Applying Fused Silica and Other Transparent Window Materials in Aerospace Applications
NASA Technical Reports Server (NTRS)
Salem, Jon
2017-01-01
A variety of transparent ceramics, such as AlONs and spinels, that were developed for military applications hold promise as spacecraft windows. Window materials in spacecraft such as the Space Shuttle must meet many requirements such as maintaining cabin pressure, sustaining thermal shock, and tolerating damage from hyper-velocity impact while providing superior optical characteristics. The workhorse transparent material for space missions from Apollo to the International Space Station has been fused silica due in part to its low density, low coefficient of expansion and optical quality. Despite its successful use, fused silica exhibits lower fracture toughness and impact resistance as compared to newer materials. Can these newer transparent ceramics lighten spacecraft window systems and might they be useful for applications such as phone screens? This presentation will compare recent optical ceramics to fused silica and demonstrate how weight can be saved.
Fused Silica and Other Transparent Window Materials
NASA Technical Reports Server (NTRS)
Salem, Jon
2016-01-01
Several transparent ceramics, such as spinel and AlONs are now being produced in sufficient large areas to be used in space craft window applications. The work horse transparent material for space missions from Apollo to the International Space Station has been fused silica due in part to its low coefficient of expansion and optical quality. Despite its successful use, fused silica exhibits anomalies in its crack growth behavior, depending on environmental preconditioning and surface damage. This presentation will compare recent optical ceramics to fused silica and discuss sources of variation in slow crack growth behavior.
Carbon Nanotube Reinforced Flexible Windows for Blast Protection
2010-07-01
transparent plastic composite for use as a material for window or as a laminate layer in the blast-resistant glazed window. This program focused...materials for window or as a laminate layer in the blast-resistant glazed window. It is obvious that further increasing the mechanical properties of...Dr. Ben Wang led the effort for design/fabrication of windows from the nanotube assembly and lamination experiments. 6 3. RESULTS AND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qingkun; Frazier, Allister W.; Zhao, Xinpeng
Experimental realization of optically transparent, mechanically robust and flexible aerogels has been a longstanding challenge, which limits their practical applications in energy-saving devices, such as thermally insulating films for enhancing energy efficiency of windows. The poor transparency precluded even hypothetical consideration of the possibility of birefringent aerogels. We develop birefringent and optically isotropic aerogels that combine properties of thermal super-insulation, mechanical robustness and flexibility, and transparency to visible-spectrum light. This unusual combination of physical properties is achieved by combining liquid crystalline self-organization of cellulose nanofibers with polysiloxane cross-linking and control of the nanoscale porosity to form hybrid organic-inorganic mesostructured aerogels.more » Potential applications of these inexpensive materials range from single pane window retrofitting to smart fabrics.« less
Noise Transmission Characteristics of Damped Plexiglas Windows
NASA Technical Reports Server (NTRS)
Gibbs, Gary P.; Buehrle, Ralph D.; Klos, Jacob; Brown, Sherilyn A.
2002-01-01
Most general aviation aircraft utilize single layer plexiglas material for the windshield and side windows. Adding noise control treatments to transparent panels is a challenging problem. In this paper, damped plexiglas windows are evaluated for replacement of conventional windows in general aviation aircraft to reduce the structure-borne and airborne noise transmitted into the interior. In contrast to conventional solid windows, the damped plexiglas window panels are fabricated using two or three layers of plexiglas with transparent viscoelastic damping material sandwiched between the layers. Results from acoustic tests conducted in the NASA Langley Structural Acoustic Loads and Transmission (SALT) facility are used to compare different designs of the damped plexiglas panels with solid windows of the same nominal thickness. Comparisons of the solid and damped plexiglas panels show reductions in the radiated sound power of up to 8 dB at low frequency resonances and as large as 4.5 dB over a 4000 Hz bandwidth. The weight of the viscoelastic treatment was approximately 1% of the panel mass. Preliminary FEM/BEM modeling shows good agreement with experimental results for radiated sound power.
Optical Characterization of Window Materials for Aerospace Applications
NASA Technical Reports Server (NTRS)
Tedjojuwono, Ken K.; Clark, Natalie; Humphreys, William M., Jr.
2013-01-01
An optical metrology laboratory has been developed to characterize the optical properties of optical window materials to be used for aerospace applications. Several optical measurement systems have been selected and developed to measure spectral transmittance, haze, clarity, birefringence, striae, wavefront quality, and wedge. In addition to silica based glasses, several optical lightweight polymer materials and transparent ceramics have been investigated in the laboratory. The measurement systems and selected empirical results for non-silica materials are described. These measurements will be used to form the basis of acceptance criteria for selection of window materials for future aerospace vehicle and habitat designs.
Rain droplet erosion mechanisms in transparent plastic materials
NASA Technical Reports Server (NTRS)
Schmitt, G. F., Jr.
1974-01-01
Tests were conducted to determine the damaging effects of rain erosion on optically transparent materials. The rotating arm test equipment used for the tests is described. Typical transparent materials such as those found in windshields, infrared windows, lasers, and television systems were tested. Nominal velocities of 400, 500, and 600 miles per hour and rainfall conditions of one inch per hour simulated rainfall were used in the tests. It was determined that an 80 percent reduction in laser transmittance can occur in plastics submitted to rain erosion. Significant results of the environmental tests are explained.
Alghamedi, Ramzy; Vasiliev, Mikhail; Nur-E-Alam, Mohammad; Alameh, Kamal
2014-10-16
All-inorganic visibly-transparent energy-harvesting clear laminated glass windows are the most practical solution to boosting building-integrated photovoltaics (BIPV) energy outputs significantly while reducing cooling- and heating-related energy consumption in buildings. By incorporating luminophore materials into lamination interlayers and using spectrally-selective thin-film coatings in conjunction with CuInSe2 solar cells, most of the visible solar radiation can be transmitted through the glass window with minimum attenuation while ultraviolet (UV) radiation is down-converted and routed together with a significant part of infrared radiation to the edges for collection by solar cells. Experimental results demonstrate a 10 cm × 10 cm vertically-placed energy-harvesting clear glass panel of transparency exceeding 60%, invisible solar energy attenuation greater than 90% and electrical power output near 30 Wp/m(2) mainly generated by infrared (IR) and UV radiations. These results open the way for the realization of large-area visibly-transparent energy-harvesting clear glass windows for BIPV systems.
Alghamedi, Ramzy; Vasiliev, Mikhail; Nur-E-Alam, Mohammad; Alameh, Kamal
2014-01-01
All-inorganic visibly-transparent energy-harvesting clear laminated glass windows are the most practical solution to boosting building-integrated photovoltaics (BIPV) energy outputs significantly while reducing cooling- and heating-related energy consumption in buildings. By incorporating luminophore materials into lamination interlayers and using spectrally-selective thin-film coatings in conjunction with CuInSe2 solar cells, most of the visible solar radiation can be transmitted through the glass window with minimum attenuation while ultraviolet (UV) radiation is down-converted and routed together with a significant part of infrared radiation to the edges for collection by solar cells. Experimental results demonstrate a 10 cm × 10 cm vertically-placed energy-harvesting clear glass panel of transparency exceeding 60%, invisible solar energy attenuation greater than 90% and electrical power output near 30 Wp/m2 mainly generated by infrared (IR) and UV radiations. These results open the way for the realization of large-area visibly-transparent energy-harvesting clear glass windows for BIPV systems. PMID:25321890
Hydrofluoric acid-resistant composite window and method for its fabrication
Ostenak, C.A.; Mackay, H.A.
1985-07-18
A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.
Hydrofluoric acid-resistant composite window and method for its fabrication
Ostenak, Carl A.; Mackay, Harold A.
1987-01-01
A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.
Study of noise transmission through double wall aircraft windows
NASA Technical Reports Server (NTRS)
Vaicaitis, R.
1983-01-01
Analytical and experimental procedures were used to predict the noise transmitted through double wall windows into the cabin of a twin-engine G/A aircraft. The analytical model was applied to optimize cabin noise through parametric variation of the structural and acoustic parameters. The parametric study includes mass addition, increase in plexiglass thickness, decrease in window size, increase in window cavity depth, depressurization of the space between the two window plates, replacement of the air cavity with a transparent viscoelastic material, change in stiffness of the plexiglass material, and different absorptive materials for the interior walls of the cabin. It was found that increasing the exterior plexiglass thickness and/or decreasing the total window size could achieve the proper amount of noise reduction for this aircraft. The total added weight to the aircraft is then about 25 lbs.
Wheeler, Lance M.; Moore, David T.; Ihly, Rachelle; ...
2017-11-23
Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer - composed of a metal halide perovskite-methylamine complex - from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning themore » absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. In conclusion, this work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.« less
Development of a collapsible reinforced cylindrical space observation window
NASA Technical Reports Server (NTRS)
Khan, A. Q.
1971-01-01
Existing material technology was applied to the development of a collapsible transparent window suitable for manned spacecraft structures. The effort reported encompasses the evaluation of flame retardants intended for use in the window matrix polymer, evaluation of reinforcement angle which would allow for a twisting pantographing motion as the cylindrical window is mechanically collapsed upon itself, and evaluation of several reinforcement embedment methods. A fabrication technique was developed to produce a reinforced cylindrical space window of 45.7 cm diameter and 61.0 cm length. The basic technique involved the application of a clear film on a male-section mold; winding axial and girth reinforcements and vacuum casting the outer layer. The high-strength transparent window composite consisted of a polyether urethane matrix reinforced with an orthogonal pattern of black-coated carbon steel wire cable. A thin film of RTV silicone rubber was applied to both surfaces of the urethane. The flexibility, retraction system, and installation system are described.
Wheeler, Lance M; Moore, David T; Ihly, Rachelle; Stanton, Noah J; Miller, Elisa M; Tenent, Robert C; Blackburn, Jeffrey L; Neale, Nathan R
2017-11-23
Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer-composed of a metal halide perovskite-methylamine complex-from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning the absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. This work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, Lance M.; Moore, David T.; Ihly, Rachelle
Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer - composed of a metal halide perovskite-methylamine complex - from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning themore » absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. In conclusion, this work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.« less
NASA Astrophysics Data System (ADS)
Ao, Tommy; Asay, James; Knudson, Marcus; Davis, Jean-Paul
2007-06-01
The Isentropic Compression Experiment technique has proven to be a valuable complement to the well-established method of shock compression of condensed matter. However, whereas the high-pressure compression response of window materials has been studied extensively under shock loading, similar knowledge of these materials under ICE loading is limited. We present recent experimental results on the isentropic compression of the high-pressure windows sapphire and LiF. It has previously been observed that c-cut sapphire yields under shock loading at the HEL of ˜15-18GPa, and subsequently loses transparency at higher stresses. However, it will be shown that under isentropic ramp wave loading sapphire appears to remain elastic and transparent at stresses well above 20GPa [D.B. Hayes et al, JAP 94, 2331 (2003)]. LiF is another frequently used window material in isentropic loading and unloading experiments, yet the unloading response of LiF is usually neglected. Research is in progress to measure strength properties of LiF for ramp loading and unloading. It will be shown how the strength of LiF may influence wave profile analysis and thus inferred material strength. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the US DOE's NNSA under Contract No.DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Pellerin, Morgane; Castaing, Victor; Gourier, Didier; Chanéac, Corinne; Viana, Bruno
2018-02-01
Persistent luminescence materials present many applications including security lighting and bio-imaging. Many progresses have been made in the elaboration of persistent luminescent nanoparticles suitable for the first NIR partial transparency window (650 - 950 nm). Moving to the second and third near-infrared partial transparency windows (1000 nm - 1800 nm) allows further reducing of scattering, absorption and tissue autofluorescence effects. In this work, we present the synthesis of Co2+ and Ni2+ doped zinc-gallate nanoparticles with broad emission covering the NIR-II range. Site occupancy, energy levels, optical features and persistent phenomena are presented.
Manufacturing process scale-up of optical grade transparent spinel ceramic at ArmorLine Corporation
NASA Astrophysics Data System (ADS)
Spilman, Joseph; Voyles, John; Nick, Joseph; Shaffer, Lawrence
2013-06-01
While transparent Spinel ceramic's mechanical and optical characteristics are ideal for many Ultraviolet (UV), visible, Short-Wave Infrared (SWIR), Mid-Wave Infrared (MWIR), and multispectral sensor window applications, commercial adoption of the material has been hampered because the material has historically been available in relatively small sizes (one square foot per window or less), low volumes, unreliable supply, and with unreliable quality. Recent efforts, most notably by Technology Assessment and Transfer (TA and T), have scaled-up manufacturing processes and demonstrated the capability to produce larger windows on the order of two square feet, but with limited output not suitable for production type programs. ArmorLine Corporation licensed the hot-pressed Spinel manufacturing know-how of TA and T in 2009 with the goal of building the world's first dedicated full-scale Spinel production facility, enabling the supply of a reliable and sufficient volume of large Transparent Armor and Optical Grade Spinel plates. With over $20 million of private investment by J.F. Lehman and Company, ArmorLine has installed and commissioned the largest vacuum hot press in the world, the largest high-temperature/high-pressure hot isostatic press in the world, and supporting manufacturing processes within 75,000 square feet of manufacturing space. ArmorLine's equipment is capable of producing window blanks as large as 50" x 30" and the facility is capable of producing substantial volumes of material with its Lean configuration and 24/7 operation. Initial production capability was achieved in 2012. ArmorLine will discuss the challenges that were encountered during scale-up of the manufacturing processes, ArmorLine Optical Grade Spinel optical performance, and provide an overview of the facility and its capabilities.
How to be smart and energy efficient: A general discussion on thermochromic windows
Long, Linshuang; Ye, Hong
2014-01-01
A window is a unique element in a building because of its simultaneous properties of being “opaque” to inclement weather yet transparent to the observer. However, these unique features make the window an element that can reduce the energy efficiency of buildings. A thermochromic window is a type of smart window whose solar radiation properties vary with temperature. It is thought that the solar radiation gain of a room can be intelligently regulated through the use of thermochromic windows, resulting in lower energy consumption than with standard windows. Materials scientists have made many efforts to improve the performance of thermochromic materials. Despite these efforts, fundamental problems continue to confront us. How should a “smart” window behave? Is a “smart” window really the best candidate for energy-efficient applications? What is the relationship between smartness and energy performance? To answer these questions, a general discussion of smartness and energy performance is provided. PMID:25233891
Ding, Jun; Arigong, Bayaner; Ren, Han; Zhou, Mi; Shao, Jin; Lu, Meng; Chai, Yang; Lin, Yuankun; Zhang, Hualiang
2014-01-01
Novel graphene-based tunable plasmonic metamaterials featuring single and multiple transparency windows are numerically studied in this paper. The designed structures consist of a graphene layer perforated with quadrupole slot structures and dolmen-like slot structures printed on a substrate. Specifically, the graphene-based quadrupole slot structure can realize a single transparency window, which is achieved without breaking the structure symmetry. Further investigations have shown that the single transparency window in the proposed quadrupole slot structure is more likely originated from the quantum effect of Autler-Townes splitting. Then, by introducing a dipole slot to the quadrupole slot structure to form the dolmen-like slot structure, an additional transmission dip could occur in the transmission spectrum, thus, a multiple-transparency-window system can be achieved (for the first time for graphene-based devices). More importantly, the transparency windows for both the quadrupole slot and the dolmen-like slot structures can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer (through electrostatic gating). The proposed slot metamaterial structures with tunable single and multiple transparency windows could find potential applications in many areas such as multiple-wavelength slow-light devices, active plasmonic switching, and optical sensing. PMID:25146672
Ding, Jun; Arigong, Bayaner; Ren, Han; Zhou, Mi; Shao, Jin; Lu, Meng; Chai, Yang; Lin, Yuankun; Zhang, Hualiang
2014-08-22
Novel graphene-based tunable plasmonic metamaterials featuring single and multiple transparency windows are numerically studied in this paper. The designed structures consist of a graphene layer perforated with quadrupole slot structures and dolmen-like slot structures printed on a substrate. Specifically, the graphene-based quadrupole slot structure can realize a single transparency window, which is achieved without breaking the structure symmetry. Further investigations have shown that the single transparency window in the proposed quadrupole slot structure is more likely originated from the quantum effect of Autler-Townes splitting. Then, by introducing a dipole slot to the quadrupole slot structure to form the dolmen-like slot structure, an additional transmission dip could occur in the transmission spectrum, thus, a multiple-transparency-window system can be achieved (for the first time for graphene-based devices). More importantly, the transparency windows for both the quadrupole slot and the dolmen-like slot structures can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer (through electrostatic gating). The proposed slot metamaterial structures with tunable single and multiple transparency windows could find potential applications in many areas such as multiple-wavelength slow-light devices, active plasmonic switching, and optical sensing.
Low Velocity Impact Testing and Nondestructive Evaluation of Transparent Materials
NASA Astrophysics Data System (ADS)
Brennan, R. E.; Green, W. H.
2011-06-01
Advanced transparent materials are used in protective systems for enhancing the survivability of ground vehicles, air vehicles, and personnel in applications such as face shields, riot gear, and vehicle windows. Low velocity impact damage can limit visibility and compromise the structural integrity of a transparent system, increasing the likelihood of further damage or penetration from a high velocity impact strike. For this reason, it is critical to determine damage tolerance levels of transparent systems to indicate whether or not a component should be replaced. In this study, transparent laminate systems will be tested by comparing baseline conditions to experimentally controlled damage states. Destructive testing including air gun and sphere impact testing will be used to replicate low velocity impacts in the field. Characterization of the damaged state will include basic visual inspection as well as nondestructive techniques including cross-polarization, x-ray, and ultrasound. The combination of destructive testing and characterization of the resulting damage can help to establish a damage acceptance criterion for materials used in protective systems.
Arezoomandan, Sara; Prakash, Abhinav; Chanana, Ashish; Yue, Jin; Mao, Jieying; Blair, Steve; Nahata, Ajay; Jalan, Bharat; Sensale-Rodriguez, Berardi
2018-02-23
We report on terahertz characterization of La-doped BaSnO 3 (BSO) thin-films. BSO is a transparent complex oxide material, which has attracted substantial interest due to its large electrical conductivity and wide bandgap. The complex refractive index of these films is extracted in the 0.3 to 1.5 THz frequency range, which shows a metal-like response across this broad frequency window. The large optical conductivity found in these films at terahertz wavelengths makes this material an interesting platform for developing electromagnetic structures having a strong response at terahertz wavelengths, i.e. terahertz-functional, while being transparent at visible and near-IR wavelengths. As an example of such application, we demonstrate a visible-transparent terahertz polarizer.
Banerjee, Arghya; Chattopadhyay, Kalyan K
2008-01-01
Transparent conducting oxides (TCO) with p-type semiconductivity have recently gained renewed interest for the fabrication of all-oxide transparent junctions, having potential applications in the emerging field of 'Transparent' or 'Invisible Electronics'. This kind of transparent junctions can be used as a "functional" window, which will transmit visible portion of solar radiation, but generates electricity by the absorption of the UV part. Therefore, these devices can be used as UV shield as well as UV cells. In this report, a brief review on the research activities on various p-TCO materials is furnished along-with the fabrication of different transparent p-n homojunction, heterojunction and field-effect transistors. Also the reason behind the difficulties in obtaining p-TCO materials and possible solutions are discussed in details. Considerable attention is given in describing the various patent generations on the field of p-TCO materials as well as transparent p-n junction diodes and light emitting devices. Also, most importantly, a detailed review and patenting activities on the nanocrystalline p-TCO materials and transparent nano-active device fabrication are furnished with considerable attention. And finally, a systematic description on the fabrication and characterization of nanocrystalline, p-type transparent conducting CuAlO(2) thin film, deposited by cost-effective low-temperature DC sputtering technique, by our group, is furnished in details. These p-TCO micro/nano-materials have wide range of applications in the field of optoelectronics, nanoelectronics, space sciences, field-emission displays, thermoelectric converters and sensing devices.
McCoy, Chad A.; Knudson, Marcus D.
2017-08-24
Measurement of the window interface velocity is a common technique for investigating the dynamic response materials at high strain rates. However, these measurements are limited in pressure to the range where the window remains transparent. The most common window material for this application is lithium fluoride, which under single shock compression becomes opaque at ~200 GPa. To date, no other window material has been identified for use at higher pressures. Here, we present a Lagrangian technique to calculate the interface velocity from a continuously measured shock velocity, with application to quartz. The quartz shock front becomes reflective upon melt, atmore » ~100 GPa, enabling the use of velocity interferometry to continuously measure the shock velocity. This technique overlaps with the range of pressures accessible with LiF windows and extends the region where wave profile measurements are possible to pressures in excess of 2000 GPa. Lastly, we show through simulated data that the technique accurately reproduces the interface velocity within 20% of the initial state, and that the Lagrangian technique represents a significant improvement over a simple linear approximation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, Chad A.; Knudson, Marcus D.
Measurement of the window interface velocity is a common technique for investigating the dynamic response materials at high strain rates. However, these measurements are limited in pressure to the range where the window remains transparent. The most common window material for this application is lithium fluoride, which under single shock compression becomes opaque at ~200 GPa. To date, no other window material has been identified for use at higher pressures. Here, we present a Lagrangian technique to calculate the interface velocity from a continuously measured shock velocity, with application to quartz. The quartz shock front becomes reflective upon melt, atmore » ~100 GPa, enabling the use of velocity interferometry to continuously measure the shock velocity. This technique overlaps with the range of pressures accessible with LiF windows and extends the region where wave profile measurements are possible to pressures in excess of 2000 GPa. Lastly, we show through simulated data that the technique accurately reproduces the interface velocity within 20% of the initial state, and that the Lagrangian technique represents a significant improvement over a simple linear approximation.« less
Rugged sensor window materials for harsh environments
NASA Astrophysics Data System (ADS)
Bayya, Shyam; Villalobos, Guillermo; Kim, Woohong; Sanghera, Jasbinger; Hunt, Michael; Aggarwal, Ishwar D.
2014-09-01
There are several military or commercial systems operating in very harsh environments that require rugged windows. On some of these systems, windows become the single point of failure. These applications include sensor or imaging systems, high-energy laser weapons systems, submarine photonic masts, IR countermeasures and missiles. Based on the sea or land or air based platforms the window or dome on these systems must withstand wave slap, underwater or ground based explosions, or survive flight through heavy rain and sand storms while maintaining good optical transmission in the desired wavelength range. Some of these applications still use softer ZnS or fused silica windows because of lack of availability of rugged materials in shapes or sizes required. Sapphire, ALON and spinel are very rugged materials with significantly higher strengths compared to ZnS and fused silica. There have been recent developments in spinel, ALON and sapphire materials to fabricate in large sizes and conformal shapes. We have been developing spinel ceramics for several of these applications. We are also developing β-SiC as a transparent window material as it has higher hardness, strength, and toughness than sapphire, ALON and spinel. This paper gives a summary of our recent findings.
Tunable phonon-induced transparency in bilayer graphene nanoribbons.
Yan, Hugen; Low, Tony; Guinea, Francisco; Xia, Fengnian; Avouris, Phaedon
2014-08-13
In the phenomenon of plasmon-induced transparency, which is a classical analogue of electromagnetically induced transparency (EIT) in atomic gases, the coherent interference between two plasmon modes results in an optical transparency window in a broad absorption spectrum. With the requirement of contrasting lifetimes, typically one of the plasmon modes involved is a dark mode that has limited coupling to the electromagnetic radiation and possesses relatively longer lifetime. Plasmon-induced transparency not only leads to light transmission at otherwise opaque frequency regions but also results in the slowing of light group velocity and enhanced optical nonlinearity. In this article, we report an analogous behavior, denoted as phonon-induced transparency (PIT), in AB-stacked bilayer graphene nanoribbons. Here, light absorption due to the plasmon excitation is suppressed in a narrow window due to the coupling with the infrared active Γ-point optical phonon, whose function here is similar to that of the dark plasmon mode in the plasmon-induced transparency. We further show that PIT in bilayer graphene is actively tunable by electrostatic gating and estimate a maximum slow light factor of around 500 at the phonon frequency of 1580 cm(-1), based on the measured spectra. Our demonstration opens an avenue for the exploration of few-photon nonlinear optics and slow light in this novel two-dimensional material.
Smart window using a thermally and optically switchable liquid crystal cell
NASA Astrophysics Data System (ADS)
Oh, Seung-Won; Kim, Sang-Hyeok; Baek, Jong-Min; Yoon, Tae-Hoon
2018-02-01
Light shutter technologies that can control optical transparency have been studied extensively for developing curtain-free smart windows. We introduce thermally and optically switchable light shutters using LCs doped with push-pull azobenzene, which is known to speed up thermal relaxation. The liquid crystal light shutter can be switched between translucent and transparent states or transparent and opaque states by phase transition through changing temperature or photo-isomerization of doped azobenzene. The liquid crystal light shutter can be used for privacy windows with an initial translucent state or energy-saving windows with an initial transparent state.
Low heat transfer, high strength window materials
Berlad, Abraham L.; Salzano, Francis J.; Batey, John E.
1978-01-01
A multi-pane window with improved insulating qualities; comprising a plurality of transparent or translucent panes held in an essentially parallel, spaced-apart relationship by a frame. Between at least one pair of panes is a convection defeating means comprising an array of parallel slats or cells so designed as to prevent convection currents from developing in the space between the two panes. The convection defeating structures may have reflective surfaces so as to improve the collection and transmittance of the incident radiant energy. These same means may be used to control (increase or decrease) the transmittance of solar energy as well as to decouple the radiative transfer between the interior surfaces of the transparent panes.
Chalcogenide glasses and glass-ceramics: Transparent materials in the infrared for dual applications
NASA Astrophysics Data System (ADS)
Calvez, Laurent
2017-05-01
In this paper are described the different research activities that led to the awarding of the Lamb prize by the French Academy of Sciences in order to promote research work on the national defense of France. This research concerns the development of infrared materials for night vision and the development of thermal imagers useful for defense, but also for civilian applications. The contribution has been particularly innovative in different sectors: broadening of chalcogenide glasses window of transparency, IR glass-ceramics with high thermomechanical properties, and the design of a new way of synthesis of these materials by a mechanical process.
Solar radiation control using nematic curvilinear aligned phase (NCAP) liquid crystal technology
NASA Astrophysics Data System (ADS)
vanKonynenburg, Peter; Marsland, Stephen; McCoy, James
1987-11-01
A new, advanced liquid crystal technology has made economical, large area, electrically-controlled windows a commercial reality. The new technology, Nematic Curvilinear Aligned Phase (NCAP), is based on a polymeric material containing small droplets of nematic liquid crystal which is coated and laminated between transparent electrodes and fabricated into large area field effect devices. NCAP windows feature variable solar transmission and reflection through a voltage-controlled scattering mechanism. Laminated window constructions provide the excellent transmission and visibility of glass in the powered condition. In the unpowered condition, the windows are highly translucent, and provide 1) blocked vision for privacy, security, and obscuration of information, and 2) glare control and solar shading. The stability is excellent during accelerated aging tests. Degradation mechanisms which can limit performance and lifetime are discussed. Maximum long term stability is achieved by product designs that incorporate the appropriate window materials to provide environmental protection.
New Materials for Structural Composites and Protective Coatings
NASA Technical Reports Server (NTRS)
2008-01-01
The objective of this Phase I project was to create novel conductive materials that are lightweight and strong enough for multiple ground support equipment and Exploration applications. The long-term goal is to combine these materials within specially designed devices to create composites or coatings with diagnostic capabilities, increased strength, and tunable properties such as transparency, electroluminescence, and fire resistance. One such technology application is a smart windows system. In such a system, the transmission of light through a window is controlled by electrical power. In the future, these materials may also be able to absorb sunlight and convert it into electrical energy to produce light, thereby creating a self-sufficient lighting system. This experiment, conducted in collaboration with the Georgia Institute of Technology, demonstrated enhancements in fabricating fiber materials from carbon nanotubes (CNT). These nanotubes were grown as forests in an ultra-high-purity chemical vapor deposition (CVD) furnace and then drawn, using novel processing techniques, into fibers and yarns that would be turned into filaments. This work was submitted to the Journal of Advanced Functional Materials. The CNT fibers were initially tested as filament materials at atmospheric pressure; however, even under high current loads, the filaments produced only random sparking. The CNT fibers were also converted into transparent, hydrophobic, and conductive sheets. Filament testing at low vacuum pressures is in progress, and the technology will be enhanced in 2008. As initial proof of the smart-windows application concept, the use of CNT sheets as composites/ protective coatings was demonstrated in collaboration with Nanocomp Technologies of Concord, New Hampshire.
Radiation-transparent windows, method for imaging fluid transfers
Shu, Deming [Darien, IL; Wang, Jin [Burr Ridge, IL
2011-07-26
A thin, x-ray-transparent window system for environmental chambers involving pneumatic pressures above 40 bar is presented. The window allows for x-ray access to such phenomena as fuel sprays injected into a pressurized chamber that mimics realistic internal combustion engine cylinder operating conditions.
Optically detonated explosive device
NASA Technical Reports Server (NTRS)
Yang, L. C.; Menichelli, V. J. (Inventor)
1974-01-01
A technique and apparatus for optically detonating insensitive high explosives, is disclosed. An explosive device is formed by containing high explosive material in a house having a transparent window. A thin metallic film is provided on the interior surface of the window and maintained in contact with the high explosive. A laser pulse provided by a Q-switched laser is focussed on the window to vaporize the metallic film and thereby create a shock wave which detonates the high explosive. Explosive devices may be concurrently or sequentially detonated by employing a fiber optic bundle to transmit the laser pulse to each of the several individual explosive devices.
Lin, Sen; Bai, Xiaopeng; Wang, Haiyang; Wang, Haolun; Song, Jianan; Huang, Kai; Wang, Chang; Wang, Ning; Li, Bo; Lei, Ming; Wu, Hui
2017-11-01
Electrochromic smart windows (ECSWs) are considered as the most promising alternative to traditional dimming devices. However, the electrode technology in ECSWs remains stagnant, wherein inflexible indium tin oxide and fluorine-doped tin oxide are the main materials being used. Although various complicated production methods, such as high-temperature calcination and sputtering, have been reported, the mass production of flexible and transparent electrodes remains challenging. Here, a nonheated roll-to-roll process is developed for the continuous production of flexible, extralarge, and transparent silver nanofiber (AgNF) network electrodes. The optical and mechanical properties, as well as the electrical conductivity of these products (i.e., 12 Ω sq -1 at 95% transmittance) are comparable with those AgNF networks produced via high-temperature sintering. Moreover, the as-prepared AgNF network is successfully assembled into an A4-sized ECSW with short switching time, good coloration efficiency, and flexibility. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
All 2D, high mobility, flexible, transparent thin film transistor
Das, Saptarshi; Sumant, Anirudha V.; Roelofs, Andreas
2017-01-17
A two-dimensional thin film transistor and a method for manufacturing a two-dimensional thin film transistor includes layering a semiconducting channel material on a substrate, providing a first electrode material on top of the semiconducting channel material, patterning a source metal electrode and a drain metal electrode at opposite ends of the semiconducting channel material from the first electrode material, opening a window between the source metal electrode and the drain metal electrode, removing the first electrode material from the window located above the semiconducting channel material providing a gate dielectric above the semiconducting channel material, and providing a top gate above the gate dielectric, the top gate formed from a second electrode material. The semiconducting channel material is made of tungsten diselenide, the first electrode material and the second electrode material are made of graphene, and the gate dielectric is made of hexagonal boron nitride.
Window flaw detection by backscatter lighting
NASA Technical Reports Server (NTRS)
Crockett, L. K.; Minton, F. R.
1978-01-01
Portable fiber-optic probe detects tiny flaws in transparent materials. Probe transmits light through surface to illuminate interior of material by backscattering off its edges. Light-sensitive contact paper records scratch pattern. Technique can be used for rapid visual checks. Flexible fiber optics are safely used in explosive or flammable areas; they present no hazard of breakage or contamination in controlled environments.
Krueger, Mark; Berg, Shannon; Stone, D'Arcy; Strelcov, Evgheni; Dikin, Dmitriy A; Kim, Jaemyung; Cote, Laura J; Huang, Jiaxing; Kolmakov, Andrei
2011-12-27
Graphene oxide sheets dispersed in water and many other solvents can spontaneously assemble into a surface film covering an evaporating droplet due to their amphiphilicity. Thus, graphene oxide membranes with controllable thickness suspended over an orifice have been directly fabricated using a simple drop-cast approach. Mechanical properties and electron transparency tests of these membranes show their use as electron transparent, but molecularly impenetrable, windows for environmental electron microscopy in liquids and dense gaseous media. The foreseeable, broader application of this drop-cast window methodology is the creation of access spots for electron probes to study isolated microsamples in their natural, undisrupted state within the interior of prefabricated devices (such as microfluidic chips or sealed containers of biological, chemically reactive, toxic, or forensic materials).
Cross-Propagation Sum-Frequency Generation Vibrational Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Li; Chen, Shun-li; Gan, Wei
2016-02-27
Here we report the theory formulation and the experiment realization of sum-frequency generation vibrational spectroscopy (SFG-VS) in the cross-propagation (XP) geometry or configuration. In the XP geometry, the visible and the infrared (IR) beams in the SFG experiment are delivered to the same location on the surface from visible and IR incident planes perpendicular to each other, avoiding the requirement to have windows or optics to be transparent to both the visible and IR frequencies. Therefore, the XP geometry is applicable to study surfaces in the enclosed vacuum or high pressure chambers with far infrared (FIR) frequencies that can directlymore » access the metal oxide and other lower frequency surface modes, with much broader selection of visible and IR transparent window materials.« less
Peng, Bo; Özdemir, Sahin Kaya; Chen, Weijian; Nori, Franco; Yang, Lan
2014-10-24
There has been an increasing interest in all-optical analogues of electromagnetically induced transparency and Autler-Townes splitting. Despite the differences in their underlying physics, both electromagnetically induced transparency and Autler-Townes splitting are quantified by a transparency window in the absorption or transmission spectrum, which often leads to a confusion about its origin. While the transparency window in electromagnetically induced transparency is a result of Fano interference among different transition pathways, in Autler-Townes splitting it is the result of strong field-driven interactions leading to the splitting of energy levels. Being able to tell objectively whether an observed transparency window is because of electromagnetically induced transparency or Autler-Townes splitting is crucial for applications and for clarifying the physics involved. Here we demonstrate the pathways leading to electromagnetically induced transparency, Fano resonances and Autler-Townes splitting in coupled whispering-gallery-mode resonators. Moreover, we report the application of the Akaike Information Criterion discerning between all-optical analogues of electromagnetically induced transparency and Autler-Townes splitting and clarifying the transition between them.
NASA Astrophysics Data System (ADS)
Katase, Takayoshi; Onozato, Takaki; Hirono, Misako; Mizuno, Taku; Ohta, Hiromichi
2016-05-01
Proton and hydroxyl ion play an essential role for tuning functionality of oxides because their electronic state can be controlled by modifying oxygen off-stoichiometry and/or protonation. Tungsten trioxide (WO3), a well-known electrochromic (EC) material for smart window, is a wide bandgap insulator, whereas it becomes a metallic conductor HxWO3 by protonation. Although one can utilize electrochromism together with metal-insulator (MI) switching for one device, such EC-MI switching cannot be utilized in current EC devices because of their two-terminal structure with parallel-plate configuration. Here we demonstrate a transparent EC-MI switchable device with three-terminal TFT-type structure using amorphous (a-) WO3 channel layer, which was fabricated on glass substrate at room temperature. We used water-infiltrated nano-porous glass, CAN (calcium aluminate with nano-pores), as a liquid-leakage-free solid gate insulator. At virgin state, the device was fully transparent in the visible-light region. For positive gate voltage, the active channel became dark blue, and electrical resistivity of the a-WO3 layer drastically decreased with protonation. For negative gate voltage, deprotonation occurred and the active channel returned to transparent insulator. Good cycleability of the present transparent EC-MI switching device would have potential for the development of advanced smart windows.
Process for forming transparent aerogel insulating arrays
Tewari, Param H.; Hunt, Arlon J.
1986-01-01
An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO.sub.2, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO.sub.2, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40.degree. C. instead of at about 270.degree. C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementry particles or cosmic rays.
Process for forming transparent aerogel insulating arrays
Tewari, P.H.; Hunt, A.J.
1985-09-04
An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO/sub 2/, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO/sub 2/, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40/sup 0/C instead of at about 270/sup 0/C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementary particles or cosmic rays.
Advanced Antireflection Coatings for High-Performance Solar Energy Applications
NASA Technical Reports Server (NTRS)
Pan, Noren
2015-01-01
Phase II objectives: Develop and refine antireflection coatings incorporating lanthanum titanate as an intermediate refractive index material; Investigate wet/dry thermal oxidation of aluminum containing semiconductor compounds as a means of forming a more transparent window layer with equal or better optical properties than its unoxidized form; Develop a fabrication process that allows integration of the oxidized window layer and maintains the necessary electrical properties for contacting the solar cell; Conduct an experimental demonstration of the best candidates for improved antireflection coatings.
An Ag-grid/graphene hybrid structure for large-scale, transparent, flexible heaters.
Kang, Junmo; Jang, Yonghee; Kim, Youngsoo; Cho, Seung-Hyun; Suhr, Jonghwan; Hong, Byung Hee; Choi, Jae-Boong; Byun, Doyoung
2015-04-21
Recently, carbon materials such as carbon nanotubes and graphene have been proposed as alternatives to indium tin oxide (ITO) for fabricating transparent conducting materials. However, obtaining low sheet resistance and high transmittance of these carbon materials has been challenging due to the intrinsic properties of the materials. In this paper, we introduce highly transparent and flexible conductive films based on a hybrid structure of graphene and an Ag-grid. Electrohydrodynamic (EHD) jet printing was used to produce a micro-scale grid consisting of Ag lines less than 10 μm wide. We were able to directly write the Ag-grid on a large-area graphene/flexible substrate due to the high conductivity of graphene. The hybrid electrode could be fabricated using hot pressing transfer and EHD jet printing in a non-vacuum, maskless, and low-temperature environment. The hybrid electrode offers an effective and simple route for achieving a sheet resistance as low as ∼4 Ω per square with ∼78% optical transmittance. Finally, we demonstrate that transparent flexible heaters based on the hybrid conductive films could be used in a vehicle or a smart window system.
Scale up of large ALON® and spinel windows
NASA Astrophysics Data System (ADS)
Goldman, Lee M.; Kashalikar, Uday; Ramisetty, Mohan; Jha, Santosh; Sastri, Suri
2017-05-01
Aluminum Oxynitride (ALON® Transparent Ceramic) and Magnesia Aluminate Spinel (Spinel) combine broadband transparency with excellent mechanical properties. Their cubic structure means that they are transparent in their polycrystalline form, allowing them to be manufactured by conventional powder processing techniques. Surmet has scaled up its ALON® production capability to produce and deliver windows as large as 4.4 sq ft. We have also produced our first 6 sq ft window. We are in the process of producing 7 sq ft ALON® window blanks for armor applications; and scale up to even larger, high optical quality blanks for Recce window applications is underway. Surmet also produces spinel for customers that require superior transmission at the longer wavelengths in the mid wave infra-red (MWIR). Spinel windows have been limited to smaller sizes than have been achieved with ALON. To date the largest spinel window produced is 11x18-in, and windows 14x20-in size are currently in process. Surmet is now scaling up its spinel processing capability to produce high quality window blanks as large as 19x27-in for sensor applications.
High-temperature material characterization for multispectral window
NASA Astrophysics Data System (ADS)
Park, James; Arida, Marvin-Ray; Ku, Zahyun; Jang, Woo-Yong; Urbas, Augustine M.
2017-05-01
A microwave cylindrical cavity combined with a laser has been investigated to characterize the temperature dependence of widow materials in the Air Force Research Laboratory (AFRL). This paper discusses the requirements of high temperature RF material characterizations for transparent ceramic materials, such as ALON, that can potentially be used for multispectral windows. The RF cylindrical resonator was designed and the numerical model was studied to characterize the dielectric constant of materials. The dielectric constant can be extracted from the resonant frequency shift based on the cavity perturbation method (CPM), which is sensitive to the sample size and shape. Laser heating was applied to the material under test (MUT), which could easily be heated above 1000°C by the laser irradiation, in order to conduct CPM at high temperature. The temperature distribution in a material was also analyzed to investigate the impact of the thermal properties and the sample shape.
Jiang, Shan; Powers, Matthew; Allison, David; Vincent, Ellen
2017-07-01
This study aimed to explore people's visual preference for waiting areas in general hospital environments designed with transparency attributes that fully integrate nature. Waiting can be a tedious and frustrating experience among people seeking healthcare treatments and negatively affect their perception of the quality of care. Positive distractions and supportive designs have gained increasing attraction to improve people's waiting experience. Nature, which has shown therapeutic effects according to a growing amount of evidence, could be a distinguished positive distraction in waiting areas. Additionally, the theory of transparency was operationalized to indicate a spatial continuity between the external nature and the built interiors in general healthcare waiting area design. A survey method was adopted in the study. Twenty-one images of general healthcare waiting areas depicting three design typologies were preselected following a strict procedure, including designs with (a) no window views, (b) limited window views to nature, and (c) transparent spaces with maximum natural views. Ninety-five student participants rated the images based on their visual preference using a Likert-type scale. The results showed that transparent waiting areas were significantly preferred. A significant positive relationship existed between the level of transparency and people's preference scores. The factor analysis indicated additional supportive features that may affect people's preferences, including daylight, perceived warmth, noninstitutional furniture arrangement, visual orientation, and the use of natural materials for interior design. However, these tentative results need to be furthered tested with the real patient population as the next step of this study.
Tunable Transmission-Line Metamaterials Mimicking Electromagnetically Induced Transparency
NASA Astrophysics Data System (ADS)
Feng, T. H.; Han, H. P.
2016-11-01
Tunable transmission-line (TL) metamaterials mimicking electromagnetically induced transparency (EIT) have been studied. Firstly, two types of tunable TL EIT-like metamaterial, based on the double split-ring resonator (DSRR) and single split-ring resonator (SSRR), were fabricated and their transmission properties carefully compared. The results showed that the transmittance maximum was almost invariable with shift of the transparency window for the tunable DSRR-based TL EIT-like metamaterial, but for the tunable SSRR-based TL EIT-like metamaterial, the transmittance maximum gradually diminished with shift of the transparency window toward the center of the absorption band. Moreover, the reason for these different transmission properties was explored, revealing that the reduction of the transmittance maximum of the transparency window for the tunable SSRR-based TL EIT-like metamaterial is mainly due to energy loss caused by the resistance of the loaded varactor diodes.
Next generation smart window display using transparent organic display and light blocking screen.
Kim, Gyeong Woo; Lampande, Raju; Choe, Dong Cheol; Ko, Ik Jang; Park, Jin Hwan; Pode, Ramchandra; Kwon, Jang Hyuk
2018-04-02
Transparent organic light emitting diodes (TOLED) have widespread applications in the next-generation display devices particularly in the large size transparent window and interactive displays. Herein, we report high performance and stable attractive smart window displays using facile process. Advanced smart window display is realized by integrating the high performance light blocking screen and highly transparent white OLED panel. The full smart window display reveals a maximum transmittance as high as 64.2% at the wavelength of 600 nm and extremely good along with tunable ambient contrast ratio (171.94:1) compared to that of normal TOLED (4.54:1). Furthermore, the performance decisive light blocking screen has demonstrated an excellent optical and electrical characteristics such as i) high transmittance (85.56% at 562nm) at light-penetrating state, ii) superior absorbance (2.30 at 562nm) in light interrupting mode, iii) high optical contrast (85.50 at 562 nm), iv) high optical stability for more than 25,000 cycle of driving, v) fast switching time of 1.9 sec, and vi) low driving voltage of 1.7 V. The experimental results of smart window display are also validated using optical simulation. The proposed smart window display technology allows us to adjust the intensity of daylight entering the system quickly and conveniently.
Thermochromic halide perovskite solar cells.
Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A; Xie, Chenlu; Cui, Fan; Alivisatos, A Paul; Limmer, David T; Yang, Peidong
2018-03-01
Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.
Thermochromic halide perovskite solar cells
NASA Astrophysics Data System (ADS)
Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S.; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A.; Xie, Chenlu; Cui, Fan; Alivisatos, A. Paul; Limmer, David T.; Yang, Peidong
2018-03-01
Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.
Tunable far-infrared plasmonically induced transparency in graphene based nano-structures
NASA Astrophysics Data System (ADS)
Dolatabady, Alireza; Granpayeh, Nosrat
2018-07-01
In this paper, a structure is proposed to show the phenomenon of tunable far-infrared plasmonically induced transparency. The structure includes a nano-ribbon waveguide side-coupled to nano-stub resonators. The realized effect is due to the coupling between the consecutive nano-stub resonators spaced in properly designed distances, providing a constructive interference in the virtually created Fabry–Perot cavity. Due to the Fabry–Perot like cavity created between two consecutive nano-stubs, periodic values of nano-stubs separation can produce transparency windows. Increasing the number of nano-stubs would increase the number of transparency windows in different frequencies. The structure is theoretically investigated and numerically simulated by using the finite difference time domain method. Owing to the chemical potential dependency of graphene conductivity, the transparency windows can be actively tuned. The proposed component can be extensively utilized in nano-scale switching and slow-light systems.
Chemical Vapor Deposited Zinc Sulfide. SPIE Press Monograph
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCloy, John S.; Tustison, Randal W.
2013-04-22
Zinc sulfide has shown unequaled utility for infrared windows that require a combination of long-wavelength infrared transparency, mechanical durability, and elevated-temperature performance. This book reviews the physical properties of chemical vapor deposited ZnS and their relationship to the CVD process that produced them. An in-depth look at the material microstructure is included, along with a discussion of the material's optical properties. Finally, because the CVD process itself is central to the development of this material, a brief history is presented.
Characterization of ZnBr2 solution as a liquid radiation shield for mobile hot cell window
NASA Astrophysics Data System (ADS)
Bahrin, Muhammad Hannan; Ahmad, Megat Harun Al Rashid Megat; Hasan, Hasni; Rahman, Anwar Abdul; Azman, Azraf; Hassan, Mohd Zaid; Mamat, Mohd Rizal B.; Muhamad, Shalina Sheikh; Hamzah, Mohd Arif; Jamro, Rafhayudi; Wo, Yii Mei; Hamssin, Nurliyana
2017-01-01
The Mobile Hot Cell (MHC) has a viewing window which is usually made of almost transparent radiation shield material for the safety of MHC operators. Mobility is the main criterion for MHC; therefore liquid solution that can act as a radiation shield is usually selected as the window for MHC due to ease of transportation instead of a solid glass. As reported, Zinc Bromide (ZnBr2) solution was successfully used in viewing window for MHCs in South Africa and China. It was chosen due to its transparent solution, excellent performance as radiation shielding for gamma radiation, ease in preparation, handling, storage and treatment. Nevertheless, data and baseline studies on ZnBr2 as radiation shield are quite few. Therefore, a study on this matter was carried out. The preparation of ZnBr2 solution was processed at laboratory scale and the radiation shielding experiments were carried out using Cs-137 as radiation source. ZnBr2 solution was prepared by mixing ZnBr2 powder with distilled water. The mixing percentage of ZnBr2 powder, (%wt.) was varied to study the effect of density on the attenuation coefficient. The findings from this study will be used as a guideline in the production and management of ZnBr2 solution for MHC applications.
Dipole-Induced Electromagnetic Transparency
NASA Astrophysics Data System (ADS)
Puthumpally-Joseph, Raiju; Sukharev, Maxim; Atabek, Osman; Charron, Eric
2014-10-01
We determine the optical response of a thin and dense layer of interacting quantum emitters. We show that, in such a dense system, the Lorentz redshift and the associated interaction broadening can be used to control the transmission and reflection spectra. In the presence of overlapping resonances, a dipole-induced electromagnetic transparency (DIET) regime, similar to electromagnetically induced transparency (EIT), may be achieved. DIET relies on destructive interference between the electromagnetic waves emitted by quantum emitters. Carefully tuning material parameters allows us to achieve narrow transmission windows in, otherwise, completely opaque media. We analyze in detail this coherent and collective effect using a generalized Lorentz model and show how it can be controlled. Several potential applications of the phenomenon, such as slow light, are proposed.
Science, Technology and Requirements - Forum
2012-10-18
Visable Absorbing and Electrostatically Adhesive Taggants •2008 Removal of CBRN Materials from Soil & Water using Nanosize Hydroxyapaptite •2009...Ribbon Composite for Optically Transparent Armor Windows •2010 UV Retroreflector Covert Taggants •2013 Proposed Warfighter Bandaging System Company... Bandaging System - Proposed Properties: •Bioactive fiber tissue scaffolding (bonds to both hard and soft tissue) •Hemostatic and Bioresorbable
Multilayer Anti-Reflective Coating Development for PMMA Fresnel Lenses
2010-06-07
been sputter deposited on UV transparent polymethylmethacrylate (UVT-PMMA) windows. The amorphous coatings are deposited using reactive sputtering in a...SUBJECT TERMS Anti-reflective coatings, Fresnel lens, polymethylmethacrylate , PMMA 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...high quality dielectric materials deposited on a variety of substrates including polymethylmethacrylate (PMMA) Highly amorphous films achieved
Multimodal sensing strategies for detecting transparent barriers indoors from a mobile platform
NASA Astrophysics Data System (ADS)
Acevedo, Isaiah; Kleine, R. Kaleb; Kraus, Dustan; Mascareñas, David
2015-04-01
There is currently an interest in developing mobile sensing platforms that fly indoors. The primary goal for these platforms is to be able to successfully navigate a building under various lighting and environmental conditions. There are numerous research challenges associated with this goal, one of which is the platform's ability to detect and identify the presence of transparent barriers. Transparent barriers could include windows, glass partitions, or skylights. For example, in order to successfully navigate inside of a structure, these platforms will need to sense if a space contains a transparent barrier and whether or not this space can be traversed. This project's focus has been developing a multimodal sensing system that can successfully identify such transparent barriers under various lighting conditions while aboard a mobile platform. Along with detecting transparent barriers, this sensing platform is capable of distinguishing between reflective, opaque, and transparent barriers. It will be critical for this system to be able to identify transparent barriers in real-time in order for the navigation system to maneuver accordingly. The properties associated with the interaction between various frequencies of light and transparent materials were one of the techniques leveraged to solve this problem.
Transparent conducting oxide induced by liquid electrolyte gating
NASA Astrophysics Data System (ADS)
ViolBarbosa, Carlos; Karel, Julie; Kiss, Janos; Gordan, Ovidiu-dorin; Altendorf, Simone G.; Utsumi, Yuki; Samant, Mahesh G.; Wu, Yu-Han; Tsuei, Ku-Ding; Felser, Claudia; Parkin, Stuart S. P.
2016-10-01
Optically transparent conducting materials are essential in modern technology. These materials are used as electrodes in displays, photovoltaic cells, and touchscreens; they are also used in energy-conserving windows to reflect the infrared spectrum. The most ubiquitous transparent conducting material is tin-doped indium oxide (ITO), a wide-gap oxide whose conductivity is ascribed to n-type chemical doping. Recently, it has been shown that ionic liquid gating can induce a reversible, nonvolatile metallic phase in initially insulating films of WO3. Here, we use hard X-ray photoelectron spectroscopy and spectroscopic ellipsometry to show that the metallic phase produced by the electrolyte gating does not result from a significant change in the bandgap but rather originates from new in-gap states. These states produce strong absorption below ˜1 eV, outside the visible spectrum, consistent with the formation of a narrow electronic conduction band. Thus WO3 is metallic but remains colorless, unlike other methods to realize tunable electrical conductivity in this material. Core-level photoemission spectra show that the gating reversibly modifies the atomic coordination of W and O atoms without a substantial change of the stoichiometry; we propose a simple model relating these structural changes to the modifications in the electronic structure. Thus we show that ionic liquid gating can tune the conductivity over orders of magnitude while maintaining transparency in the visible range, suggesting the use of ionic liquid gating for many applications.
Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film.
Jia, Li-Chuan; Yan, Ding-Xiang; Liu, Xiaofeng; Ma, Rujun; Wu, Hong-Yuan; Li, Zhong-Ming
2018-04-11
Electromagnetic protection in optoelectronic instruments such as optical windows and electronic displays is challenging because of the essential requirements of a high optical transmittance and an electromagnetic interference (EMI) shielding effectiveness (SE). Herein, we demonstrate the creation of an efficient transparent EMI shielding film that is composed of calcium alginate (CA), silver nanowires (AgNWs), and polyurethane (PU), via a facile and low-cost Mayer-rod coating method. The CA/AgNW/PU film with a high optical transmittance of 92% achieves an EMI SE of 20.7 dB, which meets the requirements for commercial shielding applications. A superior EMI SE of 31.3 dB could be achieved, whereas the transparent film still maintains a transmittance of 81%. The integrated efficient EMI SE and high transmittance are superior to those of most previously reported transparent EMI shielding materials. Moreover, our transparent films exhibit a highly reliable shielding ability in a complex service environment, with 98 and 96% EMI SE retentions even after 30 min of ultrasound treatment and 5000 bending cycles (1.5 mm radius), respectively. The comprehensive performance that is associated with the facile fabrication strategy imparts the CA/AgNW/PU film with great potential as an optimized EMI shielding material in emerging optoelectronic devices, such as flexible solar cells, displays, and touch panels.
Tailoring mode interference in plasmon-induced transparency metamaterials
NASA Astrophysics Data System (ADS)
Liu, Meng; Yang, Quanlong; Xu, Quan; Chen, Xieyu; Tian, Zhen; Gu, Jianqiang; Ouyang, Chunmei; Zhang, Xueqian; Han, Jiaguang; Zhang, Weili
2018-05-01
We proposed an approach to tailor the mode interference effect in plasmon-induced transparency (PIT) metamaterials. Through introducing an extra coupling mode using an asymmetric structure configuration at terahertz (THz) frequencies, the well-known single-transparency-window PIT can be switched to dual-transparency-window PIT. Proof-of-concept subwavelength structures were fabricated and experimentally characterized. The measured results are in good agreement with the simulations, and well support our theoretical analysis. The presented research delivers a novel approach toward developing subwavelength devices with varies functionalities, such as ultra-slow group velocities, longitudinal pulse compression and light storage in the THz regime, which can also be extended to other spectral regimes.
Speed-of-light limitations in passive linear media
NASA Astrophysics Data System (ADS)
Welters, Aaron; Avniel, Yehuda; Johnson, Steven G.
2014-08-01
We prove that well-known speed-of-light restrictions on electromagnetic energy velocity can be extended to a new level of generality, encompassing even nonlocal chiral media in periodic geometries, while at the same time weakening the underlying assumptions to only passivity and linearity of the medium (either with a transparency window or with dissipation). As was also shown by other authors under more limiting assumptions, passivity alone is sufficient to guarantee causality and positivity of the energy density (with no thermodynamic assumptions). Our proof is general enough to include a very broad range of material properties, including anisotropy, bianisotropy (chirality), nonlocality, dispersion, periodicity, and even delta functions or similar generalized functions. We also show that the "dynamical energy density" used by some previous authors in dissipative media reduces to the standard Brillouin formula for dispersive energy density in a transparency window. The results in this paper are proved by exploiting deep results from linear-response theory, harmonic analysis, and functional analysis that had previously not been brought together in the context of electrodynamics.
Method and apparatus for determining pressure-induced frequency-shifts in shock-compressed materials
Moore, David S.; Schmidt, Stephen C.
1985-01-01
A method and an apparatus for conducting coherent anti-Stokes Raman scattering spectroscopy in shock-compressed materials are disclosed. The apparatus includes a sample vessel having an optically transparent wall and an opposing optically reflective wall. Two coherent laser beams, a pump beam and a broadband Stokes beam, are directed through the window and focused on a portion of the sample. In the preferred embodiment, a projectile is fired from a high-pressure gas gun to impact the outside of the reflective wall, generating a planar shock wave which travels through the sample toward the window. The pump and Stokes beams result in the emission from the shock-compressed sample of a coherent anti-Stokes beam, which is emitted toward the approaching reflective wall of the vessel and reflected back through the window. The anti-Stokes beam is folded into a spectrometer for frequency analysis. The results of such analysis are useful for determining chemical and physical phenomena which occur during the shock-compression of the sample.
Method and apparatus for determining pressure-induced frequency-shifts in shock-compressed materials
Moore, D.S.; Schmidt, S.C.
1983-12-16
A method and an apparatus for conducting coherent anti-Stokes Raman scattering spectroscopy in shock-compressed materials are disclosed. The apparatus includes a sample vessel having an optically transparent wall and an opposing optically reflective wall. Two coherent laser beams, a pump beam and a broadband Stokes beam, are directed through the window and focused on a portion of the sample. In the preferred embodiment, a projectile is fired from a high-pressure gas gun to impact the outside of the reflective wall, generating a planar shock wave which travels through the sample toward the window. The pump and Stokes beams result in the emission from the shock-compressed sample of a coherent anti-Stokes beam, which is emitted toward the approaching reflective wall of the vessel and reflected back through the window. The anti-Stokes beam is folded into a spectrometer for frequency analysis. The results of such analysis are useful for determining chemical and physical phenomena which occur during the shock-compression of the sample.
Matsunaga, Kouki; Hirai, Yusuke; Neo, Yoichiro; Matsumoto, Takahiro; Tomita, Makoto
2017-12-19
We demonstrated tailored plasmon-induced transparency (PIT) in a metal (Au)-insulator (SiO 2 )-metal (Ag) (MIM) structure, where the Fano interference between the MIM waveguide mode and the surface plasmon polariton (SPP) resonance mode induced a transparency window in an otherwise opaque wavenumber (k) region. A series of structures with different thicknesses of the Ag layer were prepared and the attenuated total reflection (ATR) response was examined. The height and width of the transparency window, as well as the relevant k-domain dispersion, were controlled by adjusting the Ag layer thickness. To confirm the dependency of PIT on Ag layer thickness, we performed numerical calculations to determine the electric field amplitude inside the layers. The steep k-domain dispersion in the transparency window is capable of creating a lateral beam shift known as the Goos-Hänchen shift, for optical device and sensor applications. We also discuss the Fano interference profiles in a ω - k two-dimensional domain on the basis of Akaike information criteria.
One-way quasiplanar terahertz absorbers using nonstructured polar dielectric layers
NASA Astrophysics Data System (ADS)
Rodríguez-Ulibarri, P.; Beruete, M.; Serebryannikov, A. E.
2017-10-01
A concept of quasiplanar one-way transparent terahertz absorbers made of linear isotropic materials is presented. The resulting structure consists of a homogeneous absorbing layer of polar dielectric, GaAs, a dispersion-free substrate, and an ultrathin frequency-selective reflector. It is demonstrated that perfect absorption can be obtained for forward illumination, along with total reflection at backward illumination and transparency windows in the adjacent bands. The design is particularized for the polaritonic gap range where permittivity of GaAs varies in a wide range and includes epsilon-near-zero and transparency regimes. The underlying physics can be explained with the aid of a unified equivalent-circuit (EC) analytical model. Perfect matching of input impedance in forward operation and, simultaneously, strong mismatch in the backward case are the universal criteria of one-way absorption. It is shown that perfect one-way absorption can be achieved at rather arbitrary permittivity values, provided these criteria are fulfilled. The EC results are in good agreement with full-wave simulations in a wide range of material and geometrical parameters. The resulting one-way absorbers are very compact and geometrically simple, and enable transparency in the neighboring frequency ranges and, hence, multifunctionality that utilizes both absorption- and transmission-related regimes.
Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin
2016-12-12
The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices.
The rarefaction wave propagation in transparent windows
NASA Astrophysics Data System (ADS)
Glam, B.; Porat, E.; Horovitz, Y.; Yosef-Hai, A.
2017-01-01
The radial (lateral) rarefaction wave velocity of polymethyl methacrylate (PMMA) and Lithium Fluoride (LiF) windows were studied by plate impact experiments that were carried out at Soreq NRC up to a pressure of 146 kbar in the PMMA and 334 kbar in the LiF. The windows were glued to Lead targets that were impacted by a copper impactor. The VISAR measurement was done in the window interface with the target. This information was utilized to identify the radial rarefaction arrival time at the center of different diameter windows after the shock event, and served as a measurement to the radial wave velocity in the shocked material. It was found that for both windows, LiF or PMMA, the measured radial wave velocity increases with the pressure. Furthermore, this velocity is significantly higher compared to the expected longitudinal sound velocity at the same pressure, calculated by the Steinberg EOS in the PMMA and by ab initio calculation in the LiF. Here we present the experimental results and a comparison with analytical calculation of the sound velocity using the Steinberg EOS.
All-dielectric resonant cavity-enabled metals with broadband optical transparency
NASA Astrophysics Data System (ADS)
Liu, Zhengqi; Zhang, Houjiao; Liu, Xiaoshan; Pan, Pingping; Liu, Yi; Tang, Li; Liu, Guiqiang
2017-06-01
Metal films with broadband optical transparency are desirable in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and infrared detectors. As bare metal is opaque to light, this issue of transparency attracts great scientific interest. In this work, we proposed and demonstrated a feasible and universal approach for achieving broadband optical transparent (BOT) metals by utilizing all-dielectric resonant cavities. Resonant dielectrics provide optical cavity modes and couple strongly with the surface plasmons of the metal film, and therefore produce a broadband near-unity optical transparent window. The relative enhancement factor (EF) of light transmission exceeds 3400% in comparison with that of pure metal film. Moreover, the transparent metal motif can be realized by other common metals including gold (Au), silver (Ag) and copper (Cu). These optical features together with the fully retained electric and mechanical properties of a natural metal suggest that it will have wide applications in optoelectronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berland, Brian; Hollingsworth, Russell
Five Quads of energy are lost through windows annually in the U.S. Low-e coatings are increasingly employed to reduce the wasted energy. Most commonly, the low-e coating is an oxide material applied directly to the glass at high temperature. With over 100,000,000 existing homes, a retrofit product is crucial to achieve widespread energy savings. Low-e films, i.e. coatings on polymeric substrates, are now also available to meet this need. However, the traditional oxide materials and process is incompatible with low temperature plastics. Alternate high performing low-e films typically incorporate materials that limit visible transmission to 35% or less. Further, themore » cost is high. The objective of this award was to develop a retrofit, integrated low-e/electrochromic window film to dramatically reduce energy lost through windows. While field testing of state-of-the-art electrochromic (EC) windows show the energy savings are maximized if a low-e coating is used in conjunction with the EC, available low-e films have a low visible transmission (~70% or less) that limits the achievable clear state and therefore, appearance and energy savings potential. Comprehensive energy savings models were completed at Lawrence Berkeley National Lab (LBNL). A parametric approach was used to project energy usage for windows with a large range of low-e properties across all U.S. climate zones, without limiting the study to materials that had already been produced commercially or made in a lab. The model enables projection of energy savings for low-e films as well as integrated low-e/EC products. This project developed a novel low-e film, optimized for compatibility with EC windows, using low temperature, high deposition rate processes for the growth of low-e coatings on plastic films by microwave plasma enhanced chemical vapor deposition. Silica films with good density and optical properties were demonstrated at deposition rates as high as 130Å/sec. A simple bi-layer low-e stack of silica and a transparent conductive oxide demonstrated 90% visible transmission with high thermal infrared reflectivity characteristic of conventional low-e coatings. A slightly more complex stack provided high solar infrared reflection without sacrificing visible transmission or thermal infrared reflection. Successful completion of the effort produced a prototype integrated low-e, dynamic window film with characterized energy saving potential. Cost modeling for the passive bi-layer, low-e film projects a manufacturing cost of ~$0.50/ft2 for a plant with 10M ft2/yr capacity. The novel thin film processes developed here enable high deposition rate (low cost), optical quality oxide coatings at low temperatures. When combined with engineered materials, ITN’s coating will result in low-cost, low-e films that reflect a high degree of infrared radiation without substantially reducing the visible transmission. The resultant window film will improve the U-value and achieve SHGC improvements over bare glass. The new low-e coating will be particularly attractive when combined with an electrochromic film. Low-e coating design guided by energy savings modeling allows customization of the product for different climate zones.« less
A new powder production route for transparent spinel windows: powder synthesis and window properties
NASA Astrophysics Data System (ADS)
Cook, Ronald; Kochis, Michael; Reimanis, Ivar; Kleebe, Hans-Joachim
2005-05-01
Spinel powders for the production of transparent polycrystalline ceramic windows have been produced using a number of traditional ceramic and sol-gel methods. We have demonstrated that magnesium aluminate spinel powders produced from the reaction of organo-magnesium compounds with surface modified boehmite precursors can be used to produce high quality transparent spinel parts. The new powder production method allows fine control over the starting particle size, size distribution, purity and stoichiometry. The new process involves formation of a boehmite sol-gel from the hydrolysis of aluminum alkoxides followed by surface modification of the boehmite nanoparticles using carboxylic acids. The resulting surface modified boehmite nanoparticles can then be metal exchanged at room temperature with magnesium acetylacetonate to make a precursor powder that is readily transformed into pure phase spinel.
Lang, Augustus W; Li, Yuanyuan; De Keersmaecker, Michel; Shen, D Eric; Österholm, Anna M; Berglund, Lars; Reynolds, John R
2018-03-09
Transparent wood composites, with their high strength and toughness, thermal insulation, and excellent transmissivity, offer a route to replace glass for diffusely transmitting windows. Here, conjugated-polymer-based electrochromic devices (ECDs) that switch on-demand are demonstrated using transparent wood coated with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a transparent conducting electrode. These ECDs exhibit a vibrant magenta-to-clear color change that results from a remarkably colorless bleached state. Furthermore, they require low energy and power inputs of 3 mWh m -2 at 2 W m -2 to switch due to a high coloration efficiency (590 cm 2 C -1 ) and low driving voltage (0.8 V). Each device component is processed with high-throughput methods, which highlights the opportunity to apply this approach to fabricate mechanically robust, energy-efficient smart windows on a large scale. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Yoshimoto, Kohei; Masuno, Atsunobu; Ueda, Motoi; Inoue, Hiroyuki; Yamamoto, Hiroshi; Kawashima, Tastunori
2017-03-30
xLa 2 O 3 -(100 - x)Ga 2 O 3 binary glasses were synthesized by an aerodynamic levitation technique. The glass-forming region was found to be 20 ≤ x ≤ 57. The refractive indices were greater than 1.92 and increased linearly with increasing x. The polarizabilities of oxide ions were estimated to be 2.16-2.41 Å 3 , indicating that the glasses were highly ionic. The glasses were transparent over a very wide range from the ultraviolet to the mid-infrared region. The widest transparent window among the oxide glasses was from 270 nm to 10 μm at x = 55. From the Raman scattering spectra, a decrease in bridging oxide ions and an increase in non-bridging oxide ions were confirmed to occur with increasing La 2 O 3 content. The maximum phonon energy was found to be approximately 650 cm -1 , being one of the lowest among oxide glasses. These results show that La 2 O 3 -Ga 2 O 3 binary glasses should be promising host materials for optical applications such as lenses, windows, and filters over a very wide wavelength range.
Yoshimoto, Kohei; Masuno, Atsunobu; Ueda, Motoi; Inoue, Hiroyuki; Yamamoto, Hiroshi; Kawashima, Tastunori
2017-01-01
xLa2O3-(100 − x)Ga2O3 binary glasses were synthesized by an aerodynamic levitation technique. The glass-forming region was found to be 20 ≤ x ≤ 57. The refractive indices were greater than 1.92 and increased linearly with increasing x. The polarizabilities of oxide ions were estimated to be 2.16–2.41 Å3, indicating that the glasses were highly ionic. The glasses were transparent over a very wide range from the ultraviolet to the mid-infrared region. The widest transparent window among the oxide glasses was from 270 nm to 10 μm at x = 55. From the Raman scattering spectra, a decrease in bridging oxide ions and an increase in non-bridging oxide ions were confirmed to occur with increasing La2O3 content. The maximum phonon energy was found to be approximately 650 cm−1, being one of the lowest among oxide glasses. These results show that La2O3-Ga2O3 binary glasses should be promising host materials for optical applications such as lenses, windows, and filters over a very wide wavelength range. PMID:28358112
NASA Astrophysics Data System (ADS)
Yoshimoto, Kohei; Masuno, Atsunobu; Ueda, Motoi; Inoue, Hiroyuki; Yamamoto, Hiroshi; Kawashima, Tastunori
2017-03-01
xLa2O3-(100 - x)Ga2O3 binary glasses were synthesized by an aerodynamic levitation technique. The glass-forming region was found to be 20 ≤ x ≤ 57. The refractive indices were greater than 1.92 and increased linearly with increasing x. The polarizabilities of oxide ions were estimated to be 2.16-2.41 Å3, indicating that the glasses were highly ionic. The glasses were transparent over a very wide range from the ultraviolet to the mid-infrared region. The widest transparent window among the oxide glasses was from 270 nm to 10 μm at x = 55. From the Raman scattering spectra, a decrease in bridging oxide ions and an increase in non-bridging oxide ions were confirmed to occur with increasing La2O3 content. The maximum phonon energy was found to be approximately 650 cm-1, being one of the lowest among oxide glasses. These results show that La2O3-Ga2O3 binary glasses should be promising host materials for optical applications such as lenses, windows, and filters over a very wide wavelength range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Lihua, E-mail: xiaolihua@git.edu.cn; School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083; Guizhou Special Functional Materials 2011 Collaborative Innovation Center, Guizhou Institute of Technology, Guiyang 550003
2016-04-28
The structural, electronic, magnetic, and optical properties of GdB{sub 6} are studied using the first-principles calculations. Calculated values for magnetic and optical properties and lattice constant are found to be consistent with previously reported experimental results. The calculated results show that GdB{sub 6} is a perfect near-infrared absorption/reflectance material that could serve as a solar radiation shielding material for windows with high visible light transmittance, similar to LaB{sub 6}, which is assigned to its plasma oscillation and a collective oscillation (volume plasmon) of carrier electrons. It was found that the magnetic 4f electrons of Gd are not relevant to themore » important optical properties of GdB{sub 6}. These theoretical studies serve as a reference for future studies.« less
Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin
2016-01-01
The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices. PMID:27941895
Enclosure for small animals during awake animal imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goddard, Jr., James S
An enclosure or burrow restrains an awake animal during an imaging procedure. A tubular body, made from a radiolucent material that does not attenuate x-rays or gamma rays, accepts an awake animal. A proximal end of the body includes an attachment surface that corresponds to an attachment surface of an optically transparent and optically uniform window. An anti-reflective coating may be applied to an inner surface, an outer surface, or both surfaces of the window. Since the window is a separate element of the enclosure and it is not integrally formed as part of the body, it can be mademore » with optically uniform thickness properties for improved motion tracking of markers on the animal with a camera during the imaging procedure. The motion tracking information is then used to compensate for animal movement in the image.« less
Air transparent soundproof window
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sang-Hoon, E-mail: shkim@mmu.ac.kr; Lee, Seong-Hyun
2014-11-15
A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. Themore » sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.« less
Transparency of 2μ m window of Titan's atmosphere
NASA Astrophysics Data System (ADS)
Rannou, P.; Seignovert, B.; Le Mouélic, S.; Maltagliati, L.; Rey, M.; Sotin, C.
2018-02-01
Titan's atmosphere is optically thick and hides the surface and the lower layers from the view at almost all wavelengths. However, because gaseous absorptions are spectrally selective, some narrow spectral intervals are relatively transparent and allow to probe the surface. To use these intervals (called windows) a good knowledge of atmospheric absorption is necessary. Once gas spectroscopic linelists are well established, the absorption inside windows depends on the way the far wings of the methane absorption lines are cut-off. We know that the intensity in all the windows can be explained with the same cut-off parameters, except for the window at 2 μm. This discrepancy is generally treated with a workaround which consists in using a different cut-off description for this specific window. This window is relatively transparent and surface may have specific spectral signatures that could be detected. Thus, a good knowledge of atmosphere opacities is essential and our scope is to better understand what causes the difference between the 2 μm window and the other windows. In this work, we used scattered light at the limb and transmissions in occultation observed with VIMS (Visual Infrared Mapping Spectrometer) onboard Cassini, around the 2 μm window. Data shows an absorption feature that participates to the shape of this window. Our atmospheric model fits well the VIMS data at 2 μm with the same cut-off than for the other windows, provided an additional absorption is introduced in the middle of the window around ≃ 2.065 μm. It explains well the discrepency between the cut-off used at 2 μm, and we show that a gas with a fairly constant mixing ratio, possibly ethane, may be the cause of this absorption. Finally, we studied the impact of this absorption on the retrieval of the surface reflectivity and found that it is significant.
Next-Generation Multifunctional Electrochromic Devices.
Cai, Guofa; Wang, Jiangxin; Lee, Pooi See
2016-08-16
The rational design and exploration of electrochromic devices will find a wide range of applications in smart windows for energy-efficient buildings, low-power displays, self-dimming rear mirrors for automobiles, electrochromic e-skins, and so on. Electrochromic devices generally consist of multilayer structures with transparent conductors, electrochromic films, ion conductors, and ion storage films. Synthetic strategies and new materials for electrochromic films and transparent conductors, comprehensive electrochemical kinetic analysis, and novel device design are areas of active study worldwide. These are believed to be the key factors that will help to significantly improve the electrochromic performance and extend their application areas. In this Account, we present our strategies to design and fabricate electrochromic devices with high performance and multifunctionality. We first describe the synthetic strategies, in which a porous tungsten oxide (WO3) film with nearly ideal optical modulation and fast switching was prepared by a pulsed electrochemical deposition method. Multiple strategies, such as sol-gel/inkjet printing methods, hydrothermal/inkjet printing methods, and a novel hybrid transparent conductor/electrochromic layer have been developed to prepare high-performance electrochromic films. We then summarize the recent advances in transparent conductors and ion conductor layers, which play critial roles in electrochromic devices. Benefiting from the developments of soft transparent conductive substrates, highly deformable electrochromic devices that are flexible, foldable, stretchable, and wearable have been achieved. These emerging devices have great potential in applications such as soft displays, electrochromic e-skins, deformable electrochromic films, and so on. We finally present a concept of multifunctional smart glass, which can change its color to dynamically adjust the daylight and solar heat input of the building or protect the users' privacy during the daytime. Energy can also be stored in the smart windows during the daytime simultaneously and be discharged for use in the evening. These results reveal that the electrochromic devices have potential applications in a wide range of areas. We hope that this Account will promote further efforts toward fundamental research on electrochromic materials and the development of new multifunctional electrochromic devices to meet the growing demands for next-generation electronic systems.
On-chip plasmon-induced transparency based on plasmonic coupled nanocavities
Zhu, Yu; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang
2014-01-01
On-chip plasmon-induced transparency offers the possibility of realization of ultrahigh-speed information processing chips. Unfortunately, little experimental progress has been made to date because it is difficult to obtain on-chip plasmon-induced transparency using only a single meta-molecule in plasmonic circuits. Here, we report a simple and efficient strategy to realize on-chip plasmon-induced transparency in a nanoscale U-shaped plasmonic waveguide side-coupled nanocavity pair. High tunability in the transparency window is achieved by covering the pair with different organic polymer layers. It is possible to realize ultrafast all-optical tunability based on pump light-induced refractive index change of a graphene cover layer. Compared with previous reports, the overall feature size of the plasmonic nanostructure is reduced by more than three orders of magnitude, while ultrahigh tunability of the transparency window is maintained. This work also provides a superior platform for the study of the various physical effects and phenomena of nonlinear optics and quantum optics. PMID:24435059
On-chip plasmon-induced transparency based on plasmonic coupled nanocavities.
Zhu, Yu; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang
2014-01-17
On-chip plasmon-induced transparency offers the possibility of realization of ultrahigh-speed information processing chips. Unfortunately, little experimental progress has been made to date because it is difficult to obtain on-chip plasmon-induced transparency using only a single meta-molecule in plasmonic circuits. Here, we report a simple and efficient strategy to realize on-chip plasmon-induced transparency in a nanoscale U-shaped plasmonic waveguide side-coupled nanocavity pair. High tunability in the transparency window is achieved by covering the pair with different organic polymer layers. It is possible to realize ultrafast all-optical tunability based on pump light-induced refractive index change of a graphene cover layer. Compared with previous reports, the overall feature size of the plasmonic nanostructure is reduced by more than three orders of magnitude, while ultrahigh tunability of the transparency window is maintained. This work also provides a superior platform for the study of the various physical effects and phenomena of nonlinear optics and quantum optics.
Gorlin, Yelena; Jaramillo, Thomas F.
2014-01-01
The selection of an appropriate substrate is an important initial step for many studies of electrochemically active materials. In order to help researchers with the substrate selection process, we employ a consistent experimental methodology to evaluate the electrochemical reactivity and stability of seven potential substrate materials for electrocatalyst and photoelectrode evaluation. Using cyclic voltammetry with a progressively increased scan range, we characterize three transparent conducting oxides (indium tin oxide, fluorine-doped tin oxide, and aluminum-doped zinc oxide) and four opaque conductors (gold, stainless steel 304, glassy carbon, and highly oriented pyrolytic graphite) in three different electrolytes (sulfuric acid, sodium acetate, and sodium hydroxide). We determine the inert potential window for each substrate/electrolyte combination and make recommendations about which materials may be most suitable for application under different experimental conditions. Furthermore, the testing methodology provides a framework for other researchers to evaluate and report the baseline activity of other substrates of interest to the broader community. PMID:25357131
Benck, Jesse D.; Pinaud, Blaise A.; Gorlin, Yelena; ...
2014-10-30
The selection of an appropriate substrate is an important initial step for many studies of electrochemically active materials. In order to help researchers with the substrate selection process, we employ a consistent experimental methodology to evaluate the electrochemical reactivity and stability of seven potential substrate materials for electrocatalyst and photoelectrode evaluation. Using cyclic voltammetry with a progressively increased scan range, we characterize three transparent conducting oxides (indium tin oxide, fluorine-doped tin oxide, and aluminum-doped zinc oxide) and four opaque conductors (gold, stainless steel 304, glassy carbon, and highly oriented pyrolytic graphite) in three different electrolytes (sulfuric acid, sodium acetate, andmore » sodium hydroxide). Here, we determine the inert potential window for each substrate/electrolyte combination and make recommendations about which materials may be most suitable for application under different experimental conditions. Furthermore, the testing methodology provides a framework for other researchers to evaluate and report the baseline activity of other substrates of interest to the broader community.« less
Reflection type skin friction meter
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Promode R. (Inventor); Weinstein, Leonard M. (Inventor)
1993-01-01
A housing block is provided having an upper surface conforming to the test surface of a model or aircraft. An oil film is supplied upstream of a transparent wedge window located in this upper surface by an oil pump system located external to the housing block. A light source located within the housing block supplies a light beam which passes through this transparent window and is reflected back through the transparent window by the upper surface of the oil film to a photo-sensitive position sensor located within the housing. This position sensor allows the slope history of the oil film caused by and aerodynamic flow to be determined. The skin friction is determined from this slope history. Internally located mirrors augment and sensitize the reflected beam as necessary before reaching the position sensor. In addition, a filter may be provided before this sensor to filter the beam.
Transparent and flexible heaters based on Al:ZnO degenerate semiconductor
NASA Astrophysics Data System (ADS)
Roul, Monee K.; Obasogie, Brandon; Kogo, Gilbert; Skuza, J. R.; Mundle, R. M.; Pradhan, A. K.
2017-10-01
We report on high performance transparent Al:ZnO (AZO) thin film heaters on flexible polymer (polyethylene terephthalate) and glass substrates which demonstrate low sheet resistivity. AZO thin films were grown by radio-frequency magnetron sputtering at low Ts (below 200 °C) on flexible, transparent polyethylene terephthalate substrates that show stable and reproducible results by applying low (<10 V) voltages. This study also examined identical AZO thin films on glass substrates that showed highly reproducible heating effects due to the Joule heating effect. The potential applications are foldable and wearable electronics, pain/injury therapy smart windows, automobile window defrosters, and low-cost power electronics.
Methods and systems for detection of ice formation on surfaces
NASA Technical Reports Server (NTRS)
Alfano, Robert R. (Inventor); Wang, Wubao (Inventor); Sztul, Henry (Inventor); Budansky, Yury (Inventor)
2007-01-01
A system for detecting ice formation on metal, painted metal and other material surfaces can include a transparent window having an exterior surface upon which ice can form; a light source and optics configured and arranged to illuminate the exterior surface of the window from behind the exterior surface; and a detector and optics configured and arranged to receive light backscattered by the exterior surface and any ice disposed on the exterior surface and determine the thickness of the ice layer. For example, the system can be used with aircraft by placing one or more windows in the wings of the aircraft. The system is used for a novel optical method for real-time on-board detection and warning of ice formation on surfaces of airplanes, unmanned aerial vehicles (UAVs), and other vehicles and stationary structures to improve their safety and operation.
Stoll, Joshua D; Kolmakov, Andrei
2012-12-21
Due to its ultrahigh electron transmissivity in a wide electron energy range, molecular impermeability, high electrical conductivity and excellent mechanical stiffness, suspended graphene membranes appear to be a nearly ideal window material for in situ (in vivo) environmental electron microscopy of nano- and mesoscopic objects (including bio-medical samples) immersed in liquids and/or in dense gaseous media. In this paper, taking advantage of a small modification of the graphene transfer protocol onto metallic and SiN supporting orifices, reusable environmental cells with exchangeable graphene windows have been designed. Using colloidal gold nanoparticles (50 nm) dispersed in water as model objects for scanning electron microscopy in liquids as proof of concept, different conditions for imaging through the graphene membrane were tested. Limiting factors for electron microscopy in liquids, such as electron beam induced water radiolysis and damage of the graphene membrane at high electron doses, are discussed.
NASA Astrophysics Data System (ADS)
Kephart, Jason Michael
With a growing population and rising standard of living, the world is in need of clean sources of energy at low cost in order to meet both economic and environmental needs. Solar energy is an abundant resource which is fundamentally adequate to meet all human energy needs. Photovoltaics are an attractive way to safely convert this energy to electricity with little to no noise, moving parts, water, or arable land. Currently, thin-film photovoltaic modules based on cadmium telluride are a low-cost solution with multiple GW/year commercial production, but have lower conversion efficiency than the dominant technology, crystalline silicon. Increasing the conversion efficiency of these panels through optimization of the electronic and optical structure of the cell can further lower the cost of these modules. The front contact of the CdTe thin-film solar cell is critical to device efficiency for three important reasons: it must transmit light to the CdTe absorber to be collected, it must form a reasonably passive interface and serve as a growth template for the CdTe, and it must allow electrons to be extracted from the CdTe. The current standard window layer material, cadmium sulfide, has a low bandgap of 2.4 eV which can block over 20% of available light from being converted to mobile charge carriers. Reducing the thickness of this layer or replacing it with a higher-bandgap material can provide a commensurate increase in device efficiency. When the CdS window is made thinner, a degradation in electronic quality of the device is observed with a reduction in open-circuit voltage and fill factor. One commonly used method to enable a thinner optimum CdS thickness is a high-resistance transparent (HRT) layer between the transparent conducting oxide electrode and window layer. The function of this layer has not been fully explained in the literature, and existing hypotheses center on the existence of pinholes in the window layer which are not consistent with observed results. In this work numerous HRT layers were examined beginning with an empirical optimization to create a SnO2-based HRT which allows significantly reduced CdS thickness while maintaining diode quality. The role of this layer was explored through measurement of band alignment parameters via photoemission. These results suggest a negative correlation of work function to device open-circuit voltage, which implies that non-ideal band alignment at the front interface of CdTe is in large part responsible for the loss of electronic quality. Several scenarios explored through 1-dimensional modeling in the SCAPS program corroborate this theory. A sputter-deposited (Mg,Zn)O layer was tested which allows for complete elimination of the CdS window layer with an increase in open-circuit voltage and near complete transmission of all above-bandgap light. An additional window layer material---sputtered, oxygenated CdS---was explored for its transparency. This material was found only to produce high efficiency devices with an effective buffer layer such as the optimized SnO2-base HRT. The dependence of chemical, optical, electrical, and device properties on oxygen content was explored, and the stability of these devices was determined to depend largely on the minimization of copper in the device. Both sputter-deposited alloy window layers appeared to have tunable electron affinity which was critical to optimizing band alignment and therefore device efficiency. Several scenarios explored through 1-dimensional modeling in the SCAPS program corroborate this theory. Both window layers allowed an AM1.5G efficiency increase from a baseline of approximately 13% to 16%.
Smart glass based on electrochromic polymers
NASA Astrophysics Data System (ADS)
Xu, Chunye; Kong, Xiangxing; Liu, Lu; Su, Fengyu; Kim, Sooyeun; Taya, Minoru
2006-03-01
Five-layer-structured electrochromic glass (window), containing a transparent conductive layer, an electrochromic layer, an ionic conductive layer, an ionic storage layer and a second conductive transparent layer, was fabricated. The electrochromic glass adopts the conjugated polymer, poly[3,3-dimethyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine] (PProDOT-Me2), as a blue electrochromic active layer, vanadium pentaoxide film as an ion storage layer and polymer gel electrolyte as the ionic transport layer. Dimension of smart glass up to 12 x 20 inch was developed. UV curable sealant was applied for the sealing devices. Color changing or switching speed of 12 x 20 inch smart glass from dark state to the transparent state (or vise versa) is less than 15 seconds under applied 1.5 voltages. Besides the long open circuit memory (the colored state or transparent state remains the same state after the power is off), the smart window can be adjusted easily into the intermediate state between the dark state and the transparent state by just simply turn the power on or off. No space consuming or dirt collecting shades, curtains or blinds are needed. The applications of the smart window, e.g. in the aircrafts, automobiles and architectures were discussed as well.
A large, switchable optical clearing skull window for cerebrovascular imaging
Zhang, Chao; Feng, Wei; Zhao, Yanjie; Yu, Tingting; Li, Pengcheng; Xu, Tonghui; Luo, Qingming; Zhu, Dan
2018-01-01
Rationale: Intravital optical imaging is a significant method for investigating cerebrovascular structure and function. However, its imaging contrast and depth are limited by the turbid skull. Tissue optical clearing has a great potential for solving this problem. Our goal was to develop a transparent skull window, without performing a craniotomy, for use in assessing cerebrovascular structure and function. Methods: Skull optical clearing agents were topically applied to the skulls of mice to create a transparent window within 15 min. The clearing efficacy, repeatability, and safety of the skull window were then investigated. Results: Imaging through the optical clearing skull window enhanced both the contrast and the depth of intravital imaging. The skull window could be used on 2-8-month-old mice and could be expanded from regional to bi-hemispheric. In addition, the window could be repeatedly established without inducing observable inflammation and metabolic toxicity. Conclusion: We successfully developed an easy-to-handle, large, switchable, and safe optical clearing skull window. Combined with various optical imaging techniques, cerebrovascular structure and function can be observed through this optical clearing skull window. Thus, it has the potential for use in basic research on the physiopathologic processes of cortical vessels. PMID:29774069
Experiments On Transparent Conductive Films For Spacecraft
NASA Technical Reports Server (NTRS)
Perez-Davis, Marla E.; Rutledge, Sharon K.; De Groh, Kim K.; Hung, Ching-Cheh; Malave-Sanabria, Tania; Hambourger, Paul; Roig, David
1995-01-01
Report describes experiments on thin, transparent, electrically conductive films made, variously, of indium tin oxide covered by magnesium fluoride (ITO/MgF2), aluminum-doped zinc oxide (AZO), or pure zinc oxide (ZnO). Films are candidates for application to such spacecraft components, including various optoelectronic devices and window surfaces that must be protected against buildup of static electric charge. On Earth, such films useful on heat mirrors, optoelectronic devices, gas sensors, and automotive and aircraft windows.
An investigation of the optical constants and band gap of chromium disilicide
NASA Technical Reports Server (NTRS)
Bost, M. C.; Mahan, John E.
1988-01-01
Optical properties of polycrystalline thin films of CrSi2 grown by the diffusion couple method on silicon substrates were investigated. An analysis of the energy dependence of the absorption coefficient indicates that the material is an indirect forbidden gap semiconductor with a band-gap value of slightly less than 0.35 eV. This result was confirmed by measurements of the temperature dependence of the intrinsic conductivity. The value of the bandgap corresponds well to an important window of transparency in the earth's atmosphere (3-5 microns), which makes the material of potential interest for IR detector applications.
NASA Astrophysics Data System (ADS)
Khrebtov, A. A.; Fedorenko, E. V.; Reutov, V. A.
2017-11-01
In this paper we investigated polymeric luminescent compositions based on polystyrene doped with beta diketonates boron difluoride. Transparent films with effective absorption in the ultraviolet and blue regions of the spectrum were obtained. Polymeric luminescent compositions based on the mixture of dyes allow expanding the absorption region and increase the radiation shift. A luminescent solar concentrator consisting of a glass plate coated with such film can be used for photovoltaic window application.
Coloured Rings Produced on Transparent Plates
ERIC Educational Resources Information Center
Suhr, Wilfried; Schlichting, H. Joachim
2007-01-01
Beautiful colored interference rings can be produced by using transparent plates such as window glass. A simple model explains this effect, which was described by Newton but has almost been forgotten. (Contains 11 figures.)
Laser pumping of thyristors for fast high current rise-times
Glidden, Steven C.; Sanders, Howard D.
2013-06-11
An optically triggered semiconductor switch includes an anode metallization layer; a cathode metallization layer; a semiconductor between the anode metallization layer and the cathode metallization layer and a photon source. The semiconductor includes at least four layers of alternating doping in the form P-N-P-N, in which an outer layer adjacent to the anode metallization layer forms an anode and an outer layer adjacent the cathode metallization layer forms a cathode and in which the anode metallization layer has a window pattern of optically transparent material exposing the anode layer to light. The photon source emits light having a wavelength, with the light from the photon source being configured to match the window pattern of the anode metallization layer.
Optical characterization of pure and Al-doped ZnO prepared by sol-gel method
NASA Astrophysics Data System (ADS)
Belka, Radosław; Keczkowska, Justyna; Kasińska, Justyna
2016-09-01
In this paper the preparation process and optical characterization of pure and Al3+ doped zinc oxide (Al:ZnO) coatings will be presented. ZnO based materials have been studied extensively due to their potential applications in optoelectronic devices as conductive gas sensors, transparent conductive, electrodes, solar cell windows, varistors, UVfilters or photovoltaic cells. It is II-VI semiconductor with wide-band gap of 3.37 eV and large exciton binding energy of 60meV. It is possible to improve the conductivity of ZnO coating by intentionally doping ZnO with aluminium ions during preparation process. Such transparent and conducting thin films, known as AZO (Aluminium Zinc Oxide) films, are very good candidate for application as transparent conducting materials in many optoelectronic devices. The well-known sol-gel method is used for preparation of solution, coated on glass substrates by dip coating process. Prepared samples were investigated by Raman and UV-VIS spectroscopy. Transmittance as well as specular and diffuse reflectance spectroscopy methods were used for studies of optical parameters. We found that Al admixture influences on optical bandgap of ZnO.
Transparent, conducting films based on metal/dielectric photonic band gaps
NASA Astrophysics Data System (ADS)
Bloemer, Mark J.; Scalora, Michael; D'Aguanno, G.; Bowden, Charles M.; Baglio, Salvatore; Sibilia, Concita; Centini, Marco; Bertolotti, Mario
1999-07-01
A transparent conductor has been developed based on 1D metal/dielectric photonic band gap structures. Laminated metal/dielectric filters containing 100 nm of silver have been fabricated with > 50% transmittance. Applications for transparent, conducting films include antennas embedded in windshields, electrodes on flat panel displays, electromagnetic shielding, and solar window panes.
Wave energy transmission apparatus for high-temperature environments
NASA Technical Reports Server (NTRS)
Buckley, John D. (Inventor); Edwards, William C. (Inventor); Kelliher, Warren C. (Inventor); Carlberg, Ingrid A. (Inventor)
2010-01-01
A wave energy transmission apparatus has a conduit made from a refractory oxide. A transparent, refractory ceramic window is coupled to the conduit. Wave energy passing through the window enters the conduit.
Broadband Absorbing Exciton-Plasmon Metafluids with Narrow Transparency Windows.
Yang, Jihua; Kramer, Nicolaas J; Schramke, Katelyn S; Wheeler, Lance M; Besteiro, Lucas V; Hogan, Christopher J; Govorov, Alexander O; Kortshagen, Uwe R
2016-02-10
Optical metafluids that consist of colloidal solutions of plasmonic and/or excitonic nanomaterials may play important roles as functional working fluids or as means for producing solid metamaterial coatings. The concept of a metafluid employed here is based on the picture that a single ballistic photon, propagating through the metafluid, interacts with a large collection of specifically designed optically active nanocrystals. We demonstrate water-based metafluids that act as broadband electromagnetic absorbers in a spectral range of 200-3300 nm and feature a tunable narrow (∼100 nm) transparency window in the visible-to-near-infrared region. To define this transparency window, we employ plasmonic gold nanorods. We utilize excitonic boron-doped silicon nanocrystals as opaque optical absorbers ("optical wall") in the UV and blue-green range of the spectrum. Water itself acts as an opaque "wall" in the near-infrared to infrared. We explore the limits of the concept of a "simple" metafluid by computationally testing and validating the effective medium approach based on the Beer-Lambert law. According to our simulations and experiments, particle aggregation and the associated decay of the window effect are one example of the failure of the simple metafluid concept due to strong interparticle interactions.
Highly Flexible, Multipixelated Thermosensitive Smart Windows Made of Tough Hydrogels.
La, Thanh-Giang; Li, Xinda; Kumar, Amit; Fu, Yiyang; Yang, Shu; Chung, Hyun-Joong
2017-09-27
In a cold night, a clear window that will become opaque while retaining the indoor heat is highly desirable for both privacy and energy efficiency. A thermally responsive material that controls both the transmittance of solar radiance (predominantly in the visible and near-infrared wavelengths) and blackbody radiation (mainly in the mid-infrared) can realize such windows with minimal energy consumption. Here, we report a smart coating made from polyampholyte hydrogel (PAH) that transforms from a transparency state to opacity to visible radiation and strengthens opacity to mid-infrared when lowering the temperature as a result of phase separation between the water-rich and polymer-rich phases. To match a typical temperature fluctuation during the day, we fine-tune the phase transition temperature between 25 and 55 °C by introducing a small amount of relatively hydrophobic monomers (0.1 to 0.5 wt % to PAH). To further demonstrate an actively controlled, highly flexible, and high-contrast smart window, we build in an array of electric heaters made of printed elastomeric composite. The multipixelated window offers rapid switching, ∼70 s per cycle, whereas the device can withstand high strain (up to 80%) during operations.
1989-04-01
strengthened glass. These large parts will be formed in one piece using male and female molds along wit’ pressure tc form the compound curves. The various...shown conclusively that the use of polishing compounds has a detrimental effect on windows and gives rise to many of the initial scratches and embedded... compounds which are perceived to be a cause of premature crazing in service. Alternatively, if polishing is deemed necessary for cosmetic or other
NASA Astrophysics Data System (ADS)
Chen, De-Chao; Li, Hong-Ju; Xia, Sheng-Xuan; Qin, Meng; Zhai, Xiang; Wang, Ling-Ling
2017-08-01
A tunable electromagnetically-induced-transparency-like (EIT-like) device is proposed numerically and theoretically in the mid-infrared region, which is composed of periodically patterned ring and disk graphene. Distinguished from the commonly used three-level system, the hybridization of the plasmon mode is applied to describing and explaining the EIT-like phenomenon in the proposed systems. What is more, further researches have revealed that the spectral position of the transparency window can be tuned not only by geometrically changing the couple distance in graphene nanostructures, but also by dynamically altering the radius of the graphene nanodisk and the chemical potential of the graphene. At the transparency window, there exist large optical delays, which can slow down the speed of light in vacuum. This work may pave the way to the development of applications including tunable sensors, slow-light devices, and optical switches.
Graphene oxide windows for in situ environmental cell photoelectron spectroscopy.
Kolmakov, Andrei; Dikin, Dmitriy A; Cote, Laura J; Huang, Jiaxing; Abyaneh, Majid Kazemian; Amati, Matteo; Gregoratti, Luca; Günther, Sebastian; Kiskinova, Maya
2011-08-28
The performance of new materials and devices often depends on processes taking place at the interface between an active solid element and the environment (such as air, water or other fluids). Understanding and controlling such interfacial processes require surface-specific spectroscopic information acquired under real-world operating conditions, which can be challenging because standard approaches such as X-ray photoelectron spectroscopy generally require high-vacuum conditions. The state-of-the-art approach to this problem relies on unique and expensive apparatus including electron analysers coupled with sophisticated differentially pumped lenses. Here, we develop a simple environmental cell with graphene oxide windows that are transparent to low-energy electrons (down to 400 eV), and demonstrate the feasibility of X-ray photoelectron spectroscopy measurements on model samples such as gold nanoparticles and aqueous salt solution placed on the back side of a window. These proof-of-principle results show the potential of using graphene oxide, graphene and other emerging ultrathin membrane windows for the fabrication of low-cost, single-use environmental cells compatible with commercial X-ray and Auger microprobes as well as scanning or transmission electron microscopes.
A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology
Heo, Chaejeong; Park, Hyejin; Kim, Yong-Tae; Baeg, Eunha; Kim, Yong Ho; Kim, Seong-Gi; Suh, Minah
2016-01-01
Chronic in vivo imaging and electrophysiology are important for better understanding of neural functions and circuits. We introduce the new cranial window using soft, penetrable, elastic, and transparent, silicone-based polydimethylsiloxane (PDMS) as a substitute for the skull and dura in both rats and mice. The PDMS can be readily tailored to any size and shape to cover large brain area. Clear and healthy cortical vasculatures were observed up to 15 weeks post-implantation. Real-time hemodynamic responses were successfully monitored during sensory stimulation. Furthermore, the PDMS window allowed for easy insertion of microelectrodes and micropipettes into the cortical tissue for electrophysiological recording and chemical injection at any location without causing any fluid leakage. Longitudinal two-photon microscopic imaging of Cx3Cr1+/− GFP transgenic mice was comparable with imaging via a conventional glass-type cranial window, even immediately following direct intracortical injection. This cranial window will facilitate direct probing and mapping for long-term brain studies. PMID:27283875
Growth and characterization of LuAs films and nanostructures
NASA Astrophysics Data System (ADS)
Krivoy, E. M.; Nair, H. P.; Crook, A. M.; Rahimi, S.; Maddox, S. J.; Salas, R.; Ferrer, D. A.; Dasika, V. D.; Akinwande, D.; Bank, S. R.
2012-10-01
We report the growth and characterization of nearly lattice-matched LuAs/GaAs heterostructures. Electrical conductivity, optical transmission, and reflectivity measurements of epitaxial LuAs films indicate that LuAs is semimetallic, with a room-temperature resistivity of 90 μΩ cm. Cross-sectional transmission electron microscopy confirms that LuAs nucleates as self-assembled nanoparticles, which can be overgrown with high-quality GaAs. The growth and material properties are very similar to those of the more established ErAs/GaAs system; however, we observe important differences in the magnitude and wavelength of the peak optical transparency, making LuAs superior for certain device applications, particularly for thick epitaxially embedded Ohmic contacts that are transparent in the near-IR telecommunications window around 1.3 μm.
Growth and characterization of LuAs films and nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krivoy, E. M.; Nair, H. P.; Crook, A. M.
2012-10-01
We report the growth and characterization of nearly lattice-matched LuAs/GaAs heterostructures. Electrical conductivity, optical transmission, and reflectivity measurements of epitaxial LuAs films indicate that LuAs is semimetallic, with a room-temperature resistivity of 90 {mu}{Omega} cm. Cross-sectional transmission electron microscopy confirms that LuAs nucleates as self-assembled nanoparticles, which can be overgrown with high-quality GaAs. The growth and material properties are very similar to those of the more established ErAs/GaAs system; however, we observe important differences in the magnitude and wavelength of the peak optical transparency, making LuAs superior for certain device applications, particularly for thick epitaxially embedded Ohmic contacts that aremore » transparent in the near-IR telecommunications window around 1.3 {mu}m.« less
Far-IR transparency and dynamic infrared signature control with novel conducting polymer systems
NASA Astrophysics Data System (ADS)
Chandrasekhar, Prasanna; Dooley, T. J.
1995-09-01
Materials which possess transparency, coupled with active controllability of this transparency in the infrared (IR), are today an increasingly important requirement, for varied applications. These applications include windows for IR sensors, IR-region flat panel displays used in camouflage as well as in communication and sight through night-vision goggles, coatings with dynamically controllable IR-emissivity, and thermal conservation coatings. Among stringent requirements for these applications are large dynamic ranges (color contrast), 'multi-color' or broad-band characteristics, extended cyclability, long memory retention, matrix addressability, small area fabricability, low power consumption, and environmental stability. Among materials possessing the requirements for variation of IR signature, conducting polymers (CPs) appear to be the only materials with dynamic, actively controllable signature and acceptable dynamic range. Conventional CPs such as poly(alkyl thiophene), poly(pyrrole) or poly(aniline) show very limited dynamic range, especially in the far-IR, while also showing poor transparency. We have developed a number of novel CP systems ('system' implying the CP, the selected dopant, the synthesis method, and the electrolyte) with very wide dynamic range (up to 90% in both important IR regions, 3 - 5 (mu) and 8 - 12 (mu) ), high cyclability (to 105 cycles with less than 10% optical degradation), nearly indefinite optical memory retention, matrix addressability of multi-pixel displays, very wide operating temperature and excellent environmental stability, low charge capacity, and processability into areas from less than 1 mm2 to more than 100 cm2. The criteria used to design and arrive at these CP systems, together with representative IR signature data, are presented in this paper.
Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows
NASA Astrophysics Data System (ADS)
Richard, L.; Vasilchenko, S.; Mondelain, D.; Ventrillard, I.; Romanini, D.; Campargue, A.
2017-11-01
In a recent contribution [A. Campargue, S. Kassi, D. Mondelain, S. Vasilchenko, D. Romanini, Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model. J. Geophys. Res. Atmos., 121,13,180-13,203, doi:10.1002/2016JD025531], we reported accurate water vapor absorption continuum measurements by Cavity Ring-down Spectroscopy (CRDS) and Optical-Feedback-Cavity Enhanced Absorption Spectroscopy (OF-CEAS) at selected spectral points of 4 near infrared transparency windows. In the present work, the self-continuum cross-sections, CS, are determined for two new spectral points. The 2491 cm-1 spectral point in the region of maximum transparency of the 4.0 μm window was measured by OF-CEAS in the 23-52 °C temperature range. The 4435 cm-1 spectral point of the 2.1 μm window was measured by CRDS at room temperature. The self-continuum cross-sections were determined from the pressure squared dependence of the continuum absorption. Comparison to the literature shows a reasonable agreement with 1970 s and 1980 s measurements using a grating spectrograph in the 4.0 μm window and a very good consistency with our previous laser measurements in the 2.1 μm window. For both studied spectral points, our values are much smaller than previous room temperature measurements by Fourier Transform Spectroscopy. Significant deviations (up to about a factor 4) are noted compared to the widely used semi empirical MT_CKD model of the absorption continuum. The measured temperature dependence at 2491 cm-1 is consistent with previous high temperature measurements in the 4.0 μm window and follows an exp(D0/kT) law, D0 being the dissociation energy of the water dimer.
NASA Astrophysics Data System (ADS)
Hu, Shan
This research explores the application of carbon nanotube (CNT) films for active noise cancellation, solar energy harvesting and energy storage in building windows. The CNT-based components developed herein can be integrated into a solar-powered active noise control system for a building window. First, the use of a transparent acoustic transducer as both an invisible speaker for auxiliary audio playback and for active noise cancellation is accomplished in this work. Several challenges related to active noise cancellation in the window are addressed. These include secondary path estimation and directional cancellation of noise so as to preserve auxiliary audio and internal sounds while preventing transmission of external noise into the building. Solar energy can be harvested at a low rate of power over long durations while acoustic sound cancellation requires short durations of high power. A supercapacitor based energy storage system is therefore considered for the window. Using CNTs as electrode materials, two generations of flexible, thin, and fully solid-state supercapacitors are developed that can be integrated into the window frame. Both generations consist of carbon nanotube films coated on supporting substrates as electrodes and a solid-state polymer gel layer for the electrolyte. The first generation is a single-cell parallel-plate supercapacitor with a working voltage of 3 Volts. Its energy density is competitive with commercially available supercapacitors (which use liquid electrolyte). For many applications that will require higher working voltage, the second-generation multi-cell supercapacitor is developed. A six-cell device with a working voltage as high as 12 Volts is demonstrated here. Unlike the first generation's 3D structure, the second generation has a novel planar (2D) architecture, which makes it easy to integrate multiple cells into a thin and flexible supercapacitor. The multi-cell planar supercapacitor has energy density exceeding that of other planar supercapacitors in literature by more than one order of magnitude. All-solution fabrication processes were developed for both generations to achieve economical and scalable production. In addition to carbon nanotubes, nickel/nickel oxide core-shell nanowires were also studied as electrode materials for supercapacitors, for which high specific capacitance but low working voltage were obtained. Semi-transparent solar cells with carbon nanotube counter electrodes are developed to power the active noise cancellation system. They can be directly mounted on the glass panes and become part of the home window. The 2.67% efficiency achieved is higher than the 1.8% efficiency required for harvesting adequate energy to cancel noise of 70dB Day-Night-Level, which impacts on a north-facing window. In summary, this project develops several fundamental technologies that together can contribute to a solar-powered active noise cancellation system for a building window. At the same time, since the component technologies being developed are fundamental, it is also likely that they will have wider applications in other domains beyond building windows.
NASA Astrophysics Data System (ADS)
Robert, G.; Gillot, F.; Bénier, J.
2014-05-01
In this paper, we show that if the temperature bar TA obtained by a pyrometric measurement on a shock-heated material can be reached with a good precision (~5%), its transformation into a useful temperature bar TT to constrain an equation of state is not straightforward. The effects of interface, in particular the adaptation of impedance, can create a difference between bar TA and bar TT of more than 10%. This impedance correction depends on the shock adiabat of the glue, not known for thin layers of few |am but also of the equation of state of the material and of its lines of phase transition.
Manabe, Kengo; Matsubayashi, Takeshi; Tenjimbayashi, Mizuki; Moriya, Takeo; Tsuge, Yosuke; Kyung, Kyu-Hong; Shiratori, Seimei
2016-09-29
Inspired by biointerfaces, such as the surfaces of lotus leaves and pitcher plants, researchers have developed innovative strategies for controlling surface wettability and transparency. In particular, great success has been achieved in obtaining low adhesion and high transmittance via the introduction of a liquid layer to form liquid-infused surfaces. Furthermore, smart surfaces that can change their surface properties according to external stimuli have recently attracted substantial interest. As some of the best-performing smart surface materials, slippery liquid-infused porous surfaces (SLIPSs), which are super-repellent, demonstrate the successful achievement of switchable adhesion and tunable transparency that can be controlled by a graded mechanical stimulus. However, despite considerable efforts, producing temperature-responsive, super-repellent surfaces at ambient temperature and pressure remains difficult because of the use of nonreactive lubricant oil as a building block in previously investigated repellent surfaces. Therefore, the present study focused on developing multifunctional materials that dynamically adapt to temperature changes. Here, we demonstrate temperature-activated solidifiable/liquid paraffin-infused porous surfaces (TA-SLIPSs) whose transparency and control of water droplet movement at room temperature can be simultaneously controlled. The solidification of the paraffin changes the surface morphology and the size of the light-transmission inhibitor in the lubricant layer; as a result, the control over the droplet movement and the light transmittance at different temperatures is dependent on the solidifiable/liquid paraffin mixing ratio. Further study of such temperature-responsive, multifunctional systems would be valuable for antifouling applications and the development of surfaces with tunable optical transparency for innovative medical applications, intelligent windows, and other devices.
NASA Astrophysics Data System (ADS)
Trenque, Isabelle; Mornet, Stéphane; Duguet, Etienne; Majimel, Jérôme; Brüll, Annelise; Teinz, Katharina; Kemnitz, Erhard; Gaudon, Manuel
2013-01-01
Because ZnO is a promising candidate for getting efficient films or varnishes with thermal insulating abilities for windows applications, the effect of the encapsulation of ZnO particles in shells of low refractive index material on the improvement of the visible light transmission was investigated. ZnO-MgF2 core-shell particles were synthesized by deposition of fluoride sols on ZnO particles through a vacuum slip casting process like. The transmission behaviours were first indirectly studied by diffuse reflexion measurements on powder beds. Then, particle films were elaborated by a screen printing process which ensured direct transmission measurements. The encapsulation of ZnO particles with a coating shell of 1.3 wt.% of MgF2 improves the visible light transmission of 32%.
Transmission-geometry electrochemical cell for in-situ scattering and spectroscopy investigations
Chupas, Peter J.; Chapman, Karena W.; Kurtz, Charles A.; Borkiewicz, Olaf J.; Wiaderek, Kamila Magdelena; Shyam, Badri
2015-05-05
The present invention relates to a test chamber that can be used to perform a variety of X-ray and neutron spectroscopy experiments including powder diffraction, small-angle scattering, X-ray absorption spectroscopy, and pair distribution functions, such chamber comprising a first electrode with an X-ray transparent window; a second electrode with an X-ray transparent window; a plurality of insulating gaskets providing a hermetic seal around the sample and preventing contact between said first and second electrodes; and an insulating housing into which the first electrode is secured.
Affordable Window Insulation with R-10/inch Rating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenifer Marchesi Redouane Begag; Je Kyun Lee; Danny Ou
2004-10-15
During the performance of contract DE-FC26-00-NT40998, entitled ''Affordable Window Insulation with R-10/inch Value'', research was conducted at Aspen Aerogels, Inc. to develop new transparent aerogel materials suitable for window insulation applications. The project requirements were to develop a formulation or multiple formulations that have high transparency (85-90%) in the visible region, are hydrophobic (will not opacify with exposure to water vapor or liquid), and have at least 2% resiliency (interpreted as recoverable 2% strain and better than 5% strain to failure in compression). Results from an unrelated project showed that silica aerogels covalently bonded to organic polymers exhibit excellent mechanicalmore » properties. At the outset of this project, we believed that such a route is the best to improve mechanical properties. We have applied Design of Experiment (DOE) techniques to optimize formulations including both silica aerogels and organically modified silica aerogels (''Ormosils''). We used these DOE results to optimize formulations around the local/global optimization points. This report documents that we succeeded in developing a number of formulations that meet all of the stated criteria. We successfully developed formulations utilizing a two-step approach where the first step involves acid catalyzed hydrolysis and the second step involves base catalyzed condensation to make the gels. The gels were dried using supercritical CO{sub 2} and we were able to make 1 foot x 1 foot x 0.5 inch panels that met the criteria established.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-25
... glazing markings on the rear window of the subject vehicles lack the symbol ``DOT'', the manufacturer's... glazing surfaces, to ensure a necessary degree of transparency in motor vehicle windows for driver visibility, and to minimize the possibility of occupants being thrown through the vehicle windows in...
Preparation and Optical Properties of Infrared Transparent 3Y-TZP Ceramics.
Wang, Chuanfeng; Mao, Xiaojian; Peng, Ya-Pei; Jiang, Benxue; Fan, Jintai; Xu, Yangyang; Zhang, Long; Zhao, Jingtai
2017-04-07
In the present study, a tough tetragonal zirconia polycrystalline (Y-TZP) material was developed for use in high-speed infrared windows and domes. The influence of the preparation procedure and the microstructure on the material's optical properties was evaluated by SEM and FT-IR spectroscopy. It was revealed that a high transmittance up to 77% in the three- to five-micrometer IR region could be obtained when the sample was pre-sintered at 1225 °C and subjected to hot isostatic pressing (HIP) at 1275 °C for two hours. The infrared transmittance and emittance at elevated temperature were also examined. The in-line transmittance remained stable as the temperature increased to 427 °C, with degradation being observed only near the infrared cutoff edge. Additionally, the emittance property of 3Y-TZP ceramic at high temperature was found to be superior to those of sapphire and spinel. Overall, the results indicate that Y-TZP ceramic is a potential candidate for high-speed infrared windows and domes.
Smart nickel oxide materials for the applications of energy efficiency and storage
NASA Astrophysics Data System (ADS)
Lin, Feng
The present dissertation studies nickel oxide-based materials for the application of electrochromic windows and lithium-air batteries. The materials were fabricated via radio frequency magnetron sputtering and subsequently post-treated with thermal evaporation and ozone exposure. The strategies to improve electrochromic performance of nickel oxide materials were investigated including compositional control, morphology tuning, modification of electronic structure and interface engineering (i.e., Li2O 2, graphene). The electrochemical properties of the resulting materials were characterized in lithium ion electrolytes. Extremely high performing nickel oxide-based electrochromic materials were obtained in terms of optical modulation, switching kinetics, bleached-state transparency and durability, which promise the implementation of these materials for practical smart windows. With the aid of advanced synchrotron X-ray absorption spectroscopy, it is reported for the first time that the electrochromic effect in multicomponent nickel oxide-based materials arises from the reversible formation of hole states in the NiO6 cluster accompanying with the reversible formation of Li2O2. The reversible formation of Li2O 2 was successfully leveraged with the study of electro-catalysts and cathode materials for lithium-air batteries. The reversibility of Li 2O2 was thoroughly investigated using soft X-ray absorption spectroscopy and theoretical simulation, which substantiates the promise of using electrochromic films as electro-catalysts and/or cathode materials in lithium-air batteries.
NASA Astrophysics Data System (ADS)
Zhu, Keyong; Huang, Yong; Pruvost, Jeremy; Legrand, Jack; Pilon, Laurent
2017-06-01
This study aims to quantify systematically the effect of non-absorbing cap-shaped droplets condensed on the backside of transparent windows on their directional-hemispherical transmittance and reflectance. Condensed water droplets have been blamed to reduce light transfer through windows in greenhouses, solar desalination plants, and photobioreactors. Here, the directional-hemispherical transmittance was predicted by Monte Carlo ray-tracing method. For the first time, both monodisperse and polydisperse droplets were considered, with contact angle between 0 and 180°, arranged either in an ordered hexagonal pattern or randomly distributed on the window backside with projected surface area coverage between 0 and 90%. The directional-hemispherical transmittance was found to be independent of the size and spatial distributions of the droplets. Instead, it depended on (i) the incident angle, (ii) the optical properties of the window and droplets, and on (iii) the droplet contact angle and (iv) projected surface area coverage. In fact, the directional-hemispherical transmittance decreased with increasing incident angle. Four optical regimes were identified in the normal-hemispherical transmittance. It was nearly constant for droplet contact angles either smaller than the critical angle θcr (predicted by Snell's law) for total internal reflection at the droplet/air interface or larger than 180°-θcr. However, between these critical contact angles, the normal-hemispherical transmittance decreased rapidly to reach a minimum at 90° and increased rapidly with increasing contact angles up to 180°-θcr. This was attributed to total internal reflection at the droplet/air interface which led to increasing reflectance. In addition, the normal-hemispherical transmittance increased slightly with increasing projected surface area coverage for contact angle was smaller than θcr. However, it decreased monotonously with increasing droplet projected surface area coverage for contact angle larger than θcr. These results can be used to select the material or surface coating with advantageous surface properties for applications when dropwise condensation may otherwise have a negative effect on light transmittance.
Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling
NASA Astrophysics Data System (ADS)
Zhai, Yao; Ma, Yaoguang; David, Sabrina N.; Zhao, Dongliang; Lou, Runnan; Tan, Gang; Yang, Ronggui; Yin, Xiaobo
2017-03-01
Passive radiative cooling draws heat from surfaces and radiates it into space as infrared radiation to which the atmosphere is transparent. However, the energy density mismatch between solar irradiance and the low infrared radiation flux from a near-ambient-temperature surface requires materials that strongly emit thermal energy and barely absorb sunlight. We embedded resonant polar dielectric microspheres randomly in a polymeric matrix, resulting in a metamaterial that is fully transparent to the solar spectrum while having an infrared emissivity greater than 0.93 across the atmospheric window. When backed with a silver coating, the metamaterial shows a noontime radiative cooling power of 93 watts per square meter under direct sunshine. More critically, we demonstrated high-throughput, economical roll-to-roll manufacturing of the metamaterial, which is vital for promoting radiative cooling as a viable energy technology.
Mochalov, Leonid; Dorosz, Dominik; Kudryashov, Mikhail; Nezhdanov, Aleksey; Usanov, Dmitry; Gogova, Daniela; Zelentsov, Sergey; Boryakov, Aleksey; Mashin, Alexandr
2018-03-15
AsS chalcogenide films, where As content is 60-40at.%, have been prepared via a RF non-equilibrium low-temperature argon plasma discharge, using volatile As and S as the precursors. Optical properties of the films were studied in UV-visible-NIR region in the range from 0.2 to 2.5μm. Infrared and Raman spectroscopy have been employed for the elucidation of the molecular structure of the newly developed material. It was established that PECVD films possess a higher degree of transparency (up to 80%) and a wider transparency window (>20μm) in comparison with the "usual" AsS thin films, prepared by different thermal methods, which is highly advantageous for certain applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Chemical Degradation and Stress Cracking of Polycarbonate in DS2.
1987-09-01
materials are used. For instance, polycarbonate, used widely for air- craft windows, helicopter canopies and transparent armor because of its good impact ...predicting environmental stress cracking of the polymer from solubility con- siderations. The concept has been extended to include a hydrogen bonding...IML Authors . 04 * ! 9 00 9 A S . - . . . q w * . - .* *,.*A CC AX -4-’-~~~~ U--’- ; IO i- A - -C4 = tO -~’ 1 .’ . M0 C , W V E WE1 C ~ 0.0.’un WEC
Optically Controlled Distributed Quantum Computing Using Atomic Ensembles As Qubits
2016-02-23
Second, the lithium niobate material has a large nonlinear coefficient (>20 pm V–1) for efficient QFC and a wide transparent window (∼ 350 –5200 nm...for the 1550 nm + 1570 nm 780 nm process. Finally, to implement QFC for the 637 and 780 nm light, one would use a pump at 350 nm and a waveguide QPM...for the 637 nm + 780 nm 350 nm process. Again, the 350 nm laser can be produced adopting successive SHG and SFG processes using a 1050 nm laser
Chromogenic switchable glazing: Towards the development of the smart window
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lampert, C.M.
