Comparison of Space Radiation Calculations from Deterministic and Monte Carlo Transport Codes
NASA Technical Reports Server (NTRS)
Adams, J. H.; Lin, Z. W.; Nasser, A. F.; Randeniya, S.; Tripathi, r. K.; Watts, J. W.; Yepes, P.
2010-01-01
The presentation outline includes motivation, radiation transport codes being considered, space radiation cases being considered, results for slab geometry, results from spherical geometry, and summary. ///////// main physics in radiation transport codes hzetrn uprop fluka geant4, slab geometry, spe, gcr,
Description of Transport Codes for Space Radiation Shielding
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Wilson, John W.; Cucinotta, Francis A.
2011-01-01
This slide presentation describes transport codes and their use for studying and designing space radiation shielding. When combined with risk projection models radiation transport codes serve as the main tool for study radiation and designing shielding. There are three criteria for assessing the accuracy of transport codes: (1) Ground-based studies with defined beams and material layouts, (2) Inter-comparison of transport code results for matched boundary conditions and (3) Comparisons to flight measurements. These three criteria have a very high degree with NASA's HZETRN/QMSFRG.
Comparison of space radiation calculations for deterministic and Monte Carlo transport codes
NASA Astrophysics Data System (ADS)
Lin, Zi-Wei; Adams, James; Barghouty, Abdulnasser; Randeniya, Sharmalee; Tripathi, Ram; Watts, John; Yepes, Pablo
For space radiation protection of astronauts or electronic equipments, it is necessary to develop and use accurate radiation transport codes. Radiation transport codes include deterministic codes, such as HZETRN from NASA and UPROP from the Naval Research Laboratory, and Monte Carlo codes such as FLUKA, the Geant4 toolkit and HETC-HEDS. The deterministic codes and Monte Carlo codes complement each other in that deterministic codes are very fast while Monte Carlo codes are more elaborate. Therefore it is important to investigate how well the results of deterministic codes compare with those of Monte Carlo transport codes and where they differ. In this study we evaluate these different codes in their space radiation applications by comparing their output results in the same given space radiation environments, shielding geometry and material. Typical space radiation environments such as the 1977 solar minimum galactic cosmic ray environment are used as the well-defined input, and simple geometries made of aluminum, water and/or polyethylene are used to represent the shielding material. We then compare various outputs of these codes, such as the dose-depth curves and the flux spectra of different fragments and other secondary particles. These comparisons enable us to learn more about the main differences between these space radiation transport codes. At the same time, they help us to learn the qualitative and quantitative features that these transport codes have in common.
Benchmarking NNWSI flow and transport codes: COVE 1 results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayden, N.K.
1985-06-01
The code verification (COVE) activity of the Nevada Nuclear Waste Storage Investigations (NNWSI) Project is the first step in certification of flow and transport codes used for NNWSI performance assessments of a geologic repository for disposing of high-level radioactive wastes. The goals of the COVE activity are (1) to demonstrate and compare the numerical accuracy and sensitivity of certain codes, (2) to identify and resolve problems in running typical NNWSI performance assessment calculations, and (3) to evaluate computer requirements for running the codes. This report describes the work done for COVE 1, the first step in benchmarking some of themore » codes. Isothermal calculations for the COVE 1 benchmarking have been completed using the hydrologic flow codes SAGUARO, TRUST, and GWVIP; the radionuclide transport codes FEMTRAN and TRUMP; and the coupled flow and transport code TRACR3D. This report presents the results of three cases of the benchmarking problem solved for COVE 1, a comparison of the results, questions raised regarding sensitivities to modeling techniques, and conclusions drawn regarding the status and numerical sensitivities of the codes. 30 refs.« less
Verification and benchmark testing of the NUFT computer code
NASA Astrophysics Data System (ADS)
Lee, K. H.; Nitao, J. J.; Kulshrestha, A.
1993-10-01
This interim report presents results of work completed in the ongoing verification and benchmark testing of the NUFT (Nonisothermal Unsaturated-saturated Flow and Transport) computer code. NUFT is a suite of multiphase, multicomponent models for numerical solution of thermal and isothermal flow and transport in porous media, with application to subsurface contaminant transport problems. The code simulates the coupled transport of heat, fluids, and chemical components, including volatile organic compounds. Grid systems may be cartesian or cylindrical, with one-, two-, or fully three-dimensional configurations possible. In this initial phase of testing, the NUFT code was used to solve seven one-dimensional unsaturated flow and heat transfer problems. Three verification and four benchmarking problems were solved. In the verification testing, excellent agreement was observed between NUFT results and the analytical or quasianalytical solutions. In the benchmark testing, results of code intercomparison were very satisfactory. From these testing results, it is concluded that the NUFT code is ready for application to field and laboratory problems similar to those addressed here. Multidimensional problems, including those dealing with chemical transport, will be addressed in a subsequent report.
A velocity-dependent anomalous radial transport model for (2-D, 2-V) kinetic transport codes
NASA Astrophysics Data System (ADS)
Bodi, Kowsik; Krasheninnikov, Sergei; Cohen, Ron; Rognlien, Tom
2008-11-01
Plasma turbulence constitutes a significant part of radial plasma transport in magnetically confined plasmas. This turbulent transport is modeled in the form of anomalous convection and diffusion coefficients in fluid transport codes. There is a need to model the same in continuum kinetic edge codes [such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory] with non-Maxwellian distributions. We present an anomalous transport model with velocity-dependent convection and diffusion coefficients leading to a diagonal transport matrix similar to that used in contemporary fluid transport models (e.g., UEDGE). Also presented are results of simulations corresponding to radial transport due to long-wavelength ExB turbulence using a velocity-independent diffusion coefficient. A BGK collision model is used to enable comparison with fluid transport codes.
SYMTRAN - A Time-dependent Symmetric Tandem Mirror Transport Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, D; Fowler, T
2004-06-15
A time-dependent version of the steady-state radial transport model in symmetric tandem mirrors in Ref. [1] has been coded up and first tests performed. Our code, named SYMTRAN, is an adaptation of the earlier SPHERE code for spheromaks, now modified for tandem mirror physics. Motivated by Post's new concept of kinetic stabilization of symmetric mirrors, it is an extension of the earlier TAMRAC rate-equation code omitting radial transport [2], which successfully accounted for experimental results in TMX. The SYMTRAN code differs from the earlier tandem mirror radial transport code TMT in that our code is focused on axisymmetric tandem mirrorsmore » and classical diffusion, whereas TMT emphasized non-ambipolar transport in TMX and MFTF-B due to yin-yang plugs and non-symmetric transitions between the plugs and axisymmetric center cell. Both codes exhibit interesting but different non-linear behavior.« less
Comparison of heavy-ion transport simulations: Collision integral in a box
NASA Astrophysics Data System (ADS)
Zhang, Ying-Xun; Wang, Yong-Jia; Colonna, Maria; Danielewicz, Pawel; Ono, Akira; Tsang, Manyee Betty; Wolter, Hermann; Xu, Jun; Chen, Lie-Wen; Cozma, Dan; Feng, Zhao-Qing; Das Gupta, Subal; Ikeno, Natsumi; Ko, Che-Ming; Li, Bao-An; Li, Qing-Feng; Li, Zhu-Xia; Mallik, Swagata; Nara, Yasushi; Ogawa, Tatsuhiko; Ohnishi, Akira; Oliinychenko, Dmytro; Papa, Massimo; Petersen, Hannah; Su, Jun; Song, Taesoo; Weil, Janus; Wang, Ning; Zhang, Feng-Shou; Zhang, Zhen
2018-03-01
Simulations by transport codes are indispensable to extract valuable physical information from heavy-ion collisions. In order to understand the origins of discrepancies among different widely used transport codes, we compare 15 such codes under controlled conditions of a system confined to a box with periodic boundary, initialized with Fermi-Dirac distributions at saturation density and temperatures of either 0 or 5 MeV. In such calculations, one is able to check separately the different ingredients of a transport code. In this second publication of the code evaluation project, we only consider the two-body collision term; i.e., we perform cascade calculations. When the Pauli blocking is artificially suppressed, the collision rates are found to be consistent for most codes (to within 1 % or better) with analytical results, or completely controlled results of a basic cascade code. In orderto reach that goal, it was necessary to eliminate correlations within the same pair of colliding particles that can be present depending on the adopted collision prescription. In calculations with active Pauli blocking, the blocking probability was found to deviate from the expected reference values. The reason is found in substantial phase-space fluctuations and smearing tied to numerical algorithms and model assumptions in the representation of phase space. This results in the reduction of the blocking probability in most transport codes, so that the simulated system gradually evolves away from the Fermi-Dirac toward a Boltzmann distribution. Since the numerical fluctuations are weaker in the Boltzmann-Uehling-Uhlenbeck codes, the Fermi-Dirac statistics is maintained there for a longer time than in the quantum molecular dynamics codes. As a result of this investigation, we are able to make judgements about the most effective strategies in transport simulations for determining the collision probabilities and the Pauli blocking. Investigation in a similar vein of other ingredients in transport calculations, like the mean-field propagation or the production of nucleon resonances and mesons, will be discussed in the future publications.
Computer Code for Transportation Network Design and Analysis
DOT National Transportation Integrated Search
1977-01-01
This document describes the results of research into the application of the mathematical programming technique of decomposition to practical transportation network problems. A computer code called Catnap (for Control Analysis Transportation Network A...
IPOLE - semi-analytic scheme for relativistic polarized radiative transport
NASA Astrophysics Data System (ADS)
Mościbrodzka, M.; Gammie, C. F.
2018-03-01
We describe IPOLE, a new public ray-tracing code for covariant, polarized radiative transport. The code extends the IBOTHROS scheme for covariant, unpolarized transport using two representations of the polarized radiation field: In the coordinate frame, it parallel transports the coherency tensor; in the frame of the plasma it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is implemented to be as spacetime- and coordinate- independent as possible. The emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, IPOLE is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth. We show that the code matches analytic results in flat space, and that it produces results that converge to those produced by Dexter's GRTRANS polarized transport code on a complicated model problem. We expect IPOLE will mainly find applications in modelling Event Horizon Telescope sources, but it may also be useful in other relativistic transport problems such as modelling for the IXPE mission.
Light transport feature for SCINFUL.
Etaati, G R; Ghal-Eh, N
2008-03-01
An extended version of the scintillator response function prediction code SCINFUL has been developed by incorporating PHOTRACK, a Monte Carlo light transport code. Comparisons of calculated and experimental results for organic scintillators exposed to neutrons show that the extended code improves the predictive capability of SCINFUL.
Implementation of an anomalous radial transport model for continuum kinetic edge codes
NASA Astrophysics Data System (ADS)
Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.
2007-11-01
Radial plasma transport in magnetic fusion devices is often dominated by plasma turbulence compared to neoclassical collisional transport. Continuum kinetic edge codes [such as the (2d,2v) transport version of TEMPEST and also EGK] compute the collisional transport directly, but there is a need to model the anomalous transport from turbulence for long-time transport simulations. Such a model is presented and results are shown for its implementation in the TEMPEST gyrokinetic edge code. The model includes velocity-dependent convection and diffusion coefficients expressed as a Hermite polynominals in velocity. The specification of the Hermite coefficients can be set, e.g., by specifying the ratio of particle and energy transport as in fluid transport codes. The anomalous transport terms preserve the property of no particle flux into unphysical regions of velocity space. TEMPEST simulations are presented showing the separate control of particle and energy anomalous transport, and comparisons are made with neoclassical transport also included.
Simulations of neutron transport at low energy: a comparison between GEANT and MCNP.
Colonna, N; Altieri, S
2002-06-01
The use of the simulation tool GEANT for neutron transport at energies below 20 MeV is discussed, in particular with regard to shielding and dose calculations. The reliability of the GEANT/MICAP package for neutron transport in a wide energy range has been verified by comparing the results of simulations performed with this package in a wide energy range with the prediction of MCNP-4B, a code commonly used for neutron transport at low energy. A reasonable agreement between the results of the two codes is found for the neutron flux through a slab of material (iron and ordinary concrete), as well as for the dose released in soft tissue by neutrons. These results justify the use of the GEANT/MICAP code for neutron transport in a wide range of applications, including health physics problems.
2009-01-01
proton PARMA PHITS -based Analytical Radiation Model in the Atmosphere PCAIRE Predictive Code for Aircrew Radiation Exposure PHITS Particle and...radiation transport code utilized is called PARMA ( PHITS based Analytical Radiation Model in the Atmosphere) [36]. The particle fluxes calculated from the...same dose equivalent coefficient regulations from the ICRP-60 regulations. As a result, the transport codes utilized by EXPACS ( PHITS ) and CARI-6
2009-07-05
proton PARMA PHITS -based Analytical Radiation Model in the Atmosphere PCAIRE Predictive Code for Aircrew Radiation Exposure PHITS Particle and Heavy...transport code utilized is called PARMA ( PHITS based Analytical Radiation Model in the Atmosphere) [36]. The particle fluxes calculated from the input...dose equivalent coefficient regulations from the ICRP-60 regulations. As a result, the transport codes utilized by EXPACS ( PHITS ) and CARI-6 (PARMA
Comparisons of anomalous and collisional radial transport with a continuum kinetic edge code
NASA Astrophysics Data System (ADS)
Bodi, K.; Krasheninnikov, S.; Cohen, R.; Rognlien, T.
2009-05-01
Modeling of anomalous (turbulence-driven) radial transport in controlled-fusion plasmas is necessary for long-time transport simulations. Here the focus is continuum kinetic edge codes such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory, but the model also has wider application. Our previously developed anomalous diagonal transport matrix model with velocity-dependent convection and diffusion coefficients allows contact with typical fluid transport models (e.g., UEDGE). Results are presented that combine the anomalous transport model and collisional transport owing to ion drift orbits utilizing a Krook collision operator that conserves density and energy. Comparison is made of the relative magnitudes and possible synergistic effects of the two processes for typical tokamak device parameters.
Overview of Recent Radiation Transport Code Comparisons for Space Applications
NASA Astrophysics Data System (ADS)
Townsend, Lawrence
Recent advances in radiation transport code development for space applications have resulted in various comparisons of code predictions for a variety of scenarios and codes. Comparisons among both Monte Carlo and deterministic codes have been made and published by vari-ous groups and collaborations, including comparisons involving, but not limited to HZETRN, HETC-HEDS, FLUKA, GEANT, PHITS, and MCNPX. In this work, an overview of recent code prediction inter-comparisons, including comparisons to available experimental data, is presented and discussed, with emphases on those areas of agreement and disagreement among the various code predictions and published data.
HZETRN: A heavy ion/nucleon transport code for space radiations
NASA Technical Reports Server (NTRS)
Wilson, John W.; Chun, Sang Y.; Badavi, Forooz F.; Townsend, Lawrence W.; Lamkin, Stanley L.
1991-01-01
The galactic heavy ion transport code (GCRTRN) and the nucleon transport code (BRYNTRN) are integrated into a code package (HZETRN). The code package is computer efficient and capable of operating in an engineering design environment for manned deep space mission studies. The nuclear data set used by the code is discussed including current limitations. Although the heavy ion nuclear cross sections are assumed constant, the nucleon-nuclear cross sections of BRYNTRN with full energy dependence are used. The relation of the final code to the Boltzmann equation is discussed in the context of simplifying assumptions. Error generation and propagation is discussed, and comparison is made with simplified analytic solutions to test numerical accuracy of the final results. A brief discussion of biological issues and their impact on fundamental developments in shielding technology is given.
Intact coding region of the serotonin transporter gene in obsessive-compulsive disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altemus, M.; Murphy, D.L.; Greenberg, B.
1996-07-26
Epidemiologic studies indicate that obsessive-compulsive disorder is genetically transmitted in some families, although no genetic abnormalities have been identified in individuals with this disorder. The selective response of obsessive-compulsive disorder to treatment with agents which block serotonin reuptake suggests the gene coding for the serotonin transporter as a candidate gene. The primary structure of the serotonin-transporter coding region was sequenced in 22 patients with obsessive-compulsive disorder, using direct PCR sequencing of cDNA synthesized from platelet serotonin-transporter mRNA. No variations in amino acid sequence were found among the obsessive-compulsive disorder patients or healthy controls. These results do not support a rolemore » for alteration in the primary structure of the coding region of the serotonin-transporter gene in the pathogenesis of obsessive-compulsive disorder. 27 refs.« less
Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, L.M.; Hochstedler, R.D.
1997-02-01
Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of themore » accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code).« less
BRYNTRN: A baryon transport model
NASA Technical Reports Server (NTRS)
Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Chun, Sang Y.; Hong, B. S.; Buck, Warren W.; Lamkin, S. L.; Ganapol, Barry D.; Khan, Ferdous; Cucinotta, Francis A.
1989-01-01
The development of an interaction data base and a numerical solution to the transport of baryons through an arbitrary shield material based on a straight ahead approximation of the Boltzmann equation are described. The code is most accurate for continuous energy boundary values, but gives reasonable results for discrete spectra at the boundary using even a relatively coarse energy grid (30 points) and large spatial increments (1 cm in H2O). The resulting computer code is self-contained, efficient and ready to use. The code requires only a very small fraction of the computer resources required for Monte Carlo codes.
First ERO2.0 modeling of Be erosion and non-local transport in JET ITER-like wall
NASA Astrophysics Data System (ADS)
Romazanov, J.; Borodin, D.; Kirschner, A.; Brezinsek, S.; Silburn, S.; Huber, A.; Huber, V.; Bufferand, H.; Firdaouss, M.; Brömmel, D.; Steinbusch, B.; Gibbon, P.; Lasa, A.; Borodkina, I.; Eksaeva, A.; Linsmeier, Ch; Contributors, JET
2017-12-01
ERO is a Monte-Carlo code for modeling plasma-wall interaction and 3D plasma impurity transport for applications in fusion research. The code has undergone a significant upgrade (ERO2.0) which allows increasing the simulation volume in order to cover the entire plasma edge of a fusion device, allowing a more self-consistent treatment of impurity transport and comparison with a larger number and variety of experimental diagnostics. In this contribution, the physics-relevant technical innovations of the new code version are described and discussed. The new capabilities of the code are demonstrated by modeling of beryllium (Be) erosion of the main wall during JET limiter discharges. Results for erosion patterns along the limiter surfaces and global Be transport including incident particle distributions are presented. A novel synthetic diagnostic, which mimics experimental wide-angle 2D camera images, is presented and used for validating various aspects of the code, including erosion, magnetic shadowing, non-local impurity transport, and light emission simulation.
A Monte Carlo Code for Relativistic Radiation Transport Around Kerr Black Holes
NASA Technical Reports Server (NTRS)
Schnittman, Jeremy David; Krolik, Julian H.
2013-01-01
We present a new code for radiation transport around Kerr black holes, including arbitrary emission and absorption mechanisms, as well as electron scattering and polarization. The code is particularly useful for analyzing accretion flows made up of optically thick disks and optically thin coronae. We give a detailed description of the methods employed in the code and also present results from a number of numerical tests to assess its accuracy and convergence.
Comparing Turbulence Simulation with Experiment in DIII-D
NASA Astrophysics Data System (ADS)
Ross, D. W.; Bravenec, R. V.; Dorland, W.; Beer, M. A.; Hammett, G. W.; McKee, G. R.; Murakami, M.; Jackson, G. L.
2000-10-01
Gyrofluid simulations of DIII-D discharges with the GRYFFIN code(D. W. Ross et al.), Transport Task Force Workshop, Burlington, VT, (2000). are compared with transport and fluctuation measurements. The evolution of confinement-improved discharges(G. R. McKee et al.), Phys. Plasmas 7, 1870 (200) is studied at early times following impurity injection, when EXB rotational shear plays a small role. The ion thermal transport predicted by the code is consistent with the experimental values. Experimentally, changes in density profiles resulting from the injection of neon, lead to reduction in fluctuation levels and transport following the injection. This triggers subsequent changes in the shearing rate that further reduce the turbulence.(M. Murakami et al.), European Physical Society, Budapest (2000); M. Murakami et al., this meeting. Estimated uncertainties in the plasma profiles, however, make it difficult to simulate these reductions with the code. These cases will also be studied with the GS2 gyrokinetic code.
Modeling of boron species in the Falcon 17 and ISP-34 integral tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazaridis, M.; Capitao, J.A.; Drossinos, Y.
1996-09-01
The RAFT computer code for aerosol formation and transport was modified to include boron species in its chemical database. The modification was necessary to calculate fission product transport and deposition in the FAL-17 and ISP-34 Falcon tests, where boric acid was injected. The experimental results suggest that the transport of cesium is modified in the presence of boron. The results obtained with the modified RAFT code are presented; they show good agreement with experimental results for cesium and partial agreement for boron deposition in the Falcon silica tube. The new version of the RAFT code predicts the same behavior formore » iodine deposition as the previous version, where boron species were not included.« less
Validation of the WIMSD4M cross-section generation code with benchmark results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leal, L.C.; Deen, J.R.; Woodruff, W.L.
1995-02-01
The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment for Research and Test (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the procedure to generatemore » cross-section libraries for reactor analyses and calculations utilizing the WIMSD4M code. To do so, the results of calculations performed with group cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory(ORNL) unreflected critical spheres, the TRX critical experiments, and calculations of a modified Los Alamos highly-enriched heavy-water moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented.« less
Shielding evaluation for solar particle events using MCNPX, PHITS and OLTARIS codes
NASA Astrophysics Data System (ADS)
Aghara, S. K.; Sriprisan, S. I.; Singleterry, R. C.; Sato, T.
2015-01-01
Detailed analyses of Solar Particle Events (SPE) were performed to calculate primary and secondary particle spectra behind aluminum, at various thicknesses in water. The simulations were based on Monte Carlo (MC) radiation transport codes, MCNPX 2.7.0 and PHITS 2.64, and the space radiation analysis website called OLTARIS (On-Line Tool for the Assessment of Radiation in Space) version 3.4 (uses deterministic code, HZETRN, for transport). The study is set to investigate the impact of SPEs spectra transporting through 10 or 20 g/cm2 Al shield followed by 30 g/cm2 of water slab. Four historical SPE events were selected and used as input source spectra particle differential spectra for protons, neutrons, and photons are presented. The total particle fluence as a function of depth is presented. In addition to particle flux, the dose and dose equivalent values are calculated and compared between the codes and with the other published results. Overall, the particle fluence spectra from all three codes show good agreement with the MC codes showing closer agreement compared to the OLTARIS results. The neutron particle fluence from OLTARIS is lower than the results from MC codes at lower energies (E < 100 MeV). Based on mean square difference analysis the results from MCNPX and PHITS agree better for fluence, dose and dose equivalent when compared to OLTARIS results.
Analysis of JT-60SA operational scenarios
NASA Astrophysics Data System (ADS)
Garzotti, L.; Barbato, E.; Garcia, J.; Hayashi, N.; Voitsekhovitch, I.; Giruzzi, G.; Maget, P.; Romanelli, M.; Saarelma, S.; Stankiewitz, R.; Yoshida, M.; Zagórski, R.
2018-02-01
Reference scenarios for the JT-60SA tokamak have been simulated with one-dimensional transport codes to assess the stationary state of the flat-top phase and provide a profile database for further physics studies (e.g. MHD stability, gyrokinetic analysis) and diagnostics design. The types of scenario considered vary from pulsed standard H-mode to advanced non-inductive steady-state plasmas. In this paper we present the results obtained with the ASTRA, CRONOS, JINTRAC and TOPICS codes equipped with the Bohm/gyro-Bohm, CDBM and GLF23 transport models. The scenarios analysed here are: a standard ELMy H-mode, a hybrid scenario and a non-inductive steady state plasma, with operational parameters from the JT-60SA research plan. Several simulations of the scenarios under consideration have been performed with the above mentioned codes and transport models. The results from the different codes are in broad agreement and the main plasma parameters generally agree well with the zero dimensional estimates reported previously. The sensitivity of the results to different transport models and, in some cases, to the ELM/pedestal model has been investigated.
Benchmarking of Neutron Production of Heavy-Ion Transport Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remec, Igor; Ronningen, Reginald M.; Heilbronn, Lawrence
Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models andmore » codes and additional benchmarking are required.« less
Benchmarking of Heavy Ion Transport Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remec, Igor; Ronningen, Reginald M.; Heilbronn, Lawrence
Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in designing and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models andmore » codes and additional benchmarking are required.« less
Burn, K W; Daffara, C; Gualdrini, G; Pierantoni, M; Ferrari, P
2007-01-01
The question of Monte Carlo simulation of radiation transport in voxel geometries is addressed. Patched versions of the MCNP and MCNPX codes are developed aimed at transporting radiation both in the standard geometry mode and in the voxel geometry treatment. The patched code reads an unformatted FORTRAN file derived from DICOM format data and uses special subroutines to handle voxel-to-voxel radiation transport. The various phases of the development of the methodology are discussed together with the new input options. Examples are given of employment of the code in internal and external dosimetry and comparisons with results from other groups are reported.
Validation of the WIMSD4M cross-section generation code with benchmark results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deen, J.R.; Woodruff, W.L.; Leal, L.E.
1995-01-01
The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment Research and Test Reactor (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the WIMSD4M cross-section librariesmore » for reactor modeling of fresh water moderated cores. The results of calculations performed with multigroup cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory (ORNL) unreflected HEU critical spheres, the TRX LEU critical experiments, and calculations of a modified Los Alamos HEU D{sub 2}O moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented.« less
Capabilities overview of the MORET 5 Monte Carlo code
NASA Astrophysics Data System (ADS)
Cochet, B.; Jinaphanh, A.; Heulers, L.; Jacquet, O.
2014-06-01
The MORET code is a simulation tool that solves the transport equation for neutrons using the Monte Carlo method. It allows users to model complex three-dimensional geometrical configurations, describe the materials, define their own tallies in order to analyse the results. The MORET code has been initially designed to perform calculations for criticality safety assessments. New features has been introduced in the MORET 5 code to expand its use for reactor applications. This paper presents an overview of the MORET 5 code capabilities, going through the description of materials, the geometry modelling, the transport simulation and the definition of the outputs.
Bahadori, Amir A; Sato, Tatsuhiko; Slaba, Tony C; Shavers, Mark R; Semones, Edward J; Van Baalen, Mary; Bolch, Wesley E
2013-10-21
NASA currently uses one-dimensional deterministic transport to generate values of the organ dose equivalent needed to calculate stochastic radiation risk following crew space exposures. In this study, organ absorbed doses and dose equivalents are calculated for 50th percentile male and female astronaut phantoms using both the NASA High Charge and Energy Transport Code to perform one-dimensional deterministic transport and the Particle and Heavy Ion Transport Code System to perform three-dimensional Monte Carlo transport. Two measures of radiation risk, effective dose and risk of exposure-induced death (REID) are calculated using the organ dose equivalents resulting from the two methods of radiation transport. For the space radiation environments and simplified shielding configurations considered, small differences (<8%) in the effective dose and REID are found. However, for the galactic cosmic ray (GCR) boundary condition, compensating errors are observed, indicating that comparisons between the integral measurements of complex radiation environments and code calculations can be misleading. Code-to-code benchmarks allow for the comparison of differential quantities, such as secondary particle differential fluence, to provide insight into differences observed in integral quantities for particular components of the GCR spectrum.
NASA Astrophysics Data System (ADS)
Bahadori, Amir A.; Sato, Tatsuhiko; Slaba, Tony C.; Shavers, Mark R.; Semones, Edward J.; Van Baalen, Mary; Bolch, Wesley E.
2013-10-01
NASA currently uses one-dimensional deterministic transport to generate values of the organ dose equivalent needed to calculate stochastic radiation risk following crew space exposures. In this study, organ absorbed doses and dose equivalents are calculated for 50th percentile male and female astronaut phantoms using both the NASA High Charge and Energy Transport Code to perform one-dimensional deterministic transport and the Particle and Heavy Ion Transport Code System to perform three-dimensional Monte Carlo transport. Two measures of radiation risk, effective dose and risk of exposure-induced death (REID) are calculated using the organ dose equivalents resulting from the two methods of radiation transport. For the space radiation environments and simplified shielding configurations considered, small differences (<8%) in the effective dose and REID are found. However, for the galactic cosmic ray (GCR) boundary condition, compensating errors are observed, indicating that comparisons between the integral measurements of complex radiation environments and code calculations can be misleading. Code-to-code benchmarks allow for the comparison of differential quantities, such as secondary particle differential fluence, to provide insight into differences observed in integral quantities for particular components of the GCR spectrum.
Development of Safety Analysis Code System of Beam Transport and Core for Accelerator Driven System
NASA Astrophysics Data System (ADS)
Aizawa, Naoto; Iwasaki, Tomohiko
2014-06-01
Safety analysis code system of beam transport and core for accelerator driven system (ADS) is developed for the analyses of beam transients such as the change of the shape and position of incident beam. The code system consists of the beam transport analysis part and the core analysis part. TRACE 3-D is employed in the beam transport analysis part, and the shape and incident position of beam at the target are calculated. In the core analysis part, the neutronics, thermo-hydraulics and cladding failure analyses are performed by the use of ADS dynamic calculation code ADSE on the basis of the external source database calculated by PHITS and the cross section database calculated by SRAC, and the programs of the cladding failure analysis for thermoelastic and creep. By the use of the code system, beam transient analyses are performed for the ADS proposed by Japan Atomic Energy Agency. As a result, the rapid increase of the cladding temperature happens and the plastic deformation is caused in several seconds. In addition, the cladding is evaluated to be failed by creep within a hundred seconds. These results have shown that the beam transients have caused a cladding failure.
Shielding evaluation for solar particle events using MCNPX, PHITS and OLTARIS codes.
Aghara, S K; Sriprisan, S I; Singleterry, R C; Sato, T
2015-01-01
Detailed analyses of Solar Particle Events (SPE) were performed to calculate primary and secondary particle spectra behind aluminum, at various thicknesses in water. The simulations were based on Monte Carlo (MC) radiation transport codes, MCNPX 2.7.0 and PHITS 2.64, and the space radiation analysis website called OLTARIS (On-Line Tool for the Assessment of Radiation in Space) version 3.4 (uses deterministic code, HZETRN, for transport). The study is set to investigate the impact of SPEs spectra transporting through 10 or 20 g/cm(2) Al shield followed by 30 g/cm(2) of water slab. Four historical SPE events were selected and used as input source spectra particle differential spectra for protons, neutrons, and photons are presented. The total particle fluence as a function of depth is presented. In addition to particle flux, the dose and dose equivalent values are calculated and compared between the codes and with the other published results. Overall, the particle fluence spectra from all three codes show good agreement with the MC codes showing closer agreement compared to the OLTARIS results. The neutron particle fluence from OLTARIS is lower than the results from MC codes at lower energies (E<100 MeV). Based on mean square difference analysis the results from MCNPX and PHITS agree better for fluence, dose and dose equivalent when compared to OLTARIS results. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.
Benchmarking of neutron production of heavy-ion transport codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remec, I.; Ronningen, R. M.; Heilbronn, L.
Document available in abstract form only, full text of document follows: Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondarymore » neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required. (authors)« less
NASA Astrophysics Data System (ADS)
Fernandez, Eduardo; Borelli, Noah; Cappelli, Mark; Gascon, Nicolas
2003-10-01
Most current Hall thruster simulation efforts employ either 1D (axial), or 2D (axial and radial) codes. These descriptions crucially depend on the use of an ad-hoc perpendicular electron mobility. Several models for the mobility are typically invoked: classical, Bohm, empirically based, wall-induced, as well as combinations of the above. Experimentally, it is observed that fluctuations and electron transport depend on axial distance and operating parameters. Theoretically, linear stability analyses have predicted a number of unstable modes; yet the nonlinear character of the fluctuations and/or their contribution to electron transport remains poorly understood. Motivated by these observations, a 2D code in the azimuthal and axial coordinates has been written. In particular, the simulation self-consistently calculates the azimuthal disturbances resulting in fluctuating drifts, which in turn (if properly correlated with plasma density disturbances) result in fluctuation-driven electron transport. The characterization of the turbulence at various operating parameters and across the channel length is also the object of this study. A description of the hybrid code used in the simulation as well as the initial results will be presented.
Laser Blow-Off Impurity Injection Experiments at the HSX Stellarator
NASA Astrophysics Data System (ADS)
Castillo, J. F.; Bader, A.; Likin, K. M.; Anderson, D. T.; Anderson, F. S. B.; Kumar, S. T. A.; Talmadge, J. N.
2017-10-01
Results from the HSX laser blow-off experiment are presented and compared to a synthetic diagnostic implemented in the STRAHL impurity transport modeling code in order to measure the impurity transport diffusivity and convective velocity. A laser blow-off impurity injection system is used to rapidly deposit a small, controlled quantity of aluminum into the confinement volume. Five AXUV photodiode arrays are used to take time-resolved measurements of the impurity radiation. The spatially one-dimensional impurity transport code STRAHL is used to calculate a time-dependent plasma emissivity profile. Modeled intensity signals calculated from a synthetic diagnostic code provide direct comparison between plasma simulation and experimental results. An optimization algorithm with impurity transport coefficients acting as free parameters is used to fit the model to experimental data. This work is supported by US DOE Grant DE-FG02-93ER54222.
Radiation shielding quality assurance
NASA Astrophysics Data System (ADS)
Um, Dallsun
For the radiation shielding quality assurance, the validity and reliability of the neutron transport code MCNP, which is now one of the most widely used radiation shielding analysis codes, were checked with lot of benchmark experiments. And also as a practical example, follows were performed in this thesis. One integral neutron transport experiment to measure the effect of neutron streaming in iron and void was performed with Dog-Legged Void Assembly in Knolls Atomic Power Laboratory in 1991. Neutron flux was measured six different places with the methane detectors and a BF-3 detector. The main purpose of the measurements was to provide benchmark against which various neutron transport calculation tools could be compared. Those data were used in verification of Monte Carlo Neutron & Photon Transport Code, MCNP, with the modeling for that. Experimental results and calculation results were compared in both ways, as the total integrated value of neutron fluxes along neutron energy range from 10 KeV to 2 MeV and as the neutron spectrum along with neutron energy range. Both results are well matched with the statistical error +/-20%. MCNP results were also compared with those of TORT, a three dimensional discrete ordinates code which was developed by Oak Ridge National Laboratory. MCNP results are superior to the TORT results at all detector places except one. This means that MCNP is proved as a very powerful tool for the analysis of neutron transport through iron & air and further it could be used as a powerful tool for the radiation shielding analysis. For one application of the analysis of variance (ANOVA) to neutron and gamma transport problems, uncertainties for the calculated values of critical K were evaluated as in the ANOVA on statistical data.
Study of no-man's land physics in the total-f gyrokinetic code XGC1
NASA Astrophysics Data System (ADS)
Ku, Seung Hoe; Chang, C. S.; Lang, J.
2014-10-01
While the ``transport shortfall'' in the ``no-man's land'' has been observed often in delta-f codes, it has not yet been observed in the global total-f gyrokinetic particle code XGC1. Since understanding the interaction between the edge and core transport appears to be a critical element in the prediction for ITER performance, understanding the no-man's land issue is an important physics research topic. Simulation results using the Holland case will be presented and the physics causing the shortfall phenomenon will be discussed. Nonlinear nonlocal interaction of turbulence, secondary flows, and transport appears to be the key.
Culbertson, C N; Wangerin, K; Ghandourah, E; Jevremovic, T
2005-08-01
The goal of this study was to evaluate the COG Monte Carlo radiation transport code, developed and tested by Lawrence Livermore National Laboratory, for neutron capture therapy related modeling. A boron neutron capture therapy model was analyzed comparing COG calculational results to results from the widely used MCNP4B (Monte Carlo N-Particle) transport code. The approach for computing neutron fluence rate and each dose component relevant in boron neutron capture therapy is described, and calculated values are shown in detail. The differences between the COG and MCNP predictions are qualified and quantified. The differences are generally small and suggest that the COG code can be applied for BNCT research related problems.
Muon simulation codes MUSIC and MUSUN for underground physics
NASA Astrophysics Data System (ADS)
Kudryavtsev, V. A.
2009-03-01
The paper describes two Monte Carlo codes dedicated to muon simulations: MUSIC (MUon SImulation Code) and MUSUN (MUon Simulations UNderground). MUSIC is a package for muon transport through matter. It is particularly useful for propagating muons through large thickness of rock or water, for instance from the surface down to underground/underwater laboratory. MUSUN is designed to use the results of muon transport through rock/water to generate muons in or around underground laboratory taking into account their energy spectrum and angular distribution.
TEMPEST code simulations of hydrogen distribution in reactor containment structures. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trent, D.S.; Eyler, L.L.
The mass transport version of the TEMPEST computer code was used to simulate hydrogen distribution in geometric configurations relevant to reactor containment structures. Predicted results of Battelle-Frankfurt hydrogen distribution tests 1 to 6, and 12 are presented. Agreement between predictions and experimental data is good. Best agreement is obtained using the k-epsilon turbulence model in TEMPEST in flow cases where turbulent diffusion and stable stratification are dominant mechanisms affecting transport. The code's general analysis capabilities are summarized.
Boltzmann Transport Code Update: Parallelization and Integrated Design Updates
NASA Technical Reports Server (NTRS)
Heinbockel, J. H.; Nealy, J. E.; DeAngelis, G.; Feldman, G. A.; Chokshi, S.
2003-01-01
The on going efforts at developing a web site for radiation analysis is expected to result in an increased usage of the High Charge and Energy Transport Code HZETRN. It would be nice to be able to do the requested calculations quickly and efficiently. Therefore the question arose, "Could the implementation of parallel processing speed up the calculations required?" To answer this question two modifications of the HZETRN computer code were created. The first modification selected the shield material of Al(2219) , then polyethylene and then Al(2219). The modified Fortran code was labeled 1SSTRN.F. The second modification considered the shield material of CO2 and Martian regolith. This modified Fortran code was labeled MARSTRN.F.
Method for calculating internal radiation and ventilation with the ADINAT heat-flow code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butkovich, T.R.; Montan, D.N.
1980-04-01
One objective of the spent fuel test in Climax Stock granite (SFTC) is to correctly model the thermal transport, and the changes in the stress field and accompanying displacements from the application of the thermal loads. We have chosen the ADINA and ADINAT finite element codes to do these calculations. ADINAT is a heat transfer code compatible to the ADINA displacement and stress analysis code. The heat flow problem encountered at SFTC requires a code with conduction, radiation, and ventilation capabilities, which the present version of ADINAT does not have. We have devised a method for calculating internal radiation andmore » ventilation with the ADINAT code. This method effectively reproduces the results from the TRUMP multi-dimensional finite difference code, which correctly models radiative heat transport between drift surfaces, conductive and convective thermal transport to and through air in the drifts, and mass flow of air in the drifts. The temperature histories for each node in the finite element mesh calculated with ADINAT using this method can be used directly in the ADINA thermal-mechanical calculation.« less
Reactive transport modeling in fractured rock: A state-of-the-science review
NASA Astrophysics Data System (ADS)
MacQuarrie, Kerry T. B.; Mayer, K. Ulrich
2005-10-01
The field of reactive transport modeling has expanded significantly in the past two decades and has assisted in resolving many issues in Earth Sciences. Numerical models allow for detailed examination of coupled transport and reactions, or more general investigation of controlling processes over geologic time scales. Reactive transport models serve to provide guidance in field data collection and, in particular, enable researchers to link modeling and hydrogeochemical studies. In this state-of-science review, the key objectives were to examine the applicability of reactive transport codes for exploring issues of redox stability to depths of several hundreds of meters in sparsely fractured crystalline rock, with a focus on the Canadian Shield setting. A conceptual model of oxygen ingress and redox buffering, within a Shield environment at time and space scales relevant to nuclear waste repository performance, is developed through a review of previous research. This conceptual model describes geochemical and biological processes and mechanisms materially important to understanding redox buffering capacity and radionuclide mobility in the far-field. Consistent with this model, reactive transport codes should ideally be capable of simulating the effects of changing recharge water compositions as a result of long-term climate change, and fracture-matrix interactions that may govern water-rock interaction. Other aspects influencing the suitability of reactive transport codes include the treatment of various reaction and transport time scales, the ability to apply equilibrium or kinetic formulations simultaneously, the need to capture feedback between water-rock interactions and porosity-permeability changes, and the representation of fractured crystalline rock environments as discrete fracture or dual continuum media. A review of modern multicomponent reactive transport codes indicates a relatively high-level of maturity. Within the Yucca Mountain nuclear waste disposal program, reactive transport codes of varying complexity have been applied to investigate the migration of radionuclides and the geochemical evolution of host rock around the planned disposal facility. Through appropriate near- and far-field application of dual continuum codes, this example demonstrates how reactive transport models have been applied to assist in constraining historic water infiltration rates, interpreting the sealing of flow paths due to mineral precipitation, and investigating post-closure geochemical monitoring strategies. Natural analogue modeling studies, although few in number, are also of key importance as they allow the comparison of model results with hydrogeochemical and paleohydrogeological data over geologic time scales.
Los Alamos radiation transport code system on desktop computing platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.
The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. Themore » current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines.« less
NASA Astrophysics Data System (ADS)
Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu
2015-07-01
The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.
Dust-Particle Transport in Tokamak Edge Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pigarov, A Y; Krasheninnikov, S I; Soboleva, T K
2005-09-12
Dust particulates in the size range of 10nm-100{micro}m are found in all fusion devices. Such dust can be generated during tokamak operation due to strong plasma/material-surface interactions. Some recent experiments and theoretical estimates indicate that dust particles can provide an important source of impurities in the tokamak plasma. Moreover, dust can be a serious threat to the safety of next-step fusion devices. In this paper, recent experimental observations on dust in fusion devices are reviewed. A physical model for dust transport simulation, and a newly developed code DUSTT, are discussed. The DUSTT code incorporates both dust dynamics due to comprehensivemore » dust-plasma interactions as well as the effects of dust heating, charging, and evaporation. The code tracks test dust particles in realistic plasma backgrounds as provided by edge-plasma transport codes. Results are presented for dust transport in current and next-step tokamaks. The effect of dust on divertor plasma profiles and core plasma contamination is examined.« less
Kinetic neoclassical calculations of impurity radiation profiles
Stotler, D. P.; Battaglia, D. J.; Hager, R.; ...
