APD) array for the eye-safe wavelength. The system achieves a high frame rate and long-range imaging with a relatively simple sensor configuration. We developed a high-aspect APD array for the wavelength of 1.5 μm, a receiver integrated circuit, and a range and intensity detector. By combining these devices, we realized 160×120 pixels range imaging with a frame rate of 8 Hz at a distance of about 50 m.
eBits: Compact stream of mesh refinements for remote visualization
Sati, Mukul; Lindstrom, Peter; Rossignac, Jarek
2016-05-12
Here, we focus on applications where a remote client needs to visualize or process a complex, manifold triangle mesh, M, but only in a relatively small, user controlled, Region of Interest (RoI) at a time. The client first downloads a coarse base mesh, pre-computed on the server via a series of simplification passes on M, one per Level of Detail (LoD), each pass identifying an independent set of triangles, collapsing them, and, for each collapse, storing, in a Vertex Expansion Record (VER), the information needed to reverse the collapse. On each client initiated RoI modification request, the server pushes tomore » the client a selected subset of these VERs, which, when decoded and applied to refine the mesh locally, ensure that the portion in the RoI is always at full resolution. The eBits approach proposed here offers state of the art compression ratios (using less than 2.5 bits per new full resolution RoI triangle when the RoI has more than 2000 vertices to transmit the connectivity for the selective refinements) and fine-grain control (allowing the user to adjust the RoI by small increments). The effectiveness of eBits results from several novel ideas and novel variations of previous solutions. We represent the VERs using persistent labels so that they can be applied in different orders within a given LoD. The server maintains a shadow copy of the client’s mesh. To avoid sending IDs identifying which vertices should be expanded, we either transmit, for each new vertex, a compact encoding of its death tag–the LoD at which it will be expanded if it lies in the Rol–or transmit vertex masks for the RoI and its neighboring vertices. We also propose a three-step simplification that reduces the overall transmission cost by increasing both the simplification effectiveness and the regularity of the valences in the resulting meshes.« less
eBits: Compact stream of mesh refinements for remote visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sati, Mukul; Lindstrom, Peter; Rossignac, Jarek
2016-05-12
Here, we focus on applications where a remote client needs to visualize or process a complex, manifold triangle mesh, M, but only in a relatively small, user controlled, Region of Interest (RoI) at a time. The client first downloads a coarse base mesh, pre-computed on the server via a series of simplification passes on M, one per Level of Detail (LoD), each pass identifying an independent set of triangles, collapsing them, and, for each collapse, storing, in a Vertex Expansion Record (VER), the information needed to reverse the collapse. On each client initiated RoI modification request, the server pushes tomore » the client a selected subset of these VERs, which, when decoded and applied to refine the mesh locally, ensure that the portion in the RoI is always at full resolution. The eBits approach proposed here offers state of the art compression ratios (using less than 2.5 bits per new full resolution RoI triangle when the RoI has more than 2000 vertices to transmit the connectivity for the selective refinements) and fine-grain control (allowing the user to adjust the RoI by small increments). The effectiveness of eBits results from several novel ideas and novel variations of previous solutions. We represent the VERs using persistent labels so that they can be applied in different orders within a given LoD. The server maintains a shadow copy of the client’s mesh. To avoid sending IDs identifying which vertices should be expanded, we either transmit, for each new vertex, a compact encoding of its death tag –the LoD at which it will be expanded if it lies in the RoI–or transmit vertex masks for the RoI and its neighboring vertices. We also propose a three-step simplification that reduces the overall transmission cost by increasing both the simplification effectiveness and the regularity of the valences in the resulting meshes.« less
The psychophysical periphery effect crosses the vertical meridian.
Kuyk, T; Niculescu, D
2001-01-01
This study measured the periphery effect and compared its magnitude when the peripheral stimulation was on the same or opposite side of the vertical meridian as the test spot. Test thresholds for a 1.5-deg diameter, 8-ms spot located 1.75 deg to one side of the vertical meridian were elevated by approximately 0.125 log units when a 0.25 cycles/deg (cpd) counterphased grating was presented at a similar eccentric offset on the other side of the vertical meridian. The periphery effect disappeared when the test spot was moved outward to 8-deg eccentricity. When the grating and test were presented on the same side of the vertical meridian, test thresholds at both retinal locations were elevated by the same amount, 0.2 log units. Consistent with the physiology in cat retina, the periphery effect in humans also crosses over the vertical meridian. However, the effect is small and the test spot must be in close proximity to the vertical meridian for it to be observed. Also, the crossover periphery effect is reduced in magnitude by 37.5% compared to when the grating and test are presented on the same side of the vertical meridian. This suggests there may be a difference in how the underlying neural mechanism that transmits the periphery effect signal laterally is organized for sending the periphery effect signal across the vertical meridian as compared to within a retinal hemifield.
Powertrain with powersplit pump input and method of use thereof
Johnson, Kris W.; Rose, Charles E.
2009-04-28
A powertrain includes an engine operatively connected to a primary power consuming device to transmit power thereto. The powertrain also includes a motor and a pump. The power output of the motor is independent of the power output of the engine. An epicyclic geartrain includes first, second and third members. The first member is operatively connected to the engine to receive power therefrom. The second member is operatively connected to the motor to receive power therefrom. The third member is operatively connected to the pump to transmit power thereto.
More About Lens Antenna For Mobile/Satellite Communication
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Y.; Bodnar, D. G.; Rainer, B. K.
1990-01-01
Report presents additional details of design of proposed phased-array antenna described in "Lens Antenna for Mobile/Satellite Communication" (NPO-16948). Intended to be compact and to lie flat on top of vehicle on ground. Transmits and receives circularly polarized radiation in frequency ranges of 821 to 825 MHz and 860 to 870 MHz. Transmitting and receiving beams electronically steerable to any of 48 evenly spaced directions to provide complete azimuth coverage, and would be fixed, but wide, in elevation, to provide coverage at elevation angles from 20 degrees to 60 degrees.
Multi-pulse frequency shifted (MPFS) multiple access modulation for ultra wideband
Nekoogar, Faranak [San Ramon, CA; Dowla, Farid U [Castro Valley, CA
2012-01-24
The multi-pulse frequency shifted technique uses mutually orthogonal short duration pulses o transmit and receive information in a UWB multiuser communication system. The multiuser system uses the same pulse shape with different frequencies for the reference and data for each user. Different users have a different pulse shape (mutually orthogonal to each other) and different transmit and reference frequencies. At the receiver, the reference pulse is frequency shifted to match the data pulse and a correlation scheme followed by a hard decision block detects the data.
Acoustic system for communication in pipelines
Martin, II, Louis Peter; Cooper, John F [Oakland, CA
2008-09-09
A system for communication in a pipe, or pipeline, or network of pipes containing a fluid. The system includes an encoding and transmitting sub-system connected to the pipe, or pipeline, or network of pipes that transmits a signal in the frequency range of 3-100 kHz into the pipe, or pipeline, or network of pipes containing a fluid, and a receiver and processor sub-system connected to the pipe, or pipeline, or network of pipes containing a fluid that receives said signal and uses said signal for a desired application.
A High-Performance Portable Transient Electro-Magnetic Sensor for Unexploded Ordnance Detection.
Wang, Haofeng; Chen, Shudong; Zhang, Shuang; Yuan, Zhiwen; Zhang, Haiyang; Fang, Dong; Zhu, Jun
2017-11-17
Portable transient electromagnetic (TEM) systems can be well adapted to various terrains, including mountainous, woodland, and other complex terrains. They are widely used for the detection of unexploded ordnance (UXO). As the core component of the portable TEM system, the sensor is constructed with a transmitting coil and a receiving coil. Based on the primary field of the transmitting coil and internal noise of the receiving coil, the design and testing of such a sensor is described in detail. Results indicate that the primary field of the transmitting coil depends on the diameter, mass, and power of the coil. A higher mass-power product and a larger diameter causes a stronger primary field. Reducing the number of turns and increasing the clamp voltage reduces the switch-off time of the transmitting current effectively. Increasing the cross-section of the wire reduces the power consumption, but greatly increases the coil's weight. The study of the receiving coil shows that the internal noise of the sensor is dominated by the thermal noise of the damping resistor. Reducing the bandwidth of the system and increasing the size of the coil reduces the internal noise effectively. The cross-sectional area and the distance between the sections of the coil have little effect on the internal noise. A less damped state can effectively reduce signal distortion. Finally, a portable TEM sensor with both a transmitting coil (constructed with a diameter, number of turns, and transmitting current of 0.5 m, 30, and 5 A, respectively) and a receiving coil (constructed with a length and resonant frequency of 5.6 cm and 50 kHz, respectively) was built. The agreement between experimental and calculated results confirms the theory used in the sensor design. The responses of an 82 mm mortar shell at different distances were measured and inverted by the differential evolution (DE) algorithm to verify system performance. Results show that the sensor designed in this study can not only detect the 82 mm mortar shell within 1.2 m effectively but also locate the target precisely.
75 FR 6369 - Application To Export Electric Energy; Aquilon Power Ltd.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-09
... DEPARTMENT OF ENERGY [OE Docket No. EA-361] Application To Export Electric Energy; Aquilon Power.... SUMMARY: Aquilon Power Ltd. (Aquilon Power) has applied for authority to transmit electric energy from the... received an application from Aquilon Power for authority to transmit electric energy from the United States...
Sexually Transmitted Infection among Adolescents Receiving Special Education Services
ERIC Educational Resources Information Center
Mandell, David S.; Eleey, Catharine C.; Cederbaum, Julie A.; Noll, Elizabeth; Hutchinson, M. Katherine; Jemmott, Loretta S.; Blank, Michael B.
2008-01-01
Background: To estimate the relative risk of sexually transmitted infections (STIs) among children identified as having learning disabilities through the special education system. Methods: This cross-sectional study used special education data and Medicaid data from Philadelphia, Pennsylvania, for calendar year 2002. The sample comprised 51,234…
USDA-ARS?s Scientific Manuscript database
Rates of spread of insect-transmitted plant pathogens are a function of vector abundance. Despite this, factors affecting population growth rates of insects that transmit plant pathogens have received limited attention. The glassy-winged sharpshooter (Homalodisca vitripennis) feeds on xylem-sap and ...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-08
... DEPARTMENT OF LABOR Occupational Safety and Health Administration [Docket No. OSHA-2009-0024... national defense variances. DATES: Comments must be submitted (postmarked, transmitted, or received) by... not transmit attachments (e.g., studies, journal articles), they must submit one hard copy of the...
Language Codes and Memory Codes.
ERIC Educational Resources Information Center
Liberman, Alvin M.; And Others
Paraphrase, as it reflects the processes of remembering rather than those of forgetting, implies that language is best transmitted in one form and stored in another. The dual representation of linguistic information that is implied by paraphrase is important for storing information that has been received and for transmitting information that has…
75 FR 22578 - Application To Export Electric Energy; Centre Lane Trading Limited
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-29
... DEPARTMENT OF ENERGY [OE Docket No. EA-365] Application To Export Electric Energy; Centre Lane... application. SUMMARY: Centre Lane Trading Limited (CLT) has applied for authority to transmit electric energy...)). On April 20, 2010, DOE received an application from CLT for authority to transmit electric energy...
Geoscience Laser Altimeter System (GLAS) for the ICESat Mission
NASA Technical Reports Server (NTRS)
Abshire, James B.; Sun, Xiaoli; Ketchum, Eleanor A.; Millar, Pamela S.; Riris, Haris
2002-01-01
The Geoscience Laser Altimeter System (GLAS) is a new generation lidar and is the primary science payload for NASA's ICESat Mission. The GLAS design combines a 10 cm precision surface lidar with a sensitive dual wavelength cloud and aerosol lidar. GLAS will precisely measure the heights of the Earth's polar ice sheets, establish a grid of accurate height profiles of the Earth's land topography, and profile the vertical distribution of clouds and aerosols on a global scale. GLAS will be integrated onto a small spacecraft built by Ball Aerospace, and will be launched into a polar orbit with a 590-630 km altitude at an inclination of 94 degrees. ICESat is is currently planned to launch in winter 2002/03 and GLAS is designed to operate continuously in space for a minimum of 3 years. GLAS will measure the vertical distance from orbit to the Earth's surface with pulses from a ND:YAG laser at a 40 Hz rate. Each 6 nsec wide 1064 nm laser pulse is used to produce a single range measurement. On the surface, the laser footprints have 66 m diameter and approx. 170 m center-center spacings. The GLAS receiver uses a I m diameter telescope to detect laser backscatter and a Si APD to detect the 1064 nm signals. The detector's output is sampled by a digital ranging receiver, which records each transmitted pulse and surface echo waveform with 1 nsec (15 cm) resolution. Each echo pulse is digitized and is reported to ground with a record length of from 200 to 544 samples, depending on the spacecraft's location . The GLAS location and epoch times are measured by a precision GPS receiver carried on the ICESat spacecraft. Initial processing of the echo waveforms within GLAS permits discrimination between cloud and surface echoes for selecting appropriate waveform samples. This selection is guided by an on-board DEM which is used to set the boundaries for the echo pulse search algorithm. Subsequent ground-based echo pulse analysis, along with GPS-based clock frequency estimates, permit final determination of the range to the surface, degree of pulse spreading, and vertical distribution of any vegetation illuminated by the laser. Accurate knowledge of the laser beam's pointing angle is needed to prevent height biases when measuring over tilted surfaces, such as near the boundaries of ice sheets. For surfaces with 2 deg. slopes, knowledge of pointing angle of the beam's centroid angle to better than 10 urad is needed. GLAS uses a stellar reference system (SRS) to measure the pointing angle of each laser firing relative to inertial space. The SRS uses a high precision star camera oriented toward local zenith and a gyroscope to determine the inertial orientation of the SRS optical bench. The far field pattern of each laser is measured pulse relative to the star camera with a laser reference system (LRS). GLAS will also measure the vertical distributions of clouds and aerosols by recording the vertical profiles of laser pulse backscatter at both 1064 and 532 nm. The 1064 rim measurements use the Si APD detector and will be used to measure the height and echo pulse shape from thicker clouds. The lidar receiver at 532 nm uses a narrow bandwidth etalon filter and highly sensitive photon counting detectors. The 532 nm backscatter profiles will be used to measure the vertical extent of thinner clouds and the atmospheric boundary layer. The GLAS instrument component development is complete and the instrument is undergoing final testing and qualification at NASA-Goddard. The GLAS "as-built" characteristics and its expected measurement performance will be discussed.
Holographic arrays for multi-path imaging artifact reduction
McMakin, Douglas L.; Sheen, David M.; Hall, Thomas E.
2007-11-13
A method and apparatus to remove human features utilizing at least one transmitter transmitting a signal between 200 MHz and 1 THz, the signal having at least one characteristic of elliptical polarization, and at least one receiver receiving the reflection of the signal from the transmitter. A plurality of such receivers and transmitters are arranged together in an array which is in turn mounted to a scanner, allowing the array to be passed adjacent to the surface of the item being imaged while the transmitter is transmitting electromagnetic radiation. The array is passed adjacent to the surface of the item, such as a human being, that is being imaged. The portions of the received signals wherein the polarity of the characteristic has been reversed and those portions of the received signal wherein the polarity of the characteristic has not been reversed are identified. An image of the item from those portions of the received signal wherein the polarity of the characteristic was reversed is then created.