1995-06-01
The science and technology of chromogenic materials for switchable glazings in building applications is discussed. These glazings can be used for dynamic control of solar and visible energy. Currently many researchers and engineers are involved with the development of products in this field. A summary of activities in Japan, Europe, Australia, USA and Canada is made. The activities of the International Energy Agency are included. Both non-electrically activated and electrically activated glazings are discussed. Technologies covered in the first category are photochromics, and thermochromics and thermotropics. A discussion of electrically activated chromogenic glazings includes dispersed liquid crystals, dispersed particles andmore » electrochromics. A selection of device structures and performance characteristics are compared. A discussion of transparent conductors is presented. Technical issues concerning large-area development of smart windows are discussed.« less
Photonic microstructures for energy-generating clear glass and net-zero energy buildings
NASA Astrophysics Data System (ADS)
Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal
2016-08-01
Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application.
Photonic microstructures for energy-generating clear glass and net-zero energy buildings.
Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal
2016-08-23
Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application.
Photonic microstructures for energy-generating clear glass and net-zero energy buildings
Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal
2016-01-01
Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application. PMID:27550827
Cavity electromagnetically induced transparency via spontaneously generated coherence
NASA Astrophysics Data System (ADS)
Tariq, Muhammad; Ziauddin, Bano, Tahira; Ahmad, Iftikhar; Lee, Ray-Kuang
2017-09-01
A four-level N-type atomic ensemble enclosed in a cavity is revisited to investigate the influence of spontaneous generated coherence (SGC) on transmission features of weak probe light field. A weak probe field is propagating through the cavity where each atom inside the cavity follows four-level N-type atom-field configuration of rubidium (?) atom. We use input-output theory and study the interaction of atomic ensemble and three cavity fields which are coupled to the same cavity mode. A SGC affects the transmission properties of weak probe light field due to which a transparency window (cavity EIT) appears. At resonance condition the transparency window increases with increasing the SGC in the system. We also studied the influence of the SGC on group delay and investigated magnitude enhancement of group delay for the maximum SGC in the system.
New machining method of high precision infrared window part
NASA Astrophysics Data System (ADS)
Yang, Haicheng; Su, Ying; Xu, Zengqi; Guo, Rui; Li, Wenting; Zhang, Feng; Liu, Xuanmin
2016-10-01
Most of the spherical shell of the photoelectric multifunctional instrument was designed as multi optical channel mode to adapt to the different band of the sensor, there were mainly TV, laser and infrared channels. Without affecting the optical diameter, wind resistance and pneumatic performance of the optical system, the overall layout of the spherical shell was optimized to save space and reduce weight. Most of the shape of the optical windows were special-shaped, each optical window directly participated in the high resolution imaging of the corresponding sensor system, and the optical axis parallelism of each sensor needed to meet the accuracy requirement of 0.05mrad.Therefore precision machining of optical window parts quality will directly affect the photoelectric system's pointing accuracy and interchangeability. Processing and testing of the TV and laser window had been very mature, while because of the special nature of the material, transparent and high refractive rate, infrared window parts had the problems of imaging quality and the control of the minimum focal length and second level parallel in the processing. Based on years of practical experience, this paper was focused on how to control the shape and parallel difference precision of infrared window parts in the processing. Single pass rate was increased from 40% to more than 95%, the processing efficiency was significantly enhanced, an effective solution to the bottleneck problem in the actual processing, which effectively solve the bottlenecks in research and production.
Management of heat in laser tissue welding using NIR cover window material.
Sriramoju, Vidyasagar; Savage, Howard; Katz, Alvin; Muthukattil, Ronex; Alfano, Robert R
2011-12-01
Laser tissue welding (LTW) is a novel method of surgical wound closure by the use of laser radiation to induce fusion of the biological tissues. Molecular dynamics associated with LTW is a result of thermal and non-thermal mechanisms. This research focuses exclusively on better heat management to reduce thermal damage of tissues in LTW using a near infrared laser radiation. An infrared continuous-wave (CW) laser radiation at 1,450 nm wavelength corresponding to the absorption band from combination vibrational modes of water is used to weld together ex vivo porcine aorta. In these studies we measured the optimal laser power and scan speed, for better tensile strength of the weld and lesser tissue dehydration. Significant amount of water loss from the welded tissue results in cellular death and tissue buckling. Various thermally conductive optical cover windows were used as heat sinks to reduce thermal effects during LTW for the dissipation of the heat. The optimal use of the method prevents tissue buckling and minimizes the water loss. Diamond, sapphire, BK7, fused silica, and IR quartz transparent optical cover windows were tested. The data from this study suggests that IR-quartz as the material with optimal thermal conductivity is ideal for laser welding of the porcine aorta. Copyright © 2011 Wiley Periodicals, Inc.
da Costa, Marcelo Fernandes; Júnior, Augusto Paranhos; Lottenberg, Claudio Luiz; Castro, Leonardo Cunha; Ventura, Dora Fix
2017-12-01
The purpose of this study was to measure luminance contrast sensitivity and color vision thresholdfs in normal subjects using a blue light filter lens and transparent intraocular lens material. Monocular luminance grating contrast sensitivity was measured with Psycho for Windows (version 2.36; Cambridge Research Systems) at 3.0, 6.0, 12.0, 20.0, and 30.0 cycles per degree of visual angle (cpd) in 15 normal subjects (eight female), with a mean age of 21.6 years (SD = 3.8 years). Chromatic discrimination was assessed with the Cambridge colour test (CCT) along the protan, deutan, and tritan color confusion axes. Both tests were performed in a darkened room under two situations: with a transparent lens and with blue light filter lens. Subjective impressions were taken by subjects regarding their visual experience under both conditions. No difference was found between the luminance contrast sensitivity measured with transparent and blue light filter. However, 13/15 (87%) of the subjects reported more comfortable vision with the blue filter. In the color vision test, tritan thresholds were significantly higher for the blue filter compared with the transparent filter (p = 0.003). For protan and deutan thresholds no differences were found. Blue-yellow color vision is impaired with the blue light filter, and no impairment occurs with the transparent filter. No significant differences in thresholds were found in the luminance contrast sensitivity comparing the blue light and transparent filters. The impact of short wavelength light filtering on intrinsically photosensitive retinal ganglion cells is also discussed.
Transparent self-cleaning dust shield
Mazumder, Malay K.; Sims, Robert A.; Wilson, James D.
2005-06-28
A transparent electromagnetic shield to protect solar panels and the like from dust deposition. The shield is a panel of clear non-conducting (dielectric) material with embedded parallel electrodes. The panel is coated with a semiconducting film. Desirably the electrodes are transparent. The electrodes are connected to a single-phase AC signal or to a multi-phase AC signal that produces a travelling electromagnetic wave. The electromagnetic field produced by the electrodes lifts dust particles away from the shield and repels charged particles. Deposited dust particles are removed when the electrodes are activated, regardless of the resistivity of the dust. Electrostatic charges on the panel are discharged by the semiconducting film. When used in conjunction with photovoltaic cells, the power for the device may be obtained from the cells themselves. For other surfaces, such as windshields, optical windows and the like, the power must be derived from an external source. One embodiment of the invention employs monitoring and detection devices to determine when the level of obscuration of the screen by dust has reached a threshold level requiring activation of the dust removal feature.
Subgap Absorption in Conjugated Polymers
DOE R&D Accomplishments Database
Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.
1991-01-01
Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.
NASA Astrophysics Data System (ADS)
Szkoda, Mariusz; Lisowska-Oleksiak, Anna; Grochowska, Katarzyna; Skowroński, Łukasz; Karczewski, Jakub; Siuzdak, Katarzyna
2016-09-01
In a significant amount of cases, the highly ordered TiO2 nanotube arrays grow through anodic oxidation of a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practical applications, e.g. solar cells or electrochromic windows, the semi-transparent TiO2 formed directly on the transparent, conductive substrate is very much desired. This work shows that high-quality Ti coating could be formed at room temperature using an industrial magnetron sputtering system within 50 min. Under optimized conditions, the anodization process was performed on 2 μm titanium films deposited onto the FTO (fluorine-tin-oxide) support. Depending on the electrolyte type, highly ordered tubular or porous titania layers were obtained. The fabricated samples, after their thermal annealing, were investigated using scanning electron microscopy, Raman spectroscopy and UV-vis spectroscopy in order to investigate their morphology, crystallinity and absorbance ability. The photocurrent response curves indicate that materials are resistant to the photocorrosion process and their activity is strongly connected to optical properties. The most transparent TiO2 films were fabricated when Ti was anodized in water electrolyte, whereas the highest photocurrent densities (12 μA cm-2) were registered for titania received after Ti anodization in ethylene glycol solution. The obtained results are of significant importance in the production of thin, semi-transparent titania nanostructures on a commercial scale.
Optical speedup at transparency of the gain recovery in semiconductor optical amplifiers
NASA Astrophysics Data System (ADS)
Hessler, T. P.; Dupertuis, M.-A.; Deveaud, B.; Emery, J.-Y.; Dagens, B.
2002-10-01
Experimental demonstration of optical speedup at transparency (OSAT) has been performed on a 1 mm long semiconductor optical amplifiers (SOA). OSAT is a recently proposed scheme that decreases the recovery time of an SOA while maintaining the available gain. It is achieved by externally injecting into the SOA the beam of a separate high power laser at energies around the transparency point. Even though the experimental conditions were not optimal, a beam of 100 mW decreases the recovery time by a third when it is injected in the vicinity of the material transparency point of the device. This acceleration of the device response without detrimental reduction of the gain is found to be effective over a broad wavelength window of about 20 nm around transparency. The injection of the accelerating beam into the gain region is a less efficient solution not only because the gain is then strongly diminished but also because speeding is reduced. This originates from the reduction of the amplified spontaneous emission power in the device, which counterbalances the speeding capabilities of the external laser beam. Another advantage of the OSAT scheme is realized in relatively long SOAs, which suffer from gain overshoot under strong current injection. Simulations show that OSAT decreases the gain overshoot, which should enable us to use OSAT to further speedup the response of long SOAs.
Interacting Dark Resonances with Plasmonic Meta-Molecules
2014-09-17
different K-subsystems, as seen in Fig. 1(b). Within the transparency window, of the K-configuration atomic electromagnetic induced transparency ( EIT ...exhibits EIT -type phenomena as seen by a reduction in absorbance at x 264 THz. The basic physical mechanism behind this EIT -type phenomena can be...radiative plasmonic atom.5 However, in the presence of a second dark plasmonic atom, the EIT -type transparency at FIG. 1. (a) Atomic four-level system
Weak absorptions in high density planetary atmospheres measured by the cavity ring down technique.
NASA Astrophysics Data System (ADS)
Snels, M.; Stefani, S.; Piccioni, G.
2014-04-01
High density planetary atmospheres are characterized by a high opacity due to the strong absorbers. Howevere usually several transparency windows exist which allow to study the lower part of the atmosphere as well as the surface emission. The weak absorptions occurring in these transparency windows are mostly due to trace species and to continuum absorption of the major absorber(s). A good example is the atmosphere of Venus, where carbondioxide causes a high opacity throughout most of the infrared wavelengths, but also has some transparency spectral windows in the near infrared, allowing the study of low lying clouds , trace species such as water vapor and in some cases the surface emission. The cavity ring down (CRD) technique has shown to be a good tool for studying weak absorptions. Here we present a CRD apparatus which can be operated at high pressures (up to 40 bar) with a sensitivity which allows to measure attenuations up to 2x10-8 cm-1. This instrument has been used to measure the carbon dioxide absorption at pressures up to 40 bar and has been also used to measure attenuation due to Rayleigh scattering at 1.18 μm.
Optical Property Requirements for Glasses, Ceramics and Plastics in Spacecraft Window Systems
NASA Technical Reports Server (NTRS)
Estes, Lynda
2011-01-01
This is a preliminary draft of a standard published by the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) that is intended to provide uniform window optical design requirements in support of the development of human-rated spaceflight hardware. The material covered in this standard is based on data from extensive testing by the Advanced Sensing and Optical Measurement Branch at NASA Langley Research Center, and compiled into requirements format by the NASA JSC Structural Engineering Division. At the time of this initial document release, a broader technical community has not reviewed this standard. The technical content of this standard is primarily based on the Constellation Program Orion Crew Exploration Vehicle Window Optical Properties Requirements, CxP 72407, Baseline. Unlike other optical requirements documents available for human rated spacecraft, this document includes requirements that ensure functionality for windows that contain glass/ceramic and/or plastic window substrate materials. These requirements were derived by measuring the optical properties of fused silica and aluminosilicate glass window assemblies and ensuring that the performance of any window assembly that includes a plastic pane or panes will meet the performance level of the all-glass assemblies. The resulting requirements are based upon the performance and parameter metrology testing of a variety of materials, including glass, transparent ceramics, acrylics, and polycarbonates. In general, these requirements are minimum specifications for each optical parameter in order to achieve the function specified for each functional category, A through D. Because acrylic materials perform at a higher level than polycarbonates in the optics regime, and CxP/Orion is planning to use acrylic in the Orion spacecraft, these requirements are based heavily on metrology from that material. As a result, two of the current Category D requirements for plastics are cited in such a way that will result in the screening out of polycarbonates. It is acknowledged that many polycarbonates can perform the functions of Category D, such as piloting and imagery with lens with apertures up to 25mm, without performance issues. Therefore, this forward warns users that certain requirements, such as birefringence and wavefront, for Category D plastics need to be revised to allow those polycarbonates that perform adequately in Category D to be accepted, while at the same time, screen out those materials that do not perform up to par. At the time of document release, the requirements in question have been identified by a TBD beside the proposed requirement criteria (which is based upon acrylic performance). Vehicles that are designed with acrylic materials for windowpanes are encouraged to use the values presented in this document for all requirements, in order to ensure adequate optical performance.
Impacts of Co doping on ZnO transparent switching memory device characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simanjuntak, Firman Mangasa; Wei, Kung-Hwa; Prasad, Om Kumar
2016-05-02
The resistive switching characteristics of indium tin oxide (ITO)/Zn{sub 1−x}Co{sub x}O/ITO transparent resistive memory devices were investigated. An appropriate amount of cobalt dopant in ZnO resistive layer demonstrated sufficient memory window and switching stability. In contrast, pure ZnO devices demonstrated a poor memory window, and using an excessive dopant concentration led to switching instability. To achieve suitable memory performance, relying only on controlling defect concentrations is insufficient; the grain growth orientation of the resistive layer must also be considered. Stable endurance with an ON/OFF ratio of more than one order of magnitude during 5000 cycles confirmed that the Co-doped ZnOmore » device is a suitable candidate for resistive random access memory application. Additionally, fully transparent devices with a high transmittance of up to 90% at wavelength of 550 nm have been fabricated.« less
NASA Technical Reports Server (NTRS)
Gray, Perry; Guven, Ibrahim
2016-01-01
A new facility for making small particle impacts is being developed at NASA. Current sand/particle impact facilities are an erosion test and do not precisely measure and document the size and velocity of each of the impacting particles. In addition, evidence of individual impacts is often obscured by subsequent impacts. This facility will allow the number, size, and velocity of each particle to be measured and adjusted. It will also be possible to determine which particle produced damage at a given location on the target. The particle size and velocity will be measured by high speed imaging techniques. Information as to the extent of damage and debris from impacts will also be recorded. It will be possible to track these secondary particles, measuring size and velocity. It is anticipated that this additional degree of detail will provide input for erosion models and also help determine the impact physics of the erosion process. Particle impacts will be recorded at 90 degrees to the particle flight path and also from the top looking through the target window material.
In Situ Optical Observation of High-Temperature Geological Processes With the Moissanite Cell
NASA Astrophysics Data System (ADS)
Walte, N.; Keppler, H.
2005-12-01
A major drawback of existing techniques in experimental earth and material sciences is the inability to observe ongoing high-temperature processes in situ during an experiment. Examples for important time-dependent processes include the textural development of rocks and oxide systems during melting and crystallization, solid-state and melt-present recrystallization and Ostwald ripening, and bubble nucleation and growth during degassing of glasses and melts. The investigation of these processes by post-mortem analysis of a quenched microstructure is time consuming and often unsatisfactory. Here, we introduce the moissanite cell that allows optical in situ observation of long-term experiments at high temperatures. Moissanite is a transparent gem-quality type of SiC that is characterized by its hardness and superior chemical and thermal resistance. Two moissanite windows with a thickness and diameter of several millimeters are placed into sockets of fired pyrophyllite and fixed onto two opposite metal plates. The sockets are wrapped with heating wire and each window is connected to a thermocouple for temperature control. The sample is placed directly between the moissanite windows and the cell is assembled similarly to a large diamond anvil cell. In situ observation of the sample is done with a microscope through observation windows and movies are recorded with an attached digital camera. Our experiments with the new cell show that temperatures above 1200°C can be maintained and observed in a sample for several days without damaging the cell nor the windows. Time-lapse movies of melting and crystallizing natural and synthetic rocks and of degassing glasses and melts will be presented to show the potential of the new technique for experimental earth and material science.
Index of Refraction of Shock Loaded Soda-Lime Glass
NASA Astrophysics Data System (ADS)
Alexander, C. S.
2009-12-01
Soda-lime glass (SLG) is a potential low-cost VISAR window for use at moderate shock pressures (up to 2430 GPa) where the material remains transparent. In order for SLG to be practical as a VISAR window, the correction factor, which describes the frequency correction related to the strain dependence of the refractive index, and hence the index of refraction itself, must be characterized as a function of pressure. Characterization data are reported in this paper and compared to previous results. The present data show good agreement with those of Dandekar [J. Appl. Phys. 84, 6614 (1998)] and separate study results by Gibbons and Ahrens [J. Geophys. Res. 76, 5489 (1971)] up to 7 GPa. However, at stresses over 7 GPa, marked discrepancies are evident between the present data and that of Gibbons and Ahrens. Differences in test methods may explain these discrepancies.
Index of Refraction of Shock Loaded Soda-Lime Glass
NASA Astrophysics Data System (ADS)
Alexander, Scott
2009-06-01
Soda-lime glass (SLG) is a potential low-cost VISAR window for use at moderate shock pressures (up to approximately 25 GPa) where the material remains transparent. In order for SLG to be practical as a VISAR window, the correction factor, which describes the frequency correction related to the strain dependence of the refractive index, and hence the index of refraction itself, must be characterized as a function of pressure. Characterization data are reported in this paper and compared to previous results. The present data show good agreement with those of Dandekar [J. App. Physics, 84, 6614 (1998)] and separate study results by Gibbons and Ahrens [J. Geophys. Res., 76, 5489 (1971)] up to 7 GPa. However, at stresses over 7 GPa, marked discrepancies are evident between the present data and that of Gibbons and Ahrens. Differences in test methods may explain these discrepancies.
INDEX OF REFRACTION OF SHOCK LOADED SODA-LIME GLASS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, C. S.
2009-12-28
Soda-lime glass (SLG) is a potential low-cost VISAR window for use at moderate shock pressures (up to 2430 GPa) where the material remains transparent. In order for SLG to be practical as a VISAR window, the correction factor, which describes the frequency correction related to the strain dependence of the refractive index, and hence the index of refraction itself, must be characterized as a function of pressure. Characterization data are reported in this paper and compared to previous results. The present data show good agreement with those of Dandekar [J. Appl. Phys. 84, 6614 (1998)] and separate study results bymore » Gibbons and Ahrens [J. Geophys. Res. 76, 5489 (1971)] up to 7 GPa. However, at stresses over 7 GPa, marked discrepancies are evident between the present data and that of Gibbons and Ahrens. Differences in test methods may explain these discrepancies.« less
Methods and apparatus for transparent display using scattering nanoparticles
Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin
2017-06-14
Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.
Methods and apparatus for transparent display using scattering nanoparticles
Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin
2016-05-10
Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.
Material limitations on the detection limit in refractometry.
Skafte-Pedersen, Peder; Nunes, Pedro S; Xiao, Sanshui; Mortensen, Niels Asger
2009-01-01
We discuss the detection limit for refractometric sensors relying on high-Q optical cavities and show that the ultimate classical detection limit is given by min {Δn} ≳ η, with n + iη being the complex refractive index of the material under refractometric investigation. Taking finite Q factors and filling fractions into account, the detection limit declines. As an example we discuss the fundamental limits of silicon-based high-Q resonators, such as photonic crystal resonators, for sensing in a bio-liquid environment, such as a water buffer. In the transparency window (λ ≳ 1100 nm) of silicon the detection limit becomes almost independent on the filling fraction, while in the visible, the detection limit depends strongly on the filling fraction because the silicon absorbs strongly.
ForestCrowns: a transparency estimation tool for digital photographs of forest canopies
Matthew Winn; Jeff Palmer; S.-M. Lee; Philip Araman
2016-01-01
ForestCrowns is a Windows®-based computer program that calculates forest canopy transparency (light transmittance) using ground-based digital photographs taken with standard or hemispherical camera lenses. The software can be used by forest managers and researchers to monitor growth/decline of forest canopies; provide input for leaf area index estimation; measure light...
Method and apparatus for monitoring the flow of mercury in a system
Grossman, Mark W.
1987-01-01
An apparatus and method for monitoring the flow of mercury in a system. The equipment enables the entrainment of the mercury in a carrier gas e.g., an inert gas, which passes as mercury vapor between a pair of optically transparent windows. The attenuation of the emission is indicative of the quantity of mercury (and its isotopes) in the system. A 253.7 nm light is shone through one of the windows and the unabsorbed light is detected through the other window. The absorption of the 253.7 nm light is thereby measured whereby the quantity of mercury passing between the windows can be determined. The apparatus includes an in-line sensor for measuring the quantity of mercury. It includes a conduit together with a pair of apertures disposed in a face to face relationship and arranged on opposite sides of the conduit. A pair of optically transparent windows are disposed upon a pair of viewing tubes. A portion of each of the tubes is disposed inside of the conduit and within each of the apertures. The two windows are disposed in a face to face relationship on the ends of the viewing tubes and the entire assembly is hermetically sealed from the atmosphere whereby when 253.7 nm ultraviolet light is shone through one of the windows and detected through the other, the quantity of mercury which is passing by can be continuously monitored due to absorption which is indicated by attenuation of the amplitude of the observed emission.
Han, Yimo; Nguyen, Kayla X; Ogawa, Yui; Park, Jiwoong; Muller, David A
2016-12-14
Scanning electron microscopes (SEMs) require a high vacuum environment to generate and shape an electron beam for imaging; however, the vacuum conditions greatly limit the nature of specimens that can be examined. From a purely scattering physics perspective, it is not necessary to place the specimen inside the vacuum chamber-the mean free paths (MFPs) for electron scattering in air at typical SEM beam voltages are 50-100 μm. This is the idea behind the airSEM, which removes the specimen vacuum chamber from the SEM and places the sample in air. The thickness of the gas layer is less than a MFP from an electron-transparent window to preserve the shape and resolution of the incident beam, resulting in comparable imaging quality to an all-vacuum SEM. Present silicon nitride windows scatter far more strongly than the air gap and are currently the contrast and resolution limiting factor in the airSEM. Graphene windows have been used previously to wrap or seal samples in vacuum for imaging. Here we demonstrate the use of a robust bilayer graphene window for sealing the electron optics from the room environment, providing an electron transparent window with only a 2% drop in contrast. There is a 5-fold-increase in signal/noise ratio for imaging compared to multi-MFP-thick silicon nitride windows, enabling high contrast in backscattered, transmission, and surface imaging modes for the new airSEM geometry.
Scintillator assembly for alpha radiation detection and method of making the assembly
McElhaney, Stephanie A.; Bauer, Martin L.; Chiles, Marion M.
1992-01-01
A scintillator assembly for use in the detection of alpha radiation includes a body of optically-transparent epoxy and an amount of phosphor particles embedded within the body adjacent one surface thereof. When making the body, the phosphor particles are mixed with the epoxy when in an uncured condition and permitted to settle to the bottom surface of a mold within which the epoxy/phosphor mixture is contained. When the mixture subsequently cures to form a hardened body, the one surface of the body which cured against the bottom surface of the mold is coated with a thin layer of opaque material for preventing ambient light form entering the body through the one surface. The layer of opaque material is thereafter coated with a layer of protective material to provide the assembly with a damage-resistant entrance window.
NASA Astrophysics Data System (ADS)
Li, Hai-ming; Xue, Feng
2017-09-01
In this manuscript, tailoring polarization of analogy of electromagnetically induced transparency (EIT-like) based on non-centrosymmetric metasurfaces has been numerically and experimentally demonstrated. The EIT-like metamaterial is composed of a rectangle ring and two cut wires. The rectangle ring and the cut wire are chosen as the bright mode and the quasi-dark mode, respectively. Under the incident electromagnetic wave excitation, a polarization insensitive EIT-like transmission window can be observed at specific polarization angles. Within the transmission window, the phase steeply changes, which leads to the large group index. Tailoring polarization of EIT-like metamaterial with large group index at specific polarization angles may have potential application in slow light devices.
Generation of tunable double Fano resonances by plasmon hybridization in graphene–metal metamaterial
NASA Astrophysics Data System (ADS)
Yan, Zhendong; Qian, Lina; Zhan, Peng; Wang, Zhenlin
2018-07-01
We proposed the excitation of double Fano resonances by the destructive interference between the narrow electric symmetric/antisymmetric resonant modes formed by plasmon hybridization and a broad magnetic dipole resonance in a novel hybrid metamaterial composed of periodically patterned stacked graphene–ribbon pairs and gold split-ring resonators. The double Fano transparency windows in this hybrid metamaterial can be actively controlled by tuning the Fermi energy of graphene through the use of electric gating and its electronic mobility. Our designed dual Fano resonances exhibit a large group index associated with the resonance response in the transparency windows, suggesting promising applications in nanophotonics, such as a slow light device.
Adhesion characteristics of VO2 ink film sintered by intense pulsed light for smart window
NASA Astrophysics Data System (ADS)
Youn, Ji Won; Lee, Seok-Jae; Kim, Kwang-Seok; Kim, Dae Up
2018-05-01
Progress in the development of energy-efficient coatings on glass has led to the research of smart windows that can modulate solar energy in response to an external stimulus like light, heat, or electricity. Thermochromic smart windows have attracted great interest because they provide highly visible transparency and intelligently controllable solar heat. VO2 has been widely used as coating material for thermochromism owing to its reversible metal-to-insulator transition near room temperature. However, unstable crystalline phases and expensive fabrication processes of VO2 films limit their facile application in smart windows. To overcome these restrictions, we manufactured nanoinks based on VO2 nanoparticles and fabricated films using spin coating and intense pulsed light (IPL) sintering on a quartz substrate. We examined adhesion between the VO2 nanoink films and the quartz substrate by varying the applied voltages and the number of pulses. The average adhesion of thin films increased to 83 and 108 N/m as the applied voltage during IPL sintering increased from 1400 to 2000 V. By increasing the number of pulses from 5 to 20, the adhesive strength increased from 83 to 94 N/m at 1400 V, and decreased from 108 to 96 N/m at 2000 V voltage.
Kim, Jeehwan; Abou-Kandil, Ahmed; Fogel, Keith; Hovel, Harold; Sadana, Devendra K
2010-12-28
Addition of carbon into p-type "window" layers in hydrogenated amorphous silicon (a-Si:H) solar cells enhances short circuit currents and open circuit voltages by a great deal. However, a-Si:H solar cells with high carbon-doped "window" layers exhibit poor fill factors due to a Schottky barrier-like impedance at the interface between a-SiC:H windows and transparent conducting oxides (TCO), although they show maximized short circuit currents and open circuit voltages. The impedance is caused by an increasing mismatch between the work function of TCO and that of p-type a-SiC:H. Applying ultrathin high-work-function metals at the interface between the two materials results in an effective lowering of the work function mismatch and a consequent ohmic behavior. If the metal layer is sufficiently thin, then it forms nanodots rather than a continuous layer which provides light-scattering effect. We demonstrate 31% efficiency enhancement by using high-work-function materials for engineering the work function at the key interfaces to raise fill factors as well as photocurrents. The use of metallic interface layers in this work is a clear contrast to previous work where attempts were made to enhance the photocurrent using plasmonic metal nanodots on the solar cell surface.
Quality control in the recycling stream of PVC from window frames by hyperspectral imaging
NASA Astrophysics Data System (ADS)
Luciani, Valentina; Serranti, Silvia; Bonifazi, Giuseppe; Di Maio, Francesco; Rem, Peter
2013-05-01
Polyvinyl chloride (PVC) is one of the most commonly used thermoplastic materials in respect to the worldwide polymer consumption. PVC is mainly used in the building and construction sector, products such as pipes, window frames, cable insulation, floors, coverings, roofing sheets, etc. are realised utilising this material. In recent years, the problem of PVC waste disposal gained increasing importance in the public discussion. The quantity of used PVC items entering the waste stream is gradually increased as progressively greater numbers of PVC products approach to the end of their useful economic lives. The quality of the recycled PVC depends on the characteristics of the recycling process and the quality of the input waste. Not all PVC-containing waste streams have the same economic value. A transparent relation between value and composition is required to decide if the recycling process is cost effective for a particular waste stream. An objective and reliable quality control technique is needed in the recycling industry for the monitoring of both recycled flow streams and final products in the plant. In this work hyperspectral imaging technique in the near infrared (NIR) range (1000-1700 nm) was applied to identify unwanted plastic contaminants and rubber present in PVC coming from windows frame waste in order to assess a quality control procedure during its recycling process. Results showed as PVC, PE and rubber can be identified adopting the NIR-HSI approach.
New assignments in the 2 μm transparency window of the 12CH4 Octad band system
NASA Astrophysics Data System (ADS)
Daumont, L.; Nikitin, A. V.; Thomas, X.; Régalia, L.; Von der Heyden, P.; Tyuterev, Vl. G.; Rey, M.; Boudon, V.; Wenger, Ch.; Loëte, M.; Brown, L. R.
2013-02-01
This paper reports new assignments of rovibrational transitions of 12CH4 bands in the range 4600-4887 cm-1 which is usually referred to as a part of the 2 μm methane transparency window. Several experimental data sources for methane line positions and intensities were combined for this analysis. Three long path Fourier transform spectra newly recorded in Reims with 1603 m absorption path length and pressures of 1, 7 and 34 hPa for samples of natural abundance CH4 provided new measurements of 12CH4 lines. Older spectra for 13CH4 (90% purity) from JPL with 73 m absorption path length were used to identify the corresponding lines. Most of the lines in this region belong to the Octad system of 12CH4. The new spectra allowed us to assign 1014 new line positions and to measure 1095 line intensities in the cold bands of the Octad. These new line positions and intensities were added to the global fit of Hamiltonian and dipole moment parameters of the Ground State, Dyad, Pentad and Octad systems. This leads to a noticeable improvement of the theoretical description in this methane transparency window and a better global prediction of the methane spectrum.
Nguyen, Kayla X; Holtz, Megan E; Richmond-Decker, Justin; Muller, David A
2016-08-01
A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope's objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Monte Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400 μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens and in situ chemical and electrochemical processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Kayla X.; Holtz, Megan E.; Richmond-Decker, Justin
2016-07-25
Abstract A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope’s objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Montemore » Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens andin situchemical and electrochemical processes.« less
Low-resistivity photon-transparent window attached to photo-sensitive silicon detector
Holland, Stephen Edward
2000-02-15
The invention comprises a combination of a low resistivity, or electrically conducting, silicon layer that is transparent to long or short wavelength photons and is attached to the backside of a photon-sensitive layer of silicon, such as a silicon wafer or chip. The window is applied to photon sensitive silicon devices such as photodiodes, charge-coupled devices, active pixel sensors, low-energy x-ray sensors and other radiation detectors. The silicon window is applied to the back side of a photosensitive silicon wafer or chip so that photons can illuminate the device from the backside without interference from the circuit printed on the frontside. A voltage sufficient to fully deplete the high-resistivity photosensitive silicon volume of charge carriers is applied between the low-resistivity back window and the front, patterned, side of the device. This allows photon-induced charge created at the backside to reach the front side of the device and to be processed by any circuitry attached to the front side. Using the inventive combination, the photon sensitive silicon layer does not need to be thinned beyond standard fabrication methods in order to achieve full charge-depletion in the silicon volume. In one embodiment, the inventive backside window is applied to high resistivity silicon to allow backside illumination while maintaining charge isolation in CCD pixels.
VOx effectively doping CVD-graphene for transparent conductive films
NASA Astrophysics Data System (ADS)
Ji, Qinghua; Shi, Liangjing; Zhang, Qinghong; Wang, Weiqi; Zheng, Huifeng; Zhang, Yuzhi; Liu, Yangqiao; Sun, Jing
2016-11-01
Chemical vapor deposition(CVD)-synthesized graphene is potentially an alternative for tin-doped indium oxide (ITO) transparent conductive films (TCFs), however its sheet resistance is still too high to meet many demands. Vanadium oxide has been widely applied as smart window materials, however, no study has been reported to use it as dopant to improve the conductivity of graphene TCFs. In this study, we firstly reported that VOx doping can effectively lower the sheet resistance of CVD-graphene films while keeping its good optical properties, whose transmittance is as high as 86-90%. The optimized VOx-doped graphene exhibits a sheet resistance as low as 176 Ω/□, which decreases by 56% compared to the undoped graphene films. The doping process is convenient, stable, economical and easy to operate. What is more, VOx can effectively increase the work function(WF) of the film, making it more appropriate for use in solar cells. The evolution of the VOx species annealed at different temperatures below 400 °C has been detailed studied for the first time, based on which the doping mechanism is proposed. The prepared VOx doped graphene is expected to be a promising candidate for transparent conductive film purposes.
Ko, Eun-Byul; Choi, Jae-Seok; Jung, Hyunsung; Choi, Sung-Churl; Kim, Chang-Yeoul
2016-02-01
Transparent conducting oxide (TCO) is widely used for the application of flat panel display like liquid crystal displays and plasma display panel. It is also applied in the field of touch panel, solar cell electrode, low-emissivity glass, defrost window, and anti-static material. Fluorine-doped tin oxide (FTO) thin films were fabricated by spray pyrolysis of ethanol-added FTO precursor solutions. FTO thin film by spray pyrolysis is very much investigated and normally formed at high temperature, about 500 degrees C. However, these days, flexible electronics draw many attentions in the field of IT industry and the research for flexible transparent conducting thin film is also required. In the industrial field, indium-tin oxide (ITO) film on polymer substrate is widely used for touch panel and displays. In this study, we investigated the possibility of FTO thin film formation at relatively low temperature of 250 degrees C. We found out that the control of volume of input precursor and exhaust gases could make it possible to form FTO thin film with a relatively low electrical resistance, less than 100 Ohm/sq and high optical transmittance about 88%.
History of development of polycrystalline optical spinel in the U.S.
NASA Astrophysics Data System (ADS)
Harris, Daniel C.
2005-05-01
Optical quality polycrystalline spinel (MgAl2O4) has been sought as a visible- and infrared-transmitting material since the 1960s because of its potential for transparent armor and durable sensor windows. Its physical properties were known from synthetic crystals available since ~1950 from Linde Air Products. In the late 1960s, methods to process powder into transparent, polycrystalline spinel were investigated at North Carolina State University, General Electric Co., AVCO, and Westinghouse, mainly with Government support. The leading figure in the development of polycrystalline spinel was Don Roy, who began work on spinel at Coors Ceramics around 1970, initially for transparent armor. In the late 1970s, both Coors Ceramics and Raytheon Research Division were funded to make spinel for the infrared dome of the Advanced Short-Range Air-to-Air Missile, an application that disappeared by 1980. In the late 1980s, there was another burst of activity when spinel was a candidate for the Stinger Missile. By 1990, Raytheon had dropped spinel and the material was spun off by Coors Ceramics to Alpha Optical Systems, whose technical effort was led by Don Roy. With low commercial sales potential for spinel, Alpha was dissolved in 1993. RCS Technologies took over a Government contract seeking 200-mm spinel domes for the Harrier aircraft, but this effort ended in 1996 and RCS was dissolved. In 1998, the Army enlisted TA&T to make spinel for transparent armor. Other potential applications appeared and TA&T received numerous Government development contracts. Demand for the still-unavailable spinel drew Surmet to begin development in 2002. In early 2005, spinel is under active development at TA&T and Surmet.
Dynamic compression of synthetic diamond windows (final report for LDRD project 93531).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolan, Daniel H.,
2008-09-01
Diamond is an attractive dynamic compression window for many reasons: high elastic limit,large mechanical impedance, and broad transparency range. Natural diamonds, however, aretoo expensive to be used in destructive experiments. Chemical vapor deposition techniquesare now able to produce large single-crystal windows, opening up many potential dynamiccompression applications. This project studied the behavior of synthetic diamond undershock wave compression. The results suggest that synthetic diamond could be a usefulwindow in this field, though complete characterization proved elusive.3
Promising applications of graphene and graphene-based nanostructures
NASA Astrophysics Data System (ADS)
Nguyen, Bich Ha; Hieu Nguyen, Van
2016-06-01
The present article is a review of research works on promising applications of graphene and graphene-based nanostructures. It contains five main scientific subjects. The first one is the research on graphene-based transparent and flexible conductive films for displays and electrodes: efficient method ensuring uniform and controllable deposition of reduced graphene oxide thin films over large areas, large-scale pattern growth of graphene films for stretchble transparent electrodes, utilization of graphene-based transparent conducting films and graphene oxide-based ones in many photonic and optoelectronic devices and equipments such as the window electrodes of inorganic, organic and dye-sensitized solar cells, organic light-emitting diodes, light-emitting electrochemical cells, touch screens, flexible smart windows, graphene-based saturated absorbers in laser cavities for ultrafast generations, graphene-based flexible, transparent heaters in automobile defogging/deicing systems, heatable smart windows, graphene electrodes for high-performance organic field-effect transistors, flexible and transparent acoustic actuators and nanogenerators etc. The second scientific subject is the research on conductive inks for printed electronics to revolutionize the electronic industry by producing cost-effective electronic circuits and sensors in very large quantities: preparing high mobility printable semiconductors, low sintering temperature conducting inks, graphene-based ink by liquid phase exfoliation of graphite in organic solutions, and developing inkjet printing technique for mass production of high-quality graphene patterns with high resolution and for fabricating a variety of good-performance electronic devices, including transparent conductors, embedded resistors, thin-film transistors and micro supercapacitors. The third scientific subject is the research on graphene-based separation membranes: molecular dynamics simulation study on the mechanisms of the transport of molecules, vapors and gases through nanopores in graphene membranes, experimental works investigating selective transport of different molecules through nanopores in single-layer graphene and graphene-based membranes toward the water desalination, chemical mixture separation and gas control. Various applications of graphene in bio-medicine are the contents of the fourth scientific subject of the review. They include the DNA translocations through nanopores in graphene membranes toward the fabrication of devices for genomic screening, in particular DNA sequencing; subnanometre trans-electrode membranes with potential applications to the fabrication of very high resolution, high throughput nanopore-based single-molecule detectors; antibacterial activity of graphene, graphite oxide, graphene oxide and reduced graphene oxide; nanopore sensors for nucleic acid analysis; utilization of graphene multilayers as the gates for sequential release of proteins from surface; utilization of graphene-based electroresponsive scaffolds as implants for on-demand drug delivery etc. The fifth scientific subject of the review is the research on the utilization of graphene in energy storage devices: ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage; self-assembled graphene/carbon nanotube hybrid films for supercapacitors; carbon-based supercapacitors fabricated by activation of graphene; functionalized graphene sheet-sulfure nanocomposite for using as cathode material in rechargeable lithium batteries; tunable three-dimensional pillared carbon nanotube-graphene networks for high-performance capacitance; fabrications of electrochemical micro-capacitors using thin films of carbon nanotubes and chemically reduced graphenes; laser scribing of high-performance and flexible graphene-based electrochemical capacitors; emergence of next-generation safe batteries featuring graphene-supported Li metal anode with exceptionally high energy or power densities; fabrication of anodes for lithium ion batteries from crumpled graphene-encapsulated Si nanoparticles; liquid-mediated dense integration of graphene materials for compact capacitive energy storage; scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage; superior micro-supercapacitors based on graphene quantum dots; all-graphene core-sheat microfibres for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles; micro-supercapacitors with high electrochemical performance based on three-dimensional graphene-carbon nanotube carpets; macroscopic nitrogen-doped graphene hydrogels for ultrafast capacitors; manufacture of scalable ultra-thin and high power density graphene electrochemical capacitor electrodes by aqueous exfoliation and spray deposition; scalable synthesis of hierarchically structured carbon nanotube-graphene fibers for capacitive energy storage; phosphorene-graphene hybrid material as a high-capacity anode material for sodium-ion batteries. Beside above-presented promising applications of graphene and graphene-based nanostructures, other less widespread, but perhaps not less important, applications of graphene and graphene-based nanomaterials, are also briefly discussed.
NASA Astrophysics Data System (ADS)
Ali, Sabir; Ray, Ayan; Chakrabarti, Alok
2016-02-01
Electromagnetically Induced Transparency as a novel type optical memory has gained enough attention in the field of research related to optical communication. This kind of transparency is an artificially created spectral window used to slow and spatially compress light pulses. Hence controlling and manipulation of such transparency window in a multilevel atom-photon system will, in turn, help in opening newer avenues of applications. In the present work an inverted Y linkage (established in the 5S1/2 → 5P3/2 → 5D5/2 hyperfine levels of 87Rb atom) is used for this purpose. The formation of matched double dark resonance in the system has been studied in details. On the application front we have demonstrated using the system as an attenuator of optical switch. This type of necessity may arise for futuristic optical communication system. Overall the system response resembles the performance of a combination logic gate.
Li, Yuanyuan; Fu, Qiliang; Yu, Shun; Yan, Min; Berglund, Lars
2016-04-11
Optically transparent wood (TW) with transmittance as high as 85% and haze of 71% was obtained using a delignified nanoporous wood template. The template was prepared by removing the light-absorbing lignin component, creating nanoporosity in the wood cell wall. Transparent wood was prepared by successful impregnation of lumen and the nanoscale cellulose fiber network in the cell wall with refractive-index-matched prepolymerized methyl methacrylate (MMA). During the process, the hierarchical wood structure was preserved. Optical properties of TW are tunable by changing the cellulose volume fraction. The synergy between wood and PMMA was observed for mechanical properties. Lightweight and strong transparent wood is a potential candidate for lightweight low-cost, light-transmitting buildings and transparent solar cell windows.
NASA Astrophysics Data System (ADS)
Yahiaoui, Riad; Manjappa, Manukumara; Srivastava, Yogesh Kumar; Singh, Ranjan
2017-07-01
Electromagnetically induced transparency (EIT) arises from coupling between the bright and dark mode resonances that typically involve subwavelength structures with broken symmetry, which results in an extremely sharp transparency band. Here, we demonstrate a tunable broadband EIT effect in a symmetry preserved metamaterial structure at the terahertz frequencies. Alongside, we also envisage a photo-active EIT effect in a hybrid metal-semiconductor metamaterial, where the transparency window can be dynamically switched by shining near-infrared light beam. A robust coupled oscillator model explains the coupling mechanism in the proposed design, which shows a good agreement with the observed results on tunable broadband transparency effect. Such active, switchable, and broadband metadevices could have applications in delay bandwidth management, terahertz filtering, and slow light effects.
Neutron scattering in the proximate quantum spin liquid α-RuCl3
NASA Astrophysics Data System (ADS)
Banerjee, Arnab; Yan, Jiaqiang; Knolle, Johannes; Bridges, Craig A.; Stone, Matthew B.; Lumsden, Mark D.; Mandrus, David G.; Tennant, David A.; Moessner, Roderich; Nagler, Stephen E.
2017-06-01
The Kitaev quantum spin liquid (KQSL) is an exotic emergent state of matter exhibiting Majorana fermion and gauge flux excitations. The magnetic insulator α-RuCl3 is thought to realize a proximate KQSL. We used neutron scattering on single crystals of α-RuCl3 to reconstruct dynamical correlations in energy-momentum space. We discovered highly unusual signals, including a column of scattering over a large energy interval around the Brillouin zone center, which is very stable with temperature. This finding is consistent with scattering from the Majorana excitations of a KQSL. Other, more delicate experimental features can be transparently associated with perturbations to an ideal model. Our results encourage further study of this prototypical material and may open a window into investigating emergent magnetic Majorana fermions in correlated materials.
Material Limitations on the Detection Limit in Refractometry
Skafte-Pedersen, Peder; Nunes, Pedro S.; Xiao, Sanshui; Mortensen, Niels Asger
2009-01-01
We discuss the detection limit for refractometric sensors relying on high-Q optical cavities and show that the ultimate classical detection limit is given by min {Δn} ≳ η, with n + iη being the complex refractive index of the material under refractometric investigation. Taking finite Q factors and filling fractions into account, the detection limit declines. As an example we discuss the fundamental limits of silicon-based high-Q resonators, such as photonic crystal resonators, for sensing in a bio-liquid environment, such as a water buffer. In the transparency window (λ ≳ 1100 nm) of silicon the detection limit becomes almost independent on the filling fraction, while in the visible, the detection limit depends strongly on the filling fraction because the silicon absorbs strongly. PMID:22291513
Method and apparatus for monitoring the flow of mercury in a system
Grossman, M.W.
1987-12-15
An apparatus and method for monitoring the flow of mercury in a system are disclosed. The equipment enables the entrainment of the mercury in a carrier gas e.g., an inert gas, which passes as mercury vapor between a pair of optically transparent windows. The attenuation of the emission is indicative of the quantity of mercury (and its isotopes) in the system. A 253.7 nm light is shone through one of the windows and the unabsorbed light is detected through the other window. The absorption of the 253.7 nm light is thereby measured whereby the quantity of mercury passing between the windows can be determined. The apparatus includes an in-line sensor for measuring the quantity of mercury. It includes a conduit together with a pair of apertures disposed in a face to face relationship and arranged on opposite sides of the conduit. A pair of optically transparent windows are disposed upon a pair of viewing tubes. A portion of each of the tubes is disposed inside of the conduit and within each of the apertures. The two windows are disposed in a face to face relationship on the ends of the viewing tubes and the entire assembly is hermetically sealed from the atmosphere whereby when 253.7 nm ultraviolet light is shone through one of the windows and detected through the other, the quantity of mercury which is passing by can be continuously monitored due to absorption which is indicated by attenuation of the amplitude of the observed emission. 4 figs.
Multiple transparency windows and Fano interferences induced by dipole-dipole couplings
NASA Astrophysics Data System (ADS)
Diniz, E. C.; Borges, H. S.; Villas-Boas, C. J.
2018-04-01
We investigate the optical properties of a two-level system (TLS) coupled to a one-dimensional array of N other TLSs with dipole-dipole coupling between the first neighbors. The first TLS is probed by a weak field, and we assume that it has a decay rate much greater than the decay rates of the other TLSs. For N =1 and in the limit of a Rabi frequency of a probe field much smaller than the dipole-dipole coupling, the optical response of the first TLS, i.e., its absorption and dispersion, is equivalent to that of a three-level atomic system in the configuration which allows one to observe the electromagnetically induced transparency (EIT) phenomenon. Thus, here we investigate an induced transparency phenomenon where the dipole-dipole coupling plays the same role as the control field in EIT in three-level atoms. We describe this physical phenomenon, named a dipole-induced transparency (DIT), and investigate how it scales with the number of coupled TLSs. In particular, we have shown that the number of TLSs coupled to the main TLS is exactly equal to the number of transparency windows. The ideas presented here are very general and can be implemented in different physical systems, such as an array of superconducting qubits, or an array of quantum dots, spin chains, optical lattices, etc.
Aerogel: From Aerospace to Apparel
NASA Technical Reports Server (NTRS)
2001-01-01
Aspen Systems Inc. developed an aerogel-manufacturing process solved the handling problems associated with aerogel-based insulation products. Their aerogels can now be manufactured into blankets, thin sheets, beads, and molded parts; and may be transparent, translucent, or opaque. Aspen made the material effective for window and skylight insulation, non-flammable building insulation, and inexpensive firewall insulation that will withstand fires in homes and buildings, and also assist in the prevention of forest fires. Another Aspen product is Spaceloft(TM); an inexpensive, flexible blanket that incorporates a thin layer of aerogel embedded directly into the fabric. Spaceloft, is incorporated into jackets intended for wear in extremely harsh conditions and activities, such as Antarctic expeditions.
Cutaway line drawing of STS-34 middeck experiment Polymer Morphology (PM)
NASA Technical Reports Server (NTRS)
1989-01-01
Cutaway line drawing shows components of STS-34 middeck experiment Polymer Morphology (PM). Components include the EAC, heat exchanger, sample cell control (SCC), sample cells, source, interferometer, electronics, carousel drive, infrared (IR) beam, and carousel. PM, a 3M-developed organic materials processing experiment, is designed to explore the effects of microgravity on polymeric materials as they are processed in space. The samples of polymeric materials being studied in the PM experiment are thin films (25 microns or less) approximately 25mm in diameter. The samples are mounted between two infrared transparent windows in a specially designed infrared cell that provides the capability of thermally processing the samples to 200 degrees Celsius with a high degree of thermal control. The samples are mounted on a carousel that allows them to be positioned, one at a time, in the infrared beam where spectra may be acquired. The Generic Electronics Module (GEM) provides all carousel and
Scintillator assembly for alpha radiation detection and method of making the assembly
McElhaney, S.A.; Bauer, M.L.; Chiles, M.M.
1992-09-22
A scintillator assembly for use in the detection of alpha radiation includes a body of optically-transparent epoxy and an amount of phosphor particles embedded within the body adjacent one surface thereof. When making the body, the phosphor particles are mixed with the epoxy when in an uncured condition and permitted to settle to the bottom surface of a mold within which the epoxy/phosphor mixture is contained. When the mixture subsequently cures to form a hardened body, the one surface of the body which cured against the bottom surface of the mold is coated with a thin layer of opaque material for preventing ambient light form entering the body through the one surface. The layer of opaque material is thereafter coated with a layer of protective material to provide the assembly with a damage-resistant entrance window. 6 figs.
Soft X-ray imaging of thick carbon-based materials using the normal incidence multilayer optics.
Artyukov, I A; Feschenko, R M; Vinogradov, A V; Bugayev, Ye A; Devizenko, O Y; Kondratenko, V V; Kasyanov, Yu S; Hatano, T; Yamamoto, M; Saveliev, S V
2010-10-01
The high transparency of carbon-containing materials in the spectral region of "carbon window" (lambda approximately 4.5-5nm) introduces new opportunities for various soft X-ray microscopy applications. The development of efficient multilayer coated X-ray optics operating at the wavelengths of about 4.5nm has stimulated a series of our imaging experiments to study thick biological and synthetic objects. Our experimental set-up consisted of a laser plasma X-ray source generated with the 2nd harmonics of Nd-glass laser, scandium-based thin-film filters, Co/C multilayer mirror and X-ray film UF-4. All soft X-ray images were produced with a single nanosecond exposure and demonstrated appropriate absorption contrast and detector-limited spatial resolution. A special attention was paid to the 3D imaging of thick low-density foam materials to be used in design of laser fusion targets.
Wang, Xue-Feng; Tian, He; Zhao, Hai-Ming; Zhang, Tian-Yu; Mao, Wei-Quan; Qiao, Yan-Cong; Pang, Yu; Li, Yu-Xing; Yang, Yi; Ren, Tian-Ling
2018-01-01
Metal oxide-based resistive random access memory (RRAM) has attracted a lot of attention for its scalability, temperature robustness, and potential to achieve machine learning. However, a thick oxide layer results in relatively high program voltage while a thin one causes large leakage current and a small window. Owing to these fundamental limitations, by optimizing the oxide layer itself a novel interface engineering idea is proposed to reduce the programming voltage, increase the uniformity and on/off ratio. According to this idea, a molybdenum disulfide (MoS 2 )-palladium nanoparticles hybrid structure is used to engineer the oxide/electrode interface of hafnium oxide (HfO x )-based RRAM. Through its interface engineering, the set voltage can be greatly lowered (from -3.5 to -0.8 V) with better uniformity under a relatively thick HfO x layer (≈15 nm), and a 30 times improvement of the memory window can be obtained. Moreover, due to the atomic thickness of MoS 2 film and high transmittance of ITO, the proposed RRAM exhibits high transparency in visible light. As the proposed interface-engineering RRAM exhibits good transparency, low SET voltage, and a large resistive switching window, it has huge potential in data storage in transparent circuits and wearable electronics with relatively low supply voltage. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mosaic Transparent Armor System Final Report CRADA No. TC02162.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuntz, J. D.; Breslin, M.
This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and The Protective Group, Inc. (TPG) to improve the performance of the mosaic transparent armor system (MTAS) for transparent armor applications, military and civilian. LLNL was to provide the unique MTAS technology and designs to TPG for innovative construction and ballistic testing of improvements needed for current and near future application of the armor windows on vehicles and aircraft. The goal of the project was to advance the technology of MTAS to the point that these mosaic transparent windowsmore » would be introduced and commercially manufactured for military vehicles and aircraft.« less
Preparation and Optical Properties of Infrared Transparent 3Y-TZP Ceramics
Wang, Chuanfeng; Mao, Xiaojian; Peng, Ya-Pei; Jiang, Benxue; Fan, Jintai; Xu, Yangyang; Zhang, Long; Zhao, Jingtai
2017-01-01
In the present study, a tough tetragonal zirconia polycrystalline (Y-TZP) material was developed for use in high-speed infrared windows and domes. The influence of the preparation procedure and the microstructure on the material’s optical properties was evaluated by SEM and FT-IR spectroscopy. It was revealed that a high transmittance up to 77% in the three- to five-micrometer IR region could be obtained when the sample was pre-sintered at 1225 °C and subjected to hot isostatic pressing (HIP) at 1275 °C for two hours. The infrared transmittance and emittance at elevated temperature were also examined. The in-line transmittance remained stable as the temperature increased to 427 °C, with degradation being observed only near the infrared cutoff edge. Additionally, the emittance property of 3Y-TZP ceramic at high temperature was found to be superior to those of sapphire and spinel. Overall, the results indicate that Y-TZP ceramic is a potential candidate for high-speed infrared windows and domes. PMID:28772753
Variable transmittance electrochromic windows
NASA Astrophysics Data System (ADS)
Rauh, R. D.
1983-11-01
Electrochromic apertures based on RF sputtered thin films of WO3 are projected to have widely different sunlight attenuation properties when converted to MxWO3 (M = H, Li, Na, Ag, etc.), depending on the initial preparation conditions. Amorphous WO3, prepared at low temperature, has a coloration spectrum centered in the visible, while high temperature crystalline WO3 attenuates infrared light most efficiently, but appears to become highly reflective at high values of x. The possibility therefore exists of producing variable light transmission apertures of the general form (a-MxWO3/FIC/c-WO3), where the FIC is an ion conducting thin film, such as LiAlF4 (for M = Li). The attenuation of 90% of the solar spectrum requires an injected charge of 30 to 40 mcoul/sq cm in either amorphous or crystalline WO3, corresponding to 0.2 Whr/sq m per coloration cycle. In order to produce windows with very high solar transparency in the bleached form, new counter electrode materials must be found with complementary electrochromism to WO3.
Li, Ming; Magdassi, Shlomo; Gao, Yanfeng; Long, Yi
2017-09-01
Vanadium dioxide (VO 2 ) is a widely studied inorganic phase change material, which has a reversible phase transition from semiconducting monoclinic to metallic rutile phase at a critical temperature of τ c ≈ 68 °C. The abrupt decrease of infrared transmittance in the metallic phase makes VO 2 a potential candidate for thermochromic energy efficient windows to cut down building energy consumption. However, there are three long-standing issues that hindered its application in energy efficient windows: high τ c , low luminous transmittance (T lum ), and undesirable solar modulation ability (ΔT sol ). Many approaches, including nano-thermochromism, porous films, biomimetic surface reconstruction, gridded structures, antireflective overcoatings, etc, have been proposed to tackle these issues. The first approach-nano-thermochromism-which is to integrate VO 2 nanoparticles in a transparent matrix, outperforms the rest; while the thermochromic performance is determined by particle size, stoichiometry, and crystallinity. A hydrothermal method is the most common method to fabricate high-quality VO 2 nanoparticles, and has its own advantages of large-scale synthesis and precise phase control of VO 2 . This Review focuses on hydrothermal synthesis, physical properties of VO 2 polymorphs, and their transformation to thermochromic VO 2 (M), and discusses the advantages, challenges, and prospects of VO 2 (M) in energy-efficient smart windows application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
VO2 thermochromic smart window for energy savings and generation
Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling
2013-01-01
The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner. PMID:24157625
VO₂ thermochromic smart window for energy savings and generation.
Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling
2013-10-24
The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner.
Upconverting device for enhanced recogntion of certain wavelengths of light
Kross, Brian; McKIsson, John E; McKisson, John; Weisenberger, Andrew; Xi, Wenze; Zorn, Carl
2013-05-21
An upconverting device for enhanced recognition of selected wavelengths is provided. The device comprises a transparent light transmitter in combination with a plurality of upconverting nanoparticles. The device may a lens in eyewear or alternatively a transparent panel such as a window in an instrument or machine. In use the upconverting device is positioned between a light source and the eye(s) of the user of the upconverting device.
Electrode with transparent series resistance for uniform switching of optical modulation devices
Tench, D Morgan [Camarillo, CA; Cunningham, Michael A [Thousand Oaks, CA; Kobrin, Paul H [Newbury Park, CA
2008-01-08
Switching uniformity of an optical modulation device for controlling the propagation of electromagnetic radiation is improved by use of an electrode comprising an electrically resistive layer that is transparent to the radiation. The resistive layer is preferably an innerlayer of a wide-bandgap oxide sandwiched between layers of indium tin oxide or another transparent conductor, and may be of uniform thickness, or may be graded so as to provide further improvement in the switching uniformity. The electrode may be used with electrochromic and reversible electrochemical mirror (REM) smart window devices, as well as display devices based on various technologies.
Tsuo, S.; Langford, A.A.
1989-03-28
Unwanted build-up of the film deposited on the transparent light-transmitting window of a photochemical vacuum deposition (photo-CVD) chamber is eliminated by flowing an etchant into the part of the photolysis region in the chamber immediately adjacent the window and remote from the substrate and from the process gas inlet. The respective flows of the etchant and the process gas are balanced to confine the etchant reaction to the part of the photolysis region proximate to the window and remote from the substrate. The etchant is preferably one that etches film deposit on the window, does not etch or affect the window itself, and does not produce reaction by-products that are deleterious to either the desired film deposited on the substrate or to the photolysis reaction adjacent the substrate. 3 figs.
Tsuo, Simon; Langford, Alison A.
1989-01-01
Unwanted build-up of the film deposited on the transparent light-transmitting window of a photochemical vacuum deposition (photo-CVD) chamber is eliminated by flowing an etchant into the part of the photolysis region in the chamber immediately adjacent the window and remote from the substrate and from the process gas inlet. The respective flows of the etchant and the process gas are balanced to confine the etchant reaction to the part of the photolysis region proximate to the window and remote from the substrate. The etchant is preferably one that etches film deposit on the window, does not etch or affect the window itself, and does not produce reaction by-products that are deleterious to either the desired film deposited on the substrate or to the photolysis reaction adjacent the substrate.
Exchange interaction and tunneling-induced transparency in coupled quantum dots
NASA Astrophysics Data System (ADS)
Borges, H. S.; Alcalde, A. M.; Ulloa, Sergio E.