2016-12-30
Modifications of the drift-kinetic transport code XGC0 to include the transport, ionization, and recombination of individual charge states, as well as the associated radiation, are described. The code is first applied to a simulation of an NSTX H-mode discharge with carbon impurity to demonstrate the approach to coronal equilibrium. The effects of neoclassical phenomena on the radiated power profile are examined sequentially through the activation of individual physics modules in the code. Orbit squeezing and the neoclassical inward pinch result in increased radiation for temperatures above a few hundred eV and changes to the ratios of charge state emissions atmore » a given electron temperature. As a result, analogous simulations with a neon impurity yield qualitatively similar results.« less
Modeling anomalous radial transport in kinetic transport codes
NASA Astrophysics Data System (ADS)
Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.
2009-11-01
Anomalous transport is typically the dominant component of the radial transport in magnetically confined plasmas, where the physical origin of this transport is believed to be plasma turbulence. A model is presented for anomalous transport that can be used in continuum kinetic edge codes like TEMPEST, NEO and the next-generation code being developed by the Edge Simulation Laboratory. The model can also be adapted to particle-based codes. It is demonstrated that the model with a velocity-dependent diffusion and convection terms can match a diagonal gradient-driven transport matrix as found in contemporary fluid codes, but can also include off-diagonal effects. The anomalous transport model is also combined with particle drifts and a particle/energy-conserving Krook collision operator to study possible synergistic effects with neoclassical transport. For the latter study, a velocity-independent anomalous diffusion coefficient is used to mimic the effect of long-wavelength ExB turbulence.
ecode - Electron Transport Algorithm Testing v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franke, Brian C.; Olson, Aaron J.; Bruss, Donald Eugene
2016-10-05
ecode is a Monte Carlo code used for testing algorithms related to electron transport. The code can read basic physics parameters, such as energy-dependent stopping powers and screening parameters. The code permits simple planar geometries of slabs or cubes. Parallelization consists of domain replication, with work distributed at the start of the calculation and statistical results gathered at the end of the calculation. Some basic routines (such as input parsing, random number generation, and statistics processing) are shared with the Integrated Tiger Series codes. A variety of algorithms for uncertainty propagation are incorporated based on the stochastic collocation and stochasticmore » Galerkin methods. These permit uncertainty only in the total and angular scattering cross sections. The code contains algorithms for simulating stochastic mixtures of two materials. The physics is approximate, ranging from mono-energetic and isotropic scattering to screened Rutherford angular scattering and Rutherford energy-loss scattering (simple electron transport models). No production of secondary particles is implemented, and no photon physics is implemented.« less
NASA Technical Reports Server (NTRS)
Armstrong, T. W.
1972-01-01
Several Monte Carlo radiation transport computer codes are used to predict quantities of interest in the fields of radiotherapy and radiobiology. The calculational methods are described and comparisions of calculated and experimental results are presented for dose distributions produced by protons, neutrons, and negatively charged pions. Comparisons of calculated and experimental cell survival probabilities are also presented.
ipole: Semianalytic scheme for relativistic polarized radiative transport
NASA Astrophysics Data System (ADS)
Moscibrodzka, Monika; Gammie, Charles F.
2018-04-01
ipole is a ray-tracing code for covariant, polarized radiative transport particularly useful for modeling Event Horizon Telescope sources, though may also be used for other relativistic transport problems. The code extends the ibothros scheme for covariant, unpolarized transport using two representations of the polarized radiation field: in the coordinate frame, it parallel transports the coherency tensor, and in the frame of the plasma, it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is as spacetime- and coordinate- independent as possible; the emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, ipole is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth.
Statistical Analysis of the AIAA Drag Prediction Workshop CFD Solutions
NASA Technical Reports Server (NTRS)
Morrison, Joseph H.; Hemsch, Michael J.
2007-01-01
The first AIAA Drag Prediction Workshop (DPW), held in June 2001, evaluated the results from an extensive N-version test of a collection of Reynolds-Averaged Navier-Stokes CFD codes. The code-to-code scatter was more than an order of magnitude larger than desired for design and experimental validation of cruise conditions for a subsonic transport configuration. The second AIAA Drag Prediction Workshop, held in June 2003, emphasized the determination of installed pylon-nacelle drag increments and grid refinement studies. The code-to-code scatter was significantly reduced compared to the first DPW, but still larger than desired. However, grid refinement studies showed no significant improvement in code-to-code scatter with increasing grid refinement. The third AIAA Drag Prediction Workshop, held in June 2006, focused on the determination of installed side-of-body fairing drag increments and grid refinement studies for clean attached flow on wing alone configurations and for separated flow on the DLR-F6 subsonic transport model. This report compares the transonic cruise prediction results of the second and third workshops using statistical analysis.
Multi-species ion transport in ICF relevant conditions
NASA Astrophysics Data System (ADS)
Vold, Erik; Kagan, Grigory; Simakov, Andrei; Molvig, Kim; Yin, Lin; Albright, Brian
2017-10-01
Classical transport theory based on Chapman-Enskog methods provides self consistent approximations for kinetic fluxes of mass, heat and momentum for each ion species in a multi-ion plasma characterized with a small Knudsen number. A numerical method for solving the classic forms of multi-ion transport, self-consistently including heat and species mass fluxes relative to the center of mass, is given in [Kagan-Baalrud, arXiv '16] and similar transport coefficients result from recent derivations [Simakov-Molvig, PoP, '16]. We have implemented a combination of these methods in a standalone test code and in xRage, an adaptive-mesh radiation hydrodynamics code, at LANL. Transport mixing is examined between a DT fuel and a CH capsule shell in ICF conditions. The four ion species develop individual self-similar density profiles under the assumption of P-T equilibrium in 1D and show interesting early time transient pressure and center of mass velocity behavior when P-T equilibrium is not enforced. Some 2D results are explored to better understand the transport mix in combination with convective flow driven by macroscopic fluid instabilities at the fuel-capsule interface. Early transient and some 2D behaviors from the fluid transport are compared to kinetic code results. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Advanced Simulation and Computing (ASC) Program.
Benchmarking Heavy Ion Transport Codes FLUKA, HETC-HEDS MARS15, MCNPX, and PHITS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronningen, Reginald Martin; Remec, Igor; Heilbronn, Lawrence H.
Powerful accelerators such as spallation neutron sources, muon-collider/neutrino facilities, and rare isotope beam facilities must be designed with the consideration that they handle the beam power reliably and safely, and they must be optimized to yield maximum performance relative to their design requirements. The simulation codes used for design purposes must produce reliable results. If not, component and facility designs can become costly, have limited lifetime and usefulness, and could even be unsafe. The objective of this proposal is to assess the performance of the currently available codes PHITS, FLUKA, MARS15, MCNPX, and HETC-HEDS that could be used for designmore » simulations involving heavy ion transport. We plan to access their performance by performing simulations and comparing results against experimental data of benchmark quality. Quantitative knowledge of the biases and the uncertainties of the simulations is essential as this potentially impacts the safe, reliable and cost effective design of any future radioactive ion beam facility. Further benchmarking of heavy-ion transport codes was one of the actions recommended in the Report of the 2003 RIA R&D Workshop".« less
NASA Astrophysics Data System (ADS)
van Dijk, Jan; Hartgers, Bart; van der Mullen, Joost
2006-10-01
Self-consistent modelling of plasma sources requires a simultaneous treatment of multiple physical phenomena. As a result plasma codes have a high degree of complexity. And with the growing interest in time-dependent modelling of non-equilibrium plasma in three dimensions, codes tend to become increasingly hard to explain-and-maintain. As a result of these trends there has been an increased interest in the software-engineering and implementation aspects of plasma modelling in our group at Eindhoven University of Technology. In this contribution we will present modern object-oriented techniques in C++ to solve an old problem: that of the discretisation of coupled linear(ized) equations involving multiple field variables on ortho-curvilinear meshes. The `LinSys' code has been tailored to the transport equations that occur in transport physics. The implementation has been made both efficient and user-friendly by using modern idiom like expression templates and template meta-programming. Live demonstrations will be given. The code is available to interested parties; please visit www.dischargemodelling.org.
AN OPEN-SOURCE NEUTRINO RADIATION HYDRODYNAMICS CODE FOR CORE-COLLAPSE SUPERNOVAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Connor, Evan, E-mail: evanoconnor@ncsu.edu; CITA, Canadian Institute for Theoretical Astrophysics, Toronto, M5S 3H8
2015-08-15
We present an open-source update to the spherically symmetric, general-relativistic hydrodynamics, core-collapse supernova (CCSN) code GR1D. The source code is available at http://www.GR1Dcode.org. We extend its capabilities to include a general-relativistic treatment of neutrino transport based on the moment formalisms of Shibata et al. and Cardall et al. We pay special attention to implementing and testing numerical methods and approximations that lessen the computational demand of the transport scheme by removing the need to invert large matrices. This is especially important for the implementation and development of moment-like transport methods in two and three dimensions. A critical component of neutrinomore » transport calculations is the neutrino–matter interaction coefficients that describe the production, absorption, scattering, and annihilation of neutrinos. In this article we also describe our open-source neutrino interaction library NuLib (available at http://www.nulib.org). We believe that an open-source approach to describing these interactions is one of the major steps needed to progress toward robust models of CCSNe and robust predictions of the neutrino signal. We show, via comparisons to full Boltzmann neutrino-transport simulations of CCSNe, that our neutrino transport code performs remarkably well. Furthermore, we show that the methods and approximations we employ to increase efficiency do not decrease the fidelity of our results. We also test the ability of our general-relativistic transport code to model failed CCSNe by evolving a 40-solar-mass progenitor to the onset of collapse to a black hole.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shumaker, Dana E.; Steefel, Carl I.
The code CRUNCH_PARALLEL is a parallel version of the CRUNCH code. CRUNCH code version 2.0 was previously released by LLNL, (UCRL-CODE-200063). Crunch is a general purpose reactive transport code developed by Carl Steefel and Yabusake (Steefel Yabsaki 1996). The code handles non-isothermal transport and reaction in one, two, and three dimensions. The reaction algorithm is generic in form, handling an arbitrary number of aqueous and surface complexation as well as mineral dissolution/precipitation. A standardized database is used containing thermodynamic and kinetic data. The code includes advective, dispersive, and diffusive transport.
Development of a New System for Transport Simulation and Analysis at General Atomics
NASA Astrophysics Data System (ADS)
St. John, H. E.; Peng, Q.; Freeman, J.; Crotinger, J.
1997-11-01
General Atomics has begun a long term program to improve all aspects of experimental data analysis related to DIII--D. The object is to make local and visiting physicists as productive as possible, with only a small investment in training, by developing intuitive, sophisticated interfaces to existing and newly created computer programs. Here we describe our initial work and results of a pilot project in this program. The pilot project is a collaboratory effort between LLNL and GA which will ultimately result in the merger of Corsica and ONETWO (and selected modules from other codes) into a new advanced transport code system. The initial goal is to produce a graphical user interface to the transport code ONETWO which will couple to a programmable (steerable) front end designed for the transport system. This will be an object oriented scheme written primarily in python. The programmable application will integrate existing C, C^++, and Fortran methods in a single computational paradigm. Its most important feature is the use of plug in physics modules which will allow a high degree of customization.
Un-collided-flux preconditioning for the first order transport equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigley, M.; Koebbe, J.; Drumm, C.
2013-07-01
Two codes were tested for the first order neutron transport equation using finite element methods. The un-collided-flux solution is used as a preconditioner for each of these methods. These codes include a least squares finite element method and a discontinuous finite element method. The performance of each code is shown on problems in one and two dimensions. The un-collided-flux preconditioner shows good speedup on each of the given methods. The un-collided-flux preconditioner has been used on the second-order equation, and here we extend those results to the first order equation. (authors)
A Deterministic Transport Code for Space Environment Electrons
NASA Technical Reports Server (NTRS)
Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamczyk, Anne M.
2010-01-01
A deterministic computational procedure has been developed to describe transport of space environment electrons in various shield media. This code is an upgrade and extension of an earlier electron code. Whereas the former code was formulated on the basis of parametric functions derived from limited laboratory data, the present code utilizes well established theoretical representations to describe the relevant interactions and transport processes. The shield material specification has been made more general, as have the pertinent cross sections. A combined mean free path and average trajectory approach has been used in the transport formalism. Comparisons with Monte Carlo calculations are presented.
Use of Fluka to Create Dose Calculations
NASA Technical Reports Server (NTRS)
Lee, Kerry T.; Barzilla, Janet; Townsend, Lawrence; Brittingham, John
2012-01-01
Monte Carlo codes provide an effective means of modeling three dimensional radiation transport; however, their use is both time- and resource-intensive. The creation of a lookup table or parameterization from Monte Carlo simulation allows users to perform calculations with Monte Carlo results without replicating lengthy calculations. FLUKA Monte Carlo transport code was used to develop lookup tables and parameterizations for data resulting from the penetration of layers of aluminum, polyethylene, and water with areal densities ranging from 0 to 100 g/cm^2. Heavy charged ion radiation including ions from Z=1 to Z=26 and from 0.1 to 10 GeV/nucleon were simulated. Dose, dose equivalent, and fluence as a function of particle identity, energy, and scattering angle were examined at various depths. Calculations were compared against well-known results and against the results of other deterministic and Monte Carlo codes. Results will be presented.
BRYNTRN: A baryon transport computer code, computation procedures and data base
NASA Technical Reports Server (NTRS)
Wilson, John W.; Townsend, Lawrence W.; Chun, Sang Y.; Buck, Warren W.; Khan, Ferdous; Cucinotta, Frank
1988-01-01
The development is described of an interaction data base and a numerical solution to the transport of baryons through the arbitrary shield material based on a straight ahead approximation of the Boltzmann equation. The code is most accurate for continuous energy boundary values but gives reasonable results for discrete spectra at the boundary with even a relatively coarse energy grid (30 points) and large spatial increments (1 cm in H2O).
New Parallel computing framework for radiation transport codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostin, M.A.; /Michigan State U., NSCL; Mokhov, N.V.
A new parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was integrated with the MARS15 code, and an effort is under way to deploy it in PHITS. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility canmore » be used in single process calculations as well as in the parallel regime. Several checkpoint files can be merged into one thus combining results of several calculations. The framework also corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.« less
Statistical Analysis of CFD Solutions from the Third AIAA Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Morrison, Joseph H.; Hemsch, Michael J.
2007-01-01
The first AIAA Drag Prediction Workshop, held in June 2001, evaluated the results from an extensive N-version test of a collection of Reynolds-Averaged Navier-Stokes CFD codes. The code-to-code scatter was more than an order of magnitude larger than desired for design and experimental validation of cruise conditions for a subsonic transport configuration. The second AIAA Drag Prediction Workshop, held in June 2003, emphasized the determination of installed pylon-nacelle drag increments and grid refinement studies. The code-to-code scatter was significantly reduced compared to the first DPW, but still larger than desired. However, grid refinement studies showed no significant improvement in code-to-code scatter with increasing grid refinement. The third Drag Prediction Workshop focused on the determination of installed side-of-body fairing drag increments and grid refinement studies for clean attached flow on wing alone configurations and for separated flow on the DLR-F6 subsonic transport model. This work evaluated the effect of grid refinement on the code-to-code scatter for the clean attached flow test cases and the separated flow test cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, John C; Peplow, Douglas E.; Mosher, Scott W
2011-01-01
This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or moremore » localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(102-4), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.« less
Extension of the BRYNTRN code to monoenergetic light ion beams
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Wilson, John W.; Badavi, Francis F.
1994-01-01
A monoenergetic version of the BRYNTRN transport code is extended to beam transport of light ions (H-2, H-3, He-3, and He-4) in shielding materials (thick targets). The redistribution of energy in nuclear reactions is included in transport solutions that use nuclear fragmentation models. We also consider an equilibrium target-fragment spectrum for nuclei with mass number greater than four to include target fragmentation effects in the linear energy transfer (LET) spectrum. Illustrative results for water and aluminum shielding, including energy and LET spectra, are discussed for high-energy beams of H-2 and He-4.
Path Toward a Unified Geometry for Radiation Transport
NASA Astrophysics Data System (ADS)
Lee, Kerry
The Direct Accelerated Geometry for Radiation Analysis and Design (DAGRAD) element of the RadWorks Project under Advanced Exploration Systems (AES) within the Space Technology Mission Directorate (STMD) of NASA will enable new designs and concepts of operation for radiation risk assessment, mitigation and protection. This element is designed to produce a solution that will allow NASA to calculate the transport of space radiation through complex CAD models using the state-of-the-art analytic and Monte Carlo radiation transport codes. Due to the inherent hazard of astronaut and spacecraft exposure to ionizing radiation in low-Earth orbit (LEO) or in deep space, risk analyses must be performed for all crew vehicles and habitats. Incorporating these analyses into the design process can minimize the mass needed solely for radiation protection. Transport of the radiation fields as they pass through shielding and body materials can be simulated using Monte Carlo techniques or described by the Boltzmann equation, which is obtained by balancing changes in particle fluxes as they traverse a small volume of material with the gains and losses caused by atomic and nuclear collisions. Deterministic codes that solve the Boltzmann transport equation, such as HZETRN (high charge and energy transport code developed by NASA LaRC), are generally computationally faster than Monte Carlo codes such as FLUKA, GEANT4, MCNP(X) or PHITS; however, they are currently limited to transport in one dimension, which poorly represents the secondary light ion and neutron radiation fields. NASA currently uses HZETRN space radiation transport software, both because it is computationally efficient and because proven methods have been developed for using this software to analyze complex geometries. Although Monte Carlo codes describe the relevant physics in a fully three-dimensional manner, their computational costs have thus far prevented their widespread use for analysis of complex CAD models, leading to the creation and maintenance of toolkit specific simplistic geometry models. The work presented here builds on the Direct Accelerated Geometry Monte Carlo (DAGMC) toolkit developed for use with the Monte Carlo N-Particle (MCNP) transport code. The work-flow for doing radiation transport on CAD models using MCNP and FLUKA has been demonstrated and the results of analyses on realistic spacecraft/habitats will be presented. Future work is planned that will further automate this process and enable the use of multiple radiation transport codes on identical geometry models imported from CAD. This effort will enhance the modeling tools used by NASA to accurately evaluate the astronaut space radiation risk and accurately determine the protection provided by as-designed exploration mission vehicles and habitats.
Final Technical Report for Department of Energy award number DE-FG02-06ER54882, Revised
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggleston, Dennis L.
The research reported here involves studies of radial particle transport in a cylindrical, low-density Malmberg-Penning non-neutral plasma trap. The research is primarily experimental but involves careful comparisons to analytical theory and includes the results of a single-particle computer code. The transport is produced by applied electric fields that break the cylindrical symmetry of the trap, hence the term ``asymmetry-induced transport.'' Our computer studies have revealed the importance of a previously ignored class of particles that become trapped in the asymmetry potential. In many common situations these particles exhibit large radial excursions and dominate the radial transport. On the experimental side,more » we have developed new data analysis techniques that allowed us to determine the magnetic field dependence of the transport and to place empirical constraints on the form on the transport equation. Experiments designed to test the computer code results gave varying degrees of agreement with further work being necessary to understand the results. This work expands our knowledge of the varied mechanisms of cross-magnetic-field transport and should be of use to other workers studying plasma confinement.« less
Use of Existing CAD Models for Radiation Shielding Analysis
NASA Technical Reports Server (NTRS)
Lee, K. T.; Barzilla, J. E.; Wilson, P.; Davis, A.; Zachman, J.
2015-01-01
The utility of a radiation exposure analysis depends not only on the accuracy of the underlying particle transport code, but also on the accuracy of the geometric representations of both the vehicle used as radiation shielding mass and the phantom representation of the human form. The current NASA/Space Radiation Analysis Group (SRAG) process to determine crew radiation exposure in a vehicle design incorporates both output from an analytic High Z and Energy Particle Transport (HZETRN) code and the properties (i.e., material thicknesses) of a previously processed drawing. This geometry pre-process can be time-consuming, and the results are less accurate than those determined using a Monte Carlo-based particle transport code. The current work aims to improve this process. Although several Monte Carlo programs (FLUKA, Geant4) are readily available, most use an internal geometry engine. The lack of an interface with the standard CAD formats used by the vehicle designers limits the ability of the user to communicate complex geometries. Translation of native CAD drawings into a format readable by these transport programs is time consuming and prone to error. The Direct Accelerated Geometry -United (DAGU) project is intended to provide an interface between the native vehicle or phantom CAD geometry and multiple particle transport codes to minimize problem setup, computing time and analysis error.
NASA Astrophysics Data System (ADS)
Yamada, Susumu; Kitamura, Akihiro; Kurikami, Hiroshi; Machida, Masahiko
2015-04-01
Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on March 2011 released significant quantities of radionuclides to atmosphere. The most significant nuclide is radioactive cesium isotopes. Therefore, the movement of the cesium is one of the critical issues for the environmental assessment. Since the cesium is strongly sorbed by soil particles, the cesium transport can be regarded as the sediment transport which is mainly brought about by the aquatic system such as a river and a lake. In this research, our target is the sediment transport on Ogaki dam reservoir which is located in about 16 km northwest from FDNPP. The reservoir is one of the principal irrigation dam reservoirs in Fukushima Prefecture and its upstream river basin was heavily contaminated by radioactivity. We simulate the sediment transport on the reservoir using 2-D river simulation code named Nays2D originally developed by Shimizu et al. (The latest version of Nays2D is available as a code included in iRIC (http://i-ric.org/en/), which is a river flow and riverbed variation analysis software package). In general, a 2-D simulation code requires a huge amount of calculation time. Therefore, we parallelize the code and execute it on a parallel computer. We examine the relationship between the behavior of the sediment transport and the height of the reservoir exit. The simulation result shows that almost all the sand that enter into the reservoir deposit close to the entrance of the reservoir for any height of the exit. The amounts of silt depositing within the reservoir slightly increase by raising the height of the exit. However, that of the clay dramatically increases. Especially, more than half of the clay deposits, if the exit is sufficiently high. These results demonstrate that the water level of the reservoir has a strong influence on the amount of the clay discharged from the reservoir. As a result, we conclude that the tuning of the water level has a possibility for controlling the recontamination to the downstream.
Modeling of ion orbit loss and intrinsic toroidal rotation with the COGENT code
NASA Astrophysics Data System (ADS)
Dorf, M.; Dorr, M.; Cohen, R.; Rognlien, T.; Hittinger, J.
2014-10-01
We discuss recent advances in cross-separatrix neoclassical transport simulations with COGENT, a continuum gyro-kinetic code being developed by the Edge Simulation Laboratory (ESL) collaboration. The COGENT code models the axisymmetric transport properties of edge plasmas including the effects of nonlinear (Fokker-Planck) collisions and a self-consistent electrostatic potential. Our recent work has focused on studies of ion orbit loss and the associated toroidal rotation driven by this mechanism. The results of the COGENT simulations are discussed and analyzed for the parameters of the DIII-D experiment. Work performed for USDOE at LLNL under Contract DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganapol, B.D.; Kornreich, D.E.
Because of the requirement of accountability and quality control in the scientific world, a demand for high-quality analytical benchmark calculations has arisen in the neutron transport community. The intent of these benchmarks is to provide a numerical standard to which production neutron transport codes may be compared in order to verify proper operation. The overall investigation as modified in the second year renewal application includes the following three primary tasks. Task 1 on two dimensional neutron transport is divided into (a) single medium searchlight problem (SLP) and (b) two-adjacent half-space SLP. Task 2 on three-dimensional neutron transport covers (a) pointmore » source in arbitrary geometry, (b) single medium SLP, and (c) two-adjacent half-space SLP. Task 3 on code verification, includes deterministic and probabilistic codes. The primary aim of the proposed investigation was to provide a suite of comprehensive two- and three-dimensional analytical benchmarks for neutron transport theory applications. This objective has been achieved. The suite of benchmarks in infinite media and the three-dimensional SLP are a relatively comprehensive set of one-group benchmarks for isotropically scattering media. Because of time and resource limitations, the extensions of the benchmarks to include multi-group and anisotropic scattering are not included here. Presently, however, enormous advances in the solution for the planar Green`s function in an anisotropically scattering medium have been made and will eventually be implemented in the two- and three-dimensional solutions considered under this grant. Of particular note in this work are the numerical results for the three-dimensional SLP, which have never before been presented. The results presented were made possible only because of the tremendous advances in computing power that have occurred during the past decade.« less
Simulations of 4D edge transport and dynamics using the TEMPEST gyro-kinetic code
NASA Astrophysics Data System (ADS)
Rognlien, T. D.; Cohen, B. I.; Cohen, R. H.; Dorr, M. R.; Hittinger, J. A. F.; Kerbel, G. D.; Nevins, W. M.; Xiong, Z.; Xu, X. Q.
2006-10-01
Simulation results are presented for tokamak edge plasmas with a focus on the 4D (2r,2v) option of the TEMPEST continuum gyro-kinetic code. A detailed description of a variety of kinetic simulations is reported, including neoclassical radial transport from Coulomb collisions, electric field generation, dynamic response to perturbations by geodesic acoustic modes, and parallel transport on open magnetic-field lines. Comparison is made between the characteristics of the plasma solutions on closed and open magnetic-field line regions separated by a magnetic separatrix, and simple physical models are used to qualitatively explain the differences observed in mean flow and electric-field generation. The status of extending the simulations to 5D turbulence will be summarized. The code structure used in this ongoing project is also briefly described, together with future plans.
Transportation Sector Module - NEMS Documentation
2017-01-01
Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model.
3D unstructured-mesh radiation transport codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morel, J.
1997-12-31
Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options:more » $$S{_}n$$ (discrete-ordinates), $$P{_}n$$ (spherical harmonics), and $$SP{_}n$$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $$S{_}n$$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.« less
NASA Astrophysics Data System (ADS)
Owen, L. W.; Rapp, J.; Canik, J.; Lore, J. D.
2017-11-01
Data-constrained interpretative analyses of plasma transport in convection dominated helicon discharges in the Proto-MPEX linear device, and predictive calculations with additional Electron Cyclotron Heating/Electron Bernstein Wave (ECH/EBW) heating, are reported. The B2.5-Eirene code, in which the multi-fluid plasma code B2.5 is coupled to the kinetic Monte Carlo neutrals code Eirene, is used to fit double Langmuir probe measurements and fast camera data in front of a stainless-steel target. The absorbed helicon and ECH power (11 kW) and spatially constant anomalous transport coefficients that are deduced from fitting of the probe and optical data are additionally used for predictive simulations of complete axial distributions of the densities, temperatures, plasma flow velocities, particle and energy fluxes, and possible effects of alternate fueling and pumping scenarios. The somewhat hollow electron density and temperature radial profiles from the probe data suggest that Trivelpiece-Gould wave absorption is the dominant helicon electron heating source in the discharges analyzed here. There is no external ion heating, but the corresponding calculated ion temperature radial profile is not hollow. Rather it reflects ion heating by the electron-ion equilibration terms in the energy balance equations and ion radial transport resulting from the hollow density profile. With the absorbed power and the transport model deduced from fitting the sheath limited discharge data, calculated conduction limited higher recycling conditions were produced by reducing the pumping and increasing the gas fueling rate, resulting in an approximate doubling of the target ion flux and reduction of the target heat flux.
Mohammadi, A; Hassanzadeh, M; Gharib, M
2016-02-01
In this study, shielding calculation and criticality safety analysis were carried out for general material testing reactor (MTR) research reactors interim storage and relevant transportation cask. During these processes, three major terms were considered: source term, shielding, and criticality calculations. The Monte Carlo transport code MCNP5 was used for shielding calculation and criticality safety analysis and ORIGEN2.1 code for source term calculation. According to the results obtained, a cylindrical cask with body, top, and bottom thicknesses of 18, 13, and 13 cm, respectively, was accepted as the dual-purpose cask. Furthermore, it is shown that the total dose rates are below the normal transport criteria that meet the standards specified. Copyright © 2015 Elsevier Ltd. All rights reserved.
Parallelization of a Monte Carlo particle transport simulation code
NASA Astrophysics Data System (ADS)
Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.
2010-05-01
We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.
Beam-dynamics codes used at DARHT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Jr., Carl August
Several beam simulation codes are used to help gain a better understanding of beam dynamics in the DARHT LIAs. The most notable of these fall into the following categories: for beam production – Tricomp Trak orbit tracking code, LSP Particle in cell (PIC) code, for beam transport and acceleration – XTR static envelope and centroid code, LAMDA time-resolved envelope and centroid code, LSP-Slice PIC code, for coasting-beam transport to target – LAMDA time-resolved envelope code, LSP-Slice PIC code. These codes are also being used to inform the design of Scorpius.
The Initial Atmospheric Transport (IAT) Code: Description and Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrow, Charles W.; Bartel, Timothy James
The Initial Atmospheric Transport (IAT) computer code was developed at Sandia National Laboratories as part of their nuclear launch accident consequences analysis suite of computer codes. The purpose of IAT is to predict the initial puff/plume rise resulting from either a solid rocket propellant or liquid rocket fuel fire. The code generates initial conditions for subsequent atmospheric transport calculations. The Initial Atmospheric Transfer (IAT) code has been compared to two data sets which are appropriate to the design space of space launch accident analyses. The primary model uncertainties are the entrainment coefficients for the extended Taylor model. The Titan 34Dmore » accident (1986) was used to calibrate these entrainment settings for a prototypic liquid propellant accident while the recent Johns Hopkins University Applied Physics Laboratory (JHU/APL, or simply APL) large propellant block tests (2012) were used to calibrate the entrainment settings for prototypic solid propellant accidents. North American Meteorology (NAM )formatted weather data profiles are used by IAT to determine the local buoyancy force balance. The IAT comparisons for the APL solid propellant tests illustrate the sensitivity of the plume elevation to the weather profiles; that is, the weather profile is a dominant factor in determining the plume elevation. The IAT code performed remarkably well and is considered validated for neutral weather conditions.« less
Alternative Fuel Vehicle (AFV) Registration Tracking Program The Texas Department of Transportation to the Texas Legislature detailing the results of each data collection year. For the purpose of this . (Reference Texas Statutes, Transportation Code, 502-004
Zhang, Shuo; DePaolo, Donald J.; Zheng, Liange; ...
2014-12-31
Carbon stable isotopes can be used in characterization and monitoring of CO 2 sequestration sites to track the migration of the CO 2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO 2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO 2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport modulemore » of TOUGHREACT was modified to include separate isotopic species of CO 2 gas and dissolved inorganic carbon (CO 2, CO 3 2-, HCO 3 -,…). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO 2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.« less
NASA Astrophysics Data System (ADS)
Slaba, Tony C.; Blattnig, Steve R.; Reddell, Brandon; Bahadori, Amir; Norman, Ryan B.; Badavi, Francis F.
2013-07-01
Recent work has indicated that pion production and the associated electromagnetic (EM) cascade may be an important contribution to the total astronaut exposure in space. Recent extensions to the deterministic space radiation transport code, HZETRN, allow the production and transport of pions, muons, electrons, positrons, and photons. In this paper, the extended code is compared to the Monte Carlo codes, Geant4, PHITS, and FLUKA, in slab geometries exposed to galactic cosmic ray (GCR) boundary conditions. While improvements in the HZETRN transport formalism for the new particles are needed, it is shown that reasonable agreement on dose is found at larger shielding thicknesses commonly found on the International Space Station (ISS). Finally, the extended code is compared to ISS data on a minute-by-minute basis over a seven day period in 2001. The impact of pion/EM production on exposure estimates and validation results is clearly shown. The Badhwar-O'Neill (BO) 2004 and 2010 models are used to generate the GCR boundary condition at each time-step allowing the impact of environmental model improvements on validation results to be quantified as well. It is found that the updated BO2010 model noticeably reduces overall exposure estimates from the BO2004 model, and the additional production mechanisms in HZETRN provide some compensation. It is shown that the overestimates provided by the BO2004 GCR model in previous validation studies led to deflated uncertainty estimates for environmental, physics, and transport models, and allowed an important physical interaction (π/EM) to be overlooked in model development. Despite the additional π/EM production mechanisms in HZETRN, a systematic under-prediction of total dose is observed in comparison to Monte Carlo results and measured data.
Modification and benchmarking of MCNP for low-energy tungsten spectra.
Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M
2000-12-01
The MCNP Monte Carlo radiation transport code was modified for diagnostic medical physics applications. In particular, the modified code was thoroughly benchmarked for the production of polychromatic tungsten x-ray spectra in the 30-150 kV range. Validating the modified code for coupled electron-photon transport with benchmark spectra was supplemented with independent electron-only and photon-only transport benchmarks. Major revisions to the code included the proper treatment of characteristic K x-ray production and scoring, new impact ionization cross sections, and new bremsstrahlung cross sections. Minor revisions included updated photon cross sections, electron-electron bremsstrahlung production, and K x-ray yield. The modified MCNP code is benchmarked to electron backscatter factors, x-ray spectra production, and primary and scatter photon transport.
Path Toward a Unifid Geometry for Radiation Transport
NASA Technical Reports Server (NTRS)
Lee, Kerry; Barzilla, Janet; Davis, Andrew; Zachmann
2014-01-01
The Direct Accelerated Geometry for Radiation Analysis and Design (DAGRAD) element of the RadWorks Project under Advanced Exploration Systems (AES) within the Space Technology Mission Directorate (STMD) of NASA will enable new designs and concepts of operation for radiation risk assessment, mitigation and protection. This element is designed to produce a solution that will allow NASA to calculate the transport of space radiation through complex computer-aided design (CAD) models using the state-of-the-art analytic and Monte Carlo radiation transport codes. Due to the inherent hazard of astronaut and spacecraft exposure to ionizing radiation in low-Earth orbit (LEO) or in deep space, risk analyses must be performed for all crew vehicles and habitats. Incorporating these analyses into the design process can minimize the mass needed solely for radiation protection. Transport of the radiation fields as they pass through shielding and body materials can be simulated using Monte Carlo techniques or described by the Boltzmann equation, which is obtained by balancing changes in particle fluxes as they traverse a small volume of material with the gains and losses caused by atomic and nuclear collisions. Deterministic codes that solve the Boltzmann transport equation, such as HZETRN [high charge and energy transport code developed by NASA Langley Research Center (LaRC)], are generally computationally faster than Monte Carlo codes such as FLUKA, GEANT4, MCNP(X) or PHITS; however, they are currently limited to transport in one dimension, which poorly represents the secondary light ion and neutron radiation fields. NASA currently uses HZETRN space radiation transport software, both because it is computationally efficient and because proven methods have been developed for using this software to analyze complex geometries. Although Monte Carlo codes describe the relevant physics in a fully three-dimensional manner, their computational costs have thus far prevented their widespread use for analysis of complex CAD models, leading to the creation and maintenance of toolkit-specific simplistic geometry models. The work presented here builds on the Direct Accelerated Geometry Monte Carlo (DAGMC) toolkit developed for use with the Monte Carlo N-Particle (MCNP) transport code. The workflow for achieving radiation transport on CAD models using MCNP and FLUKA has been demonstrated and the results of analyses on realistic spacecraft/habitats will be presented. Future work is planned that will further automate this process and enable the use of multiple radiation transport codes on identical geometry models imported from CAD. This effort will enhance the modeling tools used by NASA to accurately evaluate the astronaut space radiation risk and accurately determine the protection provided by as-designed exploration mission vehicles and habitats
Radiation Transport and Shielding for Space Exploration and High Speed Flight Transportation
NASA Technical Reports Server (NTRS)
Maung, Khin Maung; Trapathi, R. K.
1997-01-01
Transportation of ions and neutrons in matter is of direct interest in several technologically important and scientific areas, including space radiation, cosmic ray propagation studies in galactic medium, nuclear power plants and radiological effects that impact industrial and public health. For the proper assessment of radiation exposure, both reliable transport codes and accurate data are needed. Nuclear cross section data is one of the essential inputs into the transport codes. In order to obtain an accurate parametrization of cross section data, theoretical input is indispensable especially for processes where there is little or no experimental data available. In this grant period work has been done on the studies of the use of relativistic equations and their one-body limits. The results will be useful in choosing appropriate effective one-body equation for reaction calculations. Work has also been done to improve upon the data base needed for the transport codes used in the studies of radiation transport and shielding for space exploration and high speed flight transportation. A phenomenological model was developed for the total absorption cross sections valid for any system of charged and/or uncharged collision pairs for the entire energy range. The success of the model is gratifying. It is being used by other federal agencies, national labs and universities. A list of publications based on the work during the grant period is given below and copies are enclosed with this report.
Solar Proton Transport Within an ICRU Sphere Surrounded by a Complex Shield: Ray-trace Geometry
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Wilson, John W.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.
2015-01-01
A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z is less than or equal to 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency.
A finite-volume ELLAM for three-dimensional solute-transport modeling
Russell, T.F.; Heberton, C.I.; Konikow, Leonard F.; Hornberger, G.Z.
2003-01-01
A three-dimensional finite-volume ELLAM method has been developed, tested, and successfully implemented as part of the U.S. Geological Survey (USGS) MODFLOW-2000 ground water modeling package. It is included as a solver option for the Ground Water Transport process. The FVELLAM uses space-time finite volumes oriented along the streamlines of the flow field to solve an integral form of the solute-transport equation, thus combining local and global mass conservation with the advantages of Eulerian-Lagrangian characteristic methods. The USGS FVELLAM code simulates solute transport in flowing ground water for a single dissolved solute constituent and represents the processes of advective transport, hydrodynamic dispersion, mixing from fluid sources, retardation, and decay. Implicit time discretization of the dispersive and source/sink terms is combined with a Lagrangian treatment of advection, in which forward tracking moves mass to the new time level, distributing mass among destination cells using approximate indicator functions. This allows the use of large transport time increments (large Courant numbers) with accurate results, even for advection-dominated systems (large Peclet numbers). Four test cases, including comparisons with analytical solutions and benchmarking against other numerical codes, are presented that indicate that the FVELLAM can usually yield excellent results, even if relatively few transport time steps are used, although the quality of the results is problem-dependent.
76 FR 2744 - Disclosure of Code-Share Service by Air Carriers and Sellers of Air Transportation
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-14
... DEPARTMENT OF TRANSPORTATION Office of the Secretary Disclosure of Code-Share Service by Air Carriers and Sellers of Air Transportation AGENCY: Office of the Secretary, Department of Transportation..., their agents, and third party sellers of air transportation in view of recent amendments to 49 U.S.C...
ITER Simulations Using the PEDESTAL Module in the PTRANSP Code
NASA Astrophysics Data System (ADS)
Halpern, F. D.; Bateman, G.; Kritz, A. H.; Pankin, A. Y.; Budny, R. V.; Kessel, C.; McCune, D.; Onjun, T.
2006-10-01
PTRANSP simulations with a computed pedestal height are carried out for ITER scenarios including a standard ELMy H-mode (15 MA discharge) and a hybrid scenario (12MA discharge). It has been found that fusion power production predicted in simulations of ITER discharges depends sensitively on the height of the H-mode temperature pedestal [1]. In order to study this effect, the NTCC PEDESTAL module [2] has been implemented in PTRANSP code to provide boundary conditions used for the computation of the projected performance of ITER. The PEDESTAL module computes both the temperature and width of the pedestal at the edge of type I ELMy H-mode discharges once the threshold conditions for the H-mode are satisfied. The anomalous transport in the plasma core is predicted using the GLF23 or MMM95 transport models. To facilitate the steering of lengthy PTRANSP computations, the PTRANSP code has been modified to allow changes in the transport model when simulations are restarted. The PTRANSP simulation results are compared with corresponding results obtained using other integrated modeling codes.[1] G. Bateman, T. Onjun and A.H. Kritz, Plasma Physics and Controlled Fusion, 45, 1939 (2003).[2] T. Onjun, G. Bateman, A.H. Kritz, and G. Hammett, Phys. Plasmas 9, 5018 (2002).
NASA Technical Reports Server (NTRS)
Mashnik, S. G.; Gudima, K. K.; Sierk, A. J.; Moskalenko, I. V.
2002-01-01
Space radiation shield applications and studies of cosmic ray propagation in the Galaxy require reliable cross sections to calculate spectra of secondary particles and yields of the isotopes produced in nuclear reactions induced both by particles and nuclei at energies from threshold to hundreds of GeV per nucleon. Since the data often exist in a very limited energy range or sometimes not at all, the only way to obtain an estimate of the production cross sections is to use theoretical models and codes. Recently, we have developed improved versions of the Cascade-Exciton Model (CEM) of nuclear reactions: the codes CEM97 and CEM2k for description of particle-nucleus reactions at energies up to about 5 GeV. In addition, we have developed a LANL version of the Quark-Gluon String Model (LAQGSM) to describe reactions induced both by particles and nuclei at energies up to hundreds of GeVhucleon. We have tested and benchmarked the CEM and LAQGSM codes against a large variety of experimental data and have compared their results with predictions by other currently available models and codes. Our benchmarks show that CEM and LAQGSM codes have predictive powers no worse than other currently used codes and describe many reactions better than other codes; therefore both our codes can be used as reliable event-generators for space radiation shield and cosmic ray propagation applications. The CEM2k code is being incorporated into the transport code MCNPX (and several other transport codes), and we plan to incorporate LAQGSM into MCNPX in the near future. Here, we present the current status of the CEM2k and LAQGSM codes, and show results and applications to studies of cosmic ray propagation in the Galaxy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles A. Wemple; Joshua J. Cogliati
2005-04-01
A univel geometry, neutral particle Monte Carlo transport code, written entirely in the Java programming language, is under development for medical radiotherapy applications. The code uses ENDF-VI based continuous energy cross section data in a flexible XML format. Full neutron-photon coupling, including detailed photon production and photonuclear reactions, is included. Charged particle equilibrium is assumed within the patient model so that detailed transport of electrons produced by photon interactions may be neglected. External beam and internal distributed source descriptions for mixed neutron-photon sources are allowed. Flux and dose tallies are performed on a univel basis. A four-tap, shift-register-sequence random numbermore » generator is used. Initial verification and validation testing of the basic neutron transport routines is underway. The searchlight problem was chosen as a suitable first application because of the simplicity of the physical model. Results show excellent agreement with analytic solutions. Computation times for similar numbers of histories are comparable to other neutron MC codes written in C and FORTRAN.« less
NASA Astrophysics Data System (ADS)
Sharma, Diksha; Badal, Andreu; Badano, Aldo
2012-04-01
The computational modeling of medical imaging systems often requires obtaining a large number of simulated images with low statistical uncertainty which translates into prohibitive computing times. We describe a novel hybrid approach for Monte Carlo simulations that maximizes utilization of CPUs and GPUs in modern workstations. We apply the method to the modeling of indirect x-ray detectors using a new and improved version of the code \\scriptsize{{MANTIS}}, an open source software tool used for the Monte Carlo simulations of indirect x-ray imagers. We first describe a GPU implementation of the physics and geometry models in fast\\scriptsize{{DETECT}}2 (the optical transport model) and a serial CPU version of the same code. We discuss its new features like on-the-fly column geometry and columnar crosstalk in relation to the \\scriptsize{{MANTIS}} code, and point out areas where our model provides more flexibility for the modeling of realistic columnar structures in large area detectors. Second, we modify \\scriptsize{{PENELOPE}} (the open source software package that handles the x-ray and electron transport in \\scriptsize{{MANTIS}}) to allow direct output of location and energy deposited during x-ray and electron interactions occurring within the scintillator. This information is then handled by optical transport routines in fast\\scriptsize{{DETECT}}2. A load balancer dynamically allocates optical transport showers to the GPU and CPU computing cores. Our hybrid\\scriptsize{{MANTIS}} approach achieves a significant speed-up factor of 627 when compared to \\scriptsize{{MANTIS}} and of 35 when compared to the same code running only in a CPU instead of a GPU. Using hybrid\\scriptsize{{MANTIS}}, we successfully hide hours of optical transport time by running it in parallel with the x-ray and electron transport, thus shifting the computational bottleneck from optical to x-ray transport. The new code requires much less memory than \\scriptsize{{MANTIS}} and, as a result, allows us to efficiently simulate large area detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, A.L.