B1 transmit phase gradient coil for single-axis TRASE RF encoding.
Deng, Qunli; King, Scott B; Volotovskyy, Vyacheslav; Tomanek, Boguslaw; Sharp, Jonathan C
2013-07-01
TRASE (Transmit Array Spatial Encoding) MRI uses RF transmit phase gradients instead of B0 field gradients for k-space traversal and high-resolution MR image formation. Transmit coil performance is a key determinant of TRASE image quality. The purpose of this work is to design an optimized RF transmit phase gradient array for spatial encoding in a transverse direction (x- or y- axis) for a 0.2T vertical B0 field MRI system, using a single transmitter channel. This requires the generation of two transmit B1 RF fields with uniform amplitude and positive and negative linear phase gradients respectively over the imaging volume. A two-element array consisting of a double Maxwell-type coil and a Helmholtz-type coil was designed using 3D field simulations. The phase gradient polarity is set by the relative phase of the RF signals driving the simultaneously energized elements. Field mapping and 1D TRASE imaging experiments confirmed that the constructed coil produced the fields and operated as designed. A substantially larger imaging volume relative to that obtainable from a non-optimized Maxwell-Helmholtz design was achieved. The Maxwell (sine)-Helmholtz (cosine) approach has proven successful for a horizontal phase gradient coil. A similar approach may be useful for other phase-gradient coil designs. Copyright © 2013 Elsevier Inc. All rights reserved.
47 CFR 87.145 - Acceptability of transmitters for licensing.
Code of Federal Regulations, 2014 CFR
2014-10-01
... square error which assumes zero error for the received ground earth station signal and includes the AES transmit/receive frequency reference error and the AES automatic frequency control residual errors.) The...
47 CFR 87.145 - Acceptability of transmitters for licensing.
Code of Federal Regulations, 2013 CFR
2013-10-01
... square error which assumes zero error for the received ground earth station signal and includes the AES transmit/receive frequency reference error and the AES automatic frequency control residual errors.) The...
47 CFR 87.145 - Acceptability of transmitters for licensing.
Code of Federal Regulations, 2012 CFR
2012-10-01
... square error which assumes zero error for the received ground earth station signal and includes the AES transmit/receive frequency reference error and the AES automatic frequency control residual errors.) The...
47 CFR 87.145 - Acceptability of transmitters for licensing.
Code of Federal Regulations, 2011 CFR
2011-10-01
... square error which assumes zero error for the received ground earth station signal and includes the AES transmit/receive frequency reference error and the AES automatic frequency control residual errors.) The...
Surface Acoustic Wave Tag-Based Coherence Multiplexing
NASA Technical Reports Server (NTRS)
Youngquist, Robert C. (Inventor); Malocha, Donald (Inventor); Saldanha, Nancy (Inventor)
2016-01-01
A surface acoustic wave (SAW)-based coherence multiplexing system includes SAW tags each including a SAW transducer, a first SAW reflector positioned a first distance from the SAW transducer and a second SAW reflector positioned a second distance from the SAW transducer. A transceiver including a wireless transmitter has a signal source providing a source signal and circuitry for transmitting interrogation pulses including a first and a second interrogation pulse toward the SAW tags, and a wireless receiver for receiving and processing response signals from the SAW tags. The receiver receives scrambled signals including a convolution of the wideband interrogation pulses with response signals from the SAW tags and includes a computing device which implements an algorithm that correlates the interrogation pulses or the source signal before transmitting against the scrambled signals to generate tag responses for each of the SAW tags.
Miniature modular microwave end-to-end receiver
NASA Technical Reports Server (NTRS)
Sukamto, Lin M. (Inventor); Cooley, Thomas W. (Inventor); Janssen, Michael A. (Inventor); Parks, Gary S. (Inventor)
1993-01-01
An end-to-end microwave receiver system contained in a single miniature hybrid package mounted on a single heatsink is presented. It includes an input end connected to a microwave receiver antenna and an output end which produces a digital count proportional to the amplitude of a signal of a selected microwave frequency band received at the antenna and corresponding to one of the water vapor absorption lines near frequencies of 20 GHz or 30 GHz. The hybrid package is on the order of several centimeters in length and a few centimeters in height and width. The package includes an L-shaped carrier having a base surface, a vertical wall extending up from the base surface and forming a corner therewith, and connection pins extending through the vertical wall. Modular blocks rest on the base surface against the vertical wall and support microwave monolithic integrated circuits on top surfaces thereof connected to the external connection pins. The modular blocks lie end-to-end on the base surface so as to be modularly removable by sliding along the base surface beneath the external connection pins away from the vertical wall.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-21
... function of the shock absorber is lost and high loads may be transmitted to the aircraft structure during... domain particularly in combination of high landing weight and high vertical speed. Failure of the..., and broken or loose screws] and, if necessary, repair of the shock absorber per Dassault Aviation...
Women at Risk for Human Immunodeficiency Virus.
ERIC Educational Resources Information Center
Quadagno, David; And Others
This article reports results from a survey among women at risk for contracting Human Immunodeficiency Virus (HIV) as well as transmitting it in a vertical (to offspring) and horizontal (sexual partner or intravenous [IV] drug usage) mode. Little is known about the extent of HIV knowledge, sexual behaviors, and IV drug usage for women at risk for…
47 CFR 90.542 - Broadband transmitting power limits.
Code of Federal Regulations, 2012 CFR
2012-10-01
... combination of antenna height and vertical gain pattern must not exceed 3000 microwatts per square meter on... and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m HAAT are permitted... ERP of 2000 watts and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m...
47 CFR 90.542 - Broadband transmitting power limits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... combination of antenna height and vertical gain pattern must not exceed 3000 microwatts per square meter on... and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m HAAT are permitted... ERP of 2000 watts and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m...
Methods and Systems for Advanced Spaceport Information Management
NASA Technical Reports Server (NTRS)
Fussell, Ronald M. (Inventor); Ely, Donald W. (Inventor); Meier, Gary M. (Inventor); Halpin, Paul C. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor); Blackwell-Thompson, Charlie (Inventor)
2007-01-01
Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).
Methods and systems for advanced spaceport information management
NASA Technical Reports Server (NTRS)
Ely, Donald W. (Inventor); Fussell, Ronald M. (Inventor); Halpin, Paul C. (Inventor); Blackwell-Thompson, Charlie (Inventor); Meier, Gary M. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor)
2007-01-01
Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).
Image transfer protocol in progressively increasing resolution
NASA Technical Reports Server (NTRS)
Percival, Jeffrey W. (Inventor); White, Richard L. (Inventor)
1999-01-01
A method of transferring digital image data over a communication link transforms and orders the data so that, as data is received by a receiving station, a low detail version of the image is immediately generated with later transmissions of data providing progressively greater detail in this image. User instructions are accepted, limiting the ultimate resolution of the image or suspending enhancement of the image except in certain user defined regions. When a low detail image is requested followed by a request for a high detailed version of the same image, the originally transmitted data of the low resolution image is not discarded or retransmitted but used with later data to improve the originally transmitted image. Only a single copy of the transformed image need be retained by the transmitting device in order to satisfy requests for different amounts of image detail.
Wygant, Ira O; Jamal, Nafis S; Lee, Hyunjoo J; Nikoozadeh, Amin; Oralkan, Omer; Karaman, Mustafa; Khuri-Yakub, Butrus T
2009-10-01
State-of-the-art 3-D medical ultrasound imaging requires transmitting and receiving ultrasound using a 2-D array of ultrasound transducers with hundreds or thousands of elements. A tight combination of the transducer array with integrated circuitry eliminates bulky cables connecting the elements of the transducer array to a separate system of electronics. Furthermore, preamplifiers located close to the array can lead to improved receive sensitivity. A combined IC and transducer array can lead to a portable, high-performance, and inexpensive 3-D ultrasound imaging system. This paper presents an IC flip-chip bonded to a 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array for 3-D ultrasound imaging. The IC includes a transmit beamformer that generates 25-V unipolar pulses with programmable focusing delays to 224 of the 256 transducer elements. One-shot circuits allow adjustment of the pulse widths for different ultrasound transducer center frequencies. For receiving reflected ultrasound signals, the IC uses the 32-elements along the array diagonals. The IC provides each receiving element with a low-noise 25-MHz-bandwidth transimpedance amplifier. Using a field-programmable gate array (FPGA) clocked at 100 MHz to operate the IC, the IC generated properly timed transmit pulses with 5-ns accuracy. With the IC flip-chip bonded to a CMUT array, we show that the IC can produce steered and focused ultrasound beams. We present 2-D and 3-D images of a wire phantom and 2-D orthogonal cross-sectional images (Bscans) of a latex heart phantom.
Digital Beamforming Scatterometer
NASA Technical Reports Server (NTRS)
Rincon, Rafael F.; Vega, Manuel; Kman, Luko; Buenfil, Manuel; Geist, Alessandro; Hillard, Larry; Racette, Paul
2009-01-01
This paper discusses scatterometer measurements collected with multi-mode Digital Beamforming Synthetic Aperture Radar (DBSAR) during the SMAP-VEX 2008 campaign. The 2008 SMAP Validation Experiment was conducted to address a number of specific questions related to the soil moisture retrieval algorithms. SMAP-VEX 2008 consisted on a series of aircraft-based.flights conducted on the Eastern Shore of Maryland and Delaware in the fall of 2008. Several other instruments participated in the campaign including the Passive Active L-Band System (PALS), the Marshall Airborne Polarimetric Imaging Radiometer (MAPIR), and the Global Positioning System Reflectometer (GPSR). This campaign was the first SMAP Validation Experiment. DBSAR is a multimode radar system developed at NASA/Goddard Space Flight Center that combines state-of-the-art radar technologies, on-board processing, and advances in signal processing techniques in order to enable new remote sensing capabilities applicable to Earth science and planetary applications [l]. The instrument can be configured to operate in scatterometer, Synthetic Aperture Radar (SAR), or altimeter mode. The system builds upon the L-band Imaging Scatterometer (LIS) developed as part of the RadSTAR program. The radar is a phased array system designed to fly on the NASA P3 aircraft. The instrument consists of a programmable waveform generator, eight transmit/receive (T/R) channels, a microstrip antenna, and a reconfigurable data acquisition and processor system. Each transmit channel incorporates a digital attenuator, and digital phase shifter that enables amplitude and phase modulation on transmit. The attenuators, phase shifters, and calibration switches are digitally controlled by the radar control card (RCC) on a pulse by pulse basis. The antenna is a corporate fed microstrip patch-array centered at 1.26 GHz with a 20 MHz bandwidth. Although only one feed is used with the present configuration, a provision was made for separate corporate feeds for vertical and horizontal polarization. System upgrades to dual polarization are currently under way. The DBSAR processor is a reconfigurable data acquisition and processor system capable of real-time, high-speed data processing. DBSAR uses an FPGA-based architecture to implement digitally down-conversion, in-phase and quadrature (I/Q) demodulation, and subsequent radar specific algorithms. The core of the processor board consists of an analog-to-digital (AID) section, three Altera Stratix field programmable gate arrays (FPGAs), an ARM microcontroller, several memory devices, and an Ethernet interface. The processor also interfaces with a navigation board consisting of a GPS and a MEMS gyro. The processor has been configured to operate in scatterometer, Synthetic Aperture Radar (SAR), and altimeter modes. All the modes are based on digital beamforming which is a digital process that generates the far-field beam patterns at various scan angles from voltages sampled in the antenna array. This technique allows steering the received beam and controlling its beam-width and side-lobe. Several beamforming techniques can be implemented each characterized by unique strengths and weaknesses, and each applicable to different measurement scenarios. In Scatterometer mode, the radar is capable to.generate a wide beam or scan a narrow beam on transmit, and to steer the received beam on processing while controlling its beamwidth and side-lobe level. Table I lists some important radar characteristics
Development of Biological Acoustic Impedance Microscope and its Error Estimation
NASA Astrophysics Data System (ADS)
Hozumi, Naohiro; Nakano, Aiko; Terauchi, Satoshi; Nagao, Masayuki; Yoshida, Sachiko; Kobayashi, Kazuto; Yamamoto, Seiji; Saijo, Yoshifumi
This report deals with the scanning acoustic microscope for imaging cross sectional acoustic impedance of biological soft tissues. A focused acoustic beam was transmitted to the tissue object mounted on the "rear surface" of plastic substrate. A cerebellum tissue of rat and a reference material were observed at the same time under the same condition. As the incidence is not vertical, not only longitudinal wave but also transversal wave is generated in the substrate. The error in acoustic impedance assuming vertical incidence was estimated. It was proved that the error can precisely be compensated, if the beam pattern and acoustic parameters of coupling medium and substrate had been known.
Touret, Franck; Guiguen, François; Terzian, Christophe
2014-09-02
The endosymbiotic bacteria of the genus Wolbachia are present in most insects and are maternally transmitted through the germline. Moreover, these intracellular bacteria exert antiviral activity against insect RNA viruses, as in Drosophila melanogaster, which could explain the prevalence of Wolbachia bacteria in natural populations. Wolbachia is maternally transmitted in D. melanogaster through a mechanism that involves distribution at the posterior pole of mature oocytes and then incorporation into the pole cells of the embryos. In parallel, maternal transmission of several endogenous retroviruses is well documented in D. melanogaster. Notably, gypsy retrovirus is expressed in permissive follicle cells and transferred to the oocyte and then to the offspring by integrating into their genomes. Here, we show that the presence of Wolbachia wMel reduces the rate of gypsy insertion into the ovo gene. However, the presence of Wolbachia does not modify the expression levels of gypsy RNA and envelope glycoprotein from either permissive or restrictive ovaries. Moreover, Wolbachia affects the pattern of distribution of the retroviral particles and the gypsy envelope protein in permissive follicle cells. Altogether, our results enlarge the knowledge of the antiviral activity of Wolbachia to include reducing the maternal transmission of endogenous retroviruses in D. melanogaster. Animals have established complex relationships with bacteria and viruses that spread horizontally among individuals or are vertically transmitted, i.e., from parents to offspring. It is well established that members of the genus Wolbachia, maternally inherited symbiotic bacteria present mainly in arthropods, reduce the replication of several RNA viruses transmitted horizontally. Here, we demonstrate for the first time that Wolbachia diminishes the maternal transmission of gypsy, an endogenous retrovirus in Drosophila melanogaster. We hypothesize that gypsy cannot efficiently integrate into the germ cells of offspring during embryonic development in the presence of Wolbachia because both are competitors for localization to the posterior pole of the egg. More generally, it would be of interest to analyze the influence of Wolbachia on vertically transmitted exogenous viruses, such as some arboviruses. Copyright © 2014 Touret et al.
Method for network analyzation and apparatus
Bracht, Roger B.; Pasquale, Regina V.