2014-11-01
We investigate the optical response of quantum dot molecules coherently driven by polarized laser light. Our description includes the splitting in excitonic levels caused by isotropic and anisotropic exchange interactions. We consider interdot transitions mediated by hole tunneling between states with the same total angular momentum and between bright and dark exciton states as allowed by spin-flip hopping between the dots in the molecule. Using realistic experimental parameters we demonstrate that the excitonic states coupled by tunneling exhibit a rich and controllable optical response. We show that through the appropriate control of an external electric field and light polarization, the tunneling coupling establishes an efficient destructive quantum interference path that creates a transparency window in the absorption spectra whenever states of appropriate symmetry are mixed by the carrier tunneling. We explore the relevant parameter space that allows probing this phenomenon in experiments. Controlled variation in applied field and laser detuning would allow the optical characterization of spin-preserving and spin-flip hopping amplitudes in such systems by measuring the width of the tunneling-induced transparency windows.
NASA Astrophysics Data System (ADS)
Döge, Stefan; Hingerl, Jürgen
2018-03-01
The improvement of the number of extractable ultracold neutrons (UCNs) from converters based on solid deuterium (sD2) crystals requires a good understanding of the UCN transport and how the crystal's morphology influences its transparency to the UCNs. Measurements of the UCN transmission through cryogenic liquids and solids of interest, such as hydrogen (H2) and deuterium (D2), require sample containers with thin, highly polished and optically transparent windows and a well defined sample thickness. One of the most difficult sealing problems is that of light gases like hydrogen and helium at low temperatures against high vacuum. Here we report on the design of a sample container with two 1 mm thin amorphous silica windows cold-welded to aluminum clamps using indium wire gaskets, in order to form a simple, reusable, and hydrogen-tight cryogenic seal. The container meets the above-mentioned requirements and withstands up to 2 bar hydrogen gas pressure against isolation vacuum in the range of 10-5 to 10-7 mbar at temperatures down to 4.5 K. Additionally, photographs of the crystallization process are shown and discussed.
NASA Astrophysics Data System (ADS)
Bernhard, Yann; Collin, Bertrand; Decréau, Richard A.
2017-03-01
Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300-500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent.
Bernhard, Yann; Collin, Bertrand; Decréau, Richard A
2017-03-24
Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90 Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300-500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent.
Spark plasma sintering of bulk SrAl2O4-Sr3Al2O6 eutectic glass with wide-band optical window.
Liu, Jiaxi; Lu, Nan; He, Gang; Li, Xiaoyu; Li, Jianqiang; Li, Jiangtao
2018-06-15
SrAl 2 O 4 -Sr 3 Al 2 O 6 eutectic glass was prepared by using an aerodynamic levitator equipped with a CO 2 laser device. A bulk transparent amorphous sample was obtained by the spark plasma sintering (SPS) of the prepared eutectic glass. XRD, a UV-vis-NIR spectrophotometer and FT-IR were employed to characterize the phase evolution and optical properties. The results show that the bulk SrAl 2 O 4 -Sr 3 Al 2 O 6 samples fabricated by the containerless process and SPS between 852 °C-857 °C were fully amorphous. The amorphous sample has a wide transparent window between 270 nm and 6.2 μm. The average refractive index in the visible light region is 1.680 and the Abbe number is 27.4. The prepared bulk SrAl 2 O 4 -Sr 3 Al 2 O 6 eutectic glass with the wide-band optical window may be a promising candidate for optical applications.
Spark plasma sintering of bulk SrAl2O4-Sr3Al2O6 eutectic glass with wide-band optical window
NASA Astrophysics Data System (ADS)
Liu, Jiaxi; Lu, Nan; He, Gang; Li, Xiaoyu; Li, Jianqiang; Li, Jiangtao
2018-06-01
SrAl2O4-Sr3Al2O6 eutectic glass was prepared by using an aerodynamic levitator equipped with a CO2 laser device. A bulk transparent amorphous sample was obtained by the spark plasma sintering (SPS) of the prepared eutectic glass. XRD, a UV–vis-NIR spectrophotometer and FT-IR were employed to characterize the phase evolution and optical properties. The results show that the bulk SrAl2O4-Sr3Al2O6 samples fabricated by the containerless process and SPS between 852 °C–857 °C were fully amorphous. The amorphous sample has a wide transparent window between 270 nm and 6.2 μm. The average refractive index in the visible light region is 1.680 and the Abbe number is 27.4. The prepared bulk SrAl2O4-Sr3Al2O6 eutectic glass with the wide-band optical window may be a promising candidate for optical applications.
Martin, C E; Brandmeyer, E A; Ross, R D
2013-01-01
Leaf temperatures were lower when light entry at the leaf tip window was prevented through covering the window with reflective tape, relative to leaf temperatures of plants with leaf tip windows covered with transparent tape. This was true when leaf temperatures were measured with an infrared thermometer, but not with a fine-wire thermocouple. Leaf tip windows of Lithops growing in high-rainfall regions of southern Africa were larger than the windows of plants (numerous individuals of 17 species) growing in areas with less rainfall and, thus, more annual insolation. The results of this study indicate that leaf tip windows of desert plants with an underground growth habit can allow entry of supra-optimal levels of radiant energy, thus most likely inhibiting photosynthetic activity. Consequently, the size of the leaf tip windows correlates inversely with habitat solar irradiance, minimising the probability of photoinhibition, while maximising the absorption of irradiance in cloudy, high-rainfall regions. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Improvements on the optical properties of Ge-Sb-Se chalcogenide glasses with iodine incorporation
NASA Astrophysics Data System (ADS)
Jiang, Chen; Wang, Xunsi; Zhu, Qingde; Nie, Qiuhua; Zhu, Minming; Zhang, Peiquan; Dai, Shixun; Shen, Xiang; Xu, Tiefeng; Cheng, Ci; Liao, Fangxing; Liu, Zijun; Zhang, Xianghua
2015-11-01
Decreasing glass network defects and improving optical transmittance are essential work for material researchers. We studied the function of halogen iodine (I) acting as a glass network modifier in Ge-Sb-Se-based chalcogenide glass system. A systematic series of Ge20Sb5Se75-xIx (x = 0, 5, 10, 15, 20 at.%) infrared (IR) chalcohalide glasses were investigated to decrease the weak absorption tail (WAT) and improve the mid-IR transparency. The mechanisms of the halogen I affecting the physical, thermal, and optical properties of Se-based chalcogenide glasses were reported. The structural evolutions of these glasses were also revealed by Raman spectroscopy and camera imaging. The progressive substitution of I for Se increased the optical bandgap. The WAT and scatting loss significantly decreased corresponding to the progressive decrease in structural defects caused by dangling bands and structure defects in the original Ge20Sb5Se75 glass. The achieved maximum IR transparency of Ge-Sb-Se-I glasses can reach up to 80% with an effective transmission window between 0.94 μm and 17 μm, whereas the absorption coefficient decreased to 0.029 cm-1 at 10.16 μm. Thus, these materials are promising candidates for developing low-loss IR fibers.
Passive temperature control based on a phase change metasurface.
Wu, Sheng-Rui; Lai, Kuan-Lin; Wang, Chih-Ming
2018-05-16
In this paper, a tunable mid-infrared metasurface based on VO 2 phase change material is proposed for temperature control. The proposed structure consisting of a VO 2 /SiO 2 /VO 2 cavity supports a thermally switchable Fabry-Perot-like resonance mode at the transparency window of the atmosphere. Theoretically, the radiative cooling power density of the proposed metasurface can be switched to four-fold as the device temperature is below/above the phase change temperature of VO 2 . Besides radiative cooling, a passive temperature control application based on this huge cooling power switching ability is theoretically demonstrated. We believe the proposed device can be applied for small radiative cooling and temperature control applications.
Escudero, Carlos; Jiang, Peng; Pach, Elzbieta; Borondics, Ferenc; West, Mark W; Tuxen, Anders; Chintapalli, Mahati; Carenco, Sophie; Guo, Jinghua; Salmeron, Miquel
2013-05-01
A miniature (1 ml volume) reaction cell with transparent X-ray windows and laser heating of the sample has been designed to conduct X-ray absorption spectroscopy studies of materials in the presence of gases at atmospheric pressures. Heating by laser solves the problems associated with the presence of reactive gases interacting with hot filaments used in resistive heating methods. It also facilitates collection of a small total electron yield signal by eliminating interference with heating current leakage and ground loops. The excellent operation of the cell is demonstrated with examples of CO and H2 Fischer-Tropsch reactions on Co nanoparticles.
Local modulation of double optomechanically induced transparency and amplification.
Yang, Q; Hou, B P; Lai, D G
2017-05-01
We consider the probe absorption properties in a mechanically coupled optomechanical system in which the two coupled nanomechanical oscillators are driven by the time-dependent forces, respectively. It is found that the mechanical interaction splits the transparency window for a usual single-mode optomechanical system into two parts and then leads to appearance of the double optomechanically induced transparency. The distance between the two transparency positions (the frequency for the maximal transparency) is determined by the mechanical interaction amplitude. This can be explained by using optomechanical dressed-mode picture which is analogue to the interacting dark resonances in coherent atoms. When the mechanical resonators are driven by the external forces, the transparencies in the double-transparency spectrum can be increased into amplifications or be suppressed by tuning the amplitude of the forces. Additionally, it is shown that the double transparencies or the amplifications oscillate with the initial phases of the forces with a period of 2π. These investigations will be useful for more flexible controllability of multi-channel optical communication based on the optomechanical systems.
Window for radiation detectors and the like
Sparks, C.J. Jr.; Ogle, J.C.
1975-10-28
An improved x- and gamma-radiation and particle transparent window for the environment-controlling enclosure of various types of radiation and particle detectors is provided by a special graphite foil of a thickness of from about 0.1 to 1 mil. The graphite must have very parallel hexagonal planes with a mosaic spread no greater than 5$sup 0$ to have the necessary strength in thin sections to support one atmosphere or more of pressure. Such graphite is formed by hot- pressing and annealing pyrolytically deposited graphite and thereafter stripping off layers of sufficient thickness to form the window.
Dynamic Light Scattering Developed to Look Through the Eye's Window Into the Body
NASA Technical Reports Server (NTRS)
Stauber, Laurel J.
2001-01-01
Microgravity researcher Dr. Rafat R. Ansari, from the NASA Glenn Research Center, has found that the eye operates much like a camera and is the "window to the body." The eye contains transparent tissue through which light passes, providing us a view of what's going on inside. These transparent tissues represent nearly every tissue type that exists throughout the body. With the correlations and comparisons of these tissues done at Glenn, we hope to improve doctors' ability to diagnose diseases at much earlier stages. The medical community will be able to look noninvasively and quantitatively into a patient's eyes to detect disease before symptoms appear. Since the eye is easily accessed by light, the optical technologies created at Glenn can be used to evaluate its structure and physiology in health, aging, and disease.
Window contamination on Expose-R
NASA Astrophysics Data System (ADS)
Demets, R.; Bertrand, M.; Bolkhovitinov, A.; Bryson, K.; Colas, C.; Cottin, H.; Dettmann, J.; Ehrenfreund, P.; Elsaesser, A.; Jaramillo, E.; Lebert, M.; van Papendrecht, G.; Pereira, C.; Rohr, T.; Saiagh, K.
2015-01-01
Expose is a multi-user instrument for astrobiological and astrochemical experiments in space. Installed at the outer surface of the International Space Station, it enables investigators to study the impact of the open space environment on biological and biochemical test samples. Two Expose missions have been completed so far, designated as Expose-E (Rabbow et al. 2012) and Expose-R (Rabbow et al. this issue). One of the space-unique environmental factors offered by Expose is full-spectrum, ultraviolet (UV)-rich electromagnetic radiation from the Sun. This paper describes and analyses how on Expose-R, access of the test samples to Solar radiation degraded during space exposure in an unpredicted way. Several windows in front of the Sun-exposed test samples acquired a brown shade, resulting in a reduced transparency in visible light, UV and vacuum UV (VUV). Post-flight investigations revealed the discolouration to be caused by a homogenous film of cross-linked organic polymers at the inside of the windows. The chemical signature varied per sample carrier. No such films were found on windows from sealed, pressurized compartments, or on windows that had been kept out of the Sun. This suggests that volatile compounds originating from the interior of the Expose facility were cross-linked and photo-fixed by Solar irradiation at the rear side of the windows. The origin of the volatiles was not fully identified; most probably there was a variety of sources involved including the biological test samples, adhesives, plastics and printed circuit boards. The outer surface of the windows (pointing into space) was chemically impacted as well, with a probable effect on the transparency in VUV. The reported analysis of the window contamination on Expose-R is expected to help the interpretation of the scientific results and offers possibilities to mitigate this problem on future missions - in particular Expose-R2, the direct successor of Expose-R.
Liang, Xiao; Chen, Mei; Guo, Shumeng; Zhang, Lanying; Li, Fasheng; Yang, Huai
2017-11-22
Smart windows with controllable visible and near-infrared light transmittance can significantly improve the building's energy efficiency and inhabitant comfort. However, most of the current smart window technology cannot achieve the target of ideal solar control. Herein, we present a novel all-solution-processed hybrid micronano composite smart material that have four optical states to separately modulate the visible and NIR light transmittance through voltage and temperature, respectively. This dual-band optical modulation was achieved by constructing a phase-separated polymer framework, which contains the microsized liquid crystals domains with a negative dielectric constant and tungsten-doped vanadium dioxide (W-VO 2 ) nanocrystals (NCs). The film with 2.5 wt % W-VO 2 NCs exhibits transparency at normal condition, and the passage of visible light can be reversibly and actively regulated between 60.8% and 1.3% by external applied voltage. Also, the transmittance of NIR light can be reversibly and passively modulated between 59.4% and 41.2% by temperature. Besides, the film also features easy all-solution processability, fast electro-optical (E-O) response time, high mechanical strength, and long-term stability. The as-prepared film provides new opportunities for next-generation smart window technology, and the proposed strategy is conductive to engineering novel hybrid inorganic-organic functional matters.
NASA Astrophysics Data System (ADS)
Zhu, Xingqun; Naz, Hina; Nauman Ali, Rai; Yang, Yongfei; Zheng, Zhou; Xiang, Bin; Cui, Xudong
2018-04-01
We have successfully synthesized the transparent and hydrophobic silica aerogels by a one-step drying process using appropriate amount of Polyethoxydisiloxane and methyltrimethoxysilane. With an introduction of modified rapid supercritical extraction technique, the synthesis process time was shortened down to one hour for a 4 L solution reaction. The observed transmittance of as-synthesized product is larger than 80% within the wavelength range of 500–1000 nm, and the contact angle is confirmed to be over 135°. Our results provide a path way to the fast synthesis of hydrophobic and transparent aerogels in near future for window insulator applications.
NASA Astrophysics Data System (ADS)
Li, Yuan; Zhou, Yusheng; Wang, Yong; Ling, Qiang; Chen, Bing; Dou, Yan; Zhang, Wei; Gao, Weiqing; Guo, Zhiqiang; Zhang, Junxiang
2018-03-01
We theoretically study the squeezed probe light passing through a double electromagnetically induced transparency (DEIT) system, in which a microwave field and two coupling lights drive a loop transition. It is shown that the output squeezing can be maintained in both two transparency windows of DEIT, and it can also be manipulated by the relative phase of the three driving fields. The influence of the intensity of applied fields and the optical depth of atoms on the squeezing is also investigated. This study offers possibilities to manipulate the squeezing propagation in atomic media by the phase of electromagnetic fields.
Tunable plasmon-induced transparency based on graphene nanoring coupling with graphene nanostrips
NASA Astrophysics Data System (ADS)
Liao, Chang-Long; Fu, Guang-Lai; Xia, Sheng-Xuan; Li, Hong-Ju; Zhai, Xiang; Wang, Ling-Ling
2018-02-01
We numerically and theoretically demonstrate a plasmon-induced transparency (PIT) at the mid-infrared region with finite-difference time-domain method. The system consists of an optically bright dipole mode and a dark quadrupole mode, which are supported by the graphene nanoring and graphene nanostrips, respectively. The coupling between the two modes introduces transparency window and large group delays. The pronounced PIT resonance can be easily modified by adjusting the geometric parameters and the Fermi level of graphene nanostructure. Our results suggest that the demonstrated PIT effect may be applicated in the slow-light device, active plasmonic switching, and optical sensing.
NASA Technical Reports Server (NTRS)
Smith, Henry I. (Inventor); Lim, Michael (Inventor); Carter, James (Inventor); Schattenburg, Mark (Inventor)
1998-01-01
X-ray masking apparatus includes a frame having a supporting rim surrounding an x-ray transparent region, a thin membrane of hard inorganic x-ray transparent material attached at its periphery to the supporting rim covering the x-ray transparent region and a layer of x-ray opaque material on the thin membrane inside the x-ray transparent region arranged in a pattern to selectively transmit x-ray energy entering the x-ray transparent region through the membrane to a predetermined image plane separated from the layer by the thin membrane. A method of making the masking apparatus includes depositing back and front layers of hard inorganic x-ray transparent material on front and back surfaces of a substrate, depositing back and front layers of reinforcing material on the back and front layers, respectively, of the hard inorganic x-ray transparent material, removing the material including at least a portion of the substrate and the back layers of an inside region adjacent to the front layer of hard inorganic x-ray transparent material, removing a portion of the front layer of reinforcing material opposite the inside region to expose the surface of the front layer of hard inorganic x-ray transparent material separated from the inside region by the latter front layer, and depositing a layer of x-ray opaque material on the surface of the latter front layer adjacent to the inside region.
Transparent air filter for high-efficiency PM2.5 capture.
Liu, Chong; Hsu, Po-Chun; Lee, Hyun-Wook; Ye, Meng; Zheng, Guangyuan; Liu, Nian; Li, Weiyang; Cui, Yi
2015-02-16
Particulate matter (PM) pollution has raised serious concerns for public health. Although outdoor individual protection could be achieved by facial masks, indoor air usually relies on expensive and energy-intensive air-filtering devices. Here, we introduce a transparent air filter for indoor air protection through windows that uses natural passive ventilation to effectively protect the indoor air quality. By controlling the surface chemistry to enable strong PM adhesion and also the microstructure of the air filters to increase the capture possibilities, we achieve transparent, high air flow and highly effective air filters of ~90% transparency with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions (PM2.5 mass concentration >250 μg m(-3)). A field test in Beijing shows that the polyacrylonitrile transparent air filter has the best PM2.5 removal efficiency of 98.69% at high transmittance of ~77% during haze occurrence.
Transparency of near-critical density plasmas under extreme laser intensities
NASA Astrophysics Data System (ADS)
Ji, Liangliang; Shen, Baifei; Zhang, Xiaomei
2018-05-01
We investigated transparency of near-critical plasma targets for highly intense incident lasers and discovered that beyond relativistic transparency, there exists an anomalous opacity regime, where the plasma target tend to be opaque at extreme light intensities. The unexpected phenomenon is found to originate from the trapping of ions under exotic conditions. We found out the propagation velocity and the amplitude of the laser-driven charge separation field in a large parameter range and derived the trapping probability of ions. The model successfully interpolates the emergence of anomalous opacity in simulations. The trend is more significant when radiation reaction comes into effect, leaving a transparency window in the intensity domain. Transparency of a plasma target defines the electron dynamics and thereby the emission mechanisms of gamma-photons in the ultra-relativistic regime. Our findings are not only of fundamental interest but also imply the proper mechanisms for generating desired electron/gamma sources.
Transparent air filter for high-efficiency PM2.5 capture
NASA Astrophysics Data System (ADS)
Liu, Chong; Hsu, Po-Chun; Lee, Hyun-Wook; Ye, Meng; Zheng, Guangyuan; Liu, Nian; Li, Weiyang; Cui, Yi
2015-02-01
Particulate matter (PM) pollution has raised serious concerns for public health. Although outdoor individual protection could be achieved by facial masks, indoor air usually relies on expensive and energy-intensive air-filtering devices. Here, we introduce a transparent air filter for indoor air protection through windows that uses natural passive ventilation to effectively protect the indoor air quality. By controlling the surface chemistry to enable strong PM adhesion and also the microstructure of the air filters to increase the capture possibilities, we achieve transparent, high air flow and highly effective air filters of ~90% transparency with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions (PM2.5 mass concentration >250 μg m-3). A field test in Beijing shows that the polyacrylonitrile transparent air filter has the best PM2.5 removal efficiency of 98.69% at high transmittance of ~77% during haze occurrence.
Active Damping Using Distributed Anisotropic Actuators
NASA Technical Reports Server (NTRS)
Schiller, Noah H.; Cabell, Randolph H.; Quinones, Juan D.; Wier, Nathan C.
2010-01-01
A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure.
Hossain, Mozakkar; Kumar, Gundam Sandeep; Barimar Prabhava, S N; Sheerin, Emmet D; McCloskey, David; Acharya, Somobrata; Rao, K D M; Boland, John J
2018-05-22
Optically transparent photodetectors are crucial in next-generation optoelectronic applications including smart windows and transparent image sensors. Designing photodetectors with high transparency, photoresponsivity, and robust mechanical flexibility remains a significant challenge, as is managing the inevitable trade-off between high transparency and strong photoresponse. Here we report a scalable method to produce flexible crystalline Si nanostructured wire (NW) networks fabricated from silicon-on-insulator (SOI) with seamless junctions and highly responsive porous Si segments that combine to deliver exceptional performance. These networks show high transparency (∼92% at 550 nm), broadband photodetection (350 to 950 nm) with excellent responsivity (25 A/W), optical response time (0.58 ms), and mechanical flexibility (1000 cycles). Temperature-dependent photocurrent measurements indicate the presence of localized electronic states in the porous Si segments, which play a crucial role in light harvesting and photocarrier generation. The scalable low-cost approach based on SOI has the potential to deliver new classes of flexible optoelectronic devices, including next-generation photodetectors and solar cells.
Study on thick film spin-on carbon hardmask
NASA Astrophysics Data System (ADS)
Kim, Taeho; Kim, Youngmin; Hwang, Sunmin; Lee, Hyunsoo; Han, Miyeon; Lim, Sanghak
2017-03-01
A thick spin-on carbon hardmask (SOH) material is designed to overcome inherent problems of amorphous deposited carbon layer (ACL) and thick photoresist. For ACL in use of semiconductor production process, especially when film thickness from sub-micrometer up to few micrometers is required, not only its inherent low transparency at long wavelength light often causes alignment problems with under layers, but also considerable variation of film thickness within a wafer can also cause patterning problems. To avoid these issues, a thick SOH is designed with monomers of high transparency and good solubility at the same time. In comparison with photoresist, the SOH has good etch resistance and high thermal stability, and it provides wide process window of decreased film thickness and increased thermal budget up to 400°C after processes such as high temperature deposition of SiON. In order to achieve high thickness along with uniform film, many solvent factors was considered such as solubility parameter, surface tension, vapor pressure, and others. By optimizing many solvent factors, we were able to develop a product with a good coating performance
Lee, Chihak; Oh, Youngsu; Yoon, In Seon; Kim, Sun Hong; Ju, Byeong-Kwon; Hong, Jae-Min
2018-02-09
Electrochromic devices (ECDs) are emerging as a novel technology for various applications like commercialized smart window glasses, and auto-dimming rear-view mirrors. Recently, the development of low-power, lightweight, flexible, and stretchable devices has been accelerated to meet the growing demand in the new wearable devices market. Silver nanowires (AgNWs) can become new primary transparent conducting electrode (TCE) materials to replace indium tin oxide (ITO) for ECDs. However, issues such as substrate adhesion, delamination, and higher resistance still exist with AgNWs. Herein, we report a high-performance stretchable flash-induced AgNW-network-based TCE on surface-treated polydimethylsiloxane (PDMS) substrates. A Xe flash light method was used to create nanowelded networks of AgNWs. Surface silane treatments increased the adhesion and durability of the films as well. Finally, ECDs were fabricated under the optimal conditions and examined under strained conditions to demonstrate the resistance and mechanical behaviours of the devices. Results showed a flexible and durable film maintaining a high level of conductivity and reversible resistance behaviour, beyond those currently achievable with standard ITO/PET flexible TCEs.
The Golden Canopies (Infant Radiant Warmer)
NASA Technical Reports Server (NTRS)
1978-01-01
The cradle warmer is based on technology in heated transparent materials developed by Sierracin Corporation, Sylmar, California he original application was in heated faceplates for the pressure suit heated faceplates worn by pilots of an Air Force/NASA reconnaissance and weather research plane. Later, Sierracin advanced the technology for other applications, among them the cockpit windows of the NASA X-15 supersonic research vehicle and the helmet faceplates of Apollo astronauts. Adapting the technology to hospital needs, Sierracin teamed with Cavitron Corporation, Anaheim, California, which produces the cradle warmer and two other systems employing Sierracin's electrically-heated transparencies. Working to combat the infant mortality rate, hospitals are continually upgrading delivery room and nursery care techniques. Many have special procedures and equipment to protect infants during the "period of apprehension," the critical six to 12 hours after delivery. One such item of equipment is an aerospace spinoff called the Infant Radiant Warmer, a "golden canopy" which provides uniform, controlled warmth to the infant's cradle. Warmth is vitally important to all newborns, particularly premature babies; they lose heat more rapidly than adults because they have greater surface area in comparison with body mass.
Physico-chemical characterisation of glass soiling in rural, urban and industrial environments.
Lombardo, T; Chabas, A; Verney-Carron, A; Cachier, H; Triquet, S; Darchy, S
2014-01-01
Glass materials are broadly used in the built environment (windows, facades, roofs, museum showcases, and solar panels) due to their optical (transparency) and thermal properties. Their interaction with the multiphase atmospheric medium results in a more or less pronounced transparency loss called soiling. This phenomenon leads to a loss of amenity of artefacts; consequently, high cleaning costs have to be supported by public and private entities. Complete understanding of the nature of surface deposit appears thus extremely important for addressing strategies to control it. The present research is based on the sheltered exposure, in different environments, of durable glass panels during 1 year. At these different locations, airborne pollutant concentrations have also been monitored. Three environments have been investigated: rural (R), urban (U) and industrial (I). Results show that the mass of the deposit and the optical impairment of the glass (haze) are too spread to allow discriminating between different environments. However, the analyses of soluble species and particulate organic matter allow identifying factors responsible for soiling and highlighted the reactivity of deposit to relative humidity which favours post-deposit evolution.
Application of large-area chromogenics to architectural glazings
NASA Astrophysics Data System (ADS)
Selkowitz, Stephen E.
1990-03-01
Glass plays a significant role in the design of building envelopes today. Since its emergence during the last century as a major building material, glass has evolved into an ubiquitous and versatile building design element, performing functions today that would have been unimaginable a few years ago. The optical clarity and transparency of glass that we take for granted is one of its most unique features. Glass windows keep out the cold wind and rain without blocking the view, but also perform many more complex functions which require variable properties and tradeoffs between conflicting conditions. The glazing that provides view must also provide visual privacy at other times and must sometimes become totally opaque (for audiovisual shows, for example). Transparent glass admits daylight, providing good color rendition and offsetting electric lighting energy needs, but it can also create discomfort and disability glare conditions. The sun provides desirable warmth in winter but its heat is unwelcome in summer when it contributes to thermal discomfort and cooling energy requirements. And glass is an important element in the appearance and aesthetics of a building, both interior and exterior.
Intelligent windows using new thermotropic layers with long-term stability
NASA Astrophysics Data System (ADS)
Watanabe, Haruo
1995-08-01
This paper concerns the autonomous responsive type light adjustment window (intelligent windows) among smart windows which adjust the light upon receiving environmental energy. More specifically, this is a thermotropic window panel that laminates and seals a new type of highly viscous polymer aqueous solution gel. A conventional thermotropic window panel has never been put to practical use since the reversible change between the colorless, transparent state (water-clear) and translucent scattered state (paper-white) with uniformity was not possible. The change involved phase separation and generated non-uniformity. The author, after fundamental studies of hydrophobic bonding, successfully solved the problem by developing a polymer aqueous solution gel with amphiphatic molecule as the third component in addition to water and water-soluble polymer with hydrophobic radical, based on the molecular spacer concept. In addition, the author established peripheral technologies and succeeded in experimentally fabricating a panel type 'Affinity's Intelligent Window (AIW)' that has attained the level of practical use.
Highly Transparent and Conductive Metallized Nanofibers by Electrospinning and Electroplating
NASA Astrophysics Data System (ADS)
Yoon, Sam S.; Yarin, Alexander L.
2017-11-01
Transparent conducting films (TCFs) and transparent heaters (THs) are of interest for a wide variety of applications, from displays to window defrosters. Here, we demonstrate production of highly flexible, conducting, and transparent copper (Cu), nickel (Ni), platinum (Pt), and silver (Ag) nanofibers suitable for use not only in TCFs and THs but also in some other engineering applications. The merging of fibers at their intersections (i.e. self-junctioning) minimizes contact resistance in these films. These metallized nanofibers exhibited a remarkably low sheet resistance at a high optical transmittance. This low sheet resistance allows them to serve as low-voltage heaters, achieving a high heating temperature at a relatively low applied voltage. These nanofibers are free-standing, flexible, stretchable, and their mechanical reliability was confirmed through various mechanical endurance tests.
Use of electrochromic materials in adaptive optics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kammler, Daniel R.; Sweatt, William C.; Verley, Jason C.
Electrochromic (EC) materials are used in 'smart' windows that can be darkened by applying a voltage across an EC stack on the window. The associated change in refractive index (n) in the EC materials might allow their use in tunable or temperature-insensitive Fabry-Perot filters and transmissive-spatial-light-modulators (SLMs). The authors are conducting a preliminary evaluation of these materials in many applications, including target-in-the-loop systems. Data on tungsten oxide, WO{sub 3}, the workhorse EC material, indicate that it's possible to achieve modest changes in n with only slight increases in absorption between the visible and {approx}10 {micro}m. This might enable construction ofmore » a tunable Fabry-Perot filter consisting of an active EC layer (e.g. WO{sub 3}) and a proton conductor (e.g.Ta{sub 2}O{sub 5}) sandwiched between two gold electrodes. A SLM might be produced by replacing the gold with a transparent conductor (e.g. ITO). This SLM would allow broad-band operation like a micromirror array. Since it's a transmission element, simple optical designs like those in liquid-crystal systems would be possible. Our team has fabricated EC stacks and characterized their switching speed and optical properties (n, k). We plan to study the interplay between process parameters, film properties, and performance characteristics associated with the FP-filter and then extend what we learn to SLMs. Our goals are to understand whether the changes in absorption associated with changes in n are acceptable, and whether it's possible to design an EC-stack that's fast enough to be interesting. We'll present our preliminary findings regarding the potential viability of EC materials for target-in-the-loop applications.« less
Cutaway line drawing of STS-34 middeck experiment Polymer Morphology (PM)
NASA Technical Reports Server (NTRS)
1989-01-01
Cutaway line drawing shows components of STS-34 middeck experiment Polymer Morphology (PM). Generic Electronics Module (GEM) components include the control housing, circulating fans, hard disk, tape drives, computer boards, and heat exchanger. PM, a 3M-developed organic materials processing experiment, is designed to explore the effects of microgravity on polymeric materials as they are processed in space. The samples of polymeric materials being studied in the PM experiment are thin films (25 microns or less) approximately 25mm in diameter. The samples are mounted between two infrared transparent windows in a specially designed infrared cell that provides the capability of thermally processing the samples to 200 degrees Celsius with a high degree of thermal control. The samples are mounted on a carousel that allows them to be positioned, one at a time, in the infrared beam where spectra may be acquired. The GEM provides all carousel and sample cell control (SCC). The first flight of P
Neutron scattering in the proximate quantum spin liquid α-RuCl3.
Banerjee, Arnab; Yan, Jiaqiang; Knolle, Johannes; Bridges, Craig A; Stone, Matthew B; Lumsden, Mark D; Mandrus, David G; Tennant, David A; Moessner, Roderich; Nagler, Stephen E
2017-06-09
The Kitaev quantum spin liquid (KQSL) is an exotic emergent state of matter exhibiting Majorana fermion and gauge flux excitations. The magnetic insulator α-RuCl 3 is thought to realize a proximate KQSL. We used neutron scattering on single crystals of α-RuCl 3 to reconstruct dynamical correlations in energy-momentum space. We discovered highly unusual signals, including a column of scattering over a large energy interval around the Brillouin zone center, which is very stable with temperature. This finding is consistent with scattering from the Majorana excitations of a KQSL. Other, more delicate experimental features can be transparently associated with perturbations to an ideal model. Our results encourage further study of this prototypical material and may open a window into investigating emergent magnetic Majorana fermions in correlated materials. Copyright © 2017, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Luk'yanov, A. Yu; Ral'chenko, Viktor G.; Khomich, A. V.; Serdtsev, E. V.; Volkov, P. V.; Savel'ev, A. V.; Konov, Vitalii I.
2008-12-01
A highly-efficient phase photothermal method is developed for quantitative measurements of the small optical absorption coefficient in thin plates made of highly transparent materials in which bulk losses significantly exceed surface losses. The bulk absorption coefficient at 10.6 μm is estimated in polycrystalline diamond plates grown from the vapour phase (a CVD diamond). The results are compared with those for natural and synthetic diamond single crystals and with the concentrations of nitrogen and hydrogen impurities. The absorption coefficient of the best samples of the CVD diamond did not exceed 0.06 cm-1, which, taking into account the high thermal conductivity of the CVD diamond (1800-2200 W mK-1 at room temperature), makes this material attractive for fabricating output windows of high-power CO2 lasers, especially for manufacturing large-size optics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aytug, Tolga
Maintaining clarity and avoiding the accumulation of water and dirt on optically transparent surfaces such as US military vehicle windshields, viewports, periscope optical head windows, and electronic equipment cover glasses are critical to providing a high level of visibility, improved survivability, and much-needed safety for warfighters in the field. Through a combination of physical vapor deposition techniques and the exploitation of metastable phase separation in low-alkali borosilicate, a novel technology was developed for the fabrication of optically transparent, porous nanostructured silica thin film coatings that are strongly bonded to glass platforms. The nanotextured films, initially structurally superhydrophilic, exhibit superior superhydrophobicity,more » hence antisoiling ability, following a simple but robust modification in surface chemistry. The surfaces yield water droplet contact angles as high as 172°. Moreover, the nanostructured nature of these coatings provides increased light scattering in the UV regime and reduced reflectivity (i.e., enhanced transmission) over a broad range of the visible spectrum. In addition to these functionalities, the coatings exhibit superior mechanical resistance to abrasion and are thermally stable to temperatures approaching 500°C. The overall process technology relies on industry standard equipment and inherently scalable manufacturing processes and demands only nontoxic, naturally abundant, and inexpensive base materials. Such coatings, applied to the optical components of current and future combat equipment and military vehicles will provide a significant strategic advantage for warfighters. The inherent self-cleaning properties of such superhydrophobic coatings will also mitigate biofouling of optical windows exposed to high-humidity conditions and can help decrease repair/replacement costs, reduce maintenance, and increase readiness by limiting equipment downtime.« less
NASA Astrophysics Data System (ADS)
Sun, J.; Jasieniak, J. J.
2017-03-01
Semi-transparent solar cells are a type of technology that combines the benefits of visible light transparency and light-to-electricity conversion. One of the biggest opportunities for such technologies is in their integration as windows and skylights within energy-sustainable buildings. Currently, such building integrated photovoltaics (BIPV) are dominated by crystalline silicon based modules; however, the opaque nature of silicon creates a unique opportunity for the adoption of emerging photovoltaic candidates that can be made truly semi-transparent. These include: amorphous silicon-, kesterite-, chalcopyrite-, CdTe-, dye-sensitized-, organic- and perovskite- based systems. For the most part, amorphous silicon has been the workhorse in the semi-transparent solar cell field owing to its established, low-temperature fabrication processes. Excitement around alternative classes, particularly perovskites and the inorganic candidates, has recently arisen because of the major efficiency gains exhibited by these technologies. Importantly, each of these presents unique opportunities and challenges within the context of BIPV. This topic review provides an overview into the broader benefits of semi-transparent solar cells as building-integrated features, as well as providing the current development status into all of the major types of semi-transparent solar cells technologies.
Bernhard, Yann; Collin, Bertrand; Decréau, Richard A.
2017-01-01
Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300–500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent. PMID:28338043
NASA Astrophysics Data System (ADS)
Sun, Tianyi; Guo, Chuanfei; Kempa, Krzysztof; Ren, Zhifeng
2014-03-01
A Fabry-Perot reflection filter, consisting of semi-transparent metal and dielectric layers on opaque metals, is featured by selective absorption determined by the phase difference of waves from the two interfaces. In such systems, semi-transparency is usually realized by layers of reflective metals thinner than the penetration depth of the light. Here we present a filter cavity with entry windows not made of traditional thin layers, but of aperiodic metallic random nanomeshes thicker than the penetration depth, fabricated by grain boundary lithography. It is shown that due to the deteriorated phase caused by the interface between the random nanomesh and the dielectric layer, the width and location of the resonances can be tuned by metallic coverage. Further experiments show that this phenomenon can be used in designing aperiodic plasmonic metamaterial structures for visible and infrared applications.
NASA Astrophysics Data System (ADS)
Shu, Chang; Chen, Qing-Guo; Mei, Jin-Shuo; Yin, Jing-Hua
2018-03-01
In this paper, we numerically demonstrated a dynamically tunable implementation of electromagnetically induced transparency (EIT) response with two coupling graphene-nanostrips in terahertz region. Compared to the metal-based structures or separated graphene structures, the Fermi energies of proposed two coupling graphene-nanostrips can be independently tuned by changing bias voltage between the metallic pads and substrate, the EIT window which appears from the near-field coupling between two resonators can be dynamically tuned without reoptimizing and refabricating the structures. As a result, the EIT window has a significant tunable capacity which can realize a higher frequency modulation depth and control the amplitude of transmission peak at a fixed frequency; moreover, the group delay of transmission peak at a fixed frequency with the amplitude of over 0.95 could be dynamically tuned. These results would exhibit potential applications in modulators and tunable slow light devices.
Advances in spinel optical quality, size/shape capacity, and applications
NASA Astrophysics Data System (ADS)
Roy, Donald W.; Martin, Gay G., Jr.
1992-12-01
Polycrystalline MgAl2O4 Spinel, transparent from two hundred nanometers to six microns, offers a unique combination of optical and physical properties. A superior dome and window material with respect to rain and particle erosion, solar radiation, high temperatures and humidity, it is resistant to attack by strong acids, alkali solutions, sea water and jet fuels. Residual microporosity from the powder process used for fabricating Spinel which previously limited the use of Spinel to thin wall thicknesses and small sizes, has been significantly reduced by advanced hot press and hot isostatic press (HIP) technology. It is now possible to manufacture high quality shallow domes up to seven inches in diameter with a two tenths inch thick wall thickness. Eight inch diameter flat windows have been produced for an advanced missile system. Proof of process near hemispherical 8 inch dome blanks have been fabricated. Recent measurements of refractive index, homogeneity, scatter and surface roughness are available for design purposes. Improvement in the optical quality and in size/shape capability along with several successful prototype tests demonstrate that Spinel is ready for inclusion in appropriate production systems.
Variable transmittance electrochromic windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauh, R.D.
1983-11-01
Electrochromic apertures based on RF sputtered thin films of WO3 are projected to have widely different sunlight attenuation properties when converted to MxWO3 (M H, Li, Na, Ag, etc.), depending on the initial preparation conditions. Amorphous WO3, prepared at low temperature, has a coloration spectrum centered in the visible, while high temperature crystalline WO3 attenuates infrared light most efficiently, but appears to become highly reflective at high values of x. The possibility therefore exists of producing variable light transmission apertures of the general form (a-MxWO3/FIC/c-WO3), where the FIC is an ion conducting thin film, such as LiAlF4 (for M Li).more » The attenuation of 90% of the solar spectrum requires an injected charge of 30 to 40 mcoul/sq cm in either amorphous or crystalline WO3, corresponding to 0.2 Whr/sq m per coloration cycle. In order to produce windows with very high solar transparency in the bleached form, new counter electrode materials must be found with complementary electrochromism to WO3.« less
Illumination and radiative cooling
Fan, Shanhui; Raman, Aaswath Pattabhi; Zhu, Linxiao; Rephaeli, Eden
2018-03-20
Aspects of the present disclosure are directed to providing and/or controlling electromagnetic radiation. As may be implemented in accordance with one or more embodiments, an apparatus includes a first structure that contains an object, and a second structure that is transparent at solar wavelengths and emissive in the atmospheric electromagnetic radiation transparency window. The second structure operates with the first structure to pass light into the first structure for illuminating the object, and to radiatively cool the object while preserving the object's color.
Catalysts for synthesizing various short chain hydrocarbons
Colmenares, Carlos
1991-01-01
Method and apparatus (10), including novel photocatalysts, are disclosed for the synthesis of various short chain hydrocarbons. Light-transparent SiO.sub.2 aerogels doped with photochemically active uranyl ions (18) are fluidized in a fluidized-bed reactor (12) having a transparent window (16), by hydrogen and CO, C.sub.2 H.sub.4 or C.sub.2 H.sub.6 gas mixtures (20), and exposed to radiation (34) from a light source (32) external to the reactor (12), to produce the short chain hydrocarbons (36).
NASA Astrophysics Data System (ADS)
Mirzaei, Sahar; Green, Nicolas G.; Rotaru, Mihai; Pu, Suan Hui
2017-02-01
In genetic diagnostics, laboratory-based equipment generally uses analytical techniques requiring complicated and expensive fluorescent labelling of target DNA molecules. Intense research effort into, and commercial development of, Point-of-Care diagnostics and Personalized Healthcare are driving the development of simple, fast and cost-effective detection methods. One potential label-free DNA detection method uses Terahertz (THz) spectroscopy of the natural responses of DNA in metamaterial structures, which are engineered to have properties that are impossible to obtain in natural materials. This paper presents a study of the development of metamaterials based on asymmetric X-shaped resonator inclusions as a functional sensor for DNA. Gold X-shaped resonator structures with dimensions of 90/85 μm were demonstrated to produce trapped mode resonant frequency in the correct range for DNA detection. Realistic substrate materials in the form of 375 μm thick quartz were investigated, demonstrating that the non-transparent nature of the material resulted in the production of standing waves, affecting the system response, as well as requiring a reduction in scale of the resonator of 85%. As a result, the effect of introducing etched windows in the substrate material were investigated, demonstrating that increased window size significantly reduces the effect of the substrate on the system response. The device design showed a good selectivity when RNA samples were introduced to the model, demonstrating the potential for this design of device in the development of sensors capable of performing cheap and simple genetic analysis of DNA, giving label-free detection at high sensitivity.
Song, Jizhong; Li, Jianhai; Xu, Jiayue; Zeng, Haibo
2014-11-12
Low cost and high conductivity make copper (Cu) nanowire (NW) electrodes an attractive material to construct flexible and stretchable electronic skins, displays, organic light-emitting diodes (OLEDs), solar cells, and electrochromic windows. However, the vulnerabilities that Cu NW electrodes have to oxidation, bending, and stretching still present great challenges. This work demonstrates a new Cu@Cu4Ni NW conductive elastomer composite with ultrahigh stability for the first time. Cu@Cu4Ni NWs, facilely synthesized through a one-pot method, have highly crystalline alloyed shells, clear and abrupt interfaces, lengths more than 50 μm, and smooth surfaces. These virtues provide the NW-elastomer composites with a low resistance of 62.4 ohm/sq at 80% transparency, which is even better than the commercial ITO/PET flexible electrodes. In addition, the fluctuation amplitude of resistance is within 2 ohm/sq within 30 days, meaning that at ΔR/R0 = 1, the actual lifetime is estimated to be more than 1200 days. Neither the conductivity nor the performances of OLED with elastomers as conductive circuits show evident degradation during 600 cycles of bending, stretching, and twisting tests. These high-performance and extremely stable NW elastomeric electrodes could endow great chances for transparent, flexible, stretchable, and wearable electronic and optoelectronic devices.
Monocrystalline test structures, and use for calibrating instruments
Cresswell, Michael W.; Ghoshtagore, R. N.; Linholm, Loren W.; Allen, Richard A.; Sniegowski, Jeffry J.
1997-01-01
An improved test structure for measurement of width of conductive lines formed on substrates as performed in semiconductor fabrication, and for calibrating instruments for such measurements, is formed from a monocrystalline starting material, having an insulative layer formed beneath its surface by ion implantation or the equivalent, leaving a monocrystalline layer on the surface. The monocrystalline surface layer is then processed by preferential etching to accurately define components of the test structure. The substrate can be removed from the rear side of the insulative layer to form a transparent window, such that the test structure can be inspected by transmissive-optical techniques. Measurements made using electrical and optical techniques can be correlated with other measurements, including measurements made using scanning probe microscopy.
Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Y.; Roland, I.; Checoury, X.
We demonstrate second harmonic generation in a gallium nitride photonic crystal cavity embedded in a two-dimensional free-standing photonic crystal platform on silicon. The photonic crystal nanocavity is optically pumped with a continuous-wave laser at telecom wavelengths in the transparency window of the nitride material. The harmonic generation is evidenced by the spectral range of the emitted signal, the quadratic power dependence vs. input power, and the spectral dependence of second harmonic signal. The harmonic emission pattern is correlated to the harmonic polarization generated by the second-order nonlinear susceptibilities χ{sub zxx}{sup (2)}, χ{sub zyy}{sup (2)} and the electric fields of the fundamentalmore » cavity mode.« less
Transparency of the 2 μm window on Titan studied with observations made by VIMS
NASA Astrophysics Data System (ADS)
Rannou, P.; Lemouélic, S.; Sotin, C.; Brown, R. H.
2012-09-01
The study of Titan properties with remote sensing relies on a good knowledge of the atmosphere properties. The in-situ observations made by Huygens combined with recent advances in the definition of methane properties enable to model and interpret observations with a very good accuracy. However, intensity at some wavelengths are poorly modeled because additional opacities must be studied. We focus here on the case of the 2 μm window, which is essential to determined cloud and surface properties.
Application of manufactured products
NASA Technical Reports Server (NTRS)
Sastri, Sankar; Duke, Michael B.
1992-01-01
A wide range of products can be manufactured from the following materials: (1) lunar regolith or basalt; (2) regolith or rock beneficiated to concentrate plagioclase or other minerals; (3) iron, extracted from lunar soil or rocks by various means; (4) naturally occurring or easily obtained materials that have cementitious properties; and (5) byproducts of the above materials. Among the products that can be produced from these materials are the following: beams; plates and sheets; transparent plates (windows); bricks and blocks; pipes and tubes; low-density materials (foams); fiber, wire, and cables; foils and reflective coatings; hermetic seals (coatings); and formed objects. In addition to oxygen, which can be obtained by several processes, either from unbeneficiated regolith or by reduction of concentrated ilmenite, these materials make the simplest requirements of the lunar resource extraction system. A thorough analysis of the impact of these simplest products on the economics of space operations is not possible at this point. Research is necessary both to define optimum techniques and adapt them to space and to determine the probable market for the products so that the priority of various processes can be assessed. Discussions of the following products are presented: aerobraking heat shields; pressurized habitats; lunar photovoltaic farms; and agricultural systems.
Smart windows with functions of reflective display and indoor temperature-control
NASA Astrophysics Data System (ADS)
Lee, I.-Hui; Chao, Yu-Ching; Hsu, Chih-Cheng; Chang, Liang-Chao; Chiu, Tien-Lung; Lee, Jiunn-Yih; Kao, Fu-Jen; Lee, Chih-Kung; Lee, Jiun-Haw
2010-02-01
In this paper, a switchable window based on cholestreric liquid crystal (CLC) was demonstrated. Under different applied voltages, incoming light at visible and infrared wavelengths was modulated, respectively. A mixture of CLC with a nematic liquid crystal and a chiral dopant selectively reflected infrared light without bias, which effectively reduced the indoor temperature under sunlight illumination. At this time, transmission at visible range was kept at high and the windows looked transparent. With increasing the voltage to 15V, CLC changed to focal conic state and can be used as a reflective display, a privacy window, or a screen for projector. Under a high voltage (30V), homeotropic state was achieved. At this time, both infrared and visible light can transmit which acted as a normal window, which permitted infrared spectrum of winter sunlight to enter the room so as to reduce the heating requirement. Such a device can be used as a switchable window in smart buildings, green houses and windshields.
Schmidt, Igor; Gad, Alaaeldin; Scholz, Gregor; Boht, Heidi; Martens, Michael; Schilling, Meinhard; Suryo Wasisto, Hutomo; Waag, Andreas; Schröder, Uwe
2017-08-15
Microbial electrochemical technologies (METs) are one of the emerging green bioenergy domains that are utilizing microorganisms for wastewater treatment or electrosynthesis. Real-time monitoring of bioprocess during operation is a prerequisite for understanding and further improving bioenergy harvesting. Optical methods are powerful tools for this, but require transparent, highly conductive and biocompatible electrodes. Whereas indium tin oxide (ITO) is a well-known transparent conductive oxide, it is a non-ideal platform for biofilm growth. Here, a straightforward approach of surface modification of ITO anodes with gold (Au) is demonstrated, to enhance direct microbial biofilm cultivation on their surface and to improve the produced current densities. The trade-off between the electrode transmittance (critical for the underlying integrated sensors) and the enhanced growth of biofilms (crucial for direct monitoring) is studied. Au-modified ITO electrodes show a faster and reproducible biofilm growth with three times higher maximum current densities and about 6.9 times thicker biofilms compared to their unmodified ITO counterparts. The electrochemical analysis confirms the enhanced performance and the reversibility of the ITO/Au electrodes. The catalytic effect of Au on the ITO surface seems to be the key factor of the observed performance improvement since the changes in the electrode conductivity and their surface wettability are relatively small and in the range of ITO. An integrated platform for the ITO/Au transparent electrode with light-emitting diodes was fabricated and its feasibility for optical biofilm thickness monitoring is demonstrated. Such transparent electrodes with embedded catalytic metals can serve as multifunctional windows for biofilm diagnostic microchips. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Da-Lin; Qi, Hong
Semi-transparent materials (such as IR optical windows) are widely used for heat protection or transfer, temperature and image measurement, and safety in energy , space, military, and information technology applications. They are used, for instance, ceramic coatings for thermal barriers of spacecrafts or gas turbine blades, and thermal image observation under extreme or some dangerous environments. In this paper, the coupled conduction and radiation heat transfer model is established to describe temperature distribution of semitransparent thermal barrier medium within the aerothermal environment. In order to investigate this numerical model, one semi-transparent sample with black coating was considered, and photothermal properties were measured. At last, Finite Volume Method (FVM) was used to solve the coupled model, and the temperature responses from the sample surfaces were obtained. In addition, experiment study was also taken into account. In the present experiment, aerodynamic heat flux was simulated by one electrical heater, and two experiment cases were designed in terms of the duration of aerodynamic heating. One case is that the heater irradiates one surface of the sample continually until the other surface temperature up to constant, and the other case is that the heater works only 130 s. The surface temperature responses of these two cases were recorded. Finally, FVM model of the coupling conduction-radiation heat transfer was validated based on the experiment study with relative error less than 5%.
Bacterial contamination monitor
NASA Technical Reports Server (NTRS)
Rich, E.; Macleod, N. H.
1973-01-01
Economical, simple, and fast method uses apparatus which detects bacteria by photography. Apparatus contains camera, film assembly, calibrated light bulb, opaque plastic plate with built-in reflecting surface and transparent window section, opaque slide, plate with chemical packages, and cover containing roller attached to handle.
Sayim, Bilge; Cavanagh, Patrick
2011-01-01
Artists throughout the ages have discovered a number of techniques to depict transparency. With only a few exceptions, these techniques follow closely the properties of physical transparency. The two best known properties are X-junctions and the luminance relations described by Metelli. X-junctions are seen where the contours of a transparent material cross contours of the surface behind; Metelli's constraints on the luminance relations between the direct and filtered portions of the surface specify a range of luminance values that are consistent with transparency. These principles have been used by artists since the time of ancient Egypt. However, artists also discovered that stimuli can be seen as transparent even when these physical constraints are not met. Ancient Greek artists, for example, were able to depict transparent materials in simple black-and-white line drawings. Artists also learned how to represent transparency in cases where neither X-junctions nor Metelli's constraints could apply: for example, where no portions of the objects behind the transparent material extend beyond it. Many painters convincingly portrayed transparency in these cases by depicting the effects the transparent medium would have on material or object properties. Here, we show how artists employed these and other techniques revealing their anticipation of current formalizations of perceived transparency, and we suggest new, as-yet-untested principles.
Sayim, Bilge; Cavanagh, Patrick
2011-01-01
Artists throughout the ages have discovered a number of techniques to depict transparency. With only a few exceptions, these techniques follow closely the properties of physical transparency. The two best known properties are X-junctions and the luminance relations described by Metelli. X-junctions are seen where the contours of a transparent material cross contours of the surface behind; Metelli's constraints on the luminance relations between the direct and filtered portions of the surface specify a range of luminance values that are consistent with transparency. These principles have been used by artists since the time of ancient Egypt. However, artists also discovered that stimuli can be seen as transparent even when these physical constraints are not met. Ancient Greek artists, for example, were able to depict transparent materials in simple black-and-white line drawings. Artists also learned how to represent transparency in cases where neither X-junctions nor Metelli's constraints could apply: for example, where no portions of the objects behind the transparent material extend beyond it. Many painters convincingly portrayed transparency in these cases by depicting the effects the transparent medium would have on material or object properties. Here, we show how artists employed these and other techniques revealing their anticipation of current formalizations of perceived transparency, and we suggest new, as-yet-untested principles. PMID:23145252
Maniyara, Rinu Abraham; Mkhitaryan, Vahagn K.; Chen, Tong Lai; Ghosh, Dhriti Sundar; Pruneri, Valerio
2016-01-01
Transparent conductors are essential in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and solar cells. Here we demonstrate a transparent conductor with optical loss of ∼1.6%, that is, even lower than that of single-layer graphene (2.3%), and transmission higher than 98% over the visible wavelength range. This was possible by an optimized antireflection design consisting in applying Al-doped ZnO and TiO2 layers with precise thicknesses to a highly conductive Ag ultrathin film. The proposed multilayer structure also possesses a low electrical resistance (5.75 Ω sq−1), a figure of merit four times larger than that of indium tin oxide, the most widely used transparent conductor today, and, contrary to it, is mechanically flexible and room temperature deposited. To assess the application potentials, transparent shielding of radiofrequency and microwave interference signals with ∼30 dB attenuation up to 18 GHz was achieved. PMID:27991517
Maniyara, Rinu Abraham; Mkhitaryan, Vahagn K; Chen, Tong Lai; Ghosh, Dhriti Sundar; Pruneri, Valerio
2016-12-19
Transparent conductors are essential in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and solar cells. Here we demonstrate a transparent conductor with optical loss of ∼1.6%, that is, even lower than that of single-layer graphene (2.3%), and transmission higher than 98% over the visible wavelength range. This was possible by an optimized antireflection design consisting in applying Al-doped ZnO and TiO 2 layers with precise thicknesses to a highly conductive Ag ultrathin film. The proposed multilayer structure also possesses a low electrical resistance (5.75 Ω sq -1 ), a figure of merit four times larger than that of indium tin oxide, the most widely used transparent conductor today, and, contrary to it, is mechanically flexible and room temperature deposited. To assess the application potentials, transparent shielding of radiofrequency and microwave interference signals with ∼30 dB attenuation up to 18 GHz was achieved.
NASA Astrophysics Data System (ADS)
Iwano, Keisuke; Yamanoi, Kohei; Iwasa, Yuki; Mori, Kazuyuki; Minami, Yuki; Arita, Ren; Yamanaka, Takuma; Fukuda, Kazuhito; Empizo, Melvin John F.; Takano, Keisuke; Shimizu, Toshihiko; Nakajima, Makoto; Yoshimura, Masashi; Sarukura, Nobuhiko; Norimatsu, Takayoshi; Hangyo, Masanori; Azechi, Hiroshi; Singidas, Bess G.; Sarmago, Roland V.; Oya, Makoto; Ueda, Yoshio
2016-10-01
We investigate the optical transmittances of ion-irradiated sapphire crystals as potential vacuum ultraviolet (VUV) to near-infrared (NIR) window materials of fusion reactors. Under potential conditions in fusion reactors, sapphire crystals are irradiated with hydrogen (H), deuterium (D), and helium (He) ions with 1-keV energy and ˜ 1020-m-2 s-1 flux. Ion irradiation decreases the transmittances from 140 to 260 nm but hardly affects the transmittances from 300 to 1500 nm. H-ion and D-ion irradiation causes optical absorptions near 210 and 260 nm associated with an F-center and an F+-center, respectively. These F-type centers are classified as Schottky defects that can be removed through annealing above 1000 K. In contrast, He-ion irradiation does not cause optical absorptions above 200 nm because He-ions cannot be incorporated in the crystal lattice due to the large ionic radius of He-ions. Moreover, the significant decrease in transmittance of the ion-irradiated sapphire crystals from 140 to 180 nm is related to the light scattering on the crystal surface. Similar to diamond polishing, ion irradiation modifies the crystal surface thereby affecting the optical properties especially at shorter wavelengths. Although the transmittances in the VUV wavelengths decrease after ion irradiation, the transmittances can be improved through annealing above 1000 K. With an optical transmittance in the VUV region that can recover through simple annealing and with a high transparency from the ultraviolet (UV) to the NIR region, sapphire crystals can therefore be used as good optical windows inside modern fusion power reactors in terms of light particle loadings of hydrogen isotopes and helium.
NASA Astrophysics Data System (ADS)
Kappel, David; Arnold, Gabriele; Haus, Rainer; Helbert, Jörn; Smrekar, Suzanne; Hensley, Scott
2016-04-01
Even though Venus is in many respects the most Earth-like planet we know today, its surface composition and geology are not well understood yet. The major obstacle is the extremely dense, hot, and opaque atmosphere that complicates both in situ measurements and infrared remote sensing, the wavelength range of the latter often being the range of choice due to its coverage of many spectral properties diagnostic to the surface material's composition and texture. Thermal emissions of the hot surface depend on surface temperature and on spectral surface emissivity. As this emitted radiation wells upward, it is strongly attenuated through absorption and multiple scattering by the gaseous and particulate components of the dense atmosphere, and it is superimposed by thermal atmospheric emissions. While surface information this way carried to space is completely lost in the scattered sunlight on the dayside, a few narrow atmospheric transparency windows around 1 μm allow the sounding of the surface with nightside measurements. The successfully completed VEX ('Venus Express') mission, although not dedicated to surface science, enabled a first glimpse at much of the southern hemisphere's surface through the nightside spectral transparency windows covered by VIRTIS-M-IR ('Visible and InfraRed Thermal Imaging Spectrometer, Mapping channel in the IR', 1.0-5.1 μm). Two complementary approaches, a fast semi-empiric technique on the one hand, and a more fundamental but resource-intensive method based on a fully regularized Bayesian multi-spectrum retrieval algorithm in combination with a detailed radiative transfer simulation program on the other hand, were both successfully applied to derive surface emissivity data maps. Both methods suffered from lack of spatial coverage and a small SNR as well as from surface topography maps not sufficiently accurate for the definition of suitable boundary conditions for surface emissivity retrieval. The recently proposed VERITAS mission ('Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy') comprises two instruments, VEM ('Venus Emissivity Mapper') and VISAR ('Venus Interferometric Synthetic Aperture Radar'). This mission will yield a vastly improved data basis with respect to both high SNR Venus nightside radiance measurements at all transparency windows around 1 μm as well as topography maps. The new data will enable the derivation of much more complete and reliable global surface emissivity maps that are required to answer fundamental geologic questions. Here, we discuss the selection of the wavelength ranges covered by the spectral filters of VEM as well as improved estimates of expectable emissivity retrieval errors based on this selection. For this purpose, the locations of the relevant spectral transparency windows are studied with detailed line-by-line radiative transfer simulations in dependence on different spectral line databases. Recent work on VIRTIS-M-IR/VEX measurements indicated the presence of interferences due to ever-varying atmospheric parameters that cannot be derived from radiance measurements with limited spectral information content to be a dominant source of surface emissivity retrieval errors. This work is carried over to the configuration of VEM, and the retrieval pipeline is optimized to minimize such errors. A portion of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.