This report presents a summary of the status of research activities associated with fission product behavior (release and transport) under severe accident conditions within the primary systems of water-moderated and water-cooled nuclear reactors. For each of the areas of fission product release and fission product transport, the report summarizes relevant information on important phenomena, major experiments performed, relevant computer models and codes, comparisons of computer code calculations with experimental results, and general conclusions on the overall state of the art. Finally, the report provides an assessment of the overall importance and knowledge of primary system release and transport phenomena andmore » presents major conclusions on the state of the art.« less
Neoclassical transport in toroidal plasmas with nonaxisymmetric flux surfaces
Belli, Emily A.; Candy, Jefferey M.
2015-04-15
The capability to treat nonaxisymmetric flux surface geometry has been added to the drift-kinetic code NEO. Geometric quantities (i.e. metric elements) are supplied by a recently-developed local 3D equilibrium solver, allowing neoclassical transport coefficients to be systematically computed while varying the 3D plasma shape in a simple and intuitive manner. Code verification is accomplished via detailed comparison with 3D Pfirsch–Schlüter theory. A discussion of the various collisionality regimes associated with 3D transport is given, with an emphasis on non-ambipolar particle flux, neoclassical toroidal viscosity, energy flux and bootstrap current. As a result, we compute the transport in the presence ofmore » ripple-type perturbations in a DIII-D-like H-mode edge plasma.« less
User's manual for a material transport code on the Octopus Computer Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naymik, T.G.; Mendez, G.D.
1978-09-15
A code to simulate material transport through porous media was developed at Oak Ridge National Laboratory. This code has been modified and adapted for use at Lawrence Livermore Laboratory. This manual, in conjunction with report ORNL-4928, explains the input, output, and execution of the code on the Octopus Computer Network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, John C; Peplow, Douglas E.; Mosher, Scott W
2010-01-01
This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or moremore » localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(10{sup 2-4}), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.« less
NASA Astrophysics Data System (ADS)
Steefel, C. I.
2015-12-01
Over the last 20 years, we have seen the evolution of multicomponent reactive transport modeling and the expanding range and increasing complexity of subsurface environmental applications it is being used to address. Reactive transport modeling is being asked to provide accurate assessments of engineering performance and risk for important issues with far-reaching consequences. As a result, the complexity and detail of subsurface processes, properties, and conditions that can be simulated have significantly expanded. Closed form solutions are necessary and useful, but limited to situations that are far simpler than typical applications that combine many physical and chemical processes, in many cases in coupled form. In the absence of closed form and yet realistic solutions for complex applications, numerical benchmark problems with an accepted set of results will be indispensable to qualifying codes for various environmental applications. The intent of this benchmarking exercise, now underway for more than five years, is to develop and publish a set of well-described benchmark problems that can be used to demonstrate simulator conformance with norms established by the subsurface science and engineering community. The objective is not to verify this or that specific code--the reactive transport codes play a supporting role in this regard—but rather to use the codes to verify that a common solution of the problem can be achieved. Thus, the objective of each of the manuscripts is to present an environmentally-relevant benchmark problem that tests the conceptual model capabilities, numerical implementation, process coupling, and accuracy. The benchmark problems developed to date include 1) microbially-mediated reactions, 2) isotopes, 3) multi-component diffusion, 4) uranium fate and transport, 5) metal mobility in mining affected systems, and 6) waste repositories and related aspects.
NASA Astrophysics Data System (ADS)
KIM, Jong Woon; LEE, Young-Ouk
2017-09-01
As computing power gets better and better, computer codes that use a deterministic method seem to be less useful than those using the Monte Carlo method. In addition, users do not like to think about space, angles, and energy discretization for deterministic codes. However, a deterministic method is still powerful in that we can obtain a solution of the flux throughout the problem, particularly as when particles can barely penetrate, such as in a deep penetration problem with small detection volumes. Recently, a new state-of-the-art discrete-ordinates code, ATTILA, was developed and has been widely used in several applications. ATTILA provides the capabilities to solve geometrically complex 3-D transport problems by using an unstructured tetrahedral mesh. Since 2009, we have been developing our own code by benchmarking ATTILA. AETIUS is a discrete ordinates code that uses an unstructured tetrahedral mesh such as ATTILA. For pre- and post- processing, Gmsh is used to generate an unstructured tetrahedral mesh by importing a CAD file (*.step) and visualizing the calculation results of AETIUS. Using a CAD tool, the geometry can be modeled very easily. In this paper, we describe a brief overview of AETIUS and provide numerical results from both AETIUS and a Monte Carlo code, MCNP5, in a deep penetration problem with small detection volumes. The results demonstrate the effectiveness and efficiency of AETIUS for such calculations.
FPGA implementation of concatenated non-binary QC-LDPC codes for high-speed optical transport.
Zou, Ding; Djordjevic, Ivan B
2015-06-01
In this paper, we propose a soft-decision-based FEC scheme that is the concatenation of a non-binary LDPC code and hard-decision FEC code. The proposed NB-LDPC + RS with overhead of 27.06% provides a superior NCG of 11.9dB at a post-FEC BER of 10-15. As a result, the proposed NB-LDPC codes represent the strong FEC candidate of soft-decision FEC for beyond 100Gb/s optical transmission systems.
Provision for Establishment of Hydrogen Program The Texas Department of Transportation (TxDOT) may . TxDOT must report the results of this monitoring, analysis, and comparison to the Texas Commission on Environmental Quality. (Reference Texas Statutes, Transportation Code 201.618
Transport modeling of L- and H-mode discharges with LHCD on EAST
NASA Astrophysics Data System (ADS)
Li, M. H.; Ding, B. J.; Imbeaux, F.; Decker, J.; Zhang, X. J.; Kong, E. H.; Zhang, L.; Wei, W.; Shan, J. F.; Liu, F. K.; Wang, M.; Xu, H. D.; Yang, Y.; Peysson, Y.; Basiuk, V.; Artaud, J.-F.; Yuynh, P.; Wan, B. N.
2013-04-01
High-confinement (H-mode) discharges with lower hybrid current drive (LHCD) as the only heating source are obtained on EAST. In this paper, an empirical transport model of mixed Bohm/gyro-Bohm for electron and ion heat transport was first calibrated against a database of 3 L-mode shots on EAST. The electron and ion temperature profiles are well reproduced in the predictive modeling with the calibrated model coupled to the suite of codes CRONOS. CRONOS calculations with experimental profiles are also performed for electron power balance analysis. In addition, the time evolutions of LHCD are calculated by the C3PO/LUKE code involving current diffusion, and the results are compared with experimental observations.
49 CFR Appendix C to Part 229 - FRA Locomotive Standards-Code of Defects
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false FRA Locomotive Standards-Code of Defects C Appendix C to Part 229 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Pt. 229, App. C...
49 CFR Appendix C to Part 229 - FRA Locomotive Standards-Code of Defects
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false FRA Locomotive Standards-Code of Defects C Appendix C to Part 229 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Pt. 229, App. C...
49 CFR Appendix C to Part 229 - FRA Locomotive Standards-Code of Defects
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false FRA Locomotive Standards-Code of Defects C Appendix C to Part 229 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Pt. 229, App. C...
Juste, B; Miro, R; Gallardo, S; Santos, A; Verdu, G
2006-01-01
The present work has simulated the photon and electron transport in a Theratron 780 (MDS Nordion) (60)Co radiotherapy unit, using the Monte Carlo transport code, MCNP (Monte Carlo N-Particle), version 5. In order to become computationally more efficient in view of taking part in the practical field of radiotherapy treatment planning, this work is focused mainly on the analysis of dose results and on the required computing time of different tallies applied in the model to speed up calculations.
Bergmann, Ryan M.; Rowland, Kelly L.; Radnović, Nikola; ...
2017-05-01
In this companion paper to "Algorithmic Choices in WARP - A Framework for Continuous Energy Monte Carlo Neutron Transport in General 3D Geometries on GPUs" (doi:10.1016/j.anucene.2014.10.039), the WARP Monte Carlo neutron transport framework for graphics processing units (GPUs) is benchmarked against production-level central processing unit (CPU) Monte Carlo neutron transport codes for both performance and accuracy. We compare neutron flux spectra, multiplication factors, runtimes, speedup factors, and costs of various GPU and CPU platforms running either WARP, Serpent 2.1.24, or MCNP 6.1. WARP compares well with the results of the production-level codes, and it is shown that on the newestmore » hardware considered, GPU platforms running WARP are between 0.8 to 7.6 times as fast as CPU platforms running production codes. Also, the GPU platforms running WARP were between 15% and 50% as expensive to purchase and between 80% to 90% as expensive to operate as equivalent CPU platforms performing at an equal simulation rate.« less
NASA Astrophysics Data System (ADS)
Nagakura, Hiroki; Richers, Sherwood; Ott, Christian; Iwakami, Wakana; Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi
2017-01-01
We have developed a multi-d radiation-hydrodynamic code which solves first-principles Boltzmann equation for neutrino transport. It is currently applicable specifically for core-collapse supernovae (CCSNe), but we will extend their applicability to further extreme phenomena such as black hole formation and coalescence of double neutron stars. In this meeting, I will discuss about two things; (1) detailed comparison with a Monte-Carlo neutrino transport (2) axisymmetric CCSNe simulations. The project (1) gives us confidence of our code. The Monte-Carlo code has been developed by Caltech group and it is specialized to obtain a steady state. Among CCSNe community, this is the first attempt to compare two different methods for multi-d neutrino transport. I will show the result of these comparison. For the project (2), I particularly focus on the property of neutrino distribution function in the semi-transparent region where only first-principle Boltzmann solver can appropriately handle the neutrino transport. In addition to these analyses, I will also discuss the ``explodability'' by neutrino heating mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergmann, Ryan M.; Rowland, Kelly L.; Radnović, Nikola
In this companion paper to "Algorithmic Choices in WARP - A Framework for Continuous Energy Monte Carlo Neutron Transport in General 3D Geometries on GPUs" (doi:10.1016/j.anucene.2014.10.039), the WARP Monte Carlo neutron transport framework for graphics processing units (GPUs) is benchmarked against production-level central processing unit (CPU) Monte Carlo neutron transport codes for both performance and accuracy. We compare neutron flux spectra, multiplication factors, runtimes, speedup factors, and costs of various GPU and CPU platforms running either WARP, Serpent 2.1.24, or MCNP 6.1. WARP compares well with the results of the production-level codes, and it is shown that on the newestmore » hardware considered, GPU platforms running WARP are between 0.8 to 7.6 times as fast as CPU platforms running production codes. Also, the GPU platforms running WARP were between 15% and 50% as expensive to purchase and between 80% to 90% as expensive to operate as equivalent CPU platforms performing at an equal simulation rate.« less
NASA Technical Reports Server (NTRS)
Shinn, Judy L.; Wilson, John W.; Lone, M. A.; Wong, P. Y.; Costen, Robert C.
1994-01-01
A baryon transport code (BRYNTRN) has previously been verified using available Monte Carlo results for a solar-flare spectrum as the reference. Excellent results were obtained, but the comparisons were limited to the available data on dose and dose equivalent for moderate penetration studies that involve minor contributions from secondary neutrons. To further verify the code, the secondary energy spectra of protons and neutrons are calculated using BRYNTRN and LAHET (Los Alamos High-Energy Transport code, which is a Monte Carlo code). These calculations are compared for three locations within a water slab exposed to the February 1956 solar-proton spectrum. Reasonable agreement was obtained when various considerations related to the calculational techniques and their limitations were taken into account. Although the Monte Carlo results are preliminary, it appears that the neutron albedo, which is not currently treated in BRYNTRN, might be a cause for the large discrepancy seen at small penetration depths. It also appears that the nonelastic neutron production cross sections in BRYNTRN may underestimate the number of neutrons produced in proton collisions with energies below 200 MeV. The notion that the poor energy resolution in BRYNTRN may cause a large truncation error in neutron elastic scattering requires further study.
49 CFR Appendix C to Part 215 - FRA Freight Car Standards Defect Code
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false FRA Freight Car Standards Defect Code C Appendix C... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Pt. 215, App. C Appendix C to Part 215—FRA Freight Car Standards Defect Code The following defect code has been established for use...
49 CFR Appendix C to Part 215 - FRA Freight Car Standards Defect Code
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false FRA Freight Car Standards Defect Code C Appendix C... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Pt. 215, App. C Appendix C to Part 215—FRA Freight Car Standards Defect Code The following defect code has been established for use...
49 CFR Appendix C to Part 215 - FRA Freight Car Standards Defect Code
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false FRA Freight Car Standards Defect Code C Appendix C... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Pt. 215, App. C Appendix C to Part 215—FRA Freight Car Standards Defect Code The following defect code has been established for use...
49 CFR Appendix C to Part 215 - FRA Freight Car Standards Defect Code
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false FRA Freight Car Standards Defect Code C Appendix C... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Pt. 215, App. C Appendix C to Part 215—FRA Freight Car Standards Defect Code The following defect code has been established for use...
Methods of treating complex space vehicle geometry for charged particle radiation transport
NASA Technical Reports Server (NTRS)
Hill, C. W.
1973-01-01
Current methods of treating complex geometry models for space radiation transport calculations are reviewed. The geometric techniques used in three computer codes are outlined. Evaluations of geometric capability and speed are provided for these codes. Although no code development work is included several suggestions for significantly improving complex geometry codes are offered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, J.; Wan, Weigang; Chen, Yang
2014-11-15
The δ f particle-in-cell code GEM is used to study the transport “shortfall” problem of gyrokinetic simulations. In local simulations, the GEM results confirm the previously reported simulation results of DIII-D [Holland et al., Phys. Plasmas 16, 052301 (2009)] and Alcator C-Mod [Howard et al., Nucl. Fusion 53, 123011 (2013)] tokamaks with the continuum code GYRO. Namely, for DIII-D the simulations closely predict the ion heat flux at the core, while substantially underpredict transport towards the edge; while for Alcator C-Mod, the simulations show agreement with the experimental values of ion heat flux, at least within the range of experimental error.more » Global simulations are carried out for DIII-D L-mode plasmas to study the effect of edge turbulence on the outer core ion heat transport. The edge turbulence enhances the outer core ion heat transport through turbulence spreading. However, this edge turbulence spreading effect is not enough to explain the transport underprediction.« less
NASA Astrophysics Data System (ADS)
Pei, Yong; Modestino, James W.
2007-12-01
We describe a multilayered video transport scheme for wireless channels capable of adapting to channel conditions in order to maximize end-to-end quality of service (QoS). This scheme combines a scalable H.263+ video source coder with unequal error protection (UEP) across layers. The UEP is achieved by employing different channel codes together with a multiresolution modulation approach to transport the different priority layers. Adaptivity to channel conditions is provided through a joint source-channel coding (JSCC) approach which attempts to jointly optimize the source and channel coding rates together with the modulation parameters to obtain the maximum achievable end-to-end QoS for the prevailing channel conditions. In this work, we model the wireless links as slow-fading Rician channel where the channel conditions can be described in terms of the channel signal-to-noise ratio (SNR) and the ratio of specular-to-diffuse energy[InlineEquation not available: see fulltext.]. The multiresolution modulation/coding scheme consists of binary rate-compatible punctured convolutional (RCPC) codes used together with nonuniform phase-shift keyed (PSK) signaling constellations. Results indicate that this adaptive JSCC scheme employing scalable video encoding together with a multiresolution modulation/coding approach leads to significant improvements in delivered video quality for specified channel conditions. In particular, the approach results in considerably improved graceful degradation properties for decreasing channel SNR.
McSKY: A hybrid Monte-Carlo lime-beam code for shielded gamma skyshine calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shultis, J.K.; Faw, R.E.; Stedry, M.H.
1994-07-01
McSKY evaluates skyshine dose from an isotropic, monoenergetic, point photon source collimated into either a vertical cone or a vertical structure with an N-sided polygon cross section. The code assumes an overhead shield of two materials, through the user can specify zero shield thickness for an unshielded calculation. The code uses a Monte-Carlo algorithm to evaluate transport through source shields and the integral line source to describe photon transport through the atmosphere. The source energy must be between 0.02 and 100 MeV. For heavily shielded sources with energies above 20 MeV, McSKY results must be used cautiously, especially at detectormore » locations near the source.« less
Far-Field Turbulent Vortex-Wake/Exhaust Plume Interaction for Subsonic and HSCT Airplanes
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Adam, Ihab; Wong, Tin-Chee
1996-01-01
Computational study of the far-field turbulent vortex-wake/exhaust plume interaction for subsonic and high speed civil transport (HSCT) airplanes is carried out. The Reynolds-averaged Navier-Stokes (NS) equations are solved using the implicit, upwind, Roe-flux-differencing, finite-volume scheme. The two-equation shear stress transport model of Menter is implemented with the NS solver for turbulent-flow calculation. For the far-field study, the computations of vortex-wake interaction with the exhaust plume of a single engine of a Boeing 727 wing in a holding condition and two engines of an HSCT in a cruise condition are carried out using overlapping zonal method for several miles downstream. These results are obtained using the computer code FTNS3D. The results of the subsonic flow of this code are compared with those of a parabolized NS solver known as the UNIWAKE code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klasky, Marc Louis; Myers, Steven Charles; James, Michael R.
To facilitate the timely execution of System Threat Reviews (STRs) for DNDO, and also to develop a methodology for performing STRs, LANL performed comparisons of several radiation transport codes (MCNP, GADRAS, and Gamma-Designer) that have been previously utilized to compute radiation signatures. While each of these codes has strengths, it is of paramount interest to determine the limitations of each of the respective codes and also to identify the most time efficient means by which to produce computational results, given the large number of parametric cases that are anticipated in performing STR's. These comparisons serve to identify regions of applicabilitymore » for each code and provide estimates of uncertainty that may be anticipated. Furthermore, while performing these comparisons, examination of the sensitivity of the results to modeling assumptions was also examined. These investigations serve to enable the creation of the LANL methodology for performing STRs. Given the wide variety of radiation test sources, scenarios, and detectors, LANL calculated comparisons of the following parameters: decay data, multiplicity, device (n,γ) leakages, and radiation transport through representative scenes and shielding. This investigation was performed to understand potential limitations utilizing specific codes for different aspects of the STR challenges.« less
NASA Astrophysics Data System (ADS)
Benettin, Paolo; Bertuzzo, Enrico
2018-04-01
This paper presents the tran-SAS
package, which includes a set of codes to model solute transport and water residence times through a hydrological system. The model is based on a catchment-scale approach that aims at reproducing the integrated response of the system at one of its outlets. The codes are implemented in MATLAB and are meant to be easy to edit, so that users with minimal programming knowledge can adapt them to the desired application. The problem of large-scale solute transport has both theoretical and practical implications. On the one side, the ability to represent the ensemble of water flow trajectories through a heterogeneous system helps unraveling streamflow generation processes and allows us to make inferences on plant-water interactions. On the other side, transport models are a practical tool that can be used to estimate the persistence of solutes in the environment. The core of the package is based on the implementation of an age master equation (ME), which is solved using general StorAge Selection (SAS) functions. The age ME is first converted into a set of ordinary differential equations, each addressing the transport of an individual precipitation input through the catchment, and then it is discretized using an explicit numerical scheme. Results show that the implementation is efficient and allows the model to run in short times. The numerical accuracy is critically evaluated and it is shown to be satisfactory in most cases of hydrologic interest. Additionally, a higher-order implementation is provided within the package to evaluate and, if necessary, to improve the numerical accuracy of the results. The codes can be used to model streamflow age and solute concentration, but a number of additional outputs can be obtained by editing the codes to further advance the ability to understand and model catchment transport processes.
Simulation of neoclassical transport with the continuum gyrokinetic code COGENT
Dorf, M. A.; Cohen, R. H.; Dorr, M.; ...
2013-01-25
The development of the continuum gyrokinetic code COGENT for edge plasma simulations is reported. The present version of the code models a nonlinear axisymmetric 4D (R, v∥, μ) gyrokinetic equation coupled to the long-wavelength limit of the gyro-Poisson equation. Here, R is the particle gyrocenter coordinate in the poloidal plane, and v∥ and μ are the guiding center velocity parallel to the magnetic field and the magnetic moment, respectively. The COGENT code utilizes a fourth-order finite-volume (conservative) discretization combined with arbitrary mapped multiblock grid technology (nearly field-aligned on blocks) to handle the complexity of tokamak divertor geometry with high accuracy.more » Furthermore, topics presented are the implementation of increasingly detailed model collision operators, and the results of neoclassical transport simulations including the effects of a strong radial electric field characteristic of a tokamak pedestal under H-mode conditions.« less
GBS: Global 3D simulation of tokamak edge region
NASA Astrophysics Data System (ADS)
Zhu, Ben; Fisher, Dustin; Rogers, Barrett; Ricci, Paolo
2012-10-01
A 3D two-fluid global code, namely Global Braginskii Solver (GBS), is being developed to explore the physics of turbulent transport, confinement, self-consistent profile formation, pedestal scaling and related phenomena in the edge region of tokamaks. Aimed at solving drift-reduced Braginskii equations [1] in complex magnetic geometry, the GBS is used for turbulence simulation in SOL region. In the recent upgrade, the simulation domain is expanded into close flux region with twist-shift boundary conditions. Hence, the new GBS code is able to explore global transport physics in an annular full-torus domain from the top of the pedestal into the far SOL. We are in the process of identifying and analyzing the linear and nonlinear instabilities in the system using the new GBS code. Preliminary results will be presented and compared with other codes if possible.[4pt] [1] A. Zeiler, J. F. Drake and B. Rogers, Phys. Plasmas 4, 2134 (1997)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William
ITS is a powerful and user-friendly software package permitting state of the art Monte Carlo solution of linear time-independent couple electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theoristsmore » alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2)multigroup codes with adjoint transport capabilities, and (3) parallel implementations of all ITS codes. Moreover the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.« less
SOPHAEROS code development and its application to falcon tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lajtha, G.; Missirlian, M.; Kissane, M.
1996-12-31
One of the key issues in source-term evaluation in nuclear reactor severe accidents is determination of the transport behavior of fission products released from the degrading core. The SOPHAEROS computer code is being developed to predict fission product transport in a mechanistic way in light water reactor circuits. These applications of the SOPHAEROS code to the Falcon experiments, among others not presented here, indicate that the numerical scheme of the code is robust, and no convergence problems are encountered. The calculation is also very fast being three times longer on a Sun SPARC 5 workstation than real time and typicallymore » {approx} 10 times faster than an identical calculation with the VICTORIA code. The study demonstrates that the SOPHAEROS 1.3 code is a suitable tool for prediction of the vapor chemistry and fission product transport with a reasonable level of accuracy. Furthermore, the fexibility of the code material data bank allows improvement of understanding of fission product transport and deposition in the circuit. Performing sensitivity studies with different chemical species or with different properties (saturation pressure, chemical equilibrium constants) is very straightforward.« less
Modeling variably saturated subsurface solute transport with MODFLOW-UZF and MT3DMS
Morway, Eric D.; Niswonger, Richard G.; Langevin, Christian D.; Bailey, Ryan T.; Healy, Richard W.
2013-01-01
The MT3DMS groundwater solute transport model was modified to simulate solute transport in the unsaturated zone by incorporating the unsaturated-zone flow (UZF1) package developed for MODFLOW. The modified MT3DMS code uses a volume-averaged approach in which Lagrangian-based UZF1 fluid fluxes and storage changes are mapped onto a fixed grid. Referred to as UZF-MT3DMS, the linked model was tested against published benchmarks solved analytically as well as against other published codes, most frequently the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model. Results from a suite of test cases demonstrate that the modified code accurately simulates solute advection, dispersion, and reaction in the unsaturated zone. Two- and three-dimensional simulations also were investigated to ensure unsaturated-saturated zone interaction was simulated correctly. Because the UZF1 solution is analytical, large-scale flow and transport investigations can be performed free from the computational and data burdens required by numerical solutions to Richards' equation. Results demonstrate that significant simulation runtime savings can be achieved with UZF-MT3DMS, an important development when hundreds or thousands of model runs are required during parameter estimation and uncertainty analysis. Three-dimensional variably saturated flow and transport simulations revealed UZF-MT3DMS to have runtimes that are less than one tenth of the time required by models that rely on Richards' equation. Given its accuracy and efficiency, and the wide-spread use of both MODFLOW and MT3DMS, the added capability of unsaturated-zone transport in this familiar modeling framework stands to benefit a broad user-ship.
Modeling variably saturated subsurface solute transport with MODFLOW-UZF and MT3DMS.
Morway, Eric D; Niswonger, Richard G; Langevin, Christian D; Bailey, Ryan T; Healy, Richard W
2013-03-01
The MT3DMS groundwater solute transport model was modified to simulate solute transport in the unsaturated zone by incorporating the unsaturated-zone flow (UZF1) package developed for MODFLOW. The modified MT3DMS code uses a volume-averaged approach in which Lagrangian-based UZF1 fluid fluxes and storage changes are mapped onto a fixed grid. Referred to as UZF-MT3DMS, the linked model was tested against published benchmarks solved analytically as well as against other published codes, most frequently the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model. Results from a suite of test cases demonstrate that the modified code accurately simulates solute advection, dispersion, and reaction in the unsaturated zone. Two- and three-dimensional simulations also were investigated to ensure unsaturated-saturated zone interaction was simulated correctly. Because the UZF1 solution is analytical, large-scale flow and transport investigations can be performed free from the computational and data burdens required by numerical solutions to Richards' equation. Results demonstrate that significant simulation runtime savings can be achieved with UZF-MT3DMS, an important development when hundreds or thousands of model runs are required during parameter estimation and uncertainty analysis. Three-dimensional variably saturated flow and transport simulations revealed UZF-MT3DMS to have runtimes that are less than one tenth of the time required by models that rely on Richards' equation. Given its accuracy and efficiency, and the wide-spread use of both MODFLOW and MT3DMS, the added capability of unsaturated-zone transport in this familiar modeling framework stands to benefit a broad user-ship. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
NASA Technical Reports Server (NTRS)
Capo, M. A.; Disney, R. K.
1971-01-01
The work performed in the following areas is summarized: (1) Analysis of Realistic nuclear-propelled vehicle was analyzed using the Marshall Space Flight Center computer code package. This code package includes one and two dimensional discrete ordinate transport, point kernel, and single scatter techniques, as well as cross section preparation and data processing codes, (2) Techniques were developed to improve the automated data transfer in the coupled computation method of the computer code package and improve the utilization of this code package on the Univac-1108 computer system. (3) The MSFC master data libraries were updated.
Zebra: An advanced PWR lattice code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, L.; Wu, H.; Zheng, Y.
2012-07-01
This paper presents an overview of an advanced PWR lattice code ZEBRA developed at NECP laboratory in Xi'an Jiaotong Univ.. The multi-group cross-section library is generated from the ENDF/B-VII library by NJOY and the 361-group SHEM structure is employed. The resonance calculation module is developed based on sub-group method. The transport solver is Auto-MOC code, which is a self-developed code based on the Method of Characteristic and the customization of AutoCAD software. The whole code is well organized in a modular software structure. Some numerical results during the validation of the code demonstrate that this code has a good precisionmore » and a high efficiency. (authors)« less
NASA Astrophysics Data System (ADS)
Estrada, P. R.; Durisen, R. H.; Cuzzi, J. N.
2014-04-01
We introduce improved numerical techniques for simulating the structural and compositional evolution of planetary rings due to micrometeoroid bombardment and subsequent ballistic transport of impact ejecta. Our current, robust code, which is based on the original structural code of [1] and on the pollution transport code of [3], is capable of modeling structural changes and pollution transport simultaneously over long times on both local and global scales. We provide demonstrative simulations to compare with, and extend upon previous work, as well as examples of how ballistic transport can maintain the observed structure in Saturn's rings using available Cassini occultation optical depth data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-05-17
PeleC is an adaptive-mesh compressible hydrodynamics code for reacting flows. It solves the compressible Navier-Stokes with multispecies transport in a block structured framework. The resulting algorithm is well suited for flows with localized resolution requirements and robust to discontinuities. User controllable refinement crieteria has the potential to result in extremely small numerical dissipation and dispersion, making this code appropriate for both research and applied usage. The code is built on the AMReX library which facilitates hierarchical parallelism and manages distributed memory parallism. PeleC algorithms are implemented to express shared memory parallelism.
1989-07-01
TECHNICAL REPORT HL-89-14 VERIFICATION OF THE HYDRODYNAMIC AND Si SEDIMENT TRANSPORT HYBRID MODELING SYSTEM FOR CUMBERLAND SOUND AND I’) KINGS BAY...Hydrodynamic and Sediment Transport Hybrid Modeling System for Cumberland Sound and Kings Bay Navigation Channel, Georgia 12 PERSONAL AUTHOR(S) Granat...Hydrodynamic results from RMA-2V were used in the numerical sediment transport code STUDH in modeling the interaction of the flow transport and
NASA Astrophysics Data System (ADS)
Samarin, S. N.; Saramad, S.
2018-05-01
The spatial resolution of a detector is a very important parameter for x-ray imaging. A bulk scintillation detector because of spreading of light inside the scintillator does't have a good spatial resolution. The nanowire scintillators because of their wave guiding behavior can prevent the spreading of light and can improve the spatial resolution of traditional scintillation detectors. The zinc oxide (ZnO) scintillator nanowire, with its simple construction by electrochemical deposition in regular hexagonal structure of Aluminum oxide membrane has many advantages. The three dimensional absorption of X-ray energy in ZnO scintillator is simulated by a Monte Carlo transport code (MCNP). The transport, attenuation and scattering of the generated photons are simulated by a general-purpose scintillator light response simulation code (OPTICS). The results are compared with a previous publication which used a simulation code of the passage of particles through matter (Geant4). The results verify that this scintillator nanowire structure has a spatial resolution less than one micrometer.
Aerothermo-Structural Analysis of Low Cost Composite Nozzle/Inlet Components
NASA Technical Reports Server (NTRS)
Shivakumar, Kuwigai; Challa, Preeli; Sree, Dave; Reddy, D.
1999-01-01
This research is a cooperative effort among the Turbomachinery and Propulsion Division of NASA Glenn, CCMR of NC A&T State University, and the Tuskegee University. The NC A&T is the lead center and Tuskegee University is the participating institution. Objectives of the research were to develop an integrated aerodynamic, thermal and structural analysis code for design of aircraft engine components, such as, nozzles and inlets made of textile composites; conduct design studies on typical inlets for hypersonic transportation vehicles and setup standards test examples and finally manufacture a scaled down composite inlet. These objectives are accomplished through the following seven tasks: (1) identify the relevant public domain codes for all three types of analysis; (2) evaluate the codes for the accuracy of results and computational efficiency; (3) develop aero-thermal and thermal structural mapping algorithms; (4) integrate all the codes into one single code; (5) write a graphical user interface to improve the user friendliness of the code; (6) conduct test studies for rocket based combined-cycle engine inlet; and finally (7) fabricate a demonstration inlet model using textile preform composites. Tasks one, two and six are being pursued. Selected and evaluated NPARC for flow field analysis, CSTEM for in-depth thermal analysis of inlets and nozzles and FRAC3D for stress analysis. These codes have been independently verified for accuracy and performance. In addition, graphical user interface based on micromechanics analysis for laminated as well as textile composites was developed. Demonstration of this code will be made at the conference. A rocket based combined cycle engine was selected for test studies. Flow field analysis of various inlet geometries were studied. Integration of codes is being continued. The codes developed are being applied to a candidate example of trailblazer engine proposed for space transportation. A successful development of the code will provide a simpler, faster and user-friendly tool for conducting design studies of aircraft and spacecraft engines, applicable in high speed civil transport and space missions.
A study of transonic aerodynamic analysis methods for use with a hypersonic aircraft synthesis code
NASA Technical Reports Server (NTRS)
Sandlin, Doral R.; Davis, Paul Christopher
1992-01-01
A means of performing routine transonic lift, drag, and moment analyses on hypersonic all-body and wing-body configurations were studied. The analysis method is to be used in conjunction with the Hypersonic Vehicle Optimization Code (HAVOC). A review of existing techniques is presented, after which three methods, chosen to represent a spectrum of capabilities, are tested and the results are compared with experimental data. The three methods consist of a wave drag code, a full potential code, and a Navier-Stokes code. The wave drag code, representing the empirical approach, has very fast CPU times, but very limited and sporadic results. The full potential code provides results which compare favorably to the wind tunnel data, but with a dramatic increase in computational time. Even more extreme is the Navier-Stokes code, which provides the most favorable and complete results, but with a very large turnaround time. The full potential code, TRANAIR, is used for additional analyses, because of the superior results it can provide over empirical and semi-empirical methods, and because of its automated grid generation. TRANAIR analyses include an all body hypersonic cruise configuration and an oblique flying wing supersonic transport.
Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas (GPS - TTBP) Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chame, Jacqueline
2011-05-27
The goal of this project is the development of the Gyrokinetic Toroidal Code (GTC) Framework and its applications to problems related to the physics of turbulence and turbulent transport in tokamaks,. The project involves physics studies, code development, noise effect mitigation, supporting computer science efforts, diagnostics and advanced visualizations, verification and validation. Its main scientific themes are mesoscale dynamics and non-locality effects on transport, the physics of secondary structures such as zonal flows, and strongly coherent wave-particle interaction phenomena at magnetic precession resonances. Special emphasis is placed on the implications of these themes for rho-star and current scalings and formore » the turbulent transport of momentum. GTC-TTBP also explores applications to electron thermal transport, particle transport; ITB formation and cross-cuts such as edge-core coupling, interaction of energetic particles with turbulence and neoclassical tearing mode trigger dynamics. Code development focuses on major initiatives in the development of full-f formulations and the capacity to simulate flux-driven transport. In addition to the full-f -formulation, the project includes the development of numerical collision models and methods for coarse graining in phase space. Verification is pursued by linear stability study comparisons with the FULL and HD7 codes and by benchmarking with the GKV, GYSELA and other gyrokinetic simulation codes. Validation of gyrokinetic models of ion and electron thermal transport is pursed by systematic stressing comparisons with fluctuation and transport data from the DIII-D and NSTX tokamaks. The physics and code development research programs are supported by complementary efforts in computer sciences, high performance computing, and data management.« less
High Performance Radiation Transport Simulations on TITAN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Christopher G; Davidson, Gregory G; Evans, Thomas M
2012-01-01
In this paper we describe the Denovo code system. Denovo solves the six-dimensional, steady-state, linear Boltzmann transport equation, of central importance to nuclear technology applications such as reactor core analysis (neutronics), radiation shielding, nuclear forensics and radiation detection. The code features multiple spatial differencing schemes, state-of-the-art linear solvers, the Koch-Baker-Alcouffe (KBA) parallel-wavefront sweep algorithm for inverting the transport operator, a new multilevel energy decomposition method scaling to hundreds of thousands of processing cores, and a modern, novel code architecture that supports straightforward integration of new features. In this paper we discuss the performance of Denovo on the 10--20 petaflop ORNLmore » GPU-based system, Titan. We describe algorithms and techniques used to exploit the capabilities of Titan's heterogeneous compute node architecture and the challenges of obtaining good parallel performance for this sparse hyperbolic PDE solver containing inherently sequential computations. Numerical results demonstrating Denovo performance on early Titan hardware are presented.« less
Diffusive deposition of aerosols in Phebus containment during FPT-2 test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontautas, A.; Urbonavicius, E.
2012-07-01
At present the lumped-parameter codes is the main tool to investigate the complex response of the containment of Nuclear Power Plant in case of an accident. Continuous development and validation of the codes is required to perform realistic investigation of the processes that determine the possible source term of radioactive products to the environment. Validation of the codes is based on the comparison of the calculated results with the measurements performed in experimental facilities. The most extensive experimental program to investigate fission product release from the molten fuel, transport through the cooling circuit and deposition in the containment is performedmore » in PHEBUS test facility. Test FPT-2 performed in this facility is considered for analysis of processes taking place in containment. Earlier performed investigations using COCOSYS code showed that the code could be successfully used for analysis of thermal-hydraulic processes and deposition of aerosols, but there was also noticed that diffusive deposition on the vertical walls does not fit well with the measured results. In the CPA module of ASTEC code there is implemented different model for diffusive deposition, therefore the PHEBUS containment model was transferred from COCOSYS code to ASTEC-CPA to investigate the influence of the diffusive deposition modelling. Analysis was performed using PHEBUS containment model of 16 nodes. The calculated thermal-hydraulic parameters are in good agreement with measured results, which gives basis for realistic simulation of aerosol transport and deposition processes. Performed investigations showed that diffusive deposition model has influence on the aerosol deposition distribution on different surfaces in the test facility. (authors)« less
NASA Astrophysics Data System (ADS)
Breton, S.; Casson, F. J.; Bourdelle, C.; Angioni, C.; Belli, E.; Camenen, Y.; Citrin, J.; Garbet, X.; Sarazin, Y.; Sertoli, M.; JET Contributors
2018-01-01
Heavy impurities, such as tungsten (W), can exhibit strongly poloidally asymmetric density profiles in rotating or radio frequency heated plasmas. In the metallic environment of JET, the poloidal asymmetry of tungsten enhances its neoclassical transport up to an order of magnitude, so that neoclassical convection dominates over turbulent transport in the core. Accounting for asymmetries in neoclassical transport is hence necessary in the integrated modeling framework. The neoclassical drift kinetic code, NEO [E. Belli and J. Candy, Plasma Phys. Controlled Fusion P50, 095010 (2008)], includes the impact of poloidal asymmetries on W transport. However, the computational cost required to run NEO slows down significantly integrated modeling. A previous analytical formulation to describe heavy impurity neoclassical transport in the presence of poloidal asymmetries in specific collisional regimes [C. Angioni and P. Helander, Plasma Phys. Controlled Fusion 56, 124001 (2014)] is compared in this work to numerical results from NEO. Within the domain of validity of the formula, the factor for reducing the temperature screening due to poloidal asymmetries had to be empirically adjusted. After adjustment, the modified formula can reproduce NEO results outside of its definition domain, with some limitations: When main ions are in the banana regime, the formula reproduces NEO results whatever the collisionality regime of impurities, provided that the poloidal asymmetry is not too large. However, for very strong poloidal asymmetries, agreement requires impurities in the Pfirsch-Schlüter regime. Within the JETTO integrated transport code, the analytical formula combined with the poloidally symmetric neoclassical code NCLASS [W. A. Houlberg et al., Phys. Plasmas 4, 3230 (1997)] predicts the same tungsten profile as NEO in certain cases, while saving a factor of one thousand in computer time, which can be useful in scoping studies. The parametric dependencies of the temperature screening reduction due to poloidal asymmetries would need to be better characterised for this faster model to be extended to a more general applicability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergmann, Ryan M.; Rowland, Kelly L.
2017-04-12
WARP, which can stand for ``Weaving All the Random Particles,'' is a three-dimensional (3D) continuous energy Monte Carlo neutron transport code developed at UC Berkeley to efficiently execute on NVIDIA graphics processing unit (GPU) platforms. WARP accelerates Monte Carlo simulations while preserving the benefits of using the Monte Carlo method, namely, that very few physical and geometrical simplifications are applied. WARP is able to calculate multiplication factors, neutron flux distributions (in both space and energy), and fission source distributions for time-independent neutron transport problems. It can run in both criticality or fixed source modes, but fixed source mode is currentlymore » not robust, optimized, or maintained in the newest version. WARP can transport neutrons in unrestricted arrangements of parallelepipeds, hexagonal prisms, cylinders, and spheres. The goal of developing WARP is to investigate algorithms that can grow into a full-featured, continuous energy, Monte Carlo neutron transport code that is accelerated by running on GPUs. The crux of the effort is to make Monte Carlo calculations faster while producing accurate results. Modern supercomputers are commonly being built with GPU coprocessor cards in their nodes to increase their computational efficiency and performance. GPUs execute efficiently on data-parallel problems, but most CPU codes, including those for Monte Carlo neutral particle transport, are predominantly task-parallel. WARP uses a data-parallel neutron transport algorithm to take advantage of the computing power GPUs offer.« less
1987-02-15
this chapter. NO - If shipment is not second des - tination transportation , obtain fund cite per yes response for question 2 above. 4. For Direct Support...return . . . . . . . . .0 . . . . . . . a. . .. A820 (8) LOGAIR/QUICKTRANS. Transportation Account Codes de - signed herein are applicable to the...oo~• na~- Transportation Tis Document Contains Tasotto Missing Page/s That Are Unavailable In The And Original Document Movement sdocument has boon
Verbeke, J. M.; Petit, O.