2001-01-01
A portable network analyzer and method having multiple channel transmit and receive capability for real-time monitoring of processes which maintains phase integrity, requires low power, is adapted to provide full vector analysis, provides output frequencies of up to 62.5 MHz and provides fine sensitivity frequency resolution. The present invention includes a multi-channel means for transmitting and a multi-channel means for receiving, both in electrical communication with a software means for controlling. The means for controlling is programmed to provide a signal to a system under investigation which steps consecutively over a range of predetermined frequencies. The resulting received signal from the system provides complete time domain response information by executing a frequency transform of the magnitude and phase information acquired at each frequency step.
Optimum detection of tones transmitted by a spacecraft
NASA Technical Reports Server (NTRS)
Simon, M. K.; Shihabi, M. M.; Moon, T.
1995-01-01
The performance of a scheme proposed for automated routine monitoring of deep-space missions is presented. The scheme uses four different tones (sinusoids) transmitted from the spacecraft (S/C) to a ground station with the positive identification of each of them used to indicate different states of the S/C. Performance is measured in terms of detection probability versus false alarm probability with detection signal-to-noise ratio as a parameter. The cases where the phase of the received tone is unknown and where both the phase and frequency of the received tone are unknown are treated separately. The decision rules proposed for detecting the tones are formulated from average-likelihood ratio and maximum-likelihood ratio tests, the former resulting in optimum receiver structures.
Pointing Reference Scheme for Free-Space Optical Communications Systems
NASA Technical Reports Server (NTRS)
Wright, Malcolm; Ortiz, Gerardo; Jeganathan, Muthu
2006-01-01
A scheme is proposed for referencing the propagation direction of the transmit laser signal in pointing a free-space optical communications terminal. This recently developed scheme enables the use of low-cost, commercial silicon-based sensors for tracking the direction of the transmit laser, regardless of the transmit wavelength. Compared with previous methods, the scheme offers some advantages of less mechanical and optical complexity and avoids expensive and exotic sensor technologies. In free-space optical communications, the transmit beam must be accurately pointed toward the receiver in order to maintain the communication link. The current approaches to achieve this function call for part of the transmit beam to be split off and projected onto an optical sensor used to infer the pointed direction. This requires that the optical sensor be sensitive to the wavelength of the transmit laser. If a different transmit wavelength is desired, for example to obtain a source capable of higher data rates, this can become quite impractical because of the unavailability or inefficiency of sensors at these wavelengths. The innovation proposed here decouples this requirement by allowing any transmit wavelength to be used with any sensor. We have applied this idea to a particular system that transmits at the standard telecommunication wavelength of 1,550 nm and uses a silicon-based sensor, sensitive from 0.5 to 1.0 micrometers, to determine the pointing direction. The scheme shown in the figure involves integrating a low-power 980-nm reference or boresight laser beam coupled to the 1,550-nm transmit beam via a wavelength-division-multiplexed fiber coupler. Both of these signals propagate through the optical fiber where they achieve an extremely high level of co-alignment before they are launched into the telescope. The telescope uses a dichroic beam splitter to reflect the 980- nm beam onto the silicon image sensor (a quad detector, charge-coupled device, or active-pixel-sensor array) while the 1,550- nm signal beam is transmitted through the optical assembly toward the remotely located receiver. Since the 980-nm reference signal originates from the same single-mode fiber-coupled source as the transmit signal, its position on the sensor is used to accurately determine the propagation direction of the transmit signal. The optics are considerably simpler in the proposed scheme due to the use of a single aperture for transmitting and receiving. Moreover, the issue of mechanical misalignment does not arise because the reference signal and transmitted laser beams are inherently co-aligned. The beam quality of the 980-nm reference signal used for tracking is required to be circularly symmetric and stable at the tracking-plane sensor array in order to minimize error in the centroiding algorithm of the pointing system. However, since the transmit signal is delivered through a fiber that supports a single mode at 1,550 nm, propagation of higher order 980-nm modes is possible. Preliminary analysis shows that the overall mode profile is dominated by the fundamental mode, giving a near symmetric profile. The instability of the mode was also measured and found to be negligible in comparison to the other error contributions in the centroid position on the sensor array.
Díaz Aparicio, E
2013-04-01
Brucellosis is a disease that causes severe economic losses for livestock farms worldwide. Brucella melitensis, B. abortus and B. suis, which are transmitted between animals both vertically and horizontally, cause abortion and infertility in their primary natural hosts - goats and sheep (B. melitensis), cows (B. abortus) and sows (B. suis). Brucella spp. infect not only their preferred hosts but also other domestic and wild animal species, which in turn can act as reservoirs of the disease for other animal species and humans. Brucellosis is therefore considered to be a major zoonosis transmitted by direct contact with animals and/or their secretions, or by consuming milk and dairy products.
Dregely, Isabel; Ruset, Iulian C.; Wiggins, Graham; Mareyam, Azma; Mugler, John P.; Altes, Talissa A.; Meyer, Craig; Ruppert, Kai; Wald, Lawrence L.; Hersman, F. William
2012-01-01
Hyperpolarized xenon-129 (HP Xe) has the potential to become a non-invasive contrast agent for lung MRI. In addition to its utility for imaging of ventilated airspaces, the property of xenon to dissolve in lung tissue and blood upon inhalation provides the opportunity to study gas exchange. Implementations of imaging protocols for obtaining regional parameters that exploit the dissolved phase are limited by the available signal-to-noise ratio (SNR), excitation homogeneity, and length of acquisition times. To address these challenges, a 32-channel receive-array coil complemented by an asymmetric birdcage transmit coil tuned to the HP Xe resonance at 3T was developed. First results of spin-density imaging in healthy subjects and subjects with obstructive lung disease demonstrated the improvements in image quality by high resolution ventilation images with high SNR. Parallel imaging performance of the phased-array coil was demonstrated by acceleration factors up to three in 2D acquisitions and up to six in 3D acquisitions. Transmit-field maps showed a regional variation of only 8% across the whole lung. The newly developed phased-array receive coil with the birdcage transmit coil will lead to an improvement in existing imaging protocols, but moreover enable the development of new, functional lung imaging protocols based on the improvements in excitation homogeneity, SNR, and acquisition speed. PMID:23132336
Homodyne impulse radar hidden object locator
McEwan, T.E.
1996-04-30
An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules. 15 figs.
Homodyne impulse radar hidden object locator
McEwan, Thomas E.
1996-01-01
An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules.
Intelligent Data Transfer for Multiple Sensor Networks over a Broad Temperature Range
NASA Technical Reports Server (NTRS)
Krasowski, Michael (Inventor)
2018-01-01
A sensor network may be configured to operate in extreme temperature environments. A sensor may be configured to generate a frequency carrier, and transmit the frequency carrier to a node. The node may be configured to amplitude modulate the frequency carrier, and transmit the amplitude modulated frequency carrier to a receiver.
13 CFR 101.404 - How does the Administrator receive comments?
Code of Federal Regulations, 2010 CFR
2010-01-01
... of contact is not obligated to transmit comments from state, area-wide, regional, or local officials... transmitted by a single point of contact, all comments from state, area-wide, regional, and local officials... single point of contact between a state process and all Federal agencies; and (2) That office or official...
47 CFR 25.220 - Non-conforming transmit/receive earth station operations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... and 17/24 GHz BSS feeder link applications in which the proposed earth station operations do not fall...) through (d)(1)(iv) of this section. The applicant will be authorized to transmit only to the satellite... operator acknowledging that the proposed operation of the subject non-conforming earth station with its...
Quesada-Moraga, Enrique; López-Díaz, Cristina; Landa, Blanca Beatriz
2014-01-01
Beauveria bassiana strain 04/01-Tip, obtained from a larva of the opium poppy stem gall wasp Iraella luteipes (Hymenoptera; Cynipidae), endophytically colonizes opium poppy (Papaver somniferum L.) plants and protects them against this pest. The goal of this study was to monitor the dynamics of endophytic colonization of opium poppy by B. bassiana after the fungus was applied to the seed and to ascertain whether the fungus is transmitted vertically via seeds. Using a species-specific nested PCR protocol and DNA extracted from surface-sterilised leaf pieces or seeds of B. bassiana-inoculated opium poppy plants, the fungus was detected within the plant beginning at the growth stage of rosette building and them throughout the entire plant growth cycle (about 120–140 days after sowing). The fungus was also detected in seeds from 50% of the capsules sampled. Seeds that showed positive amplification for B. bassiana were planted in sterile soil and the endophyte was again detected in more than 42% of the plants sampled during all plant growth stages. Beauveria bassiana was transmitted to seeds in 25% of the plants from the second generation that formed a mature capsule. These results demonstrate for the first time the vertical transmission of an entomopathogenic fungus from endophytically colonised maternal plants. This information is crucial to better understand the ecological role of entomopathogenic fungi as plant endophytes and may allow development of a sustainable and cost effective strategy for I. luteipes management in P. somniferum. PMID:24551242
Quesada-Moraga, Enrique; López-Díaz, Cristina; Landa, Blanca Beatriz
2014-01-01
Beauveria bassiana strain 04/01-Tip, obtained from a larva of the opium poppy stem gall wasp Iraella luteipes (Hymenoptera; Cynipidae), endophytically colonizes opium poppy (Papaver somniferum L.) plants and protects them against this pest. The goal of this study was to monitor the dynamics of endophytic colonization of opium poppy by B. bassiana after the fungus was applied to the seed and to ascertain whether the fungus is transmitted vertically via seeds. Using a species-specific nested PCR protocol and DNA extracted from surface-sterilised leaf pieces or seeds of B. bassiana-inoculated opium poppy plants, the fungus was detected within the plant beginning at the growth stage of rosette building and them throughout the entire plant growth cycle (about 120-140 days after sowing). The fungus was also detected in seeds from 50% of the capsules sampled. Seeds that showed positive amplification for B. bassiana were planted in sterile soil and the endophyte was again detected in more than 42% of the plants sampled during all plant growth stages. Beauveria bassiana was transmitted to seeds in 25% of the plants from the second generation that formed a mature capsule. These results demonstrate for the first time the vertical transmission of an entomopathogenic fungus from endophytically colonised maternal plants. This information is crucial to better understand the ecological role of entomopathogenic fungi as plant endophytes and may allow development of a sustainable and cost effective strategy for I. luteipes management in P. somniferum.
Yu, Aifang; Chen, Xiangyu; Wang, Rui; Liu, Jingyu; Luo, Jianjun; Chen, Libo; Zhang, Yang; Wu, Wei; Liu, Caihong; Yuan, Hongtao; Peng, Mingzeng; Hu, Weiguo; Zhai, Junyi; Wang, Zhong Lin
2016-04-26
In this paper, we demonstrate an application of a triboelectric nanogenerator (TENG) as a self-powered communication unit. An elaborately designed TENG is used to translate a series of environmental triggering signals into binary digital signals and drives an electronic-optical device to transmit binary digital data in real-time without an external power supply. The elaborately designed TENG is built in a membrane structure that can effectively drive the electronic-optical device in a bandwidth from 1.30 to 1.65 kHz. Two typical communication modes (amplitude-shift keying and frequency-shift keying) are realized through the resonant response of TENG to different frequencies, and two digital signals, i.e., "1001" and "0110", are successfully transmitted and received through this system, respectively. Hence, in this study, a simple but efficient method for directly transmitting ambient vibration to the receiver as a digital signal is established using an elaborately designed TENG and an optical communication technique. This type of the communication system, as well as the implementation method presented, exhibits great potential for applications in the smart city, smart home, password authentication, and so on.
Robinson, Thomas N; Barnes, Kelli S; Govekar, Henry R; Stiegmann, Greg V; Dunn, Christina L; McGreevy, Francis T
2012-08-01
(1) To determine if antenna coupling occurs in common operating room scenarios. (2) To define modifiable clinical variables that reduce the magnitude of antenna coupling. Mechanisms of electrosurgical burns where monitoring devices contact the surgical patient are unclear. Antenna coupling occurs when the "bovie" active electrode (electrically active transmitting antenna) emits energy, which is captured by a nonelectrically active wire (electrically inactive receiving antenna) in close proximity without direct contact. Monopolar radiofrequency energy was delivered to a laparoscopic instrument (electrically active transmitting antenna), whereas other nonelectrically active wires (electrically inactive receiving antenna) including electrocardiogram (EKG) lead, nonactive "bovie" pencil, and nerve electrode monitor were placed in proximity. Temperature changes of tissue placed adjacent to the electrically inactive receiving antennae were measured. Nonelectrically active wires (receiving antenna) increase tissue temperature when lying parallel to the active electrode cord: EKG pad 2.4°C ± 1.2°C (P = 0.002), "bovie" pencil tip 90°C ± 9°C (P < 0.001), and nerve electrode monitor 106°C ± 12°C (P < 0.001). Factors that reduced the heat generated by antenna coupling included the following: increasing angulation between transmitting and receiving antennae (parallel = 90°C ± 9°C; 45° angle = 53°C ± 10°C; perpendicular = 35°C ± 11°C; P < .001), increasing separation distance between parallel transmitting and receiving antenna (<1 cm = 90°C ± 9°C; 15 cm = 44°C ± 18°C; 30 cm = 39°C ± 2°C; P < .001); and decreasing generator power setting (15 W = 59°C ± 11°C; 30 W = 90°C ± 9°C; 45 W = 98°C ± 8°C; P < .001). Antenna coupling occurs in common operating room scenarios. Simple, practical measures by the surgeon, such as orienting the receiving antenna at a greater angle and with greater separation to the active electrode cord, or lowering the generator power setting reduce antenna coupling.
GPS Radiosonde with Spread-Spectrum Transmitter for Aerial dE/dt Studies
NASA Astrophysics Data System (ADS)
Sonnenfeld, R.; John, B. D.; William, W. P.; Aulich, G.; Ken, E.
2003-12-01
Inexpensive, low-power and reliable telemetry is a continuous struggle for those engaged in developing balloon-borne instruments for atmospheric electric studies. Several custom designs, by NCAR and others, have enabled much useful work in radiosondes. Also, packet radio technology has been used with great success. Easily obtainable packet radios are currently limited to 9600 baud. In search of higher baud rates that integrate well with microprocessor-based data acquisition systems, we have tested a new commercial off-the-shelf spread-spectrum transmitter. The transmitter operates in the 900 MHz industrial, scientific and medical (ISM) band with a transmit power of 100 mW. The transmitter (a Maxstream XC09-019NST) is used with a dedicated receiver, such that the data to be transmitted is fed via RS-232C protocols to the transmitter, and received as a text string via a serial port on the receiver. We did tests at raw baud rates of 9600 and 19200 (roughly 1000-2000 characters/second). Initial range tests required integrating the transmitter with a GPS and sending the NMEA-position-string (National Marine Electronics Assoc.) to a ground-based receiver. In ground-based tests, we repeatedly saw that a clear line-of-sight between transmitter and receiver was required for successful telemetry. The maximum range obtained during ground tests was 15.3 km at 9600 baud. Initial balloon tests results were, as hoped, more encouraging than ground-based tests. The maximum range (ground distance and altitude) of any balloon transmission was 58.0 km in fair-weather with excellent line-of-sight visibility. Our highest altitude transmission was 28.6 km absolute altitude (25.3 km altitude relative to launch point). These numbers were determined from the GPS coordinates transmitted. Antenna alignment and acceptance angle effects were observed in our received data. For these reasons, the full data rate of 19200 baud was only obtained out to 10 km, and then again around 45-58 km. Performance of the system could be improved by spreading packets over a wider range of spectrum, improving the transmit antenna geometry, increasing power, using a more directional receive antenna; or all of the above.