Nanophotonics-enabled smart windows, buildings and wearables
NASA Astrophysics Data System (ADS)
Smith, Geoff; Gentle, Angus; Arnold, Matthew; Cortie, Michael
2016-06-01
Design and production of spectrally smart windows, walls, roofs and fabrics has a long history, which includes early examples of applied nanophotonics. Evolving nanoscience has a special role to play as it provides the means to improve the functionality of these everyday materials. Improvement in the quality of human experience in any location at any time of year is the goal. Energy savings, thermal and visual comfort indoors and outdoors, visual experience, air quality and better health are all made possible by materials, whose "smartness" is aimed at designed responses to environmental energy flows. The spectral and angle of incidence responses of these nanomaterials must thus take account of the spectral and directional aspects of solar energy and of atmospheric thermal radiation plus the visible and color sensitivity of the human eye. The structures required may use resonant absorption, multilayer stacks, optical anisotropy and scattering to achieve their functionality. These structures are, in turn, constructed out of particles, columns, ultrathin layers, voids, wires, pure and doped oxides, metals, polymers or transparent conductors (TCs). The need to cater for wavelengths stretching from 0.3 to 35 μm including ultraviolet-visible, near-infrared (IR) and thermal or Planck radiation, with a spectrally and directionally complex atmosphere, and both being dynamic, means that hierarchical and graded nanostructures often feature. Nature has evolved to deal with the same energy flows, so biomimicry is sometimes a useful guide.
Tough and deformable glasses with bioinspired cross-ply architectures.
Yin, Zhen; Dastjerdi, Ahmad; Barthelat, Francois
2018-05-15
Glasses are optically transparent, hard materials that have been in sustained demand and usage in architectural windows, optical devices, electronics and solar panels. Despite their outstanding optical qualities and durability, their brittleness and low resistance to impact still limits wider applications. Here we present new laminated glass designs that contain toughening cross-ply architectures inspired from fish scales and arthropod cuticles. This seemingly minor enrichment completely transforms the way laminated glass deforms and fractures, and it turns a traditionally brittle material into a stretchy and tough material with little impact on surface hardness and optical quality. Large ply rotation propagates over large volumes, and localization is delayed in tension, even if a strain softening interlayer is used, in a remarkable mechanism which is generated by the kinematics of the plies and geometrical hardening. Compared to traditional laminated glass which degrades significantly in performance when damaged, our cross-ply architecture glass is damage-tolerant and 50 times tougher in energy terms. Despite the outstanding optical qualities and durability of glass, its brittleness and low resistance to impact still limits its wider application. Here we present new laminated glass designs that contain toughening cross-ply architectures inspired from fish scales and arthropod cuticles. Enriching laminated designs with crossplies completely transforms the material deforms and fractures, and turns a traditionally brittle material into a stretchy and tough material - with little impact on surface hardness and optical quality. Large ply rotation propagates over large volumes and localization is delayed in tension because of a remarkable and unexpected geometrical hardening effect. Compared to traditional laminated glass which degrades significantly in performance when damaged, our cross-ply architecture glass is damage-tolerant and it is 50 times tougher in energy terms. Our glass-based, transparent material is highly innovative and it is the first of its kind. We believe it will have impact in broad range of applications in construction, coatings, chemical engineering, electronics, photovoltaics. Copyright © 2018. Published by Elsevier Ltd.
Dielectric Windows with a Flat-Topped Characteristic of Transparency
NASA Astrophysics Data System (ADS)
Shcherbak, V. V.
2013-09-01
The construction of radiotransparent bafflers in a waveguide, with essentially improved matching with the tract is suggested, and optimized in a broad frequency range. This being a strip, diaphragm inside a dielectric layer. Also, on this basis, the efficient, absorber is created.
NASA Astrophysics Data System (ADS)
Bejan, D.; Stan, C.; Niculescu, E. C.
2018-01-01
We theoretically investigated the effects of the impurity position, in-plane electric field, intensity and polarization of the probe and control lasers on the electromagnetically induced transparency (EIT) in GaAs/GaAlAs disc shaped quantum ring. Our study reveals that, depending on the impurity position, the quantum system presents two specific configurations for the EIT occurrence even in the absence of the external electric field, i.e. ladder-configuration or V-configuration, and changes the configuration from ladder to V for specific electric field values. The polarization of the probe and control lasers plays a crucial role in obtaining a good transparency. The electric field controls the red-shift (blue-shift) of the transparency window and modifies its width. The system exhibits birefringence for the probe light in a limited interval of electric field values.
Light engineering for bifacial transparent perovskite solar cells with high performance
NASA Astrophysics Data System (ADS)
Gao, Liguo; Zhao, Erling; Yang, Shuzhang; Wang, Likun; Li, Yanqiang; Zhao, Yingyuan; Ma, Tingli
2017-11-01
Bifacial transparent perovskite solar cells (BTPSCs) were designed to harvest more solar energy and ensure higher efficiency than conventional PSCs. A series of BTPSCs was successfully prepared using transparent ultrathin Au electrodes with different thicknesses. The transmittance and resistance of Au electrodes played a major role in achieving photo-to-electricity conversion efficiency (PCE). Engineering the light-harvesting ability of the fabricated BTPSCs led to the highest PCE of 14.74%. Reflecting-light intensity and illumination angle were further observed to be the key factors affecting PCE. These BTPSCs could be applied on building integration of photovoltaics (PVs), such as semitransparent PV windows or venetian blinds. Another alternative application is to use these BTPSCs as the wings of unmanned aerial vehicles.
Hanh, Nguyen Hong; Jang, Kyungsoo; Yi, Junsin
2016-05-01
We directly deposited amorphous InGaZnO (a-IGZO) nonvolatile memory (NVM) devices with oxynitride-oxide-dioxide (OOO) stack structures on plastic substrate by a DC pulsed magnetron sputtering and inductively coupled plasma chemical vapor deposition (ICPCVD) system, using a low-temperature of 150 degrees C. The fabricated bottom gate a-IGZO NVM devices have a wide memory window with a low operating voltage during programming and erasing, due to an effective control of the gate dielectrics. In addition, after ten years, the memory device retains a memory window of over 73%, with a programming duration of only 1 ms. Moreover, the a-IGZO films show high optical transmittance of over 85%, and good uniformity with a root mean square (RMS) roughness of 0.26 nm. This film is a promising candidate to achieve flexible displays and transparency on plastic substrates because of the possibility of low-temperature deposition, and the high transparent properties of a-IGZO films. These results demonstrate that the a-IGZO NVM devices obtained at low-temperature have a suitable programming and erasing efficiency for data storage under low-voltage conditions, in combination with excellent charge retention characteristics, and thus show great potential application in flexible memory displays.
Development and Evaluation of Micro-Electrocorticography Arrays for Neural Interfacing Applications
NASA Astrophysics Data System (ADS)
Schendel, Amelia Ann
Neural interfaces have great promise for both electrophysiological research and therapeutic applications. Whether for the study of neural circuitry or for neural prosthetic or other therapeutic applications, micro-electrocorticography (micro-ECoG) arrays have proven extremely useful as neural interfacing devices. These devices strike a balance between invasiveness and signal resolution, an important step towards eventual human application. The objective of this research was to make design improvements to micro-ECoG devices to enhance both biocompatibility and device functionality. To best evaluate the effectiveness of these improvements, a cranial window imaging method for in vivo monitoring of the longitudinal tissue response post device implant was developed. Employment of this method provided valuable insight into the way tissue grows around micro-ECoG arrays after epidural implantation, spurring a study of the effects of substrate geometry on the meningeal tissue response. The results of the substrate footprint comparison suggest that a more open substrate geometry provides an easy path for the tissue to grow around to the top side of the device, whereas a solid device substrate encourages the tissue to thicken beneath the device, between the electrode sites and the brain. The formation of thick scar tissue between the recording electrode sites and the neural tissue is disadvantageous for long-term recorded signal quality, and thus future micro-ECoG device designs should incorporate open-architecture substrates for enhanced longitudinal in vivo function. In addition to investigating improvements for long-term device reliability, it was also desired to enhance the functionality of micro-ECoG devices for neural electrophysiology research applications. To achieve this goal, a completely transparent graphene-based device was fabricated for use with the cranial window imaging method and optogenetic techniques. The use of graphene as the conductive material provided the transparency necessary to image tissues directly below the micro-ECoG electrode sites, and to transmit light through the electrode sites to underlying neural tissue, for optical stimulation of neural cells. The flexibility and broad-spectrum transparency of graphene make it an ideal choice for thin-film, flexible electronic devices.
Stress Wave and Damage Propagation in Transparent Laminates at Elevated Temperatures
2010-03-01
materials like Starphire (a registered trademark of PPG Industries, Pittsburgh, PA) soda - lime glass , borosilicate glass , fused silica , and the...in transparent armor materials like Starphire soda - lime glass , borosilicate glass , fused silica , and the transparent ceramic AlON.1 Since...transparent ceramic AlON. Since transparent armor consists of glass laminates with polymer interlayer and backing, the influence of interlayer type and
NASA Astrophysics Data System (ADS)
Roy, Donald W.
1997-11-01
Polycrystalline magnesium aluminum oxide, transparent from 200 nanometers to 6 microns, offers a unique combination of optical and physical properties. A superior dome and window material in respect to rain and particle erosion, solar radiation, high temperatures and humidity; it is resistant to attack by strong acids, sea water, and jet fuels. Although it had been qualified for, and designed into several advanced UV/visible/IR optical systems, production of hot-pressed Spinel was stopped at Alpha Optical Systems in 1993 by the parent company Coors Ceramics. Development efforts on cold-pressed/sinter/HIP Spinel at RCS Technologies are reportedly stalemated at the present time. Therefore, there is no known significant effort directed toward the development of polycrystalline Spinel. however, the author is in contact with both domestic and foreign laboratories which have expressed a desire to develop the technology for transparent Spinel. Renewed development may begin during calendar year 1997. Because of the apparent continuing significant interest in Spinel this paper will review the properties of Spinel and will compare the most significant properties of Spinel with sapphire and aluminum oxynitride. The limitations of competing manufacturing processes, will be mentioned. Grinding and polishing considerations will be reviewed in respect to maximizing optical and structural properties.
Transparent Conveyor of Dielectric Liquids or Particles
NASA Technical Reports Server (NTRS)
Calle, Carlos I.; Mantovani, James G.
2009-01-01
The concept of a transparent conveyor of small loose dielectric parti cles or small amounts of dielectric liquids has emerged as an outgro wth of an effort to develop efficient, reliable means of automated re moval of dust from solar cells and from windows of optical instrumen ts. This concept is based on the previously reported concept of an e lectrodynamic screen, according to which a grid-like electric field is established on and near a surface and is moved along the surface p erpendicularly to the grid lines. The resulting electrodynamic force s on loose dielectric particles or dielectric liquid drops in the vic inity would move the particles or drops along the surface. In the or iginal dust-removal application, dust particles would thus be swept out of the affected window area. Other potential applications may occ ur in nanotechnology -- for example, involving mixing of two or more fluids and/or nanoscale particles under optical illumination and/or optical observation.
Active multiple plasmon-induced transparencies with detuned asymmetric multi-rectangle resonators
NASA Astrophysics Data System (ADS)
Liu, Dongdong; Wang, Jicheng; Lu, Jian
2016-11-01
The phenomenon of plasmon-induced transparency (PIT) is realized in surface plasmon polariton waveguide at the visible and near-infrared ranges. By adding one and two resonant cavities, the PIT peak(s) was (were) achieved due to destructive interference between the side-coupled rectangle cavity and the bus waveguide. The proposed structures were demonstrated by the finite element method. The simulation results showed that for three rectangle resonators system, not only can we manipulate each single PIT window, but also the double PIT windows simultaneously by adjusting one of the geometrical parameters of the system; for four rectangle resonators system, by changing the widths, the lengths and the refractive index of three cavities simultaneously, we would realize treble PIT peaks and induce an off-to-on PIT optical response. Our novel plasmonic structures and the findings pave the way for new design and engineering of highly integrated optical circuit such as nanoscale optical switching, nanosensor and wavelength-selecting nanostructure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.
Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. In this paper, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450–2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminatingmore » reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Finally, ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.« less
NASA Astrophysics Data System (ADS)
Liu, Li-Wei; Gengzang, Duo-Jie; An, Xiu-Jia; Wang, Pei-Yu
2018-03-01
We propose a novel technique of generating multiple optomechanically induced transparency (OMIT) of a weak probe field in hybrid optomechanical system. This system consists of a cigar-shaped Bose–Einstein condensate (BEC), trapped inside each high finesse Fabry-Pérot cavity. In the resolved sideband regime, the analytic solutions of the absorption and the dispersion spectrum are given. The tunneling strength of the two resonators and the coupling parameters of the each BEC in combination with the cavity field have the appearance of three distinct OMIT windows in the absorption spectrum. Furthermore, whether there is BEC in each cavity is a key factor in the number of OMIT windows determination. The technique presented may have potential applications in quantum engineering and quantum information networks. Project supported by the National Natural Science Foundation of China (Grant Nos. 11564034, 11105062, and 21663026) and the Scientific Research Funds of College of Electrical Engineering, Northwest University, China (Grant No. xbmuyjrc201115).
Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.
2017-10-30
Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. In this paper, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450–2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminatingmore » reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Finally, ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.« less
NASA Astrophysics Data System (ADS)
He, Xunjun; Yao, Yuan; Yang, Xingyu; Lu, Guangjun; Yang, Wenlong; Yang, Yuqiang; Wu, Fengmin; Yu, Zhigang; Jiang, Jiuxing
2018-03-01
By patterning two graphene resonators on a SiO2/Si substrate, a dynamically controlled electromagnetically induced transparency (EIT) in the terahertz graphene metamaterial was numerically studied through tuning the structural parameter and Fermi energy of graphene. The calculated surface current distributions demonstrate that the distinct EIT window in the graphene metamaterial results from the near-field coupling of two graphene resonators. Moreover, the EIT window can be actively controlled by tuning Fermi energy combined states of two resonators. When the Fermi energy combined state of two resonators changes from (0.21 and 0.16 eV) to (0.4 and 0.11 eV), the amplitude modulation depth of the EIT peak is 97.8% at 0.45 THz, and the corresponding enhanced factor of group delay with 6 times is obtained. This study offers an alternative tuning method to existing optical, thermal, and relative distance tuning, delivering a promising potential for designing active and miniaturized THz devices.
NASA Astrophysics Data System (ADS)
Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.
2017-10-01
Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. Here, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450-2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminating reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.
Stimuli-responsive cellulose-based nematogels
NASA Astrophysics Data System (ADS)
Liu, Qingkun; Smalyukh, Ivan
Physical properties of composite materials can be pre-engineered by controlling their structure and composition at the mesoscale. Yet, approaches for achieving this are limited and rarely scalable. We introduce a new breed of self-assembled nematogels formed by an orientationally ordered network of thin cellulose nanofibers infiltrated with a thermotropic nematic fluid. The interplay of orientational ordering within the nematic network and that of the small-molecule liquid crystal around it yields a composite with highly tunable optical properties. By means of combining experimental characterization and analytical modeling, we demonstrate sub-milisecond electric switching of transparency and also facile response of the composite to temperature changes and light illumination. Finally, we discuss a host of potential technological uses of these self-assembled nematogel composites, ranging from smart and privacy windows to novel flexible display modes.
Liquid crystalline cellulose-based nematogels
Liu, Qingkun; Smalyukh, Ivan I.
2017-08-18
Physical properties of composite materials can be pre-engineered by controlling their structure and composition at the mesoscale. However, approaches to achieving this are limited and rarely scalable. We introduce a new breed of self-assembled nematogels formed by an orientationally ordered network of thin cellulose nanofibers infiltrated with a thermotropic nematic fluid. The interplay between orientational ordering within the nematic network and that of the small-molecule liquid crystal around it yields a composite with highly tunable optical properties. By means of combining experimental characterization and modeling, we demonstrate submillisecond electric switching of transparency and facile responses of the composite to temperaturemore » changes. Finally, we discuss a host of potential technological uses of these self-assembled nematogel composites, ranging from smart and privacy windows to novel flexible displays.« less
Visualization and Analysis of Impact Damage in Sapphire
2011-11-01
transparent armor materials like Starphire soda - lime and borosilicate glass [8], fused silica [9] and the transparent polycrystalline ceramic AlON...conventional glass -based armor when a transparent ceramic is used as strike face on a glass -polymer laminate [1, 2, 3]. Sapphire, i.e. single crystal aluminum...materials. Since part of transparent armor consists of brittle materials, the fragmentation of the ceramic and glass layers plays a key role in the
Basic materials physics of transparent conducting oxides.
Edwards, P P; Porch, A; Jones, M O; Morgan, D V; Perks, R M
2004-10-07
Materials displaying the remarkable combination of high electrical conductivity and optical transparency already from the basis of many important technological applications, including flat panel displays, solar energy capture and other opto-electronic devices. Here we present the basic materials physics of these important materials centred on the nature of the doping process to generate n-type conductivity in transparent conducting oxides, the associated transition to the metallic (conducting) state and the detailed properties of the degenerate itinerant electron gas. The aim is to fully understand the origins of the basic performance limits of known materials and to set the scene for new or improved materials which will breach those limits for new-generation transparent conducting materials, either oxides, or beyond oxides.
1996-06-18
Scientists at MSFC have been studying the properties of Aerogel for several years. Aerogel, the lightest solid known to man, has displayed a high quality for insulation. Because of its smoky countenance it has yet to be used as an insulation on windows, but has been used to insulate the walls of houses and engine compartments in cars. It was also used in the space program as insulating material on the rover Sojourner, aboard the Mars Pathfinder. MSFC is one of the many research facilities conducting experiments to unlock the smoky properties of aerogel and make it a clear substance. MSFC researchers believe that by taking this research to space, they can resolve the problem of making aerogel transparent enough to see through. So far, recent space experiments have been encouraging. The samples produced in microgravity indicate a change in the microstructure of the material as compared to ground samples. MSFC scientists continue to study the effects of microgravity on Aerogel as their research is space continues.
Planktonic events may cause polymictic-dimictic regime shifts in temperate lakes
Shatwell, Tom; Adrian, Rita; Kirillin, Georgiy
2016-01-01
Water transparency affects the thermal structure of lakes, and within certain lake depth ranges, it can determine whether a lake mixes regularly (polymictic regime) or stratifies continuously (dimictic regime) from spring through summer. Phytoplankton biomass can influence transparency but the effect of its seasonal pattern on stratification is unknown. Therefore we analysed long term field data from two lakes of similar depth, transparency and climate but one polymictic and one dimictic, and simulated a conceptual lake with a hydrodynamic model. Transparency in the study lakes was typically low during spring and summer blooms and high in between during the clear water phase (CWP), caused when zooplankton graze the spring bloom. The effect of variability of transparency on thermal structure was stronger at intermediate transparency and stronger during a critical window in spring when the rate of lake warming is highest. Whereas the spring bloom strengthened stratification in spring, the CWP weakened it in summer. The presence or absence of the CWP influenced stratification duration and under some conditions determined the mixing regime. Therefore seasonal plankton dynamics, including biotic interactions that suppress the CWP, can influence lake temperatures, stratification duration, and potentially also the mixing regime. PMID:27074883
Planktonic events may cause polymictic-dimictic regime shifts in temperate lakes.
Shatwell, Tom; Adrian, Rita; Kirillin, Georgiy
2016-04-14
Water transparency affects the thermal structure of lakes, and within certain lake depth ranges, it can determine whether a lake mixes regularly (polymictic regime) or stratifies continuously (dimictic regime) from spring through summer. Phytoplankton biomass can influence transparency but the effect of its seasonal pattern on stratification is unknown. Therefore we analysed long term field data from two lakes of similar depth, transparency and climate but one polymictic and one dimictic, and simulated a conceptual lake with a hydrodynamic model. Transparency in the study lakes was typically low during spring and summer blooms and high in between during the clear water phase (CWP), caused when zooplankton graze the spring bloom. The effect of variability of transparency on thermal structure was stronger at intermediate transparency and stronger during a critical window in spring when the rate of lake warming is highest. Whereas the spring bloom strengthened stratification in spring, the CWP weakened it in summer. The presence or absence of the CWP influenced stratification duration and under some conditions determined the mixing regime. Therefore seasonal plankton dynamics, including biotic interactions that suppress the CWP, can influence lake temperatures, stratification duration, and potentially also the mixing regime.
Jeon, Il; Delacou, Clement; Kaskela, Antti; Kauppinen, Esko I.; Maruyama, Shigeo; Matsuo, Yutaka
2016-01-01
Organic solar cells are flexible and inexpensive, and expected to have a wide range of applications. Many transparent organic solar cells have been reported and their success hinges on full transparency and high power conversion efficiency. Recently, carbon nanotubes and graphene, which meet these criteria, have been used in transparent conductive electrodes. However, their use in top electrodes has been limited by mechanical difficulties in fabrication and doping. Here, expensive metal top electrodes were replaced with high-performance, easy-to-transfer, aerosol-synthesized carbon nanotubes to produce transparent organic solar cells. The carbon nanotubes were p-doped by two new methods: HNO3 doping via ‘sandwich transfer’, and MoOx thermal doping via ‘bridge transfer’. Although both of the doping methods improved the performance of the carbon nanotubes and the photovoltaic performance of devices, sandwich transfer, which gave a 4.1% power conversion efficiency, was slightly more effective than bridge transfer, which produced a power conversion efficiency of 3.4%. Applying a thinner carbon nanotube film with 90% transparency decreased the efficiency to 3.7%, which was still high. Overall, the transparent solar cells had an efficiency of around 50% that of non-transparent metal-based solar cells (7.8%). PMID:27527565
Jeon, Il; Delacou, Clement; Kaskela, Antti; Kauppinen, Esko I; Maruyama, Shigeo; Matsuo, Yutaka
2016-08-16
Organic solar cells are flexible and inexpensive, and expected to have a wide range of applications. Many transparent organic solar cells have been reported and their success hinges on full transparency and high power conversion efficiency. Recently, carbon nanotubes and graphene, which meet these criteria, have been used in transparent conductive electrodes. However, their use in top electrodes has been limited by mechanical difficulties in fabrication and doping. Here, expensive metal top electrodes were replaced with high-performance, easy-to-transfer, aerosol-synthesized carbon nanotubes to produce transparent organic solar cells. The carbon nanotubes were p-doped by two new methods: HNO3 doping via 'sandwich transfer', and MoOx thermal doping via 'bridge transfer'. Although both of the doping methods improved the performance of the carbon nanotubes and the photovoltaic performance of devices, sandwich transfer, which gave a 4.1% power conversion efficiency, was slightly more effective than bridge transfer, which produced a power conversion efficiency of 3.4%. Applying a thinner carbon nanotube film with 90% transparency decreased the efficiency to 3.7%, which was still high. Overall, the transparent solar cells had an efficiency of around 50% that of non-transparent metal-based solar cells (7.8%).
42 CFR 84.130 - Supplied-air respirators; description.
Code of Federal Regulations, 2010 CFR
2010-10-01
... material to protect the window(s) of facepieces, hoods, and helmets which do not unduly interfere with the wearer's vision and permit easy access to the external surface of such window(s) for cleaning. (c) Type..., glass, woven wire, sheet metal, or other suitable material to protect the window(s) of facepieces, hoods...
Martin, Samuel; Bhushan, Bharat
2017-02-15
Superoleophobic surfaces that exhibit self-cleaning, antifouling, low-drag, and anti-smudge properties with high transparency are of interest in industrial applications including optical devices, solar panels, and self-cleaning windows. In many superoleophobic surfaces created to date, the lack of mechanical durability has been an issue. In this work, for the first time, transparent, wear-resistant, superhydrophobic and superoleophobic surfaces were developed for polydimethylsiloxane (PDMS) using a simple and scalable fabrication technique. PDMS is of importance in biomedical applications as it is biocompatible, chemically stable, and transparent. PDMS was made superhydrophobic either through micropatterning or an applied coating of hydrophobic SiO 2 nanoparticles with a binder of methylphenyl silicone resin. Through the addition of fluorination via fluorosilane, the nanoparticle/binder coating was made superoleophobic. Intermediate steps using ultraviolet-ozone treatment were required for improved deposition and adhesion of the coatings. The effects of surface treatments were examined through contact angle and tilt angle measurements. The coating was found to have re-entrant geometries desirable for superoleophobicity and to exhibit mechanical wear resistance and transparent properties. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Petronijevic, Emilija; Sibilia, Concita
2017-05-01
Electromagnetically induced transparency (EIT), a pump-induced narrow transparency window within the absorption region of a probe, had offered new perspectives in slow-light control in atomic physics. For applications in nanophotonics, the implementation on chip-scaled devices has later been obtained by mimicking this effect by metallic metamaterials. High losses in visible and near infrared range of metal-based metamaterialls have recently opened a new field of all-dielectric metamaterials; a proper configuration of high refractive index dielectric nanoresonators can mimick this effect without losses to get high Q, slow-light response. The next step would be the ability to tune their optical response, and in this work we investigate thin layers of phase change materials (PCM) for all-optical control of EIT-like all-dielectric metamaterials. PCM can be nonvolatively and reversibly switched between two stable phases that differ in optical properties by applying a visible laser pulse. The device is based on Si nanoresonators covered by a thin layer of PCM GeTe; optical and transient thermal simulations have been done to find and optimize the fabrication parameters and switching parameters such as the intensity and duration of the pulse. We have found that the EIT-like response can be switched on and off by applying the 532nm laser pulse to change the phase of the upper GeTe layer. We strongly believe that such approach could open new perspectives in all-optically controlled slow-light metamaterials.
Design and Applications of a Climatic Chamber for in-situ Neutron Imaging Experiments
NASA Astrophysics Data System (ADS)
Mannes, David; Schmid, Florian; Wehmann, Timon; Lehmann, Eberhard
Due to the high sensitivity for hydrogen, the detection and quantification of moisture and moisture transport processes are some of the key topics in neutron imaging. Especially when dealing with hygroscopic material, such as wood and other porous media, it is crucial for quantitative analyses to know and control the ambient conditions of the sample precisely. In this work, a neutron transparent climatic chamber is presented, which was designed and built for the imaging facilities at the Paul Scherrer Institut (PSI), Villigen (CH). The air-conditioned measuring system consists of the actual sample chamber and a moisture generator providing air with adjustable temperature and relative humidity (%RH) (up to a dew point temperature of 70 °C). The two components are connected with a flexible tube, which features insulation, a heating system and temperature sensors to prevent condensation within the tube. The sample chamber itself is equipped with neutron transparent windows, insulating double walls with three feed-through openings for the rotation stage, sensors for humidity and temperature. Thermoelectric modules allow to control the chamber temperature in the range of -20 °C to 100 °C. The chamber allows to control the climatic conditions either in a static mode (stable temperature and %RH) or in dynamic mode (humidity or temperature cycles). The envisaged areas of application are neutron radiography and tomography investigations of dynamic processes in building materials (e.g. wood, concrete), food science and any other application necessitating the control of the climatic conditions.
A novel emissive projection display (EPD) on transparent phosphor screen
NASA Astrophysics Data System (ADS)
Cheng, Botao; Sun, Leonard; Yu, Ge; Sun, Ted X.
2017-03-01
A new paradigm of digital projection is on the horizon, based on innovative emissive screen that are made fully transparent. It can be readily applied and convert any surface to a high image quality emissive digital display, without affecting the surface appearance. For example, it can convert any glass window or windshield to completely see-through display, with unlimited field of view and viewing angles. It also enables a scalable and economic projection display on a pitch-black emissive screen with black level and image contrast that rivals other emissive displays such as plasma display or OLED.
NASA Astrophysics Data System (ADS)
Ziauddin; Rahman, Mujeeb ur; Ahmad, Iftikhar; Qamar, Sajid
2017-10-01
The transmission characteristics of probe light field is investigated theoretically in a compound system of two coupled resonators. The proposed system consisted of two high-Q Fabry-Perot resonators in which one of the resonators is optomechanical. Optomechanically induced transparency (OMIT), having relatively large window, is noticed via strong coupling between the two resonators. We investigate tunable switching from single to double OMIT by increasing amplitude of the pump field. We notice that, control of slow and fast light can be obtained via the coupling strength between the two resonators.
Submillimeter Atmospheric Transparency at Maunakea, at the South Pole, and at Chajnantor
NASA Astrophysics Data System (ADS)
Radford, Simon J. E.; Peterson, Jeffery B.
2016-07-01
For a systematic assessment of submillimeter observing conditions at different sites, we constructed tipping radiometers to measure the broad band atmospheric transparency in the window around 350 μm wavelength. The tippers were deployed on Maunakea, Hawaii, at the South Pole, and in the vicinity of Cerro Chajnantor in northern Chile. Identical instruments permit direct comparison of these sites. Observing conditions at the South Pole and in the Chajnantor area are better than on Maunakea. Simultaneous measurements with two tippers demonstrate conditions at the summit of Cerro Chajnantor are significantly better than on the Chajnantor plateau.
Conformal, Transparent Printed Antenna Developed for Communication and Navigation Systems
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Simons, Rainee N.
1999-01-01
Conformal, transparent printed antennas have advantages over conventional antennas in terms of space reuse and aesthetics. Because of their compactness and thin profile, these antennas can be mounted on video displays for efficient integration in communication systems such as palmtop computers, digital telephones, and flat-panel television displays. As an array of multiple elements, the antenna subsystem may save weight by reusing space (via vertical stacking) on photovoltaic arrays or on Earth-facing sensors. Also, the antenna could go unnoticed on automobile windshields or building windows, enabling satellite uplinks and downlinks or other emerging high-frequency communications.
ToF-SIMS characterization of robust window material for use in diode pumped alkali lasers
NASA Astrophysics Data System (ADS)
Fletcher, Aaron; Turner, David; Fairchild, Steven; Rice, Christopher; Pitz, Gregory
2018-03-01
Developments in diode pumped alkali laser (DPAL) systems have been impeded because of the catastrophic failure of laser windows. The window's failure is caused by localized laser-induced heating of window material. This heating is believed to occur due to increases in absorption on or near the surface of the window. This increase is believed to be caused by either adsorption of carbon-based soot from the collisional gas or by the diffusion of rubidium into the bulk material. The work presented here will focus on the diffusion of Rb into the bulk window materials and will strive to identify a superior material to use as windows. The results of this research indicate that aluminum oxynitride (ALON), sapphire, MgAl2O4 (spinel), and ZrO2 are resistant to alkali-induced changes in optical properties.
Jin, Huanyu; Qian, Jiasheng; Zhou, Limin; Yuan, Jikang; Huang, Haitao; Wang, Yu; Tang, Wing Man; Chan, Helen Lai Wa
2016-04-13
We introduce a simple and effective method to deposit a highly uniform and semitransparent MnO2 film without coffee-ring effect (CRE) by adding ethanol into MnO2 ink for transparent capacitive energy storage devices. By carefully controlling the amount of ethanol added in the MnO2 droplet, we could significantly reduce the CRE and thus improve the film uniformity. The electrochemical properties of supercapacitor (SC) devices using semitransparent MnO2 film electrodes with or without CRE were measured and compared. The SC device without CRE shows a superior capacitance, high rate capability, and lower contact resistance. The CRE-free device could achieve a considerable volumetric capacitance of 112.2 F cm(-3), resulting in a high volumetric energy density and power density of 10 mWh cm(-3) and 8.6 W cm(-3), respectively. For practical consideration, both flexible SC and large-area rigid SC devices were fabricated to demonstrate their potential for flexible transparent electronic application and capacitive energy-storage window application. Moreover, a solar-powered energy storage window which consists of a commercial solar cell and our studied semitransparent MnO2-film-based SCs was assembled. These SCs could be charged by the solar cell and light up a light emitting diode (LED), demonstrating their potential for self-powered systems and energy-efficient buildings.
Influence of Shading on Cooling Energy Demand
NASA Astrophysics Data System (ADS)
Rabczak, Sławomir; Bukowska, Maria; Proszak-Miąsik, Danuta; Nowak, Krzysztof
2017-10-01
The article presents an analysis of the building cooling load taking into account the variability of the factors affecting the size of the heat gains. In order to minimize the demand for cooling, the effect of shading elements installed on the outside on the windows and its effect on size of the cooling capacity of air conditioning system for the building has been estimated. Multivariate building cooling load calculations to determine the size of the reduction in cooling demand has derived. Determination of heat gain from the sun is laborious, but gives a result which reflects the influence of the surface transparent partitions, devices used as sunscreen and its location on the building envelope in relation to the world, as well as to the internal heat gains has great attention in obtained calculation. In this study, included in the balance sheet of solar heat gains are defined in three different shading of windows. Calculating the total demand cooling is made for variants assuming 0% shading baffles transparent, 50% shading baffles transparent external shutters at an angle of 45 °, 100% shading baffles transparent hours 12 from the N and E and from 12 from the S and W of the outer slat blinds. The calculation of the average hourly cooling load was taken into account the option assuming the hypothetical possibility of default by up to 10% of the time assumed the cooling season temperatures in the rooms. To reduce the consumption of electricity energy in the cooling system of the smallest variant identified the need for the power supply for the operation of the cooling system. Also assessed the financial benefits of the temporary default of comfort.
30 CFR 18.30 - Windows and lenses.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Windows and lenses. 18.30 Section 18.30 Mineral... § 18.30 Windows and lenses. (a) MSHA may waive testing of materials for windows or lenses except headlight lenses. When tested, material for windows or lenses shall meet the test requirements prescribed in...
Transparent and Flexible Large-scale Graphene-based Heater
NASA Astrophysics Data System (ADS)
Kang, Junmo; Lee, Changgu; Kim, Young-Jin; Choi, Jae-Boong; Hong, Byung Hee
2011-03-01
We report the application of transparent and flexible heater with high optical transmittance and low sheet resistance using graphene films, showing outstanding thermal and electrical properties. The large-scale graphene films were grown on Cu foil by chemical vapor deposition methods, and transferred to transparent substrates by multiple stacking. The wet chemical doping process enhanced the electrical properties, showing a sheet resistance as low as 35 ohm/sq with 88.5 % transmittance. The temperature response usually depends on the dimension and the sheet resistance of the graphene-based heater. We show that a 4x4 cm2 heater can reach 80& circ; C within 40 seconds and large-scale (9x9 cm2) heater shows uniformly heating performance, which was measured using thermocouple and infra-red camera. These heaters would be very useful for defogging systems and smart windows.
Polarization-independent transparent effect in windmill-like metasurface
NASA Astrophysics Data System (ADS)
Zhu, Lei; Dong, Liang; Guo, Jing; Meng, Fan Yi; He, Xun Jun; Hao Wu, Tian
2018-07-01
A windmill-like metasurface featuring a polarization-independent electromagnetically induced transparency (EIT) at microwave frequencies is numerically and experimentally demonstrated. The unit cell of the metasurface consists of four rotated identical metal wires, with a 45° angle between the adjacent wires. Destructive coupling between the resonance modes of the metal wires results in the emergence of a transparent window. By combining the metal wires with different degrees of symmetry, EIT effects in the metasurface show polarization-independent properties to incident linear and circular polarization waves. In addition, it is numerically demonstrated that the metasurface possesses a low-loss slow wave property with a group index of 125 and sensing capability based on the refractive index with a figure of merit of 8.73. Such a scheme may lead to many potential applications in areas of slow light and sensing.
16 CFR 1201.40 - Interpretation concerning bathtub and shower doors and enclosures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... materials in a window that is located over a bathtub or within a shower stall and in the exterior wall of a...” contain no specific exemption for glazing materials in such windows. If read literally, the Standard could include glazing materials in an exterior wall window located above a bathtub because that window could be...
Exploratory Development of Transparent Conductor Materials
1975-03-01
silicon c,:ll) or b&%ckwa.U (CdS cells ) electrodes. ’Nn oxide and indium oxide are currently the best known transparent condudwtor materials and they are...From an investigation of its fundamental physical properties it was concluded that cadmium stannate is a viable candidate for transparent solar cell ...transparent backwall electrodes in CdS solar cells . A further objective has been the utilization of the high infrared reflectivity of cadmium
Vohra, Akhil; Carmichael, R Stephen; Carmichael, Tricia Breen
2016-10-11
Transparent butyl rubber is a new elastomer that has the potential to revolutionize stretchable electronics due to its intrinsically low gas permeability. Encapsulating organic electronic materials and devices with transparent butyl rubber protects them from problematic degradation due to oxygen and moisture, preventing premature device failure and enabling the fabrication of stretchable organic electronic devices with practical lifetimes. Here, we report a methodology to alter the surface chemistry of transparent butyl rubber to advance this material from acting as a simple device encapsulant to functioning as a substrate primed for direct device fabrication on its surface. We demonstrate a combination of plasma and chemical treatment to deposit a hydrophilic silicate layer on the transparent butyl rubber surface to create a new layered composite that combines Si-OH surface chemistry with the favorable gas-barrier properties of bulk transparent butyl rubber. We demonstrate that these surface Si-OH groups react with organosilanes to form self-assembled monolayers necessary for the deposition of electronic materials, and furthermore demonstrate the fabrication of stretchable gold wires using nanotransfer printing of gold films onto transparent butyl rubber modified with a thiol-terminated self-assembled monolayer. The surface modification of transparent butyl rubber establishes this material as an important new elastomer for stretchable electronics and opens the way to robust, stretchable devices.
Rainbow holography and its applications
NASA Astrophysics Data System (ADS)
Vlasov, N. G.; Ivanov, Vladimir S.
1993-09-01
The general equations of the rainbow holography are deduced. Their analysis makes it possible to offer different methods of the rainbow holographic images production. A new way of using the rainbow holograms as optical elements for effective color illuminating of transparent, specular, and polished objects is proposed. Application fields are the advertising industry, shop windows design, etc.
Fabrication of Fire Resistant Transparencies
1976-04-01
with Ram Chemical Co. 87X76 mold release followed by Simoniz or carnauba wax . The fixtures used to make the 737 windows were 18x22 in. The plates were...covered with a sprayed PVA parting film and/ or silicone release agent and wax . Only partial success Was obtained, since the optical surface was poor
Energy Efficient Window Coatings that Please the Eye - Continuum Magazine
voltage polarity reverses the lithium-ion flow, decreasing the glass tint and allowing more light to be transparent contact layers bookending a counterelectrode layer, ion-conducting layer, and electrochromic layer . Low voltage applied across the stacked layers causes lithium ions to migrate out of the
Complete wavelength mismatching effect in a Doppler broadened Y-type six-level EIT atomic medium
NASA Astrophysics Data System (ADS)
Bharti, Vineet; Wasan, Ajay
We present a theoretical study of the Doppler broadened Y-type six-level atomic system, using a density matrix approach, to investigate the effect of varying control field wavelengths and closely spaced hyperfine levels in the 5P state of 87Rb. The closely spaced hyperfine levels in our six-level system affect the optical properties of Y-type system and cause asymmetry in absorption profiles. Depending upon the choices of π-probe, σ+-control and σ--control fields transitions, we consider three regimes: (i) perfect wavelength matching regime (λp=λ=λ), (ii) partial wavelength mismatching regime (λp≠λ=λ), and (iii) complete wavelength mismatching regime (λp≠λ≠λ). The complete wavelength mismatching regime is further distinguished into two situations, i.e., λ<λ and λ>λ. We have shown that in the room temperature atomic vapor, the asymmetric transparency window gets broadened in the partial wavelength mismatching regime as compared to the perfect wavelength matching regime. This broad transparency window also splits at the line center in the complete wavelength mismatching regime.
Visible-light-induced instability in amorphous metal-oxide based TFTs for transparent electronics
NASA Astrophysics Data System (ADS)
Ha, Tae-Jun
2014-10-01
We investigate the origin of visible-light-induced instability in amorphous metal-oxide based thin film transistors (oxide-TFTs) for transparent electronics by exploring the shift in threshold voltage (Vth). A large hysteresis window in amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs possessing large optical band-gap (≈3 eV) was observed in a visible-light illuminated condition whereas no hysteresis window was shown in a dark measuring condition. We also report the instability caused by photo irradiation and prolonged gate bias stress in oxide-TFTs. Larger Vth shift was observed after photo-induced stress combined with a negative gate bias than the sum of that after only illumination stress and only negative gate bias stress. Such results can be explained by trapped charges at the interface of semiconductor/dielectric and/or in the gate dielectric which play a role in a screen effect on the electric field applied by gate voltage, for which we propose that the localized-states-assisted transitions by visible-light absorption can be responsible.
NASA Astrophysics Data System (ADS)
Nikitin, A. V.; Daumont, L.; Thomas, X.; Régalia, L.; Rey, M.; Tyuterev, Vl. G.; Brown, L. R.
2011-07-01
New measurements and assignments for the rovibrational transitions of the hot band 2 v3- v4 of 12CH 4 are reported from 4600 to 4880 cm -1 and refer to lower part of the 2 μm methane transparency window. Three long-path spectra were recorded with a Fourier transform spectrometer (FTS) in Reims using an L = 1603 m absorption path length at 1, 7, 34 h Pa for the natural samples of CH 4; a spectrum of enriched 13CH 4 was also used. Assignments were made for 196 lines of 2 v3(F 2,E)- v4. These transitions had an integrated intensity of 5 × 10 -24 cm/molecule at 296 K and improved the overall description of absorption in the 2.1 μm region. The empirical upper state levels of these assignments belong to Tetradecad (4800-6200 cm -1). The new analysis provided much better accuracies of badly blended positions of 2 v3(F 2)-ground state manifolds at 1.66 μm.
Study of the effect of ZnO film on some properties of clear and color window glass
NASA Astrophysics Data System (ADS)
Hamead, Alaa A. Abdul; Ahmed, Sura S.; Khdheer, Mena F.
2018-05-01
In the current research, a samples of transparent color and colorless window glass were prepared, (includes metal transition oxides) for construction applications. A nano-film layer of zinc oxide ZnO was deposited by spray pyrolysis technique for use in sustainability applications prepared. Structural properties (x-ray diffraction XRD, scanning electron microscopy SEM and atomic force microscopy AFM), and thermal properties, as well as optical properties and the effect of weathering conditions on applied film on clear and colored glass were examined. The results showed that the deposition film had a thickness of less than 90nm and that it was crystallized with high optical transparently, that was not significantly affected after deposited the ZnO nano film. While thermal insulation decreased significantly after deposition, and the effect of the weather conditions was very low as the ZnO coating was not affected, as the thermal insulation did not change after exposure to accelerated air conditions. Make it suitable in glass applications for buildings in vertical construction.
Secchi disk observation with spectral-selective glasses in blue and green waters.
Lee, Zhongping; Shang, Shaoling; Lin, Gong; Liu, Tongtong; Liu, Yangyang; Du, Keping; Luis, Kelly
2017-08-21
Radiative transfer modeling of Secchi disk observations has historically been based on conjugated signals of eye response and radiance, where water's attenuation in the entire visible band is included in the attenuation when deciding the Secchi disk depth in water. Aas et al. [Ocean Sci.10(2), 177 (2014)Remote Sens. Environ.169, 139 (2015)] hypothesized that it is actually the attenuation in water's transparent window that matters to the observation of a Secchi disk in water. To test this hypothesis, observations of Secchi disks in blue and green waters were conducted via naked eyes, blue-pass glasses, and green-pass glasses. Measurement results indicate that for blue waters, the observed Secchi depths via naked eyes match the depths obtained with blue-pass glasses and much deeper than the depths with green-pass glasses, although the green-pass glasses match the highest response of human eyes. These observations experimentally support the hypothesis that our eye-brain system uses the contrast information in the transparent window to make a judgement decision regarding sighting a Secchi disk in water.
Perovskite Photovoltachromic Supercapacitor with All-Transparent Electrodes.
Zhou, Feichi; Ren, Zhiwei; Zhao, Yuda; Shen, Xinpeng; Wang, Aiwu; Li, Yang Yang; Surya, Charles; Chai, Yang
2016-06-28
Photovoltachromic cells (PVCCs) are of great interest for the self-powered smart windows of architectures and vehicles, which require widely tunable transmittance and automatic color change under photostimuli. Organolead halide perovskite possesses high light absorption coefficient and enables thin and semitransparent photovoltaic device. In this work, we demonstrate co-anode and co-cathode photovoltachromic supercapacitors (PVCSs) by vertically integrating a perovskite solar cell (PSC) with MoO3/Au/MoO3 transparent electrode and electrochromic supercapacitor. The PVCSs provide a seamless integration of energy harvesting/storage device, automatic and wide color tunability, and enhanced photostability of PSCs. Compared with conventional PVCC, the counter electrodes of our PVCSs provide sufficient balancing charge, eliminate the necessity of reverse bias voltage for bleaching the device, and realize reasonable in situ energy storage. The color states of PVCSs not only indicate the amount of energy stored and energy consumed in real time, but also enhance the photostability of photovoltaic component by preventing its long-time photoexposure under fully charged state of PVCSs. This work designs PVCS devices for multifunctional smart window applications commonly made of glass.
Ultrathin Fluidic Laminates for Large‐Area Façade Integration and Smart Windows
Heiz, Benjamin P. V.; Pan, Zhiwen; Lautenschläger, Gerhard; Sirtl, Christin; Kraus, Matthias
2016-01-01
Buildings represent more than 40% of Europe's energy demands and about one third of its CO2 emissions. Energy efficient buildings and, in particular, building skins have therefore been among the key priorities of international research agendas. Here, glass–glass fluidic devices are presented for large‐area integration with adaptive façades and smart windows. These devices enable harnessing and dedicated control of various liquids for added functionality in the building envelope. Combining a microstructured glass pane, a thin cover sheet with tailored mechanical performance, and a liquid for heat storage and transport, a flat‐panel laminate is generated with thickness adapted to a single glass sheet in conventional windows. Such multimaterial devices can be integrated with state‐of‐the‐art window glazings or façades to harvest and distribute thermal as well as solar energy by wrapping buildings into a fluidic layer. High visual transparency is achieved through adjusting the optical properties of the employed liquid. Also secondary functionality, such as chromatic windows, polychromatism, or adaptive energy uptake can be generated on part of the liquid. PMID:28331790
Yang, Peihua; Sun, Peng; Chai, Zhisheng; Huang, Langhuan; Cai, Xiang; Tan, Shaozao; Song, Jinhui; Mai, Wenjie
2014-10-27
Multifunctional glass windows that combine energy storage and electrochromism have been obtained by facile thermal evaporation and electrodeposition methods. For example, WO3 films that had been deposited on fluorine-doped tin oxide (FTO) glass exhibited a high specific capacitance of 639.8 F g(-1). Their color changed from transparent to deep blue with an abrupt decrease in optical transmittance from 91.3% to 15.1% at a wavelength of 633 nm when a voltage of -0.6 V (vs. Ag/AgCl) was applied, demonstrating its excellent energy-storage and electrochromism properties. As a second example, a polyaniline-based pseudocapacitive glass was also developed, and its color can change from green to blue. A large-scale pseudocapacitive WO3-based glass window (15×15 cm(2)) was fabricated as a prototype. Such smart pseudocapacitive glass windows show great potential in functioning as electrochromic windows and concurrently powering electronic devices, such as mobile phones or laptops. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultrathin Fluidic Laminates for Large-Area Façade Integration and Smart Windows.
Heiz, Benjamin P V; Pan, Zhiwen; Lautenschläger, Gerhard; Sirtl, Christin; Kraus, Matthias; Wondraczek, Lothar
2017-03-01
Buildings represent more than 40% of Europe's energy demands and about one third of its CO 2 emissions. Energy efficient buildings and, in particular, building skins have therefore been among the key priorities of international research agendas. Here, glass-glass fluidic devices are presented for large-area integration with adaptive façades and smart windows. These devices enable harnessing and dedicated control of various liquids for added functionality in the building envelope. Combining a microstructured glass pane, a thin cover sheet with tailored mechanical performance, and a liquid for heat storage and transport, a flat-panel laminate is generated with thickness adapted to a single glass sheet in conventional windows. Such multimaterial devices can be integrated with state-of-the-art window glazings or façades to harvest and distribute thermal as well as solar energy by wrapping buildings into a fluidic layer. High visual transparency is achieved through adjusting the optical properties of the employed liquid. Also secondary functionality, such as chromatic windows, polychromatism, or adaptive energy uptake can be generated on part of the liquid.
Xie, Shuyao; Li, Teng; Xu, Zijie; Wang, Yanan; Liu, Xiangyang; Guo, Wenxi
2018-04-05
Transparent heaters are widely used in technologies such as window defrosting/defogging, displays, gas sensing, and medical equipment. Apart from mechanical robustness and electrical and optical reliabilities, outstanding chemical stability is also critical to the application of transparent heaters. In this regard, we first present a highly flexible and large-area CuS transparent heater fabricated by a colloidal crackle pattern method with an optimized sheet resistance (Rs) as low as 21.5 Ω sq-1 at a ∼80% transmittance. The CuS transparent heater exhibits remarkable mechanical robustness during bending tests as well as high chemical stability against acid and alkali environments. In the application as a transparent heater, the CuS heater demonstrates a high thermal resistance of 197 °C W-1 cm2 with a fast switching time (<30 s), requiring low input voltages (<4.5 V) to achieve uniform temperatures of ∼110 °C across large areas. The temperature of the wearable CuS heater, which is stuck on the skin, can be real-time controlled through a Bluetooth device in a cell phone wirelessly. Based on the wireless control system, we demonstrated an application of the CuS heater in snow removal for solar panels. These CuS network TCEs with high flexibility, transparency, conductivity, and chemical stability could be widely used in wearable electronic products.
Self bleaching photoelectrochemical-electrochromic device
Bechinger, Clemens S.; Gregg, Brian A.
2002-04-09
A photoelectrochemical-electrochromic device comprising a first transparent electrode and a second transparent electrode in parallel, spaced relation to each other. The first transparent electrode is electrically connected to the second transparent electrode. An electrochromic material is applied to the first transparent electrode and a nanoporous semiconductor film having a dye adsorbed therein is applied to the second transparent electrode. An electrolyte layer contacts the electrochromic material and the nanoporous semiconductor film. The electrolyte layer has a redox couple whereby upon application of light, the nanoporous semiconductor layer dye absorbs the light and the redox couple oxidizes producing an electric field across the device modulating the effective light transmittance through the device.
NASA Astrophysics Data System (ADS)
Fraizier, E.; Antoine, P.; Godefroit, J.-L.; Lanier, G.; Roy, G.; Voltz, C.
Lithium fluoride (LiF) windows are extensively used in traditional shock wave experiments because of their transparency beyond 100 GPa along [100] axis. A correct knowledge of the optical and mechanical properties of these windows is essential in order to analyze the experimental data and to determine the equation of state on a large variety of metals. This in mind, the windows supply is systematically characterized in order to determine the density, the thermal expansion and the crystalline orientation. Furthermore, an experimental campaign is conducted in order to characterize the windows properties under shock loading at 300 K and preheated conditions (450 K). This article describes the experiments, details the analysis and presents the results. Particle velocity measurements are carried out at the interface of a multiple windows stack using interferometer diagnostic (VISAR and IDL) at 532 nm wavelength. Shock velocity is calculated as a function of the time of flight through each window. The optical correction is calculated as the ratio of the apparent velocity gap and the particle velocity at the free surface. To go further, the Rankine-Hugoniot relations are applied to calculate the pressure and the density. Then, the results and uncertainties are presented and compared with literature data.
Electric-field control of tri-state phase transformation with a selective dual-ion switch
NASA Astrophysics Data System (ADS)
Lu, Nianpeng; Zhang, Pengfei; Zhang, Qinghua; Qiao, Ruimin; He, Qing; Li, Hao-Bo; Wang, Yujia; Guo, Jingwen; Zhang, Ding; Duan, Zheng; Li, Zhuolu; Wang, Meng; Yang, Shuzhen; Yan, Mingzhe; Arenholz, Elke; Zhou, Shuyun; Yang, Wanli; Gu, Lin; Nan, Ce-Wen; Wu, Jian; Tokura, Yoshinori; Yu, Pu
2017-06-01
Materials can be transformed from one crystalline phase to another by using an electric field to control ion transfer, in a process that can be harnessed in applications such as batteries, smart windows and fuel cells. Increasing the number of transferrable ion species and of accessible crystalline phases could in principle greatly enrich material functionality. However, studies have so far focused mainly on the evolution and control of single ionic species (for example, oxygen, hydrogen or lithium ions). Here we describe the reversible and non-volatile electric-field control of dual-ion (oxygen and hydrogen) phase transformations, with associated electrochromic and magnetoelectric effects. We show that controlling the insertion and extraction of oxygen and hydrogen ions independently of each other can direct reversible phase transformations among three different material phases: the perovskite SrCoO3-δ (ref. 12), the brownmillerite SrCoO2.5 (ref. 13), and a hitherto-unexplored phase, HSrCoO2.5. By analysing the distinct optical absorption properties of these phases, we demonstrate selective manipulation of spectral transparency in the visible-light and infrared regions, revealing a dual-band electrochromic effect that could see application in smart windows. Moreover, the starkly different magnetic and electric properties of the three phases—HSrCoO2.5 is a weakly ferromagnetic insulator, SrCoO3-δ is a ferromagnetic metal, and SrCoO2.5 is an antiferromagnetic insulator—enable an unusual form of magnetoelectric coupling, allowing electric-field control of three different magnetic ground states. These findings open up opportunities for the electric-field control of multistate phase transformations with rich functionalities.
Yang, C.; Souchay, D.; Kneiß, M.; Bogner, M.; Wei, H. M.; Lorenz, M.; Oeckler, O.; Benstetter, G.; Fu, Y. Q.; Grundmann, M.
2017-01-01
Thermoelectric devices that are flexible and optically transparent hold unique promise for future electronics. However, development of invisible thermoelectric elements is hindered by the lack of p-type transparent thermoelectric materials. Here we present the superior room-temperature thermoelectric performance of p-type transparent copper iodide (CuI) thin films. Large Seebeck coefficients and power factors of the obtained CuI thin films are analysed based on a single-band model. The low-thermal conductivity of the CuI films is attributed to a combined effect of the heavy element iodine and strong phonon scattering. Accordingly, we achieve a large thermoelectric figure of merit of ZT=0.21 at 300 K for the CuI films, which is three orders of magnitude higher compared with state-of-the-art p-type transparent materials. A transparent and flexible CuI-based thermoelectric element is demonstrated. Our findings open a path for multifunctional technologies combing transparent electronics, flexible electronics and thermoelectricity. PMID:28681842
Yang, C; Souchay, D; Kneiß, M; Bogner, M; Wei, H M; Lorenz, M; Oeckler, O; Benstetter, G; Fu, Y Q; Grundmann, M
2017-07-06
Thermoelectric devices that are flexible and optically transparent hold unique promise for future electronics. However, development of invisible thermoelectric elements is hindered by the lack of p-type transparent thermoelectric materials. Here we present the superior room-temperature thermoelectric performance of p-type transparent copper iodide (CuI) thin films. Large Seebeck coefficients and power factors of the obtained CuI thin films are analysed based on a single-band model. The low-thermal conductivity of the CuI films is attributed to a combined effect of the heavy element iodine and strong phonon scattering. Accordingly, we achieve a large thermoelectric figure of merit of ZT=0.21 at 300 K for the CuI films, which is three orders of magnitude higher compared with state-of-the-art p-type transparent materials. A transparent and flexible CuI-based thermoelectric element is demonstrated. Our findings open a path for multifunctional technologies combing transparent electronics, flexible electronics and thermoelectricity.
Dalapati, Goutam Kumar; Masudy-Panah, Saeid; Chua, Sing Teng; Sharma, Mohit; Wong, Ten It; Tan, Hui Ru; Chi, Dongzhi
2016-01-01
Multilayer coating structure comprising a copper (Cu) layer sandwiched between titanium dioxide (TiO2) were demonstrated as a transparent heat reflecting (THR) coating on glass for energy-saving window application. The main highlight is the utilization of Cu, a low-cost material, in-lieu of silver which is widely used in current commercial heat reflecting coating on glass. Color tunable transparent heat reflecting coating was realized through the design of multilayer structure and process optimization. The impact of thermal treatment on the overall performance of sputter deposited TiO2/Cu/TiO2 multilayer thin film on glass substrate is investigated in detail. Significant enhancement of transmittance in the visible range and reflectance in the infra-red (IR) region has been observed after thermal treatment of TiO2/Cu/TiO2 multilayer thin film at 500 °C due to the improvement of crystal quality of TiO2. Highest visible transmittance of 90% and IR reflectance of 85% at a wavelength of 1200 nm are demonstrated for the TiO2/Cu/TiO2 multilayer thin film after annealing at 500 °C. Performance of TiO2/Cu/TiO2 heat reflector coating decreases after thermal treatment at 600 °C. The wear performance of the TiO2/Cu/TiO2 multilayer structure has been evaluated through scratch hardness test. The present work shows promising characteristics of Cu-based THR coating for energy-saving building industry. PMID:26846687
Dalapati, Goutam Kumar; Masudy-Panah, Saeid; Chua, Sing Teng; Sharma, Mohit; Wong, Ten It; Tan, Hui Ru; Chi, Dongzhi
2016-02-05
Multilayer coating structure comprising a copper (Cu) layer sandwiched between titanium dioxide (TiO2) were demonstrated as a transparent heat reflecting (THR) coating on glass for energy-saving window application. The main highlight is the utilization of Cu, a low-cost material, in-lieu of silver which is widely used in current commercial heat reflecting coating on glass. Color tunable transparent heat reflecting coating was realized through the design of multilayer structure and process optimization. The impact of thermal treatment on the overall performance of sputter deposited TiO2/Cu/TiO2 multilayer thin film on glass substrate is investigated in detail. Significant enhancement of transmittance in the visible range and reflectance in the infra-red (IR) region has been observed after thermal treatment of TiO2/Cu/TiO2 multilayer thin film at 500 °C due to the improvement of crystal quality of TiO2. Highest visible transmittance of 90% and IR reflectance of 85% at a wavelength of 1200 nm are demonstrated for the TiO2/Cu/TiO2 multilayer thin film after annealing at 500 °C. Performance of TiO2/Cu/TiO2 heat reflector coating decreases after thermal treatment at 600 °C. The wear performance of the TiO2/Cu/TiO2 multilayer structure has been evaluated through scratch hardness test. The present work shows promising characteristics of Cu-based THR coating for energy-saving building industry.