2016-06-01
From nuclear safeguards to homeland security applications, the need for the better modeling of nuclear interactions has grown over the past decades. Current Monte Carlo radiation transport codes compute average quantities with great accuracy and performance; however, performance and averaging come at the price of limited interaction-by-interaction modeling. These codes often lack the capability of modeling interactions exactly: for a given collision, energy is not conserved, energies of emitted particles are uncorrelated, and multiplicities of prompt fission neutrons and photons are uncorrelated. Many modern applications require more exclusive quantities than averages, such as the fluctuations in certain observables (e.g., themore » neutron multiplicity) and correlations between neutrons and photons. In an effort to meet this need, the radiation transport Monte Carlo code TRIPOLI-4® was modified to provide a specific mode that models nuclear interactions in a full analog way, replicating as much as possible the underlying physical process. Furthermore, the computational model FREYA (Fission Reaction Event Yield Algorithm) was coupled with TRIPOLI-4 to model complete fission events. As a result, FREYA automatically includes fluctuations as well as correlations resulting from conservation of energy and momentum.« less
Shock wave as a probe of flux-dimited thermal transport in laser-heated solids
NASA Astrophysics Data System (ADS)
Smith, K.; Forsman, A.; Chiu, G.
1996-11-01
Laser-generated shock waves in solids result from the ablation of the target material. Where radiation transport is negligible, the ablation process is dominated by electron thermal conduction. This offers an opportunity to probe the degree of transport inhibition (compared with classical heat flow) for steep temperature gradients in a dense plasma. Using a 1-dimensional hydrodynamic code, we have examined the effect of flux-limited thermal conduction on the amplitude of the resulting shock wave.
Transport calculations and accelerator experiments needed for radiation risk assessment in space.
Sihver, Lembit
2008-01-01
The major uncertainties on space radiation risk estimates in humans are associated to the poor knowledge of the biological effects of low and high LET radiation, with a smaller contribution coming from the characterization of space radiation field and its primary interactions with the shielding and the human body. However, to decrease the uncertainties on the biological effects and increase the accuracy of the risk coefficients for charged particles radiation, the initial charged-particle spectra from the Galactic Cosmic Rays (GCRs) and the Solar Particle Events (SPEs), and the radiation transport through the shielding material of the space vehicle and the human body, must be better estimated Since it is practically impossible to measure all primary and secondary particles from all possible position-projectile-target-energy combinations needed for a correct risk assessment in space, accurate particle and heavy ion transport codes must be used. These codes are also needed when estimating the risk for radiation induced failures in advanced microelectronics, such as single-event effects, etc., and the efficiency of different shielding materials. It is therefore important that the models and transport codes will be carefully benchmarked and validated to make sure they fulfill preset accuracy criteria, e.g. to be able to predict particle fluence, dose and energy distributions within a certain accuracy. When validating the accuracy of the transport codes, both space and ground based accelerator experiments are needed The efficiency of passive shielding and protection of electronic devices should also be tested in accelerator experiments and compared to simulations using different transport codes. In this paper different multipurpose particle and heavy ion transport codes will be presented, different concepts of shielding and protection discussed, as well as future accelerator experiments needed for testing and validating codes and shielding materials.
Arthur, Jennifer; Bahran, Rian; Hutchinson, Jesson; ...
2018-06-14
Historically, radiation transport codes have uncorrelated fission emissions. In reality, the particles emitted by both spontaneous and induced fissions are correlated in time, energy, angle, and multiplicity. This work validates the performance of various current Monte Carlo codes that take into account the underlying correlated physics of fission neutrons, specifically neutron multiplicity distributions. The performance of 4 Monte Carlo codes - MCNP®6.2, MCNP®6.2/FREYA, MCNP®6.2/CGMF, and PoliMi - was assessed using neutron multiplicity benchmark experiments. In addition, MCNP®6.2 simulations were run using JEFF-3.2 and JENDL-4.0, rather than ENDF/B-VII.1, data for 239Pu and 240Pu. The sensitive benchmark parameters that in this workmore » represent the performance of each correlated fission multiplicity Monte Carlo code include the singles rate, the doubles rate, leakage multiplication, and Feynman histograms. Although it is difficult to determine which radiation transport code shows the best overall performance in simulating subcritical neutron multiplication inference benchmark measurements, it is clear that correlations exist between the underlying nuclear data utilized by (or generated by) the various codes, and the correlated neutron observables of interest. This could prove useful in nuclear data validation and evaluation applications, in which a particular moment of the neutron multiplicity distribution is of more interest than the other moments. It is also quite clear that, because transport is handled by MCNP®6.2 in 3 of the 4 codes, with the 4th code (PoliMi) being based on an older version of MCNP®, the differences in correlated neutron observables of interest are most likely due to the treatment of fission event generation in each of the different codes, as opposed to the radiation transport.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, Jennifer; Bahran, Rian; Hutchinson, Jesson
Historically, radiation transport codes have uncorrelated fission emissions. In reality, the particles emitted by both spontaneous and induced fissions are correlated in time, energy, angle, and multiplicity. This work validates the performance of various current Monte Carlo codes that take into account the underlying correlated physics of fission neutrons, specifically neutron multiplicity distributions. The performance of 4 Monte Carlo codes - MCNP®6.2, MCNP®6.2/FREYA, MCNP®6.2/CGMF, and PoliMi - was assessed using neutron multiplicity benchmark experiments. In addition, MCNP®6.2 simulations were run using JEFF-3.2 and JENDL-4.0, rather than ENDF/B-VII.1, data for 239Pu and 240Pu. The sensitive benchmark parameters that in this workmore » represent the performance of each correlated fission multiplicity Monte Carlo code include the singles rate, the doubles rate, leakage multiplication, and Feynman histograms. Although it is difficult to determine which radiation transport code shows the best overall performance in simulating subcritical neutron multiplication inference benchmark measurements, it is clear that correlations exist between the underlying nuclear data utilized by (or generated by) the various codes, and the correlated neutron observables of interest. This could prove useful in nuclear data validation and evaluation applications, in which a particular moment of the neutron multiplicity distribution is of more interest than the other moments. It is also quite clear that, because transport is handled by MCNP®6.2 in 3 of the 4 codes, with the 4th code (PoliMi) being based on an older version of MCNP®, the differences in correlated neutron observables of interest are most likely due to the treatment of fission event generation in each of the different codes, as opposed to the radiation transport.« less
Enhancements to the MCNP6 background source
McMath, Garrett E.; McKinney, Gregg W.
2015-10-19
The particle transport code MCNP has been used to produce a background radiation data file on a worldwide grid that can easily be sampled as a source in the code. Location-dependent cosmic showers were modeled by Monte Carlo methods to produce the resulting neutron and photon background flux at 2054 locations around Earth. An improved galactic-cosmic-ray feature was used to model the source term as well as data from multiple sources to model the transport environment through atmosphere, soil, and seawater. A new elevation scaling feature was also added to the code to increase the accuracy of the cosmic neutronmore » background for user locations with off-grid elevations. Furthermore, benchmarking has shown the neutron integral flux values to be within experimental error.« less
CFD Sensitivity Analysis of a Modern Civil Transport Near Buffet-Onset Conditions
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Allison, Dennis O.; Biedron, Robert T.; Buning, Pieter G.; Gainer, Thomas G.; Morrison, Joseph H.; Rivers, S. Melissa; Mysko, Stephen J.; Witkowski, David P.
2001-01-01
A computational fluid dynamics (CFD) sensitivity analysis is conducted for a modern civil transport at several conditions ranging from mostly attached flow to flow with substantial separation. Two different Navier-Stokes computer codes and four different turbulence models are utilized, and results are compared both to wind tunnel data at flight Reynolds number and flight data. In-depth CFD sensitivities to grid, code, spatial differencing method, aeroelastic shape, and turbulence model are described for conditions near buffet onset (a condition at which significant separation exists). In summary, given a grid of sufficient density for a given aeroelastic wing shape, the combined approximate error band in CFD at conditions near buffet onset due to code, spatial differencing method, and turbulence model is: 6% in lift, 7% in drag, and 16% in moment. The biggest two contributers to this uncertainty are turbulence model and code. Computed results agree well with wind tunnel surface pressure measurements both for an overspeed 'cruise' case as well as a case with small trailing edge separation. At and beyond buffet onset, computed results agree well over the inner half of the wing, but shock location is predicted too far aft at some of the outboard stations. Lift, drag, and moment curves are predicted in good agreement with experimental results from the wind tunnel.
Full 3D visualization tool-kit for Monte Carlo and deterministic transport codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frambati, S.; Frignani, M.
2012-07-01
We propose a package of tools capable of translating the geometric inputs and outputs of many Monte Carlo and deterministic radiation transport codes into open source file formats. These tools are aimed at bridging the gap between trusted, widely-used radiation analysis codes and very powerful, more recent and commonly used visualization software, thus supporting the design process and helping with shielding optimization. Three main lines of development were followed: mesh-based analysis of Monte Carlo codes, mesh-based analysis of deterministic codes and Monte Carlo surface meshing. The developed kit is considered a powerful and cost-effective tool in the computer-aided design formore » radiation transport code users of the nuclear world, and in particular in the fields of core design and radiation analysis. (authors)« less
Radiation Transport Tools for Space Applications: A Review
NASA Technical Reports Server (NTRS)
Jun, Insoo; Evans, Robin; Cherng, Michael; Kang, Shawn
2008-01-01
This slide presentation contains a brief discussion of nuclear transport codes widely used in the space radiation community for shielding and scientific analyses. Seven radiation transport codes that are addressed. The two general methods (i.e., Monte Carlo Method, and the Deterministic Method) are briefly reviewed.
Comparison of Transport Codes, HZETRN, HETC and FLUKA, Using 1977 GCR Solar Minimum Spectra
NASA Technical Reports Server (NTRS)
Heinbockel, John H.; Slaba, Tony C.; Tripathi, Ram K.; Blattnig, Steve R.; Norbury, John W.; Badavi, Francis F.; Townsend, Lawrence W.; Handler, Thomas; Gabriel, Tony A.; Pinsky, Lawrence S.;
2009-01-01
The HZETRN deterministic radiation transport code is one of several tools developed to analyze the effects of harmful galactic cosmic rays (GCR) and solar particle events (SPE) on mission planning, astronaut shielding and instrumentation. This paper is a comparison study involving the two Monte Carlo transport codes, HETC-HEDS and FLUKA, and the deterministic transport code, HZETRN. Each code is used to transport ions from the 1977 solar minimum GCR spectrum impinging upon a 20 g/cm2 Aluminum slab followed by a 30 g/cm2 water slab. This research is part of a systematic effort of verification and validation to quantify the accuracy of HZETRN and determine areas where it can be improved. Comparisons of dose and dose equivalent values at various depths in the water slab are presented in this report. This is followed by a comparison of the proton fluxes, and the forward, backward and total neutron fluxes at various depths in the water slab. Comparisons of the secondary light ion 2H, 3H, 3He and 4He fluxes are also examined.
Development of a new EMP code at LANL
NASA Astrophysics Data System (ADS)
Colman, J. J.; Roussel-Dupré, R. A.; Symbalisty, E. M.; Triplett, L. A.; Travis, B. J.
2006-05-01
A new code for modeling the generation of an electromagnetic pulse (EMP) by a nuclear explosion in the atmosphere is being developed. The source of the EMP is the Compton current produced by the prompt radiation (γ-rays, X-rays, and neutrons) of the detonation. As a first step in building a multi- dimensional EMP code we have written three kinetic codes, Plume, Swarm, and Rad. Plume models the transport of energetic electrons in air. The Plume code solves the relativistic Fokker-Planck equation over a specified energy range that can include ~ 3 keV to 50 MeV and computes the resulting electron distribution function at each cell in a two dimensional spatial grid. The energetic electrons are allowed to transport, scatter, and experience Coulombic drag. Swarm models the transport of lower energy electrons in air, spanning 0.005 eV to 30 keV. The swarm code performs a full 2-D solution to the Boltzmann equation for electrons in the presence of an applied electric field. Over this energy range the relevant processes to be tracked are elastic scattering, three body attachment, two body attachment, rotational excitation, vibrational excitation, electronic excitation, and ionization. All of these occur due to collisions between the electrons and neutral bodies in air. The Rad code solves the full radiation transfer equation in the energy range of 1 keV to 100 MeV. It includes effects of photo-absorption, Compton scattering, and pair-production. All of these codes employ a spherical coordinate system in momentum space and a cylindrical coordinate system in configuration space. The "z" axis of the momentum and configuration spaces is assumed to be parallel and we are currently also assuming complete spatial symmetry around the "z" axis. Benchmarking for each of these codes will be discussed as well as the way forward towards an integrated modern EMP code.
Moving from Batch to Field Using the RT3D Reactive Transport Modeling System
NASA Astrophysics Data System (ADS)
Clement, T. P.; Gautam, T. R.
2002-12-01
The public domain reactive transport code RT3D (Clement, 1997) is a general-purpose numerical code for solving coupled, multi-species reactive transport in saturated groundwater systems. The code uses MODFLOW to simulate flow and several modules of MT3DMS to simulate the advection and dispersion processes. RT3D employs the operator-split strategy which allows the code solve the coupled reactive transport problem in a modular fashion. The coupling between reaction and transport is defined through a separate module where the reaction equations are specified. The code supports a versatile user-defined reaction option that allows users to define their own reaction system through a Fortran-90 subroutine, known as the RT3D-reaction package. Further a utility code, known as BATCHRXN, allows the users to independently test and debug their reaction package. To analyze a new reaction system at a batch scale, users should first run BATCHRXN to test the ability of their reaction package to model the batch data. After testing, the reaction package can simply be ported to the RT3D environment to study the model response under 1-, 2-, or 3-dimensional transport conditions. This paper presents example problems that demonstrate the methods for moving from batch to field-scale simulations using BATCHRXN and RT3D codes. The first example describes a simple first-order reaction system for simulating the sequential degradation of Tetrachloroethene (PCE) and its daughter products. The second example uses a relatively complex reaction system for describing the multiple degradation pathways of Tetrachloroethane (PCA) and its daughter products. References 1) Clement, T.P, RT3D - A modular computer code for simulating reactive multi-species transport in 3-Dimensional groundwater aquifers, Battelle Pacific Northwest National Laboratory Research Report, PNNL-SA-28967, September, 1997. Available at: http://bioprocess.pnl.gov/rt3d.htm.
NASA Astrophysics Data System (ADS)
Jacques, Diederik; Gérard, Fréderic; Mayer, Uli; Simunek, Jirka; Leterme, Bertrand
2016-04-01
A large number of organic matter degradation, CO2 transport and dissolved organic matter models have been developed during the last decades. However, organic matter degradation models are in many cases strictly hard-coded in terms of organic pools, degradation kinetics and dependency on environmental variables. The scientific input of the model user is typically limited to the adjustment of input parameters. In addition, the coupling with geochemical soil processes including aqueous speciation, pH-dependent sorption and colloid-facilitated transport are not incorporated in many of these models, strongly limiting the scope of their application. Furthermore, the most comprehensive organic matter degradation models are combined with simplified representations of flow and transport processes in the soil system. We illustrate the capability of generic reactive transport codes to overcome these shortcomings. The formulations of reactive transport codes include a physics-based continuum representation of flow and transport processes, while biogeochemical reactions can be described as equilibrium processes constrained by thermodynamic principles and/or kinetic reaction networks. The flexibility of these type of codes allows for straight-forward extension of reaction networks, permits the inclusion of new model components (e.g.: organic matter pools, rate equations, parameter dependency on environmental conditions) and in such a way facilitates an application-tailored implementation of organic matter degradation models and related processes. A numerical benchmark involving two reactive transport codes (HPx and MIN3P) demonstrates how the process-based simulation of transient variably saturated water flow (Richards equation), solute transport (advection-dispersion equation), heat transfer and diffusion in the gas phase can be combined with a flexible implementation of a soil organic matter degradation model. The benchmark includes the production of leachable organic matter and inorganic carbon in the aqueous and gaseous phases, as well as different decomposition functions with first-order, linear dependence or nonlinear dependence on a biomass pool. In addition, we show how processes such as local bioturbation (bio-diffusion) can be included implicitly through a Fickian formulation of transport of soil organic matter. Coupling soil organic matter models with generic and flexible reactive transport codes offers a valuable tool to enhance insights into coupled physico-chemical processes at different scales within the scope of C-biogeochemical cycles, possibly linked with other chemical elements such as plant nutrients and pollutants.
Coupled Neutron Transport for HZETRN
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Blattnig, Steve R.
2009-01-01
Exposure estimates inside space vehicles, surface habitats, and high altitude aircrafts exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETC-HEDS, FLUKA, and MCNPX, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light particle transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.
49 CFR 171.25 - Additional requirements for the use of the IMDG Code.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Packages containing primary lithium batteries and cells that are transported in accordance with Special Provision 188 of the IMDG Code must be marked “PRIMARY LITHIUM BATTERIES—FORBIDDEN FOR TRANSPORT ABOARD PASSENGER AIRCRAFT” or “LITHIUM METAL BATTERIES—FORBIDDEN FOR TRANSPORT ABOARD PASSENGER AIRCRAFT.” This...
77 FR 18716 - Transportation Security Administration Postal Zip Code Change; Technical Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
... organizational changes and it has no substantive effect on the public. DATES: Effective March 28, 2012. FOR... No. 1572-9] Transportation Security Administration Postal Zip Code Change; Technical Amendment AGENCY: Transportation Security Administration, DHS. ACTION: Final rule. SUMMARY: This rule is a technical change to...
Shielding from space radiations
NASA Technical Reports Server (NTRS)
Chang, C. Ken; Badavi, Forooz F.; Tripathi, Ram K.
1993-01-01
This Progress Report covering the period of December 1, 1992 to June 1, 1993 presents the development of an analytical solution to the heavy ion transport equation in terms of Green's function formalism. The mathematical development results are recasted into a highly efficient computer code for space applications. The efficiency of this algorithm is accomplished by a nonperturbative technique of extending the Green's function over the solution domain. The code may also be applied to accelerator boundary conditions to allow code validation in laboratory experiments. Results from the isotopic version of the code with 59 isotopes present for a single layer target material, for the case of an iron beam projectile at 600 MeV/nucleon in water is presented. A listing of the single layer isotopic version of the code is included.
NASA Technical Reports Server (NTRS)
McGuire, Tim
1998-01-01
In this paper, we report the results of our recent research on the application of a multiprocessor Cray T916 supercomputer in modeling super-thermal electron transport in the earth's magnetic field. In general, this mathematical model requires numerical solution of a system of partial differential equations. The code we use for this model is moderately vectorized. By using Amdahl's Law for vector processors, it can be verified that the code is about 60% vectorized on a Cray computer. Speedup factors on the order of 2.5 were obtained compared to the unvectorized code. In the following sections, we discuss the methodology of improving the code. In addition to our goal of optimizing the code for solution on the Cray computer, we had the goal of scalability in mind. Scalability combines the concepts of portabilty with near-linear speedup. Specifically, a scalable program is one whose performance is portable across many different architectures with differing numbers of processors for many different problem sizes. Though we have access to a Cray at this time, the goal was to also have code which would run well on a variety of architectures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhai, B.
A new method for solving radiation transport problems is presented. The heart of the technique is a new cross section processing procedure for the calculation of group-to-point and point-to-group cross sections sets. The method is ideally suited for problems which involve media with highly fluctuating cross sections, where the results of the traditional multigroup calculations are beclouded by the group averaging procedures employed. Extensive computational efforts, which would be required to evaluate double integrals in the multigroup treatment numerically, prohibit iteration to optimize the energy boundaries. On the other hand, use of point-to-point techniques (as in the stochastic technique) ismore » often prohibitively expensive due to the large computer storage requirement. The pseudo-point code is a hybrid of the two aforementioned methods (group-to-group and point-to-point) - hence the name pseudo-point - that reduces the computational efforts of the former and the large core requirements of the latter. The pseudo-point code generates the group-to-point or the point-to-group transfer matrices, and can be coupled with the existing transport codes to calculate pointwise energy-dependent fluxes. This approach yields much more detail than is available from the conventional energy-group treatments. Due to the speed of this code, several iterations could be performed (in affordable computing efforts) to optimize the energy boundaries and the weighting functions. The pseudo-point technique is demonstrated by solving six problems, each depicting a certain aspect of the technique. The results are presented as flux vs energy at various spatial intervals. The sensitivity of the technique to the energy grid and the savings in computational effort are clearly demonstrated.« less
Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium
NASA Technical Reports Server (NTRS)
Hunt, J. L.; Boney, L. R.
1973-01-01
Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.
NASA Astrophysics Data System (ADS)
Podestà, M.; Gorelenkova, M.; Gorelenkov, N. N.; White, R. B.
2017-09-01
Alfvénic instabilities (AEs) are well known as a potential cause of enhanced fast ion transport in fusion devices. Given a specific plasma scenario, quantitative predictions of (i) expected unstable AE spectrum and (ii) resulting fast ion transport are required to prevent or mitigate the AE-induced degradation in fusion performance. Reduced models are becoming an attractive tool to analyze existing scenarios as well as for scenario prediction in time-dependent simulations. In this work, a neutral beam heated NSTX discharge is used as reference to illustrate the potential of a reduced fast ion transport model, known as kick model, that has been recently implemented for interpretive and predictive analysis within the framework of the time-dependent tokamak transport code TRANSP. Predictive capabilities for AE stability and saturation amplitude are first assessed, based on given thermal plasma profiles only. Predictions are then compared to experimental results, and the interpretive capabilities of the model further discussed. Overall, the reduced model captures the main properties of the instabilities and associated effects on the fast ion population. Additional information from the actual experiment enables further tuning of the model’s parameters to achieve a close match with measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podestà, M.; Gorelenkova, M.; Gorelenkov, N. N.
Alfvénic instabilities (AEs) are well known as a potential cause of enhanced fast ion transport in fusion devices. Given a specific plasma scenario, quantitative predictions of (i) expected unstable AE spectrum and (ii) resulting fast ion transport are required to prevent or mitigate the AE-induced degradation in fusion performance. Reduced models are becoming an attractive tool to analyze existing scenarios as well as for scenario prediction in time-dependent simulations. Here, in this work, a neutral beam heated NSTX discharge is used as reference to illustrate the potential of a reduced fast ion transport model, known as kick model, that hasmore » been recently implemented for interpretive and predictive analysis within the framework of the time-dependent tokamak transport code TRANSP. Predictive capabilities for AE stability and saturation amplitude are first assessed, based on given thermal plasma profiles only. Predictions are then compared to experimental results, and the interpretive capabilities of the model further discussed. Overall, the reduced model captures the main properties of the instabilities and associated effects on the fast ion population. Finally, additional information from the actual experiment enables further tuning of the model's parameters to achieve a close match with measurements.« less
Podestà, M.; Gorelenkova, M.; Gorelenkov, N. N.; ...
2017-07-20
Alfvénic instabilities (AEs) are well known as a potential cause of enhanced fast ion transport in fusion devices. Given a specific plasma scenario, quantitative predictions of (i) expected unstable AE spectrum and (ii) resulting fast ion transport are required to prevent or mitigate the AE-induced degradation in fusion performance. Reduced models are becoming an attractive tool to analyze existing scenarios as well as for scenario prediction in time-dependent simulations. Here, in this work, a neutral beam heated NSTX discharge is used as reference to illustrate the potential of a reduced fast ion transport model, known as kick model, that hasmore » been recently implemented for interpretive and predictive analysis within the framework of the time-dependent tokamak transport code TRANSP. Predictive capabilities for AE stability and saturation amplitude are first assessed, based on given thermal plasma profiles only. Predictions are then compared to experimental results, and the interpretive capabilities of the model further discussed. Overall, the reduced model captures the main properties of the instabilities and associated effects on the fast ion population. Finally, additional information from the actual experiment enables further tuning of the model's parameters to achieve a close match with measurements.« less
Calculations vs. measurements of remnant dose rates for SNS spent structures
NASA Astrophysics Data System (ADS)
Popova, I. I.; Gallmeier, F. X.; Trotter, S.; Dayton, M.
2018-06-01
Residual dose rate measurements were conducted on target vessel #13 and proton beam window #5 after extraction from their service locations. These measurements were used to verify calculation methods of radionuclide inventory assessment that are typically performed for nuclear waste characterization and transportation of these structures. Neutronics analyses for predicting residual dose rates were carried out using the transport code MCNPX and the transmutation code CINDER90. For transport analyses complex and rigorous geometry model of the structures and their surrounding are applied. The neutronics analyses were carried out using Bertini and CEM high energy physics models for simulating particles interaction. Obtained preliminary calculational results were analysed and compared to the measured dose rates and overall are showing good agreement with in 40% in average.
Calculations vs. measurements of remnant dose rates for SNS spent structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popova, Irina I.; Gallmeier, Franz X.; Trotter, Steven M.
Residual dose rate measurements were conducted on target vessel #13 and proton beam window #5 after extraction from their service locations. These measurements were used to verify calculation methods of radionuclide inventory assessment that are typically performed for nuclear waste characterization and transportation of these structures. Neutronics analyses for predicting residual dose rates were carried out using the transport code MCNPX and the transmutation code CINDER90. For transport analyses complex and rigorous geometry model of the structures and their surrounding are applied. The neutronics analyses were carried out using Bertini and CEM high energy physics models for simulating particles interaction.more » Obtained preliminary calculational results were analysed and compared to the measured dose rates and overall are showing good agreement with in 40% in average.« less
High-fidelity plasma codes for burn physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooley, James; Graziani, Frank; Marinak, Marty
Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental datamore » and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.« less
77 FR 23166 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-18
... Aircraft System Component (JASC)/Air Transport Association (ATA) of America Code 28, Fuel. (e) Unsafe...-30F, MD-11, and MD-11F airplanes. This proposed AD was prompted by fuel system reviews conducted by... for fuel tank systems. As a result of those findings, we issued a regulation titled ``Transport...
Neutron Transport Models and Methods for HZETRN and Coupling to Low Energy Light Ion Transport
NASA Technical Reports Server (NTRS)
Blattnig, S.R.; Slaba, T.C.; Heinbockel, J.H.
2008-01-01
Exposure estimates inside space vehicles, surface habitats, and high altitude aircraft exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETCHEDS and FLUKA, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light ion (A<4) transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.
Thermally induced distortion of a high-average-power laser system by an optical transport system
NASA Astrophysics Data System (ADS)
Chow, Robert; Ault, Linda E.; Taylor, John R.; Jedlovec, Don
1999-11-01
The atomic vapor laser isotope separation process uses high- average power lasers that have the commercial potential to enrich uranium for the electric power utilities. The transport of the laser beam through the laser system to the separation chambers requires high performance optical components, most of which have either fused silica or Zerodur as the substrate material. One of the requirements of the optical components is to preserve the wavefront quality of the laser beam that propagate over long distances. Full aperture tests with the high power process lasers and finite element analysis (FEA) have been performed on the transport optics. The wavefront distortions of the various sections of the transport path were measured with diagnostic Hartmann sensor packages. The FEA results were derived from an in-house thermal-structural- optical code which is linked to the commercially available CodeV program. In comparing the measured and predicted results, the bulk absorptance of fused silica was estimated to about 50 ppm/cm in the visible wavelength regime. Wavefront distortions will be reported on optics made from fused silica and Zerodur substrate materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzgrewe, F.; Hegedues, F.; Paratte, J.M.
1995-03-01
The light water reactor BOXER code was used to determine the fast azimuthal neutron fluence distribution at the inner surface of the reactor pressure vessel after the tenth cycle of a pressurized water reactor (PWR). Using a cross-section library in 45 groups, fixed-source calculations in transport theory and x-y geometry were carried out to determine the fast azimuthal neutron flux distribution at the inner surface of the pressure vessel for four different cycles. From these results, the fast azimuthal neutron fluence after the tenth cycle was estimated and compared with the results obtained from scraping test experiments. In these experiments,more » small samples of material were taken from the inner surface of the pressure vessel. The fast neutron fluence was then determined form the measured activity of the samples. Comparing the BOXER and scraping test results have maximal differences of 15%, which is very good, considering the factor of 10{sup 3} neutron attenuation between the reactor core and the pressure vessel. To compare the BOXER results with an independent code, the 21st cycle of the PWR was also calculated with the TWODANT two-dimensional transport code, using the same group structure and cross-section library. Deviations in the fast azimuthal flux distribution were found to be <3%, which verifies the accuracy of the BOXER results.« less
Development of a 1.5D plasma transport code for coupling to full orbit runaway electron simulations
NASA Astrophysics Data System (ADS)
Lore, J. D.; Del Castillo-Negrete, D.; Baylor, L.; Carbajal, L.
2017-10-01
A 1.5D (1D radial transport + 2D equilibrium geometry) plasma transport code is being developed to simulate runaway electron generation, mitigation, and avoidance by coupling to the full-orbit kinetic electron transport code KORC. The 1.5D code solves the time-dependent 1D flux surface averaged transport equations with sources for plasma density, pressure, and poloidal magnetic flux, along with the Grad-Shafranov equilibrium equation for the 2D flux surface geometry. Disruption mitigation is simulated by introducing an impurity neutral gas `pellet', with impurity densities and electron cooling calculated from ionization, recombination, and line emission rate coefficients. Rapid cooling of the electrons increases the resistivity, inducing an electric field which can be used as an input to KORC. The runaway electron current is then included in the parallel Ohm's law in the transport equations. The 1.5D solver will act as a driver for coupled simulations to model effects such as timescales for thermal quench, runaway electron generation, and pellet impurity mixtures for runaway avoidance. Current progress on the code and details of the numerical algorithms will be presented. Work supported by the US DOE under DE-AC05-00OR22725.
Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool
NASA Astrophysics Data System (ADS)
Torlapati, Jagadish; Prabhakar Clement, T.
2013-01-01
We present the details of a comprehensive numerical modeling tool, RT1D, which can be used for simulating biochemical and geochemical reactive transport problems. The code can be run within the standard Microsoft EXCEL Visual Basic platform, and it does not require any additional software tools. The code can be easily adapted by others for simulating different types of laboratory-scale reactive transport experiments. We illustrate the capabilities of the tool by solving five benchmark problems with varying levels of reaction complexity. These literature-derived benchmarks are used to highlight the versatility of the code for solving a variety of practical reactive transport problems. The benchmarks are described in detail to provide a comprehensive database, which can be used by model developers to test other numerical codes. The VBA code presented in the study is a practical tool that can be used by laboratory researchers for analyzing both batch and column datasets within an EXCEL platform.
A VLSI Implementation of Four-Phase Lift Controller Using Verilog HDL
NASA Astrophysics Data System (ADS)
Kumar, Manish; Singh, Priyanka; Singh, Shesha
2017-08-01
With the advent of an era of staggering range of new technologies to provide ease of mobility and transportation elevators have become an essential component of all high rise buildings. An elevator is a type of vertical transportation that moves people between the floors of a high rise building. A four-Phase lift controller modeled on Verilog HDL code using Finite State Machine (FSM) has been presented in this paper. Verilog HDL helps in automated analysis and simulation of lift controller circuit. This design is based on synchronous input that operates on a fixed frequency. The Lift motion is controlled by means of accepting the destination floor level as input and generate control signal as output. In the proposed design a Verilog RTL code is developed and verified. Project Navigator of XILINX has been used as a code writing platform and results were simulated using Modelsim 5.4a simulator. This paper discusses the overall evolution of design and also discusses simulated results.
Hot zero power reactor calculations using the Insilico code
Hamilton, Steven P.; Evans, Thomas M.; Davidson, Gregory G.; ...
2016-03-18
In this paper we describe the reactor physics simulation capabilities of the insilico code. A description of the various capabilities of the code is provided, including detailed discussion of the geometry, meshing, cross section processing, and neutron transport options. Numerical results demonstrate that the insilico SP N solver with pin-homogenized cross section generation is capable of delivering highly accurate full-core simulation of various PWR problems. Comparison to both Monte Carlo calculations and measured plant data is provided.
NASA Technical Reports Server (NTRS)
Kuhlman, J. M.
1979-01-01
The aerodynamic design of a wind-tunnel model of a wing representative of that of a subsonic jet transport aircraft, fitted with winglets, was performed using two recently developed optimal wing-design computer programs. Both potential flow codes use a vortex lattice representation of the near-field of the aerodynamic surfaces for determination of the required mean camber surfaces for minimum induced drag, and both codes use far-field induced drag minimization procedures to obtain the required spanloads. One code uses a discrete vortex wake model for this far-field drag computation, while the second uses a 2-D advanced panel wake model. Wing camber shapes for the two codes are very similar, but the resulting winglet camber shapes differ widely. Design techniques and considerations for these two wind-tunnel models are detailed, including a description of the necessary modifications of the design geometry to format it for use by a numerically controlled machine for the actual model construction.
Thermal hydraulic-severe accident code interfaces for SCDAP/RELAP5/MOD3.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coryell, E.W.; Siefken, L.J.; Harvego, E.A.
1997-07-01
The SCDAP/RELAP5 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and fission product release during severe accidents. The code is being developed at the Idaho National Engineering Laboratory under the primary sponsorship of the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The code is the result of merging the RELAP5, SCDAP, and COUPLE codes. The RELAP5 portion of the code calculates the overall reactor coolant system, thermal-hydraulics, and associated reactor system responses. The SCDAP portion of the code describes the response of the core and associated vessel structures.more » The COUPLE portion of the code describes response of lower plenum structures and debris and the failure of the lower head. The code uses a modular approach with the overall structure, input/output processing, and data structures following the pattern established for RELAP5. The code uses a building block approach to allow the code user to easily represent a wide variety of systems and conditions through a powerful input processor. The user can represent a wide variety of experiments or reactor designs by selecting fuel rods and other assembly structures from a range of representative core component models, and arrange them in a variety of patterns within the thermalhydraulic network. The COUPLE portion of the code uses two-dimensional representations of the lower plenum structures and debris beds. The flow of information between the different portions of the code occurs at each system level time step advancement. The RELAP5 portion of the code describes the fluid transport around the system. These fluid conditions are used as thermal and mass transport boundary conditions for the SCDAP and COUPLE structures and debris beds.« less
Simulating Donnan equilibria based on the Nernst-Planck equation
NASA Astrophysics Data System (ADS)
Gimmi, Thomas; Alt-Epping, Peter
2018-07-01
Understanding ion transport through clays and clay membranes is important for many geochemical and environmental applications. Ion transport is affected by electrostatic forces exerted by charged clay surfaces. Anions are partly excluded from pore water near these surfaces, whereas cations are enriched. Such effects can be modeled by the Donnan approach. Here we introduce a new, comparatively simple way to represent Donnan equilibria in transport simulations. We include charged surfaces as immobile ions in the balance equation and calculate coupled transport of all components, including the immobile charges, with the Nernst-Planck equation. This results in an additional diffusion potential that influences ion transport, leading to Donnan ion distributions while maintaining local charge balance. The validity of our new approach was demonstrated by comparing Nernst-Planck simulations using the reactive transport code Flotran with analytical solutions available for simple Donnan systems. Attention has to be paid to the numerical evaluation of the electrochemical migration term in the Nernst-Planck equation to obtain correct results for asymmetric electrolytes. Sensitivity simulations demonstrate the influence of various Donnan model parameters on simulated anion accessible porosities. It is furthermore shown that the salt diffusion coefficient in a Donnan pore depends on local concentrations, in contrast to the aqueous salt diffusion coefficient. Our approach can be easily implemented into other transport codes. It is versatile and facilitates, for instance, assessing the implications of different activity models for the Donnan porosity.
Multiple component codes based generalized LDPC codes for high-speed optical transport.
Djordjevic, Ivan B; Wang, Ting
2014-07-14
A class of generalized low-density parity-check (GLDPC) codes suitable for optical communications is proposed, which consists of multiple local codes. It is shown that Hamming, BCH, and Reed-Muller codes can be used as local codes, and that the maximum a posteriori probability (MAP) decoding of these local codes by Ashikhmin-Lytsin algorithm is feasible in terms of complexity and performance. We demonstrate that record coding gains can be obtained from properly designed GLDPC codes, derived from multiple component codes. We then show that several recently proposed classes of LDPC codes such as convolutional and spatially-coupled codes can be described using the concept of GLDPC coding, which indicates that the GLDPC coding can be used as a unified platform for advanced FEC enabling ultra-high speed optical transport. The proposed class of GLDPC codes is also suitable for code-rate adaption, to adjust the error correction strength depending on the optical channel conditions.
Towards industrial-strength Navier-Stokes codes
NASA Technical Reports Server (NTRS)
Jou, Wen-Huei; Wigton, Laurence B.; Allmaras, Steven R.
1992-01-01
In this paper we discuss our experiences with Navier-Stokes (NS) codes using central differencing (CD) and scalar artificial dissipation (SAD). The NS-CDSAD codes have been developed by several researchers. Our results confirm that for typical commercial transport wing and wing/body configurations flying at transonic conditions with all turbulent boundary layers, NS-CDSAD codes, when used with the Johnson-King turbulence model, are capable of computing pressure distributions in excellent agreement with experimental data. However, results are not as good when laminar boundary layers are present. Exhaustive 2-D grid refinement studies supported by detailed analysis suggest that the numerical errors associated with SAD severely contaminate the solution in the laminar portion of the boundary layer. It is left as a challenge to the CFD community to find and fix the problems with Navier-Stokes codes and to produce a NS code which converges reliably and properly captures the laminar portion of the boundary layer on a reasonable grid.
Next-generation acceleration and code optimization for light transport in turbid media using GPUs
Alerstam, Erik; Lo, William Chun Yip; Han, Tianyi David; Rose, Jonathan; Andersson-Engels, Stefan; Lilge, Lothar
2010-01-01
A highly optimized Monte Carlo (MC) code package for simulating light transport is developed on the latest graphics processing unit (GPU) built for general-purpose computing from NVIDIA - the Fermi GPU. In biomedical optics, the MC method is the gold standard approach for simulating light transport in biological tissue, both due to its accuracy and its flexibility in modelling realistic, heterogeneous tissue geometry in 3-D. However, the widespread use of MC simulations in inverse problems, such as treatment planning for PDT, is limited by their long computation time. Despite its parallel nature, optimizing MC code on the GPU has been shown to be a challenge, particularly when the sharing of simulation result matrices among many parallel threads demands the frequent use of atomic instructions to access the slow GPU global memory. This paper proposes an optimization scheme that utilizes the fast shared memory to resolve the performance bottleneck caused by atomic access, and discusses numerous other optimization techniques needed to harness the full potential of the GPU. Using these techniques, a widely accepted MC code package in biophotonics, called MCML, was successfully accelerated on a Fermi GPU by approximately 600x compared to a state-of-the-art Intel Core i7 CPU. A skin model consisting of 7 layers was used as the standard simulation geometry. To demonstrate the possibility of GPU cluster computing, the same GPU code was executed on four GPUs, showing a linear improvement in performance with an increasing number of GPUs. The GPU-based MCML code package, named GPU-MCML, is compatible with a wide range of graphics cards and is released as an open-source software in two versions: an optimized version tuned for high performance and a simplified version for beginners (http://code.google.com/p/gpumcml). PMID:21258498
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, D.; Levine, S.L.; Luoma, J.
1992-01-01
The Three Mile Island unit 1 core reloads have been designed using fast but accurate scoping codes, PSUI-LEOPARD and ADMARC. PSUI-LEOPARD has been normalized to EPRI-CPM2 results and used to calculate the two-group constants, whereas ADMARC is a modern two-dimensional, two-group diffusion theory nodal code. Problems in accuracy were encountered for cycles 8 and higher as the core lifetime was increased beyond 500 effective full-power days. This is because the heavier loaded cores in both {sup 235}U and {sup 10}B have harder neutron spectra, which produces a change in the transport effect in the baffle reflector region, and the burnablemore » poison (BP) simulations were not accurate enough for the cores containing the increased amount of {sup 10}B required in the BP rods. In the authors study, a technique has been developed to take into account the change in the transport effect in the baffle region by modifying the fast neutron diffusion coefficient as a function of cycle length and core exposure or burnup. A more accurate BP simulation method is also developed, using integral transport theory and CPM2 data, to calculate the BP contribution to the equivalent fuel assembly (supercell) two-group constants. The net result is that the accuracy of the scoping codes is as good as that produced by CASMO/SIMULATE or CPM2/SIMULATE when comparing with measured data.« less
Development of a new version of the Vehicle Protection Factor Code (VPF3)
NASA Astrophysics Data System (ADS)
Jamieson, Terrance J.
1990-10-01
The Vehicle Protection Factor (VPF) Code is an engineering tool for estimating radiation protection afforded by armoured vehicles and other structures exposed to neutron and gamma ray radiation from fission, thermonuclear, and fusion sources. A number of suggestions for modifications have been offered by users of early versions of the code. These include: implementing some of the more advanced features of the air transport rating code, ATR5, used to perform the air over ground radiation transport analyses; allowing the ability to study specific vehicle orientations within the free field; implementing an adjoint transport scheme to reduce the number of transport runs required; investigating the possibility of accelerating the transport scheme; and upgrading the computer automated design (CAD) package used by VPF. The generation of radiation free field fluences for infinite air geometries as required for aircraft analysis can be accomplished by using ATR with the air over ground correction factors disabled. Analysis of the effects of fallout bearing debris clouds on aircraft will require additional modelling of VPF.