Villarroel, Julia; Álvarez, Ana M; Salvador, Francisco; Chávez, Ana; Wu, Elba; Contardo, Verónica
2016-12-01
Pediatric antiretroviral therapy (ART), changed the prognosis of the disease, allowing young women infected by vertical transmission (TV) to be pregnant without risk for their fetus of acquiring this infection. To describe the clinical-immune status in pregnant women that acquired HV by vertical transmission, treatments received, monitoring of pregnancy and newborn characteristics. A protocol was performed, evaluating clinical and immunological parameters during pregnancy, ART used, protocol preventing vertical transmission (PPTV), and follow up of children to 18 months of age. Of 358 HIV-positive patients vertically infected, five women became pregnant, between 14 and 24 years old. Pregnancies were controlled in clinical/immune-stage N2 C3. They had received two to five therapies. Full PPTV was performed in all binomials. Pre-natal undetectable viral loads ranged from 4,700 ARN copies/mL. Five living children were born by Caesarean section, four of them with 37 weeks of completed gestation and one of them with 34 weeks of gestation. All received zidovudine (AZT) for 6 weeks. CD4 at 72 hours of life ranged from 48% to 74.6%. All children were born uninfected with HIV. Only two had mild anemia. Expectations of HIV mothers vertically infected to have healthy children are similar to those infected by horizontal transmission, using PPTV.
Jennifer, Mabuka; Leslie, Goo; Maxwel, Majiwa O.; Ruth, Nduati; Julie, Overbaugh
2014-01-01
Rationale To protect against HIV infection, passively transferred and/or vaccine elicited neutralizing antibodies (NAbs) need to effectively target diverse subtypes that are transmitted globally. These variants are a limited subset of those present during chronic infection and display some unique features. In the case of mother-to-child transmission (MTCT), transmitted variants tend to be resistant to neutralization by maternal autologous NAbs. Method To investigate whether variants transmitted during MTCT are generally resistant to HIV-1 specific NAbs, 107 maternal or infant variants representing the dominant HIV-1 subtypes were tested against six recently identified HIV-1-specific broadly neutralizing monoclonal antibodies (bNAbs), NIH45-46W, VRC01, PGT128, PGT121, PG9, and PGT145. Results Infant and maternal variants did not differ in their neutralization sensitivity to individual bNAbs, nor did viruses from transmitting versus non-transmitting mothers, although there was a trend for viruses from transmitting mothers to be less sensitive overall. No single bNAb neutralized all viruses, but a combination of bNAbs that target distinct epitopes covered 100% of the variants tested. Compared to heterosexually transmitted variants, vertically transmitted variants, were significantly more sensitive to neutralization by PGT128 and PGT121 (p=0.03 in both cases) but there were no differences for the other bNAbs. Overall, subtype A variants were significantly more sensitive to NIH45-46 (p=0.04), VRC01 (p=0.002) and PGT145 (p=0.03) compared to the non-subtype A and less sensitive to PGT121 than subtype Cs (p=0.0001). Conclusion A combination of bNAbs against distinct epitopes may be needed to provide maximum coverage against viruses in different modes of transmission and diverse subtypes. PMID:23856624
Assessment of the 802.11g Wireless Protocol for Lunar Surface Communications
NASA Technical Reports Server (NTRS)
Chelmins, David T.; Bguyen, Hung D.; Foore, Lawrence R.
2009-01-01
Future lunar surface missions supporting the NASA Vision for Space Exploration will rely on wireless networks to transmit voice and data. The ad hoc network architecture is of particular interest since it does not require a complex infrastructure. In this report, we looked at data performance over an ad hoc network with varying distances between Apple AirPort wireless cards. We developed a testing program to transmit data packets at precise times and then monitored the receive time to characterize connection delay, packet loss, and data rate. Best results were received for wireless links of less than 75 ft, and marginally acceptable (25-percent) packet loss was received at 150 ft. It is likely that better results will be obtained on the lunar surface because of reduced radiofrequency interference; however, higher power transmitters or receivers will be needed for significant performance gains.
Expandable and reconfigurable instrument node arrays
NASA Technical Reports Server (NTRS)
Hilliard, Lawrence M. (Inventor); Deshpande, Manohar (Inventor)
2012-01-01
An expandable and reconfigurable instrument node includes a feature detection means and a data processing portion in communication with the feature detection means, the data processing portion configured and disposed to process feature information. The instrument node further includes a phase locked loop (PLL) oscillator in communication with the data processing portion, the PLL oscillator configured and disposed to provide PLL information to the processing portion. The instrument node further includes a single tone transceiver and a pulse transceiver in communication with the PLL oscillator, the single tone transceiver configured and disposed to transmit or receive a single tone for phase correction of the PLL oscillator and the pulse transceiver configured and disposed to transmit and receive signals for phase correction of the PLL oscillator. The instrument node further includes a global positioning (GPA) receiver in communication with the processing portion, the GPS receiver configured and disposed to establish a global position of the instrument node.
Secure ADS-B authentication system and method
NASA Technical Reports Server (NTRS)
Viggiano, Marc J (Inventor); Valovage, Edward M (Inventor); Samuelson, Kenneth B (Inventor); Hall, Dana L (Inventor)
2010-01-01
A secure system for authenticating the identity of ADS-B systems, including: an authenticator, including a unique id generator and a transmitter transmitting the unique id to one or more ADS-B transmitters; one or more ADS-B transmitters, including a receiver receiving the unique id, one or more secure processing stages merging the unique id with the ADS-B transmitter's identification, data and secret key and generating a secure code identification and a transmitter transmitting a response containing the secure code and ADSB transmitter's data to the authenticator; the authenticator including means for independently determining each ADS-B transmitter's secret key, a receiver receiving each ADS-B transmitter's response, one or more secure processing stages merging the unique id, ADS-B transmitter's identification and data and generating a secure code, and comparison processing comparing the authenticator-generated secure code and the ADS-B transmitter-generated secure code and providing an authentication signal based on the comparison result.
Method for Controlling a Producing Zone of a Well in a Geological Formation
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Carl, James R. (Inventor); Byerly, Kent A. (Inventor); Amini, B. Jon (Inventor)
2005-01-01
System and methods for transmitting and receiving electromagnetic pulses through a geological formation. A preferably programmable transmitter having an all-digital portion in a preferred embodiment may be operated at frequencies below 1 MHz without loss of target resolution by transmitting and over sampling received long PN codes. A gated and stored portion of the received signal may be correlated with the PN code to determine distances of interfaces within the geological formation, such as the distance of a water interfaces from a wellbore. The received signal is oversampled preferably at rates such as five to fifty times as high as a carrier frequency. In one method of the invention, an oil well with multiple production zones may be kept in production by detecting an approaching water front in one of the production zones and shutting down that particular production zone thereby permitting the remaining production zones to continue operating.
Method for controlling a producing zone of a well in a geological formation
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Carl, James R. (Inventor); Byerly, Kent A. (Inventor); Amini, B. Jon (Inventor)
2005-01-01
System and methods for transmitting and receiving electromagnetic pulses through a geological formation. A preferably programmable transmitter having an all-digital portion in a preferred embodiment may be operated at frequencies below 1 MHz without loss of target resolution by transmitting and over sampling received long PN codes. A gated and stored portion of the received signal may be correlated with the PN code to determine distances of interfaces within the geological formation, such as the distance of a water interfaces from a wellbore. The received signal is oversampled preferably at rates such as five to fifty times as high as a carrier frequency. In one method of the invention, an oil well with multiple production zones may be kept in production by detecting an approaching water front in one of the production zones and shutting down that particular production zone thereby permitting the remaining production zones to continue operating.
Medium Frequency Pseudo Noise Geological Radar
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Carl, James R. (Inventor); Byerly, Kent A. (Inventor); Amini, B. Jon (Inventor)
2003-01-01
System and methods are disclosed for transmitting and receiving electromagnetic pulses through a geological formation. A preferably programmable transmitter having an all-digital portion in a preferred embodiment may be operated at frequencies below 1 MHz without loss of target resolution by transmitting and over sampling received long PN codes. A gated and stored portion of the received signal may be correlated with the PN code to determine distances of interfaces within the geological formation, such as the distance of a water interfaces from a wellbore. The received signal is oversampled preferably at rates such as five to fifty times as high as a carrier frequency. In one method of the invention, an oil well with multiple production zones may be kept in production by detecting an approaching water front in one of the production zones and shutting down that particular production zone thereby permitting the remaining production zones to continue operating.
Chaotic carrier pulse position modulation communication system and method
Abarbanel, Henry D. I.; Larson, Lawrence E.; Rulkov, Nikolai F.; Sushchik, Mikhail M.; Tsimring, Lev S.; Volkovskii, Alexander R.
2001-01-01
A chaotic carrier pulse position modulation communication system and method is disclosed. The system includes a transmitter and receiver having matched chaotic pulse regenerators. The chaotic pulse regenerator in the receiver produces a synchronized replica of a chaotic pulse train generated by the regenerator in the transmitter. The pulse train from the transmitter can therefore act as a carrier signal. Data is encoded by the transmitter through selectively altering the interpulse timing between pulses in the chaotic pulse train. The altered pulse train is transmitted as a pulse signal. The receiver can detect whether a particular interpulse interval in the pulse signal has been altered by reference to the synchronized replica it generates, and can therefore detect the data transmitted by the receiver. Preferably, the receiver predicts the earliest moment in time it can expect a next pulse after observation of at least two consecutive pulses. It then decodes the pulse signal beginning at a short time before expected arrival of a pulse.
Eight-channel transmit/receive body MRI coil at 3T.
Vernickel, P; Röschmann, P; Findeklee, C; Lüdeke, K-M; Leussler, Ch; Overweg, J; Katscher, U; Grässlin, I; Schünemann, K
2007-08-01
Multichannel transmit magnetic resonance imaging (MR) systems have the potential to compensate for signal-intensity variations occurring at higher field strengths due to wave propagation effects in tissue. Methods such as RF shimming and local excitation in combination with parallel transmission can be applied to compensate for these effects. Moreover, parallel transmission can be applied to ease the excitation of arbitrarily shaped magnetization patterns. The implementation of these methods adds new requirements in terms of MRI hardware. This article describes the design of a decoupled eight-element transmit/receive body coil for 3T. The setup of the coil is explained, starting with standard single-channel resonators. Special focus is placed on the decoupling of the elements to obtain independent RF resonators. After a brief discussion of the underlying theory, the properties and limitations of the coil are outlined. Finally, the functionality and capabilities of the coil are demonstrated using RF measurements as well as MRI sequences.
Dowla, Farid U; Nekoogar, Faranak
2015-03-03
A method for adaptive Radio Frequency (RF) jamming according to one embodiment includes dynamically monitoring a RF spectrum; detecting any undesired signals in real time from the RF spectrum; and sending a directional countermeasure signal to jam the undesired signals. A method for adaptive Radio Frequency (RF) communications according to another embodiment includes transmitting a data pulse in a RF spectrum; and transmitting a reference pulse separated by a predetermined period of time from the data pulse; wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated. A method for adaptive Radio Frequency (RF) communications according to yet another embodiment includes receiving a data pulse in a RF spectrum; and receiving a reference pulse separated in time from the data pulse, wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated; and demodulating the pulses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowla, Farid; Nekoogar, Faranak
A method for adaptive Radio Frequency (RF) jamming according to one embodiment includes dynamically monitoring a RF spectrum; detecting any undesired signals in real time from the RF spectrum; and sending a directional countermeasure signal to jam the undesired signals. A method for adaptive Radio Frequency (RF) communications according to another embodiment includes transmitting a data pulse in a RF spectrum; and transmitting a reference pulse separated by a predetermined period of time from the data pulse; wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated. A method for adaptive Radio Frequency (RF) communications accordingmore » to yet another embodiment includes receiving a data pulse in a RF spectrum; and receiving a reference pulse separated in time from the data pulse, wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated; and demodulating the pulses.« less
Prediction and Warning of Transported Turbulence in Long-Haul Aircraft Operations
NASA Technical Reports Server (NTRS)
Ellrod, Gary P. (Inventor); Spence, Mark D. (Inventor); Shipley, Scott T. (Inventor)
2017-01-01
An aviation flight planning system is used for predicting and warning for intersection of flight paths with transported meteorological disturbances, such as transported turbulence and related phenomena. Sensed data and transmitted data provide real time and forecast data related to meteorological conditions. Data modelling transported meteorological disturbances are applied to the received transmitted data and the sensed data to use the data modelling transported meteorological disturbances to correlate the sensed data and received transmitted data. The correlation is used to identify transported meteorological disturbances source characteristics, and identify predicted transported meteorological disturbances trajectories from source to intersection with flight path in space and time. The correlated data are provided to a visualization system that projects coordinates of a point of interest (POI) in a selected point of view (POV) to displays the flight track and the predicted transported meteorological disturbances warnings for the flight crew.
Flagg, Elaine W; Weinstock, Hillard S; Frazier, Emma L; Valverde, Eduardo E; Heffelfinger, James D; Skarbinski, Jacek
2015-04-01
Bacterial sexually transmitted infections may facilitate HIV transmission. Bacterial sexually transmitted infection testing is recommended for sexually active HIV-infected patients annually and more frequently for those at elevated sexual risk. We estimated percentages of HIV-infected patients in the United States receiving at least one syphilis, gonorrhea, or chlamydia test, and repeat (≥2 tests, ≥3 months apart) tests for any of these sexually transmitted infections from mid-2008 through mid-2010. The Medical Monitoring Project collects behavioral and clinical characteristics of HIV-infected adults receiving medical care in the United States using nationally representative sampling. Sexual activity included self-reported oral, vaginal, or anal sex in the past 12 months. Participants reporting more than 1 sexual partner or illicit drug use before/during sex in the past year were classified as having elevated sexual risk. Among participants with only 1 sex partner and no drug use before/during sex, those reporting consistent condom use were classified as low risk; those reporting sex without a condom (or for whom this was unknown) were classified as at elevated sexual risk only if they considered their sex partner to be a casual partner, or if their partner was HIV-negative or partner HIV status was unknown. Bacterial sexually transmitted infection testing was ascertained through medical record abstraction. Among sexually active patients, 55% were tested at least once in 12 months for syphilis, whereas 23% and 24% received at least one gonorrhea and chlamydia test, respectively. Syphilis testing did not vary by sex/sexual orientation. Receipt of at least 3 CD4+ T-lymphocyte cell counts and/or HIV viral load tests in 12 months was associated with syphilis testing in men who have sex with men (MSM), men who have sex with women only, and women. Chlamydia testing was significantly higher in sexually active women (30%) compared with men who have sex with women only (19%), but not compared with MSM (22%). Forty-six percent of MSM were at elevated sexual risk; 26% of these MSM received repeat syphilis testing, whereas repeat testing for gonorrhea and chlamydia was only 7% for each infection. Bacterial sexually transmitted infection testing among sexually active HIV-infected patients was low, particularly for those at elevated sexual risk. Patient encounters in which CD4+ T-lymphocyte cell counts and/or HIV viral load testing occurs present opportunities for increased bacterial sexually transmitted infection testing.