Wang, Zhen; Yuan, Xinxin; Cong, Shan; Chen, Zhigang; Li, Qingwen; Geng, Fengxia; Zhao, Zhigang
2018-05-02
Air pollution is one of the most serious issues affecting the world today. Instead of expensive and energy-intensive air filtering devices, a fiber-based transparent air filter coated on a window screen is seen as one of the state-of-the-art filtration technologies to combat the seriously growing problem, delivering the advantages of simplicity, convenience, and high filtering efficiency. However, such a window screen is currently limited to particulate matter (PM) filtration and ineffective with other air pollutants. Here, we report the use of a newfangled type of color-changing fibers, porous Prussian blue analogues (CuHCF)/polymer composite microfibers, for transparent window screens toward air pollutant filtration. To increase pollution filtration, pores and dimples are purposely introduced to the fibers using binary solvent systems through a nonsolvent-induced phase separation mechanism. Such composite microfibers overcome some of the limitations of those previously used fibers and could simultaneously capture PM 2.5 , PM 10 , and NH 3 with high efficiency. More interestingly, a distinct color change is observed upon exposure to air pollutants in such window screens, which provides multifunctional capability of simultaneous pollutant capture and naked eye screening of the pollutant amount. Specifically, in the case of long-term exposure to low-concentration NH 3 , the symbol displayed in such window screens changes from yellow color to brown and the coloration rate is directly controlled by the NH 3 concentration, which may serve as a careful reminder for those people who are repeatedly exposed to low-concentration ammonia gas (referred to as chronic poisoning). In contrast, after short-term exposure to a high concentration of ammonia gas, the yellow symbol immediately becomes blackened, which provides timely information about the risk of acute ammonia poisoning or even ammonia explosion. Further spectroscopic results show that the chromatic behaviors in response to different concentrations of NH 3 are fundamentally different, which is related to the different locations of ammonia in the lattice of CuHCF, either in its interstitial sites or at the Fe(CN) 6 vacancy sites, largely distinguished by the absence or presence of atmospheric moisture.
Oil defect detection of electrowetting display
NASA Astrophysics Data System (ADS)
Chiang, Hou-Chi; Tsai, Yu-Hsiang; Yan, Yung-Jhe; Huang, Ting-Wei; Mang, Ou-Yang
2015-08-01
In recent years, transparent display is an emerging topic in display technologies. Apply in many fields just like mobile device, shopping or advertising window, and etc. Electrowetting Display (EWD) is one kind of potential transparent display technology advantages of high transmittance, fast response time, high contrast and rich color with pigment based oil system. In mass production process of Electrowetting Display, oil defects should be found by Automated Optical Inspection (AOI) detection system. It is useful in determination of panel defects for quality control. According to the research of our group, we proposed a mechanism of AOI detection system detecting the different kinds of oil defects. This mechanism can detect different kinds of oil defect caused by oil overflow or material deteriorated after oil coating or driving. We had experiment our mechanism with a 6-inch Electrowetting Display panel from ITRI, using an Epson V750 scanner with 1200 dpi resolution. Two AOI algorithms were developed, which were high speed method and high precision method. In high precision method, oil jumping or non-recovered can be detected successfully. This mechanism of AOI detection system can be used to evaluate the oil uniformity in EWD panel process. In the future, our AOI detection system can be used in quality control of panel manufacturing for mass production.
Chemically Tunable 2D Materials
new opto-electronic silicon based 2D materials, (ii) new material coatings that can change color from transparent to blue chemically or with heat, and...conduction and transparency . Activities are integrated with in-situ fundamental investigation to synergistically develop a complete understanding in materials research.
Color properties of transparent and heat-reflecting MgF2-coated indium-tin-oxide films.
Hamberg, I; Granqvist, C G
1983-02-15
The visual appearance of antireflection-coated transparent and heat-reflecting indium-tin-oxide (ITO) films on glass was studied by a colorimetric analysis in which the chromaticity coordinates for transmitted and reflected daylight were evaluated for various film thicknesses. A color purity of <1% in normal transmission and <10% in normal reflection could be achieved with ITO thicknesses in the 220-260- or 335-365-nm ranges and MgF2 thicknesses in the 90-105-nm range. These design criteria yield very efficient window coatings with high visual transmittance, low thermal emittance, and little or no perceived color.
Tsai, Yu-Hsiang; Huang, Mao-Hsiu; Jeng, Wei-de; Huang, Ting-Wei; Lo, Kuo-Lung; Ou-Yang, Mang
2015-10-01
Transparent display is one of the main technologies in next-generation displays, especially for augmented reality applications. An aperture structure is attached on each display pixel to partition them into transparent and black regions. However, diffraction blurs caused by the aperture structure typically degrade the transparent image when the light from a background object passes through finite aperture window. In this paper, the diffraction effect of an active-matrix organic light-emitting diode display (AMOLED) is studied. Several aperture structures have been proposed and implemented. Based on theoretical analysis and simulation, the appropriate aperture structure will effectively reduce the blur. The analysis data are also consistent with the experimental results. Compared with the various transparent aperture structure on AMOLED, diffraction width (zero energy position of diffraction pattern) of the optimize aperture structure can be reduced 63% and 31% in the x and y directions in CASE 3. Associated with a lenticular lens on the aperture structure, the improvement could reach to 77% and 54% of diffraction width in the x and y directions. Modulation transfer function and practical images are provided to evaluate the improvement of image blurs.
A Uniform Framework of Global Nuclear Materials Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupree, S.A.; Mangan, D.L.; Sanders, T.L
1999-04-20
Global Nuclear Materials Management (GNMM) anticipates and supports a growing international recognition of the importance of uniform, effective management of civilian, excess defense, and nuclear weapons materials. We expect thereto be a continuing increase in both the number of international agreements and conventions on safety, security, and transparency of nuclear materials, and the number of U.S.-Russian agreements for the safety, protection, and transparency of weapons and excess defense materials. This inventory of agreements and conventions may soon expand into broad, mandatory, international programs that will include provisions for inspection, verification, and transparency, To meet such demand the community must buildmore » on the resources we have, including State agencies, the IAEA and regional organizations. By these measures we will meet the future expectations for monitoring and inspection of materials, maintenance of safety and security, and implementation of transparency measures.« less
Crystal Growth of New Functional Materials for Electro-Optical Applications
2001-01-01
Ga2O3 single crystals have been grown by the floating zone technique as promising transparent conductive oxides. 1. INTRODUCTION The important role of...through the addition of dopants while preserving the transparency of the pure B- Ga2O3 makes of this material a substitutive candidate for transparent
Influence of coatings on the thermal and mechanical processes at insulating glass units
NASA Astrophysics Data System (ADS)
Penkova, Nina; Krumov, Kalin; Surleva, Andriana; Geshkova, Zlatka
2017-09-01
Different coatings on structural glass are used in the advances transparent facades and window systems in order to increase the thermal performance of the glass units and to regulate their optical properties. Coated glass has a higher absorptance in the solar spectrum which leads to correspondent higher temperature in the presence of solar load compared to the uncoated one. That process results in higher climatic loads at the insulating glass units (IGU) and in thermal stresses in the coated glass elements. Temperature fields and gradients in glass panes and climatic loads at IGU in window systems are estimated at different coating of glazed system. The study is implemented by numerical simulation of conjugate heat transfer in the window systems at summer time and presence of solar irradiation, as well as during winter night time.
Hecht, David S; Hu, Liangbing; Irvin, Glen
2011-04-05
Transparent electrodes are a necessary component in many modern devices such as touch screens, LCDs, OLEDs, and solar cells, all of which are growing in demand. Traditionally, this role has been well served by doped metal oxides, the most common of which is indium tin oxide, or ITO. Recently, advances in nano-materials research have opened the door for other transparent conductive materials, each with unique properties. These include CNTs, graphene, metal nanowires, and printable metal grids. This review will explore the materials properties of transparent conductors, covering traditional metal oxides and conductive polymers initially, but with a focus on current developments in nano-material coatings. Electronic, optical, and mechanical properties of each material will be discussed, as well as suitability for various applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solar Transparent Radiators by Optical Nanoantennas.
Jönsson, Gustav; Tordera, Daniel; Pakizeh, Tavakol; Jaysankar, Manoj; Miljkovic, Vladimir; Tong, Lianming; Jonsson, Magnus P; Dmitriev, Alexandre
2017-11-08
Architectural windows are a major cause of thermal discomfort as the inner glazing during cold days can be several degrees colder than the indoor air. Mitigating this, the indoor temperature has to be increased, leading to unavoidable thermal losses. Here we present solar thermal surfaces based on complex nanoplasmonic antennas that can raise the temperature of window glazing by up to 8 K upon solar irradiation while transmitting light with a color rendering index of 98.76. The nanoantennas are directional, can be tuned to absorb in different spectral ranges, and possess a structural integrity that is not substrate-dependent, and thus they open up for application on a broad range of surfaces.
A novel reconfigurable electromagnetically induced transparency based on S-PINs
NASA Astrophysics Data System (ADS)
Xue, Feng; Liu, Shao-Bin; Zhang, Hai-Feng; Wen, Yong-Diao; Kong, Xiang-Kun; Li, Hai-Ming
2018-02-01
In this paper, a tunable electromagnetically induced transparency (EIT) based on S-PINs is theoretically analyzed. Unit cell of the structure consists of a cutwire (CW), split ring resonator (SRR), and solid state plasma (SS plasma) patches which are composed of S-PIN array. The destructive interference between the CW and SRR results in a narrowband transparency window accompanied with strong phase dispersion. The proposed design can obtain a tunable EIT with different frequencies range from 12.8 GHz to 16.5 GHz in a simple method by switching these S-PINs on or off selectively. The related parameters of the S-PIN such as the size, carrier concentration, and volt-ampere characteristics have been studied theoretically. The interaction and coupling between two resonators are investigated in detail by the analysis of the current distribution and E-field strength as well. The research results provide an effective way to realize reconfigurable compact slow-light devices.
Emergence of highly transparent photovoltaics for distributed applications
NASA Astrophysics Data System (ADS)
Traverse, Christopher J.; Pandey, Richa; Barr, Miles C.; Lunt, Richard R.
2017-11-01
Solar energy offers a viable solution to our growing energy need. While adoption of conventional photovoltaics on rooftops and in solar farms has grown rapidly in the last decade, there is still plenty of opportunity for expansion. See-through solar technologies with partial light transmission developed over the past 30 years have initiated methods of integration not possible with conventional modules. The large-scale deployment necessary to offset global energy consumption could be further accelerated by developing fully invisible solar cells that selectively absorb ultraviolet and near-infrared light, allowing many of the surfaces of our built environment to be turned into solar harvesting arrays without impacting the function or aesthetics. Here, we review recent advances in photovoltaics with varying degrees of visible light transparency. We discuss the figures of merit necessary to characterize transparent photovoltaics, and outline the requirements to enable their widespread adoption in buildings, windows, electronic device displays, and automobiles.
NASA Astrophysics Data System (ADS)
Xiaojun, Jiang; Haichao, Zhang; Yuzhu, Wang
2016-03-01
We report the experimental investigation of electromagnetically induced transparency (EIT) in a Zeeman-sublevels Λ-type system of cold 87Rb atoms in free space. We use the Zeeman substates of the hyperfine energy states 52S1/2, F = 2 and 52P3/2, F‧ = 2 of 87Rb D2 line to form a Λ-type EIT scheme. The EIT signal is obtained by scanning the probe light over 1 MHz in 4 ms with an 80 MHz arbitrary waveform generator. More than 97% transparency and 100 kHz EIT window are observed. This EIT scheme is suited for an application of pulsed coherent storage atom clock (Yan B, et al. 2009 Phys. Rev. A 79 063820). Project supported by the National Basic Research Program of China (Grant No. 2011CB921504) and the National Natural Science Foundation of China (Grant No. 91536107).
Confronting the Moral Frames of Popular Film: Young People Respond to Historical Revisionism.
ERIC Educational Resources Information Center
Seixas, Peter
1994-01-01
Inquires about the moral dimensions of high school students' understanding of two films' representations of the past. The film "Dances with Wolves" was viewed as a transparent window on the 19th-century West, but no moral frame was examined. "The Searchers" was viewed as a deeply flawed product of the 1950s. (GLR)
UrbanCrowns: an assessment and monitoring tool for urban trees
Matthew F. Winn; Philip A. Araman; Sang-Mook Lee
2011-01-01
UrbanCrowns is a Windows®-based computer program used to assess the crown characteristics of urban trees. The software analyzes side-view digital photographs of trees to compute several crown metrics, including crown height, crown diameter, live crown ratio, crown volume, crown density, and crown transparency. Potential uses of the UrbanCrowns program include...
LTCC-based differential photo acoustic cell for ppm gas sensing
NASA Astrophysics Data System (ADS)
Karioja, P.; Keränen, K.; Kautio, K.; Ollila, J.; Heikkinen, M.; Kauppinen, I.; Kuusela, T.; Matveev, B.; McNie, M. E.; Jenkins, R. M.; Palve, J.
2010-04-01
Silicon MEMS cantilever-based photoacoustic technology allows for the sensing of ultra low gas concentrations with very wide dynamic range. The sensitivity enhancement is achieved with a cantilever microphone system in which the cantilever displacement is probed with an optical interferometer providing a pico-meter resolution. In the gas sensor, the silicon cantilever microphone is placed in a two-chamber differential gas cell. By monitoring differential pressure changes between the two chambers, the differential cell operates as a differential infra-red detector for optical absorption signals through a measurement and reference path. The differential pressure signal is proportional to gas concentration in the optical measurement path. We have designed, implemented and tested a differential photo acoustic gas cell based on Low Temperature Co-fired Ceramic (LTCC) multilayer substrate technology. Standard LTCC technology enables implementation of 2.5D structures including holes, cavities and channels into the electronic substrate. The implemented differential photoacoustic gas cell structure includes two 10 mm long cylindrical cells, diameter of 2.4 mm. Reflectance measurements of the cell showed that reflectivity of the substrate material can be improved by a factor 15 - 90 in the 3 - 8 μm spectral region using gold or silver paste coatings. A transparent window is required in the differential gas cell structure in order to probe the displacement of the silicon cantilever. The transparent sapphire window was sealed to the LTCC substrate using two methods: screen printed Au80/Sn20 solder paste and pre-attached glass solder paste (Diemat DM2700P/H848). Both methods were shown to provide hermetic sealing of sapphire windows to LTCC substrate. The measured He-leak rate for the 10 sealed test samples implemented using glass paste were less than 2.0 ×10-9 atm×cm3/s, which meets the requirement for the leak rate according to MIL-STD 883. The achieved hermetic level suggests that the proof-of-principle packaging demonstrator paves the way for implementing a novel differential photoacoustic gas cell for a future miniature gas sensor module. The future module consisting of a sample gas cell and immersion lens IR-LEDs together with interferometric probing of the cantilever microphone is expected to be capable of measuring ultra low concentrations of a wide range of gases with their fundamental absorption bands at 3 - 7 μm wavelength, such as CO, CO2 and CH4.
Perovskite Solar Cells for High-Efficiency Tandems
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGehee, Michael; Buonassisi, Tonio
The first monolithic perovskite/silicon tandem was made with a diffused silicon p-n junction, a tunnel junction made of n ++ hydrogenated amorphous silicon, a titania electron transport layer, a methylammonium lead iodide absorber, and a Spiro-OMeTAD hole transport layer (HTL). The power conversion efficiency (PCE) was only 13.7% due to excessive parasitic absorption of light in the HTL, limiting the matched current density to 11.5 mA/cm 2. Werner et al. 15 raised the PCE to a record 21.2% by switching to a silicon heterojunction bottom cell and carefully tuning layer thicknesses to achieve lower optical loss and a higher currentmore » density of 15.9 mA/cm 2. It is clear from these reports that minimizing parasitic absorption in the window layers is crucial to achieving higher current densities and efficiencies in monolithic tandems. To this end, the window layers through which light first passes before entering the perovskite and silicon absorber materials must be highly transparent. The front electrode must also be conductive to carry current laterally across the top of the device. Indium tin oxide (ITO) is widely utilized as a transparent electrode in optoelectronic devices such as flat-panel displays, smart windows, organic light-emitting diodes, and solar cells due to its high conductivity and broadband transparency. ITO is typically deposited through magnetron sputtering; however, the high kinetic energy of sputtered particles can damage underlying layers. In perovskite solar cells, a sputter buffer layer is required to protect the perovskite and organic carrier extraction layers from damage during sputter deposition. The ideal buffer layer should also be energetically well aligned so as to act as a carrier-selective contact, have a wide bandgap to enable high optical transmission, and have no reaction with the halides in the perovskite. Additionally, this buffer layer should act as a diffusion barrier layer to prevent both organic cation evolution and moisture penetration to overcome the often-reported thermal and environmental instability of metal halide perovskites. Previous perovskite-containing tandems utilized molybdenum oxide (MoO x) as a sputter buffer layer, but this has raised concerns over long-term stability, as the iodide in the perovskite can chemically react with MoO x. Mixed-cation perovskite solar cells have consistently outperformed their single-cation counterparts. The first perovskite device to exceed 20% PCE was fabricated with a mixture of methylammonium (MA) and formamidinium (FA). Recent reports have shown promising results with the introduction of cesium mixtures, enabling high efficiencies with improved photo-, moisture, and thermal stability. The increased moisture and thermal stability are especially important as they broaden the parameter space for processing on top of the perovskite, enabling the deposition of metal oxide contacts through atomic layer deposition (ALD) or chemical vapor deposition (CVD) that may require elevated temperatures or water as a counter reagent. Both titanium dioxide (TiO 2) and tin oxide (SnO 2) have consistently proven to be effective electron-selective contacts for perovskite solar cells and both can be deposited via ALD at temperatures below 150 °C. We introduced a bilayer of SnO 2 and zinc tin oxide (ZTO) that can be deposited by either low-temperature ALD or pulsed-CVD as a window layer with minimal parasitic absorption, efficient electron extraction, and sufficient buffer properties to prevent the organic and perovskite layers from damage during the subsequent sputter deposition of a transparent ITO electrode. We explored pulsed-CVD as a modified ALD process with a continual, rather than purely step-wise, growth component in order to considerably reduce the process time of the SnO 2 deposition process and minimize potential perovskite degradation. These layers, when used in an excellent mixed-cation perovskite solar cell atop a silicon solar cell tuned to the infrared spectrum, enable highly efficient perovskite-silicon tandem solar cells with enhanced thermal and environmental stability.« less
Projection transparencies from printed material
NASA Technical Reports Server (NTRS)
Grunewald, L. S.; Nickerson, T. B.
1968-01-01
Method for preparing project transparencies, or view graphs, permits the use of almost any expendable printed material, pictures, charts, or text, in unlimited color or black and white. The method can be accomplished by either of two techniques, with a slight difference in materials.
Vertical pillar-superlattice array and graphene hybrid light emitting diodes.
Lee, Jung Min; Choung, Jae Woong; Yi, Jaeseok; Lee, Dong Hyun; Samal, Monica; Yi, Dong Kee; Lee, Chul-Ho; Yi, Gyu-Chul; Paik, Ungyu; Rogers, John A; Park, Won Il
2010-08-11
We report a type of device that combines vertical arrays of one-dimensional (1D) pillar-superlattice (PSL) structures with 2D graphene sheets to yield a class of light emitting diode (LED) with interesting mechanical, optical, and electrical characteristics. In this application, graphene sheets coated with very thin metal layers exhibit good mechanical and electrical properties and an ability to mount, in a freely suspended configuration, on the PSL arrays as a top window electrode. Optical characterization demonstrates that graphene exhibits excellent optical transparency even after deposition of the thin metal films. Thermal annealing of the graphene/metal (Gr/M) contact to the GaAs decreases the contact resistance, to provide enhanced carrier injection. The resulting PSL-Gr/M LEDs exhibit bright light emission over large areas. The result suggests the utility of graphene-based materials as electrodes in devices with unusual, nonplanar 3D architectures.
Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells.
Rahman, Atikur; Ashraf, Ahsan; Xin, Huolin; Tong, Xiao; Sutter, Peter; Eisaman, Matthew D; Black, Charles T
2015-01-21
Materials providing broadband light antireflection have applications as highly transparent window coatings, military camouflage, and coatings for efficiently coupling light into solar cells and out of light-emitting diodes. In this work, densely packed silicon nanotextures with feature sizes smaller than 50 nm enhance the broadband antireflection compared with that predicted by their geometry alone. A significant fraction of the nanotexture volume comprises a surface layer whose optical properties differ substantially from those of the bulk, providing the key to improved performance. The nanotexture reflectivity is quantitatively well-modelled after accounting for both its profile and changes in refractive index at the surface. We employ block copolymer self-assembly for precise and tunable nanotexture design in the range of ~10-70 nm across macroscopic solar cell areas. Implementing this efficient antireflection approach in crystalline silicon solar cells significantly betters the performance gain compared with an optimized, planar antireflection coating.
Broadband high-efficiency dielectric metasurfaces for the visible spectrum
Devlin, Robert C.; Khorasaninejad, Mohammadreza; Chen, Wei Ting; Oh, Jaewon; Capasso, Federico
2016-01-01
Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics. Original dielectric metasurfaces are limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. Thus, it is critical that new materials and nanofabrication techniques be developed to extend dielectric metasurfaces across the visible spectrum and to enable applications such as high numerical aperture lenses, color holograms, and wearable optics. Here, we demonstrate high performance dielectric metasurfaces in the form of holograms for red, green, and blue wavelengths with record absolute efficiency (>78%). We use atomic layer deposition of amorphous titanium dioxide with surface roughness less than 1 nm and negligible optical loss. We use a process for fabricating dielectric metasurfaces that allows us to produce anisotropic, subwavelength-spaced dielectric nanostructures with shape birefringence. This process is capable of realizing any high-efficiency metasurface optical element, e.g., metalenses and axicons. PMID:27601634
Diamond x-ray optics: Transparent, resilient, high-resolution, and wavefront preserving
Shvyd’ko, Yuri; Blank, Vladimir; Terentyev, Sergey
2017-06-09
Diamond features a unique combination of outstanding physical properties perfect for numerous x-ray optics applications, where traditional materials such as silicon fail to perform. In the last two decades, impressive progress has been achieved in synthesizing diamond with high crystalline perfection, in manufacturing efficient, resilient, high-resolution, wavefront-preserving diamond optical components, and in implementing them in cutting-edge x-ray instruments. Diamond optics are essential for tailoring x-rays to the most challenging needs of x-ray research. Furthermore, they are becoming vital for the generation of fully coherent hard x-rays by seeded x-ray free-electron lasers. In this article, we review progress in manufacturing flawlessmore » diamond crystal components and their applications in diverse x-ray optical devices, such as x-ray monochromators, beam splitters, high-reflectance backscattering mirrors, lenses, phase plates, diffraction gratings, bent-crystal spectrographs, and windows.« less
Electrochromic window with high reflectivity modulation
Goldner, Ronald B.; Gerouki, Alexandra; Liu, Te-Yang; Goldner, Mark A.; Haas, Terry E.
2000-01-01
A multi-layered, active, thin film, solid-state electrochromic device having a high reflectivity in the near infrared in a colored state, a high reflectivity and transmissivity modulation when switching between colored and bleached states, a low absorptivity in the near infrared, and fast switching times, and methods for its manufacture and switching are provided. In one embodiment, a multi-layered device comprising a first indium tin oxide transparent electronic conductor, a transparent ion blocking layer, a tungsten oxide electrochromic anode, a lithium ion conducting-electrically resistive electrolyte, a complimentary lithium mixed metal oxide electrochromic cathode, a transparent ohmic contact layer, a second indium oxide transparent electronic conductor, and a silicon nitride encapsulant is provided. Through elimination of optional intermediate layers, simplified device designs are provided as alternative embodiments. Typical colored-state reflectivity of the multi-layered device is greater than 50% in the near infrared, bleached-state reflectivity is less than 40% in the visible, bleached-state transmissivity is greater than 60% in the near infrared and greater than 40% in the visible, and spectral absorbance is less than 50% in the range from 0.65-2.5 .mu.m.
Kang, Tae-Woon; Kim, Sung Hyun; Kim, Cheol Hwan; Lee, Sang-Mok; Kim, Han-Ki; Park, Jae Seong; Lee, Jae Heung; Yang, Yong Suk; Lee, Sang-Jin
2017-09-27
Polymer/metal/polymer and polymer/metal/inorganic trilayer-structured transparent electrodes with fluorocarbon plasma polymer thin film heaters have been proposed. The polymer/metal/polymer and polymer/metal/inorganic transparent conducting thin films fabricated on a large-area flexible polymer substrate using a continuous roll-to-roll sputtering process show excellent electrical properties and visible-light transmittance. They also exhibit water-repelling surfaces to prevent wetting and to remove contamination. In addition, the adoption of a fluorocarbon/metal/fluorocarbon film permits an outer bending radius as small as 3 mm. These films have a sheet resistance of less than 5 Ω sq -1 , sufficient to drive light-emitting diode circuits. The thin film heater with the fluorocarbon/Ag/SiN x structure exhibits excellent heating characteristics, with a temperature reaching 180 °C under the driving voltage of 13 V. Therefore, the proposed polymer/metal/polymer and polymer/metal/inorganic transparent conducting electrodes using polymer thin films can be applied in flexible and rollable displays as well as automobile window heaters and other devices.
Optical absorbances of Gd3Ga5O12 single crystals under shock compression to 211 GPa
NASA Astrophysics Data System (ADS)
Liu, Q. C.; Zhou, X. M.; Luo, S. N.
2017-04-01
Shock-induced opacity in Gd3Ga5O12 (GGG) single crystals is investigated by transmission/emission measurements at 16 wavelengths (400-800 nm), as well as complementary particle velocity measurements at 1550 nm, in the pressure range of 47-211 GPa. Optical transmission spectra through the shocked samples are measured with a in-situ, shock-generated light source, and the resultant extinction coefficients of different wavelengths and shock pressures obtained. As shock strength increases, the optical opacity of the shocked GGG increases and peaks at 75 GPa (the transparent-opaque transition), drops at 75-100 GPa (the opaque-transparent transition), and then increases again. The transparency recovery coincides with a solid-solid phase transition. The microstructure changes associated with the solid-solid phase transition and plastic deformation most likely cause the loss and recovery of transparency. GGG can be useful as a high pressure window for laser velocimetry (1550 nm) or optical pyrometry (400-800 nm) in the ranges of 100-140 GPa and 80-120 GPa, respectively.
Projection type transparent 3D display using active screen
NASA Astrophysics Data System (ADS)
Kamoshita, Hiroki; Yendo, Tomohiro
2015-05-01
Equipment to enjoy a 3D image, such as a movie theater, television and so on have been developed many. So 3D video are widely known as a familiar image of technology now. The display representing the 3D image are there such as eyewear, naked-eye, the HMD-type, etc. They has been used for different applications and location. But have not been widely studied for the transparent 3D display. If transparent large 3D display is realized, it is useful to display 3D image overlaid on real scene in some applications such as road sign, shop window, screen in the conference room etc. As a previous study, to produce a transparent 3D display by using a special transparent screen and number of projectors is proposed. However, for smooth motion parallax, many projectors are required. In this paper, we propose a display that has transparency and large display area by time multiplexing projection image in time-division from one or small number of projectors to active screen. The active screen is composed of a number of vertically-long small rotate mirrors. It is possible to realize the stereoscopic viewing by changing the image of the projector in synchronism with the scanning of the beam.3D vision can be realized by light is scanned. Also, the display has transparency, because it is possible to see through the display when the mirror becomes perpendicular to the viewer. We confirmed the validity of the proposed method by using simulation.
Transparency through Structural Disorder: A New Concept for Innovative Transparent Ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al Saghir, Kholoud; Chenu, Sébastien; Veron, Emmanuel
2015-01-27
Transparent polycrystalline ceramics present signi fi cant eco- nomical and functional advantages over single crystal materials for optical, communication, and laser technologies. To date, transparency in these ceramics is ensured either by an optical isotropy (i.e., cubic symmetry) or a nanometric crystallite size, and the main challenge remains to eliminate porosity through complex high pressure - high temperature synthesis. Here we introduce a new concept to achieve ultimate transparency reaching the theoretical limit. We use a controlled degree of chemical disorder in the structure to obtain optical isotropy at the micrometer length scale. This approach can be applied in themore » case of anisotropic structures and micrometer scale crystal size ceramics. We thus report Sr 1+ x /2 Al 2+ x Si 2 - x O 8 (0 < x ≤ 0.4) readily scalable polycrystalline ceramics elaborated by full and congruent crystallization from glass. These materials reach 90% transmittance. This innovative method should drive the development of new highly transparent materials with technologically relevant applications.« less
Optical based tactile shear and normal load sensor
Salisbury, Curt Michael
2015-06-09
Various technologies described herein pertain to a tactile sensor that senses normal load and/or shear load. The tactile sensor includes a first layer and an optically transparent layer bonded together. At least a portion of the first layer is made of optically reflective material. The optically transparent layer is made of resilient material (e.g., clear silicone rubber). The tactile sensor includes light emitter/light detector pair(s), which respectively detect either normal load or shear load. Light emitter(s) emit light that traverses through the optically transparent layer and reflects off optically reflective material of the first layer, and light detector(s) detect and measure intensity of reflected light. When a normal load is applied, the optically transparent layer compresses, causing a change in reflected light intensity. When shear load is applied, a boundary between optically reflective material and optically absorptive material is laterally displaced, causing a change in reflected light intensity.
Antireflection coatings with SiOx-TiO2 multilayer structures
NASA Astrophysics Data System (ADS)
Lu, Jong-Hong; Luo, Jen-Wei; Chuang, Shiou-Ruei; Chen, Bo-Ying
2014-11-01
In this study, we used SiOx-TiO2 multilayer antireflective coatings to achieve optical average transmittances of 94.93 and 98.07% for one-sided and double-sided coatings on a glass substrate, respectively. A SiOx film was employed as the material with a low refractive index and a TiO2 film as the material with a high refractive index. Results showed that when any layer thickness of the SiOx-TiO2 nano-multilayer (NML) structure is much less than the wavelength of visible light, the SiOx-TiO2 thickness ratio can be used to adjust the optical refractive index of the entire NML film. In this study, we produced dense antireflective coatings of three layers (SiOx, TiO2, and SiOx-TiO2 NML/glass substrate) and four layers (SiOx, TiO2, SiOx, and TiO2/glass substrate) with film thicknesses and refractive indices controlled by reactive magnetron sputtering. Thermal treatment at 600 °C in an air atmosphere was also shown to reduce the absorption of visible light, resolving the issue of degraded transparency caused by increasing sputtering speed. The microhardness of the antireflective film was 8.44 GPa, similar to that of the glass substrate. Process window analysis demonstrated the feasibility of the antireflective coating process window from an engineering standpoint. The thickness of the film deviated by less than 10% from the ideal thickness, corresponding to a 98% transmittance range, and the simulation and experimental results were relatively consistent.
46 CFR 127.410 - Safety-glazing materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ARRANGEMENTS Construction of Windows, Visibility, and Operability of Coverings § 127.410 Safety-glazing materials. Glass and other glazing material used in windows must be material that will not break into...
Tunable electromagnetically induced absorption based on graphene
NASA Astrophysics Data System (ADS)
Cao, Maoyong; Wang, Tongling; Zhang, Huiyun; Zhang, Yuping
2018-04-01
In this paper, an electronically induced absorption (EIA) structure based on graphene at the infrared frequency is proposed. A pair of nanorods is coupled to a ring resonator, resulting in electronically induced transparency (EIT), and then, Babinet's principle is applied to transform the EIT structure into an EIA structure. Based on the bright and dark modes of the coupling schemes, the adjustment of the coupling strength between the dark and bright modes can be achieved by changing the asymmetry degree. In addition, the transparency window and the absorption peak can be tuned by changing the Fermi energy of graphene. This graphene-based EIA structure can develop the path in narrow-band filtering and, absorptive switching in the future.
Polarization-independent electromagnetically induced transparency-like metasurface
NASA Astrophysics Data System (ADS)
Jia, Xiuli; Wang, Xiaoou
2018-01-01
A classical electromagnetically induced transparency-like (EIT-like) metasurface is numerically simulated. This metasurface is composed of two identical and orthogonal double-end semitoroidals (DESTs) metal resonators. Under the excitation of the normal incidence waves, each of the two DESTs structure exhibits electromagnetic dipole responses at different frequencies, which leads to the polarization-independent EIT-like effect. The features of the EIT-like effect are qualitatively analyzed based on the surface current and magnetic field distribution. In addition, the large index is extracted to verify the slow-light property within the transmission window. The EIT-like metasurface structure with the above-mentioned characteristics may have potential applications in some areas, such as sensing, slow light, and filtering devices.
46 CFR 116.1010 - Safety glazing materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ARRANGEMENT Window Construction and Visibility § 116.1010 Safety glazing materials. Glass and other glazing material used in windows must be of material that will not break into dangerous fragments if fractured. ...
Transparent conductors based on microscale/nanoscale materials for high performance devices
NASA Astrophysics Data System (ADS)
Gao, Tongchuan
Transparent conductors are important as the top electrode for a variety of optoelectronic devices, including solar cells, light-emitting diodes (LEDs), at panel displays, and touch screens. Doped indium tin oxide (ITO) thin films are the predominant transparent conductor material. However, ITO thin films are brittle, making them unsuitable for the emerging flexible devices, and suffer from high material and processing cost. In my thesis, we developed a variety of transparent conductors toward a performance comparable with or superior to ITO thin films, with lower cost and potential for scalable manufacturing. Metal nanomesh (NM), hierarchical graphene/metal microgrid (MG), and hierarchical metal NM/MG materials were investigated. Simulation methods were used as a powerful tool to predict the transparency and sheet resistance of the transparent conductors by solving Maxwell's equations and Poisson's equation. Affordable and scalable fabrication processes were developed thereafter. Transparent conductors with over 90% transparency and less than 10 O/square sheet resistance were successfully fabricated on both rigid and flexible substrates. Durability tests, such as bending, heating and tape tests, were carried out to evaluate the robustness of the samples. Haze factor, which characterizes how blurry a transparent conductor appears, was also studied in-depth using analytical calculation and numerical simulation. We demonstrated a tunable haze factor for metal NM transparent conductors and analyzed the principle for tuning the haze factor. Plasmonic effects, excited by some transparent conductors, can lead to enhanced performance in photovoltaic devices. We systematically studied the effect of incorporating metal NM into ultrathin film silicon solar cells using numerical simulation, with the aid of optimization algorithms to reduce the optimization time. Mechanisms contributing to the enhanced performance were then identified and analyzed. Over 72% enhancement in short-circuit current-density was demonstrated by the optimal solar cell compared with 300-nm-thick Si solar cell with antireflection coating and silver back reflector.
NASA Astrophysics Data System (ADS)
Avuthu, Vasudeva Reddy
Despite the clear benefits offered by more advanced transparent materials, (e.g. transparent ceramics offer a very attractive combination of high stiffness and high hardness levels, highly-ductile transparent polymers provide superior fragment-containing capabilities, etc.), ballistic ceramic-glass like fused-silica remains an important constituent material in a majority of transparent impact-resistant structures (e.g. windshields and windows of military vehicles, portholes in ships, ground vehicles and spacecraft) used today. Among the main reasons for the wide-scale use of glass, the following three are most frequently cited: (i) glass-structure fabrication technologies enable the production of curved, large surface-area, transparent structures with thickness approaching several inches; (ii) relatively low material and manufacturing costs; and (iii) compositional modifications, chemical strengthening, and controlled crystallization have been demonstrated to be capable of significantly improving the ballistic properties of glass. In the present work, the potential of high-pressure devitrification and densification of fused-silica as a ballistic-resistance-enhancement mechanism is investigated computationally. In the first part of the present work, all-atom molecular-level computations are carried out to infer the dynamic response and material microstructure/topology changes of fused silica subjected to ballistic impact by a nanometer-sized hard projectile. The analysis was focused on the investigation of specific aspects of the dynamic response and of the microstructural changes such as the deformation of highly sheared and densified regions, and the conversion of amorphous fused silica to SiO2 crystalline allotropic modifications (in particular, alpha-quartz and stishovite). The microstructural changes in question were determined by carrying out a post-processing atom-coordination procedure. This procedure suggested the formation of high-density stishovite (and perhaps alpha-quartz) within fused silica during ballistic impact. To rationalize the findings obtained, the all-atom molecular-level computational analysis is complemented by a series of quantum-mechanics density functional theory (DFT) computations. The latter computations enable determination of the relative potential energies of the fused silica, alpha-quartz and stishovite under ambient pressure (i.e. under their natural densities) as well as under imposed (as high as 50 GPa) pressures (i.e. under higher densities) and shear strains. In addition, the transition states associated with various fused-silica devitrification processes were identified. In the second part of the present work, the molecular-level computational results obtained in the first portion of the work are used to enrich a continuum-type constitutive model (that is, the so-called Johnson-Holmquist-2, JH2, model) for fused silica. Since the aforementioned devitrification and permanent-densification processes modify the response of fused silica to the pressure as well as to the deviatoric part of the stress, changes had to be made in both the JH2 equation of state and the strength model. To assess the potential improvements with respect to the ballistic-penetration resistance of this material brought about by the fused-silica devitrification and permanent-densification processes, a series of transient non-linear dynamics finite element analyses of the transverse impact of a fused-silica test plate with a solid right-circular cylindrical steel projectile was conducted. The results obtained revealed that, provided the projectile incident velocity and, hence, the attendant pressure, is sufficiently high, fused silica can undergo impact-induced energy-consuming devitrification, which improves its ballistic-penetration resistance.
Low-loss spinel windows for high-energy lasers
NASA Astrophysics Data System (ADS)
Kim, Woohong; Baker, Colin; Villalobos, Guillermo; Bayya, Shyam; Hunt, Michael; Sadowski, Bryan; Aggarwal, Ishwar; Sanghera, Jasbinder
2014-05-01
Ideal exit aperture windows for high-energy laser (HEL) should possess low absorption and scattering losses and be environmentally rugged and strong in order to protect the laser gain medium without compromising the light propagating through the window. Spinel is an ideal candidate for this application due to its high mechanical strength, high thermal conductivity, and excellent optical transmission between 0.2~5 μm. However, spinel ceramics fabricated with commercial powders often show inhomogeneity and suffer from absorption and scattering caused by various types of intrinsic and extrinsic impurities present in the powders. Here, we report on a convenient and economical powder purification method to significantly lower the absorption loss of transparent spinel ceramics using commercial powders. Acid washing was successfully used to reduce absorption loss in spinel ceramic fabricated using commercial powder from >20,000 ppm/cm down to 75 ppm/cm.
Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.
1987-08-07
An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.
Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.
1989-01-01
An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.
High-impact resistance optical sensor windows
NASA Astrophysics Data System (ADS)
Askinazi, Joel; Ceccorulli, Mark L.; Goldman, Lee
2011-06-01
Recent field experience with optical sensor windows on both ground and airborne platforms has shown a significant increase in window fracturing from foreign object debris (FOD) impacts and as a by-product of asymmetrical warfare. Common optical sensor window materials such as borosilicate glass do not typically have high impact resistance. Emerging advanced optical window materials such as aluminum oxynitride offer the potential for a significant improvement in FOD impact resistance due to their superior surface hardness, fracture toughness and strength properties. To confirm the potential impact resistance improvement achievable with these emerging materials, Goodrich ISR Systems in collaboration with Surmet Corporation undertook a set of comparative FOD impact tests of optical sensor windows made from borosilicate glass and from aluminum oxynitride. It was demonstrated that the aluminum oxynitride windows could withstand up to three times the FOD impact velocity (as compared with borosilicate glass) before fracture would occur. These highly encouraging test results confirm the utility of this new highly viable window solution for use on new ground and airborne window multispectral applications as well as a retrofit to current production windows. We believe that this solution can go a long way to significantly reducing the frequency and life cycle cost of window replacement.
Embossing of optical document security devices
NASA Astrophysics Data System (ADS)
Muke, Sani
2004-06-01
Embossing in the transparent window area of polymer banknotes, such as those seen on the Australian, New Zealand and Romanian currencies, have enormous potential for the development of novel optical security devices. The intaglio printing process can provide an efficient means for embossing of optical security structures such as micro lenses. Embossed micro lens arrays in the transparent window of a polymer banknote can be folded over a corresponding printed image array elsewhere on the note to reveal a series of moire magnified images. Analysis of samples of embossed micro lenses showed that the engraving side and impression side had a similar embossed profile. The embossed micro lens profiles were modelled using Optalix-LX commercial optical ray tracing software in order to determine the focal length of the lenses and compare with the focal length of desired embossed lenses. A fundamental understanding of how the polymer deforms during the embossing process is critical towards developing a micro lens embossing tool which can achieve the desired embossed micro lenses. This work also looks at extending the early research of the Intaglio Research Group (IRG) to better understand the embossibility of polymer substrates such as biaxially oriented polypropylene (BOPP).
Reading aloud in Persian: ERP evidence for an early locus of the masked onset priming effect.
Timmer, Kalinka; Vahid-Gharavi, Narges; Schiller, Niels O
2012-07-01
The current study investigates reading aloud words in Persian, a language that does not mark all its vowels in the script. Behaviorally, a masked onset priming effect (MOPE) was revealed for transparent words, with faster speech onset latencies in the phoneme-matching condition (i.e. phonological prime and target onset overlap; e.g. [symbol: see text] /sɒːl/; 'year' [symbol: see text] /sot/; 'voice') than the phoneme-mismatching condition (e.g. [symbol: see text] /tɒːb/ 'swing' - [symbol: see text] /sot/; 'voice'). For opaque target words (e.g. [symbol: see text] /solh/; 'peace'), no such effect was found. However, event-related potentials (ERPs) did reveal an amplitude difference between the two prime conditions in the 80-160 ms time window for transparent as well as opaque words. Only for the former, this effect continued into the 300-480 ms time window. This finding constrains the time course of the MOPE and suggests the simultaneous activation of both the non-lexical grapheme-to-phoneme and the lexical route in the dual-route cascaded (DRC) model. Copyright © 2012 Elsevier Inc. All rights reserved.
All-Nonvacuum-Processed CIGS Solar Cells Using Scalable Ag NWs/AZO-Based Transparent Electrodes.
Wang, Mingqing; Choy, Kwang-Leong
2016-07-06
With record cell efficiency of 21.7%, CIGS solar cells have demonstrated to be a very promising photovoltaic (PV) technology. However, their market penetration has been limited due to the inherent high cost of the cells. In this work, to lower the cost of CIGS solar cells, all nonvacuum-processed CIGS solar cells were designed and developed. CIGS absorber was prepared by the annealing of electrodeposited metallic layers in a chalcogen atmosphere. Nonvacuum-deposited Ag nanowires (NWs)/AZO transparent electrodes (TEs) with good transmittance (92.0% at 550 nm) and high conductivity (sheet resistance of 20 Ω/□) were used to replace the vacuum-sputtered window layer. Additional thermal treatment after device preparation was conducted at 220 °C for a few of minutes to improve both the value and the uniformity of the efficiency of CIGS pixel cell on 5 × 5 cm substrate. The best performance of the all-nonvacuum-fabricated CIGS solar cells showed an efficiency of 14.05% with Jsc of 34.82 mA/cm(2), Voc of 0.58 V, and FF of 69.60%, respectively, which is comparable with the efficiency of 14.45% of a reference cell using a sputtered window layer.
NASA Astrophysics Data System (ADS)
Ayaz, M. Q.; Waqas, Mohsin; Qamar, Sajid; Qamar, Shahid
2018-02-01
In this paper we propose a scheme for coherent control and storage of a microwave pulse in superconducting circuits exploiting the idea of electromagnetically induced transparency (EIT) and the Aulter-Townes (AT) effect. We show that superconducting artificial atoms in a four-level tripod configuration act as EIT based coherent microwave (μ w ) memories with gain features, when they are attached to a one-dimensional transmission line. These atoms are allowed to interact with three microwave fields, such that there are two control fields and one probe field. Our proposed system works in such a way that one control field with large Rabi frequency when interacting with atoms, produces the AT effect. While the second control field with relatively small Rabi frequency produces EIT in one of the absorption windows produced due to the AT splitting for the weak probe field. The group velocity of the probe pulse reduces significantly through this EIT window. Interestingly, the output intensity of the probe pulse increases as we increase the number of artificial atoms. Our results show that the probe microwave pulse can be stored and retrieved with high fidelity.
NASA Astrophysics Data System (ADS)
Anitha, M.; Saravanakumar, K.; Anitha, N.; Amalraj, L.
2018-06-01
Un-doped and co-doped (Zn + F) cadmium oxide (CdO) thin films were prepared by modified spray pyrolysis technique using a nebulizer on glass substrates kept at 200 °C. They were characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscopy (SEM), UV-vis spectroscopy, Hall Effect and photoluminescence (PL) respectively. The thin films were having thickness in the range of 520-560 nm. They were well crystalline and displayed high transparency of about >70% in the visible region. It was clearly seen from the SEM photographs that co-doping causes notable changes in the surface morphology. Electrical study exhibited the resistivity of co-doped CdO thin films drastically fell to 1.43 × 10-4 Ω-cm compared with the un-doped CdO thin film. The obtained PL spectra were well corroborated with the structural and optical studies. The high transparency, wide band gap energy and enhanced electrical properties obtained infer that Zn + F co-doped CdO thin films find application in optoelectronic devices, especially in window layer of solar cells.
Extremely Vivid, Highly Transparent, and Ultrathin Quantum Dot Light-Emitting Diodes.
Choi, Moon Kee; Yang, Jiwoong; Kim, Dong Chan; Dai, Zhaohe; Kim, Junhee; Seung, Hyojin; Kale, Vinayak S; Sung, Sae Jin; Park, Chong Rae; Lu, Nanshu; Hyeon, Taeghwan; Kim, Dae-Hyeong
2018-01-01
Displaying information on transparent screens offers new opportunities in next-generation electronics, such as augmented reality devices, smart surgical glasses, and smart windows. Outstanding luminance and transparency are essential for such "see-through" displays to show vivid images over clear background view. Here transparent quantum dot light-emitting diodes (Tr-QLEDs) are reported with high brightness (bottom: ≈43 000 cd m -2 , top: ≈30 000 cd m -2 , total: ≈73 000 cd m -2 at 9 V), excellent transmittance (90% at 550 nm, 84% over visible range), and an ultrathin form factor (≈2.7 µm thickness). These superb characteristics are accomplished by novel electron transport layers (ETLs) and engineered quantum dots (QDs). The ETLs, ZnO nanoparticle assemblies with ultrathin alumina overlayers, dramatically enhance durability of active layers, and balance electron/hole injection into QDs, which prevents nonradiative recombination processes. In addition, the QD structure is further optimized to fully exploit the device architecture. The ultrathin nature of Tr-QLEDs allows their conformal integration on various shaped objects. Finally, the high resolution patterning of red, green, and blue Tr-QLEDs (513 pixels in. -1 ) shows the potential of the full-color transparent display. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Park, Sung-Hyun; Lee, Sang-Mok; Ko, Eun-Hye; Kim, Tae-Ho; Nah, Yoon-Chae; Lee, Sang-Jin; Lee, Jae Heung; Kim, Han-Ki
2016-09-22
We fabricate high-performance, flexible, transparent electrochromic (EC) films and thin film heaters (TFHs) on an ITO/Cu/ITO (ICI) multilayer electrode prepared by continuous roll-to-roll (RTR) sputtering of ITO and Cu targets. The RTR-sputtered ICI multilayer on a 700 mm wide PET substrate at room temperature exhibits a sheet resistance of 11.8 Ω/square and optical transmittance of 73.9%, which are acceptable for the fabrication of flexible and transparent EC films and TFHs. The effect of the Cu interlayer thickness on the electrical and optical properties of the ICI multilayer was investigated in detail. The bending and cycling fatigue tests demonstrate that the RTR-sputtered ICI multilayer was more flexible than a single ITO film because of high strain failure of the Cu interlayer. The flexible and transparent EC films and TFHs fabricated on the ICI electrode show better performances than reference EC films and TFHs with a single ITO electrode. Therefore, the RTR-sputtered ICI multilayer is the best substitute for the conventional ITO film electrode in order to realize flexible, transparent, cost-effective and large-area EC devices and TFHs that can be used as flexible and smart windows.
NASA Astrophysics Data System (ADS)
Park, Sung-Hyun; Lee, Sang-Mok; Ko, Eun-Hye; Kim, Tae-Ho; Nah, Yoon-Chae; Lee, Sang-Jin; Lee, Jae Heung; Kim, Han-Ki
2016-09-01
We fabricate high-performance, flexible, transparent electrochromic (EC) films and thin film heaters (TFHs) on an ITO/Cu/ITO (ICI) multilayer electrode prepared by continuous roll-to-roll (RTR) sputtering of ITO and Cu targets. The RTR-sputtered ICI multilayer on a 700 mm wide PET substrate at room temperature exhibits a sheet resistance of 11.8 Ω/square and optical transmittance of 73.9%, which are acceptable for the fabrication of flexible and transparent EC films and TFHs. The effect of the Cu interlayer thickness on the electrical and optical properties of the ICI multilayer was investigated in detail. The bending and cycling fatigue tests demonstrate that the RTR-sputtered ICI multilayer was more flexible than a single ITO film because of high strain failure of the Cu interlayer. The flexible and transparent EC films and TFHs fabricated on the ICI electrode show better performances than reference EC films and TFHs with a single ITO electrode. Therefore, the RTR-sputtered ICI multilayer is the best substitute for the conventional ITO film electrode in order to realize flexible, transparent, cost-effective and large-area EC devices and TFHs that can be used as flexible and smart windows.
Park, Sung-Hyun; Lee, Sang-Mok; Ko, Eun-Hye; Kim, Tae-Ho; Nah, Yoon-Chae; Lee, Sang-Jin; Lee, Jae Heung; Kim, Han-Ki
2016-01-01
We fabricate high-performance, flexible, transparent electrochromic (EC) films and thin film heaters (TFHs) on an ITO/Cu/ITO (ICI) multilayer electrode prepared by continuous roll-to-roll (RTR) sputtering of ITO and Cu targets. The RTR-sputtered ICI multilayer on a 700 mm wide PET substrate at room temperature exhibits a sheet resistance of 11.8 Ω/square and optical transmittance of 73.9%, which are acceptable for the fabrication of flexible and transparent EC films and TFHs. The effect of the Cu interlayer thickness on the electrical and optical properties of the ICI multilayer was investigated in detail. The bending and cycling fatigue tests demonstrate that the RTR-sputtered ICI multilayer was more flexible than a single ITO film because of high strain failure of the Cu interlayer. The flexible and transparent EC films and TFHs fabricated on the ICI electrode show better performances than reference EC films and TFHs with a single ITO electrode. Therefore, the RTR-sputtered ICI multilayer is the best substitute for the conventional ITO film electrode in order to realize flexible, transparent, cost-effective and large-area EC devices and TFHs that can be used as flexible and smart windows. PMID:27653830
Khandelwal, Hitesh; Loonen, Roel C G M; Hensen, Jan L M; Debije, Michael G; Schenning, Albertus P H J
2015-07-01
Electrically switchable broadband infrared reflectors that are relatively transparent in the visible region have been fabricated using polymer stabilised cholesteric liquid crystals. The IR reflectors can change their reflection/transmission properties by applying a voltage in response to changes in environmental conditions. Simulations predict that a significant amount of energy can be saved on heating, cooling and lighting of buildings in places such as Madrid by using this switchable IR reflector. We have also fabricated a switchable IR reflector which can also generate electricity. These polymer based switchable IR reflectors are of high potential as windows of automobiles and buildings to control interior temperatures and save energy.
Khandelwal, Hitesh; Loonen, Roel C. G. M.; Hensen, Jan L. M.; Debije, Michael G.; Schenning, Albertus P. H. J.
2015-01-01
Electrically switchable broadband infrared reflectors that are relatively transparent in the visible region have been fabricated using polymer stabilised cholesteric liquid crystals. The IR reflectors can change their reflection/transmission properties by applying a voltage in response to changes in environmental conditions. Simulations predict that a significant amount of energy can be saved on heating, cooling and lighting of buildings in places such as Madrid by using this switchable IR reflector. We have also fabricated a switchable IR reflector which can also generate electricity. These polymer based switchable IR reflectors are of high potential as windows of automobiles and buildings to control interior temperatures and save energy. PMID:26132328
Radiofrequency attenuator and method
Warner, Benjamin P [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM; Burrell, Anthony K [Los Alamos, NM; Agrawal, Anoop [Tucson, AZ; Hall, Simon B [Palmerston North, NZ
2009-01-20
Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.
Radiofrequency attenuator and method
Warner, Benjamin P [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM; Burrell, Anthony K [Los Alamos, NM; Agrawal, Anoop [Tucson, AZ; Hall, Simon B [Palmerston North, NZ
2009-11-10
Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3 C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.
Controlling sound radiation through an opening with secondary loudspeakers along its boundaries.
Wang, Shuping; Tao, Jiancheng; Qiu, Xiaojun
2017-10-17
We propose a virtual sound barrier system that blocks sound transmission through openings without affecting access, light and air circulation. The proposed system applies active control technique to cancel sound transmission with a double layered loudspeaker array at the edge of the opening. Unlike traditional transparent glass windows, recently invented double-glazed ventilation windows and planar active sound barriers or any other metamaterials designed to reduce sound transmission, secondary loudspeakers are put only along the boundaries of the opening, which provides the possibility to make it invisible. Simulation and experimental results demonstrate its feasibility for broadband sound control, especially for low frequency sound which is usually hard to attenuate with existing methods.
Plastic scintillators with high loading of one or more metal carboxylates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherepy, Nerine; Sanner, Robert Dean
According to one embodiment, a method includes incorporating a metal carboxylate complex into a polymeric matrix to form an optically transparent material. According to another embodiment, a material includes at least one metal carboxylate complex incorporated into a polymeric matrix, where the material is optically transparent.
NASA Astrophysics Data System (ADS)
Rannou, Pascal; Seignovert, Benoit; Le Mouélic, Stéphane; Sotin, Christophe
2016-10-01
The study of Titan properties with remote sensing relies on a good knowledge of the atmosphere properties. The in-situ observations made by Huygens combined with recent advances in the definition of methane properties enable to model and interpret observations with a very good accuracy. Thanks to these progresses, we can analyze in this work the observations made at the limb of Titan in order to retrieve information on the haze properties as its vertical profiles and its spectral behaviour along the VIMS/Cassini range (from 0.88 to 5.1 μm). However, for applications to real atmospheres, one need to account for the widening of the spectroscopic lines (e.g., Voigt profile) and apply an empirical cut-off of the far wings. In general, this is a multiplying function of the wavenumber, f(ν), applied to the Voigt profile that allows a faster decay of the wing profile beyond a given distance from the center of the line ν0 : f(ν)=1 if |ν- ν0| ≤ Δν, and f(ν)=exp(-|ν- ν0|/ σ) if |ν- ν0| > Δν. Although the 2-μm window is apparently straitforward to model, it appears that the standard cut-off parameters (that is Δν ~ 26 cm-1 and σ ~ 120 cm-1) which is used for other windows in Titan's atmosphere is not adequat for this window. Other sets of parameter must be used to reproduce Titan spectrum at 2 μm. However, there is no convergence of the results between these works and a large variety of cut-off parameters are used. Alternatively, it was found that some gas absorptions (ethane and another unknown gas) leave a signature around 2-μm and also affect the transparency in this window. In our study we make an exhaustive investigation on the cut-off parameters to determine which are the best couples of parameters to fit the 2-μm window. We also evaluated how gaseous absorptions can allow to reach a satisfactory agreement and, especially, if it allows to match observations with the standard cut-off. Finally, we investigate the impact of the different solutions (different cut-off, with or without supplementary absorptions) on the retrieved surface albedo.
Radiation attenuation by single-crystal diamond windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guthrie, M.; Pruteanu, C. G.; Donnelly, M. -E.
As artificial diamond becomes more cost effective it is likely to see increasing use as a window for sample environment equipment used in diffraction experiments. Such windows are particularly useful as they exhibit exceptional mechanical properties in addition to being highly transparent to both X-ray and neutron radiation. A key application is in high-pressure studies, where diamond anvil cells (DACs) are used to access extreme sample conditions. However, despite their utility, an important consideration when using single-crystal diamond windows is their interaction with the incident beam. In particular, the Bragg condition will be satisfied for specific angles and wavelengths, leadingmore » to the appearance of diamond Bragg spots on the diffraction detectors but also, unavoidably, to loss of transmitted intensity of the beam that interacts with the sample. This effect can be particularly significant for energy-dispersive measurements, for example, in time-of-flight neutron diffraction work using DACs. This article presents a semi-empirical approach that can be used to correct for this effect, which is a prerequisite for the accurate determination of diffraction intensities.« less
Radiation attenuation by single-crystal diamond windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guthrie, Malcolm; Pruteanu, Ciprian G.; Donnelly, Mary -Ellen
As artificial diamond becomes more cost effective it is likely to see increasing use as a window for sample environment equipment used in diffraction experiments. Such windows are particularly useful as they exhibit exceptional mechanical properties in addition to being highly transparent to both X-ray and neutron radiation. A key application is in high-pressure studies, where diamond anvil cells (DACs) are used to access extreme sample conditions. However, despite their utility, an important consideration when using single-crystal diamond windows is their interaction with the incident beam. In particular, the Bragg condition will be satisfied for specific angles and wavelengths, leadingmore » to the appearance of diamond Bragg spots on the diffraction detectors but also, unavoidably, to loss of transmitted intensity of the beam that interacts with the sample. This effect can be particularly significant for energy-dispersive measurements, for example, in time-of-flight neutron diffraction work using DACs. Furthermore, this article presents a semi-empirical approach that can be used to correct for this effect, which is a prerequisite for the accurate determination of diffraction intensities.« less
Radiation attenuation by single-crystal diamond windows
Guthrie, Malcolm; Pruteanu, Ciprian G.; Donnelly, Mary -Ellen; ...
2017-02-01
As artificial diamond becomes more cost effective it is likely to see increasing use as a window for sample environment equipment used in diffraction experiments. Such windows are particularly useful as they exhibit exceptional mechanical properties in addition to being highly transparent to both X-ray and neutron radiation. A key application is in high-pressure studies, where diamond anvil cells (DACs) are used to access extreme sample conditions. However, despite their utility, an important consideration when using single-crystal diamond windows is their interaction with the incident beam. In particular, the Bragg condition will be satisfied for specific angles and wavelengths, leadingmore » to the appearance of diamond Bragg spots on the diffraction detectors but also, unavoidably, to loss of transmitted intensity of the beam that interacts with the sample. This effect can be particularly significant for energy-dispersive measurements, for example, in time-of-flight neutron diffraction work using DACs. Furthermore, this article presents a semi-empirical approach that can be used to correct for this effect, which is a prerequisite for the accurate determination of diffraction intensities.« less
Instantaneous Optical Wall-Temperature of Vertical Two-Phase Annular Flow
NASA Astrophysics Data System (ADS)
Fehring, Brian; Livingston-Jha, Simon; Morse, Roman; Chan, Jason; Doherty, James; Brueggeman, Colby; Nellis, Gregory; Dressler, Kristofer; Berson, ArganthaëL.; Multiphase Flow Visualization; Analysis Laboratory at University of Wisconsin-Madison Team
2017-11-01
We present a non-invasive optical technique for measuring the instantaneous temperature at the inner wall of a flow duct. The technique is used to characterize a fully-developed vertical annular flow of R245fa refrigerant. The test section includes transparent heating windows made of glass coated with fluorine-doped tin-oxide. A 15 mW helium-neon laser is directed through a prism mounted on one of the glass windows and reflected off of the interface between the 150-micron-thick liquid film and the inside wall of the testing section window. The intensity of the laser light reflected at the liquid film-window interface depends on the index of refraction of liquid R245fa, which itself depends on the temperature of the fluid. The intensity of the reflected light is measured using a photodiode and calibrated to a light reflectance model based on the Fresnel equations and Snell's law. Instantaneous temperature data is combined with optical liquid film thickness measurements to calculate the local instantaneous heat transfer coefficient at the wall.
"Virtual Cockpit Window" for a Windowless Aerospacecraft
NASA Technical Reports Server (NTRS)
Abernathy, Michael F.