Mesos-scale modeling of irradiation in pressurized water reactor concrete biological shields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Pape, Yann; Huang, Hai
Neutron irradiation exposure causes aggregate expansion, namely radiation-induced volumetric expansion (RIVE). The structural significance of RIVE on a portion of a prototypical pressurized water reactor (PWR) concrete biological shield (CBS) is investigated by using a meso- scale nonlinear concrete model with inputs from an irradiation transport code and a coupled moisture transport-heat transfer code. RIVE-induced severe cracking onset appears to be triggered by the ini- tial shrinkage-induced cracking and propagates to a depth of > 10 cm at extended operation of 80 years. Relaxation of the cement paste stresses results in delaying the crack propagation by about 10 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostin, Mikhail; Mokhov, Nikolai; Niita, Koji
A parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. It is intended to be used with older radiation transport codes implemented in Fortran77, Fortran 90 or C. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was developed and tested in conjunction with the MARS15 code. It is possible to use it with other codes such as PHITS, FLUKA andmore » MCNP after certain adjustments. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility can be used in single process calculations as well as in the parallel regime. The framework corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.« less
Structure of the classical scrape-off layer of a tokamak
NASA Astrophysics Data System (ADS)
Rozhansky, V.; Kaveeva, E.; Senichenkov, I.; Vekshina, E.
2018-03-01
The structure of the scrape-off layer (SOL) of a tokamak with little or no turbulent transport is analyzed. The analytical estimates of the density and electron temperature fall-off lengths of the SOL are put forward. It is demonstrated that the SOL width could be of the order of the ion poloidal gyroradius, as suggested in Goldston (2012 Nuclear Fusion 52 013009). The analytical results are supported by the results of the 2D simulations of the edge plasma with reduced transport coefficients performed by SOLPS-ITER transport code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maekawa, H.; Oyama, Y.
1983-09-01
Angle-dependent neutron leakage spectra above 0.5 MeV from Li/sub 2/O slab assemblies were measured accurately by the time-of-flight method. The measured angles were 0/sup 0/, 12.2/sup 0/, 24.9/sup 0/, 41.8/sup 0/ and 66.8/sup 0/. The sizes of Li/sub 2/O assemblies were 31.4 cm in equivalent radius and 5.06, 20.24 and 40.48 cm in thickness. The data were analyzed by a new transport code ''BERMUDA-2DN''. Time-independent transport equation is solved for two-dimensional, cylindrical, multi-regional geometry using the direct integration method in a multi-group model. The group transfer kernels are accurately obtained from the double-differential cross section data without using Legendre expansion.more » The results were compared absolutely. While there exist discrepancies partially, the calculational spectra agree well with the experimental ones as a whole. The BERMUDA code was demonstrated to be useful for the analyses of the fusion neutronics and shielding.« less
Recent applications of the transonic wing analysis computer code, TWING
NASA Technical Reports Server (NTRS)
Subramanian, N. R.; Holst, T. L.; Thomas, S. D.
1982-01-01
An evaluation of the transonic-wing-analysis computer code TWING is given. TWING utilizes a fully implicit approximate factorization iteration scheme to solve the full potential equation in conservative form. A numerical elliptic-solver grid-generation scheme is used to generate the required finite-difference mesh. Several wing configurations were analyzed, and the limits of applicability of this code was evaluated. Comparisons of computed results were made with available experimental data. Results indicate that the code is robust, accurate (when significant viscous effects are not present), and efficient. TWING generally produces solutions an order of magnitude faster than other conservative full potential codes using successive-line overrelaxation. The present method is applicable to a wide range of isolated wing configurations including high-aspect-ratio transport wings and low-aspect-ratio, high-sweep, fighter configurations.
Porting marine ecosystem model spin-up using transport matrices to GPUs
NASA Astrophysics Data System (ADS)
Siewertsen, E.; Piwonski, J.; Slawig, T.
2013-01-01
We have ported an implementation of the spin-up for marine ecosystem models based on transport matrices to graphics processing units (GPUs). The original implementation was designed for distributed-memory architectures and uses the Portable, Extensible Toolkit for Scientific Computation (PETSc) library that is based on the Message Passing Interface (MPI) standard. The spin-up computes a steady seasonal cycle of ecosystem tracers with climatological ocean circulation data as forcing. Since the transport is linear with respect to the tracers, the resulting operator is represented by matrices. Each iteration of the spin-up involves two matrix-vector multiplications and the evaluation of the used biogeochemical model. The original code was written in C and Fortran. On the GPU, we use the Compute Unified Device Architecture (CUDA) standard, a customized version of PETSc and a commercial CUDA Fortran compiler. We describe the extensions to PETSc and the modifications of the original C and Fortran codes that had to be done. Here we make use of freely available libraries for the GPU. We analyze the computational effort of the main parts of the spin-up for two exemplar ecosystem models and compare the overall computational time to those necessary on different CPUs. The results show that a consumer GPU can compete with a significant number of cluster CPUs without further code optimization.
NASA Astrophysics Data System (ADS)
Rabie, M.; Franck, C. M.
2016-06-01
We present a freely available MATLAB code for the simulation of electron transport in arbitrary gas mixtures in the presence of uniform electric fields. For steady-state electron transport, the program provides the transport coefficients, reaction rates and the electron energy distribution function. The program uses established Monte Carlo techniques and is compatible with the electron scattering cross section files from the open-access Plasma Data Exchange Project LXCat. The code is written in object-oriented design, allowing the tracing and visualization of the spatiotemporal evolution of electron swarms and the temporal development of the mean energy and the electron number due to attachment and/or ionization processes. We benchmark our code with well-known model gases as well as the real gases argon, N2, O2, CF4, SF6 and mixtures of N2 and O2.
STELLTRANS: A Transport Analysis Suite for Stellarators
NASA Astrophysics Data System (ADS)
Mittelstaedt, Joseph; Lazerson, Samuel; Pablant, Novimir; Weir, Gavin; W7-X Team
2016-10-01
The stellarator transport code STELLTRANS allows us to better analyze the power balance in W7-X. Although profiles of temperature and density are measured experimentally, geometrical factors are needed in conjunction with these measurements to properly analyze heat flux densities in stellarators. The STELLTRANS code interfaces with VMEC to find an equilibrium flux surface configuration and with TRAVIS to determine the RF heating and current drive in the plasma. Stationary transport equations are then considered which are solved using a boundary value differential equation solver. The equations and quantities considered are averaged over flux surfaces to reduce the system to an essentially one dimensional problem. We have applied this code to data from W-7X and were able to calculate the heat flux coefficients. We will also present extensions of the code to a predictive capacity which would utilize DKES to find neoclassical transport coefficients to update the temperature and density profiles.
Space Radiation Transport Code Development: 3DHZETRN
NASA Technical Reports Server (NTRS)
Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.
2015-01-01
The space radiation transport code, HZETRN, has been used extensively for research, vehicle design optimization, risk analysis, and related applications. One of the simplifying features of the HZETRN transport formalism is the straight-ahead approximation, wherein all particles are assumed to travel along a common axis. This reduces the governing equation to one spatial dimension allowing enormous simplification and highly efficient computational procedures to be implemented. Despite the physical simplifications, the HZETRN code is widely used for space applications and has been found to agree well with fully 3D Monte Carlo simulations in many circumstances. Recent work has focused on the development of 3D transport corrections for neutrons and light ions (Z < 2) for which the straight-ahead approximation is known to be less accurate. Within the development of 3D corrections, well-defined convergence criteria have been considered, allowing approximation errors at each stage in model development to be quantified. The present level of development assumes the neutron cross sections have an isotropic component treated within N explicit angular directions and a forward component represented by the straight-ahead approximation. The N = 1 solution refers to the straight-ahead treatment, while N = 2 represents the bi-directional model in current use for engineering design. The figure below shows neutrons, protons, and alphas for various values of N at locations in an aluminum sphere exposed to a solar particle event (SPE) spectrum. The neutron fluence converges quickly in simple geometry with N > 14 directions. The improved code, 3DHZETRN, transports neutrons, light ions, and heavy ions under space-like boundary conditions through general geometry while maintaining a high degree of computational efficiency. A brief overview of the 3D transport formalism for neutrons and light ions is given, and extensive benchmarking results with the Monte Carlo codes Geant4, FLUKA, and PHITS are provided for a variety of boundary conditions and geometries. Improvements provided by the 3D corrections are made clear in the comparisons. Developments needed to connect 3DHZETRN to vehicle design and optimization studies will be discussed. Future theoretical development will relax the forward plus isotropic interaction assumption to more general angular dependence.
NASA Astrophysics Data System (ADS)
Cui, Z.; Welty, C.; Maxwell, R. M.
2011-12-01
Lagrangian, particle-tracking models are commonly used to simulate solute advection and dispersion in aquifers. They are computationally efficient and suffer from much less numerical dispersion than grid-based techniques, especially in heterogeneous and advectively-dominated systems. Although particle-tracking models are capable of simulating geochemical reactions, these reactions are often simplified to first-order decay and/or linear, first-order kinetics. Nitrogen transport and transformation in aquifers involves both biodegradation and higher-order geochemical reactions. In order to take advantage of the particle-tracking approach, we have enhanced an existing particle-tracking code SLIM-FAST, to simulate nitrogen transport and transformation in aquifers. The approach we are taking is a hybrid one: the reactive multispecies transport process is operator split into two steps: (1) the physical movement of the particles including the attachment/detachment to solid surfaces, which is modeled by a Lagrangian random-walk algorithm; and (2) multispecies reactions including biodegradation are modeled by coupling multiple Monod equations with other geochemical reactions. The coupled reaction system is solved by an ordinary differential equation solver. In order to solve the coupled system of equations, after step 1, the particles are converted to grid-based concentrations based on the mass and position of the particles, and after step 2 the newly calculated concentration values are mapped back to particles. The enhanced particle-tracking code is capable of simulating subsurface nitrogen transport and transformation in a three-dimensional domain with variably saturated conditions. Potential application of the enhanced code is to simulate subsurface nitrogen loading to the Chesapeake Bay and its tributaries. Implementation details, verification results of the enhanced code with one-dimensional analytical solutions and other existing numerical models will be presented in addition to a discussion of implementation challenges.
Numerical Analysis of 2-D and 3-D MHD Flows Relevant to Fusion Applications
Khodak, Andrei
2017-08-21
Here, the analysis of many fusion applications such as liquid-metal blankets requires application of computational fluid dynamics (CFD) methods for electrically conductive liquids in geometrically complex regions and in the presence of a strong magnetic field. A current state of the art general purpose CFD code allows modeling of the flow in complex geometric regions, with simultaneous conjugated heat transfer analysis in liquid and surrounding solid parts. Together with a magnetohydrodynamics (MHD) capability, the general purpose CFD code will be a valuable tool for the design and optimization of fusion devices. This paper describes an introduction of MHD capability intomore » the general purpose CFD code CFX, part of the ANSYS Workbench. The code was adapted for MHD problems using a magnetic induction approach. CFX allows introduction of user-defined variables using transport or Poisson equations. For MHD adaptation of the code three additional transport equations were introduced for the components of the magnetic field, in addition to the Poisson equation for electric potential. The Lorentz force is included in the momentum transport equation as a source term. Fusion applications usually involve very strong magnetic fields, with values of the Hartmann number of up to tens of thousands. In this situation a system of MHD equations become very rigid with very large source terms and very strong variable gradients. To increase system robustness, special measures were introduced during the iterative convergence process, such as linearization using source coefficient for momentum equations. The MHD implementation in general purpose CFD code was tested against benchmarks, specifically selected for liquid-metal blanket applications. Results of numerical simulations using present implementation closely match analytical solutions for a Hartmann number of up to 1500 for a 2-D laminar flow in the duct of square cross section, with conducting and nonconducting walls. Results for a 3-D test case are also included.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller, C.; Hughes, E. D.; Niederauer, G. F.
1998-10-01
Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best- estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the wallsmore » and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III contains some of the assessments performed by LANL and FzK« less
Numerical Analysis of 2-D and 3-D MHD Flows Relevant to Fusion Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khodak, Andrei
Here, the analysis of many fusion applications such as liquid-metal blankets requires application of computational fluid dynamics (CFD) methods for electrically conductive liquids in geometrically complex regions and in the presence of a strong magnetic field. A current state of the art general purpose CFD code allows modeling of the flow in complex geometric regions, with simultaneous conjugated heat transfer analysis in liquid and surrounding solid parts. Together with a magnetohydrodynamics (MHD) capability, the general purpose CFD code will be a valuable tool for the design and optimization of fusion devices. This paper describes an introduction of MHD capability intomore » the general purpose CFD code CFX, part of the ANSYS Workbench. The code was adapted for MHD problems using a magnetic induction approach. CFX allows introduction of user-defined variables using transport or Poisson equations. For MHD adaptation of the code three additional transport equations were introduced for the components of the magnetic field, in addition to the Poisson equation for electric potential. The Lorentz force is included in the momentum transport equation as a source term. Fusion applications usually involve very strong magnetic fields, with values of the Hartmann number of up to tens of thousands. In this situation a system of MHD equations become very rigid with very large source terms and very strong variable gradients. To increase system robustness, special measures were introduced during the iterative convergence process, such as linearization using source coefficient for momentum equations. The MHD implementation in general purpose CFD code was tested against benchmarks, specifically selected for liquid-metal blanket applications. Results of numerical simulations using present implementation closely match analytical solutions for a Hartmann number of up to 1500 for a 2-D laminar flow in the duct of square cross section, with conducting and nonconducting walls. Results for a 3-D test case are also included.« less
Electron transport model of dielectric charging
NASA Technical Reports Server (NTRS)
Beers, B. L.; Hwang, H. C.; Lin, D. L.; Pine, V. W.
1979-01-01
A computer code (SCCPOEM) was assembled to describe the charging of dielectrics due to irradiation by electrons. The primary purpose for developing the code was to make available a convenient tool for studying the internal fields and charge densities in electron-irradiated dielectrics. The code, which is based on the primary electron transport code POEM, is applicable to arbitrary dielectrics, source spectra, and current time histories. The code calculations are illustrated by a series of semianalytical solutions. Calculations to date suggest that the front face electric field is insufficient to cause breakdown, but that bulk breakdown fields can easily be exceeded.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-10-19
CEPXS is a multigroup-Legendre cross-section generating code. The cross sections produced by CEPXS enable coupled electron-photon transport calculations to be performed with multigroup radiation transport codes, e.g. MITS and SCEPTRE. CEPXS generates multigroup-Legendre cross sections for photons, electrons and positrons over the energy range from 100 MeV to 1.0 keV. The continuous slowing-down approximation is used for those electron interactions that result in small-energy losses. The extended transport correction is applied to the forward-peaked elastic scattering cross section for electrons. A standard multigroup-Legendre treatment is used for the other coupled electron-photon cross sections. CEPXS extracts electron cross-section information from themore » DATAPAC data set and photon cross-section information from Biggs-Lighthill data. The model that is used for ionization/relaxation in CEPXS is essentially the same as that employed in ITS.« less
An Improved Neutron Transport Algorithm for HZETRN2006
NASA Astrophysics Data System (ADS)
Slaba, Tony
NASA's new space exploration initiative includes plans for long term human presence in space thereby placing new emphasis on space radiation analyses. In particular, a systematic effort of verification, validation and uncertainty quantification of the tools commonly used for radiation analysis for vehicle design and mission planning has begun. In this paper, the numerical error associated with energy discretization in HZETRN2006 is addressed; large errors in the low-energy portion of the neutron fluence spectrum are produced due to a numerical truncation error in the transport algorithm. It is shown that the truncation error results from the narrow energy domain of the neutron elastic spectral distributions, and that an extremely fine energy grid is required in order to adequately resolve the problem under the current formulation. Since adding a sufficient number of energy points will render the code computationally inefficient, we revisit the light-ion transport theory developed for HZETRN2006 and focus on neutron elastic interactions. The new approach that is developed numerically integrates with adequate resolution in the energy domain without affecting the run-time of the code and is easily incorporated into the current code. Efforts were also made to optimize the computational efficiency of the light-ion propagator; a brief discussion of the efforts is given along with run-time comparisons between the original and updated codes. Convergence testing is then completed by running the code for various environments and shielding materials with many different energy grids to ensure stability of the proposed method.
NASA Technical Reports Server (NTRS)
Friedel, R. H. W.; Bourdarie, S.; Fennell, J.; Kanekal, S.; Cayton, T. E.
2004-01-01
The highly energetic electron environment in the inner magnetosphere (GEO inward) has received a lot of research attention in resent years, as the dynamics of relativistic electron acceleration and transport are not yet fully understood. These electrons can cause deep dielectric charging in any space hardware in the MEO to GEO region. We use a new and novel approach to obtain a global representation of the inner magnetospheric energetic electron environment, which can reproduce the absolute environment (flux) for any spacecraft orbit in that region to within a factor of 2 for the energy range of 100 KeV to 5 MeV electrons, for any levels of magnetospheric activity. We combine the extensive set of inner magnetospheric energetic electron observations available at Los Alamos with the physics based Salammbo transport code, using the data assimilation technique of "nudging". This in effect input in-situ data into the code and allows the diffusion mechanisms in the code to interpolate the data into regions and times of no data availability. We present here details of the methods used, both in the data assimilation process and in the necessary inter-calibration of the input data used. We will present sample runs of the model/data code and compare the results to test spacecraft data not used in the data assimilation process.
Reactor Dosimetry Applications Using RAPTOR-M3G:. a New Parallel 3-D Radiation Transport Code
NASA Astrophysics Data System (ADS)
Longoni, Gianluca; Anderson, Stanwood L.
2009-08-01
The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates method (SN) requires extensive computational resources for large 3-D neutron and gamma transport applications due to the concurrent discretization of the angular, spatial, and energy domains. This paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architectures. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor, yielding an efficient solution methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows: Section 1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 concludes this paper with final remarks and future work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleman, S.E.
This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media.
Adaptive Nodal Transport Methods for Reactor Transient Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas Downar; E. Lewis
2005-08-31
Develop methods for adaptively treating the angular, spatial, and time dependence of the neutron flux in reactor transient analysis. These methods were demonstrated in the DOE transport nodal code VARIANT and the US NRC spatial kinetics code, PARCS.
The Athena Astrophysical MHD Code in Cylindrical Geometry
NASA Astrophysics Data System (ADS)
Skinner, M. A.; Ostriker, E. C.
2011-10-01
We have developed a method for implementing cylindrical coordinates in the Athena MHD code (Skinner & Ostriker 2010). The extension has been designed to alter the existing Cartesian-coordinates code (Stone et al. 2008) as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport, a central feature of the Athena algorithm, while making use of previously implemented code modules such as the eigensystems and Riemann solvers. Angular-momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully. We describe modifications for cylindrical coordinates of the higher-order spatial reconstruction and characteristic evolution steps as well as the finite-volume and constrained transport updates. Finally, we have developed a test suite of standard and novel problems in one-, two-, and three-dimensions designed to validate our algorithms and implementation and to be of use to other code developers. The code is suitable for use in a wide variety of astrophysical applications and is freely available for download on the web.
Transport and equilibrium in field-reversed mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, J.K.
Two plasma models relevant to compact torus research have been developed to study transport and equilibrium in field reversed mirrors. In the first model for small Larmor radius and large collision frequency, the plasma is described as an adiabatic hydromagnetic fluid. In the second model for large Larmor radius and small collision frequency, a kinetic theory description has been developed. Various aspects of the two models have been studied in five computer codes ADB, AV, NEO, OHK, RES. The ADB code computes two dimensional equilibrium and one dimensional transport in a flux coordinate. The AV code calculates orbit average integralsmore » in a harmonic oscillator potential. The NEO code follows particle trajectories in a Hill's vortex magnetic field to study stochasticity, invariants of the motion, and orbit average formulas. The OHK code displays analytic psi(r), B/sub Z/(r), phi(r), E/sub r/(r) formulas developed for the kinetic theory description. The RES code calculates resonance curves to consider overlap regions relevant to stochastic orbit behavior.« less
Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali
2014-01-01
Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization. PMID:24600168
Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali
2014-01-01
Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization.
2013-07-01
also simulated in the models. Data was derived from calculations using the three-dimensional Monte Carlo radiation transport code MCNP (Monte Carlo N...32 B. MCNP PHYSICS OPTIONS ......................................................................................... 33 C. HAZUS...input deck’) for the MCNP , Monte Carlo N-Particle, radiation transport code. MCNP is a general-purpose code designed to simulate neutron, photon
Considerations of MCNP Monte Carlo code to be used as a radiotherapy treatment planning tool.
Juste, B; Miro, R; Gallardo, S; Verdu, G; Santos, A
2005-01-01
The present work has simulated the photon and electron transport in a Theratron 780® (MDS Nordion)60Co radiotherapy unit, using the Monte Carlo transport code, MCNP (Monte Carlo N-Particle). This project explains mainly the different methodologies carried out to speedup calculations in order to apply this code efficiently in radiotherapy treatment planning.
CTViz: A tool for the visualization of transport in nanocomposites.
Beach, Benjamin; Brown, Joshua; Tarlton, Taylor; Derosa, Pedro A
2016-05-01
A visualization tool (CTViz) for charge transport processes in 3-D hybrid materials (nanocomposites) was developed, inspired by the need for a graphical application to assist in code debugging and data presentation of an existing in-house code. As the simulation code grew, troubleshooting problems grew increasingly difficult without an effective way to visualize 3-D samples and charge transport in those samples. CTViz is able to produce publication and presentation quality visuals of the simulation box, as well as static and animated visuals of the paths of individual carriers through the sample. CTViz was designed to provide a high degree of flexibility in the visualization of the data. A feature that characterizes this tool is the use of shade and transparency levels to highlight important details in the morphology or in the transport paths by hiding or dimming elements of little relevance to the current view. This is fundamental for the visualization of 3-D systems with complex structures. The code presented here provides these required capabilities, but has gone beyond the original design and could be used as is or easily adapted for the visualization of other particulate transport where transport occurs on discrete paths. Copyright © 2016 Elsevier Inc. All rights reserved.
Physics of neutral gas jet interaction with magnetized plasmas
NASA Astrophysics Data System (ADS)
Wang, Zhanhui; Xu, Xueqiao; Diamond, Patrick; Xu, Min; Duan, Xuru; Yu, Deliang; Zhou, Yulin; Shi, Yongfu; Nie, Lin; Ke, Rui; Zhong, Wulv; Shi, Zhongbing; Sun, Aiping; Li, Jiquan; Yao, Lianghua
2017-10-01
It is critical to understand the physics and transport dynamics during the plasma fuelling process. Plasma and neutral interactions involve the transfer of charge, momentum, and energy in ion-neutral and electron-neutral collisions. Thus, a seven field fluid model of neutral gas jet injection (NGJI) is obtained, which couples plasma density, heat, and momentum transport equations together with neutrals density and momentum transport equations of both molecules and atoms. Transport dynamics of plasma and neutrals are simulated for a complete range of discharge times, including steady state before NGJI, transport during NGJI, and relaxation after NGJI. With the trans-neut module of BOUT + + code, the simulations of mean profile variations and fueling depths during fueling have been benchmarked well with other codes and also validated with HL-2A experiment results. Both fast component (FC) and slow component (SC) of NGJI are simulated and validated with the HL-2A experimental measurements. The plasma blocking effect on the FC penetration is also simulated and validated well with the experiment. This work is supported by the National Natural Science Foundation of China under Grant No. 11575055.
Benchmark Analysis of Pion Contribution from Galactic Cosmic Rays
NASA Technical Reports Server (NTRS)
Aghara, Sukesh K.; Blattnig, Steve R.; Norbury, John W.; Singleterry, Robert C., Jr.
2008-01-01
Shielding strategies for extended stays in space must include a comprehensive resolution of the secondary radiation environment inside the spacecraft induced by the primary, external radiation. The distribution of absorbed dose and dose equivalent is a function of the type, energy and population of these secondary products. A systematic verification and validation effort is underway for HZETRN, which is a space radiation transport code currently used by NASA. It performs neutron, proton and heavy ion transport explicitly, but it does not take into account the production and transport of mesons, photons and leptons. The question naturally arises as to what is the contribution of these particles to space radiation. The pion has a production kinetic energy threshold of about 280 MeV. The Galactic cosmic ray (GCR) spectra, coincidentally, reaches flux maxima in the hundreds of MeV range, corresponding to the pion production threshold. We present results from the Monte Carlo code MCNPX, showing the effect of lepton and meson physics when produced and transported explicitly in a GCR environment.
Verification of ARES transport code system with TAKEDA benchmarks
NASA Astrophysics Data System (ADS)
Zhang, Liang; Zhang, Bin; Zhang, Penghe; Chen, Mengteng; Zhao, Jingchang; Zhang, Shun; Chen, Yixue
2015-10-01
Neutron transport modeling and simulation are central to many areas of nuclear technology, including reactor core analysis, radiation shielding and radiation detection. In this paper the series of TAKEDA benchmarks are modeled to verify the critical calculation capability of ARES, a discrete ordinates neutral particle transport code system. SALOME platform is coupled with ARES to provide geometry modeling and mesh generation function. The Koch-Baker-Alcouffe parallel sweep algorithm is applied to accelerate the traditional transport calculation process. The results show that the eigenvalues calculated by ARES are in excellent agreement with the reference values presented in NEACRP-L-330, with a difference less than 30 pcm except for the first case of model 3. Additionally, ARES provides accurate fluxes distribution compared to reference values, with a deviation less than 2% for region-averaged fluxes in all cases. All of these confirms the feasibility of ARES-SALOME coupling and demonstrate that ARES has a good performance in critical calculation.
NASA Technical Reports Server (NTRS)
Adams, Thomas; VanBaalen, Mary
2009-01-01
The Radiation Health Office (RHO) determines each astronaut s cancer risk by using models to associate the amount of radiation dose that astronauts receive from spaceflight missions. The baryon transport codes (BRYNTRN), high charge (Z) and energy transport codes (HZETRN), and computer risk models are used to determine the effective dose received by astronauts in Low Earth orbit (LEO). This code uses an approximation of the Boltzman transport formula. The purpose of the project is to run this code for various International Space Station (ISS) flight parameters in order to gain a better understanding of how this code responds to different scenarios. The project will determine how variations in one set of parameters such as, the point of the solar cycle and altitude can affect the radiation exposure of astronauts during ISS missions. This project will benefit NASA by improving mission dosimetry.
SHIELD and HZETRN comparisons of pion production cross sections
NASA Astrophysics Data System (ADS)
Norbury, John W.; Sobolevsky, Nikolai; Werneth, Charles M.
2018-03-01
A program of comparing American (NASA) and Russian (ROSCOSMOS) space radiation transport codes has recently begun, and the first paper directly comparing the NASA and ROSCOSMOS space radiation transport codes, HZETRN and SHIELD respectively has recently appeared. The present work represents the second time that NASA and ROSCOSMOS calculations have been directly compared, and the focus here is on models of pion production cross sections used in the two transport codes mentioned above. It was found that these models are in overall moderate agreement with each other and with experimental data. Disagreements that were found are discussed.
NASA Astrophysics Data System (ADS)
Han, B. X.; Welton, R. F.; Stockli, M. P.; Luciano, N. P.; Carmichael, J. R.
2008-02-01
Beam simulation codes PBGUNS, SIMION, and LORENTZ-3D were evaluated by modeling the well-diagnosed SNS base line ion source and low energy beam transport (LEBT) system. Then, an investigation was conducted using these codes to assist our ion source and LEBT development effort which is directed at meeting the SNS operational and also the power-upgrade project goals. A high-efficiency H- extraction system as well as magnetic and electrostatic LEBT configurations capable of transporting up to 100mA is studied using these simulation tools.
Study of SOL in DIII-D tokamak with SOLPS suite of codes.
NASA Astrophysics Data System (ADS)
Pankin, Alexei; Bateman, Glenn; Brennan, Dylan; Coster, David; Hogan, John; Kritz, Arnold; Kukushkin, Andrey; Schnack, Dalton; Snyder, Phil
2005-10-01
The scrape-of-layer (SOL) region in DIII-D tokamak is studied with the SOLPS integrated suite of codes. The SOLPS package includes the 3D multi-species Monte-Carlo neutral code EIRINE and 2D multi-fluid code B2. The EIRINE and B2 codes are cross-coupled through B2-EIRINE interface. The results of SOLPS simulations are used in the integrated modeling of the plasma edge in DIII-D tokamak with the ASTRA transport code. Parameterized dependences for neutral particle fluxes that are computed with the SOLPS code are implemented in a model for the H-mode pedestal and ELMs [1] in the ASTRA code. The effects of neutrals on the H-mode pedestal and ELMs are studied in this report. [1] A. Y. Pankin, I. Voitsekhovitch, G. Bateman, et al., Plasma Phys. Control. Fusion 47, 483 (2005).
Intercomparison of 3D pore-scale flow and solute transport simulation methods
Mehmani, Yashar; Schoenherr, Martin; Pasquali, Andrea; ...
2015-09-28
Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based onmore » the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This paper provides support for confidence in a variety of pore-scale modeling methods and motivates further development and application of pore-scale simulation methods.« less
Intercomparison of 3D pore-scale flow and solute transport simulation methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.
2016-09-01
Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based onmore » the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for confidence in a variety of pore-scale modeling methods and motivates further development and application of pore-scale simulation methods.« less
3 Lectures: "Lagrangian Models", "Numerical Transport Schemes", and "Chemical and Transport Models"
NASA Technical Reports Server (NTRS)
Douglass, A.
2005-01-01
The topics for the three lectures for the Canadian Summer School are Lagrangian Models, numerical transport schemes, and chemical and transport models. In the first lecture I will explain the basic components of the Lagrangian model (a trajectory code and a photochemical code), the difficulties in using such a model (initialization) and show some applications in interpretation of aircraft and satellite data. If time permits I will show some results concerning inverse modeling which is being used to evaluate sources of tropospheric pollutants. In the second lecture I will discuss one of the core components of any grid point model, the numerical transport scheme. I will explain the basics of shock capturing schemes, and performance criteria. I will include an example of the importance of horizontal resolution to polar processes. We have learned from NASA's global modeling initiative that horizontal resolution matters for predictions of the future evolution of the ozone hole. The numerical scheme will be evaluated using performance metrics based on satellite observations of long-lived tracers. The final lecture will discuss the evolution of chemical transport models over the last decade. Some of the problems with assimilated winds will be demonstrated, using satellite data to evaluate the simulations.
Benchmarking Geant4 for simulating galactic cosmic ray interactions within planetary bodies
Mesick, K. E.; Feldman, W. C.; Coupland, D. D. S.; ...
2018-06-20
Galactic cosmic rays undergo complex nuclear interactions with nuclei within planetary bodies that have little to no atmosphere. Radiation transport simulations are a key tool used in understanding the neutron and gamma-ray albedo coming from these interactions and tracing these signals back to geochemical composition of the target. In this paper, we study the validity of the code Geant4 for simulating such interactions by comparing simulation results to data from the Apollo 17 Lunar Neutron Probe Experiment. Different assumptions regarding the physics are explored to demonstrate how these impact the Geant4 simulation results. In general, all of the Geant4 resultsmore » over-predict the data, however, certain physics lists perform better than others. Finally, in addition, we show that results from the radiation transport code MCNP6 are similar to those obtained using Geant4.« less
Benchmarking Geant4 for simulating galactic cosmic ray interactions within planetary bodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mesick, K. E.; Feldman, W. C.; Coupland, D. D. S.
Galactic cosmic rays undergo complex nuclear interactions with nuclei within planetary bodies that have little to no atmosphere. Radiation transport simulations are a key tool used in understanding the neutron and gamma-ray albedo coming from these interactions and tracing these signals back to geochemical composition of the target. In this paper, we study the validity of the code Geant4 for simulating such interactions by comparing simulation results to data from the Apollo 17 Lunar Neutron Probe Experiment. Different assumptions regarding the physics are explored to demonstrate how these impact the Geant4 simulation results. In general, all of the Geant4 resultsmore » over-predict the data, however, certain physics lists perform better than others. Finally, in addition, we show that results from the radiation transport code MCNP6 are similar to those obtained using Geant4.« less
Zhang, Yequn; Arabaci, Murat; Djordjevic, Ivan B
2012-04-09
Leveraging the advanced coherent optical communication technologies, this paper explores the feasibility of using four-dimensional (4D) nonbinary LDPC-coded modulation (4D-NB-LDPC-CM) schemes for long-haul transmission in future optical transport networks. In contrast to our previous works on 4D-NB-LDPC-CM which considered amplified spontaneous emission (ASE) noise as the dominant impairment, this paper undertakes transmission in a more realistic optical fiber transmission environment, taking into account impairments due to dispersion effects, nonlinear phase noise, Kerr nonlinearities, and stimulated Raman scattering in addition to ASE noise. We first reveal the advantages of using 4D modulation formats in LDPC-coded modulation instead of conventional two-dimensional (2D) modulation formats used with polarization-division multiplexing (PDM). Then we demonstrate that 4D LDPC-coded modulation schemes with nonbinary LDPC component codes significantly outperform not only their conventional PDM-2D counterparts but also the corresponding 4D bit-interleaved LDPC-coded modulation (4D-BI-LDPC-CM) schemes, which employ binary LDPC codes as component codes. We also show that the transmission reach improvement offered by the 4D-NB-LDPC-CM over 4D-BI-LDPC-CM increases as the underlying constellation size and hence the spectral efficiency of transmission increases. Our results suggest that 4D-NB-LDPC-CM can be an excellent candidate for long-haul transmission in next-generation optical networks.
On the Development of a Deterministic Three-Dimensional Radiation Transport Code
NASA Technical Reports Server (NTRS)
Rockell, Candice; Tweed, John
2011-01-01
Since astronauts on future deep space missions will be exposed to dangerous radiations, there is a need to accurately model the transport of radiation through shielding materials and to estimate the received radiation dose. In response to this need a three dimensional deterministic code for space radiation transport is now under development. The new code GRNTRN is based on a Green's function solution of the Boltzmann transport equation that is constructed in the form of a Neumann series. Analytical approximations will be obtained for the first three terms of the Neumann series and the remainder will be estimated by a non-perturbative technique . This work discusses progress made to date and exhibits some computations based on the first two Neumann series terms.
Should One Use the Ray-by-Ray Approximation in Core-Collapse Supernova Simulations?
Skinner, M. Aaron; Burrows, Adam; Dolence, Joshua C.
2016-10-28
We perform the first self-consistent, time-dependent, multi-group calculations in two dimensions (2D) to address the consequences of using the ray-by-ray+ transport simplification in core-collapse supernova simulations. Such a dimensional reduction is employed by many researchers to facilitate their resource-intensive calculations. Our new code (Fornax) implements multi-D transport, and can, by zeroing out transverse flux terms, emulate the ray-by-ray+ scheme. Using the same microphysics, initial models, resolution, and code, we compare the results of simulating 12-, 15-, 20-, and 25-M⊙ progenitor models using these two transport methods. Our findings call into question the wisdom of the pervasive use of the ray-by-ray+more » approach. Employing it leads to maximum post-bounce/preexplosion shock radii that are almost universally larger by tens of kilometers than those derived using the more accurate scheme, typically leaving the post-bounce matter less bound and artificially more “explodable.” In fact, for our 25-M⊙ progenitor, the ray-by-ray+ model explodes, while the corresponding multi-D transport model does not. Therefore, in two dimensions the combination of ray-by-ray+ with the axial sloshing hydrodynamics that is a feature of 2D supernova dynamics can result in quantitatively, and perhaps qualitatively, incorrect results.« less
Should One Use the Ray-by-Ray Approximation in Core-collapse Supernova Simulations?
NASA Astrophysics Data System (ADS)
Skinner, M. Aaron; Burrows, Adam; Dolence, Joshua C.
2016-11-01
We perform the first self-consistent, time-dependent, multi-group calculations in two dimensions (2D) to address the consequences of using the ray-by-ray+ transport simplification in core-collapse supernova simulations. Such a dimensional reduction is employed by many researchers to facilitate their resource-intensive calculations. Our new code (Fornax) implements multi-D transport, and can, by zeroing out transverse flux terms, emulate the ray-by-ray+ scheme. Using the same microphysics, initial models, resolution, and code, we compare the results of simulating 12, 15, 20, and 25 M ⊙ progenitor models using these two transport methods. Our findings call into question the wisdom of the pervasive use of the ray-by-ray+ approach. Employing it leads to maximum post-bounce/pre-explosion shock radii that are almost universally larger by tens of kilometers than those derived using the more accurate scheme, typically leaving the post-bounce matter less bound and artificially more “explodable.” In fact, for our 25 M ⊙ progenitor, the ray-by-ray+ model explodes, while the corresponding multi-D transport model does not. Therefore, in two dimensions, the combination of ray-by-ray+ with the axial sloshing hydrodynamics that is a feature of 2D supernova dynamics can result in quantitatively, and perhaps qualitatively, incorrect results.
5D Tempest simulations of kinetic edge turbulence
NASA Astrophysics Data System (ADS)
Xu, X. Q.; Xiong, Z.; Cohen, B. I.; Cohen, R. H.; Dorr, M. R.; Hittinger, J. A.; Kerbel, G. D.; Nevins, W. M.; Rognlien, T. D.; Umansky, M. V.; Qin, H.
2006-10-01
Results are presented from the development and application of TEMPEST, a nonlinear five dimensional (3d2v) gyrokinetic continuum code. The simulation results and theoretical analysis include studies of H-mode edge plasma neoclassical transport and turbulence in real divertor geometry and its relationship to plasma flow generation with zero external momentum input, including the important orbit-squeezing effect due to the large electric field flow-shear in the edge. In order to extend the code to 5D, we have formulated a set of fully nonlinear electrostatic gyrokinetic equations and a fully nonlinear gyrokinetic Poisson's equation which is valid for both neoclassical and turbulence simulations. Our 5D gyrokinetic code is built on 4D version of Tempest neoclassical code with extension to a fifth dimension in binormal direction. The code is able to simulate either a full torus or a toroidal segment. Progress on performing 5D turbulence simulations will be reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badal, Andreu; Badano, Aldo
Purpose: It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). Methods: A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDA programming model (NVIDIA Corporation, Santa Clara, CA). Results: An outline of the new code and a sample x-raymore » imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. Conclusions: The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.« less
Thermally induced distortion of high average power laser system by an optical transport system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ault, L; Chow, R; Taylor, Jedlovec, D
1999-03-31
The atomic vapor laser isotope separation process uses high-average power lasers that have the commercial potential to enrich uranium for the electric power utilities. The transport of the laser beam through the laser system to the separation chambers requires high performance optical components, most of which have either fused silica or Zerodur as the substrate material. One of the requirements of the optical components is to preserve the wavefront quality of the laser beam that propagate over long distances. Full aperture tests with the high power process lasers and finite element analysis (FEA) have been performed on the transport optics.more » The wavefront distortions of the various sections of the transport path were measured with diagnostic Hartmann sensor packages. The FEA results were derived from an in-house thermal-structural-optical code which is linked to the commercially available CodeV program. In comparing the measured and predicted results, the bulk absorptance of fused silica was estimated to about 50 ppm/cm in the visible wavelength regime. Wavefront distortions are reported on optics made from fused silica and Zerodur substrate materials.« less
NASA Technical Reports Server (NTRS)
Townsend, Lawrence W.; Nealy, John E.; Wilson, John W.
1988-01-01
Preliminary estimates of radiation exposures for manned interplanetary missions resulting from anomalously large solar flare events are presented. The calculations use integral particle fluences for the February 1956, November 1960, and August 1972 events as inputs into the Langley Research Center nucleon transport code BRYNTRN. This deterministic code transports primary and secondary nucleons (protons and neutrons) through any number of layers of target material of arbitrary thickness and composition. Contributions from target nucleus fragmentation and recoil are also included. Estimates of 5 cm depth doses and dose equivalents in tissue are presented behind various thicknesses of aluminum, water, and composite aluminum/water shields for each of the three solar flare events.
NASA Astrophysics Data System (ADS)
Zamani, K.; Bombardelli, F. A.
2013-12-01
ADR equation describes many physical phenomena of interest in the field of water quality in natural streams and groundwater. In many cases such as: density driven flow, multiphase reactive transport, and sediment transport, either one or a number of terms in the ADR equation may become nonlinear. For that reason, numerical tools are the only practical choice to solve these PDEs. All numerical solvers developed for transport equation need to undergo code verification procedure before they are put in to practice. Code verification is a mathematical activity to uncover failures and check for rigorous discretization of PDEs and implementation of initial/boundary conditions. In the context computational PDE verification is not a well-defined procedure on a clear path. Thus, verification tests should be designed and implemented with in-depth knowledge of numerical algorithms and physics of the phenomena as well as mathematical behavior of the solution. Even test results need to be mathematically analyzed to distinguish between an inherent limitation of algorithm and a coding error. Therefore, it is well known that code verification is a state of the art, in which innovative methods and case-based tricks are very common. This study presents full verification of a general transport code. To that end, a complete test suite is designed to probe the ADR solver comprehensively and discover all possible imperfections. In this study we convey our experiences in finding several errors which were not detectable with routine verification techniques. We developed a test suit including hundreds of unit tests and system tests. The test package has gradual increment in complexity such that tests start from simple and increase to the most sophisticated level. Appropriate verification metrics are defined for the required capabilities of the solver as follows: mass conservation, convergence order, capabilities in handling stiff problems, nonnegative concentration, shape preservation, and spurious wiggles. Thereby, we provide objective, quantitative values as opposed to subjective qualitative descriptions as 'weak' or 'satisfactory' agreement with those metrics. We start testing from a simple case of unidirectional advection, then bidirectional advection and tidal flow and build up to nonlinear cases. We design tests to check nonlinearity in velocity, dispersivity and reactions. For all of the mentioned cases we conduct mesh convergence tests. These tests compare the results' order of accuracy versus the formal order of accuracy of discretization. The concealing effect of scales (Peclet and Damkohler numbers) on the mesh convergence study and appropriate remedies are also discussed. For the cases in which the appropriate benchmarks for mesh convergence study are not available we utilize Symmetry, Complete Richardson Extrapolation and Method of False Injection to uncover bugs. Detailed discussions of capabilities of the mentioned code verification techniques are given. Auxiliary subroutines for automation of the test suit and report generation are designed. All in all, the test package is not only a robust tool for code verification but also it provides comprehensive insight on the ADR solvers capabilities. Such information is essential for any rigorous computational modeling of ADR equation for surface/subsurface pollution transport.