Watanabe, Masaya; Yukuhiro, Fumiko; Maeda, Taro; Miura, Kazuki; Kageyama, Daisuke
2014-01-01
Spiroplasma, a group of small, wall-less, helical, and motile bacteria belonging to the Mollicutes, contains species with diverse life histories. To date, all the Spiroplasma strains that are known to be transmitted vertically in arthropod lineages belong to either the Spiroplasma ixodetis group or the Spiroplasma poulsonii group. Here, we found that a unique strain of Spiroplasma vertically transmitted in predatory flower bugs of the genus Orius belongs to the Spiroplasma insolitum group, which is a group of bacteria phylogenetically closely related to S. insolitum derived from the tickseed sunflower, Bidens sp. (Asterales: Asteraceae). The infection frequencies in natural populations were16.0% in Orius sauteri (n = 75), 40.5% in Orius nagaii (n = 37), and 8.0% in Orius minutus (n = 87). Orius strigicollis was not infected with Spiroplasma (n = 147). In the early stage of oogenesis (i.e., within the germarium), a large number of bacteria with the typical morphology of Spiroplasma existed, keeping a distance from Wolbachia bacteria. The Spiroplasma population seemed to increase during host development but Wolbachia population did not.
Toll-Like Receptors in Secondary Obstructive Cholangiopathy
Miranda-Díaz, A. G.; Alonso-Martínez, H.; Hernández-Ojeda, J.; Arias-Carvajal, O.; Rodríguez-Carrizalez, A. D.; Román-Pintos, L. M.
2011-01-01
Secondary obstructive cholangiopathy is characterized by intra- or extrahepatic bile tract obstruction. Liver inflammation and structural alterations develop due to progressive bile stagnation. Most frequent etiologies are biliary atresia in children, and hepatolithiasis, postcholecystectomy bile duct injury, and biliary primary cirrhosis in adults, which causes chronic biliary cholangitis. Bile ectasia predisposes to multiple pathogens: viral infections in biliary atresia; Gram-positive and/or Gram-negative bacteria cholangitis found in hepatolithiasis and postcholecystectomy bile duct injury. Transmembrane toll-like receptors (TLRs) are activated by virus, bacteria, fungi, and parasite stimuli. Even though TLR-2 and TLR-4 are the most studied receptors related to liver infectious diseases, other TLRs play an important role in response to microorganism damage. Acquired immune response is not vertically transmitted and reflects the infectious diseases history of individuals; in contrast, innate immunity is based on antigen recognition by specific receptors designated as pattern recognition receptors and is transmitted vertically through the germ cells. Understanding the mechanisms for bile duct inflammation is essential for the future development of therapeutic alternatives in order to avoid immune-mediated destruction on secondary obstructive cholangiopathy. The role of TLRs in biliary atresia, hepatolithiasis, bile duct injury, and primary biliary cirrhosis is described in this paper. PMID:22114589
Effect of Loop Geometry on TEM Response Over Layered Earth
NASA Astrophysics Data System (ADS)
Qi, Youzheng; Huang, Ling; Wu, Xin; Fang, Guangyou; Yu, Gang
2014-09-01
A large horizontal loop located on the ground or carried by an aircraft are the most common sources of the transient electromagnetic method. Although topographical factors or airplane outlines make the loop of arbitrary shape, magnetic sources are generally represented as a magnetic dipole or a circular loop, which may bring about significant errors in the calculated response. In this paper, we present a method for calculating the response of a loop of arbitrary shape (for which the description can be obtained by different methods, including GPS localization) in air or on the surface of a stratified earth. The principle of reciprocity is firstly used to exchange the functions of the transmitting loop and the dipole receiver, then the response of a vertical or a horizontal magnetic dipole is calculated beforehand, and finally the line integral of the second kind is employed to get the transient response. Analytical analysis and comparisons depict that our work got very good results in many situations. Synthetic and field examples are given in the end to show the effect of loop geometry and how our method improves the precision of the EM response.
Ionospheric Specifications for SAR Interferometry (ISSI)
NASA Technical Reports Server (NTRS)
Pi, Xiaoqing; Chapman, Bruce D; Freeman, Anthony; Szeliga, Walter; Buckley, Sean M.; Rosen, Paul A.; Lavalle, Marco
2013-01-01
The ISSI software package is designed to image the ionosphere from space by calibrating and processing polarimetric synthetic aperture radar (PolSAR) data collected from low Earth orbit satellites. Signals transmitted and received by a PolSAR are subject to the Faraday rotation effect as they traverse the magnetized ionosphere. The ISSI algorithms combine the horizontally and vertically polarized (with respect to the radar system) SAR signals to estimate Faraday rotation and ionospheric total electron content (TEC) with spatial resolutions of sub-kilometers to kilometers, and to derive radar system calibration parameters. The ISSI software package has been designed and developed to integrate the algorithms, process PolSAR data, and image as well as visualize the ionospheric measurements. A number of tests have been conducted using ISSI with PolSAR data collected from various latitude regions using the phase array-type L-band synthetic aperture radar (PALSAR) onboard Japan Aerospace Exploration Agency's Advanced Land Observing Satellite mission, and also with Global Positioning System data. These tests have demonstrated and validated SAR-derived ionospheric images and data correction algorithms.
Active terahertz wave imaging system for detecting hidden objects
NASA Astrophysics Data System (ADS)
Gan, Yuner; Liu, Ming; Zhao, Yuejin
2016-11-01
Terahertz wave can penetrate the common dielectric materials such as clothing, cardboard boxes, plastics and so on. Besides, the low photon energy and non-ionizing characteristic of the terahertz wave are especially suitable for the safety inspection of the human body. Terahertz imaging technology has a tremendous potential in the field of security inspection such as stations, airports and other public places. Terahertz wave imaging systems are divided into two categories: active terahertz imaging systems and passive terahertz imaging systems. So far, most terahertz imaging systems work at point to point mechanical scan pattern with the method of passive imaging. The imaging results of passive imaging tend to have low contrast and the image is not clear enough. This paper designs and implements an active terahertz wave imaging system combining terahertz wave transmitting and receiving with a Cassegrain antenna. The terahertz wave at the frequency of 94GHz is created by impact ionization avalanche transit time (IMPATT) diode, focused on the feed element for Cassegrain antenna by high density polyethylene (HDPE) lens, and transmitted to the human body by Cassegrain antenna. The reflected terahertz wave goes the same way it was emitted back to the feed element for Cassegrain antenna, focused on the horn antenna of detector by another high density polyethylene lens. The scanning method is the use of two-dimensional planar mirror, one responsible for horizontal scanning, and another responsible for vertical scanning. Our system can achieve a clear human body image, has better sensitivity and resolution than passive imaging system, and costs much lower than other active imaging system in the meantime.
Telemetry Tests Of The Advanced Receiver II
NASA Technical Reports Server (NTRS)
Hinedi, Sami M.; Bevan, Roland P.; Marina, Miguel
1993-01-01
Report describes telemetry tests of Advanced Receiver II (ARX-II): digital radio receiving subsystem operating on intermediate-frequency output of another receiving subsystem called "multimission receiver" (MMR), detecting carrier, subcarrier, and data-symbol signals transmitted by spacecraft, and extracts Doppler information from signals. Analysis of data shows performance of MMR/ARX-II system comparable and sometimes superior to performances of Blk-III/BPA and Blk-III/SDA/SSA systems.
Rezai, Ali R; Finelli, Daniel; Nyenhuis, John A; Hrdlicka, Greg; Tkach, Jean; Sharan, Ashwini; Rugieri, Paul; Stypulkowski, Paul H; Shellock, Frank G
2002-03-01
To assess magnetic resonance imaging (MRI)-related heating for a neurostimulation system (Activa Tremor Control System, Medtronic, Minneapolis, MN) used for chronic deep brain stimulation (DBS). Different configurations were evaluated for bilateral neurostimulators (Soletra Model 7426), extensions, and leads to assess worst-case and clinically relevant positioning scenarios. In vitro testing was performed using a 1.5-T/64-MHz MR system and a gel-filled phantom designed to approximate the head and upper torso of a human subject. MRI was conducted using the transmit/receive body and transmit/receive head radio frequency (RF) coils. Various levels of RF energy were applied with the transmit/receive body (whole-body averaged specific absorption rate (SAR); range, 0.98-3.90 W/kg) and transmit/receive head (whole-body averaged SAR; range, 0.07-0.24 W/kg) coils. A fluoroptic thermometry system was used to record temperatures at multiple locations before (1 minute) and during (15 minutes) MRI. Using the body RF coil, the highest temperature changes ranged from 2.5 degrees-25.3 degrees C. Using the head RF coil, the highest temperature changes ranged from 2.3 degrees-7.1 degrees C.Thus, these findings indicated that substantial heating occurs under certain conditions, while others produce relatively minor, physiologically inconsequential temperature increases. The temperature increases were dependent on the type of RF coil, level of SAR used, and how the lead wires were positioned. Notably, the use of clinically relevant positioning techniques for the neurostimulation system and low SARs commonly used for imaging the brain generated little heating. Based on this information, MR safety guidelines are provided. These observations are restricted to the tested neurostimulation system.
2010-03-26
important events receive the most attention. Ensures that absentees and flank units receive changes to the operation order. Transmits changes to them...York: Vintage Books, 1991. Fuller, J. F. C. Generalship: Its Diseases and Their Cure . Harrisburg, PA: Military Service Publishing Co., 1936
Gratian, J. W.; Gratian, A. C.; Crane, H. R.; Bourns, M. E.; Nieset, R. T.
1961-04-18
A super-generative radar system is described as having alternate phases of transmission and reception and is adapted to transmit for unequal durations in the absence of receiving energy and for equal and longer durations when energy of proper phase is received. (AEC)
48 CFR 52.214-7 - Late submissions, modifications, and withdrawals of bids.
Code of Federal Regulations, 2010 CFR
2010-10-01
... transmitted through an electronic commerce method authorized by the IFB, it was received at the initial point... Government processes resume. (e) Bids may be withdrawn by written notice received at any time before the...
47 CFR 25.151 - Public notice period.
Code of Federal Regulations, 2012 CFR
2012-10-01
... authorizations; (2) The receipt of applications for license or registration of receive-only earth stations; (3... of space station facilities, transmitting earth station facilities, or international receive-only earth station facilities; (6) Significant Commission actions regarding applications; (7) Information...
47 CFR 25.151 - Public notice period.
Code of Federal Regulations, 2011 CFR
2011-10-01
... authorizations; (2) The receipt of applications for license or registration of receive-only earth stations; (3... of space station facilities, transmitting earth station facilities, or international receive-only earth station facilities; (6) Significant Commission actions regarding applications; (7) Information...
47 CFR 25.151 - Public notice period.
Code of Federal Regulations, 2013 CFR
2013-10-01
... authorizations; (2) The receipt of applications for license or registration of receive-only earth stations; (3... of space station facilities, transmitting earth station facilities, or international receive-only earth station facilities; (6) Significant Commission actions regarding applications; (7) Information...
47 CFR 25.151 - Public notice period.
Code of Federal Regulations, 2014 CFR
2014-10-01
... authorizations; (2) The receipt of applications for license or registration of receive-only earth stations; (3... of space station facilities, transmitting earth station facilities, or international receive-only earth station facilities; (6) Significant Commission actions regarding applications; (7) Information...
47 CFR 25.151 - Public notice period.
Code of Federal Regulations, 2010 CFR
2010-10-01
... authorizations; (2) The receipt of applications for license or registration of receive-only earth stations; (3... of space station facilities, transmitting earth station facilities, or international receive-only earth station facilities; (6) Significant Commission actions regarding applications; (7) Information...
Radar cross calibration investigation TAMU radar polarimeter calibration measurements
NASA Technical Reports Server (NTRS)
Blanchard, A. J.; Newton, R. W.; Bong, S.; Kronke, C.; Warren, G. L.; Carey, D.
1982-01-01
A short pulse, 20 MHz bandwidth, three frequency radar polarimeter system (RPS) operates at center frequencies of 10.003 GHz, 4.75 GHz, and 1.6 GHz and utilizes dual polarized transmit and receive antennas for each frequency. The basic lay-out of the RPS is different from other truck mounted systems in that it uses a pulse compression IF section common to all three RF heads. Separate transmit and receive antennas are used to improve the cross-polarization isolation at each particular frequency. The receive is a digitally controlled gain modulated subsystem and is interfaced directly with a microprocesser computer for control and data manipulation. Antenna focusing distance, focusing each antenna pair, rf head stability, and polarization characteristics of RPS antennas are discussed. Platform and data acquisition procedures are described.
NASA Technical Reports Server (NTRS)
Williams, J. H., Jr.; Karagulle, H.; Lee, S. S.
1982-01-01
The quantitative understanding of ultrasonic nondestructive evaluation parameters such as the stress wave factor were studied. Ultrasonic input/output characteristics for an isotropic elastic plate with transmitting and receiving longitudinal transducers coupled to the same face were analyzed. The asymptotic normal stress is calculated for an isotropic elastic half space subjected to a uniform harmonic normal stress applied to a circular region at the surface. The radiated stress waves are traced within the plate by considering wave reflections at the top and bottom faces. The output voltage amplitude of the receiving transducer is estimated by considering only longitudinal waves. Agreement is found between the output voltage wave packet amplitudes and times of arrival due to multiple reflections of the longitudinal waves.
NASA Technical Reports Server (NTRS)
Maleki, Lutfollah (Inventor)
1993-01-01
Two different carrier frequencies modulated by a reference frequency are transmitted to each receiver to be synchronized therewith. Each receiver responds to local phase differences between the two received signals to correct the phase of one of them so as to maintain the corrected signal as a reliable synchronization reference.
Method and apparatus for monitoring the thickness of a coal rib during rib formation
Mowrey, Gary L.; Ganoe, Carl W.; Monaghan, William D.
1996-01-01
Apparatus for monitoring the position of a mining machine cutting a new entry in a coal seam relative to an adjacent, previously cut entry to determine the distance between a near face of the adjacent previously cut entry and a new face adjacent thereto of a new entry being cut by the mining machine which together define the thickness of a coal rib being formed between the new entry and the adjacent previously cut entry during the new entry-cutting operation. The monitoring apparatus; includes a transmit antenna mounted on the mining machine and spaced inwardly from the new face of the coal rib for transmitting radio energy towards the coal rib so that one portion of the radio energy is reflected by the new face which is defined at an air-coal interface between the new entry and the coal rib and another portion of the radio energy is reflected by the near face of the coal rib which is defined at an air-coal interface between the coal rib and the adjacent previously cut entry. A receive antenna mounted on the mining machine and spaced inwardly of the new face of the coal rib receives the one portion of the radio energy reflected by the new face and also receives the another portion of the radio energy reflected by the near face. A processor determines a first elapsed time period equal to the time required for the one portion of the radio energy reflected by the new face to travel between the transmit antenna and the receive antenna and also determines a second elapsed time period equal to the time required for the another portion of the radio energy reflected by the near face to travel between the transmit antenna and the receive antenna and thereafter calculates the thickness of the coal rib being formed as a function of the difference between the first and second elapsed time periods.