2003-01-01
A software system processes navigational and sensory information in real time to generate a three-dimensional-appearing image of the external environment for viewing by crewmembers of a windowless aerospacecraft. The design of the particular aerospacecraft (the X-38) is such that the addition of a real transparent cockpit window to the airframe would have resulted in unacceptably large increases in weight and cost. When exerting manual control, an aircrew needs to see terrain, obstructions, and other features around the aircraft in order to land safely. The X-38 is capable of automated landing, but even when this capability is utilized, the crew still needs to view the external environment: From the very beginning of the United States space program, crews have expressed profound dislike for windowless vehicles. The wellbeing of an aircrew is considerably promoted by a three-dimensional view of terrain and obstructions. The present software system was developed to satisfy the need for such a view. In conjunction with a computer and display equipment that weigh less than would a real transparent window, this software system thus provides a virtual cockpit window. The key problem in the development of this software system was to create a realistic three-dimensional perspective view that is updated in real time. The problem was solved by building upon a pre-existing commercial program LandForm C3 that combines the speed of flight-simulator software with the power of geographic-information-system software to generate real-time, three-dimensional-appearing displays of terrain and other features of flight environments. In the development of the present software, the pre-existing program was modified to enable it to utilize real-time information on the position and attitude of the aerospacecraft to generate a view of the external world as it would appear to a person looking out through a window in the aerospacecraft. The development included innovations in realistic horizon-limit modeling, three-dimensional stereographic display, and interfaces for utilization of data from inertial-navigation devices, Global Positioning System receivers, and laser rangefinders.
State-of-the-Art Highly Insulating Window Frames - Research and Market Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavsen, Arild; Jelle, Bjorn Petter; Arasteh, Dariush
2007-01-01
This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m{sup 2}K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethanemore » (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC. The frame research review also shows examples of window frames developed in order to increase the energy efficiency of the frames and the glazings which the frames are to be used together with. The authors find that two main tracks are used in searching for better solutions. The first one is to minimize the heat losses through the frame itself. The result is that conductive materials are replaced by highly thermal insulating materials and air cavities. The other option is to reduce the window frame area to a minimum, which is done by focusing on the net energy gain by the entire window (frame, spacer and glazing). Literature shows that a window with a higher U-value may give a net energy gain to a building that is higher than a window with a smaller U-value. The net energy gain is calculated by subtracting the transmission losses through the window from the solar energy passing through the windows. The net energy gain depends on frame versus glazing area, solar factor, solar irradiance, calculation period and U-value. The frame research review also discusses heat transfer modeling issues related to window frames. Thermal performance increasing measures, surface modeling, and frame cavity modeling are among the topics discussed. The review shows that the current knowledge gives the basis for improving the calculation procedures in the calculation standards. At the same time it is room for improvement within some areas, e.g. to fully understand the natural convection effects inside irregular vertical frame cavities (jambs) and ventilated frame cavities.« less
46 CFR 177.1010 - Safety glazing materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... TONS) CONSTRUCTION AND ARRANGEMENT Window Construction and Visibility § 177.1010 Safety glazing materials. Glass and other glazing material used in windows accessible to passengers and crew must be of...
NASA Astrophysics Data System (ADS)
An, Seongpil; Liou, Minho; Song, Kyo Yong; Jo, Hong Seok; Lee, Min Wook; Al-Deyab, Salem S.; Yarin, Alexander L.; Yoon, Sam S.
2015-10-01
Coaxial electrospinning was used to fabricate two types of core-shell fibers: the first type with liquid resin monomer in the core and polyacrylonitrile in the shell, and the second type with liquid curing agent in the core and polyacrylonitrile in the shell. These two types of core-shell fibers were mutually entangled and embedded into two flexible transparent matrices thus forming transparent flexible self-healing composite materials. Such materials could be formed before only using emulsion electrospinning, rather than coaxial electrospinning. The self-healing properties of such materials are associated with release of healing agents (resin monomer and cure) from nanofiber cores in damaged locations with the subsequent polymerization reaction filing the micro-crack with polydimethylsiloxane. Transparency of these materials is measured and the anti-corrosive protection provided by them is demonstrated in electrochemical experiments.
An experimental tool to look in a magma chamber
NASA Astrophysics Data System (ADS)
Gonde, C.; Massare, D.; Bureau, H.; Martel, C.; Pichavant, M.; Clocchiatti, R.
2005-12-01
Understanding the physical and geochemical processes occurring in the volcanoes roots is one of the fundamental tasks of research in the experimental petrology community. This requires experimental tools able to create confining conditions appropriate for magma chambers and conduits. However, the characterization of some natural magmatic processes requires more than a blink experimental approach, to be rigorously studied. In some cases, the in situ approach is the only one issue, because it permits the observation of processes (crystallization of mineral phases, bubble growth.) and their kinetic studies. Here we present a powerful tool, a transparent internally heated autoclave. With this apparatus, pressures (up to 0.3 GPa) and temperatures (up to 900°C) appropriate for subvolcanic magma reservoirs can be obtained. Because it is equipped with transparent sapphire windows, either images or movies can be recorded during an experiment. The pressure medium is Argon, and heating is achieved by a W winding placed into the pressure vessel. Pressure and temperature are calibrated using both well known melting points (eg. salts, metals) and phase transitions (AgI), either at room temperature or at medium and high temperatures. During an experiment, the experimental charge is held between two thick windows of diamond, placed in the furnace cylinder. The experimental volume is about 1 mm3. The observation and numeric record are made along the horizontal axis, through the windows. This apparatus is currently used for studies of nucleation and growth of gas bubbles in a silicate melt. The first results will be presented at the meeting.
Brin, Raymond L.; Pace, Thomas L.
1978-01-01
The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.
May, Michael; Paul, Elizabeth; Katovic, Vladimir
2015-11-01
A vacuum sublimation module of axisymmetric geometry was developed and employed to purify solid-phase materials. The module provides certain practical advantages and it comprises: a metering valve, glass collector, glass lower body, main seal, threaded bushing, and glass internal cartridge (the latter to contain starting material). A complementary process was developed to de-solvate, sublime, weigh, and collect solid chemical materials exemplified by oxalic acid, ferrocene, pentachlorobenzene, chrysene, and urea. The oxalic acid sublimate was analyzed by titration, melting range, Fourier Transform Infrared (FT-IR) Spectroscopy, cyclic voltammetry, and its (aqueous phase) electrolytically generated gas. The analytical data were consistent with a high-purity, anhydrous oxalic acid sublimate. Cyclic voltammograms of 0.11 mol. % oxalic acid in water displayed a 2.1 V window on glassy carbon electrode beyond which electrolytic decomposition occurs. During module testing, fifteen relatively pure materials were sublimed with (energy efficient) passive cooling and the solid-phase recovery averaged 95 mass %. Key module design features include: compact vertical geometry, low-angle conical collector, uniformly compressed main seal, modest power consumption, transparency, glovebox compatibility, cooling options, and preferential conductive heat transfer. To help evaluate the structural (module) heat transfer, vertical temperature profiles along the dynamically evacuated lower body were measured versus electric heater power: for example, an input of 18.6 W generated a temperature 443-K at the bottom. Experimental results and engineering calculations indicate that during sublimation, solid conduction is the primary mode of heat transfer to the starting material.
Flexible Transparent Electronic Gas Sensors.
Wang, Ting; Guo, Yunlong; Wan, Pengbo; Zhang, Han; Chen, Xiaodong; Sun, Xiaoming
2016-07-01
Flexible and transparent electronic gas sensors capable of real-time, sensitive, and selective analysis at room-temperature, have gained immense popularity in recent years for their potential to be integrated into various smart wearable electronics and display devices. Here, recent advances in flexible transparent sensors constructed from semiconducting oxides, carbon materials, conducting polymers, and their nanocomposites are presented. The sensing material selection, sensor device construction, and sensing mechanism of flexible transparent sensors are discussed in detail. The critical challenges and future development associated with flexible and transparent electronic gas sensors are presented. Smart wearable gas sensors are believed to have great potential in environmental monitoring and noninvasive health monitoring based on disease biomarkers in exhaled gas. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
49 CFR 393.60 - Glazing in specified openings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ACCESSORIES NECESSARY FOR SAFE OPERATION Glazing and Window Construction § 393.60 Glazing in specified openings. (a) Glazing material. Glazing material used in windshields, windows, and doors on a motor vehicle.... (d) Coloring or tinting of windshields and windows. Coloring or tinting of windshields and the...
Tombelaine, Vincent; Lesvigne, Christelle; Leproux, Philippe; Grossard, Ludovic; Couderc, Vincent; Auguste, Jean-Louis; Blondy, Jean-Marc; Huss, Guillaume; Pioger, Paul-Henri
2005-09-19
Second harmonic generation in an air-silica microstructured optical fiber pumped by subnanosecond pulses is used in order to initiate modulation instability processes in normal and anomalous dispersion regimes. This allows us to generate an ultra wide and flat supercontinuum (350-1750 nm), covering the entire transparency window of silica and exhibiting a singlemode transverse profile in visible range.
Photovoltaic devices comprising zinc stannate buffer layer and method for making
Wu, Xuanzhi; Sheldon, Peter; Coutts, Timothy J.
2001-01-01
A photovoltaic device has a buffer layer zinc stannate Zn.sub.2 SnO.sub.4 disposed between the semiconductor junction structure and the transparent conducting oxide (TCO) layer to prevent formation of localized junctions with the TCO through a thin window semiconductor layer, to prevent shunting through etched grain boundaries of semiconductors, and to relieve stresses and improve adhesion between these layers.
NASA Astrophysics Data System (ADS)
Xuan, Yue
Background. Soft materials such as polymers and soft tissues have diverse applications in bioengineering, medical care, and industry. Quantitative mechanical characterization of soft materials at multiscales is required to assure that appropriate mechanical properties are presented to support the normal material function. Indentation test has been widely used to characterize soft material. However, the measurement of in situ contact area is always difficult. Method of Approach. A transparent indenter method was introduced to characterize the nonlinear behaviors of soft materials under large deformation. This approach made the direct measurement of contact area and local deformation possible. A microscope was used to capture the contact area evolution as well as the surface deformation. Based on this transparent indenter method, a novel transparent indentation measurement systems has been built and multiple soft materials including polymers and pericardial tissue have been characterized. Seven different indenters have been used to study the strain distribution on the contact surface, inner layer and vertical layer. Finite element models have been built to simulate the hyperelastic and anisotropic material behaviors. Proper material constants were obtained by fitting the experimental results. Results.Homogeneous and anisotropic silicone rubber and porcine pericardial tissue have been examined. Contact area and local deformation were measured by real time imaging the contact interface. The experimental results were compared with the predictions from the Hertzian equations. The accurate measurement of contact area results in more reliable Young's modulus, which is critical for soft materials. For the fiber reinforced anisotropic silicone rubber, the projected contact area under a hemispherical indenter exhibited elliptical shape. The local surface deformation under indenter was mapped using digital image correlation program. Punch test has been applied to thin films of silicone rubber and porcine pericardial tissue and results were analyzed using the same method. Conclusions. The transparent indenter testing system can effectively reduce the material properties measurement error by directly measuring the contact radii. The contact shape can provide valuable information for the anisotropic property of the material. Local surface deformation including contact surface, inner layer and vertical plane can be accurately tracked and mapped to study the strain distribution. The potential usage of the transparent indenter measurement system to investigate biological and biomaterials was verified. The experimental data including the real-time contact area combined with the finite element simulation would be powerful tool to study mechanical properties of soft materials and their relation to microstructure, which has potential in pathologies study such as tissue repair and surgery plan. Key words: transparent indenter, large deformation, soft material, anisotropic.
Smart windows based on cholesteric liquid crystals (Conference Presentation)
NASA Astrophysics Data System (ADS)
Khandelwal, Hitesh; Debije, Michael G.; Schenning, Albert P. H. J.
2017-02-01
With increase in global warming, use of active cooling and heating devices are continuously increasing to maintain interior temperature of built environment, greenhouses and cars. To reduce the consumption of tremendous amount of energy on cooling and heating devices we need an improved control of transparent features (i.e. windows). In this respect, smart window which is capable for reflecting solar infrared energy without interfering with the visible light would be very attractive. Most of the technologies developed so far are to control the visible light. These technologies block visual contact to the outside world which cause negative effects on human health. An appealing method to selectively control infrared transmission is via utilizing the reflection properties of cholesteric liquid crystals. In our research, we have fabricated a smart window which is capable of reflecting different amount of solar infrared energy depending on the specific climate conditions. The reflection bandwidth can be tuned from 120 nm to 1100 nm in the infrared region without interfering with the visible solar radiations. Calculations reveal that between 8% and 45% of incident solar infrared light can be reflected with a single cell. Simulation studies predicted that more than 12% of the energy spent on heating, cooling and lighting in the built environment can be saved by using the fabricated smart window compared to standard double glazing window.
NASA Astrophysics Data System (ADS)
Yu, Wei; Meng, Hongyun; Chen, Zhangjie; Li, Xianping; Zhang, Xing; Wang, Faqiang; Wei, Zhongchao; Tan, Chunhua; Huang, Xuguang; Li, Shuti
2018-05-01
In this paper, we propose a novel planar metamaterial structure for the electromagnetically induced transparency (EIT)-like effect, which consists of a split-ring resonator (SRR) and a pair of metal strips. The simulated results indicate that a single transparency window can be realized in the symmetry situation, which originates from the bright-bright mode coupling. Further, a dual-band EIT-like effect can be achieved in the asymmetry situation, which is due to the bright-bright mode coupling and bright-dark mode coupling, respectively. Different EIT-like effect can be simultaneously achieved in the proposed structure with the different situations. It is of certain significance for the study of EIT-like effect.
Plasmonic EIT-like switching in bright-dark-bright plasmon resonators.
Chen, Junxue; Wang, Pei; Chen, Chuncong; Lu, Yonghua; Ming, Hai; Zhan, Qiwen
2011-03-28
In this paper we report the study of the electromagnetically induced transparency (EIT)-like transmission in the bright-dark-bright plasmon resonators. It is demonstrated that the interferences between the dark plasmons excited by two bright plasmon resonators can be controlled by the incident light polarization. The constructive interference strengthens the coupling between the bright and dark resonators, leading to a more prominent EIT-like transparency window of the metamaterial. In contrary, destructive interference suppresses the coupling between the bright and dark resonators, destroying the interference pathway that forms the EIT-like transmission. Based on this observation, the plasmonic EIT switching can be realized by changing the polarization of incident light. This phenomenon may find applications in optical switching and plasmon-based information processing.
Optically Transparent Split-Ring Antennas for 1 to 10 GHz
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Simons, Rainee N.
2007-01-01
Split-ring antennas made from optically transparent, electrically conductive films have been invented for applications in which there are requirements for compact antennas capable of operation over much or all of the frequency band from 1 to 10 GHz. Primary examples of such applications include wireless local-area networks and industrial, scientific, and medical (ISM) applications. These antennas can be conveniently located on such surfaces as those of automobile windows and display screens of diverse hand-held electronic units. They are fabricated by conventional printed-circuit techniques and can easily be integrated with solid-state amplifier circuits to enhance gain. The structure of an antenna of this type includes an antenna/feed layer supported on the top or outer face of a dielectric (e.g., glass) and, optionally, a ground layer on the bottom or inner face of the substrate. The ring can be in the form of either a conductive strip or a slot in the antenna/feed layer. The ring can be of rectangular, square, circular, elliptical, or other suitable shape and can be excited by means of a microstrip, slot line, or coplanar waveguide. For example, the antenna shown in the figure features a square conductive-strip split ring with a microstrip feed. In general, an antenna fed at its external boundary in the manner of this invention presents very high impedance, thereby creating an impedance-matching problem. Splitting the ring . that is, cutting a notch through the ring . offers a solution to the problem in that the notch fixes the location of maximum electric field, which location is directly related to the impedance. Thus, an excellent impedance match can be achieved through proper choice of the location of the notch. In geometric layout, such a ring antenna structure is typically between 1.4 and 1.3 the size of a patch antenna capable of operating in the same frequency range. This miniaturization of the antenna is desirable, not only because it contributes to overall miniaturization of equipment, but also because minimization of the extent of the optically transparent, electrically conductive film helps to minimize the electrical loss associated with the surface resistance ( 5 ohms per square) of the transparent, electrically conductive film material. Incidentally, even at 5 ohms per square, this surface resistance is significantly less than that of indium tin oxide film (typically > 25 ohms per square), which, heretofore has been the transparent, electrically conductive film material of choice. At the time of writing this article, information on the composition of the lower-resistance film used in the antennas of this invention was not available.
Pulse laser-induced particle separation from polymethyl methacrylate: a mechanistic study
NASA Astrophysics Data System (ADS)
Arif, S.; Armbruster, O.; Kautek, W.
2013-04-01
The separation mechanism of opaque and transparent model micro-particles, graphite and polystyrene copolymer spheres, respectively, from polymethyl methacrylate (PMMA) substrates were investigated employing a ns-pulse laser radiating at 532 nm. The particles transparent in the visible wavelength range could be removed from PMMA efficiently in a very narrow fluence range between 1 and 2 J/cm2 according to a simple 1D thermal expansion model. Above this fluence region, with single pulses, the transparent microspheres caused local ablation of the PMMA substrate in the optical microlens nearfield. This process led to removal of the particles themselves due to the expansion of the ablation plasma. The irregularly shaped graphite particles shaded the underlying substrate from the incoming radiation so that no optical nearfield damage mechanism could be observed. Therefore, a substantial cleaning window between 0.5 and more than 16 J/cm2 was provided. The graphite data suggest an ablation mechanism of the particulates themselves due to a high optical absorption coefficient.
Transparent conducting thin films for spacecraft applications
NASA Technical Reports Server (NTRS)
Perez-Davis, Marla E.; Malave-Sanabria, Tania; Hambourger, Paul; Rutledge, Sharon K.; Roig, David; Degroh, Kim K.; Hung, Ching-Cheh
1994-01-01
Transparent conductive thin films are required for a variety of optoelectronic applications: automotive and aircraft windows, and solar cells for space applications. Transparent conductive coatings of indium-tin-oxide (ITO)-magnesium fluoride (MgF2) and aluminum doped zinc oxide (AZO) at several dopant levels are investigated for electrical resistivity (sheet resistance), carrier concentration, optical properties, and atomic oxygen durability. The sheet resistance values of ITO-MgF2 range from 10(exp 2) to 10(exp 11) ohms/square, with transmittance of 75 to 86 percent. The AZO films sheet resistances range from 10(exp 7) to 10(exp 11) ohms/square with transmittances from 84 to 91 percent. It was found that in general, with respect to the optical properties, the zinc oxide (ZnO), AZO, and the high MgF2 content ITO-MgF2 samples, were all durable to atomic oxygen plasma, while the low MgF2 content of ITO-MgF2 samples were not durable to atomic oxygen plasma exposure.
Transparent conducting thin films for spacecraft applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Davis, M.E.; Malave-Sanabria, T.; Hambourger, P.
1994-01-01
Transparent conductive thin films are required for a variety of optoelectronic applications: automotive and aircraft windows, and solar cells for space applications. Transparent conductive coatings of indium-tin-oxide (ITO)-magnesium fluoride (MgF2) and aluminum doped zinc oxide (AZO) at several dopant levels are investigated for electrical resistivity (sheet resistance), carrier concentration, optical properties, and atomic oxygen durability. The sheet resistance values of ITO-MgF2 range from 10[sup 2] to 10[sup 11] ohms/square, with transmittance of 75 to 86 percent. The AZO films sheet resistances range from 10[sup 7] to 10[sup 11] ohms/square with transmittances from 84 to 91 percent. It was found thatmore » in general, with respect to the optical properties, the zinc oxide (ZnO), AZO, and the high MgF2 content ITO-MgF2 samples, were all durable to atomic oxygen plasma, while the low MgF2 content of ITO-MgF2 samples were not durable to atomic oxygen plasma exposure.« less
NASA Technical Reports Server (NTRS)
Shuart, M. J.; Williams, J. G.
1984-01-01
The response and failure of a + or - 45s class laminate was studied by transparent fiberglass epoxy composite birefringent material. The birefringency property allows the laminate stress distribution to be observed during the test and also after the test if permanent residual stresses occur. The location of initial laminate failure and of the subsequent failure propagation are observed through its transparency characteristics. Experimental results are presented.
NASA Astrophysics Data System (ADS)
Shih, Chien-Chung; Lee, Wen-Ya; Chiu, Yu-Cheng; Hsu, Han-Wen; Chang, Hsuan-Chun; Liu, Cheng-Liang; Chen, Wen-Chang
2016-02-01
Nano-floating gate memory devices (NFGM) using metal nanoparticles (NPs) covered with an insulating polymer have been considered as a promising electronic device for the next-generation nonvolatile organic memory applications NPs. However, the transparency of the device with metal NPs is restricted to 60~70% due to the light absorption in the visible region caused by the surface plasmon resonance effects of metal NPs. To address this issue, we demonstrate a novel NFGM using the blends of hole-trapping poly (9-(4-vinylphenyl) carbazole) (PVPK) and electron-trapping ZnO NPs as the charge storage element. The memory devices exhibited a remarkably programmable memory window up to 60 V during the program/erase operations, which was attributed to the trapping/detrapping of charge carriers in ZnO NPs/PVPK composite. Furthermore, the devices showed the long-term retention time (>105 s) and WRER test (>200 cycles), indicating excellent electrical reliability and stability. Additionally, the fabricated transistor memory devices exhibited a relatively high transparency of 90% at the wavelength of 500 nm based on the spray-coated PEDOT:PSS as electrode, suggesting high potential for transparent organic electronic memory devices.
Petronijevic, E; Sibilia, C
2016-12-26
Electromagnetically induced transparency (EIT) is a pump-induced narrowband transparency window within an absorption line of the probe beam spectrum in an atomic system. In this paper we propose a way to bring together the all-dielectric metamaterials to have EIT-like effects and to optically tune the response by hybridizing them with a layer of a phase change material. We propose a design of the metamaterial based on Si nanoresonators that can support an EIT-like resonant response. On the top of the resonators we consider a thin layer of a chalcogenide phase change material, which we will use to tune the optical response. Our choice is Ge2Sb2Te5 (GST), since it has two stable phases at room temperature, namely amorphous and crystalline, between which it can be switched quickly, nonvolatively and reversibly, sustaining a large number of switching cycles. They differ in optical properties, while still having moderately low losses in telecom range. Since such dielectric resonators do not have non-radiative losses of metals around 1550nm, they can lead to a high-Q factor of the EIT-like response in this range. Firstly, we optimize the starting structure so that it gives an EIT-like response at 1550 nm when the GST layer is in the amorphous state. Our starting design uses glass as a substrate, but we also consider implementation in SOI technology. If we then switch the thin layer of GST to its crystalline phase, which has higher losses, the EIT-like response is red shifted, providing around 10:1 contrast at 1550nm. This reversible tuning can be done with an ns visible pulsed laser. We discuss the results of the simulation of the dielectric metasurface for different configurations and the tuning possibility.
Investigation of high temperature antennas for space shuttle
NASA Technical Reports Server (NTRS)
Kuhlman, E. A.
1973-01-01
The design and development of high temperature antennas for the space shuttle orbiter are discussed. The antenna designs were based on three antenna types, an annular slot (L-Band), a linear slot (C-Band), and a horn (C-Band). The design approach was based on combining an RF window, which provides thermal protection, with an off-the-shelf antenna. Available antenna window materials were reviewed and compared, and the materials most compatible with the design requirements were selected. Two antenna window design approaches were considered: one employed a high temperature dielectric material and a low density insulation material, and the other an insulation material usable for the orbiter thermal protection system. Preliminary designs were formulated and integrated into the orbiter structure. Simple electrical models, with a series of window configurations, were constructed and tested. The results of tests and analyses for the final antenna system designs are given and show that high temperature antenna systems consisting of off-the-shelf antennas thermally protected by RF windows can be designed for the Space Shuttle Orbiter.
Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode
Nam, Sanggil; Song, Myungkwan; Kim, Dong-Ho; Cho, Byungjin; Lee, Hye Moon; Kwon, Jung-Dae; Park, Sung-Gyu; Nam, Kee-Seok; Jeong, Yongsoo; Kwon, Se-Hun; Park, Yun Chang; Jin, Sung-Ho; Kang, Jae-Wook; Jo, Sungjin; Kim, Chang Su
2014-01-01
Transparent electrodes have been widely used in electronic devices such as solar cells, displays, and touch screens. Highly flexible transparent electrodes are especially desired for the development of next generation flexible electronic devices. Although indium tin oxide (ITO) is the most commonly used material for the fabrication of transparent electrodes, its brittleness and growing cost limit its utility for flexible electronic devices. Therefore, the need for new transparent conductive materials with superior mechanical properties is clear and urgent. Ag nanowire (AgNW) has been attracting increasing attention because of its effective combination of electrical and optical properties. However, it still suffers from several drawbacks, including large surface roughness, instability against oxidation and moisture, and poor adhesion to substrates. These issues need to be addressed before wide spread use of metallic NW as transparent electrodes can be realized. In this study, we demonstrated the fabrication of a flexible transparent electrode with superior mechanical, electrical and optical properties by embedding a AgNW film into a transparent polymer matrix. This technique can produce electrodes with an ultrasmooth and extremely deformable transparent electrode that have sheet resistance and transmittance comparable to those of an ITO electrode. PMID:24763248
Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode.
Nam, Sanggil; Song, Myungkwan; Kim, Dong-Ho; Cho, Byungjin; Lee, Hye Moon; Kwon, Jung-Dae; Park, Sung-Gyu; Nam, Kee-Seok; Jeong, Yongsoo; Kwon, Se-Hun; Park, Yun Chang; Jin, Sung-Ho; Kang, Jae-Wook; Jo, Sungjin; Kim, Chang Su
2014-04-25
Transparent electrodes have been widely used in electronic devices such as solar cells, displays, and touch screens. Highly flexible transparent electrodes are especially desired for the development of next generation flexible electronic devices. Although indium tin oxide (ITO) is the most commonly used material for the fabrication of transparent electrodes, its brittleness and growing cost limit its utility for flexible electronic devices. Therefore, the need for new transparent conductive materials with superior mechanical properties is clear and urgent. Ag nanowire (AgNW) has been attracting increasing attention because of its effective combination of electrical and optical properties. However, it still suffers from several drawbacks, including large surface roughness, instability against oxidation and moisture, and poor adhesion to substrates. These issues need to be addressed before wide spread use of metallic NW as transparent electrodes can be realized. In this study, we demonstrated the fabrication of a flexible transparent electrode with superior mechanical, electrical and optical properties by embedding a AgNW film into a transparent polymer matrix. This technique can produce electrodes with an ultrasmooth and extremely deformable transparent electrode that have sheet resistance and transmittance comparable to those of an ITO electrode.
Silicon carbide multilayer protective coating on carbon obtained by thermionic vacuum arc method
NASA Astrophysics Data System (ADS)
Ciupină, Victor; Lungu, Cristian Petrica; Vladoiu, Rodica; Prodan, Gabriel; Porosnicu, Corneliu; Belc, Marius; Stanescu, Iuliana M.; Vasile, Eugeniu; Rughinis, Razvan
2014-01-01
Thermionic vacuum arc (TVA) method is currently developing, in particular, to work easily with heavy fusible material for the advantage presented by control of directing energy for the elements forming a plasma. The category of heavy fusible material can recall C and W (high-melting point materials), and are difficult to obtain or to control by other means. Carbon is now used in many areas of special mechanical, thermal, and electrical properties. We refer in particular to high-temperature applications where unwanted effects may occur due to oxidation. Changed properties may lead to improper functioning of the item or device. For example, increasing the coefficient of friction may induce additional heat on moving items. One solution is to protect the item in question by coating with proper materials. Silicon carbide (SiC) was chosen mainly due to compatibility with coated carbon substrate. Recently, SiC has been used as conductive transparent window for optical devices, particularly in thin film solar cells. Using the TVA method, SiC coatings were obtained as thin films (multilayer structures), finishing with a thermal treatment up to 1000°C. Structural properties and oxidation behavior of the multilayer films were investigated, and the measurements showed that the third layer acts as a stopping layer for oxygen. Also, the friction coefficient of the protected films is lower relative to unprotected carbon films.
NASA Astrophysics Data System (ADS)
Wang, Yu-Sheng; Li, Shin-Ming; Hsiao, Sheng-Tsung; Liao, Wei-Hao; Yang, Shin-Yi; Tien, Hsi-Wen; Ma, Chen-Chi M.; Hu, Chi-Chang
2014-08-01
A powerful synthesis strategy is proposed for fabricating porous polyaniline-reduced graphene oxide (PANI-RGO) composites with transparency up to 80% and thickness from 300 to 1000 nm for the counter electrode (CE) of bifacial dye-sensitizing solar cells (DSSCs). The first step is to combine the in-situ positive charge transformation of graphene oxide (GO) through aniline (ANI) prepolymerization and the electrostatic adsorption of ANI oligomer-GO to effectively control the thickness of ultrathin PANI-GO films by adjusting pH of the polymerization media. In the second step, PANI-GO films are reduced with hydroiodic acid to simultaneously enhance the apparent redox activity for the I3-/I- couple and their electronic conductivity. Incorporating the RGO increases the transparency of PANI and facilitates the light-harvesting from the rear side. A DSSC assembled with such a transparent PANI-RGO CE exhibits an excellent efficiency of 7.84%, comparable to 8.19% for a semi-transparent Pt-based DSSC. The high light-harvesting ability of PANI-RGO enhances the efficiency retention between rear- and front-illumination modes to 76.7%, compared with 69.1% for a PANI-based DSSC. The higher retention reduces the power-to-weight ratio and the total cost of bifacial DSSCs, which is also promising in other applications, such as windows, power generators, and panel screens.
NASA Astrophysics Data System (ADS)
Horprathum, M.; Eiamchai, P.; Kaewkhao, J.; Chananonnawathorn, C.; Patthanasettakul, V.; Limwichean, S.; Nuntawong, N.; Chindaudom, P.
2014-09-01
A nanostructural thin film is one of the highly exploiting research areas particularly in applications in sensor, photocatalytic, and solar-cell technologies. In the past two decades, the integration of glancing-angle deposition (GLAD) technique to physical vapor deposition (PVD) process has gained significant attention for well-controlled multidimensional nanomorphologies because of fast, simple, cost-effective, and mass-production capability. The performance and functional properties of the coated thin films generally depend upon their nanostructural compositions, i.e., large aspect ratio, controllable porosity, and shape. Such structural platforms make the fabricated thin films very practical for several realistic applications. We therefore present morphological and nanostructural properties of various deposited materials, which included metals, i.e., silver (Ag), and oxide compounds, i.e., tungsten oxide (WO3), titanium dioxide (TiO2), and indium tin oxide (ITO). Different PVD techniques based on DC magnetron sputtering and electron-beam evaporation, both with the integrated GLAD component, were discussed. We further explore engineered nanostructures which enable controls of optical, electrical, and mechanical properties. These improvements led to several practical applications in surface-enhanced Raman, smart windows, gas sensors, self-cleaning materials and transparent conductive oxides (TCO).
NASA Astrophysics Data System (ADS)
Takei, Satoshi; Oshima, Akihiro; Oyama, Tomoko G.; Ito, Kenta; Sugahara, Kigenn; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi
2014-05-01
An organic solvent-free sugar-based transparency nanopatterning material which had specific desired properties such as nanostructures of subwavelength grating and moth-eye antireflection, acceptable thermal stability of 160 °C, and low imaginary refractive index of less than 0.005 at 350-800 nm was proposed using electron beam lithography. The organic solvent-free sugar-based transparency nanopatterning material is expected for non-petroleum resources, environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of tetramethylammonium hydroxide. 120 nm moth-eye antireflection nanopatterns images with exposure dose of 10 μC/cm2 were provided by specific process conditions of electron beam lithography. The developed sugar derivatives with hydroxyl groups and EB sensitive groups in the organic solvent-free sugar-based transparency nanopatterning material were applicable to future development of optical interface films of biology and electronics as a novel chemical design.
1975-09-30
significantly greater, ami leads to appre- ciable temperature gradients within the acoustic penetration depth. As an example the absorption model shown in...Watervllle, N.H. 1975). 2. J. H. Parks, D. A. Rockwell, T. S. Colbert , K. M. Lakln, and D. Mlh, Appl. Phys. Lett. 25, 537 (1974). ~ 3. D. A...Rockwell, T. S. Colbert , and J. H. Parks, in Proceedings of the International Conference on Optical Properties of Highly Transparent Solids, edited
de Silva, Vashista C; Nyga, Piotr; Drachev, Vladimir P
2016-12-15
Plasmonic resonances of the metallic shells depend on their nanostructure and geometry of the core, which can be optimized for the broadband extinction normalized by mass. The fractal nanostructures can provide a broadband extinction. It allows as well for a laser photoburning of holes in the extinction spectra and consequently windows of transparency in a controlled manner. The studied core-shell microparticles synthesized using colloidal chemistry consist of gold fractal nanostructures grown on precipitated calcium carbonate (PCC) microparticles or silica (SiO 2 ) microspheres. The optimization includes different core sizes and shapes, and shell nanostructures. It shows that the rich surface of the PCC flakes is the best core for the fractal shells providing the highest mass normalized extinction over the extremely broad spectral range. The mass normalized extinction cross section up to 3m 2 /g has been demonstrated in the broad spectral range from the visible to mid-infrared. Essentially, the broadband response is a characteristic feature of each core-shell microparticle in contrast to a combination of several structures resonant at different wavelengths, for example nanorods with different aspect ratios. The photomodification at an IR wavelength makes the window of transparency at the longer wavelength side. Copyright © 2016 Elsevier Inc. All rights reserved.
Patterning of organic photovoltaic on R2R processed thin film barriers using IR laser sources
NASA Astrophysics Data System (ADS)
Fledderus, H.; Akkerman, H. B.; Salem, A.; Friedrich Schilling, N.; Klotzbach, U.
2017-02-01
We present the development of laser processes for flexible OPV on roll-to-roll (RR2R) produced thin film barrier with indium tin oxide (ITO) as transparent conductive (TC) bottom electrode. Direct laser structuring of ITO on such barrier films (so-called P1 process) is very challenging since the layers are all transparent, a complete electrical isolation is required, and the laser process should not influence the barrier performance underneath the scribes. Based on the optical properties off the SiN and ITTO, ultra-short pulse lasers inn picosecond and femtosecond regime with standard infrared (IR) wavelength as well as lasers with new a wavelength (22 μm regime) are tested for this purpose. To determine a process window for a specific laser a fixed methodology is adopted. Single pulse ablation tests were followed by scribing experiments where the pulse overlap was tuned by varying laser pulse fluence, writing speed and frequency. To verify that the laser scribing does not result inn barrier damage underneath, a new test method was developed based on the optical Ca-test. This method shows a clear improvement in damage analysis underneath laser scribes over normal optical inspection methods (e.g. microscope, optical profiler, SEM). This way clear process windows can be obtained for IR TC patterning.
High Precision Grids for Neutron, Hard X-Ray, and Gamma-Ray Imaging Systems
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W. (Inventor)
2002-01-01
Fourier telescopes permit observations over a very broad band of energy. They generally include synthetic spatial filtering structures, known as multilayer grids or grid pairs consisting of alternate layers of absorbing and transparent materials depending on whether neutrons or photons are being imaged. For hard x-rays and gamma rays high (absorbing) and low (transparent) atomic number elements, termed high-Z and low-Z materials may be used. Fabrication of these multilayer grid structures is not without its difficulties. Herein the alternate layers of the higher material and the lower material are inserted in a polyhedron, transparent to photons of interest, through an open face of the polyhedron. The inserted layers are then uniformly compressed to form a multilayer grid.
Phosphine absorption in the 5-micron window of Jupiter
NASA Technical Reports Server (NTRS)
Beer, R.; Taylor, F. W.
1979-01-01
Since the original suggestion by Gillett et al. (1969) it has generally been assumed that the region of partial transparency near 5 micron in Jupiter's atmosphere (the 5-micron window) is bounded by the nu sub 4 NH3 at 6.1 micron and the nu sub 3 CH4 band at 3.3 micron. New measurements of Jupiter and of laboratory phosphine (PH3) samples show that PH3 is a significant contributor to the continuum opacity in the window and in fact defines its short-wavelength limit. This has important implications for the use of 5-micron observations as a means to probe the deep atmospheric structure of Jupiter. The abundance of PH3 which results from a comparison of Jovian and laboratory spectra is about 3 to 5 cm-am. This is five to eight times less than that found by Larson et al. (1977) in the same spectral region, but is in good agreement with the result of Tokunaga et al. (1979) from 10-micron observations.
Evaluation of window-tinting films for sunlight phototherapy.
Vreman, Hendrik J; Slusher, Tina M; Wong, Ronald J; Schulz, Stephanie; Olusanya, Bolajoko O; Stevenson, David K
2013-12-01
We evaluated nine semi-transparent plastic window-tinting films for their ability to block ultraviolet A (UVA) and infrared (IR) radiation and transmit therapeutic blue light (400-520 nm) for treating jaundiced newborns. For indoor testing, three light sources (TL/52 special blue fluorescent, Black Light UVA and IR heat lamps) were positioned above each film and measured successively using a thermocouple thermometer, UVA radiometer and blue light irradiance meter, placed below each film. For outdoor testing, the same setup was used with the sun at zenith and a cloudless sky. Compared with unfiltered radiation, blue light transmission through films ranged from 24 to 83%, UVA transmission was 0.1-7.1% and reductions in IR heat were 6-12°C and 5-10°C for heat lamp and sun, respectively. The data suggest that most of the relatively low-cost window-tinting films tested can effectively reduce sunlight UV and IR and offer a range of significant attenuations of therapeutic blue light.
Differential photo-acoustic gas cell based on LTCC for ppm gas sensing
NASA Astrophysics Data System (ADS)
Keränen, K.; Kautio, K.; Ollila, J.; Heikkinen, M.; Kauppinen, I.; Kuusela, T.; Matveev, B.; McNie, M. E.; Jenkins, R. M.; Karioja, P.
2010-02-01
Silicon MEMS cantilever-based photoacoustic technology allows for the sensing of ultra low gas concentrations with very wide dynamic range. The sensitivity enhancement is achieved with a cantilever microphone system in which the cantilever displacement is probed with an optical interferometer providing a pico-meter resolution. In the gas sensor, the silicon cantilever microphone is placed in a two-chamber differential gas cell. By monitoring differential pressure changes between the two chambers, the differential cell operates as a differential infra-red detector for optical absorption signals through a measurement and reference path. The differential pressure signal is proportional to gas concentration in the optical measurement path. We have designed, implemented and tested a differential photo-acoustic gas cell based on Low Temperature Co-fired Ceramic (LTCC) multilayer substrate technology. Standard LTCC technology enables implementation of 2.5D structures including holes, cavities and channels into the electronic substrate. The implemented differential photoacoustic gas cell structure includes two 10 mm long cylindrical cells, diameter of 2.4 mm. Reflectance measurements of the cell showed that reflectivity of the substrate material can be improved by a factor 15 - 90 in the 3 - 8 μm spectral region using gold or silver paste coatings. A transparent window is required in the differential gas cell structure in order to probe the displacement of the silicon cantilever. The transparent sapphire window was sealed to the LTCC substrate using two methods: screen printed Au80/Sn20 solder paste and pre-attached glass solder paste (Diemat DM2700P/H848). Both methods were shown to provide hermetic sealing of sapphire windows to LTCC substrate. The measured He-leak rate for the 10 sealed test samples implemented using glass paste were under 2.0 ×10-9 atm×cm3/s, which meets the requirement for the leak rate according to MIL-STD 883. The achieved hermeticity level suggests that the proof-of-principle packaging demonstrator paves the way for implementing a novel differential photoacoustic gas cell for a future miniature gas sensor module. The future module consisting of a sample gas cell and immersion lens IR LEDs together with interferometric probing of the cantilever microphone is expected to be capable of measuring ultra low concentrations of a wide range of gases with their fundamental absorption bands at 3 - 7 μm wavelength, such as CO, CO2 and CH4.
2008-03-01
oxynitride spinel (ALONTM), fused silica , StarphireTM, a soda - lime - 2 silica glass , and borofloat glass . Once the baseline glass materials were...results on monolithic and laminated glass (Starphire™) and AlON, a polycrystalline transparent ceramic. Crack, damage and stress wave velocities...monolithic and laminated glass (Starphire™) and AlON, a polycrystalline transparent ceramic. Crack, damage and stress wave velocities have been
Physics and Technology of Transparent Ceramic Armor: Sintered Al2O3 vs Cubic Materials
2006-08-01
4,841,195, June 20, 1989. [20] N. Saito, Sh.-I. Matsuda, T . Ikegami , "Fabrication of transparent yttria ceramics at low temperature using...Hutzler, T .; Klimke, J. (2005) Physics and Technology of Transparent Ceramic Armor: Sintered Al2O3 vs Cubic Materials. In Nanomaterials Technology...a greater loss of transmission. Or vice versa: all components with a real in-line transmission T < Tth suffer a loss (Tth - T ), and this loss
THE BALLISTICS OF A RIBBON COMPOSITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larcombe, J.; Morley, M.; Earp, S.
2009-12-28
The impact behaviour of composites is of great importance in the field of aerospace and vehicle protection. The combination of formability, lightness and strength make composite systems attractive compared to equivalent monolithic systems. However, their use as optical components has been hampered by their lack of transparency. Transparency is strongly affected by refractive index differences in the materials that form the composite. In this study a number of ribbon-based composites were produced. The impact velocity, sample deformation during the impact process and residual impactor velocity were measured. This allowed comparison between the materials ballistic efficiency. The materials are then comparedmore » to other transparent systems.« less
37 CFR 202.21 - Deposit of identifying material instead of copies.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., transparencies, photostats, drawings, or similar two-dimensional reproductions or renderings of the work, in a... transparencies must be at least 35mm in size and, if such transparencies are 3×3 inches or less, must be fixed in... Office prefers that transparencies larger than 3×3 inches be mounted in a way that facilitates their...
Window Frame Types | Efficient Windows Collaborative
metal frames. Metal Frames Metal Frame with Thermal Break Non-metal Frames Non-metal There is a variety of non-metal framing materials for windows including, wood, wood with metal/vinyl cladding, vinyl disadvantages. Non-metal Frames Non-metal Frame, Thermally Improved Does frame material type matter? The
Transparent, polycrystalline cubic aluminum oxide
NASA Astrophysics Data System (ADS)
McCauley, J. W.; Corbin, N. D.
1980-06-01
The means used to observe or sense the enemy have progressed from actual eye-to-eye observation to extensive use of radar and sonar, and now include using infrared (IR) signals. At the same time, various forms of armor, from face shields to sophisticated electromagnetic (EM) windows and domes (radomes, IR domes), have been developed to transmit signals and also to protect the sensing mechanisms - either the human eye or intricate electronic devices. Countermeasures such as smoke and radar-jamming systems have concurrently evolved to defeat the various sensing devices. In order to minimize the effectiveness of dedicated (single-mode) or even broadband countermeasure tactics, sensing devices of the future, therefore, must be able to simultaneously function over a large region of the EM spectrum, including visible light, IR, microwave and millimeter wave radars. It is imperative, then, that new materials must be developed to transmit a wide range of the EM spectrum, while at the same time protecting the fragile sensing equipment in wide-ranging types of severe battlefield environments.
Fabrication of embedded microball lens in PMMA with high repetition rate femtosecond fiber laser.
Zheng, Chong; Hu, Anming; Li, Ruozhou; Bridges, Denzel; Chen, Tao
2015-06-29
Embedded microball lenses with superior optical properties function as convex microball lens (VMBL) and concave microball lens (CMBL) were fabricated inside a PMMA substrate with a high repetition rate femtosecond fiber laser. The VMBL was created by femtosecond laser-induced refractive index change, while the CMBL was fabricated due to the heat accumulation effect of the successive laser pulses irradiation at a high repetition rate. The processing window for both types of the lenses was studied and optimized, and the optical properties were also tested by imaging a remote object with an inverted microscope. In order to obtain the microball lenses with adjustable focal lengths and suppressed optical aberration, a shape control method was thus proposed and examined with experiments and ZEMAX® simulations. Applying the optimized fabrication conditions, two types of the embedded microball lenses arrays were fabricated and then tested with imaging experiments. This technology allows the direct fabrication of microlens inside transparent bulk polymer material which has great application potential in multi-function integrated microfluidic devices.
Purandare, Sumit; Gomez, Eliot F; Steckl, Andrew J
2014-03-07
Organic light-emitting diodes (OLED) were fabricated on flexible and transparent reconstituted cellulose obtained from wood pulp. Cellulose is naturally available, abundant, and biodegradable and offers a unique substrate alternative for the fabrication of flexible OLEDs. Transparent cellulose material was formed by dissolution of cellulose in an organic solvent (dimethyl acetamide) at elevated temperature (165 °C) in the presence of a salt (LiCl). The optical transmission of 40-μm thick transparent cellulose sheet averaged 85% over the visible spectrum. High brightness and high efficiency thin film OLEDs were fabricated on transparent cellulose films using phosphorescent Ir(ppy)3 as the emitter material. The OLEDs achieved current and luminous emission efficiencies as high as 47 cd A(-1) and 20 lm W(-1), respectively, and a maximum brightness of 10,000 cd m(-2).
NASA Astrophysics Data System (ADS)
Purandare, Sumit; Gomez, Eliot F.; Steckl, Andrew J.
2014-03-01
Organic light-emitting diodes (OLED) were fabricated on flexible and transparent reconstituted cellulose obtained from wood pulp. Cellulose is naturally available, abundant, and biodegradable and offers a unique substrate alternative for the fabrication of flexible OLEDs. Transparent cellulose material was formed by dissolution of cellulose in an organic solvent (dimethyl acetamide) at elevated temperature (165 °C) in the presence of a salt (LiCl). The optical transmission of 40-μm thick transparent cellulose sheet averaged 85% over the visible spectrum. High brightness and high efficiency thin film OLEDs were fabricated on transparent cellulose films using phosphorescent Ir(ppy)3 as the emitter material. The OLEDs achieved current and luminous emission efficiencies as high as 47 cd A-1 and 20 lm W-1, respectively, and a maximum brightness of 10 000 cd m-2.
Bias-free lateral terahertz emitters—A simulation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granzner, R., E-mail: ralf.granzner@tu-ilmenau.de; Schwierz, F.; Polyakov, V. M.
2015-07-28
The design and performance of bias-free InN-based THz emitters that exploit lateral photocurrents is studied by means of numerical simulations. We use a drift-diffusion model with adjusted carrier temperatures and mobilities. The applicability of this approach is demonstrated by a comparison with results from Monte-Carlo simulations. We consider a simple but robust lateral emitter concept using metal stripes with two different thicknesses with one of them being thin enough to be transparent for THz radiation. This arrangement can be easily multiplexed and the efficiency of this concept has already been demonstrated by experiment for GaAs substrates. In the present study,more » we consider InN, which is known to be an efficient photo-Dember emitter because of its superior transport properties. Our main focus is on the impact of the emitter design on the emission efficiency assuming different operation principles. Both the lateral photo-Dember (LPD) effect and built-in lateral field effects are considered. The appropriate choice of the metal stripe and window geometry as well as the impact of surface Fermi level pinning are investigated in detail, and design guidelines for efficient large area emitters using multiplexed structures are provided. We find that InN LPD emitters do not suffer from Fermi level pinning at the InN surface. The optimum emission efficiency is found for LPD emitter structures having 200 nm wide illumination windows and mask stripes. Emitter structures in which lateral electric fields are induced by the metal mask contacts can have a considerably higher efficiency than pure LPD emitters. In the best case, the THz emission of such structures is increased by one order of magnitude. Their optimum window size is 1 μm without the necessity of a partially transparent set of mask stripes.« less
Zebrafish as a model system to study toxicology.
Dai, Yu-Jie; Jia, Yong-Fang; Chen, Na; Bian, Wan-Ping; Li, Qin-Kai; Ma, Yan-Bo; Chen, Yan-Ling; Pei, De-Sheng
2014-01-01
Monitoring and assessing the effects of contaminants in the aquatic eco-environment is critical in protecting human health and the environment. The zebrafish has been widely used as a prominent model organism in different fields because of its small size, low cost, diverse adaptability, short breeding cycle, high fecundity, and transparent embryos. Recent studies have demonstrated that zebrafish sensitivity can aid in monitoring environmental contaminants, especially with the application of transgenic technology in this area. The present review provides a brief overview of recent studies on wild-type and transgenic zebrafish as a model system to monitor toxic heavy metals, endocrine disruptors, and organic pollutants for toxicology. The authors address the new direction of developing high-throughput detection of genetically modified transparent zebrafish to open a new window for monitoring environmental pollutants. © 2013 SETAC.
Perceptual transparency from image deformation.
Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin'ya
2015-08-18
Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid's surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of "invisible" transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation.
Printable Transparent Conductive Films for Flexible Electronics.
Li, Dongdong; Lai, Wen-Yong; Zhang, Yi-Zhou; Huang, Wei
2018-03-01
Printed electronics are an important enabling technology for the development of low-cost, large-area, and flexible optoelectronic devices. Transparent conductive films (TCFs) made from solution-processable transparent conductive materials, such as metal nanoparticles/nanowires, carbon nanotubes, graphene, and conductive polymers, can simultaneously exhibit high mechanical flexibility, low cost, and better photoelectric properties compared to the commonly used sputtered indium-tin-oxide-based TCFs, and are thus receiving great attention. This Review summarizes recent advances of large-area flexible TCFs enabled by several roll-to-roll-compatible printed techniques including inkjet printing, screen printing, offset printing, and gravure printing using the emerging transparent conductive materials. The preparation of TCFs including ink formulation, substrate treatment, patterning, and postprocessing, and their potential applications in solar cells, organic light-emitting diodes, and touch panels are discussed in detail. The rational combination of a variety of printed techniques with emerging transparent conductive materials is believed to extend the opportunities for the development of printed electronics within the realm of flexible electronics and beyond. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Water-based metamaterial absorbers for optical transparency and broadband microwave absorption
NASA Astrophysics Data System (ADS)
Pang, Yongqiang; Shen, Yang; Li, Yongfeng; Wang, Jiafu; Xu, Zhuo; Qu, Shaobo
2018-04-01
Naturally occurring water is a promising candidate for achieving broadband absorption. In this work, by virtue of the optically transparent character of the water, the water-based metamaterial absorbers (MAs) are proposed to achieve the broadband absorption at microwave frequencies and optical transparence simultaneously. For this purpose, the transparent indium tin oxide (ITO) and polymethyl methacrylate (PMMA) are chosen as the constitutive materials. The water is encapsulated between the ITO backed plate and PMMA, serving as the microwave loss as well as optically transparent material. Numerical simulations show that the broadband absorption with the efficiency over 90% in the frequency band of 6.4-30 GHz and highly optical transparency of about 85% in the visible region can be achieved and have been well demonstrated experimentally. Additionally, the proposed water-based MA displays a wide-angle absorption performance for both TE and TM waves and is also robust to the variations of the structure parameters, which is much desired in a practical application.
Switchable Materials for Smart Windows.
Wang, Yang; Runnerstrom, Evan L; Milliron, Delia J
2016-06-07
This article reviews the basic principles of and recent developments in electrochromic, photochromic, and thermochromic materials for applications in smart windows. Compared with current static windows, smart windows can dynamically modulate the transmittance of solar irradiation based on weather conditions and personal preferences, thus simultaneously improving building energy efficiency and indoor human comfort. Although some smart windows are commercially available, their widespread implementation has not yet been realized. Recent advances in nanostructured materials provide new opportunities for next-generation smart window technology owing to their unique structure-property relations. Nanomaterials can provide enhanced coloration efficiency, faster switching kinetics, and longer lifetime. In addition, their compatibility with solution processing enables low-cost and high-throughput fabrication. This review also discusses the importance of dual-band modulation of visible and near-infrared (NIR) light, as nearly 50% of solar energy lies in the NIR region. Some latest results show that solution-processable nanostructured systems can selectively modulate the NIR light without affecting the visible transmittance, thus reducing energy consumption by air conditioning, heating, and artificial lighting.
Han, Yanbing; Siol, Sebastian; Zhang, Qun; ...
2017-09-27
Optically transparent materials with p-type electrical conductivity can facilitate the development of transparent electronics and improve the efficiency of photovoltaic solar cells. Sulfide materials represent an interesting alternative to oxides for these applications due to better hole transport properties. We prepare transparent and conductive Ba-Cu-S thin films by combinatorial cosputtering and characterized for their composition, structure, and optoelectronic properties. The conductivity and transparency of these films are found to be strongly dependent on their chemical composition and the substrate temperature during growth. The conductivity of BaCu 2S 2 and BaCu 4S 3 can reach 53 S/cm (at 250 °C) andmore » 74 S/cm (at 200 degrees C), respectively, which is higher than their solution processed/bulk counterparts. The 90% reflectance corrected transmittance is achieved in the wavelength range 600-1000 nm for BaCu 2S 2 and 650-1000 nm for BaCu 4S 3 (at 250 °C). These electrical and optical properties are comparable with other recently presented transparent p-type conductors, while the 200-350 degrees C processing temperature is low enough to be used in semiconductor devices with limited thermal budgets. Some attempts have been made to synthesize the related Sr-Cu-S materials, following the theoretical suggestion of their potential as transparent p-type conductors, but these attempts resulted only in phase-separated SrS and CuxS phases. Alloying BaCu 2S 2 with Sr on the Ba site on the other hand increases the conductivity to >100 S/cm while only slightly compromising the transparency of the material. To explain the difference between the Ba and the Sr containing copper sulfides, the lower bounds on the SrCu 2S 2 and SrCu 4S 3 formation enthalpies are estimated. While the doping of the Ba-Cu-S materials presented here is too large for application in transparent electronics, it is promising for potential use as p-type contact layers in thin film solar cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yanbing; Siol, Sebastian; Zhang, Qun
Optically transparent materials with p-type electrical conductivity can facilitate the development of transparent electronics and improve the efficiency of photovoltaic solar cells. Sulfide materials represent an interesting alternative to oxides for these applications due to better hole transport properties. We prepare transparent and conductive Ba-Cu-S thin films by combinatorial cosputtering and characterized for their composition, structure, and optoelectronic properties. The conductivity and transparency of these films are found to be strongly dependent on their chemical composition and the substrate temperature during growth. The conductivity of BaCu 2S 2 and BaCu 4S 3 can reach 53 S/cm (at 250 °C) andmore » 74 S/cm (at 200 degrees C), respectively, which is higher than their solution processed/bulk counterparts. The 90% reflectance corrected transmittance is achieved in the wavelength range 600-1000 nm for BaCu 2S 2 and 650-1000 nm for BaCu 4S 3 (at 250 °C). These electrical and optical properties are comparable with other recently presented transparent p-type conductors, while the 200-350 degrees C processing temperature is low enough to be used in semiconductor devices with limited thermal budgets. Some attempts have been made to synthesize the related Sr-Cu-S materials, following the theoretical suggestion of their potential as transparent p-type conductors, but these attempts resulted only in phase-separated SrS and CuxS phases. Alloying BaCu 2S 2 with Sr on the Ba site on the other hand increases the conductivity to >100 S/cm while only slightly compromising the transparency of the material. To explain the difference between the Ba and the Sr containing copper sulfides, the lower bounds on the SrCu 2S 2 and SrCu 4S 3 formation enthalpies are estimated. While the doping of the Ba-Cu-S materials presented here is too large for application in transparent electronics, it is promising for potential use as p-type contact layers in thin film solar cells.« less
Promoting Improved Ballistic Resistance of Transparent Armor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wereszczak, Andrew A; Patel, P; Templeton, D W
2011-01-01
Transparent armor is a material or system of materials designed to be optically transparent, yet protect from fragmentation or ballistic impacts. Although engineered to defeat specific threats, or a range of threats, there are general requirements common to all of these designs. The primary requirement for a transparent armor system is to not only defeat the designated threat but also provide a multi-hit capability with minimized distortion of surrounding areas. Ground platforms have several parameters that must be optimized, such as weight, space efficiency, and cost versus performance. Glass exhibits tensile failure stress that is very much dependent on themore » amount of material being stressed, the side being tensile-stressed (i.e., air-versus tin-side if a float glass), and where it is being tensile stressed (i.e., in the middle or near an edge). An axiom arising from those effects is a greater amount of allowable deflection (i.e., higher failure stress) of a ballistically impacted transparent armor will result in improved ballistic resistance. Therefore, the interpretation and management of those tensile-failure-stress dependencies shall ultimately improve ballistic resistance and its predictability of transparent armor. Each of those three dependencies (size, side, and location) in a soda-lime silicate glass is described.« less
Transparent Materials for Armor - A Cost Study
2010-01-11
UNCLASSIFIED UNCLASSIFIED Example: M1114 Recent History 2006 “Iraqi Pope Glass” 2004-2005 GPK (Gunner Protection Kit) Early OIF Curb Wt: 10,300lbs GVW...12,100lbs More Vehicles More Attacks More Glass UNCLASSIFIED UNCLASSIFIED Future Transparent Gun Shields Requirement: Upgrade GPKs with transparent...Objective AHI GS & GPK Baseline Field Modified GS & APK UNCLASSIFIED UNCLASSIFIED •Average Total ($) for transparent armor increased by about 20% (each
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ruiyi; Das, Suprem R; Jeong, Changwook
Transparent conducting electrodes (TCEs) require high transparency and low sheet resistance for applications in photovoltaics, photodetectors, flat panel displays, touch screen devices, and imagers. Indium tin oxide (ITO), or other transparent conductive oxides, have been used, and provide a baseline sheet resistance (RS) vs. transparency (T) relationship. Several alternative material systems have been investigated. The development of high-performance hybrid structures provides a route towards robust, scalable and low-cost approaches for realizing high-performance TCE.
Nanocellulose reinforcement of Transparent Composites
Joshua Steele; Hong Dong; James F. Snyder; Josh A. Orlicki; Richard S. Reiner; Alan W. Rudie
2012-01-01
In this work, we evaluate the impact of nanocellulose reinforcement on transparent composite properties. Due to the small diameter, high modulus, and high strength of cellulose nanocrystals, transparent composites that utilize these materials should show improvement in bulk mechanical performances without a corresponding reduction in optical properties. In this study...
Tunable plasmon-induced transparency in plasmonic metamaterial composed of three identical rings
NASA Astrophysics Data System (ADS)
Tian, Yuchen; Ding, Pei; Fan, Chunzhen
2017-10-01
We numerically investigated the plasmon-induced transparency (PIT) effect in a three-dimensional plasmonic metamaterial composed of three identical rings. It is illustrated that the PIT effect appears as a result of the destructive interference between the electric dipole and the quadrupole resonance mode. By tuning gap distance, radius or rotation angle of the metamaterial, the required transmission spectra with a narrow sharp transparency peak can be realized. In particular, it is found that an on-to-off amplitude modulation of the PIT transparency window can be achieved by moving or rotating the horizontal ring. Two dips move to high frequency and low frequency regions, respectively, in the transmission spectra by moving the horizontal ring, namely, the width of transmission peak becomes larger. With the rotation of horizontal ring, both width and position of transmission peak are kept invariant. Our designed structure achieved a maximum group index of 352 in the visible frequency range, which has a significant slow light effect. Moreover, the PIT effect is explained based on the classical two-oscillator theory, which is in well agreement with the numerical results. It indicates our proposed structure and theoretical analysis may open up avenues for the tunable control of light in highly integrated optical circuits.