Hoshi, M; Hiraoka, M; Hayakawa, N; Sawada, S; Munaka, M; Kuramoto, A; Oka, T; Iwatani, K; Shizuma, K; Hasai, H
1992-11-01
A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a 252Cf fission neutron source to validate the use of the code for the energy spectrum analyses of Hiroshima atomic bomb neutrons. Nuclear data libraries used in the Monte Carlo neutron and photon transport code calculation were ENDF/B-III, ENDF/B-IV, LASL-SUB, and ENDL-73. The neutron moderators used were granite (the main component of which is SiO2, with a small fraction of hydrogen), Newlight [polyethylene with 3.7% boron (natural)], ammonium chloride (NH4Cl), and water (H2O). Each moderator was 65 cm thick. The neutron detectors were gold and nickel foils, which were used to detect thermal and epithermal neutrons (4.9 eV) and fast neutrons (> 0.5 MeV), respectively. Measured activity data from neutron-irradiated gold and nickel foils in these moderators decreased to about 1/1,000th or 1/10,000th, which correspond to about 1,500 m ground distance from the hypocenter in Hiroshima. For both gold and nickel detectors, the measured activities and the calculated values agreed within 10%. The slopes of the depth-yield relations in each moderator, except granite, were similar for neutrons detected by the gold and nickel foils. From the results of these studies, the Monte Carlo neutron and photon transport code was verified to be accurate enough for use with the elements hydrogen, carbon, nitrogen, oxygen, silicon, chlorine, and cadmium, and for the incident 252Cf fission spectrum neutrons.
Numerical Studies of Impurities in Fusion Plasmas
DOE R&D Accomplishments Database
Hulse, R. A.
1982-09-01
The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grishkov, A. A.; Kornilov, S. Yu., E-mail: kornilovsy@gmail.com; Rempe, N. G.
2016-07-15
The results of computer simulations of the electron-optical system of an electron gun with a plasma emitter are presented. The simulations are performed using the KOBRA3-INP, XOOPIC, and ANSYS codes. The results describe the electron beam formation and transport. The electron trajectories are analyzed. The mechanisms of gas influence on the energy inhomogeneity of the beam and its current in the regions of beam primary formation, acceleration, and transport are described. Recommendations for optimizing the electron-optical system with a plasma emitter are presented.
NASA Astrophysics Data System (ADS)
Grenier, Christophe; Anbergen, Hauke; Bense, Victor; Chanzy, Quentin; Coon, Ethan; Collier, Nathaniel; Costard, François; Ferry, Michel; Frampton, Andrew; Frederick, Jennifer; Gonçalvès, Julio; Holmén, Johann; Jost, Anne; Kokh, Samuel; Kurylyk, Barret; McKenzie, Jeffrey; Molson, John; Mouche, Emmanuel; Orgogozo, Laurent; Pannetier, Romain; Rivière, Agnès; Roux, Nicolas; Rühaak, Wolfram; Scheidegger, Johanna; Selroos, Jan-Olof; Therrien, René; Vidstrand, Patrik; Voss, Clifford
2018-04-01
In high-elevation, boreal and arctic regions, hydrological processes and associated water bodies can be strongly influenced by the distribution of permafrost. Recent field and modeling studies indicate that a fully-coupled multidimensional thermo-hydraulic approach is required to accurately model the evolution of these permafrost-impacted landscapes and groundwater systems. However, the relatively new and complex numerical codes being developed for coupled non-linear freeze-thaw systems require verification. This issue is addressed by means of an intercomparison of thirteen numerical codes for two-dimensional test cases with several performance metrics (PMs). These codes comprise a wide range of numerical approaches, spatial and temporal discretization strategies, and computational efficiencies. Results suggest that the codes provide robust results for the test cases considered and that minor discrepancies are explained by computational precision. However, larger discrepancies are observed for some PMs resulting from differences in the governing equations, discretization issues, or in the freezing curve used by some codes.
Reactive transport codes for subsurface environmental simulation
Steefel, C. I.; Appelo, C. A. J.; Arora, B.; ...
2014-09-26
A general description of the mathematical and numerical formulations used in modern numerical reactive transport codes relevant for subsurface environmental simulations is presented. The formulations are followed by short descriptions of commonly used and available subsurface simulators that consider continuum representations of flow, transport, and reactions in porous media. These formulations are applicable to most of the subsurface environmental benchmark problems included in this special issue. The list of codes described briefly here includes PHREEQC, HPx, PHT3D, OpenGeoSys (OGS), HYTEC, ORCHESTRA, TOUGHREACT, eSTOMP, HYDROGEOCHEM, CrunchFlow, MIN3P, and PFLOTRAN. The descriptions include a high-level list of capabilities for each of themore » codes, along with a selective list of applications that highlight their capabilities and historical development.« less
MCNP Version 6.2 Release Notes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werner, Christopher John; Bull, Jeffrey S.; Solomon, C. J.
Monte Carlo N-Particle or MCNP ® is a general-purpose Monte Carlo radiation-transport code designed to track many particle types over broad ranges of energies. This MCNP Version 6.2 follows the MCNP6.1.1 beta version and has been released in order to provide the radiation transport community with the latest feature developments and bug fixes for MCNP. Since the last release of MCNP major work has been conducted to improve the code base, add features, and provide tools to facilitate ease of use of MCNP version 6.2 as well as the analysis of results. These release notes serve as a general guidemore » for the new/improved physics, source, data, tallies, unstructured mesh, code enhancements and tools. For more detailed information on each of the topics, please refer to the appropriate references or the user manual which can be found at http://mcnp.lanl.gov. This release of MCNP version 6.2 contains 39 new features in addition to 172 bug fixes and code enhancements. There are still some 33 known issues the user should familiarize themselves with (see Appendix).« less
NASA Astrophysics Data System (ADS)
Verbeke, Jérôme M.; Petit, Odile; Chebboubi, Abdelhazize; Litaize, Olivier
2018-01-01
Fission modeling in general-purpose Monte Carlo transport codes often relies on average nuclear data provided by international evaluation libraries. As such, only average fission multiplicities are available and correlations between fission neutrons and photons are missing. Whereas uncorrelated fission physics is usually sufficient for standard reactor core and radiation shielding calculations, correlated fission secondaries are required for specialized nuclear instrumentation and detector modeling. For coincidence counting detector optimization for instance, precise simulation of fission neutrons and photons that remain correlated in time from birth to detection is essential. New developments were recently integrated into the Monte Carlo transport code TRIPOLI-4 to model fission physics more precisely, the purpose being to access event-by-event fission events from two different fission models: FREYA and FIFRELIN. TRIPOLI-4 simulations can now be performed, either by connecting via an API to the LLNL fission library including FREYA, or by reading external fission event data files produced by FIFRELIN beforehand. These new capabilities enable us to easily compare results from Monte Carlo transport calculations using the two fission models in a nuclear instrumentation application. In the first part of this paper, broad underlying principles of the two fission models are recalled. We then present experimental measurements of neutron angular correlations for 252Cf(sf) and 240Pu(sf). The correlations were measured for several neutron kinetic energy thresholds. In the latter part of the paper, simulation results are compared to experimental data. Spontaneous fissions in 252Cf and 240Pu are modeled by FREYA or FIFRELIN. Emitted neutrons and photons are subsequently transported to an array of scintillators by TRIPOLI-4 in analog mode to preserve their correlations. Angular correlations between fission neutrons obtained independently from these TRIPOLI-4 simulations, using either FREYA or FIFRELIN, are compared to experimental results. For 240Pu(sf), the measured correlations were used to tune the model parameters.
Bao, Zhongwen; Haberer, Christina; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter
2015-12-15
Soil-atmosphere exchange is important for the environmental fate and atmospheric transport of many semi-volatile organic compounds (SVOCs). This study focuses on modeling the vapor phase exchange of semi-volatile hydrophobic organic pollutants between soil and the atmosphere using the multicomponent reactive transport code MIN3P. MIN3P is typically applied to simulate aqueous and vapor phase transport and reaction processes in the subsurface. We extended the code to also include an atmospheric boundary layer where eddy diffusion takes place. The relevant processes and parameters affecting soil-atmosphere exchange were investigated in several 1-D model scenarios and at various time scales (from years to centuries). Phenanthrene was chosen as a model compound, but results apply for other hydrophobic organic compounds as well. Gaseous phenanthrene was assumed to be constantly supplied to the system during a pollution period and a subsequent regulation period (with a 50% decline in the emission rate). Our results indicate that long-term soil-atmosphere exchange of phenanthrene is controlled by the soil compartment - re-volatilization thus depends on soil properties. A sensitivity analysis showed that accumulation and transport in soils in the short term is dominated by diffusion, whereas in the long term groundwater recharge and biodegradation become relevant. As expected, sorption causes retardation and slows down transport and biodegradation. If atmospheric concentration is reduced (e.g. after environmental regulations), re-volatilization from soil to the atmosphere occurs only for a relatively short time period. Therefore, the model results demonstrate that soils generally are sinks for atmospheric pollutants. The atmospheric boundary layer is only relevant for time scales of less than one month. The extended MIN3P code can also be applied to simulate fluctuating concentrations in the atmosphere, for instance due to temperature changes in the topsoil. Copyright © 2015. Published by Elsevier B.V.
Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; ...
2015-12-21
This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Somemore » specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000 ® problems. These benchmark and scaling studies show promising results.« less
Hybrid parallel code acceleration methods in full-core reactor physics calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courau, T.; Plagne, L.; Ponicot, A.
2012-07-01
When dealing with nuclear reactor calculation schemes, the need for three dimensional (3D) transport-based reference solutions is essential for both validation and optimization purposes. Considering a benchmark problem, this work investigates the potential of discrete ordinates (Sn) transport methods applied to 3D pressurized water reactor (PWR) full-core calculations. First, the benchmark problem is described. It involves a pin-by-pin description of a 3D PWR first core, and uses a 8-group cross-section library prepared with the DRAGON cell code. Then, a convergence analysis is performed using the PENTRAN parallel Sn Cartesian code. It discusses the spatial refinement and the associated angular quadraturemore » required to properly describe the problem physics. It also shows that initializing the Sn solution with the EDF SPN solver COCAGNE reduces the number of iterations required to converge by nearly a factor of 6. Using a best estimate model, PENTRAN results are then compared to multigroup Monte Carlo results obtained with the MCNP5 code. Good consistency is observed between the two methods (Sn and Monte Carlo), with discrepancies that are less than 25 pcm for the k{sub eff}, and less than 2.1% and 1.6% for the flux at the pin-cell level and for the pin-power distribution, respectively. (authors)« less
A graphics-card implementation of Monte-Carlo simulations for cosmic-ray transport
NASA Astrophysics Data System (ADS)
Tautz, R. C.
2016-05-01
A graphics card implementation of a test-particle simulation code is presented that is based on the CUDA extension of the C/C++ programming language. The original CPU version has been developed for the calculation of cosmic-ray diffusion coefficients in artificial Kolmogorov-type turbulence. In the new implementation, the magnetic turbulence generation, which is the most time-consuming part, is separated from the particle transport and is performed on a graphics card. In this article, the modification of the basic approach of integrating test particle trajectories to employ the SIMD (single instruction, multiple data) model is presented and verified. The efficiency of the new code is tested and several language-specific accelerating factors are discussed. For the example of isotropic magnetostatic turbulence, sample results are shown and a comparison to the results of the CPU implementation is performed.
Enger, Shirin A; Munck af Rosenschöld, Per; Rezaei, Arash; Lundqvist, Hans
2006-02-01
GEANT4 is a Monte Carlo code originally implemented for high-energy physics applications and is well known for particle transport at high energies. The capacity of GEANT4 to simulate neutron transport in the thermal energy region is not equally well known. The aim of this article is to compare MCNP, a code commonly used in low energy neutron transport calculations and GEANT4 with experimental results and select the suitable code for gadolinium neutron capture applications. To account for the thermal neutron scattering from chemically bound atoms [S(alpha,beta)] in biological materials a comparison of thermal neutron fluence in tissue-like poly(methylmethacrylate) phantom is made with MCNP4B, GEANT4 6.0 patch1, and measurements from the neutron capture therapy (NCT) facility at the Studsvik, Sweden. The fluence measurements agreed with MCNP calculated results considering S(alpha,beta). The location of the thermal neutron peak calculated with MCNP without S(alpha,beta) and GEANT4 is shifted by about 0.5 cm towards a shallower depth and is 25%-30% lower in amplitude. Dose distribution from the gadolinium neutron capture reaction is then simulated by MCNP and compared with measured data. The simulations made by MCNP agree well with experimental results. As long as thermal neutron scattering from chemically bound atoms are not included in GEANT4 it is not suitable for NCT applications.
Development of Pflotran Code for Waste Isolation Pilot Plant Performance Assessment
NASA Astrophysics Data System (ADS)
Zeitler, T.; Day, B. A.; Frederick, J.; Hammond, G. E.; Kim, S.; Sarathi, R.; Stein, E.
2017-12-01
The Waste Isolation Pilot Plant (WIPP) has been developed by the U.S. Department of Energy (DOE) for the geologic (deep underground) disposal of transuranic (TRU) waste. Containment of TRU waste at the WIPP is regulated by the U.S. Environmental Protection Agency (EPA). The DOE demonstrates compliance with the containment requirements by means of performance assessment (PA) calculations. WIPP PA calculations estimate the probability and consequence of potential radionuclide releases from the repository to the accessible environment for a regulatory period of 10,000 years after facility closure. The long-term performance of the repository is assessed using a suite of sophisticated computational codes. There is a current effort to enhance WIPP PA capabilities through the further development of the PFLOTRAN software, a state-of-the-art massively parallel subsurface flow and reactive transport code. Benchmark testing of the individual WIPP-specific process models implemented in PFLOTRAN (e.g., gas generation, chemistry, creep closure, actinide transport, and waste form) has been performed, including results comparisons for PFLOTRAN and existing WIPP PA codes. Additionally, enhancements to the subsurface hydrologic flow mode have been made. Repository-scale testing has also been performed for the modified PFLTORAN code and detailed results will be presented. Ultimately, improvements to the current computational environment will result in greater detail and flexibility in the repository model due to a move from a two-dimensional calculation grid to a three-dimensional representation. The result of the effort will be a state-of-the-art subsurface flow and transport capability that will serve WIPP PA into the future for use in compliance recertification applications (CRAs) submitted to the EPA. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy.SAND2017-8198A.
NASA Astrophysics Data System (ADS)
Hadgu, T.; Kalinina, E.; Klise, K. A.; Wang, Y.
2015-12-01
Numerical modeling of disposal of nuclear waste in a deep geologic repository in fractured crystalline rock requires robust characterization of fractures. Various methods for fracture representation in granitic rocks exist. In this study we used the fracture continuum model (FCM) to characterize fractured rock for use in the simulation of flow and transport in the far field of a generic nuclear waste repository located at 500 m depth. The FCM approach is a stochastic method that maps the permeability of discrete fractures onto a regular grid. The method generates permeability fields using field observations of fracture sets. The original method described in McKenna and Reeves (2005) was designed for vertical fractures. The method has since then been extended to incorporate fully three-dimensional representations of anisotropic permeability, multiple independent fracture sets, and arbitrary fracture dips and orientations, and spatial correlation (Kalinina et al. 20012, 2014). For this study the numerical code PFLOTRAN (Lichtner et al., 2015) has been used to model flow and transport. PFLOTRAN solves a system of generally nonlinear partial differential equations describing multiphase, multicomponent and multiscale reactive flow and transport in porous materials. The code is designed to run on massively parallel computing architectures as well as workstations and laptops (e.g. Hammond et al., 2011). Benchmark tests were conducted to simulate flow and transport in a specified model domain. Distributions of fracture parameters were used to generate a selected number of realizations. For each realization, the FCM method was used to generate a permeability field of the fractured rock. The PFLOTRAN code was then used to simulate flow and transport in the domain. Simulation results and analysis are presented. The results indicate that the FCM approach is a viable method to model fractured crystalline rocks. The FCM is a computationally efficient way to generate realistic representation of complex fracture systems. This approach is of interest for nuclear waste disposal models applied over large domains.
Validation of TGLF in C-Mod and DIII-D using machine learning and integrated modeling tools
NASA Astrophysics Data System (ADS)
Rodriguez-Fernandez, P.; White, Ae; Cao, Nm; Creely, Aj; Greenwald, Mj; Grierson, Ba; Howard, Nt; Meneghini, O.; Petty, Cc; Rice, Je; Sciortino, F.; Yuan, X.
2017-10-01
Predictive models for steady-state and perturbative transport are necessary to support burning plasma operations. A combination of machine learning algorithms and integrated modeling tools is used to validate TGLF in C-Mod and DIII-D. First, a new code suite, VITALS, is used to compare SAT1 and SAT0 models in C-Mod. VITALS exploits machine learning and optimization algorithms for the validation of transport codes. Unlike SAT0, the SAT1 saturation rule contains a model to capture cross-scale turbulence coupling. Results show that SAT1 agrees better with experiments, further confirming that multi-scale effects are needed to model heat transport in C-Mod L-modes. VITALS will next be used to analyze past data from DIII-D: L-mode ``Shortfall'' plasma and ECH swing experiments. A second code suite, PRIMA, allows for integrated modeling of the plasma response to Laser Blow-Off cold pulses. Preliminary results show that SAT1 qualitatively reproduces the propagation of cold pulses after LBO injections and SAT0 does not, indicating that cross-scale coupling effects play a role in the plasma response. PRIMA will be used to ``predict-first'' cold pulse experiments using the new LBO system at DIII-D, and analyze existing ECH heat pulse data. Work supported by DE-FC02-99ER54512, DE-FC02-04ER54698.
NASA Astrophysics Data System (ADS)
Teplukhina, A. A.; Sauter, O.; Felici, F.; Merle, A.; Kim, D.; the TCV Team; the ASDEX Upgrade Team; the EUROfusion MST1 Team
2017-12-01
The present work demonstrates the capabilities of the transport code RAPTOR as a fast and reliable simulator of plasma profiles for the entire plasma discharge, i.e. from ramp-up to ramp-down. This code focuses, at this stage, on the simulation of electron temperature and poloidal flux profiles using prescribed equilibrium and some kinetic profiles. In this work we extend the RAPTOR transport model to include a time-varying plasma equilibrium geometry and verify the changes via comparison with ATSRA code simulations. In addition a new ad hoc transport model based on constant gradients and suitable for simulations of L-H and H-L mode transitions has been incorporated into the RAPTOR code and validated with rapid simulations of the time evolution of the safety factor and the electron temperature over the entire AUG and TCV discharges. An optimization procedure for the plasma termination phase has also been developed during this work. We define the goal of the optimization as ramping down the plasma current as fast as possible while avoiding any disruptions caused by reaching physical or technical limits. Our numerical study of this problem shows that a fast decrease of plasma elongation during current ramp-down can help in reducing plasma internal inductance. An early transition from H- to L-mode allows us to reduce the drop in poloidal beta, which is also important for plasma MHD stability and control. This work shows how these complex nonlinear interactions can be optimized automatically using relevant cost functions and constraints. Preliminary experimental results for TCV are demonstrated.
NASA Astrophysics Data System (ADS)
Kurceren, Ragip; Modestino, James W.
1998-12-01
The use of forward error-control (FEC) coding, possibly in conjunction with ARQ techniques, has emerged as a promising approach for video transport over ATM networks for cell-loss recovery and/or bit error correction, such as might be required for wireless links. Although FEC provides cell-loss recovery capabilities it also introduces transmission overhead which can possibly cause additional cell losses. A methodology is described to maximize the number of video sources multiplexed at a given quality of service (QoS), measured in terms of decoded cell loss probability, using interlaced FEC codes. The transport channel is modelled as a block interference channel (BIC) and the multiplexer as single server, deterministic service, finite buffer supporting N users. Based upon an information-theoretic characterization of the BIC and large deviation bounds on the buffer overflow probability, the described methodology provides theoretically achievable upper limits on the number of sources multiplexed. Performance of specific coding techniques using interlaced nonbinary Reed-Solomon (RS) codes and binary rate-compatible punctured convolutional (RCPC) codes is illustrated.
Clean Energy in City Codes: A Baseline Analysis of Municipal Codification across the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Jeffrey J.; Aznar, Alexandra; Dane, Alexander
Municipal governments in the United States are well positioned to influence clean energy (energy efficiency and alternative energy) and transportation technology and strategy implementation within their jurisdictions through planning, programs, and codification. Municipal governments are leveraging planning processes and programs to shape their energy futures. There is limited understanding in the literature related to codification, the primary way that municipal governments enact enforceable policies. The authors fill the gap in the literature by documenting the status of municipal codification of clean energy and transportation across the United States. More directly, we leverage online databases of municipal codes to develop nationalmore » and state-specific representative samples of municipal governments by population size. Our analysis finds that municipal governments with the authority to set residential building energy codes within their jurisdictions frequently do so. In some cases, communities set codes higher than their respective state governments. Examination of codes across the nation indicates that municipal governments are employing their code as a policy mechanism to address clean energy and transportation.« less
ITS Version 6 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William
2008-04-01
ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of lineartime-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a methodmore » for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 90. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurosu, K; Department of Medical Physics ' Engineering, Osaka University Graduate School of Medicine, Osaka; Takashina, M
Purpose: Monte Carlo codes are becoming important tools for proton beam dosimetry. However, the relationships between the customizing parameters and percentage depth dose (PDD) of GATE and PHITS codes have not been reported which are studied for PDD and proton range compared to the FLUKA code and the experimental data. Methods: The beam delivery system of the Indiana University Health Proton Therapy Center was modeled for the uniform scanning beam in FLUKA and transferred identically into GATE and PHITS. This computational model was built from the blue print and validated with the commissioning data. Three parameters evaluated are the maximummore » step size, cut off energy and physical and transport model. The dependence of the PDDs on the customizing parameters was compared with the published results of previous studies. Results: The optimal parameters for the simulation of the whole beam delivery system were defined by referring to the calculation results obtained with each parameter. Although the PDDs from FLUKA and the experimental data show a good agreement, those of GATE and PHITS obtained with our optimal parameters show a minor discrepancy. The measured proton range R90 was 269.37 mm, compared to the calculated range of 269.63 mm, 268.96 mm, and 270.85 mm with FLUKA, GATE and PHITS, respectively. Conclusion: We evaluated the dependence of the results for PDDs obtained with GATE and PHITS Monte Carlo generalpurpose codes on the customizing parameters by using the whole computational model of the treatment nozzle. The optimal parameters for the simulation were then defined by referring to the calculation results. The physical model, particle transport mechanics and the different geometrybased descriptions need accurate customization in three simulation codes to agree with experimental data for artifact-free Monte Carlo simulation. This study was supported by Grants-in Aid for Cancer Research (H22-3rd Term Cancer Control-General-043) from the Ministry of Health, Labor and Welfare of Japan, Grants-in-Aid for Scientific Research (No. 23791419), and JSPS Core-to-Core program (No. 23003). The authors have no conflict of interest.« less
Spherical harmonic results for the 3D Kobayashi Benchmark suite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, P N; Chang, B; Hanebutte, U R
1999-03-02
Spherical harmonic solutions are presented for the Kobayashi benchmark suite. The results were obtained with Ardra, a scalable, parallel neutron transport code developed at Lawrence Livermore National Laboratory (LLNL). The calculations were performed on the IBM ASCI Blue-Pacific computer at LLNL.
Understanding large SEP events with the PATH code: Modeling of the 13 December 2006 SEP event
NASA Astrophysics Data System (ADS)
Verkhoglyadova, O. P.; Li, G.; Zank, G. P.; Hu, Q.; Cohen, C. M. S.; Mewaldt, R. A.; Mason, G. M.; Haggerty, D. K.; von Rosenvinge, T. T.; Looper, M. D.
2010-12-01
The Particle Acceleration and Transport in the Heliosphere (PATH) numerical code was developed to understand solar energetic particle (SEP) events in the near-Earth environment. We discuss simulation results for the 13 December 2006 SEP event. The PATH code includes modeling a background solar wind through which a CME-driven oblique shock propagates. The code incorporates a mixed population of both flare and shock-accelerated solar wind suprathermal particles. The shock parameters derived from ACE measurements at 1 AU and observational flare characteristics are used as input into the numerical model. We assume that the diffusive shock acceleration mechanism is responsible for particle energization. We model the subsequent transport of particles originated at the flare site and particles escaping from the shock and propagating in the equatorial plane through the interplanetary medium. We derive spectra for protons, oxygen, and iron ions, together with their time-intensity profiles at 1 AU. Our modeling results show reasonable agreement with in situ measurements by ACE, STEREO, GOES, and SAMPEX for this event. We numerically estimate the Fe/O abundance ratio and discuss the physics underlying a mixed SEP event. We point out that the flare population is as important as shock geometry changes during shock propagation for modeling time-intensity profiles and spectra at 1 AU. The combined effects of seed population and shock geometry will be examined in the framework of an extended PATH code in future modeling efforts.
NASA Astrophysics Data System (ADS)
Andre, R.; Carlsson, J.; Gorelenkova, M.; Jardin, S.; Kaye, S.; Poli, F.; Yuan, X.
2016-10-01
TRANSP is an integrated interpretive and predictive transport analysis tool that incorporates state of the art heating/current drive sources and transport models. The treatments and transport solvers are becoming increasingly sophisticated and comprehensive. For instance, the ISOLVER component provides a free boundary equilibrium solution, while the PT- SOLVER transport solver is especially suited for stiff transport models such as TGLF. TRANSP incorporates high fidelity heating and current drive source models, such as NUBEAM for neutral beam injection, the beam tracing code TORBEAM for EC, TORIC for ICRF, the ray tracing TORAY and GENRAY for EC. The implementation of selected components makes efficient use of MPI for speed up of code calculations. Recently the GENRAY-CQL3D solver for modeling of LH heating and current drive has been implemented and currently being extended to multiple antennas, to allow modeling of EAST discharges. Also, GENRAY+CQL3D is being extended to the use of EC/EBW and of HHFW for NSTX-U. This poster will describe present uses of the code worldwide, as well as plans for upgrading the physics modules and code framework. Work supported by the US Department of Energy under DE-AC02-CH0911466.
MCNP capabilities for nuclear well logging calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forster, R.A.; Little, R.C.; Briesmeister, J.F.
The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. This paper discusses how the general-purpose continuous-energy Monte Carlo code MCNP ({und M}onte {und C}arlo {und n}eutron {und p}hoton), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tallymore » characteristics with standard MCNP features. The time-dependent capability of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data.« less
In situ calibration of neutron activation system on the large helical device
NASA Astrophysics Data System (ADS)
Pu, N.; Nishitani, T.; Isobe, M.; Ogawa, K.; Kawase, H.; Tanaka, T.; Li, S. Y.; Yoshihashi, S.; Uritani, A.
2017-11-01
In situ calibration of the neutron activation system on the Large Helical Device (LHD) was performed by using an intense 252Cf neutron source. To simulate a ring-shaped neutron source, we installed a railway inside the LHD vacuum vessel and made a train loaded with the 252Cf source run along a typical magnetic axis position. Three activation capsules loaded with thirty pieces of indium foils stacked with total mass of approximately 18 g were prepared. Each capsule was irradiated over 15 h while the train was circulating. The activation response coefficient (9.4 ± 1.2) × 10-8 of 115In(n, n')115mIn reaction obtained from the experiment is in good agreement with results from three-dimensional neutron transport calculations using the Monte Carlo neutron transport simulation code 6. The activation response coefficients of 2.45 MeV birth neutron and secondary 14.1 MeV neutron from deuterium plasma were evaluated from the activation response coefficient obtained in this calibration experiment with results from three-dimensional neutron calculations using the Monte Carlo neutron transport simulation code 6.
Differential Cross Section Kinematics for 3-dimensional Transport Codes
NASA Technical Reports Server (NTRS)
Norbury, John W.; Dick, Frank
2008-01-01
In support of the development of 3-dimensional transport codes, this paper derives the relevant relativistic particle kinematic theory. Formulas are given for invariant, spectral and angular distributions in both the lab (spacecraft) and center of momentum frames, for collisions involving 2, 3 and n - body final states.
49 CFR 171.25 - Additional requirements for the use of the IMDG Code.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 176 of this subchapter. (3) Packages containing primary lithium batteries and cells that are transported in accordance with Special Provision 188 of the IMDG Code must be marked “PRIMARY LITHIUM BATTERIES—FORBIDDEN FOR TRANSPORT ABOARD PASSENGER AIRCRAFT” or “LITHIUM METAL BATTERIES—FORBIDDEN FOR...
49 CFR 171.25 - Additional requirements for the use of the IMDG Code.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 176 of this subchapter. (3) Packages containing primary lithium batteries and cells that are transported in accordance with Special Provision 188 of the IMDG Code must be marked “PRIMARY LITHIUM BATTERIES—FORBIDDEN FOR TRANSPORT ABOARD PASSENGER AIRCRAFT” or “LITHIUM METAL BATTERIES—FORBIDDEN FOR...
49 CFR 171.25 - Additional requirements for the use of the IMDG Code.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 176 of this subchapter. (3) Packages containing primary lithium batteries and cells that are transported in accordance with Special Provision 188 of the IMDG Code must be marked “PRIMARY LITHIUM BATTERIES—FORBIDDEN FOR TRANSPORT ABOARD PASSENGER AIRCRAFT” or “LITHIUM METAL BATTERIES—FORBIDDEN FOR...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onishi, Yasuo; Kurikami, Hiroshi; Yokuda, Satoru T.
2014-03-28
After the accident at the Fukushima Daiichi Nuclear Power Plant in March 2011, the Japan Atomic Energy Agency and the Pacific Northwest National Laboratory initiated a collaborative project on environmental restoration. In October 2013, the collaborative team started a task of three-dimensional modeling of sediment and cesium transport in the Fukushima environment using the FLESCOT (Flow, Energy, Salinity, Sediment Contaminant Transport) code. As the first trial, we applied it to the Ogi Dam Reservoir that is one of the reservoirs in the Japan Atomic Energy Agency’s (JAEA’s) investigation project. Three simulation cases under the following different temperature conditions were studied:more » • incoming rivers and the Ogi Dam Reservoir have the same water temperature • incoming rivers have lower water temperature than that of the reservoir • incoming rivers have higher water temperature than that of the reservoir. The preliminary simulations suggest that seasonal temperature changes influence the sediment and cesium transport. The preliminary results showed the following: • Suspended sand, and cesium adsorbed by sand, coming into the reservoirs from upstream rivers is deposited near the reservoir entrance. • Suspended silt, and cesium adsorbed by silt, is deposited farther in the reservoir. • Suspended clay, and cesium adsorbed by clay, travels the farthest into the reservoir. With sufficient time, the dissolved cesium reaches the downstream end of the reservoir. This preliminary modeling also suggests the possibility of a suitable dam operation to control the cesium migration farther downstream from the dam. JAEA has been sampling in the Ogi Dam Reservoir, but these data were not yet available for the current model calibration and validation for this reservoir. Nonetheless these preliminary FLESCOT modeling results were qualitatively valid and confirmed the applicability of the FLESCOT code to the Ogi Dam Reservoir, and in general to other reservoirs in the Fukushima environment. The issues to be addressed in future are the following: • Validate the simulation results by comparison with the investigation data. • Confirm the applicability of the FLESCOT code to Fukushima coastal areas. • Increase computation speed by parallelizing the FLESCOT code.« less
Nonperturbative methods in HZE ion transport
NASA Technical Reports Server (NTRS)
Wilson, John W.; Badavi, Francis F.; Costen, Robert C.; Shinn, Judy L.
1993-01-01
A nonperturbative analytic solution of the high charge and energy (HZE) Green's function is used to implement a computer code for laboratory ion beam transport. The code is established to operate on the Langley Research Center nuclear fragmentation model used in engineering applications. Computational procedures are established to generate linear energy transfer (LET) distributions for a specified ion beam and target for comparison with experimental measurements. The code is highly efficient and compares well with the perturbation approximations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Bernhard; Janka, Hans-Thomas; Dimmelmeier, Harald, E-mail: bjmuellr@mpa-garching.mpg.d, E-mail: thj@mpa-garching.mpg.d, E-mail: harrydee@mpa-garching.mpg.d
We present a new general relativistic code for hydrodynamical supernova simulations with neutrino transport in spherical and azimuthal symmetry (one dimension and two dimensions, respectively). The code is a combination of the COCONUT hydro module, which is a Riemann-solver-based, high-resolution shock-capturing method, and the three-flavor, fully energy-dependent VERTEX scheme for the transport of massless neutrinos. VERTEX integrates the coupled neutrino energy and momentum equations with a variable Eddington factor closure computed from a model Boltzmann equation and uses the 'ray-by-ray plus' approximation in two dimensions, assuming the neutrino distribution to be axially symmetric around the radial direction at every pointmore » in space, and thus the neutrino flux to be radial. Our spacetime treatment employs the Arnowitt-Deser-Misner 3+1 formalism with the conformal flatness condition for the spatial three metric. This approach is exact for the one-dimensional case and has previously been shown to yield very accurate results for spherical and rotational stellar core collapse. We introduce new formulations of the energy equation to improve total energy conservation in relativistic and Newtonian hydro simulations with grid-based Eulerian finite-volume codes. Moreover, a modified version of the VERTEX scheme is developed that simultaneously conserves energy and lepton number in the neutrino transport with better accuracy and higher numerical stability in the high-energy tail of the spectrum. To verify our code, we conduct a series of tests in spherical symmetry, including a detailed comparison with published results of the collapse, shock formation, shock breakout, and accretion phases. Long-time simulations of proto-neutron star cooling until several seconds after core bounce both demonstrate the robustness of the new COCONUT-VERTEX code and show the approximate treatment of relativistic effects by means of an effective relativistic gravitational potential as in PROMETHEUS-VERTEX to be remarkably accurate in spherical symmetry.« less
Investigation of air cleaning system response to accident conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrae, R.W.; Bolstad, J.W.; Foster, R.D.
1980-01-01
Air cleaning system response to the stress of accident conditions are being investigated. A program overview and hghlight recent results of our investigation are presented. The program includes both analytical and experimental investigations. Computer codes for predicting effects of tornados, explosions, fires, and material transport are described. The test facilities used to obtain supportive experimental data to define structural integrity and confinement effectiveness of ventilation system components are described. Examples of experimental results for code verification, blower response to tornado transients, and filter response to tornado and explosion transients are reported.
Bejaei, M; Cheng, K M
2014-02-01
Appropriate management of an ostrich's exposure to stressors during preslaughter handling and transport practices can improve its well-being and product quality. Because of the lack of information about ostrich farming and transportation in North America and lack of developed Codes of Practice for ratite transport in Canada and the United States, the first objective of our research was to identify current preslaughter handling and transport practices of the ostrich industry in Canada and the United States, and to identify potential welfare issues based on the current practices. The second objective of this research was to review ostrich transport welfare standards and guidelines from Australia, European Union, New Zealand, and South Africa to investigate if those guidelines are applicable to Canadian and American ostrich production systems. Preliminary producer interviews, on-farm visits, and literature review information sources were used to design a producer questionnaire that was used to survey producers by Internet and mail surveying methods to identify existing ostrich transport norms in Canada and the United States. Based on the results of our producer survey and review of the transport standards and guidelines, we conclude that following factors are potential ostrich handling and transport welfare issues in Canada and the United States: lack of scientific information about welfare of ostriches during handling and transport; unfamiliarity of handlers and birds with handling and transport practices; not considering birds' social bounds, sex, behavior, and physical state in mixing them during handling and transport process; lack of an established specific maximum water and feed withdrawal duration for ostrich transport in Canada and the United States; lack of a specific vehicle designed for ratite transportation in Canada and the United States considering different physical body characteristics of ostriches compared with other species; exposure of birds to natural light during transport inside the trailer; overcrowding; and long transportation in Canada and the United States. Results of this research will contribute toward developing Codes of Practice for preslaughter handling, transportation, and slaughter of ostriches in Canada and the United States.
NASA Astrophysics Data System (ADS)
Masciopinto, Costantino; Volpe, Angela; Palmiotta, Domenico; Cherubini, Claudia
2010-09-01
A combination of a parallel fracture model with the PHREEQC-2 geochemical model was developed to simulate sequential flow and chemical transport with reactions in fractured media where both laminar and turbulent flows occur. The integration of non-laminar flow resistances in one model produced relevant effects on water flow velocities, thus improving model prediction capabilities on contaminant transport. The proposed conceptual model consists of 3D rock-blocks, separated by horizontal bedding plane fractures with variable apertures. Particle tracking solved the transport equations for conservative compounds and provided input for PHREEQC-2. For each cluster of contaminant pathways, PHREEQC-2 determined the concentration for mass-transfer, sorption/desorption, ion exchange, mineral dissolution/precipitation and biodegradation, under kinetically controlled reactive processes of equilibrated chemical species. Field tests have been performed for the code verification. As an example, the combined model has been applied to a contaminated fractured aquifer of southern Italy in order to simulate the phenol transport. The code correctly fitted the field available data and also predicted a possible rapid depletion of phenols as a result of an increased biodegradation rate induced by a simulated artificial injection of nitrates, upgradient to the sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasso, A.; Ferrari, A.; Ferrari, A.
In 1974, Nelson, Kase and Svensson published an experimental investigation on muon shielding around SLAC high-energy electron accelerators [1]. They measured muon fluence and absorbed dose induced by 14 and 18 GeV electron beams hitting a copper/water beamdump and attenuated in a thick steel shielding. In their paper, they compared the results with the theoretical models available at that time. In order to compare their experimental results with present model calculations, we use the modern transport Monte Carlo codes MARS15, FLUKA2011 and GEANT4 to model the experimental setup and run simulations. The results are then compared between the codes, andmore » with the SLAC data.« less
NASA Astrophysics Data System (ADS)
Oranj, Leila Mokhtari; Lee, Hee-Seock; Leitner, Mario Santana
2017-12-01
In Korea, a heavy ion accelerator facility (RAON) has been designed for production of rare isotopes. The 90° bending section of this accelerator includes a 1.3- μm-carbon stripper followed by two dipole magnets and other devices. An incident beam is 18.5 MeV/n 238U33+,34+ ions passing through the carbon stripper at the beginning of the section. The two dipoles are tuned to transport 238U ions with specific charge states of 77+, 78+, 79+, 80+ and 81+. Then other ions will be deflected at the bends and cause beam losses. These beam losses are a concern to the devices of transport/beam line. The absorbed dose in devices and prompt dose in the tunnel were calculated using the FLUKA code in order to estimate radiation damage of such devices located at the 90° bending section and for the radiation protection. A novel method to transport multi-charged 238U ions beam was applied in the FLUKA code by using charge distribution of 238U ions after the stripper obtained from LISE++ code. The calculated results showed that the absorbed dose in the devices is influenced by the geometrical arrangement. The maximum dose was observed at the coils of first, second, fourth and fifth quadruples placed after first dipole magnet. The integrated doses for 30 years of operation with 9.5 p μA 238U ions were about 2 MGy for those quadrupoles. In conclusion, the protection of devices particularly, quadruples would be necessary to reduce the damage to devices. Moreover, results showed that the prompt radiation penetrated within the first 60 - 120 cm of concrete.
Web-based reactive transport modeling using PFLOTRAN
NASA Astrophysics Data System (ADS)
Zhou, H.; Karra, S.; Lichtner, P. C.; Versteeg, R.; Zhang, Y.
2017-12-01
Actionable understanding of system behavior in the subsurface is required for a wide spectrum of societal and engineering needs by both commercial firms and government entities and academia. These needs include, for example, water resource management, precision agriculture, contaminant remediation, unconventional energy production, CO2 sequestration monitoring, and climate studies. Such understanding requires the ability to numerically model various coupled processes that occur across different temporal and spatial scales as well as multiple physical domains (reservoirs - overburden, surface-subsurface, groundwater-surface water, saturated-unsaturated zone). Currently, this ability is typically met through an in-house approach where computational resources, model expertise, and data for model parameterization are brought together to meet modeling needs. However, such an approach has multiple drawbacks which limit the application of high-end reactive transport codes such as the Department of Energy funded[?] PFLOTRAN code. In addition, while many end users have a need for the capabilities provided by high-end reactive transport codes, they do not have the expertise - nor the time required to obtain the expertise - to effectively use these codes. We have developed and are actively enhancing a cloud-based software platform through which diverse users are able to easily configure, execute, visualize, share, and interpret PFLOTRAN models. This platform consists of a web application and available on-demand HPC computational infrastructure. The web application consists of (1) a browser-based graphical user interface which allows users to configure models and visualize results interactively, and (2) a central server with back-end relational databases which hold configuration, data, modeling results, and Python scripts for model configuration, and (3) a HPC environment for on-demand model execution. We will discuss lessons learned in the development of this platform, the rationale for different interfaces, implementation choices, as well as the planned path forward.
NASA Astrophysics Data System (ADS)
Zamani, K.; Bombardelli, F. A.
2014-12-01
Verification of geophysics codes is imperative to avoid serious academic as well as practical consequences. In case that access to any given source code is not possible, the Method of Manufactured Solution (MMS) cannot be employed in code verification. In contrast, employing the Method of Exact Solution (MES) has several practical advantages. In this research, we first provide four new one-dimensional analytical solutions designed for code verification; these solutions are able to uncover the particular imperfections of the Advection-diffusion-reaction equation, such as nonlinear advection, diffusion or source terms, as well as non-constant coefficient equations. After that, we provide a solution of Burgers' equation in a novel setup. Proposed solutions satisfy the continuity of mass for the ambient flow, which is a crucial factor for coupled hydrodynamics-transport solvers. Then, we use the derived analytical solutions for code verification. To clarify gray-literature issues in the verification of transport codes, we designed a comprehensive test suite to uncover any imperfection in transport solvers via a hierarchical increase in the level of tests' complexity. The test suite includes hundreds of unit tests and system tests to check vis-a-vis the portions of the code. Examples for checking the suite start by testing a simple case of unidirectional advection; then, bidirectional advection and tidal flow and build up to nonlinear cases. We design tests to check nonlinearity in velocity, dispersivity and reactions. The concealing effect of scales (Peclet and Damkohler numbers) on the mesh-convergence study and appropriate remedies are also discussed. For the cases in which the appropriate benchmarks for mesh convergence study are not available, we utilize symmetry. Auxiliary subroutines for automation of the test suite and report generation are designed. All in all, the test package is not only a robust tool for code verification but it also provides comprehensive insight on the ADR solvers capabilities. Such information is essential for any rigorous computational modeling of ADR equation for surface/subsurface pollution transport. We also convey our experiences in finding several errors which were not detectable with routine verification techniques.
Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS
NASA Astrophysics Data System (ADS)
Furuta, Takuya; Sato, Tatsuhiko; Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Brown, Justin L.; Bolch, Wesley E.
2017-06-01
A new function to treat tetrahedral-mesh geometry was implemented in the particle and heavy ion transport code systems. To accelerate the computational speed in the transport process, an original algorithm was introduced to initially prepare decomposition maps for the container box of the tetrahedral-mesh geometry. The computational performance was tested by conducting radiation transport simulations of 100 MeV protons and 1 MeV photons in a water phantom represented by tetrahedral mesh. The simulation was repeated with varying number of meshes and the required computational times were then compared with those of the conventional voxel representation. Our results show that the computational costs for each boundary crossing of the region mesh are essentially equivalent for both representations. This study suggests that the tetrahedral-mesh representation offers not only a flexible description of the transport geometry but also improvement of computational efficiency for the radiation transport. Due to the adaptability of tetrahedrons in both size and shape, dosimetrically equivalent objects can be represented by tetrahedrons with a much fewer number of meshes as compared its voxelized representation. Our study additionally included dosimetric calculations using a computational human phantom. A significant acceleration of the computational speed, about 4 times, was confirmed by the adoption of a tetrahedral mesh over the traditional voxel mesh geometry.
Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS.
Furuta, Takuya; Sato, Tatsuhiko; Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Brown, Justin L; Bolch, Wesley E
2017-06-21
A new function to treat tetrahedral-mesh geometry was implemented in the particle and heavy ion transport code systems. To accelerate the computational speed in the transport process, an original algorithm was introduced to initially prepare decomposition maps for the container box of the tetrahedral-mesh geometry. The computational performance was tested by conducting radiation transport simulations of 100 MeV protons and 1 MeV photons in a water phantom represented by tetrahedral mesh. The simulation was repeated with varying number of meshes and the required computational times were then compared with those of the conventional voxel representation. Our results show that the computational costs for each boundary crossing of the region mesh are essentially equivalent for both representations. This study suggests that the tetrahedral-mesh representation offers not only a flexible description of the transport geometry but also improvement of computational efficiency for the radiation transport. Due to the adaptability of tetrahedrons in both size and shape, dosimetrically equivalent objects can be represented by tetrahedrons with a much fewer number of meshes as compared its voxelized representation. Our study additionally included dosimetric calculations using a computational human phantom. A significant acceleration of the computational speed, about 4 times, was confirmed by the adoption of a tetrahedral mesh over the traditional voxel mesh geometry.
Parallel and Portable Monte Carlo Particle Transport
NASA Astrophysics Data System (ADS)
Lee, S. R.; Cummings, J. C.; Nolen, S. D.; Keen, N. D.
1997-08-01
We have developed a multi-group, Monte Carlo neutron transport code in C++ using object-oriented methods and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and α eigenvalues of the neutron transport equation on a rectilinear computational mesh. It is portable to and runs in parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities are discussed, along with physics and performance results for several test problems on a variety of hardware, including all three Accelerated Strategic Computing Initiative (ASCI) platforms. Current parallel performance indicates the ability to compute α-eigenvalues in seconds or minutes rather than days or weeks. Current and future work on the implementation of a general transport physics framework (TPF) is also described. This TPF employs modern C++ programming techniques to provide simplified user interfaces, generic STL-style programming, and compile-time performance optimization. Physics capabilities of the TPF will be extended to include continuous energy treatments, implicit Monte Carlo algorithms, and a variety of convergence acceleration techniques such as importance combing.
Waltz, Ronald E.; Bass, Eric M.; Heidbrink, William W.; ...
2015-10-30
Recent experiments with the DIII-D tilted neutral beam injection (NBI) varying the beam energetic particle (EP) source profiles have provided strong evidence that unstable Alfven eigenmodes (AE) drive stiff EP transport at a critical EP density gradient. Here the critical gradient is identified by the local AE growth rate being equal to the local ITG/TEM growth rate at the same low toroidal mode number. The growth rates are taken from the gyrokinetic code GYRO. Simulation show that the slowing down beam-like EP distribution has a slightly lower critical gradient than the Maxwellian. The ALPHA EP density transport code, used tomore » validate the model, combines the low-n stiff EP critical density gradient AE mid-core transport with the energy independent high-n ITG/TEM density transport model controling the central core EP density profile. For the on-axis NBI heated DIII-D shot 146102, while the net loss to the edge is small, about half the birth fast ions are transported from the central core r/a < 0.5 and the central density is about half the slowing down density. Lastly, these results are in good agreement with experimental fast ion pressure profiles inferred from MSE constrained EFIT equilibria.« less
Integrated modelling framework for short pulse high energy density physics experiments
NASA Astrophysics Data System (ADS)
Sircombe, N. J.; Hughes, S. J.; Ramsay, M. G.
2016-03-01
Modelling experimental campaigns on the Orion laser at AWE, and developing a viable point-design for fast ignition (FI), calls for a multi-scale approach; a complete description of the problem would require an extensive range of physics which cannot realistically be included in a single code. For modelling the laser-plasma interaction (LPI) we need a fine mesh which can capture the dispersion of electromagnetic waves, and a kinetic model for each plasma species. In the dense material of the bulk target, away from the LPI region, collisional physics dominates. The transport of hot particles generated by the action of the laser is dependent on their slowing and stopping in the dense material and their need to draw a return current. These effects will heat the target, which in turn influences transport. On longer timescales, the hydrodynamic response of the target will begin to play a role as the pressure generated from isochoric heating begins to take effect. Recent effort at AWE [1] has focussed on the development of an integrated code suite based on: the particle in cell code EPOCH, to model LPI; the Monte-Carlo electron transport code THOR, to model the onward transport of hot electrons; and the radiation hydrodynamics code CORVUS, to model the hydrodynamic response of the target. We outline the methodology adopted, elucidate on the advantages of a robustly integrated code suite compared to a single code approach, demonstrate the integrated code suite's application to modelling the heating of buried layers on Orion, and assess the potential of such experiments for the validation of modelling capability in advance of more ambitious HEDP experiments, as a step towards a predictive modelling capability for FI.
Development of a new multi-modal Monte-Carlo radiotherapy planning system.
Kumada, H; Nakamura, T; Komeda, M; Matsumura, A
2009-07-01
A new multi-modal Monte-Carlo radiotherapy planning system (developing code: JCDS-FX) is under development at Japan Atomic Energy Agency. This system builds on fundamental technologies of JCDS applied to actual boron neutron capture therapy (BNCT) trials in JRR-4. One of features of the JCDS-FX is that PHITS has been applied to particle transport calculation. PHITS is a multi-purpose particle Monte-Carlo transport code. Hence application of PHITS enables to evaluate total doses given to a patient by a combined modality therapy. Moreover, JCDS-FX with PHITS can be used for the study of accelerator based BNCT. To verify calculation accuracy of the JCDS-FX, dose evaluations for neutron irradiation of a cylindrical water phantom and for an actual clinical trial were performed, then the results were compared with calculations by JCDS with MCNP. The verification results demonstrated that JCDS-FX is applicable to BNCT treatment planning in practical use.
SHOULD ONE USE THE RAY-BY-RAY APPROXIMATION IN CORE-COLLAPSE SUPERNOVA SIMULATIONS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skinner, M. Aaron; Burrows, Adam; Dolence, Joshua C., E-mail: burrows@astro.princeton.edu, E-mail: askinner@astro.princeton.edu, E-mail: jdolence@lanl.gov
2016-11-01
We perform the first self-consistent, time-dependent, multi-group calculations in two dimensions (2D) to address the consequences of using the ray-by-ray+ transport simplification in core-collapse supernova simulations. Such a dimensional reduction is employed by many researchers to facilitate their resource-intensive calculations. Our new code (Fornax) implements multi-D transport, and can, by zeroing out transverse flux terms, emulate the ray-by-ray+ scheme. Using the same microphysics, initial models, resolution, and code, we compare the results of simulating 12, 15, 20, and 25 M {sub ⊙} progenitor models using these two transport methods. Our findings call into question the wisdom of the pervasive usemore » of the ray-by-ray+ approach. Employing it leads to maximum post-bounce/pre-explosion shock radii that are almost universally larger by tens of kilometers than those derived using the more accurate scheme, typically leaving the post-bounce matter less bound and artificially more “explodable.” In fact, for our 25 M {sub ⊙} progenitor, the ray-by-ray+ model explodes, while the corresponding multi-D transport model does not. Therefore, in two dimensions, the combination of ray-by-ray+ with the axial sloshing hydrodynamics that is a feature of 2D supernova dynamics can result in quantitatively, and perhaps qualitatively, incorrect results.« less
Radiation exposure for manned Mars surface missions
NASA Technical Reports Server (NTRS)
Simonsen, Lisa C.; Nealy, John E.; Townsend, Lawrence W.; Wilson, John W.
1990-01-01
The Langley cosmic ray transport code and the Langley nucleon transport code (BRYNTRN) are used to quantify the transport and attenuation of galactic cosmic rays (GCR) and solar proton flares through the Martian atmosphere. Surface doses are estimated using both a low density and a high density carbon dioxide model of the atmosphere which, in the vertical direction, provides a total of 16 g/sq cm and 22 g/sq cm of protection, respectively. At the Mars surface during the solar minimum cycle, a blood-forming organ (BFO) dose equivalent of 10.5 to 12 rem/yr due to galactic cosmic ray transport and attenuation is calculated. Estimates of the BFO dose equivalents which would have been incurred from the three large solar flare events of August 1972, November 1960, and February 1956 are also calculated at the surface. Results indicate surface BFO dose equivalents of approximately 2 to 5, 5 to 7, and 8 to 10 rem per event, respectively. Doses are also estimated at altitudes up to 12 km above the Martian surface where the atmosphere will provide less total protection.
Space radiation dose estimates on the surface of Mars
NASA Technical Reports Server (NTRS)
Simonsen, Lisa C.; Nealy, John E.; Townsend, Lawrence W.; Wilson, John W.
1990-01-01
The Langley cosmic ray transport code and the Langley nucleon transport code (BRYNTRN) are used to quantify the transport and attenuation of galactic cosmic rays (GCR) and solar proton flares through the Martian atmosphere. Surface doses are estimated using both a low density and a high density carbon dioxide model of the atmosphere which, in the vertical direction, provides a total of 16 g/sq cm and 22 g/sq cm of protection, respectively. At the Mars surface during the solar minimum cycle, a blood-forming organ (BFO) dose equivalent of 10.5 to 12 rem/yr due to galactic cosmic ray transport and attenuation is calculated. Estimates of the BFO dose equivalents which would have been incurred from the three large solar flare events of August 1972, November 1960, and February 1956 are also calculated at the surface. Results indicate surface BFO dose equivalents of approximately 2 to 5, 5 to 7, and 8 to 10 rem per event, respectively. Doses are also estimated at altitudes up to 12 km above the Martian surface where the atmosphere will provide less total protection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Procassini, R.J.
1997-12-31
The fine-scale, multi-space resolution that is envisioned for accurate simulations of complex weapons systems in three spatial dimensions implies flop-rate and memory-storage requirements that will only be obtained in the near future through the use of parallel computational techniques. Since the Monte Carlo transport models in these simulations usually stress both of these computational resources, they are prime candidates for parallelization. The MONACO Monte Carlo transport package, which is currently under development at LLNL, will utilize two types of parallelism within the context of a multi-physics design code: decomposition of the spatial domain across processors (spatial parallelism) and distribution ofmore » particles in a given spatial subdomain across additional processors (particle parallelism). This implementation of the package will utilize explicit data communication between domains (message passing). Such a parallel implementation of a Monte Carlo transport model will result in non-deterministic communication patterns. The communication of particles between subdomains during a Monte Carlo time step may require a significant level of effort to achieve a high parallel efficiency.« less
Badal, Andreu; Badano, Aldo
2009-11-01
It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDATM programming model (NVIDIA Corporation, Santa Clara, CA). An outline of the new code and a sample x-ray imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.
Total reaction cross sections in CEM and MCNP6 at intermediate energies
Kerby, Leslie M.; Mashnik, Stepan G.
2015-05-14
Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less
NASA Technical Reports Server (NTRS)
Gronoff, Guillaume; Norman, Ryan B.; Mertens, Christopher J.
2014-01-01
The ability to evaluate the cosmic ray environment at Mars is of interest for future manned exploration. To support exploration, tools must be developed to accurately access the radiation environment in both free space and on planetary surfaces. The primary tool NASA uses to quantify radiation exposure behind shielding materials is the space radiation transport code, HZETRN. In order to build confidence in HZETRN, code benchmarking against Monte Carlo radiation transport codes is often used. This work compares the dose calculations at Mars by HZETRN and the Geant4 application Planetocosmics. The dose at ground and the energy deposited in the atmosphere by galactic cosmic ray protons and alpha particles has been calculated for the Curiosity landing conditions. In addition, this work has considered Solar Energetic Particle events, allowing for the comparison of varying input radiation environments. The results for protons and alpha particles show very good agreement between HZETRN and Planetocosmics.
Cove benchmark calculations using SAGUARO and FEMTRAN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eaton, R.R.; Martinez, M.J.
1986-10-01
Three small-scale, time-dependent, benchmarking calculations have been made using the finite element codes SAGUARO, to determine hydraulic head and water velocity profiles, and FEMTRAN, to predict the solute transport. Sand and hard rock porous materials were used. Time scales for the problems, which ranged from tens of hours to thousands of years, have posed no particular diffculty for the two codes. Studies have been performed to determine the effects of computational mesh, boundary conditions, velocity formulation and SAGUARO/FEMTRAN code-coupling on water and solute transport. Results showed that mesh refinement improved mass conservation. Varying the drain-tile size in COVE 1N hadmore » a weak effect on the rate at which the tile field drained. Excellent agreement with published COVE 1N data was obtained for the hydrological field and reasonable agreement for the solute-concentration predictions. The question remains whether these types of calculations can be carried out on repository-scale problems using material characteristic curves representing tuff with fractures.« less
Total reaction cross sections in CEM and MCNP6 at intermediate energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerby, Leslie M.; Mashnik, Stepan G.
Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less
Development Of A Parallel Performance Model For The THOR Neutral Particle Transport Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yessayan, Raffi; Azmy, Yousry; Schunert, Sebastian
The THOR neutral particle transport code enables simulation of complex geometries for various problems from reactor simulations to nuclear non-proliferation. It is undergoing a thorough V&V requiring computational efficiency. This has motivated various improvements including angular parallelization, outer iteration acceleration, and development of peripheral tools. For guiding future improvements to the code’s efficiency, better characterization of its parallel performance is useful. A parallel performance model (PPM) can be used to evaluate the benefits of modifications and to identify performance bottlenecks. Using INL’s Falcon HPC, the PPM development incorporates an evaluation of network communication behavior over heterogeneous links and a functionalmore » characterization of the per-cell/angle/group runtime of each major code component. After evaluating several possible sources of variability, this resulted in a communication model and a parallel portion model. The former’s accuracy is bounded by the variability of communication on Falcon while the latter has an error on the order of 1%.« less
Approximate Green's function methods for HZE transport in multilayered materials
NASA Technical Reports Server (NTRS)
Wilson, John W.; Badavi, Francis F.; Shinn, Judy L.; Costen, Robert C.
1993-01-01
A nonperturbative analytic solution of the high charge and energy (HZE) Green's function is used to implement a computer code for laboratory ion beam transport in multilayered materials. The code is established to operate on the Langley nuclear fragmentation model used in engineering applications. Computational procedures are established to generate linear energy transfer (LET) distributions for a specified ion beam and target for comparison with experimental measurements. The code was found to be highly efficient and compared well with the perturbation approximation.
14 CFR 257.6 - Effective and compliance dates.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the selling carrier is not the transporting carrier and (ii) Of the transporting carrier's identity... transportation involving a code-share arrangement of the transporting carrier's corporate name and any other name...
14 CFR 257.6 - Effective and compliance dates.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the selling carrier is not the transporting carrier and (ii) Of the transporting carrier's identity... transportation involving a code-share arrangement of the transporting carrier's corporate name and any other name...
14 CFR 257.6 - Effective and compliance dates.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the selling carrier is not the transporting carrier and (ii) Of the transporting carrier's identity... transportation involving a code-share arrangement of the transporting carrier's corporate name and any other name...
14 CFR 257.6 - Effective and compliance dates.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the selling carrier is not the transporting carrier and (ii) Of the transporting carrier's identity... transportation involving a code-share arrangement of the transporting carrier's corporate name and any other name...
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-05-17
PelePhysics is a suite of physics packages that provides functionality of use to reacting hydrodynamics CFD codes. The initial release includes an interface to reaction rate mechanism evaluation, transport coefficient evaluation, and a generalized equation of state (EOS) facility. Both generic evaluators and interfaces to code from externally available tools (Fuego for chemical rates, EGLib for transport coefficients) are provided.
NASA Astrophysics Data System (ADS)
Papior, Nick; Lorente, Nicolás; Frederiksen, Thomas; García, Alberto; Brandbyge, Mads
2017-03-01
We present novel methods implemented within the non-equilibrium Green function code (NEGF) TRANSIESTA based on density functional theory (DFT). Our flexible, next-generation DFT-NEGF code handles devices with one or multiple electrodes (Ne ≥ 1) with individual chemical potentials and electronic temperatures. We describe its novel methods for electrostatic gating, contour optimizations, and assertion of charge conservation, as well as the newly implemented algorithms for optimized and scalable matrix inversion, performance-critical pivoting, and hybrid parallelization. Additionally, a generic NEGF "post-processing" code (TBTRANS/PHTRANS) for electron and phonon transport is presented with several novelties such as Hamiltonian interpolations, Ne ≥ 1 electrode capability, bond-currents, generalized interface for user-defined tight-binding transport, transmission projection using eigenstates of a projected Hamiltonian, and fast inversion algorithms for large-scale simulations easily exceeding 106 atoms on workstation computers. The new features of both codes are demonstrated and bench-marked for relevant test systems.
Newtonian CAFE: a new ideal MHD code to study the solar atmosphere
NASA Astrophysics Data System (ADS)
González, J. J.; Guzmán, F.
2015-12-01
In this work we present a new independent code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centers on the analysis of solar phenomena within the photosphere-corona region. In special the code is capable to simulate the propagation of impulsively generated linear and non-linear MHD waves in the non-isothermal solar atmosphere. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As 3D tests we present the propagation of MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the HLLE flux formula combined with Minmod, MC and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.
Morse Monte Carlo Radiation Transport Code System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emmett, M.B.
1975-02-01
The report contains sections containing descriptions of the MORSE and PICTURE codes, input descriptions, sample problems, deviations of the physical equations and explanations of the various error messages. The MORSE code is a multipurpose neutron and gamma-ray transport Monte Carlo code. Time dependence for both shielding and criticality problems is provided. General three-dimensional geometry may be used with an albedo option available at any material surface. The PICTURE code provide aid in preparing correct input data for the combinatorial geometry package CG. It provides a printed view of arbitrary two-dimensional slices through the geometry. By inspecting these pictures one maymore » determine if the geometry specified by the input cards is indeed the desired geometry. 23 refs. (WRF)« less
NASA Astrophysics Data System (ADS)
Jara, Daniel; de Dreuzy, Jean-Raynald; Cochepin, Benoit
2017-12-01
Reactive transport modeling contributes to understand geophysical and geochemical processes in subsurface environments. Operator splitting methods have been proposed as non-intrusive coupling techniques that optimize the use of existing chemistry and transport codes. In this spirit, we propose a coupler relying on external geochemical and transport codes with appropriate operator segmentation that enables possible developments of additional splitting methods. We provide an object-oriented implementation in TReacLab developed in the MATLAB environment in a free open source frame with an accessible repository. TReacLab contains classical coupling methods, template interfaces and calling functions for two classical transport and reactive software (PHREEQC and COMSOL). It is tested on four classical benchmarks with homogeneous and heterogeneous reactions at equilibrium or kinetically-controlled. We show that full decoupling to the implementation level has a cost in terms of accuracy compared to more integrated and optimized codes. Use of non-intrusive implementations like TReacLab are still justified for coupling independent transport and chemical software at a minimal development effort but should be systematically and carefully assessed.
Solving the transport equation with quadratic finite elements: Theory and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, J.M.
1997-12-31
At the 4th Joint Conference on Computational Mathematics, the author presented a paper introducing a new quadratic finite element scheme (QFEM) for solving the transport equation. In the ensuing year the author has obtained considerable experience in the application of this method, including solution of eigenvalue problems, transmission problems, and solution of the adjoint form of the equation as well as the usual forward solution. He will present detailed results, and will also discuss other refinements of his transport codes, particularly for 3-dimensional problems on rectilinear and non-rectilinear grids.
Galactic cosmic ray transport methods and radiation quality issues
NASA Technical Reports Server (NTRS)
Townsend, L. W.; Wilson, J. W.; Cucinotta, F. A.; Shinn, J. L.
1992-01-01
An overview of galactic cosmic ray (GCR) interaction and transport methods, as implemented in the Langley Research Center GCR transport code, is presented. Representative results for solar minimum, exo-magnetospheric GCR dose equivalents in water are presented on a component by component basis for various thicknesses of aluminum shielding. The impact of proposed changes to the currently used quality factors on exposure estimates and shielding requirements are quantified. Using the cellular track model of Katz, estimates of relative biological effectiveness (RBE) for the mixed GCR radiation fields are also made.
Sato, Tatsuhiko; Watanabe, Ritsuko; Sihver, Lembit; Niita, Koji
2012-01-01
Microdosimetric quantities such as lineal energy are generally considered to be better indices than linear energy transfer (LET) for expressing the relative biological effectiveness (RBE) of high charge and energy particles. To calculate their probability densities (PD) in macroscopic matter, it is necessary to integrate microdosimetric tools such as track-structure simulation codes with macroscopic particle transport simulation codes. As an integration approach, the mathematical model for calculating the PD of microdosimetric quantities developed based on track-structure simulations was incorporated into the macroscopic particle transport simulation code PHITS (Particle and Heavy Ion Transport code System). The improved PHITS enables the PD in macroscopic matter to be calculated within a reasonable computation time, while taking their stochastic nature into account. The microdosimetric function of PHITS was applied to biological dose estimation for charged-particle therapy and risk estimation for astronauts. The former application was performed in combination with the microdosimetric kinetic model, while the latter employed the radiation quality factor expressed as a function of lineal energy. Owing to the unique features of the microdosimetric function, the improved PHITS has the potential to establish more sophisticated systems for radiological protection in space as well as for the treatment planning of charged-particle therapy.
Modification of codes NUALGAM and BREMRAD, Volume 1
NASA Technical Reports Server (NTRS)
Steyn, J. J.; Huang, R.; Firstenberg, H.
1971-01-01
The NUGAM2 code predicts forward and backward angular energy differential and integrated distributions for gamma photons and fluorescent radiation emerging from finite laminar transport media. It determines buildup and albedo data for scientific research and engineering purposes; it also predicts the emission characteristics of finite radioisotope sources. The results are shown to be in very good agreement with available published data. The code predicts data for many situations in which no published data is available in the energy range up to 5 MeV. The NUGAM3 code predicts the pulse height response of inorganic (NaI and CsI) scintillation detectors to gamma photons. Because it allows the scintillator to be clad and mounted on a photomultiplier as in the experimental or industrial application, it is a more practical and thus useful code than others previously reported. Results are in excellent agreement with published Monte Carlo and experimental data in the energy range up to 4.5 MeV.
NASA Astrophysics Data System (ADS)
Lee, Yi-Kang
2017-09-01
Nuclear decommissioning takes place in several stages due to the radioactivity in the reactor structure materials. A good estimation of the neutron activation products distributed in the reactor structure materials impacts obviously on the decommissioning planning and the low-level radioactive waste management. Continuous energy Monte-Carlo radiation transport code TRIPOLI-4 has been applied on radiation protection and shielding analyses. To enhance the TRIPOLI-4 application in nuclear decommissioning activities, both experimental and computational benchmarks are being performed. To calculate the neutron activation of the shielding and structure materials of nuclear facilities, the knowledge of 3D neutron flux map and energy spectra must be first investigated. To perform this type of neutron deep penetration calculations with the Monte Carlo transport code, variance reduction techniques are necessary in order to reduce the uncertainty of the neutron activation estimation. In this study, variance reduction options of the TRIPOLI-4 code were used on the NAIADE 1 light water shielding benchmark. This benchmark document is available from the OECD/NEA SINBAD shielding benchmark database. From this benchmark database, a simplified NAIADE 1 water shielding model was first proposed in this work in order to make the code validation easier. Determination of the fission neutron transport was performed in light water for penetration up to 50 cm for fast neutrons and up to about 180 cm for thermal neutrons. Measurement and calculation results were benchmarked. Variance reduction options and their performance were discussed and compared.
Galactic and solar radiation exposure to aircrew during a solar cycle.
Lewis, B J; Bennett, L G I; Green, A R; McCall, M J; Ellaschuk, B; Butler, A; Pierre, M
2002-01-01
An on-going investigation using a tissue-equivalent proportional counter (TEPC) has been carried out to measure the ambient dose equivalent rate of the cosmic radiation exposure of aircrew during a solar cycle. A semi-empirical model has been derived from these data to allow for the interpolation of the dose rate for any global position. The model has been extended to an altitude of up to 32 km with further measurements made on board aircraft and several balloon flights. The effects of changing solar modulation during the solar cycle are characterised by correlating the dose rate data to different solar potential models. Through integration of the dose-rate function over a great circle flight path or between given waypoints, a Predictive Code for Aircrew Radiation Exposure (PCAIRE) has been further developed for estimation of the route dose from galactic cosmic radiation exposure. This estimate is provided in units of ambient dose equivalent as well as effective dose, based on E/H x (10) scaling functions as determined from transport code calculations with LUIN and FLUKA. This experimentally based treatment has also been compared with the CARI-6 and EPCARD codes that are derived solely from theoretical transport calculations. Using TEPC measurements taken aboard the International Space Station, ground based neutron monitoring, GOES satellite data and transport code analysis, an empirical model has been further proposed for estimation of aircrew exposure during solar particle events. This model has been compared to results obtained during recent solar flare events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Guoping; Mayes, Melanie; Parker, Jack C
2010-01-01
We implemented the widely used CXTFIT code in Excel to provide flexibility and added sensitivity and uncertainty analysis functions to improve transport parameter estimation and to facilitate model discrimination for multi-tracer experiments on structured soils. Analytical solutions for one-dimensional equilibrium and nonequilibrium convection dispersion equations were coded as VBA functions so that they could be used as ordinary math functions in Excel for forward predictions. Macros with user-friendly interfaces were developed for optimization, sensitivity analysis, uncertainty analysis, error propagation, response surface calculation, and Monte Carlo analysis. As a result, any parameter with transformations (e.g., dimensionless, log-transformed, species-dependent reactions, etc.) couldmore » be estimated with uncertainty and sensitivity quantification for multiple tracer data at multiple locations and times. Prior information and observation errors could be incorporated into the weighted nonlinear least squares method with a penalty function. Users are able to change selected parameter values and view the results via embedded graphics, resulting in a flexible tool applicable to modeling transport processes and to teaching students about parameter estimation. The code was verified by comparing to a number of benchmarks with CXTFIT 2.0. It was applied to improve parameter estimation for four typical tracer experiment data sets in the literature using multi-model evaluation and comparison. Additional examples were included to illustrate the flexibilities and advantages of CXTFIT/Excel. The VBA macros were designed for general purpose and could be used for any parameter estimation/model calibration when the forward solution is implemented in Excel. A step-by-step tutorial, example Excel files and the code are provided as supplemental material.« less
NASA Technical Reports Server (NTRS)
Liu, Wei; Petrosian, Vahe; Mariska, John T.
2009-01-01
Acceleration and transport of high-energy particles and fluid dynamics of atmospheric plasma are interrelated aspects of solar flares, but for convenience and simplicity they were artificially separated in the past. We present here self consistently combined Fokker-Planck modeling of particles and hydrodynamic simulation of flare plasma. Energetic electrons are modeled with the Stanford unified code of acceleration, transport, and radiation, while plasma is modeled with the Naval Research Laboratory flux tube code. We calculated the collisional heating rate directly from the particle transport code, which is more accurate than those in previous studies based on approximate analytical solutions. We repeated the simulation of Mariska et al. with an injection of power law, downward-beamed electrons using the new heating rate. For this case, a -10% difference was found from their old result. We also used a more realistic spectrum of injected electrons provided by the stochastic acceleration model, which has a smooth transition from a quasi-thermal background at low energies to a non thermal tail at high energies. The inclusion of low-energy electrons results in relatively more heating in the corona (versus chromosphere) and thus a larger downward heat conduction flux. The interplay of electron heating, conduction, and radiative loss leads to stronger chromospheric evaporation than obtained in previous studies, which had a deficit in low-energy electrons due to an arbitrarily assumed low-energy cutoff. The energy and spatial distributions of energetic electrons and bremsstrahlung photons bear signatures of the changing density distribution caused by chromospheric evaporation. In particular, the density jump at the evaporation front gives rise to enhanced emission, which, in principle, can be imaged by X-ray telescopes. This model can be applied to investigate a variety of high-energy processes in solar, space, and astrophysical plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Christopher J.; Stone, James M.; Gammie, Charles F.
2016-08-01
We present a new general relativistic magnetohydrodynamics (GRMHD) code integrated into the Athena++ framework. Improving upon the techniques used in most GRMHD codes, ours allows the use of advanced, less diffusive Riemann solvers, in particular HLLC and HLLD. We also employ a staggered-mesh constrained transport algorithm suited for curvilinear coordinate systems in order to maintain the divergence-free constraint of the magnetic field. Our code is designed to work with arbitrary stationary spacetimes in one, two, or three dimensions, and we demonstrate its reliability through a number of tests. We also report on its promising performance and scalability.
Common Errors in the Calculation of Aircrew Doses from Cosmic Rays
NASA Astrophysics Data System (ADS)
O'Brien, Keran; Felsberger, Ernst; Kindl, Peter
2010-05-01
Radiation doses to air crew are calculated using flight codes. Flight codes integrate dose rates over the aircraft flight path, which were calculated by transport codes or obtained by measurements from take off at a specific airport to landing at another. The dose rates are stored in various ways, such as by latitude and longitude, or in terms of the geomagnetic vertical cutoff. The transport codes are generally quite satisfactory, but the treatment of the boundary conditions is frequently incorrect. Both the treatment of solar modulation and of the effect of the geomagnetic field are often defective, leading to the systematic overestimate of the crew doses.
49 CFR 178.905 - Large Packaging identification codes.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Large Packaging identification codes. 178.905... FOR PACKAGINGS Large Packagings Standards § 178.905 Large Packaging identification codes. Large packaging code designations consist of: two numerals specified in paragraph (a) of this section; followed by...
PFLOTRAN: Reactive Flow & Transport Code for Use on Laptops to Leadership-Class Supercomputers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan
PFLOTRAN, a next-generation reactive flow and transport code for modeling subsurface processes, has been designed from the ground up to run efficiently on machines ranging from leadership-class supercomputers to laptops. Based on an object-oriented design, the code is easily extensible to incorporate additional processes. It can interface seamlessly with Fortran 9X, C and C++ codes. Domain decomposition parallelism is employed, with the PETSc parallel framework used to manage parallel solvers, data structures and communication. Features of the code include a modular input file, implementation of high-performance I/O using parallel HDF5, ability to perform multiple realization simulations with multiple processors permore » realization in a seamless manner, and multiple modes for multiphase flow and multicomponent geochemical transport. Chemical reactions currently implemented in the code include homogeneous aqueous complexing reactions and heterogeneous mineral precipitation/dissolution, ion exchange, surface complexation and a multirate kinetic sorption model. PFLOTRAN has demonstrated petascale performance using 2{sup 17} processor cores with over 2 billion degrees of freedom. Accomplishments achieved to date include applications to the Hanford 300 Area and modeling CO{sub 2} sequestration in deep geologic formations.« less
Grenier, Christophe; Anbergen, Hauke; Bense, Victor; ...
2018-02-26
In high-elevation, boreal and arctic regions, hydrological processes and associated water bodies can be strongly influenced by the distribution of permafrost. Recent field and modeling studies indicate that a fully-coupled multidimensional thermo-hydraulic approach is required to accurately model the evolution of these permafrost-impacted landscapes and groundwater systems. However, the relatively new and complex numerical codes being developed for coupled non-linear freeze-thaw systems require verification. Here in this paper, this issue is addressed by means of an intercomparison of thirteen numerical codes for two-dimensional test cases with several performance metrics (PMs). These codes comprise a wide range of numerical approaches, spatialmore » and temporal discretization strategies, and computational efficiencies. Results suggest that the codes provide robust results for the test cases considered and that minor discrepancies are explained by computational precision. However, larger discrepancies are observed for some PMs resulting from differences in the governing equations, discretization issues, or in the freezing curve used by some codes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grenier, Christophe; Anbergen, Hauke; Bense, Victor
In high-elevation, boreal and arctic regions, hydrological processes and associated water bodies can be strongly influenced by the distribution of permafrost. Recent field and modeling studies indicate that a fully-coupled multidimensional thermo-hydraulic approach is required to accurately model the evolution of these permafrost-impacted landscapes and groundwater systems. However, the relatively new and complex numerical codes being developed for coupled non-linear freeze-thaw systems require verification. Here in this paper, this issue is addressed by means of an intercomparison of thirteen numerical codes for two-dimensional test cases with several performance metrics (PMs). These codes comprise a wide range of numerical approaches, spatialmore » and temporal discretization strategies, and computational efficiencies. Results suggest that the codes provide robust results for the test cases considered and that minor discrepancies are explained by computational precision. However, larger discrepancies are observed for some PMs resulting from differences in the governing equations, discretization issues, or in the freezing curve used by some codes.« less
Environmental, Transient, Three-Dimensional, Hydrothermal, Mass Transport Code - FLESCOT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onishi, Yasuo; Bao, Jie; Glass, Kevin A.
The purpose of the project was to modify and apply the transient, three-dimensional FLESCOT code to be able to effectively simulate cesium behavior in Fukushima lakes/dam reservoirs, river mouths, and coastal areas. The ultimate objective of the FLESCOT simulation is to predict future changes of cesium accumulation in Fukushima area reservoirs and costal water. These evaluation results will assist ongoing and future environmental remediation activities and policies in a systematic and comprehensive manner.
Synthetic neutron camera and spectrometer in JET based on AFSI-ASCOT simulations
NASA Astrophysics Data System (ADS)
Sirén, P.; Varje, J.; Weisen, H.; Koskela, T.; contributors, JET
2017-09-01
The ASCOT Fusion Source Integrator (AFSI) has been used to calculate neutron production rates and spectra corresponding to the JET 19-channel neutron camera (KN3) and the time-of-flight spectrometer (TOFOR) as ideal diagnostics, without detector-related effects. AFSI calculates fusion product distributions in 4D, based on Monte Carlo integration from arbitrary reactant distribution functions. The distribution functions were calculated by the ASCOT Monte Carlo particle orbit following code for thermal, NBI and ICRH particle reactions. Fusion cross-sections were defined based on the Bosch-Hale model and both DD and DT reactions have been included. Neutrons generated by AFSI-ASCOT simulations have already been applied as a neutron source of the Serpent neutron transport code in ITER studies. Additionally, AFSI has been selected to be a main tool as the fusion product generator in the complete analysis calculation chain: ASCOT - AFSI - SERPENT (neutron and gamma transport Monte Carlo code) - APROS (system and power plant modelling code), which encompasses the plasma as an energy source, heat deposition in plant structures as well as cooling and balance-of-plant in DEMO applications and other reactor relevant analyses. This conference paper presents the first results and validation of the AFSI DD fusion model for different auxiliary heating scenarios (NBI, ICRH) with very different fast particle distribution functions. Both calculated quantities (production rates and spectra) have been compared with experimental data from KN3 and synthetic spectrometer data from ControlRoom code. No unexplained differences have been observed. In future work, AFSI will be extended for synthetic gamma diagnostics and additionally, AFSI will be used as part of the neutron transport calculation chain to model real diagnostics instead of ideal synthetic diagnostics for quantitative benchmarking.
Wangerin, K; Culbertson, C N; Jevremovic, T
2005-08-01
The goal of this study was to evaluate the COG Monte Carlo radiation transport code, developed and tested by Lawrence Livermore National Laboratory, for gadolinium neutron capture therapy (GdNCT) related modeling. The validity of COG NCT model has been established for this model, and here the calculation was extended to analyze the effect of various gadolinium concentrations on dose distribution and cell-kill effect of the GdNCT modality and to determine the optimum therapeutic conditions for treating brain cancers. The computational results were compared with the widely used MCNP code. The differences between the COG and MCNP predictions were generally small and suggest that the COG code can be applied to similar research problems in NCT. Results for this study also showed that a concentration of 100 ppm gadolinium in the tumor was most beneficial when using an epithermal neutron beam.
Equivalent plate modeling for conceptual design of aircraft wing structures
NASA Technical Reports Server (NTRS)
Giles, Gary L.
1995-01-01
This paper describes an analysis method that generates conceptual-level design data for aircraft wing structures. A key requirement is that this data must be produced in a timely manner so that is can be used effectively by multidisciplinary synthesis codes for performing systems studies. Such a capability is being developed by enhancing an equivalent plate structural analysis computer code to provide a more comprehensive, robust and user-friendly analysis tool. The paper focuses on recent enhancements to the Equivalent Laminated Plate Solution (ELAPS) analysis code that significantly expands the modeling capability and improves the accuracy of results. Modeling additions include use of out-of-plane plate segments for representing winglets and advanced wing concepts such as C-wings along with a new capability for modeling the internal rib and spar structure. The accuracy of calculated results is improved by including transverse shear effects in the formulation and by using multiple sets of assumed displacement functions in the analysis. Typical results are presented to demonstrate these new features. Example configurations include a C-wing transport aircraft, a representative fighter wing and a blended-wing-body transport. These applications are intended to demonstrate and quantify the benefits of using equivalent plate modeling of wing structures during conceptual design.
Jaeger, Bregje; Bosch, Annet M
2016-07-01
Riboflavin (vitamin B2) is absorbed in the small intestine by the human riboflavin transporters RFVT1 and RFVT3. A third riboflavin transporter (RFVT2) is expressed in the brain. In 2010 it was demonstrated that mutations in the riboflavin transporter genes SLC52A2 (coding for RFVT2) and SLC52A3 (coding for RFVT3) cause a neurodegenerative disorder formerly known as Brown-Vialetto-Van Laere (BVVL) syndrome, now renamed to riboflavin transporter deficiency. Five years after the diagnosis of the first patient we performed a review of the literature to study the presentation, treatment and outcome of patients with a molecularly confirmed diagnosis of a riboflavin transporter deficiency. A search was performed in Medline, Pubmed using the search terms 'Brown-Vialetto-Van Laere syndrome' and 'riboflavin transporter' and articles were screened for case reports of patients with a molecular diagnosis of a riboflavin transporter deficiency. Reports on a total of 70 patients with a molecular diagnosis of a RFVT2 or RTVT3 deficiency were retrieved. The riboflavin transporter deficiencies present with weakness, cranial nerve deficits including hearing loss, sensory symptoms including sensory ataxia, feeding difficulties and respiratory difficulties which are caused by a sensorimotor axonal neuropathy and cranial neuropathy. Biochemical abnormalities may be absent and the diagnosis can only be made or rejected by molecular analysis of all genes. Treatment with oral supplementation of riboflavin is lifesaving. Therefore, if a riboflavin transporter deficiency is suspected, treatment must be started immediately without first awaiting the results of molecular diagnostics.
Status and Plans for the TRANSP Interpretive and Predictive Simulation Code
NASA Astrophysics Data System (ADS)
Kaye, Stanley; Andre, Robert; Marina, Gorelenkova; Yuan, Xingqui; Hawryluk, Richard; Jardin, Steven; Poli, Francesca
2015-11-01
TRANSP is an integrated interpretive and predictive transport analysis tool that incorporates state of the art heating/current drive sources and transport models. The treatments and transport solvers are becoming increasingly sophisticated and comprehensive. For instance, the ISOLVER component provides a free boundary equilibrium solution, while the PT_SOLVER transport solver is especially suited for stiff transport models such as TGLF. TRANSP also incorporates such source models as NUBEAM for neutral beam injection, GENRAY, TORAY, TORBEAM, TORIC and CQL3D for ICRH, LHCD, ECH and HHFW. The implementation of selected components makes efficient use of MPI for speed up of code calculations. TRANSP has a wide international user-base, and it is run on the FusionGrid to allow for timely support and quick turnaround by the PPPL Computational Plasma Physics Group. It is being used as a basis for both analysis and development of control algorithms and discharge operational scenarios, including simulation of ITER plasmas. This poster will describe present uses of the code worldwide, as well as plans for upgrading the physics modules and code framework. Progress on implementing TRANSP as a component in the ITER IMAS will also be described. This research was supported by the U.S. Department of Energy under contracts DE-AC02-09CH11466.
Cosmic-ray propagation with DRAGON2: I. numerical solver and astrophysical ingredients
NASA Astrophysics Data System (ADS)
Evoli, Carmelo; Gaggero, Daniele; Vittino, Andrea; Di Bernardo, Giuseppe; Di Mauro, Mattia; Ligorini, Arianna; Ullio, Piero; Grasso, Dario
2017-02-01
We present version 2 of the DRAGON code designed for computing realistic predictions of the CR densities in the Galaxy. The code numerically solves the interstellar CR transport equation (including inhomogeneous and anisotropic diffusion, either in space and momentum, advective transport and energy losses), under realistic conditions. The new version includes an updated numerical solver and several models for the astrophysical ingredients involved in the transport equation. Improvements in the accuracy of the numerical solution are proved against analytical solutions and in reference diffusion scenarios. The novel features implemented in the code allow to simulate the diverse scenarios proposed to reproduce the most recent measurements of local and diffuse CR fluxes, going beyond the limitations of the homogeneous galactic transport paradigm. To this end, several applications using DRAGON2 are presented as well. This new version facilitates the users to include their own physical models by means of a modular C++ structure.