Farag, Adam; Peterson, Justin Charles; Szekeres, Trevor; Bauman, Glenn; Chin, Joseph; Romagnoli, Cesare; Bartha, Robert; Scholl, Timothy J
2015-08-01
To develop and optimize radiofrequency (RF) hardware for the detection of endogenous sodium ((23) Na) by 3.0 Tesla (T) MRI in the human prostate. A transmit-only receive-only (TORO) RF system of resonators consisting of an unshielded, asymmetric, quadrature birdcage (transmit), and an endorectal (ER), linear, surface (receive) coil were developed and tested on a 3T MRI scanner. Two different ER receivers were constructed; a single-tuned ((23) Na) and a dual-tuned ((1) H/(23) Na). Both receivers were evaluated by the measurements of signal-to-noise ratio (SNR) and B1 homogeneity. For tissue sodium concentration (TSC) quantification, vials containing known sodium concentrations were incorporated into the ER. The system was used to measure the prostate TSC of three men (age 55 ± 5 years) with biopsy-proven prostate cancer. B1 field inhomogeneity of the asymmetric transmitter was estimated to be less than 5%. The mean SNR measured in a region of interest within the prostate using the single-tuned ER coil was 54.0 ± 4.6. The mean TSC in the central gland was 60.2 ± 5.7 mmol/L and in the peripheral gland was 70.5 ± 9.0 mmol/L. A TORO system was developed and optimized for (23) Na MRI of the human prostate which showed good sensitivity throughout the prostate for quantitative measurement of TSC. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Hamdi, Mazda; Kenari, Masoumeh Nasiri
2013-06-01
We consider a time-hopping based multiple access scheme introduced in [1] for communication over dispersive infrared links, and evaluate its performance for correlator and matched filter receivers. In the investigated time-hopping code division multiple access (TH-CDMA) method, the transmitter benefits a low rate convolutional encoder. In this method, the bit interval is divided into Nc chips and the output of the encoder along with a PN sequence assigned to the user determines the position of the chip in which the optical pulse is transmitted. We evaluate the multiple access performance of the system for correlation receiver considering background noise which is modeled as White Gaussian noise due to its large intensity. For the correlation receiver, the results show that for a fixed processing gain, at high transmit power, where the multiple access interference has the dominant effect, the performance improves by the coding gain. But at low transmit power, in which the increase of coding gain leads to the decrease of the chip time, and consequently, to more corruption due to the channel dispersion, there exists an optimum value for the coding gain. However, for the matched filter, the performance always improves by the coding gain. The results show that the matched filter receiver outperforms the correlation receiver in the considered cases. Our results show that, for the same bandwidth and bit rate, the proposed system excels other multiple access techniques, like conventional CDMA and time hopping scheme.
Matte, Guillaume M; Van Neer, Paul L M J; Danilouchkine, Mike G; Huijssen, Jacob; Verweij, Martin D; de Jong, Nico
2011-03-01
Second-harmonic imaging is currently one of the standards in commercial echographic systems for diagnosis, because of its high spatial resolution and low sensitivity to clutter and near-field artifacts. The use of nonlinear phenomena mirrors is a great set of solutions to improve echographic image resolution. To further enhance the resolution and image quality, the combination of the 3rd to 5th harmonics--dubbed the superharmonics--could be used. However, this requires a bandwidth exceeding that of conventional transducers. A promising solution features a phased-array design with interleaved low- and high-frequency elements for transmission and reception, respectively. Because the amplitude of the backscattered higher harmonics at the transducer surface is relatively low, it is highly desirable to increase the sensitivity in reception. Therefore, we investigated the optimization of the number of elements in the receiving aperture as well as their arrangement (topology). A variety of configurations was considered, including one transmit element for each receive element (1/2) up to one transmit for 7 receive elements (1/8). The topologies are assessed based on the ratio of the harmonic peak pressures in the main and grating lobes. Further, the higher harmonic level is maximized by optimization of the center frequency of the transmitted pulse. The achievable SNR for a specific application is a compromise between the frequency-dependent attenuation and nonlinearity at a required penetration depth. To calculate the SNR of the complete imaging chain, we use an approach analogous to the sonar equation used in underwater acoustics. The generated harmonic pressure fields caused by nonlinear wave propagation were modeled with the iterative nonlinear contrast source (INCS) method, the KZK, or the Burger's equation. The optimal topology for superharmonic imaging was an interleaved design with 1 transmit element per 6 receive elements. It improves the SNR by ~5 dB compared with the interleaved (1/2) design reported in literature. The optimal transmit frequency for superharmonic echocardiography was found to be 1.0 to 1.2 MHz. For superharmonic abdominal imaging this frequency was found to be 1.7 to 1.9 MHz. For 2nd-harmonic echocardiography, the optimal transmit frequency of 1.8 MHz reported in the literature was corroborated with our simulation results.
Pilot Preferences on Displayed Aircraft Control Variables
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Gregory, Irene M.
2013-01-01
The experiments described here explored how pilots want available maneuver authority information transmitted and how this information affects pilots before and after an aircraft failure. The aircraft dynamic variables relative to flight performance were narrowed to energy management variables. A survey was conducted to determine what these variables should be. Survey results indicated that bank angle, vertical velocity, and airspeed were the preferred variables. Based on this, two displays were designed to inform the pilot of available maneuver envelope expressed as bank angle, vertical velocity, and airspeed. These displays were used in an experiment involving control surface failures. Results indicate the displayed limitations in bank angle, vertical velocity, and airspeed were helpful to the pilots during aircraft surface failures. However, the additional information did lead to a slight increase in workload, a small decrease in perceived aircraft flying qualities, and no effect on aircraft situation awareness.
NASA Technical Reports Server (NTRS)
Polanco, Michael
2010-01-01
The forward and vertical impact stability of a composite honeycomb Deployable Energy Absorber (DEA) was evaluated during a full-scale crash test of an MD-500 helicopter at NASA Langley?s Landing and Impact Research Facility. The lower skin of the helicopter was retrofitted with DEA components to protect the airframe subfloor upon impact and to mitigate loads transmitted to Anthropomorphic Test Device (ATD) occupants. To facilitate the design of the DEA for this test, an analytical study was conducted using LS-DYNA(Registered TradeMark) to evaluate the performance of a shell-based DEA incorporating different angular cell orientations as well as simultaneous vertical and forward impact conditions. By conducting this study, guidance was provided in obtaining an optimum design for the DEA that would dissipate the kinetic energy of the airframe while maintaining forward and vertical impact stability.
Baumbaugh, Alan E.; Knickerbocker, Kelly L.
1988-06-04
A method and apparatus for suppressing from transmission, non-informational data words from a source of data words such as a video camera. Data words having values greater than a predetermined threshold are transmitted whereas data words having values less than a predetermined threshold are not transmitted but their occurrences instead are counted. Before being transmitted, the count of occurrences of invalid data words and valid data words are appended with flag digits which a receiving system decodes. The original data stream is fully reconstructable from the stream of valid data words and count of invalid data words.
GNSS satellite transmit power and its impact on orbit determination
NASA Astrophysics Data System (ADS)
Steigenberger, Peter; Thoelert, Steffen; Montenbruck, Oliver
2018-06-01
Antenna thrust is a small acceleration acting on Global Navigation Satellite System satellites caused by the transmission of radio navigation signals. Knowledge about the transmit power and the mass of the satellites is required for the computation of this effect. The actual transmit power can be obtained from measurements with a high-gain antenna and knowledge about the properties of the transmit and receive antennas as well as losses along the propagation path. Transmit power measurements for different types of GPS, GLONASS, Galileo, and BeiDou-2 satellites were taken with a 30-m dish antenna of the German Aerospace Center (DLR) located at its ground station in Weilheim. For GPS, total L-band transmit power levels of 50-240 W were obtained, 20-135 W for GLONASS, 95-265 W for Galileo, and 130-185 W for BeiDou-2. The transmit power differs usually only slightly for individual spacecraft within one satellite block. An exception are the GLONASS-M satellites where six subgroups with different transmit power levels could be identified. Considering the antenna thrust in precise orbit determination of GNSS satellites decreases the orbital radius by 1-27 mm depending on the transmit power, the satellite mass, and the orbital period.
Sensory factors limiting horizontal and vertical visual span for letter recognition
Yu, Deyue; Legge, Gordon E.; Wagoner, Gunther; Chung, Susana T. L.
2014-01-01
Reading speed for English text is slower for text oriented vertically than horizontally. Yu, Park, Gerold, and Legge (2010) showed that slower reading of vertical text is associated with a smaller visual span (the number of letters recognized with high accuracy without moving the eyes). Three possible sensory determinants of the size of the visual span are: resolution (decreasing acuity at letter positions farther from the midline), mislocations (uncertainty about the relative position of letters in strings), and crowding (interference from flanking letters in recognizing the target letter). In the present study, we asked which of these factors is most important in determining the size of the visual span, and likely in turn in determining the horizontal/vertical difference in reading when letter size is above the critical print size for reading. We used a decomposition analysis to represent constraints due to resolution, mislocations, and crowding as losses in information transmitted (in bits) about letter recognition. Across vertical and horizontal conditions, crowding accounted for 75% of the loss in information, mislocations accounted for 19% of the loss, and declining acuity away from fixation accounted for only 6%. We conclude that crowding is the major factor limiting the size of the visual span, and that the horizontal/vertical difference in the size of the visual span is associated with stronger crowding along the vertical midline. PMID:25187253
Sensory factors limiting horizontal and vertical visual span for letter recognition
Yu, Deyue; Legge, Gordon E.; Wagoner, Gunther; Chung, Susana T. L.
2014-01-01
Reading speed for English text is slower for text oriented vertically than horizontally. Yu, Park, Gerold, and Legge (2010) showed that slower reading of vertical text is associated with a smaller visual span (the number of letters recognized with high accuracy without moving the eyes). Three possible sensory determinants of the size of the visual span are: resolution (decreasing acuity at letter positions farther from the midline), mislocations (uncertainty about the relative position of letters in strings), and crowding (interference from flanking letters in recognizing the target letter). In the present study, we asked which of these factors is most important in determining the size of the visual span, and likely in turn in determining the horizontal/vertical difference in reading when letter size is above the critical print size for reading. We used a decomposition analysis to represent constraints due to resolution, mislocations, and crowding as losses in information transmitted (in bits) about letter recognition. Across vertical and horizontal conditions, crowding accounted for 75% of the loss in information, mislocations accounted for 19% of the loss, and declining acuity away from fixation accounted for only 6%. We conclude that crowding is the major factor limiting the size of the visual span, and that the horizontal/vertical difference in the size of the visual span is associated with stronger crowding along the vertical midline.
Herren, Jeremy K.; Paredes, Juan C.; Schüpfer, Fanny; Lemaitre, Bruno
2013-01-01
ABSTRACT Spiroplasma is a diverse bacterial clade that includes many vertically transmitted insect endosymbionts, including Spiroplasma poulsonii, a natural endosymbiont of Drosophila melanogaster. These bacteria persist in the hemolymph of their adult host and exhibit efficient vertical transmission from mother to offspring. In this study, we analyzed the mechanism that underlies their vertical transmission, and here we provide strong evidence that these bacteria use the yolk uptake machinery to colonize the germ line. We show that Spiroplasma reaches the oocyte by passing through the intercellular space surrounding the ovarian follicle cells and is then endocytosed into oocytes within yolk granules during the vitellogenic stages of oogenesis. Mutations that disrupt yolk uptake by oocytes inhibit vertical Spiroplasma transmission and lead to an accumulation of these bacteria outside the oocyte. Impairment of yolk secretion by the fat body results in Spiroplasma not reaching the oocyte and a severe reduction of vertical transmission. We propose a model in which Spiroplasma first interacts with yolk in the hemolymph to gain access to the oocyte and then uses the yolk receptor, Yolkless, to be endocytosed into the oocyte. Cooption of the yolk uptake machinery is a powerful strategy for endosymbionts to target the germ line and achieve vertical transmission. This mechanism may apply to other endosymbionts and provides a possible explanation for endosymbiont host specificity. PMID:23462112
NASA Technical Reports Server (NTRS)
Wu, Jian; Blanc, Michel; Alcayde, Denis; Barakat, Abdullah R.; Fontanari, Jean; Blelly, Pierre-Louis; Kofman, Wlodek
1992-01-01
EISCAT VHF radar was used to investigate the vertical flows of H(+) and O(+) ions in the topside high-latitude ionosphere. The radar transmitted a single long pulse to probe the ionosphere from 300 to 1200 km altitude. A calculation scheme is developed to deduce the H(+) drift velocity from the coupled momentum equations of H(+), O(+), and the electrons, using the radar data and a neutral atmosphere model. The H(+) vertical drift velocity was expressed as a linear combination of the different forces acting on the plasma. Two nights, one very quiet, one with moderate magnetic activity, were used to test the technique and to provide a first study of the morphology and orders of magnitudes of ion outflow fluxes over Tromso. O(+) vertical flows were found to be downward or close to zero most of the time in the topside ionosphere; they appeared to be strongly correlated with magnetic activity during the disturbed night. H(+) topside ion fluxes were always directed upward, with velocity reaching 500-1000 m/s. A permanent outflow of H(+) ions is inferred.
Plant-mediated interspecific horizontal transmission of an intracellular symbiont in insects
Gonella, Elena; Pajoro, Massimo; Marzorati, Massimo; Crotti, Elena; Mandrioli, Mauro; Pontini, Marianna; Bulgari, Daniela; Negri, Ilaria; Sacchi, Luciano; Chouaia, Bessem; Daffonchio, Daniele; Alma, Alberto
2015-01-01
Intracellular reproductive manipulators, such as Candidatus Cardinium and Wolbachia are vertically transmitted to progeny but rarely show co-speciation with the host. In sap-feeding insects, plant tissues have been proposed as alternative horizontal routes of interspecific transmission, but experimental evidence is limited. Here we report results from experiments that show that Cardinium is horizontally transmitted between different phloem sap-feeding insect species through plants. Quantitative PCR and in situ hybridization experiments indicated that the leafhopper Scaphoideus titanus releases Cardinium from its salivary glands during feeding on both artificial media and grapevine leaves. Successional time-course feeding experiments with S. titanus initially fed sugar solutions or small areas of grapevine leaves followed by feeding by the phytoplasma vector Macrosteles quadripunctulatus or the grapevine feeder Empoasca vitis revealed that the symbionts were transmitted to both species. Explaining interspecific horizontal transmission through plants improves our understanding of how symbionts spread, their lifestyle and the symbiont-host intermixed evolutionary pattern. PMID:26563507
Plant-mediated interspecific horizontal transmission of an intracellular symbiont in insects.