Films of Carbon Nanomaterials for Transparent Conductors
Ho, Xinning; Wei, Jun
2013-01-01
The demand for transparent conductors is expected to grow rapidly as electronic devices, such as touch screens, displays, solid state lighting and photovoltaics become ubiquitous in our lives. Doped metal oxides, especially indium tin oxide, are the commonly used materials for transparent conductors. As there are some drawbacks to this class of materials, exploration of alternative materials has been conducted. There is an interest in films of carbon nanomaterials such as, carbon nanotubes and graphene as they exhibit outstanding properties. This article reviews the synthesis and assembly of these films and their post-treatment. These processes determine the film performance and understanding of this platform will be useful for future work to improve the film performance. PMID:28809267
Monk, G.S.
1959-01-13
An optical system is presented that is suitable for viewing objects in a region of relatively high radioactivity, or high neutron activity, such as a neutronic reactor. This optical system will absorb neutrons and gamma rays thereby protecting personnel fronm the harmful biological effects of such penetrating radiations. The optical system is comprised of a viewing tube having a lens at one end, a transparent solid member at the other end and a transparent aqueous liquid completely filling the tube between the ends. The lens is made of a polymerized organic material and the transparent solid member is made of a radiation absorbent material. A shield surrounds the tube betwcen the flanges and is made of a gamma ray absorbing material.
NASA Astrophysics Data System (ADS)
Dai, Chengda; Hu, Jianbo; Tan, Hua
2009-08-01
LiF single crystal was used as transparent window (anvil) to tamp the shock-induced free surface expansion of Ta specimen, and the Ta/LiF interface temperature was measured under shock compression using optical pyrometry technique. The shock temperatures and/or melting temperatures of Ta up to ˜400 GPa were extracted from the observed interface temperatures based on the Tan-Ahrens' model for one-dimensional heat conduction across metal/window ideal interface in which initial melting and subsequent solidification were considered under shock loading. The obtained data within the experimental uncertainties are consistent with the results from high-pressure sound velocity measurements. The temperature of the partial melting on Ta Hugoniot is estimated to be ˜9700 K at 300 GPa, supported by available results from theoretical calculations.
Transparent conductive coatings
NASA Technical Reports Server (NTRS)
Ashok, S.
1983-01-01
Thin film transparent conductors are discussed. Materials with electrical conductivity and optical transparency are highly desirable in many optoelectronic applications including photovoltaics. Certain binary oxide semiconductors such as tin oxide (SnO2) and indium oxide (In2O3) offer much better performance tradeoff in optoelectronics as well as better mechanical and chemical stability than thin semitransparent films. These thin-film transparent conductors (TC) are essentially wide-bandgap degenerate semiconductors - invariably n-type - and hence are transparent to sub-bandgap (visible) radiation while affording high electrical conductivity due to the large free electron concentration. The principal performance characteristics of TC's are, of course, electrical conductivity and optical transmission. The TC's have a refractive index of around 2.0 and hence act as very efficient antireflection coatings. For using TC's in surface barrier solar cells, the photovoltaic barrier is of utmost importance and so the work function or electron affinity of the TC is also a very important material parameter. Fabrication processes are discussed.
Methods For Improving Polymeric Materials For Use In Solar Cell Applications
Hanoka, Jack I.
2003-07-01
A method of manufacturing a solar cell module includes the use of low cost polymeric materials with improved mechanical properties. A transparent encapsulant layer is placed adjacent a rear surface of a front support layer. Interconnected solar cells are positioned adjacent a rear surface of the transparent encapsulant layer to form a solar cell assembly. A backskin layer is placed adjacent a rear surface of the solar cell assembly. At least one of the transparent encapsulant layer and the backskin layer are predisposed to electron beam radiation.
Methods For Improving Polymeric Materials For Use In Solar Cell Applications
Hanoka, Jack I.
2001-11-20
A method of manufacturing a solar cell module includes the use of low cost polymeric materials with improved mechanical properties. A transparent encapsulant layer is placed adjacent a rear surface of a front support layer. Interconnected solar cells are positioned adjacent a rear surface of the transparent encapsulant layer to form a solar cell assembly. A backskin layer is placed adjacent a rear surface of the solar cell assembly. At least one of the transparent encapsulant layer and the backskin layer are predisposed to electron beam radiation.
2018-03-26
iss055e005543 (March 26, 2018) --- Expedition 55 Flight Engineer and astronaut Scott Tingle is pictured conducting the Transparent Alloys experiment inside the Destiny lab module's Microgravity Science Glovebox. The Transparent Alloys study is a set of five experiments that seeks to improve the understanding of melting-solidification processes in plastics without the interference of Earth's gravity environment. Results may impact the development of new light-weight, high-performance structural materials for space applications. Observations may also impact fuel efficiency, consumption and recycling of materials on Earth potentially reducing costs and increasing industrial competitiveness.
Synchronized femtosecond laser pulse switching system based nano-patterning technology
NASA Astrophysics Data System (ADS)
Sohn, Ik-Bu; Choi, Hun-Kook; Yoo, Dongyoon; Noh, Young-Chul; Sung, Jae-Hee; Lee, Seong-Ku; Ahsan, Md. Shamim; Lee, Ho
2017-07-01
This paper demonstrates the design and development of a synchronized femtosecond laser pulse switching system and its applications in nano-patterning of transparent materials. Due to synchronization, we are able to control the location of each irradiated laser pulse in any kind of substrate. The control over the scanning speed and scanning step of the laser beam enables us to pattern periodic micro/nano-metric holes, voids, and/or lines in various materials. Using the synchronized laser system, we pattern synchronized nano-holes on the surface of and inside various transparent materials including fused silica glass and polymethyl methacrylate to replicate any image or pattern on the surface of or inside (transparent) materials. We also investigate the application areas of the proposed synchronized femtosecond laser pulse switching system in a diverse field of science and technology, especially in optical memory, color marking, and synchronized micro/nano-scale patterning of materials.
P-type transparent conducting oxides.
Zhang, Kelvin H L; Xi, Kai; Blamire, Mark G; Egdell, Russell G
2016-09-28
Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n-type, such as Sn doped In2O3, Al doped ZnO, and F doped SnO2. However, the development of efficient p-type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of 'chemical modulation of the valence band' to mitigate this problem using hybridization of O 2p orbitals with close-shell Cu 3d (10) orbitals. This work has sparked tremendous interest in designing p-TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p-TCOs, including Cu(+)-based delafossites, layered oxychalcogenides, nd (6) spinel oxides, Cr(3+)-based oxides (3d (3)) and post-transition metal oxides with lone pair state (ns (2)). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p-type conductivity and optical properties. Device applications based on p-TCOs for transparent p-n junctions will also be briefly discussed.
NASA Astrophysics Data System (ADS)
Hendricks, F.; Matylitsky, V. V.; Domke, M.; Huber, Heinz P.
2016-03-01
Laser processing of optically transparent or semi-transparent, brittle materials is finding wide use in various manufacturing sectors. For example, in consumer electronic devices such as smartphones or tablets, cover glass needs to be cut precisely in various shapes. The unique advantage of material processing with femtosecond lasers is efficient, fast and localized energy deposition in nearly all types of solid materials. When an ultra-short laser pulse is focused inside glass, only the localized region in the neighborhood of the focal volume absorbs laser energy by nonlinear optical absorption. Therefore, the processing volume is strongly defined, while the rest of the target stays unaffected. Thus ultra-short pulse lasers allow cutting of the chemically strengthened glasses such as Corning Gorilla glass without cracking. Non-ablative cutting of transparent, brittle materials, using the newly developed femtosecond process ClearShapeTM from Spectra-Physics, is based on producing a micron-sized material modification track with well-defined geometry inside. The key point for development of the process is to understand the induced modification by a single femtosecond laser shot. In this paper, pump-probe microscopy techniques have been applied to study the defect formation inside of transparent materials, namely soda-lime glass samples, on a time scale between one nanosecond to several tens of microseconds. The observed effects include acoustic wave propagation as well as mechanical stress formation in the bulk of the glass. Besides better understanding of underlying physical mechanisms, our experimental observations have enabled us to find optimal process parameters for the glass cutting application and lead to better quality and speed for the ClearShapeTM process.
Audiovisual Materials for the Engineering Technologies.
ERIC Educational Resources Information Center
O'Brien, Janet S., Comp.
A list of audiovisual materials suitable for use in engineering technology courses is provided. This list includes titles of 16mm films, 8mm film loops, slidetapes, transparencies, audio tapes, and videotapes. Given for each title are: source, format, length of film or tape or number of slides or transparencies, whether color or black-and-white,…
Suryana, Mona; Shanmugarajah, Jegan V; Maniam, Sivakumar M; Grenci, Gianluca
2017-08-17
Infrared (IR) spectro-microscopy of living biological samples is hampered by the absorption of water in the mid-IR range and by the lack of suitable microfluidic devices. Here, a protocol for the fabrication of plastic microfluidic devices is demonstrated, where soft lithographic techniques are used to embed transparent Calcium Fluoride (CaF2) view-ports in connection with observation chamber(s). The method is based on a replica casting approach, where a polydimethylsiloxane (PDMS) mold is produced through standard lithographic procedures and then used as the template to produce a plastic device. The plastic device features ultraviolet/visible/infrared (UV/Vis/IR) -transparent windows made of CaF2 to allow for direct observation with visible and IR light. The advantages of the proposed method include: a reduced need for accessing a clean room micro-fabrication facility, multiple view-ports, an easy and versatile connection to an external pumping system through the plastic body, flexibility of the design, e.g., open/closed channels configuration, and the possibility to add sophisticated features such as nanoporous membranes.
Levels of polychlorinated biphenyls (PCBs) in caulk and window glazing material samples from older buildings were determined, using a method developed for this purpose. This method was evaluated by analyzing a combination of 47 samples of caulk, glazing materials, including quali...
Bi-level microelectronic device package with an integral window
Peterson, Kenneth A.; Watson, Robert D.
2004-01-06
A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The multilayered package can be formed of a LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded so that the light-sensitive side is optically accessible through the window. The package has at least two levels of circuits for making electrical interconnections to a pair of microelectronic devices. The result is a compact, low-profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device(s).
Single level microelectronic device package with an integral window
Peterson, Kenneth A.; Watson, Robert D.
2003-12-09
A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The package can be formed of a multilayered LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during cofiring. The microelectronic device can be flip-chip interconnected so that the light-sensitive side is optically accessible through the window. A glob-top encapsulant or protective cover can be used to protect the microelectronic device and electrical interconnections. The result is a compact, low profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device.
Graphene Transparent Conductive Electrodes for Next- Generation Microshutter Arrays
NASA Technical Reports Server (NTRS)
Li, Mary; Sultana, Mahmooda; Hess, Larry
2012-01-01
Graphene is a single atomic layer of graphite. It is optically transparent and has high electron mobility, and thus has great potential to make transparent conductive electrodes. This invention contributes towards the development of graphene transparent conductive electrodes for next-generation microshutter arrays. The original design for the electrodes of the next generation of microshutters uses indium-tin-oxide (ITO) as the electrode material. ITO is widely used in NASA flight missions. The optical transparency of ITO is limited, and the material is brittle. Also, ITO has been getting more expensive in recent years. The objective of the invention is to develop a graphene transparent conductive electrode that will replace ITO. An exfoliation procedure was developed to make graphene out of graphite crystals. In addition, large areas of single-layer graphene were produced using low-pressure chemical vapor deposition (LPCVD) with high optical transparency. A special graphene transport procedure was developed for transferring graphene from copper substrates to arbitrary substrates. The concept is to grow large-size graphene sheets using the LPCVD system through chemical reaction, transfer the graphene film to a substrate, dope graphene to reduce the sheet resistance, and pattern the film to the dimension of the electrodes in the microshutter array. Graphene transparent conductive electrodes are expected to have a transparency of 97.7%. This covers the electromagnetic spectrum from UV to IR. In comparison, ITO electrodes currently used in microshutter arrays have 85% transparency in mid-IR, and suffer from dramatic transparency drop at a wavelength of near-IR or shorter. Thus, graphene also has potential application as transparent conductive electrodes for Schottky photodiodes in the UV region.
Weibull Analysis and Area Scaling for Infrared Window Materials (U)
2016-08-01
the strength of a window scales inversely with the size of the window. This report was reviewed for technical accuracy by Howard Poisl, Thomas M...strength of a window scales inversely with the size of the window. Test data are given for aluminum oxynitride (ALON), calcium fluoride, chemical vapor...failure of an optical window in the absence of slow crack growth. This report illustrates how the strength of a window scales inversely with the size of
Design and analysis of submarine radome
NASA Astrophysics Data System (ADS)
Sandeep, C. Satya; Prasad, U. Shiva; Suresh, R.; Rathan, A.; Sravanthi, G.; Govardhan, D.
2017-07-01
Radomes are the electromagnetic windows that protect microwave sub-systems from the environmental effects. The major requirement of radome is its transparency to microwaves and for most of the cases mechanical properties are also equally important. Radome for underwater applications has to withstand high water pressure of the order of 45 bars. Composite materials owing to their high strength to weight ratio, high stiffness and better corrosion resistance are potential source for under water applications. The concept of 'tailoring' the material properties to suit the radome is obtained by selecting proper reinforcement, resin matrix and their compositions. The mechanical properties of composite material, evaluated by testing specimens as per ASTM standards, are utilized in designing the radome. The modulus properties calculated using classical theories of composite materials and compared with test results. ANSYS a Finite Element software package used to analyse the problem. As the cross sectional thickness of radome varies, the complexity in fabrication is overcome by adopting matched die techniques. The radome design and finite element analysis validation concluded by conducting the pressure test on radome. On the design a modal analysis is also carried to check for the natural frequency, So that resonance does not occur if the natural frequency of the radome coincides with the excitation frequency of the submarine Clinical information system (CIS) for UNRWA is a computerized distributed application that used in clinics which follows the United Nations Relief and Works Agency (UNRWA) to manage the clinical requirements and services.
Wang, Sai; Xu, Zuqiang; Wang, Tingting; Xiao, Tangxin; Hu, Xiao-Yu; Shen, Ying-Zhong; Wang, Leyong
2018-04-30
Functional materials play a vital role in the fabrication of smart windows, which can provide a more comfortable indoor environment for humans to enjoy a better lifestyle. Traditional materials for smart windows tend to possess only a single functionality with the purpose of regulating the input of solar energy. However, different color tones also have great influences on human emotions. Herein, a strategy for orthogonal integration of different properties is proposed, namely the thermo-responsiveness of ethylene glycol-modified pillar[6]arene (EGP6) and the redox-induced reversible color switching of ferrocene/ferrocenium groups are orthogonally integrated into one system. This gives rise to a material with cooperative and non-interfering dual functions, featuring both thermochromism and warm/cool tone-switchability. Consequently, the obtained bifunctional material for fabricating smart windows can not only regulate the input of solar energy but also can provide a more comfortable color tone to improve the feelings and emotions of people in indoor environments.
Plasmonic transparent conductors
NASA Astrophysics Data System (ADS)
Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.
2016-09-01
Many of today's technological applications, such as solar cells, light-emitting diodes, displays, and touch screens, require materials that are simultaneously optically transparent and electrically conducting. Here we explore transparent conductors based on the excitation of surface plasmons in nanostructured metal films. We measure both the optical and electrical properties of films perforated with nanometer-scale features and optimize the design parameters in order to maximize optical transmission without sacrificing electrical conductivity. We demonstrate that plasmonic transparent conductors can out-perform indium tin oxide in terms of both their transparency and their conductivity.
14 CFR 27.775 - Windshields and windows.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Windshields and windows. 27.775 Section 27.775 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... § 27.775 Windshields and windows. Windshields and windows must be made of material that will not break...
14 CFR 29.775 - Windshields and windows.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Windshields and windows. 29.775 Section 29.775 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Accommodations § 29.775 Windshields and windows. Windshields and windows must be made of material that will not...
14 CFR 27.775 - Windshields and windows.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Windshields and windows. 27.775 Section 27.775 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... § 27.775 Windshields and windows. Windshields and windows must be made of material that will not break...
14 CFR 27.775 - Windshields and windows.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Windshields and windows. 27.775 Section 27.775 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... § 27.775 Windshields and windows. Windshields and windows must be made of material that will not break...
14 CFR 29.775 - Windshields and windows.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Windshields and windows. 29.775 Section 29.775 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Accommodations § 29.775 Windshields and windows. Windshields and windows must be made of material that will not...
14 CFR 29.775 - Windshields and windows.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Windshields and windows. 29.775 Section 29.775 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Accommodations § 29.775 Windshields and windows. Windshields and windows must be made of material that will not...
14 CFR 29.775 - Windshields and windows.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Windshields and windows. 29.775 Section 29.775 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Accommodations § 29.775 Windshields and windows. Windshields and windows must be made of material that will not...
14 CFR 27.775 - Windshields and windows.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Windshields and windows. 27.775 Section 27.775 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... § 27.775 Windshields and windows. Windshields and windows must be made of material that will not break...
14 CFR 29.775 - Windshields and windows.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Windshields and windows. 29.775 Section 29.775 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Accommodations § 29.775 Windshields and windows. Windshields and windows must be made of material that will not...
14 CFR 27.775 - Windshields and windows.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Windshields and windows. 27.775 Section 27.775 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... § 27.775 Windshields and windows. Windshields and windows must be made of material that will not break...
Evaluation of the Elastic Properties of Thirteen Silicone Interocclusal Recording Materials
Zietek, Marek
2016-01-01
Background. Addition silicones are popular as dental impression materials and are used in bite registration procedures. Objective. This study aimed to compare the postsetting elasticities and other mechanical properties of thirteen addition silicone interocclusal recording materials. Materials and Methods. The following materials were investigated: Colorbite D, Futar D, Genie Bite, Jet Blue Bite fast, Memoreg 2, O-Bite, Occlufast Rock, Omni-Bite Plus, Regidur i, Registrado X-tra, Regofix transparent, StoneBite, and Variotime Bite. Thirty specimens of each material were tested. The elasticities and strengths of the materials were measured with a universal testing machine, and computer software was used to determine the E-moduli, ultimate tensile strengths, and ultimate elongations of the specimens. Results. The results were subjected to statistical analysis using the Kruskal-Wallis test (p ≤ 0.05). The statistics revealed that the mean E-modulus values varied significantly across the materials (p = 0.000) and were highest for the StoneBite and Registrado X-tra and lowest for the Regofix transparent. The ultimate tensile strengths were highest for the Regofix transparent and Registrado X-tra (p = 0.000) and lowest for the Jet Blue Bite fast and Memoreg 2 (p = 0.000). The elongation percentages at the point of breaking varied significantly across the materials (p = 0.000); the lowest value was observed for the StoneBite, whereas the Regofix transparent nearly doubled original length. Conclusions. The authors concluded that materials with the high E-moduli and great ultimate tensile strengths may be most useful clinically. Registrado X-tra and StoneBite best met these criteria. PMID:27747239
Parity-time-symmetry enhanced optomechanically-induced-transparency
Li, Wenlin; Jiang, Yunfeng; Li, Chong; Song, Heshan
2016-01-01
We propose and analyze a scheme to enhance optomechanically-induced-transparency (OMIT) based on parity-time-symmetric optomechanical system. Our results predict that an OMIT window which does not exist originally can appear in weak optomechanical coupling and driving system via coupling an auxiliary active cavity with optical gain. This phenomenon is quite different from these reported in previous works in which the gain is considered just to damage OMIT phenomenon even leads to electromagnetically induced absorption or inverted-OMIT. Such enhanced OMIT effects are ascribed to the additional gain which can increase photon number in cavity without reducing effective decay. We also discuss the scheme feasibility by analyzing recent experiment parameters. Our work provide a promising platform for the coherent manipulation and slow light operation, which has potential applications for quantum information processing and quantum optical device. PMID:27489193
NASA Astrophysics Data System (ADS)
Hu, Sen; Liu, Dan; Lin, Hai; Chen, Jiao; Yi, Yuanyuan; Yang, Helin
2017-03-01
In this paper, a classical analogue of electromagnetically induced transparency (EIT) metamaterial is numerically and experimentally demonstrated. The unit cell of our proposed structure is composed of two identical and orthogonal double-end fork (DEF) metallic resonators. Under the excitation of the normally incident waves, each of the two DEFs exhibits different frequency of electric dipole response, which leads to the ultra-broadband and polarization-independent EIT-like effect. The resonant feature of the EIT-like effect has been qualitatively analyzed from the surface current distributions and quantitatively by the "two-oscillator" coupling model. In addition, the large group index is extracted to verify the slow light property within the transmission window. The EIT metamaterial structure with the above-mentioned characteristics may have potential applications in some areas, such as sensing, slow light, and filtering devices.
Transparent heaters made by ultrasonic spray pyrolysis of SnO2 on soda-lime glass substrates
NASA Astrophysics Data System (ADS)
Ansari, Mohammad; Akbari-Saatloo, Mehdi; Gharesi, Mohsen
2017-12-01
Transparent heaters have become important owing to the increasing demand in automotive and display device manufacturing industries. Indium tin oxide (ITO) is the most commonly used material for production of transparent heaters, but the fabrication cost is high as the indium resources are diminishing fast. This has been the driving force behind the intense research for discovering more durable and cost-effective alternatives. Tin oxide, with its high temperature stability and coexisting high levels of conductivity and transparency, can replace expensive ITO in the fabrication of transparent heaters. Here, we propose tin oxide films deposited using ultrasonic spray pyrolysis as the raw material for the fabrication of transparent heaters. Silver contacts are paste printed on the deposited SnO2 layers, which provide the necessary connections to the external circuitry. Deposition of films having sheet resistance in the 150 Ω/□ range takes only ∼5 minutes and the utilized methods are fully scalable to mass production level. Durability tests, carried out for weeks of continuous operation at different elevated temperatures, demonstrated the long load life of the produced heaters.
A study of polaritonic transparency in couplers made from excitonic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Mahi R.; Racknor, Chris
2015-03-14
We have studied light matter interaction in quantum dot and exciton-polaritonic coupler hybrid systems. The coupler is made by embedding two slabs of an excitonic material (CdS) into a host excitonic material (ZnO). An ensemble of non-interacting quantum dots is doped in the coupler. The bound exciton polariton states are calculated in the coupler using the transfer matrix method in the presence of the coupling between the external light (photons) and excitons. These bound exciton-polaritons interact with the excitons present in the quantum dots and the coupler is acting as a reservoir. The Schrödinger equation method has been used tomore » calculate the absorption coefficient in quantum dots. It is found that when the distance between two slabs (CdS) is greater than decay length of evanescent waves the absorption spectrum has two peaks and one minimum. The minimum corresponds to a transparent state in the system. However, when the distance between the slabs is smaller than the decay length of evanescent waves, the absorption spectra has three peaks and two transparent states. In other words, one transparent state can be switched to two transparent states when the distance between the two layers is modified. This could be achieved by applying stress and strain fields. It is also found that transparent states can be switched on and off by applying an external control laser field.« less
First-principles prediction of a promising p-type transparent conductive material CsGeCl3
NASA Astrophysics Data System (ADS)
Huang, Dan; Zhao, Yu-Jun; Ju, Zhi-Ping; Gan, Li-Yong; Chen, Xin-Man; Li, Chang-Sheng; Yao, Chun-mei; Guo, Jin
2014-04-01
Most reported p-type transparent conductive materials are Cu-based compounds such as CuAlO2 and CuCrO2. Here, we report that compounds based on ns2 cations with low binding energy can also possess high valence band maximum, which is crucial for the p-type doping according to the doping limit rules. In particular, CsGeCl3, a compound with valence band maximum from ns2 cations, is predicted as a promising p-type transparent conductive material by first-principles calculations. Our results show that the p-type defect Ge vacancy dominates its intrinsic defects with a shallow transition level, and the calculated hole effective masses are low in CsGeCl3.
NASA Astrophysics Data System (ADS)
Harbaoui, Imen; Besbes, Hatem; Chafra, Moez
Innovation in the field of nuclear imaging is necessarily followed by a radical change in the detection principle. The gas detector Micromegas (Mesh Micro Structure Gaseous) could be an interesting option, thanks to the stability and robustness of such a detector. Thus, it was necessary to study the implementation of the detector enclosure in composite materials. The focus of the present study was the robustness and gamma rays transparency of a set of composites. The studied composites were reinforced with vegetable fibers (alfa), and synthetic fibers. The mechanical properties of all composites specimen were evaluated by three-point bending test, whereas, gamma ray transparency was evaluated by the exposition of composites specimen to a mono-energetic gamma ray beam emitted by a Technetium 99-m source. Findings revealed that the biocomposite materials using alfa fiber and Polymethyl Methacrylate matrix are very promising as long as they present good robustness and high gamma ray transparency in diagnostic range.
Quantifying the Performance of P-Type Transparent Conducting Oxides by Experimental Methods
Fleischer, Karsten; Norton, Emma; Mullarkey, Daragh; Caffrey, David; Shvets, Igor V.
2017-01-01
Screening for potential new materials with experimental and theoretical methods has led to the discovery of many promising candidate materials for p-type transparent conducting oxides. It is difficult to reliably assess a good p-type transparent conducting oxide (TCO) from limited information available at an early experimental stage. In this paper we discuss the influence of sample thickness on simple transmission measurements and how the sample thickness can skew the commonly used figure of merit of TCOs and their estimated band gap. We discuss this using copper-deficient CuCrO2 as an example, as it was already shown to be a good p-type TCO grown at low temperatures. We outline a modified figure of merit reducing thickness-dependent errors, as well as how modern ab initio screening methods can be used to augment experimental methods to assess new materials for potential applications as p-type TCOs, p-channel transparent thin film transistors, and selective contacts in solar cells. PMID:28862695
Mineral resource of the month: beryllium
Shedd, Kim B.
2006-01-01
Beryllium metal is lighter than aluminum and stiffer than steel. These and other properties, including its strength, dimensional stability, thermal properties and reflectivity, make it useful for aerospace and defense applications, such as satellite and space-vehicle structural components. Beryllium’s nuclear properties, combined with its low density, make it useful as a neutron reflector and moderator in nuclear reactors. Because it is transparent to most X rays, beryllium is used as X-ray windows in medical, industrial and analytical equipment.
NASA Astrophysics Data System (ADS)
Ekonomov, A.
2011-10-01
The problem of imaging of the planet surfaces is a priority for space exploration, since the surface is crucial to study the origin mechanisms . However, if for other planets in the solar system conducted hundreds of experiments in this direction, for Venus there are only a few . This is due to an optically dense cloud cover in the upper atmosphere of Venus. Until now, the global picture is obtained only in radio wavelengths. First spacecraft to the board which was carried out large-scale location of Venus was on the Pioneer Venus Orbiter (1978), which carried out radar mapping of the surface. AMS Venus 15/16 (1978) have got on board the DBR with a resolution of 1-2 km, and Magellan (1989) had a DBR with a resolution of 100 m. During 1975-1982 Soviet leanders, being on a surface, have taken a number of panoramas with the high resolution of the order of shares of meter. Thus, there is a gap between the resolution of 100 m and shares of meter and it should be filled. Such experiment could be imaging from undercloud layer in a transparency window of 1 microns. Idea is not new, but technical study was not conducted.
NASA Astrophysics Data System (ADS)
Ekonomov, A.
2011-10-01
The problem of imaging of the planet surfaces is a priority for space exploration, since the surface is crucial to study the origin mechanisms . However, if for other planets in the solar system conducted hundreds of experiments in this direction, for Venus there are only a few . This is due to an optically dense cloud cover in the upper atmosphere of Venus. Until now, the global picture is obtained only in radio wavelengths. First spacecraft to the board which was carried out large-scale location of Venus was on the Pioneer Venus Orbiter (1978), which carried out radar mapping of the surface. AMS Venus 15/16 (1978) have got on board the DBR with a resolution of 1-2 km, and Magellan (1989) had a DBR with a resolution of 100 m. During 1975-1982 Soviet leanders, being on a surface, have taken a number of panoramas with the high resolution of the order of shares of meter. Thus, there is a gap between the resolution of 100 m and shares of meter and it should be filled. Such experiment could be imaging from undercloud layer in a transparency window of 1 microns. Idea is not new, but technical study was not conducted.
Integral window/photon beam position monitor and beam flux detectors for x-ray beams
Shu, Deming; Kuzay, Tuncer M.
1995-01-01
A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.
Lee, Tai-Kuang; Liuand, Chao-Te; Lee, Wen-Hsi
2017-01-01
Recently, Thin Film Transistors (TFTs) have been studied widely because of potential applications in low cost, low-temperature process and flexible displays. They can be fabricated by easy processes based on solution methods. But the mobility of organic TFTs is lower and the threshold voltage is higher than amorphous Si TFTs. In order to enhance the channel mobility and satisfy with the requirement of low-cost fabrication, we prepare a low-cost, mask-free, reduced material wastage, deposited technology using transparent, directly printable, air-stable semiconductor slurries and dielectric solutions. In our investigations, we attempt to obtain a high performance and low-cost TFT via preparing materials, designing device structure, and using PZT inkjet-printing technology. A stable and non-precipitated metal oxide ink with appropriate doping was prepared for the fabrication of an InxZn1.5Sn1.0 (IZTO) by PZT inkjet-printing. The soluble direct-printing process is a powerful tool for material research and implies that the printable materials and the printing technology enable the use of all-printed low-cost flexible displays and other transparent electronic applications. Transparent materials including dielectric PVP, conductive carbon nanotube (CNT) and active IZTO were employed into the fabrication of our PZT inkjet-printing process. After annealed at 180 °C, The experimental all-printed TFT exhibit the carrier mobility of 0.194 cm2/Vs, sub-threshold slope of 20 V/decade, and the threshold voltage of 5 V, initially. All-inkjet-printed films have great transparency, potentially in transparent electronics and the transmittance pattern in visible part of the spectrum (400–700 nm) is over 80%.
Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes.
Chen, Tao; Xue, Yuhua; Roy, Ajit K; Dai, Liming
2014-01-28
Transparent and/or stretchable energy storage devices have attracted intense attention due to their unique optical and/or mechanical properties as well as their intrinsic energy storage function. However, it remains a great challenge to integrate transparent and stretchable properties into an energy storage device because the currently developed electrodes are either transparent or stretchable, but not both. Herein, we report a simple method to fabricate wrinkled graphene with high stretchability and transparency. The resultant wrinkled graphene sheets were used as both current collector and electrode materials to develop transparent and stretchable supercapacitors, which showed a high transparency (57% at 550 nm) and can be stretched up to 40% strain without obvious performance change over hundreds of stretching cycles.
Low-cost encapsulation materials for terrestrial solar cell modules
NASA Technical Reports Server (NTRS)
Cuddihy, E. F.; Baum, B.; Willis, P.
1979-01-01
The paper presents the findings of material surveys intended to identify low cost materials which could be functional as encapsulants (by 1986) for terrestrial solar cell modules. Economic analyses have indicated that in order to meet the low cost goal of $2.70 per sq m, some or all of the following material technologies must be developed or advanced: (1) UV screening outer covers; (2) elastomeric acrylics; (3) weatherproofing and waterproofing of structural wood and paper products; (4) transparent UV stabilizers for the UV-sensitive transparent pottants; and (5) cost-effective utilization of silicone and fluorocarbon materials.
Limits of transparency of transparent conducting oxides
NASA Astrophysics Data System (ADS)
Peelaers, Hartwin
A fundamental understanding of the factors that limit transparency in transparent conducting oxides (TCOs) is essential for further progress in materials and applications. These materials have a sufficiently large band gap, so that direct optical transitions do not lead to absorption of light within the visible spectrum. Since the presence of free carriers is essential for conductivity and thus for device applications, this introduces the possibility of additional absorption processes. In particular, indirect processes are possible, and these will constitute a fundamental limit of the material. The Drude theory is widely used to describe free-carrier absorption, but it is phenomenological in nature and tends to work poorly at shorter wavelengths, where band-structure effects are important. We will present calculations of phonon- and defect-assisted free-carrier absorption in a TCO completely from first principles. We will focus in detail on SnO2, but the methodology is general and we will also compare the results obtained for other TCO materials such as In2O3. These calculations provide not just quantitative results but also deeper insights in the mechanisms that govern absorption processes, which is essential for engineering improved materials to be used in more efficient devices. This work was performed in collaboration with E. Kioupakis and C.G. Van de Walle and was supported by ARO and NSF.
Multi-alternative decision-making with non-stationary inputs.
Nunes, Luana F; Gurney, Kevin
2016-08-01
One of the most widely implemented models for multi-alternative decision-making is the multihypothesis sequential probability ratio test (MSPRT). It is asymptotically optimal, straightforward to implement, and has found application in modelling biological decision-making. However, the MSPRT is limited in application to discrete ('trial-based'), non-time-varying scenarios. By contrast, real world situations will be continuous and entail stimulus non-stationarity. In these circumstances, decision-making mechanisms (like the MSPRT) which work by accumulating evidence, must be able to discard outdated evidence which becomes progressively irrelevant. To address this issue, we introduce a new decision mechanism by augmenting the MSPRT with a rectangular integration window and a transparent decision boundary. This allows selection and de-selection of options as their evidence changes dynamically. Performance was enhanced by adapting the window size to problem difficulty. Further, we present an alternative windowing method which exponentially decays evidence and does not significantly degrade performance, while greatly reducing the memory resources necessary. The methods presented have proven successful at allowing for the MSPRT algorithm to function in a non-stationary environment.
A promising p-type transparent conducting material: Layered oxysulfide [Cu2S2][Sr3Sc2O5
NASA Astrophysics Data System (ADS)
Liu, Min-Ling; Wu, Li-Bin; Huang, Fu-Qiang; Chen, Li-Dong; Chen, I.-Wei
2007-12-01
Sr3Cu2Sc2O5S2, a layered oxysulfide, composed of anti-PbO-like [Cu2S2] slabs alternating with perovskitelike [Sr3Sc2O5] slabs, was systematically studied as a p-type transparent conducting material. The material has a wide energy gap of 3.1eV and a p-type electrical conductivity of 2.8Scm-1 at room temperature. The hole mobility of +150cm2V-1S-1 at room temperature, which is much higher than the typical value of ˜10-1-10width="0.3em"/>cm2V-1S-1 found in other copper compounds. The performances of bulk undoped Sr3Cu2Sc2O5S2 show the promise of copper oxysulfides as a class of p-type transparent conductive materials that is essential for optoelectronic applications.
Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics
Xuezhu Xu; Jian Zhou; Long Jiang; Gilles Lubineau; Tienkhee Ng; Boon S. Ooi; Hsien-Yu Liao; Chao Shen; Long Chen; Junyong Zhu
2016-01-01
Paper is an excellent candidate to replace plastics as a substrate for flexible electronics due to its low cost, renewability and flexibility. Cellulose nanopaper (CNP), a new type of paper made of nanosized cellulose fibers, is a promising substrate material for transparent and flexible electrodes due to its potentially high transparency and high mechanical strength....
Time Management: A Lesson Plan, Transparencies, Handouts and Media Evaluations on the Topic.
ERIC Educational Resources Information Center
Campbell, Clifton P.
Intended for use in a 3-hour instructional program at the graduate level, the packet contains an outline of the instructional content, 9 transparencies, 12 handouts, and 7 supplementary materials. The outline is organized in terms of content, instructor activity (such as showing a transparency), and student activity. Instruction covers the…
Vanadium dioxide nanogrid films for high transparency smart architectural window applications.
Liu, Chang; Balin, Igal; Magdassi, Shlomo; Abdulhalim, Ibrahim; Long, Yi
2015-02-09
This study presents a novel approach towards achieving high luminous transmittance (T(lum)) for vanadium dioxide (VO(2)) thermochromic nanogrid films whilst maintaining the solar modulation ability (ΔT(sol)). The perforated VO(2)-based films employ orderly-patterned nano-holes, which are able to favorably transmit visible light dramatically but retain large near-infrared modulation, thereby enhancing ΔT(sol). Numerical optimizations using parameter search algorithms have implemented through a series of Finite Difference Time Domain (FDTD) simulations by varying film thickness, cell periodicity, grid dimensions and variations of grid arrangement. The best performing results of T(lum) (76.5%) and ΔT(sol) (14.0%) are comparable, if not superior, to the results calculated from nanothermochromism, nanoporosity and biomimic nanostructuring. It opens up a new approach for thermochromic smart window applications.
Han, Bing; Peng, Qiang; Li, Ruopeng; Rong, Qikun; Ding, Yang; Akinoglu, Eser Metin; Wu, Xueyuan; Wang, Xin; Lu, Xubing; Wang, Qianming; Zhou, Guofu; Liu, Jun-Ming; Ren, Zhifeng; Giersig, Michael; Herczynski, Andrzej; Kempa, Krzysztof; Gao, Jinwei
2016-09-26
An ideal network window electrode for photovoltaic applications should provide an optimal surface coverage, a uniform current density into and/or from a substrate, and a minimum of the overall resistance for a given shading ratio. Here we show that metallic networks with quasi-fractal structure provides a near-perfect practical realization of such an ideal electrode. We find that a leaf venation network, which possesses key characteristics of the optimal structure, indeed outperforms other networks. We further show that elements of hierarchal topology, rather than details of the branching geometry, are of primary importance in optimizing the networks, and demonstrate this experimentally on five model artificial hierarchical networks of varied levels of complexity. In addition to these structural effects, networks containing nanowires are shown to acquire transparency exceeding the geometric constraint due to the plasmonic refraction.
Optomechanical design and tolerance of a microscope objective at 121.6 nm
NASA Astrophysics Data System (ADS)
Keyes, Derek S.; Jota, Thiago S.; Gao, Weichuan; Luepke, Dakota; Densmore, Victor; Kim, Young-Sik; Kim, Gun-Hee; Milster, Thomas D.
2015-08-01
By utilizing the Hydrogen-Lyman-α (HLA) source at 121.6 nm, we hope to achieve an intrinsic resolution of 247 nm at 0.3 numerical aperture (NA) and 92 nm at 0.8 NA. The motivation for 121.6 nm microscopy is the existence of a transparent window in the air absorption spectrum at that wavelength, which allows for the sample to be in air while the microscope is in an enclosed nitrogen environment. The microscope objective consists of two reflective optics and a LiF window, and it has been designed to demonstrate diffraction limited performance over a 160μm full field at 121.6 nm. The optomechanical design consists of mechanical subcells for each optical component, precision spacers and a barrel bore, which allow for submicron control of tolerance parameters.
Composite scintillators for detection of ionizing radiation
Dai, Sheng [Knoxville, TN; Stephan, Andrew Curtis [Knoxville, TN; Brown, Suree S [Knoxville, TN; Wallace, Steven A [Knoxville, TN; Rondinone, Adam J [Knoxville, TN
2010-12-28
Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.
Puig, Julieta; Williams, Roberto J J; Hoppe, Cristina E
2013-09-25
Paraffins are typical organic phase change materials (PCM) used for latent heat storage. For practical applications they must be encapsulated to prevent leakage or agglomeration during fusion. In this study it is shown that eicosane (C20H42 = C20) in the melted state could be dissolved in the hydrophobic domains of poly(dodecyl methacrylate) (PDMA) up to concentrations of 30 wt %, avoiding the need of encapsulation. For a 30 wt % solution, the heat of phase change was close to 69 J/g, a reasonable value for its use as a PCM. The fully converted solution remained transparent at 80 °C with no evidence of phase separation but became opaque by cooling as a consequence of paraffin crystallization. Heating above the melting temperature regenerated a transparent material. A high contrast ratio and abrupt transition between opaque and transparent states was observed for the 30 wt % blends, with a transparent state at 35 °C and an opaque state at 23 °C. This behavior was completely reproducible during consecutive heating/cooling cycles, indicating the possible use of this material as a thermally reversible light scattering (TRLS) film.
Protective broadband window coatings
NASA Astrophysics Data System (ADS)
Askinazi, Joel; Narayanan, Authi A.
1997-06-01
Optical windows employed in current and future airborne and ground based optical sensor systems are required to provide long service life under extreme environmental conditions including blowing sand and high speed rain. State of the art sensor systems are employing common aperture windows which must provide optical bandpasses from the TV to the LWIR. Operation Desert Storm experience indicates that current optical coatings provide limited environmental protection which adversely affects window life cycle cost. Most of these production coatings also have limited optical bandpasses (LWIR, MWIR, or TV-NIR). A family of optical coatings has been developed which provide a significant increase in rain and sand impact protection to current optical window materials. These coatings can also be tailored to provide either narrow optical bandwidth (e.g., LWIR) or broadband transmittance (TV- LWIR). They have been applied to a number of standard optical window materials. These coating have successfully completed airborne rain and sand abrasion test with minimal impact on optical window performance. Test results are presented. Low cost service life is anticipated as well as the ability to operate windows in even more taxing environments than currently feasible.
Material Design of p-Type Transparent Amorphous Semiconductor, Cu-Sn-I.
Jun, Taehwan; Kim, Junghwan; Sasase, Masato; Hosono, Hideo
2018-03-01
Transparent amorphous semiconductors (TAS) that can be fabricated at low temperature are key materials in the practical application of transparent flexible electronics. Although various n-type TAS materials with excellent performance, such as amorphous In-Ga-Zn-O (a-IGZO), are already known, no complementary p-type TAS has been realized to date. Here, a material design concept for p-type TAS materials is proposed utilizing the pseudo s-orbital nature of spatially spreading iodine 5p orbitals and amorphous Sn-containing CuI (a-CuSnI) thin film is reported as an example. The resulting a-CuSnI thin films fabricated by spin coating at low temperature (140 °C) have a smooth surface. The Hall mobility increases with the hole concentration and the largest mobility of ≈9 cm 2 V -1 s -1 is obtained, which is comparable with that of conventional n-type TAS. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enhanced UV light detection using a p-terphenyl wavelength shifter
NASA Astrophysics Data System (ADS)
Joosten, S.; Kaczanowicz, E.; Ungaro, M.; Rehfuss, M.; Johnston, K.; Meziani, Z.-E.
2017-10-01
UV-glass photomultiplier tubes (PMTs) have poor photon detection efficiency for wavelengths below 300 nm due to the opaqueness of the window material. Costly quartz PMTs could be used to enhance the efficiency below 300 nm. A less expensive solution that dramatically improves this efficiency is the application of a thin film of a p-terphenyl (PT) wavelength shifter on UV-glass PMTs. This improvement was quantified for Photonis XP4500B PMTs for wavelengths between 200 nm and 400 nm. The gain factor ranges up to 5 . 4 ± 0 . 5 at a wavelength of 215 nm, with a material load of 110 ± 10 μg /cm2 (894 nm). The wavelength shifter was found to be fully transparent for wavelengths greater than 300 nm. The resulting gain in detection efficiency, when used in a typical C̆erenkov counter, was estimated to be of the order of 40%. Consistent coating quality was assured by a rapid gain testing procedure using narrow-band UV LEDs. Based on these results, 200 Photonis XP4500B PMTs were treated with PT for the upgraded low-threshold C̆erenkov counter (LTCC) to be used in the CEBAF Large Acceptance Spectrometer upgraded detector (CLAS12) at the Thomas Jefferson National Accelerator Facility.
Ultra-low-loss and broadband mode converters in Si3N4 technology
NASA Astrophysics Data System (ADS)
Mu, Jinfeng; Dijkstra, Meindert; de Goede, Michiel; Yong, Yean-Sheng; García-Blanco, Sonia M.
2017-02-01
Si3N4 grown by low pressure chemical vapor deposition (LPCVD) on thermally oxidized silicon wafers is largely utilized for creating integrated photonic devices due to its ultra-low propagation loss and large transparency window (400 nm to 2350 nm). In this paper, an ultra-low-loss and broadband mode converter for monolithic integration of different materials onto the passive Si3N4 photonic technology platform is presented. The mode size converter is constructed with a vertically tapered Si3N4 waveguide that is then buried by a polymer or an Al2O3 waveguide. The influence of the various design parameters on the converter characteristics are investigated. Optimal designs are proposed, in which the thickness of the Si3N4 waveguide is tapered from 200 nm to 40 nm. The calculated losses of the mode converters at 976 nm and 1550 nm wavelengths are well below 0.1 dB for the Si3N4-polymer coupler and below 0.3 dB for the Si3N4-Al2O3 coupler. The preliminary experimental results show good agreement with the design values, indicating that the mode converters can be utilized for the low-loss integration of different materials.
Mechanical and optical response of [100] lithium fluoride to multi-megabar dynamic pressures
NASA Astrophysics Data System (ADS)
Davis, Jean-Paul; Knudson, Marcus D.; Shulenburger, Luke; Crockett, Scott D.
2016-10-01
An understanding of the mechanical and optical properties of lithium fluoride (LiF) is essential to its use as a transparent tamper and window for dynamic materials experiments. In order to improve models for this material, we applied iterative Lagrangian analysis to ten independent sets of data from magnetically driven planar shockless compression experiments on single crystal [100] LiF to pressures as high as 350 GPa. We found that the compression response disagreed with a prevalent tabular equation of state for LiF that is commonly used to interpret shockless compression experiments. We also present complementary data from ab initio calculations performed using the diffusion quantum Monte Carlo method. The agreement between these two data sets lends confidence to our interpretation. In order to aid in future experimental analysis, we have modified the tabular equation of state to match the new data. We have also extended knowledge of the optical properties of LiF via shock-compression and shockless compression experiments, refining the transmissibility limit, measuring the refractive index to ˜300 GPa, and confirming the nonlinear dependence of the refractive index on density. We present a new model for the refractive index of LiF that includes temperature dependence and describe a procedure for correcting apparent velocity to true velocity for dynamic compression experiments.
NASA Technical Reports Server (NTRS)
Ko, William L.; Gong, Leslie
2000-01-01
To visually record the initial free flight event of the Hyper-X research flight vehicle immediately after separation from the Pegasus(registered) booster rocket, a video camera was mounted on the bulkhead of the adapter through which Hyper-X rides on Pegasus. The video camera was shielded by a protecting camera window made of heat-resistant quartz material. When Hyper-X separates from Pegasus, this camera window will be suddenly exposed to Mach 7 stagnation thermal shock and dynamic pressure loading (aerothermal loading). To examine the structural integrity, thermoelastic analysis was performed, and the stress distributions in the camera windows were calculated. The critical stress point where the tensile stress reaches a maximum value for each camera window was identified, and the maximum tensile stress level at that critical point was found to be considerably lower than the tensile failure stress of the camera window material.
NASA Astrophysics Data System (ADS)
Shin, Wonjung; Cho, Wonki; Baik, Seung Jae
2018-01-01
As a geometrically engineered realization of transparent electrode, Ag nanowires network is promising for its superior characteristics both on electrical conductivity and optical transmittance. However, for a potential commercialization of Ag nanowires network, further investigations on encapsulation materials are necessary to prevent degradation caused by ambient aging. In addition, the temperature range of the coating process for the encapsulation material needs to be low enough to prevent degradation of polymer substrates during the film coating processes, when considering emerging flexible device application of transparent electrodes. We present experimental results showing that low temperature sol-gel ZnO processed under 130 °C is an effective encapsulation material preventing ambient oxidation of Ag nanowires network without degrading electrical, optical, and mechanical properties.
An image engineering system for the inspection of transparent construction materials
NASA Astrophysics Data System (ADS)
Hinz, S.; Stephani, M.; Schiemann, L.; Zeller, K.
This article presents a modular photogrammetric recording and image analysis system for inspecting the material characteristics of transparent foils, in particular Ethylen-TetraFluorEthylen-Copolymer (ETFE) foils. The foils are put under increasing air pressure and are observed by a stereo camera system. Determining the time-variable 3D shape of transparent material imposes a number of challenges: especially the automatic point transfer between stereo images and, in temporal domain, from one image pair to the next. We developed an automatic approach that accommodates for these particular circumstances and allows reconstruction of the 3D shape for each epoch as well as determining 3D translation vectors between epochs by feature tracking. Examples including numerical results and accuracy measures prove the applicability of the system.
Transparent lithium-ion batteries
Yang, Yuan; Jeong, Sangmoo; Hu, Liangbing; Wu, Hui; Lee, Seok Woo; Cui, Yi
2011-01-01
Transparent devices have recently attracted substantial attention. Various applications have been demonstrated, including displays, touch screens, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transparent and have to be thick enough to store energy, the traditional approach of using thin films for transparent devices is not suitable. Here we demonstrate a grid-structured electrode to solve this dilemma, which is fabricated by a microfluidics-assisted method. The feature dimension in the electrode is below the resolution limit of human eyes, and, thus, the electrode appears transparent. Moreover, by aligning multiple electrodes together, the amount of energy stored increases readily without sacrificing the transparency. This results in a battery with energy density of 10 Wh/L at a transparency of 60%. The device is also flexible, further broadening their potential applications. The transparent device configuration also allows in situ Raman study of fundamental electrochemical reactions in batteries. PMID:21788483
The Impact of Changing Cloud Cover on the High Arctic's Primary Cooling-to-space Windows
NASA Astrophysics Data System (ADS)
Mariani, Zen; Rowe, Penny; Strong, Kimberly; Walden, Von; Drummond, James
2014-05-01
In the Arctic, most of the infrared energy emitted by the surface escapes to space in two atmospheric windows at 10 and 20 μm. As the Arctic warms, the 20 μm cooling-to-space window becomes increasingly opaque (or "closed"), trapping more surface infrared radiation in the atmosphere, with implications for the Arctic's radiative energy balance. Since 2006, the Canadian Network for the Detection of Atmospheric Change (CANDAC) has measured downwelling infrared radiance with an Atmospheric Emitted Radiance Interferometer (AERI) at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Canada, providing the first long-term measurements of the 10 and 20 μm windows in the high Arctic. In this work, measurements of the distribution of downwelling 10 and 20 µm brightness temperatures at Eureka are separated based on cloud cover, providing a comparison to an existing climatology from the Southern Great Plains (SGP). Measurements of the downwelling radiance at both 10 and 20 μm exhibit strong seasonal variability as a result of changes in temperature and water vapour, in addition to variability with cloud cover. When separated by season, brightness temperatures in the 20 µm window are found to be independent of cloud thickness in the summertime, indicating that this window is closed in the summer. Radiance trends in three-month averages are positive and are significantly larger (factor > 5) than the trends detected at the SGP, indicating that changes in the downwelling radiance are accelerated in the high Arctic compared to lower latitudes. This statistically significant increase (> 5% / yr) in radiance at 10 μm occurs only when the 20 μm window is mostly transparent, or "open" (i.e., in all seasons except summer), and may have long-term consequences, particularly as warmer temperatures and increased water vapour "close" the dirty window for a prolonged period. These surface-based measurements of radiative forcing can be used to quantify changes in the high-Arctic energy budget and evaluate general circulation model simulations.
Laurenti, Marco; Bianco, Stefano; Castellino, Micaela; Garino, Nadia; Virga, Alessandro; Pirri, Candido F; Mandracci, Pietro
2016-03-01
Plastic smart windows are becoming one of the key elements in view of the fabrication of inexpensive, lightweight electrochromic (EC) devices to be integrated in the new generation of high-energy-efficiency buildings and automotive applications. However, fabricating electrochromic devices on polymer substrates requires a reduction of process temperature, so in this work we focus on the development of a completely room-temperature deposition process aimed at the preparation of ITO-coated polycarbonate (PC) structures acting as transparent and conductive plastic supports. Without providing any substrate heating or surface activation pretreatments of the polymer, different deposition conditions are used for growing indium tin oxide (ITO) thin films by the radiofrequency magnetron sputtering technique. According to the characterization results, the set of optimal deposition parameters is selected to deposit ITO electrodes having high optical transmittance in the visible range (∼90%) together with low sheet resistance (∼8 ohm/sq). The as-prepared ITO/PC structures are then successfully tested as conductive supports for the fabrication of plastic smart windows. To this purpose, tungsten trioxide thin films are deposited by the reactive sputtering technique on the ITO/PC structures, and the resulting single electrode EC devices are characterized by chronoamperometric experiments and cyclic voltammetry. The fast switching response between colored and bleached states, together with the stability and reversibility of their electrochromic behavior after several cycling tests, are considered to be representative of the high quality of the EC film but especially of the ITO electrode. Indeed, even if no adhesion promoters, additional surface activation pretreatments, or substrate heating were used to promote the mechanical adhesion among the electrode and the PC surface, the observed EC response confirmed that the developed materials can be successfully employed for the fabrication of lightweight and inexpensive plastic EC devices.
González, Gabriela B.
2012-01-01
Transparent conducting oxide (TCO) materials are implemented into a wide variety of commercial devices because they possess a unique combination of high optical transparency and high electrical conductivity. Created during the processing of the TCOs, defects within the atomic-scale structure are responsible for their desirable optical and electrical properties. Therefore, studying the defect structure is essential to a better understanding of the behavior of transparent conductors. X-ray and neutron scattering techniques are powerful tools to investigate the atomic lattice structural defects in these materials. This review paper presents some of the current developments in the study of structural defects in n-type TCOs using x-ray diffraction (XRD), neutron diffraction, extended x-ray absorption fine structure (EXAFS), pair distribution functions (PDFs), and x-ray fluorescence (XRF). PMID:28817010
EDITORIAL: On display with transparent conducting films On display with transparent conducting films
NASA Astrophysics Data System (ADS)
Demming, Anna
2012-03-01
Transparent conducting films were already featuring in scientific literature over one hundred years ago. In 1894 Aryton and Mather described a conducting varnish for coating the screens of electric apparatus so they would not charge when accidentally brushed by a coat sleeve or other material [1]. Their method began with a similar approach to that used to make savoury jellies; by dissolving gelatine in vinegar, after which less palatable ingredients were incorporated including sulphuric acid and an antisulphuric enamel. While the search for transparent conducting films continued to attract other researchers, the same problem remained: the transparency would be compromised if the film was too thick, and the conductivity would be compromised if the film was too thin. In the early 1950s Gillham and Preston reported that thin gold films sputtered on bismuth oxide and heated resulted in a material that successfully combined the previously mutually exclusive properties of transparency and conductivity [2]. Other oxide films were also found to favourably combine these properties, including tin oxide, as reported by Ishiguro and colleagues in Japan in 1958 [3]. Today tin oxide doped with indium (ITO) has become the industry standard for transparent conducting films in a range of applications including photovoltaic technology and displays. It is perhaps the mounting ubiquity of electronic displays as a result of the increasingly digitised and computerised environment of the modern day world that has begun to underline the main drawback of ITO: expense. In this issue, a collaboration of researchers in Korea present an overview of graphene as a transparent conducting material with the potential to replace ITO in a range of electronic and optoelectronic applications [4]. One of the first innovations in optical microscopy was the use of dyes. This principle first came into practice with the use of ultraviolet light to reveal previously indistinguishable features. As explained by a researcher in the early 1930s, 'It is obvious that if the dyes used for selective staining in ordinary microscopical work are supplemented by substances which cause a particular detail of the structure to fluoresce with a specific colour in ultraviolet light, then many strings will be added to the bow of the practical microscopist' [3]. More recently, emphasis on the role of plasmons—collective oscillations of electrons in nanoscale metal structures—has received considerable research attention. Plasmons enhance the local electromagnetic field and can lead to increased fluorescence rates from nearby fluorophores depending on the efficiency of the counteracting process, non-radiative transfer [4]. Flat ITO films have been used extensively in photovoltaic studies as transparent electrodes [5]. Over the past few years, nanowire structures have recently been used to increase the surface area of the interface between dye and oxide in dye-sensitized solar cells [6]. A collaboration of researchers in China and Australia has recently extended the innovation of the nanowire structure to the ITO electrode [7]. Using cyclic voltammetry the researchers confirmed that using a 3D ITO-nanowire electrode significantly enhanced the reaction current. Despite its attractive properties, alternatives to ITO are now in high demand. The rise in devices requiring flat electronic displays has begun to overwhelm the legitimacy of using such a rare element as indium for transparent conducting films. ITO is also brittle, causing problems for flexible displays. Films of carbon nanotubes have been proposed for transparent conducting films but improvements to the sheet resistance are needed before they can compete with the performance of ITO. The effects of HNO3 treatment on the resistivity of carbon nanotube films has attracted some debate in the community, and stimulated the work of Ji-Beom Yoo and colleagues in Korea [8]. Their results suggest that p-type doping has a larger effect on the sheet resistance of HNO3 treated carbon-nanotube films than the removal of residual N-methylpyrrolidone. Unsurprisingly graphene, the latest carbon wonder material, has also shown remarkable potential as a transparent conducting film. Chemical vapour deposition (CVD) synthesis of graphene has the advantage that it allows fabrication of the sheets to be scaled up. A collaboration of researchers in the USA, Singapore and Korea demonstrated that the conductivity of CVD graphene sheets can be improved by p-doping with AuCl3 [9]. The potential of graphene in a range of applications is also being demonstrated, as researchers in Australia and China show in a report on graphene in transparent conducting electrodes for GaN LED devices [10]. The review in this issue [4] provides a comprehensive overview of graphene as an electrode, including the synthesis, chemical doping and work function engineering of the material, as well as applications in transistors, memories, molecular junctions, touch screens, LCDs, LEDs and solar cells. Back in the early 1950s Gillham and Preston saw the possibility of using their gold sputtered bismuth oxide films for windows that could be electrically heated and took out a patent on their discovery [11]. While they saw potential applications for conducting transparent films, it could be argued that even Gillham and Preston would have been surprised at the extent to which transparent conducting films have infiltrated everyday technology over the 60 years since. It is tempting to wonder what wide reaching ramifications the current fruitful activity in graphene device research may have in the decades to come. References [1] Ayrton W E and Mather T 1894 J. Int. Elec. Eng. 23 376-80 [2] Gillham E J and Preston J S 1952 Proc. Phys. Soc. B 65 649 [3] Ishiguro K, Sasaki T, Arai T and Imai I 1958 J. Phys. Soc. Jpn. 13 296-304 [4] Jo G, Choe M, Lee S, Park W, Kahng Y H and Lee T 2012 Nanotechnology 23 112001 [5] Guo P and Aegerter M A 1999 Thin Solid Films 351 290-4 [6]Law M, Greene L E, Johnson J C, Saykally R and Yang P 2005 Nat. Mater. 4 455-9 [7] Wang H-W, Ting C-F, Hung M-K, Chiou C-H, Liu Y-L, Liu Z, Ratinac K R and Ringer S P 2009 Nanotechnology 20 055601 [8] Shin D-W, Lee J H, Kim Y-H, Yu S M, Park S-Y and Yoo J-B 2009 Nanotechnology 20 475703 [9] Kim K K, Reina A, Shi Y, Park H, Li L-J, Lee Y H and Kong J 2010 Nanotechnology 21 285205 [10] Jo G et al 2010 Nanotechnology 21 185201 [11] Preston S P 1958 US Patent Specification 98 2825687
Outwater, John O.
2000-01-01
A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.
Optical bistability in a single-sided cavity coupled to a quantum channel
NASA Astrophysics Data System (ADS)
Payravi, M.; Solookinejad, Gh; Jabbari, M.; Nafar, M.; Ahmadi Sangachin, E.
2018-06-01
In this paper, we discuss the long wavelength optical reflection and bistable behavior of an InGaN/GaN quantum dot nanostructure coupled to a single-sided cavity. It is found that due to the presence of a strong coupling field, the reflection coefficient can be controlled at long wavelength, which is essential for adjusting the threshold of reflected optical bistability. Moreover, the phase shift features of the reflection pulse inside an electromagnetically induced transparency window are also discussed.