Gonella, Elena; Pajoro, Massimo; Marzorati, Massimo; Crotti, Elena; Mandrioli, Mauro; Pontini, Marianna; Bulgari, Daniela; Negri, Ilaria; Sacchi, Luciano; Chouaia, Bessem; Daffonchio, Daniele; Alma, Alberto
2015-11-13
Intracellular reproductive manipulators, such as Candidatus Cardinium and Wolbachia are vertically transmitted to progeny but rarely show co-speciation with the host. In sap-feeding insects, plant tissues have been proposed as alternative horizontal routes of interspecific transmission, but experimental evidence is limited. Here we report results from experiments that show that Cardinium is horizontally transmitted between different phloem sap-feeding insect species through plants. Quantitative PCR and in situ hybridization experiments indicated that the leafhopper Scaphoideus titanus releases Cardinium from its salivary glands during feeding on both artificial media and grapevine leaves. Successional time-course feeding experiments with S. titanus initially fed sugar solutions or small areas of grapevine leaves followed by feeding by the phytoplasma vector Macrosteles quadripunctulatus or the grapevine feeder Empoasca vitis revealed that the symbionts were transmitted to both species. Explaining interspecific horizontal transmission through plants improves our understanding of how symbionts spread, their lifestyle and the symbiont-host intermixed evolutionary pattern.
Noncoherent Combination Of Optical-Heterodyne Outputs
NASA Technical Reports Server (NTRS)
Chen, Chien-Chung; Lesh, James R.
1990-01-01
In proposed scheme for reception of amplitude- or frequency-modulated signals transmitted optically through atmosphere, main receiver aperture divided into subapertures equipped with receivers, and outputs of receivers combined noncoherently. Multiple subaperture receivers used instead of attempting to focus all light from single large aperture onto one receiver. Outputs of receivers combined after demodulation. System will not perform as well as fully coherent system, but surpasses single-large-aperture system in presence of atmospheric turbulence. Offers superior performance in presence of distorted wavefront and/or imperfect receiver optics.
Development of Elevation and Relief Databases for ICESat-2/ATLAS Receiver Algorithms
NASA Astrophysics Data System (ADS)
Leigh, H. W.; Magruder, L. A.; Carabajal, C. C.; Saba, J. L.; Urban, T. J.; Mcgarry, J.; Schutz, B. E.
2013-12-01
The Advanced Topographic Laser Altimeter System (ATLAS) is planned to launch onboard NASA's ICESat-2 spacecraft in 2016. ATLAS operates at a wavelength of 532 nm with a laser repeat rate of 10 kHz and 6 individual laser footprints. The satellite will be in a 500 km, 91-day repeat ground track orbit at an inclination of 92°. A set of onboard Receiver Algorithms has been developed to reduce the data volume and data rate to acceptable levels while still transmitting the relevant ranging data. The onboard algorithms limit the data volume by distinguishing between surface returns and background noise and selecting a small vertical region around the surface return to be included in telemetry. The algorithms make use of signal processing techniques, along with three databases, the Digital Elevation Model (DEM), the Digital Relief Map (DRM), and the Surface Reference Mask (SRM), to find the signal and determine the appropriate dynamic range of vertical data surrounding the surface for downlink. The DEM provides software-based range gating for ATLAS. This approach allows the algorithm to limit the surface signal search to the vertical region between minimum and maximum elevations provided by the DEM (plus some margin to account for uncertainties). The DEM is constructed in a nested, three-tiered grid to account for a hardware constraint limiting the maximum vertical range to 6 km. The DRM is used to select the vertical width of the telemetry band around the surface return. The DRM contains global values of relief calculated along 140 m and 700 m ground track segments consistent with a 92° orbit. The DRM must contain the maximum value of relief seen in any given area, but must be as close to truth as possible as the DRM directly affects data volume. The SRM, which has been developed independently from the DEM and DRM, is used to set parameters within the algorithm and select telemetry bands for downlink. Both the DEM and DRM are constructed from publicly available digital elevation models. No elevation models currently exist that provide global coverage at a sufficient resolution, so several regional models have been mosaicked together to produce global databases. In locations where multiple data sets are available, evaluations have been made to determine the optimal source for the databases, primarily based on resolution and accuracy. Separate procedures for calculating relief were developed for high latitude (>60N/S) regions in order to take advantage of polar stereographic projections. An additional method for generating the databases was developed for use over Antarctica, such that high resolution, regional elevation models can be easily incorporated as they become available in the future. The SRM is used to facilitate DEM and DRM production by defining those regions that are ocean and sea ice. Ocean and sea ice elevation values are defined by the geoid, while relief is set to a constant value. Results presented will include the details of data source selection, the methodologies used to create the databases, and the final versions of both the DEM and DRM databases. Companion presentations by McGarry, et al. and Carabajal, et al. describe the ATLAS onboard Receiver Algorithms and the database verification, respectively.
NASA Technical Reports Server (NTRS)
Britt, C. L., Jr.
1975-01-01
The development of an RF Multilateration system to provide accurate position and velocity measurements during the approach and landing phase of Vertical Takeoff Aircraft operation is discussed. The system uses an angle-modulated ranging signal to provide both range and range rate measurements between an aircraft transponder and multiple ground stations. Range and range rate measurements are converted to coordinate measurements and the coordinate and coordinate rate information is transmitted by an integral data link to the aircraft. Data processing techniques are analyzed to show advantages and disadvantages. Error analyses are provided to permit a comparison of the various techniques.
Radar Interferometer for Topographic Mapping of Glaciers and Ice Sheets
NASA Technical Reports Server (NTRS)
Moller, Delwyn K.; Sadowy, Gregory A.; Rignot, Eric J.; Madsen, Soren N.
2007-01-01
A report discusses Ka-band (35-GHz) radar for mapping the surface topography of glaciers and ice sheets at high spatial resolution and high vertical accuracy, independent of cloud cover, with a swath-width of 70 km. The system is a single- pass, single-platform interferometric synthetic aperture radar (InSAR) with an 8-mm wavelength, which minimizes snow penetration while remaining relatively impervious to atmospheric attenuation. As exhibited by the lower frequency SRTM (Shuttle Radar Topography Mission) AirSAR and GeoSAR systems, an InSAR measures topography using two antennas separated by a baseline in the cross-track direction, to view the same region on the ground. The interferometric combination of data received allows the system to resolve the pathlength difference from the illuminated area to the antennas to a fraction of a wavelength. From the interferometric phase, the height of the target area can be estimated. This means an InSAR system is capable of providing not only the position of each image point in along-track and slant range as with a traditional SAR but also the height of that point through interferometry. Although the evolution of InSAR to a millimeter-wave center frequency maximizes the interferometric accuracy from a given baseline length, the high frequency also creates a fundamental problem of swath coverage versus signal-to-noise ratio. While the length of SAR antennas is typically fixed by mass and stowage or deployment constraints, the width is constrained by the desired illuminated swath width. As the across-track beam width which sets the swath size is proportional to the wavelength, a fixed swath size equates to a smaller antenna as the frequency is increased. This loss of antenna size reduces the two-way antenna gain to the second power, drastically reducing the signal-to-noise ratio of the SAR system. This fundamental constraint of high-frequency SAR systems is addressed by applying digital beam-forming (DBF) techniques to synthesize multiple simultaneous receive beams in elevation while maintaining a broad transmit illumination. Through this technique, a high antenna gain on receive is preserved, thereby reducing the required transmit power and thus enabling high-frequency SARs and high-precision InSAR from a single spacecraft.
Using convolutional decoding to improve time delay and phase estimation in digital communications
Ormesher, Richard C [Albuquerque, NM; Mason, John J [Albuquerque, NM
2010-01-26
The time delay and/or phase of a communication signal received by a digital communication receiver can be estimated based on a convolutional decoding operation that the communication receiver performs on the received communication signal. If the original transmitted communication signal has been spread according to a spreading operation, a corresponding despreading operation can be integrated into the convolutional decoding operation.
NASA Astrophysics Data System (ADS)
Gok, Gokhan; Mosna, Zbysek; Arikan, Feza; Arikan, Orhan; Erdem, Esra
2016-07-01
Ionospheric observation is essentially accomplished by specialized radar systems called ionosondes. The time delay between the transmitted and received signals versus frequency is measured by the ionosondes and the received signals are processed to generate ionogram plots, which show the time delay or reflection height of signals with respect to transmitted frequency. The critical frequencies of ionospheric layers and virtual heights, that provide useful information about ionospheric structurecan be extracted from ionograms . Ionograms also indicate the amount of variability or disturbances in the ionosphere. With special inversion algorithms and tomographical methods, electron density profiles can also be estimated from the ionograms. Although structural pictures of ionosphere in the vertical direction can be observed from ionosonde measurements, some errors may arise due to inaccuracies that arise from signal propagation, modeling, data processing and tomographic reconstruction algorithms. Recently IONOLAB group (www.ionolab.org) developed a new algorithm for effective and accurate extraction of ionospheric parameters and reconstruction of electron density profile from ionograms. The electron density reconstruction algorithm applies advanced optimization techniques to calculate parameters of any existing analytical function which defines electron density with respect to height using ionogram measurement data. The process of reconstructing electron density with respect to height is known as the ionogram scaling or true height analysis. IONOLAB-RAY algorithm is a tool to investigate the propagation path and parameters of HF wave in the ionosphere. The algorithm models the wave propagation using ray representation under geometrical optics approximation. In the algorithm , the structural ionospheric characteristics arerepresented as realistically as possible including anisotropicity, inhomogenity and time dependence in 3-D voxel structure. The algorithm is also used for various purposes including calculation of actual height and generation of ionograms. In this study, the performance of electron density reconstruction algorithm of IONOLAB group and standard electron density profile algorithms of ionosondes are compared with IONOLAB-RAY wave propagation simulation in near vertical incidence. The electron density reconstruction and parameter extraction algorithms of ionosondes are validated with the IONOLAB-RAY results both for quiet anddisturbed ionospheric states in Central Europe using ionosonde stations such as Pruhonice and Juliusruh . It is observed that IONOLAB ionosonde parameter extraction and electron density reconstruction algorithm performs significantly better compared to standard algorithms especially for disturbed ionospheric conditions. IONOLAB-RAY provides an efficient and reliable tool to investigate and validate ionosonde electron density reconstruction algorithms, especially in determination of reflection height (true height) of signals and critical parameters of ionosphere. This study is supported by TUBITAK 114E541, 115E915 and Joint TUBITAK 114E092 and AS CR 14/001 projects.
Submillimeter Confocal Imaging Active Module
NASA Technical Reports Server (NTRS)
Hong, John; Mehdi, Imran; Siegel, Peter; Chattopadhyay, Goutam; Cwik, Thomas; Rowell, Mark; Hacker, John
2009-01-01
The term submillimeter confocal imaging active module (SCIAM) denotes a proposed airborne coherent imaging radar system that would be suitable for use in reconnaissance, surveillance, and navigation. The development of the SCIAM would include utilization and extension of recent achievements in monolithic microwave integrated circuits capable of operating at frequencies up to and beyond a nominal radio frequency of 340 GHz. Because the SCIAM would be primarily down-looking (in contradistinction to primarily side-looking), it could be useful for imaging shorter objects located between taller ones (for example, objects on streets between buildings). The SCIAM would utilize a confocal geometry to obtain high cross-track resolution, and would be amenable to synthetic-aperture processing of its output to obtain high along-track resolution. The SCIAM (see figure) would include multiple (two in the initial version) antenna apertures, separated from each other by a cross-track baseline of suitable length (e.g., 1.6 m). These apertures would both transmit the illuminating radar pulses and receive the returns. A common reference oscillator would generate a signal at a controllable frequency of (340 GHz + (Delta)f)/N, where (Delta)f is an instantaneous swept frequency difference and N is an integer. The output of this oscillator would be fed to a frequency- multiplier-and-power-amplifier module to obtain a signal, at 340 GHz + (Delta)f, that would serve as both the carrier signal for generating the transmitted pulses and a local-oscillator (LO) signal for a receiver associated with each antenna aperture. Because duplexers in the form of circulators or transmit/receive (T/R) switches would be lossy and extremely difficult to implement, the antenna apertures would be designed according to a spatial-diplexing scheme, in which signals would be coupled in and out via separate, adjacent transmitting and receiving feed horns. This scheme would cause the transmitted and received beams to be aimed in slightly different directions, and, hence, to not overlap fully on the targets on the ground. However, a preliminary analysis has shown that the loss of overlap would be small enough that the resulting loss in signal-to-noise ratio (SNR) would be much less than the SNR loss associated with the use of a 340-GHz T/R switch.
40 CFR 29.9 - How does the Administrator receive and respond to comments?
Code of Federal Regulations, 2010 CFR
2010-07-01
... State office or official is designated to act as a single point of contact between a State process and... program selected under § 29.6. (b) The single point of contact is not obligated to transmit comments from.... However, if a State process recommendation is transmitted by a single point of contact, all comments from...
Concurrent signal combining and channel estimation in digital communications
Ormesher, Richard C [Albuquerque, NM; Mason, John J [Albuquerque, NM
2011-08-30
In the reception of digital information transmitted on a communication channel, a characteristic exhibited by the communication channel during transmission of the digital information is estimated based on a communication signal that represents the digital information and has been received via the communication channel. Concurrently with the estimating, the communication signal is used to decide what digital information was transmitted.
NASA Astrophysics Data System (ADS)
Po'ad, F. A.; Ismail, W.; Jusoh, J. F.
2017-08-01
This paper describes the experiments and analysis conducted on 2.4 GHz embedded active Radio Frequency Identification (RFID) - Wireless Sensor Network (WSN) based system that has been developed for the purposes of location tracking and monitoring in indoor and outdoor environments. Several experiments are conducted to test the effectiveness and performance of the developed system and two of them is by measuring the Radio Frequency (RF) transmitting power and Received Signal Strength (RSS) to prove that the embedded active RFID tag is capable to generate higher transmit power during data transmission and able to provide better RSS reading compared to standalone RFID tag. Experiments are carried out on two RFID tags which are active RFID tag embedded with GPS and GSM (ER2G); and standalone RFID tag communicating with the same active RFID reader. The developed ER2G contributes 12.26 % transmit power and 6.47 % RSS reading higher than standalone RFID tag. The results conclude that the ER2G gives better performance compared to standalone RFID tag and can be used as guidelines for future design improvements.
Holman, Katherine M; Carr, James Andrew; Baddley, John W; Hook, Edward W
2013-11-01
Erectile dysfunction medications are being prescribed frequently; however, little is known about the amount of sexual health screening occurring in this setting. A retrospective cohort study evaluating sexual health and sexually transmitted infection screening occurring in veterans receiving initial erectile dysfunction medication prescription was conducted. A total of 252 patients received initial erectile dysfunction medication prescriptions between October 1, 2009, and December 31, 2009; had at least 1 health care provider visit 12 months before the date of initial prescription; and had no documentation of previous erectile dysfunction medication use. Approximately 3% of these patients had any aspect of a sexual history recorded in the 24 months surrounding initial erectile dysfunction medication prescription. Sexually transmitted infection screening was 9.9% for syphilis, 4.8% for HIV, and 4.3% for gonorrhea/chlamydia before prescription, with only a slight increase in HIV screening after prescription. Minimal sexual health assessment is being performed during the time surrounding initial prescription of erectile dysfunction medication. Further work needs to evaluate patient and provider barriers to basic elements of sexual health care, such as taking sexual histories or screening for sexually transmitted infections.
Loher, Timothy; Seitz, Andrew C.
2006-01-01
Pop-up archival transmitting (PAT) tags were used to study the fall migration of halibut in the Gulf of Alaska (GOA). We tagged 6 Pacific halibut Hippoglossus stenolepis on summer feeding grounds in the eastern GOA and another 6 in the western GOA from June 13 to August 6, 2002. The tags were programed to be released from the fish on January 15, 2003, at the height of the winter spawning season: 10 tags successfully detached, transmitted archived environmental data (depth and temperature), and generated accurate latitude–longitude coordinates shortly after pop-up; 2 tags deployed off SE Alaska were lost. The tags revealed that 6 fish had moved a considerable distance (>200 km) between tagging and pop-up, and all of these had moved northward to some extent. The longest of the observed migrations was from the southern Alaska Peninsula to Yakutat Bay, a linear displacement of 1153 km; 4 fish showed little evidence of geographic displacement, exhibiting migrations that ranged only from 30 to 69 km. Although 2 fish had moved inshore by the end of the tagging period, all other fish had moved offshore regardless of their overall migration distance. The precise timing of offshore movements varied, beginning as early as August and as late as January. These observations generally corroborate conventional tagging, indicating migration of halibut toward winter spawning grounds in the northern GOA, and movement of fish to deep water in fall. However, no single stereotypic migration behavior was apparent, and a variety of vertical movement patterns and temperature profiles were observed. Halibut spent most time in waters of 5 to 7°C, but experienced temperatures ranging from 2.6 to 11.6°C. Depth observations ranged from 0 to 736 m, with summertime activity concentrated in depths from 0 to 400 m, and halibut that exhibited offshore movement were typically observed at 300 to 700 m by mid-winter. Vertical movement (short-period changes in depth) varied among fish and over time, with some fish displaying little vertical activity, others displaying short periods of activity, and still others displaying considerable activity throughout their time at liberty.
Receive Mode Analysis and Design of Microstrip Reflectarrays
NASA Technical Reports Server (NTRS)
Rengarajan, Sembiam
2011-01-01
Traditionally microstrip or printed reflectarrays are designed using the transmit mode technique. In this method, the size of each printed element is chosen so as to provide the required value of the reflection phase such that a collimated beam results along a given direction. The reflection phase of each printed element is approximated using an infinite array model. The infinite array model is an excellent engineering approximation for a large microstrip array since the size or orientation of elements exhibits a slow spatial variation. In this model, the reflection phase from a given printed element is approximated by that of an infinite array of elements of the same size and orientation when illuminated by a local plane wave. Thus the reflection phase is a function of the size (or orientation) of the element, the elevation and azimuth angles of incidence of a local plane wave, and polarization. Typically, one computes the reflection phase of the infinite array as a function of several parameters such as size/orientation, elevation and azimuth angles of incidence, and in some cases for vertical and horizontal polarization. The design requires the selection of the size/orientation of the printed element to realize the required phase by interpolating or curve fitting all the computed data. This is a substantially complicated problem, especially in applications requiring a computationally intensive commercial code to determine the reflection phase. In dual polarization applications requiring rectangular patches, one needs to determine the reflection phase as a function of five parameters (dimensions of the rectangular patch, elevation and azimuth angles of incidence, and polarization). This is an extremely complex problem. The new method employs the reciprocity principle and reaction concept, two well-known concepts in electromagnetics to derive the receive mode analysis and design techniques. In the "receive mode design" technique, the reflection phase is computed for a plane wave incident on the reflectarray from the direction of the beam peak. In antenna applications with a single collimated beam, this method is extremely simple since all printed elements see the same angles of incidence. Thus the number of parameters is reduced by two when compared to the transmit mode design. The reflection phase computation as a function of five parameters in the rectangular patch array discussed previously is reduced to a computational problem with three parameters in the receive mode. Furthermore, if the beam peak is in the broadside direction, the receive mode design is polarization independent and the reflection phase computation is a function of two parameters only. For a square patch array, it is a function of the size, one parameter only, thus making it extremely simple.
Li, Yang; Cui, Shuai; Li, Weihua; Wang, Yixin; Cui, Zhizhong; Zhao, Peng; Chang, Shuang
2017-06-29
Avian leukosis virus (ALV) is one of the main causes of tumour development within the poultry industry in China. The subgroup J avian leukosis viruses (ALV-J), which induce erythroblastosis and myelocytomatosis, have the greatest pathogenicity and transmission ability within this class of viruses. ALV can be transmitted both horizontally and vertically; however, the effects of ALV infection in chickens-especially roosters-during the propagation, on future generations is not clear. Knowing the role of the cock in the transmission of ALV from generation to generation might contribute to the eradication programs for ALV. The results showed that two hens inseminated with ALV-J-positive semen developed temporary antibody responses to ALV-J at 4-5 weeks post insemination. The p27 antigen was detected in cloacal swabs of six hens, and in 3 of 26 egg albumens at 1-6 weeks after insemination. Moreover, no viremia was detected at 6 weeks after insemination even when virus isolation had been conducted six times at weekly intervals for each of the 12 females. However, ALV-J was isolated from 1 of their 34 progeny chicks at 1 week of age, and its gp85 had 98.4%-99.2% sequence identity with the gp85 of ALV-J isolated from semen samples of the six cocks. Our findings indicated that females that were late horizontally infected with ALV-J by artificial insemination might transmit the virus to progeny through eggs, which amounts to vertical transmission.
More Efficient Solar Thermal-Energy Receiver
NASA Technical Reports Server (NTRS)
Dustin, M. O.
1987-01-01
Thermal stresses and reradiation reduced. Improved design for solar thermal-energy receiver overcomes three major deficiencies of solar dynamic receivers described in literature. Concentrator and receiver part of solar-thermal-energy system. Receiver divided into radiation section and storage section. Concentrated solar radiation falls on boiling ends of heat pipes, which transmit heat to thermal-energy-storage medium. Receiver used in number of applications to produce thermal energy directly for use or to store thermal energy for subsequent use in heat engine.
de Jonge, Niels [Oak Ridge, TN
2010-08-17
A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.
Space Radar Image of Rabaul Volcano, New Guinea
NASA Technical Reports Server (NTRS)
1994-01-01
This is a radar image of the Rabaul volcano on the island of New Britain, Papua, New Guinea taken almost a month after its September 19, 1994, eruption that killed five people and covered the town of Rabaul and nearby villages with up to 75 centimeters (30 inches) of ash. More than 53,000 people have been displaced by the eruption. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 173rd orbit on October 11, 1994. This image is centered at 4.2 degrees south latitude and 152.2 degrees east longitude in the southwest Pacific Ocean. The area shown is approximately 21 kilometers by 25 kilometers (13 miles by 15.5 miles). North is toward the upper right. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). Most of the Rabaul volcano is underwater and the caldera (crater) creates Blanche Bay, the semi-circular body of water that occupies most of the center of the image. Volcanic vents within the caldera are visible in the image and include Vulcan, on a peninsula on the west side of the bay, and Rabalanakaia and Tavurvur (the circular purple feature near the mouth of the bay) on the east side. Both Vulcan and Tavurvur were active during the 1994 eruption. Ash deposits appear red-orange on the image, and are most prominent on the south flanks of Vulcan and north and northwest of Tavurvur. A faint blue patch in the water in the center of the image is a large raft of floating pumice fragments that were ejected from Vulcan during the eruption and clog the inner bay. Visible on the east side of the bay are the grid-like patterns of the streets of Rabaul and an airstrip, which appears as a dark northwest-trending band at the right-center of the image. Ashfall and subsequent rains caused the collapse of most buildings in the town of Rabaul. Mudflows and flooding continue to pose serious threats to the town and surrounding villages. Volcanologists and local authorities expect to use data such as this radar image to assist them in identifying the mechanisms of the eruption and future hazardous conditions that may be associated with the vigorously active volcano. Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.
Space Radar Image of Mount Pinatubo Volcano, Philippines
1999-05-01
These are color composite radar images showing the area around Mount Pinatubo in the Philippines. The images were acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 14, 1994 (left image) and October 5,1994 (right image). The images are centered at about 15 degrees north latitude and 120.5 degrees east longitude. Both images were obtained with the same viewing geometry. The color composites were made by displaying the L-band (horizontally transmitted and received) in red; the L-band (horizontally transmitted and vertically received) in green; and the C-band (horizontally transmitted and vertically received) in blue. The area shown is approximately 40 kilometers by 65 kilometers (25 miles by 40 miles). The main volcanic crater on Mount Pinatubo produced by the June 1991 eruptions and the steep slopes on the upper flanks of the volcano are easily seen in these images. Red on the high slopes shows the distribution of the ash deposited during the 1991 eruption, which appears red because of the low cross-polarized radar returns at C and L bands. The dark drainages radiating away from the summit are the smooth mudflows, which even three years after the eruptions continue to flood the river valleys after heavy rain. Comparing the two images shows that significant changes have occurred in the intervening five months along the Pasig-Potrero rivers (the dark area in the lower right of the images). Mudflows, called "lahars," that occurred during the 1994 monsoon season filled the river valleys, allowing the lahars to spread over the surrounding countryside. Three weeks before the second image was obtained, devastating lahars more than doubled the area affected in the Pasig-Potrero rivers, which is clearly visible as the increase in dark area on the lower right of the images. Migration of deposition to the east (right) has affected many communities. Newly affected areas included the community of Bacolor, Pampanga, where thousands of homes were buried in meters of hot mud and rock as 80,000 people fled the lahar-stricken area. Scientists are closely monitoring the westward migration ( toward the left in this image) of the lahars as the Pasig-Potrero rivers seek to join with the Porac River, an area that has not seen laharic activity since the eruption. This could be devastating because the Pasig-Potrero rivers might be permanently redirected to lower elevations along the Porac River where communities are located. Ground saturation with water during the rainy season reveals inactive channels that were dry in the April image. A small lake has turned into a pond in the lower reaches of the Potrero River because the channels are full of lahar deposits and the surface runoff has no where to flow. Changes in the degree of erosion in ash and pumice deposits from the 1991 eruption can also be seen in the channels that deliver the mudflow material to the Pasig-Potrero rivers. The 1991 Mount Pinatubo eruption is well known for its near-global effects on the atmosphere and short-term climate due to the large amount of sulfur dioxide that was injected into the upper atmosphere. Locally, however, the effects will most likely continue to impact surrounding areas for as long as the next 10 to 15 years. Mudflows, quite certainly, will continue to pose severe hazards to adjacent areas. Radar observations like those obtained by SIR-C/X-SAR will play a key role in monitoring these changes because of the radar's ability to see in daylight or darkness and even in the worst weather conditions. Radar imaging will be particularly useful, for example, during the monsoon season, when the lahars form. Frequent imaging of these lahar fields will allow scientists to better predict when they are likely to begin flowing again and which communities might be at risk. http://photojournal.jpl.nasa.gov/catalog/PIA01743
Pre-Launch Performance Testing of the ICESat-2/ATLAS Flight Science Receiver Algorithms
NASA Astrophysics Data System (ADS)
Mcgarry, J.; Carabajal, C. C.; Saba, J. L.; Rackley, A.; Holland, S.
2016-12-01
NASA's Advanced Topographic Laser Altimeter System (ATLAS) will be the single instrument on the ICESat-2 spacecraft which is expected to launch in late 2017 with a 3 year mission lifetime. The ICESat-2 planned orbital altitude is 500 km with a 92 degree inclination and 91-day repeat tracks. ATLAS is a single-photon detection system transmitting at 532nm with a laser repetition rate of 10 kHz and a 6 spot pattern on the Earth's surface. Without some method of reducing the received data, the volume of ATLAS telemetry would far exceed the normal X-band downlink capability. To reduce the data volume to an acceptable level a set of onboard Receiver Algorithms has been developed. These Algorithms limit the daily data volume by distinguishing surface echoes from the background noise and allowing the instrument to telemeter data from only a small vertical region about the signal. This is accomplished through the use of an onboard Digital Elevation Model (DEM), signal processing techniques, and onboard relief and surface reference maps. The ATLAS Receiver Algorithms have been completed and have been verified during Instrument testing in the spacecraft assembly area at the Goddard Space Flight Center in late 2015 and early 2016. Testing has been performed at ambient temperature with a pressure of one atmosphere as well as at the expected hot and cold temperatures in a vacuum. Results from testing to date show the Receiver Algorithms have the ability to handle a wide range of signal and noise levels with a very good sensitivity at relatively low signal to noise ratios. Testing with the ATLAS instrument and flight software shows very good agreement with previous Simulator testing and all of the requirements for ATLAS Receiver Algorithms were successfully verified during Run for the Record Testing in December 2015. This poster will describe the performance of the ATLAS Flight Science Receiver Algorithms during the Run for Record and Comprehensive Performance Testing performed at Goddard, which will give insight into the future on-orbit performance of the Algorithms. See the companion poster (Carabajal, et al) in this session.
Naito, Mizue; Morton, Joseph B; Pawlowska, Teresa E
2015-06-23
Arbuscular mycorrhizal fungi (AMF, Glomeromycota) colonize roots of the majority of terrestrial plants. They provide essential minerals to their plant hosts and receive photosynthates in return. All major lineages of AMF harbor endobacteria classified as Mollicutes, and known as mycoplasma-related endobacteria (MRE). Except for their substantial intrahost genetic diversity and ability to transmit vertically, virtually nothing is known about the life history of these endobacteria. To understand MRE biology, we sequenced metagenomes of three MRE populations, each associated with divergent AMF hosts. We found that each AMF species harbored a genetically distinct group of MRE. Despite vertical transmission, all MRE populations showed extensive chromosomal rearrangements, which we attributed to genetic recombination, activity of mobile elements, and a history of plectroviral invasion. The MRE genomes are characterized by a highly reduced gene content, indicating metabolic dependence on the fungal host, with the mechanism of energy production remaining unclear. Several MRE genes encode proteins with domains involved in protein-protein interactions with eukaryotic hosts. In addition, the MRE genomes harbor genes horizontally acquired from AMF. Some of these genes encode small ubiquitin-like modifier (SUMO) proteases specific to the SUMOylation systems of eukaryotes, which MRE likely use to manipulate their fungal host. The extent of MRE genome plasticity and reduction, along with the large number of horizontally acquired host genes, suggests a high degree of adaptation to the fungal host. These features, together with the ubiquity of the MRE-Glomeromycota associations, emphasize the significance of MRE in the biology of Glomeromycota.