FLUKA: A Multi-Particle Transport Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrari, A.; Sala, P.R.; /CERN /INFN, Milan
2005-12-14
This report describes the 2005 version of the Fluka particle transport code. The first part introduces the basic notions, describes the modular structure of the system, and contains an installation and beginner's guide. The second part complements this initial information with details about the various components of Fluka and how to use them. It concludes with a detailed history and bibliography.
Adapting HYDRUS-1D to simulate overland flow and reactive transport during sheet flow deviations
USDA-ARS?s Scientific Manuscript database
The HYDRUS-1D code is a popular numerical model for solving the Richards equation for variably-saturated water flow and solute transport in porous media. This code was adapted to solve rather than the Richards equation for subsurface flow the diffusion wave equation for overland flow at the soil sur...
Verification of TEMPEST with neoclassical transport theory
NASA Astrophysics Data System (ADS)
Xiong, Z.; Cohen, B. I.; Cohen, R. H.; Dorr, M.; Hittinger, J.; Kerbel, G.; Nevins, W. M.; Rognlien, T.; Umansky, M.; Xu, X.
2006-10-01
TEMPEST is an edge gyro-kinetic continuum code developed to study boundary plasma transport over the region extending from the H-mode pedestal across the separatrix to the divertor plates. For benchmark purposes, we present results from the 4D (2r,2v) TEMPEST for both steady-state transport and time-dependent Geodesic Acoustic Modes (GAMs). We focus on an annular region inside the separatrix of a circular cross-section tokamak where analytical and numerical results are available. The parallel flow velocity and radial particle flux are obtained for different collisional regimes and compared with previous neoclassical results. The effect of radial electric field and the transition to steep edge gradients is emphasized. The dynamical response of GAMs is also shown and compared to recent theory.
Comparison of Stopping Power and Range Databases for Radiation Transport Study
NASA Technical Reports Server (NTRS)
Tai, H.; Bichsel, Hans; Wilson, John W.; Shinn, Judy L.; Cucinotta, Francis A.; Badavi, Francis F.
1997-01-01
The codes used to calculate stopping power and range for the space radiation shielding program at the Langley Research Center are based on the work of Ziegler but with modifications. As more experience is gained from experiments at heavy ion accelerators, prudence dictates a reevaluation of the current databases. Numerical values of stopping power and range calculated from four different codes currently in use are presented for selected ions and materials in the energy domain suitable for space radiation transport. This study of radiation transport has found that for most collision systems and for intermediate particle energies, agreement is less than 1 percent, in general, among all the codes. However, greater discrepancies are seen for heavy systems, especially at low particle energies.
Pölz, Stefan; Laubersheimer, Sven; Eberhardt, Jakob S; Harrendorf, Marco A; Keck, Thomas; Benzler, Andreas; Breustedt, Bastian
2013-08-21
The basic idea of Voxel2MCNP is to provide a framework supporting users in modeling radiation transport scenarios using voxel phantoms and other geometric models, generating corresponding input for the Monte Carlo code MCNPX, and evaluating simulation output. Applications at Karlsruhe Institute of Technology are primarily whole and partial body counter calibration and calculation of dose conversion coefficients. A new generic data model describing data related to radiation transport, including phantom and detector geometries and their properties, sources, tallies and materials, has been developed. It is modular and generally independent of the targeted Monte Carlo code. The data model has been implemented as an XML-based file format to facilitate data exchange, and integrated with Voxel2MCNP to provide a common interface for modeling, visualization, and evaluation of data. Also, extensions to allow compatibility with several file formats, such as ENSDF for nuclear structure properties and radioactive decay data, SimpleGeo for solid geometry modeling, ImageJ for voxel lattices, and MCNPX's MCTAL for simulation results have been added. The framework is presented and discussed in this paper and example workflows for body counter calibration and calculation of dose conversion coefficients is given to illustrate its application.
Stochastic simulation of uranium migration at the Hanford 300 Area.
Hammond, Glenn E; Lichtner, Peter C; Rockhold, Mark L
2011-03-01
This work focuses on the quantification of groundwater flow and subsequent U(VI) transport uncertainty due to heterogeneity in the sediment permeability at the Hanford 300 Area. U(VI) migration at the site is simulated with multiple realizations of stochastically-generated high resolution permeability fields and comparisons are made of cumulative water and U(VI) flux to the Columbia River. The massively parallel reactive flow and transport code PFLOTRAN is employed utilizing 40,960 processor cores on DOE's petascale Jaguar supercomputer to simultaneously execute 10 transient, variably-saturated groundwater flow and U(VI) transport simulations within 3D heterogeneous permeability fields using the code's multi-realization simulation capability. Simulation results demonstrate that the cumulative U(VI) flux to the Columbia River is less responsive to fine scale heterogeneity in permeability and more sensitive to the distribution of permeability within the river hyporheic zone and mean permeability of larger-scale geologic structures at the site. Copyright © 2010 Elsevier B.V. All rights reserved.
Risk assessment during transport of radioactive materials through the Suez Canal
NASA Astrophysics Data System (ADS)
Sabek, M. G.; El-Shinawy, R. M. K.; Gomaa, M.
1997-03-01
In this paper a study for risk assessment of the impact of transporting radioactive materials, during the period 1986-1992, through the Suez Canal of Egypt is given. The code RADTRAN-IV was used for this study. The results of the code, for a normal case, show that the transportation of low activity materials such as uranium (U 3O 8) represent the main items that contribute significantly to the collective dose within the Suez Canal area (Port-Said, Ismailia and Suez). The values of the annual collective dose due to transportation of all radionuclide materials was found to be at a maximum in Suez town and is equal to 5.04 × 10 -8 Man-Sv for the whole populations. If we only consider the workder at the harbour (estimated to be 50 persons), the value of the annual collective dose is about 3.33 × 10 -4 Man-Sv. These values are less than the exemption value of 1 Man-Sv recommended by the IAEA. For the accident case, the following pathways are considered by the code: ground-shine, direct inhalation, inhalation of resuspended material and cloud-shine. The total values of the estimated risks for each radionuclide material are presented in table form and, in addition, health effects (genetic effects, GE, and latent cancer fatality), LCF) are discussed. The calculated values of the radiological risks are very low for the three towns, showing that no radiation-induced early deaths are to be expected.
Anisn-Dort Neutron-Gamma Flux Intercomparison Exercise for a Simple Testing Model
NASA Astrophysics Data System (ADS)
Boehmer, B.; Konheiser, J.; Borodkin, G.; Brodkin, E.; Egorov, A.; Kozhevnikov, A.; Zaritsky, S.; Manturov, G.; Voloschenko, A.
2003-06-01
The ability of transport codes ANISN, DORT, ROZ-6, MCNP and TRAMO, as well as nuclear data libraries BUGLE-96, ABBN-93, VITAMIN-B6 and ENDF/B-6 to deliver consistent gamma and neutron flux results was tested in the calculation of a one-dimensional cylindrical model consisting of a homogeneous core and an outer zone with a single material. Model variants with H2O, Fe, Cr and Ni in the outer zones were investigated. The results are compared with MCNP-ENDF/B-6 results. Discrepancies are discussed. The specified test model is proposed as a computational benchmark for testing calculation codes and data libraries.
Minnesota Department of Transportation Research Services : 2009 annual report.
DOT National Transportation Integrated Search
2010-01-01
The purpose of this report is to meet the requirements set forth by the Code of Federal Regulations, : Part 420Planning and Research Program Administration420.117 2(e): : Suitable reports that document the results of activities performed wit...
Arabaci, Murat; Djordjevic, Ivan B; Saunders, Ross; Marcoccia, Roberto M
2010-02-01
In order to achieve high-speed transmission over optical transport networks (OTNs) and maximize its throughput, we propose using a rate-adaptive polarization-multiplexed coded multilevel modulation with coherent detection based on component non-binary quasi-cyclic (QC) LDPC codes. Compared to prior-art bit-interleaved LDPC-coded modulation (BI-LDPC-CM) scheme, the proposed non-binary LDPC-coded modulation (NB-LDPC-CM) scheme not only reduces latency due to symbol- instead of bit-level processing but also provides either impressive reduction in computational complexity or striking improvements in coding gain depending on the constellation size. As the paper presents, compared to its prior-art binary counterpart, the proposed NB-LDPC-CM scheme addresses the needs of future OTNs, which are achieving the target BER performance and providing maximum possible throughput both over the entire lifetime of the OTN, better.
TDA : Transportation Development Act : statutes and California codes of regulations.
DOT National Transportation Integrated Search
2009-03-01
The Mills-Alquist-Deddeh Act (SB 325) was enacted by the California Legislature to improve : existing public transportation services and encourage regional transportation coordination. : Known as the Transportation Development Act (TDA) of 1971, this...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, T.D. Jr.
1996-05-01
The Monte Carlo Model System (MCMS) for the Washington State University (WSU) Radiation Center provides a means through which core criticality and power distributions can be calculated, as well as providing a method for neutron and photon transport necessary for BNCT epithermal neutron beam design. The computational code used in this Model System is MCNP4A. The geometric capability of this Monte Carlo code allows the WSU system to be modeled very accurately. A working knowledge of the MCNP4A neutron transport code increases the flexibility of the Model System and is recommended, however, the eigenvalue/power density problems can be run withmore » little direct knowledge of MCNP4A. Neutron and photon particle transport require more experience with the MCNP4A code. The Model System consists of two coupled subsystems; the Core Analysis and Source Plane Generator Model (CASP), and the BeamPort Shell Particle Transport Model (BSPT). The CASP Model incorporates the S({alpha}, {beta}) thermal treatment, and is run as a criticality problem yielding, the system eigenvalue (k{sub eff}), the core power distribution, and an implicit surface source for subsequent particle transport in the BSPT Model. The BSPT Model uses the source plane generated by a CASP run to transport particles through the thermal column beamport. The user can create filter arrangements in the beamport and then calculate characteristics necessary for assessing the BNCT potential of the given filter want. Examples of the characteristics to be calculated are: neutron fluxes, neutron currents, fast neutron KERMAs and gamma KERMAs. The MCMS is a useful tool for the WSU system. Those unfamiliar with the MCNP4A code can use the MCMS transparently for core analysis, while more experienced users will find the particle transport capabilities very powerful for BNCT filter design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsdell, J.V. Jr.; Simonen, C.A.; Burk, K.W.
1994-02-01
The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses that individuals may have received from operations at the Hanford Site since 1944. This report deals specifically with the atmospheric transport model, Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). RATCHET is a major rework of the MESOILT2 model used in the first phase of the HEDR Project; only the bookkeeping framework escaped major changes. Changes to the code include (1) significant changes in the representation of atmospheric processes and (2) incorporation of Monte Carlo methods for representing uncertainty in input data, model parameters,more » and coefficients. To a large extent, the revisions to the model are based on recommendations of a peer working group that met in March 1991. Technical bases for other portions of the atmospheric transport model are addressed in two other documents. This report has three major sections: a description of the model, a user`s guide, and a programmer`s guide. These sections discuss RATCHET from three different perspectives. The first provides a technical description of the code with emphasis on details such as the representation of the model domain, the data required by the model, and the equations used to make the model calculations. The technical description is followed by a user`s guide to the model with emphasis on running the code. The user`s guide contains information about the model input and output. The third section is a programmer`s guide to the code. It discusses the hardware and software required to run the code. The programmer`s guide also discusses program structure and each of the program elements.« less
Minerva: Cylindrical coordinate extension for Athena
NASA Astrophysics Data System (ADS)
Skinner, M. Aaron; Ostriker, Eve C.
2013-02-01
Minerva is a cylindrical coordinate extension of the Athena astrophysical MHD code of Stone, Gardiner, Teuben, and Hawley. The extension follows the approach of Athena's original developers and has been designed to alter the existing Cartesian-coordinates code as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport (CT), a central feature of the Athena algorithm, while making use of previously implemented code modules such as the Riemann solvers. Angular momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully.
ATLAS - A new Lagrangian transport and mixing model with detailed stratospheric chemistry
NASA Astrophysics Data System (ADS)
Wohltmann, I.; Rex, M.; Lehmann, R.
2009-04-01
We present a new global Chemical Transport Model (CTM) with full stratospheric chemistry and Lagrangian transport and mixing called ATLAS. Lagrangian models have some crucial advantages over Eulerian grid-box based models, like no numerical diffusion, no limitation of the time step of the model by the CFL criterion, conservation of mixing ratios by design and easy parallelization of code. The transport module is based on a trajectory code developed at the Alfred Wegener Institute. The horizontal and vertical resolution, the vertical coordinate system (pressure, potential temperature, hybrid coordinate) and the time step of the model are flexible, so that the model can be used both for process studies and long-time runs over several decades. Mixing of the Lagrangian air parcels is parameterized based on the local shear and strain of the flow with a method similar to that used in the CLaMS model, but with some modifications like a triangulation that introduces no vertical layers. The stratospheric chemistry module was developed at the Institute and includes 49 species and 170 reactions and a detailed treatment of heterogenous chemistry on polar stratospheric clouds. We present an overview over the model architecture, the transport and mixing concept and some validation results. Comparison of model results with tracer data from flights of the ER2 aircraft in the stratospheric polar vortex in 1999/2000 which are able to resolve fine tracer filaments show that excellent agreement with observed tracer structures can be achieved with a suitable mixing parameterization.
Plasma Heating Simulation in the VASIMR System
NASA Technical Reports Server (NTRS)
Ilin, Andrew V.; ChangDiaz, Franklin R.; Squire, Jared P.; Carter, Mark D.
2005-01-01
The paper describes the recent development in the simulation of the ion-cyclotron acceleration of the plasma in the VASIMR experiment. The modeling is done using an improved EMIR code for RF field calculation together with particle trajectory code for plasma transport calculat ion. The simulation results correlate with experimental data on the p lasma loading and predict higher ICRH performance for a higher density plasma target. These simulations assist in optimizing the ICRF anten na so as to achieve higher VASIMR efficiency.
Structural mechanics simulations
NASA Technical Reports Server (NTRS)
Biffle, Johnny H.
1992-01-01
Sandia National Laboratory has a very broad structural capability. Work has been performed in support of reentry vehicles, nuclear reactor safety, weapons systems and components, nuclear waste transport, strategic petroleum reserve, nuclear waste storage, wind and solar energy, drilling technology, and submarine programs. The analysis environment contains both commercial and internally developed software. Included are mesh generation capabilities, structural simulation codes, and visual codes for examining simulation results. To effectively simulate a wide variety of physical phenomena, a large number of constitutive models have been developed.
Simulation of the hybrid and steady state advanced operating modes in ITER
NASA Astrophysics Data System (ADS)
Kessel, C. E.; Giruzzi, G.; Sips, A. C. C.; Budny, R. V.; Artaud, J. F.; Basiuk, V.; Imbeaux, F.; Joffrin, E.; Schneider, M.; Murakami, M.; Luce, T.; St. John, Holger; Oikawa, T.; Hayashi, N.; Takizuka, T.; Ozeki, T.; Na, Y.-S.; Park, J. M.; Garcia, J.; Tucillo, A. A.
2007-09-01
Integrated simulations are performed to establish a physics basis, in conjunction with present tokamak experiments, for the operating modes in the International Thermonuclear Experimental Reactor (ITER). Simulations of the hybrid mode are done using both fixed and free-boundary 1.5D transport evolution codes including CRONOS, ONETWO, TSC/TRANSP, TOPICS and ASTRA. The hybrid operating mode is simulated using the GLF23 and CDBM05 energy transport models. The injected powers are limited to the negative ion neutral beam, ion cyclotron and electron cyclotron heating systems. Several plasma parameters and source parameters are specified for the hybrid cases to provide a comparison of 1.5D core transport modelling assumptions, source physics modelling assumptions, as well as numerous peripheral physics modelling. Initial results indicate that very strict guidelines will need to be imposed on the application of GLF23, for example, to make useful comparisons. Some of the variations among the simulations are due to source models which vary widely among the codes used. In addition, there are a number of peripheral physics models that should be examined, some of which include fusion power production, bootstrap current, treatment of fast particles and treatment of impurities. The hybrid simulations project to fusion gains of 5.6-8.3, βN values of 2.1-2.6 and fusion powers ranging from 350 to 500 MW, under the assumptions outlined in section 3. Simulations of the steady state operating mode are done with the same 1.5D transport evolution codes cited above, except the ASTRA code. In these cases the energy transport model is more difficult to prescribe, so that energy confinement models will range from theory based to empirically based. The injected powers include the same sources as used for the hybrid with the possible addition of lower hybrid. The simulations of the steady state mode project to fusion gains of 3.5-7, βN values of 2.3-3.0 and fusion powers of 290 to 415 MW, under the assumptions described in section 4. These simulations will be presented and compared with particular focus on the resulting temperature profiles, source profiles and peripheral physics profiles. The steady state simulations are at an early stage and are focused on developing a range of safety factor profiles with 100% non-inductive current.
Solar Proton Transport within an ICRU Sphere Surrounded by a Complex Shield: Combinatorial Geometry
NASA Technical Reports Server (NTRS)
Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.
2015-01-01
The 3DHZETRN code, with improved neutron and light ion (Z (is) less than 2) transport procedures, was recently developed and compared to Monte Carlo (MC) simulations using simplified spherical geometries. It was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in general combinatorial geometry. A more complex shielding structure with internal parts surrounding a tissue sphere is considered and compared against MC simulations. It is shown that even in the more complex geometry, 3DHZETRN agrees well with the MC codes and maintains a high degree of computational efficiency.
NASA Astrophysics Data System (ADS)
Homma, Yuto; Moriwaki, Hiroyuki; Ohki, Shigeo; Ikeda, Kazumi
2014-06-01
This paper deals with verification of three dimensional triangular prismatic discrete ordinates transport calculation code ENSEMBLE-TRIZ by comparison with multi-group Monte Carlo calculation code GMVP in a large fast breeder reactor. The reactor is a 750 MWe electric power sodium cooled reactor. Nuclear characteristics are calculated at beginning of cycle of an initial core and at beginning and end of cycle of equilibrium core. According to the calculations, the differences between the two methodologies are smaller than 0.0002 Δk in the multi-plication factor, relatively about 1% in the control rod reactivity, and 1% in the sodium void reactivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehin, Jess C; Godfrey, Andrew T; Evans, Thomas M
The Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing a collection of methods and software products known as VERA, the Virtual Environment for Reactor Applications, including a core simulation capability called VERA-CS. A key milestone for this endeavor is to validate VERA against measurements from operating nuclear power reactors. The first step in validation against plant data is to determine the ability of VERA to accurately simulate the initial startup physics tests for Watts Bar Nuclear Power Station, Unit 1 (WBN1) cycle 1. VERA-CS calculations were performed with the Insilico code developed at ORNL using cross sectionmore » processing from the SCALE system and the transport capabilities within the Denovo transport code using the SPN method. The calculations were performed with ENDF/B-VII.0 cross sections in 252 groups (collapsed to 23 groups for the 3D transport solution). The key results of the comparison of calculations with measurements include initial criticality, control rod worth critical configurations, control rod worth, differential boron worth, and isothermal temperature reactivity coefficient (ITC). The VERA results for these parameters show good agreement with measurements, with the exception of the ITC, which requires additional investigation. Results are also compared to those obtained with Monte Carlo methods and a current industry core simulator.« less
An Improved Neutron Transport Algorithm for Space Radiation
NASA Technical Reports Server (NTRS)
Heinbockel, John H.; Clowdsley, Martha S.; Wilson, John W.
2000-01-01
A low-energy neutron transport algorithm for use in space radiation protection is developed. The algorithm is based upon a multigroup analysis of the straight-ahead Boltzmann equation by using a mean value theorem for integrals. This analysis is accomplished by solving a realistic but simplified neutron transport test problem. The test problem is analyzed by using numerical and analytical procedures to obtain an accurate solution within specified error bounds. Results from the test problem are then used for determining mean values associated with rescattering terms that are associated with a multigroup solution of the straight-ahead Boltzmann equation. The algorithm is then coupled to the Langley HZETRN code through the evaporation source term. Evaluation of the neutron fluence generated by the solar particle event of February 23, 1956, for a water and an aluminum-water shield-target configuration is then compared with LAHET and MCNPX Monte Carlo code calculations for the same shield-target configuration. The algorithm developed showed a great improvement in results over the unmodified HZETRN solution. In addition, a two-directional solution of the evaporation source showed even further improvement of the fluence near the front of the water target where diffusion from the front surface is important.
NASA Technical Reports Server (NTRS)
Lavelle, Tom
2003-01-01
The objective is to increase the usability of the current NPSS code/architecture by incorporating an advanced space transportation propulsion system capability into the existing NPSS code and begin defining advanced capabilities for NPSS and provide an enhancement for the NPSS code/architecture.
Haack, Tobias B; Makowski, Christine; Yao, Yoshiaki; Graf, Elisabeth; Hempel, Maja; Wieland, Thomas; Tauer, Ulrike; Ahting, Uwe; Mayr, Johannes A; Freisinger, Peter; Yoshimatsu, Hiroki; Inui, Ken; Strom, Tim M; Meitinger, Thomas; Yonezawa, Atsushi; Prokisch, Holger
2012-11-01
Brown-Vialetto-Van Laere syndrome (BVVLS [MIM 211530]) is a rare neurological disorder characterized by infancy onset sensorineural deafness and ponto-bulbar palsy. Mutations in SLC52A3 (formerly C20orf54), coding for riboflavin transporter 2 (hRFT2), have been identified as the molecular genetic correlate in several individuals with BVVLS. Exome sequencing of just one single case revealed that compound heterozygosity for two pathogenic mutations in the SLC52A2 gene coding for riboflavin transporter 3 (hRFT3), another member of the riboflavin transporter family, is also associated with BVVLS. Overexpression studies confirmed that the gene products of both mutant alleles have reduced riboflavin transport activities. While mutations in SLC52A3 cause decreased plasma riboflavin levels, concordant with a role of SLC52A3 in riboflavin uptake from food, the SLC52A2-mutant individual had normal plasma riboflavin concentrations, a finding in line with a postulated function of SLC52A2 in riboflavin uptake from blood into target cells. Our results contribute to the understanding of human riboflavin metabolism and underscore its role in the pathogenesis of BVVLS, thereby providing a rational basis for a high-dose riboflavin treatment.
30 CFR 206.56 - Transportation allowances-general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... oil has been determined under § 206.52 or § 206.53 of this subpart at a point (e.g., sales point or... sales type code may not exceed 50 percent of the value of the oil at the point of sale as determined under § 206.52 of this subpart. Transportation costs cannot be transferred between sales type codes or...
LLNL Mercury Project Trinity Open Science Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Shawn A.
The Mercury Monte Carlo particle transport code is used to simulate the transport of radiation through urban environments. These challenging calculations include complicated geometries and require significant computational resources to complete. In the proposed Trinity Open Science calculations, I will investigate computer science aspects of the code which are relevant to convergence of the simulation quantities with increasing Monte Carlo particle counts.
Nonambipolar Transport and Torque in Perturbed Equilibria
NASA Astrophysics Data System (ADS)
Logan, N. C.; Park, J.-K.; Wang, Z. R.; Berkery, J. W.; Kim, K.; Menard, J. E.
2013-10-01
A new Perturbed Equilibrium Nonambipolar Transport (PENT) code has been developed to calculate the neoclassical toroidal torque from radial current composed of both passing and trapped particles in perturbed equilibria. This presentation outlines the physics approach used in the development of the PENT code, with emphasis on the effects of retaining general aspect-ratio geometric effects. First, nonambipolar transport coefficients and corresponding neoclassical toroidal viscous (NTV) torque in perturbed equilibria are re-derived from the first order gyro-drift-kinetic equation in the ``combined-NTV'' PENT formalism. The equivalence of NTV torque and change in potential energy due to kinetic effects [J-K. Park, Phys. Plas., 2011] is then used to showcase computational challenges shared between PENT and stability codes MISK and MARS-K. Extensive comparisons to a reduced model, which makes numerous large aspect ratio approximations, are used throughout to emphasize geometry dependent physics such as pitch angle resonances. These applications make extensive use of the PENT code's native interfacing with the Ideal Perturbed Equilibrium Code (IPEC), and the combination of these codes is a key step towards an iterative solver for self-consistent perturbed equilibrium torque. Supported by US DOE contract #DE-AC02-09CH11466 and the DOE Office of Science Graduate Fellowship administered by the Oak Ridge Institute for Science & Education under contract #DE-AC05-06OR23100.
Transport studies in high-performance field reversed configuration plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, S., E-mail: sgupta@trialphaenergy.com; Barnes, D. C.; Dettrick, S. A.
2016-05-15
A significant improvement of field reversed configuration (FRC) lifetime and plasma confinement times in the C-2 plasma, called High Performance FRC regime, has been observed with neutral beam injection (NBI), improved edge stability, and better wall conditioning [Binderbauer et al., Phys. Plasmas 22, 056110 (2015)]. A Quasi-1D (Q1D) fluid transport code has been developed and employed to carry out transport analysis of such C-2 plasma conditions. The Q1D code is coupled to a Monte-Carlo code to incorporate the effect of fast ions, due to NBI, on the background FRC plasma. Numerically, the Q1D transport behavior with enhanced transport coefficients (butmore » with otherwise classical parametric dependencies) such as 5 times classical resistive diffusion, classical thermal ion conductivity, 20 times classical electron thermal conductivity, and classical fast ion behavior fit with the experimentally measured time evolution of the excluded flux radius, line-integrated density, and electron/ion temperature. The numerical study shows near sustainment of poloidal flux for nearly 1 ms in the presence of NBI.« less
McKenzie, J.M.; Voss, C.I.; Siegel, D.I.
2007-01-01
In northern peatlands, subsurface ice formation is an important process that can control heat transport, groundwater flow, and biological activity. Temperature was measured over one and a half years in a vertical profile in the Red Lake Bog, Minnesota. To successfully simulate the transport of heat within the peat profile, the U.S. Geological Survey's SUTRA computer code was modified. The modified code simulates fully saturated, coupled porewater-energy transport, with freezing and melting porewater, and includes proportional heat capacity and thermal conductivity of water and ice, decreasing matrix permeability due to ice formation, and latent heat. The model is verified by correctly simulating the Lunardini analytical solution for ice formation in a porous medium with a mixed ice-water zone. The modified SUTRA model correctly simulates the temperature and ice distributions in the peat bog. Two possible benchmark problems for groundwater and energy transport with ice formation and melting are proposed that may be used by other researchers for code comparison. ?? 2006 Elsevier Ltd. All rights reserved.
2006 Interregional Transportation Improvement Program.
DOT National Transportation Integrated Search
2006-01-01
The Department of Transportations (Department) five-year Interregional Transportation : Improvement Program (ITIP) is prepared pursuant to Government Code 14526 and : consists of projects funded from the interregional share, which is 25 percent of...
Comparison of EGS4 and MCNP Monte Carlo codes when calculating radiotherapy depth doses.
Love, P A; Lewis, D G; Al-Affan, I A; Smith, C W
1998-05-01
The Monte Carlo codes EGS4 and MCNP have been compared when calculating radiotherapy depth doses in water. The aims of the work were to study (i) the differences between calculated depth doses in water for a range of monoenergetic photon energies and (ii) the relative efficiency of the two codes for different electron transport energy cut-offs. The depth doses from the two codes agree with each other within the statistical uncertainties of the calculations (1-2%). The relative depth doses also agree with data tabulated in the British Journal of Radiology Supplement 25. A discrepancy in the dose build-up region may by attributed to the different electron transport algorithims used by EGS4 and MCNP. This discrepancy is considerably reduced when the improved electron transport routines are used in the latest (4B) version of MCNP. Timing calculations show that EGS4 is at least 50% faster than MCNP for the geometries used in the simulations.
Michener, Thomas E.; Rector, David R.; Cuta, Judith M.
2017-09-01
COBRA-SFS, a thermal-hydraulics code developed for steady-state and transient analysis of multi-assembly spent-fuel storage and transportation systems, has been incorporated into the Used Nuclear Fuel-Storage, Transportation and Disposal Analysis Resource and Data System tool as a module devoted to spent fuel package thermal analysis. This paper summarizes the basic formulation of the equations and models used in the COBRA-SFS code, showing that COBRA-SFS fully captures the important physical behavior governing the thermal performance of spent fuel storage systems, with internal and external natural convection flow patterns, and heat transfer by convection, conduction, and thermal radiation. Of particular significance is themore » capability for detailed thermal radiation modeling within the fuel rod array.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michener, Thomas E.; Rector, David R.; Cuta, Judith M.
COBRA-SFS, a thermal-hydraulics code developed for steady-state and transient analysis of multi-assembly spent-fuel storage and transportation systems, has been incorporated into the Used Nuclear Fuel-Storage, Transportation and Disposal Analysis Resource and Data System tool as a module devoted to spent fuel package thermal analysis. This paper summarizes the basic formulation of the equations and models used in the COBRA-SFS code, showing that COBRA-SFS fully captures the important physical behavior governing the thermal performance of spent fuel storage systems, with internal and external natural convection flow patterns, and heat transfer by convection, conduction, and thermal radiation. Of particular significance is themore » capability for detailed thermal radiation modeling within the fuel rod array.« less
Newtonian CAFE: a new ideal MHD code to study the solar atmosphere
NASA Astrophysics Data System (ADS)
González-Avilés, J. J.; Cruz-Osorio, A.; Lora-Clavijo, F. D.; Guzmán, F. S.
2015-12-01
We present a new code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centres on the analysis of solar phenomena within the photosphere-corona region. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As solar tests we present the transverse oscillations of Alfvénic pulses in coronal loops using a 2.5D model, and as 3D tests we present the propagation of impulsively generated MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the Harten-Lax-van Leer-Einfeldt (HLLE) flux formula combined with Minmod, MC, and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.
Gifford, Kent A; Wareing, Todd A; Failla, Gregory; Horton, John L; Eifel, Patricia J; Mourtada, Firas
2009-12-03
A patient dose distribution was calculated by a 3D multi-group S N particle transport code for intracavitary brachytherapy of the cervix uteri and compared to previously published Monte Carlo results. A Cs-137 LDR intracavitary brachytherapy CT data set was chosen from our clinical database. MCNPX version 2.5.c, was used to calculate the dose distribution. A 3D multi-group S N particle transport code, Attila version 6.1.1 was used to simulate the same patient. Each patient applicator was built in SolidWorks, a mechanical design package, and then assembled with a coordinate transformation and rotation for the patient. The SolidWorks exported applicator geometry was imported into Attila for calculation. Dose matrices were overlaid on the patient CT data set. Dose volume histograms and point doses were compared. The MCNPX calculation required 14.8 hours, whereas the Attila calculation required 22.2 minutes on a 1.8 GHz AMD Opteron CPU. Agreement between Attila and MCNPX dose calculations at the ICRU 38 points was within +/- 3%. Calculated doses to the 2 cc and 5 cc volumes of highest dose differed by not more than +/- 1.1% between the two codes. Dose and DVH overlays agreed well qualitatively. Attila can calculate dose accurately and efficiently for this Cs-137 CT-based patient geometry. Our data showed that a three-group cross-section set is adequate for Cs-137 computations. Future work is aimed at implementing an optimized version of Attila for radiotherapy calculations.
Wareing, Todd A.; Failla, Gregory; Horton, John L.; Eifel, Patricia J.; Mourtada, Firas
2009-01-01
A patient dose distribution was calculated by a 3D multi‐group SN particle transport code for intracavitary brachytherapy of the cervix uteri and compared to previously published Monte Carlo results. A Cs‐137 LDR intracavitary brachytherapy CT data set was chosen from our clinical database. MCNPX version 2.5.c, was used to calculate the dose distribution. A 3D multi‐group SN particle transport code, Attila version 6.1.1 was used to simulate the same patient. Each patient applicator was built in SolidWorks, a mechanical design package, and then assembled with a coordinate transformation and rotation for the patient. The SolidWorks exported applicator geometry was imported into Attila for calculation. Dose matrices were overlaid on the patient CT data set. Dose volume histograms and point doses were compared. The MCNPX calculation required 14.8 hours, whereas the Attila calculation required 22.2 minutes on a 1.8 GHz AMD Opteron CPU. Agreement between Attila and MCNPX dose calculations at the ICRU 38 points was within ±3%. Calculated doses to the 2 cc and 5 cc volumes of highest dose differed by not more than ±1.1% between the two codes. Dose and DVH overlays agreed well qualitatively. Attila can calculate dose accurately and efficiently for this Cs‐137 CT‐based patient geometry. Our data showed that a three‐group cross‐section set is adequate for Cs‐137 computations. Future work is aimed at implementing an optimized version of Attila for radiotherapy calculations. PACS number: 87.53.Jw
Impact of multi-component diffusion in turbulent combustion using direct numerical simulations
Bruno, Claudio; Sankaran, Vaidyanathan; Kolla, Hemanth; ...
2015-08-28
This study presents the results of DNS of a partially premixed turbulent syngas/air flame at atmospheric pressure. The objective was to assess the importance and possible effects of molecular transport on flame behavior and structure. To this purpose DNS were performed at with two proprietary DNS codes and with three different molecular diffusion transport models: fully multi-component, mixture averaged, and imposing the Lewis number of all species to be unity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begovich, C.L.; Eckerman, K.F.; Schlatter, E.C.
1981-08-01
The DARTAB computer code combines radionuclide environmental exposure data with dosimetric and health effects data to generate tabulations of the predicted impact of radioactive airborne effluents. DARTAB is independent of the environmental transport code used to generate the environmental exposure data and the codes used to produce the dosimetric and health effects data. Therefore human dose and risk calculations need not be added to every environmental transport code. Options are included in DARTAB to permit the user to request tabulations by various topics (e.g., cancer site, exposure pathway, etc.) to facilitate characterization of the human health impacts of the effluents.more » The DARTAB code was written at ORNL for the US Environmental Protection Agency, Office of Radiation Programs.« less
Transoptr — A second order beam transport design code with optimization and constraints
NASA Astrophysics Data System (ADS)
Heighway, E. A.; Hutcheon, R. M.
1981-08-01
This code was written initially to design an achromatic and isochronous reflecting magnet and has been extended to compete in capability (for constrained problems) with TRANSPORT. Its advantage is its flexibility in that the user writes a routine to describe his transport system. The routine allows the definition of general variables from which the system parameters can be derived. Further, the user can write any constraints he requires as algebraic equations relating the parameters. All variables may be used in either a first or second order optimization.
MPACT Standard Input User s Manual, Version 2.2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Benjamin S.; Downar, Thomas; Fitzgerald, Andrew
The MPACT (Michigan PArallel Charactistics based Transport) code is designed to perform high-fidelity light water reactor (LWR) analysis using whole-core pin-resolved neutron transport calculations on modern parallel-computing hardware. The code consists of several libraries which provide the functionality necessary to solve steady-state eigenvalue problems. Several transport capabilities are available within MPACT including both 2-D and 3-D Method of Characteristics (MOC). A three-dimensional whole core solution based on the 2D-1D solution method provides the capability for full core depletion calculations.
Programmers manual for a one-dimensional Lagrangian transport model
Schoellhamer, D.H.; Jobson, H.E.
1986-01-01
A one-dimensional Lagrangian transport model for simulating water-quality constituents such as temperature, dissolved oxygen , and suspended sediment in rivers is presented in this Programmers Manual. Lagrangian transport modeling techniques, the model 's subroutines, and the user-written decay-coefficient subroutine are discussed in detail. Appendices list the program codes. The Programmers Manual is intended for the model user who needs to modify code either to adapt the model to a particular need or to use reaction kinetics not provided with the model. (Author 's abstract)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Bryan Scott; MacQuigg, Michael Robert; Wysong, Andrew Russell
In this document, the code MCNP is validated with ENDF/B-VII.1 cross section data under the purview of ANSI/ANS-8.24-2007, for use with uranium systems. MCNP is a computer code based on Monte Carlo transport methods. While MCNP has wide reading capability in nuclear transport simulation, this validation is limited to the functionality related to neutron transport and calculation of criticality parameters such as k eff.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haghighat, A.; Sjoden, G.E.; Wagner, J.C.
In the past 10 yr, the Penn State Transport Theory Group (PSTTG) has concentrated its efforts on developing accurate and efficient particle transport codes to address increasing needs for efficient and accurate simulation of nuclear systems. The PSTTG's efforts have primarily focused on shielding applications that are generally treated using multigroup, multidimensional, discrete ordinates (S{sub n}) deterministic and/or statistical Monte Carlo methods. The difficulty with the existing public codes is that they require significant (impractical) computation time for simulation of complex three-dimensional (3-D) problems. For the S{sub n} codes, the large memory requirements are handled through the use of scratchmore » files (i.e., read-from and write-to-disk) that significantly increases the necessary execution time. Further, the lack of flexible features and/or utilities for preparing input and processing output makes these codes difficult to use. The Monte Carlo method becomes impractical because variance reduction (VR) methods have to be used, and normally determination of the necessary parameters for the VR methods is very difficult and time consuming for a complex 3-D problem. For the deterministic method, the authors have developed the 3-D parallel PENTRAN (Parallel Environment Neutral-particle TRANsport) code system that, in addition to a parallel 3-D S{sub n} solver, includes pre- and postprocessing utilities. PENTRAN provides for full phase-space decomposition, memory partitioning, and parallel input/output to provide the capability of solving large problems in a relatively short time. Besides having a modular parallel structure, PENTRAN has several unique new formulations and features that are necessary for achieving high parallel performance. For the Monte Carlo method, the major difficulty currently facing most users is the selection of an effective VR method and its associated parameters. For complex problems, generally, this process is very time consuming and may be complicated due to the possibility of biasing the results. In an attempt to eliminate this problem, the authors have developed the A{sup 3}MCNP (automated adjoint accelerated MCNP) code that automatically prepares parameters for source and transport biasing within a weight-window VR approach based on the S{sub n} adjoint function. A{sup 3}MCNP prepares the necessary input files for performing multigroup, 3-D adjoint S{sub n} calculations using TORT.« less
A class of ejecta transport test problems
NASA Astrophysics Data System (ADS)
Oro, David M.; Hammerberg, J. E.; Buttler, William T.; Mariam, Fesseha G.; Morris, Christopher L.; Rousculp, Chris; Stone, Joseph B.
2012-03-01
Hydro code implementations of ejecta dynamics at shocked interfaces presume a source distribution function of particulate masses and velocities, f0(m,u;t). Some properties of this source distribution function have been determined from Taylor- and supported-shockwave experiments. Such experiments measure the mass moment of f0 under vacuum conditions assuming weak particle-particle interactions and, usually, fully inelastic scattering (capture) of ejecta particles from piezoelectric diagnostic probes. Recently, planar ejection of W particles into vacuum, Ar, and Xe gas atmospheres have been carried out to provide benchmark transport data for transport model development and validation. We present those experimental results and compare them with modeled transport of the W-ejecta particles in Ar and Xe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hep, J.; Konecna, A.; Krysl, V.
2011-07-01
This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weightingmore » is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV and RPV cavity of the VVER-440 reacto rand located axially at the position of maximum power and at the position of the weld. Both of these methods (the effective source and the adjoint function) are briefly described in the present paper. The paper also describes their application to the solution of fast neutron fluence and detectors activities for the VVER-440 reactor. (authors)« less
Beam dynamics simulation of HEBT for the SSC-linac injector
NASA Astrophysics Data System (ADS)
Li, Xiao-Ni; Yuan, You-Jin; Xiao, Chen; He, Yuan; Wang, Zhi-Jun; Sheng, Li-Na
2012-11-01
The SSC-linac (a new injector for the Separated Sector Cyclotron) is being designed in the HIRFL (Heavy Ion Research Facility in Lanzhou) system to accelerate 238U34+ from 3.72 keV/u to 1.008 MeV/u. As a part of the SSC-linac injector, the HEBT (high energy beam transport) has been designed by using the TRACE-3D code and simulated by the 3D PIC (particle-in-cell) Track code. The total length of the HEBT is about 12 meters and a beam line of about 6 meters are shared with the exiting beam line of the HIRFL system. The simulation results show that the particles can be delivered efficiently in the HEBT and the particles at the exit of the HEBT well match the acceptance of the SSC for further acceleration. The dispersion is eliminated absolutely in the HEBT. The space-charge effect calculated by the Track code is inconspicuous. According to the simulation, more than 60 percent of the particles from the ion source can be transported into the acceptance of the SSC.
Four-Dimensional Continuum Gyrokinetic Code: Neoclassical Simulation of Fusion Edge Plasmas
NASA Astrophysics Data System (ADS)
Xu, X. Q.
2005-10-01
We are developing a continuum gyrokinetic code, TEMPEST, to simulate edge plasmas. Our code represents velocity space via a grid in equilibrium energy and magnetic moment variables, and configuration space via poloidal magnetic flux and poloidal angle. The geometry is that of a fully diverted tokamak (single or double null) and so includes boundary conditions for both closed magnetic flux surfaces and open field lines. The 4-dimensional code includes kinetic electrons and ions, and electrostatic field-solver options, and simulates neoclassical transport. The present implementation is a Method of Lines approach where spatial finite-differences (higher order upwinding) and implicit time advancement are used. We present results of initial verification and validation studies: transition from collisional to collisionless limits of parallel end-loss in the scrape-off layer, self-consistent electric field, and the effect of the real X-point geometry and edge plasma conditions on the standard neoclassical theory, including a comparison of our 4D code with other kinetic neoclassical codes and experiments.
NASA Astrophysics Data System (ADS)
Lou, Tak Pui; Ludewigt, Bernhard
2015-09-01
The simulation of the emission of beta-delayed gamma rays following nuclear fission and the calculation of time-dependent energy spectra is a computational challenge. The widely used radiation transport code MCNPX includes a delayed gamma-ray routine that is inefficient and not suitable for simulating complex problems. This paper describes the code "MMAPDNG" (Memory-Mapped Delayed Neutron and Gamma), an optimized delayed gamma module written in C, discusses usage and merits of the code, and presents results. The approach is based on storing required Fission Product Yield (FPY) data, decay data, and delayed particle data in a memory-mapped file. When compared to the original delayed gamma-ray code in MCNPX, memory utilization is reduced by two orders of magnitude and the ray sampling is sped up by three orders of magnitude. Other delayed particles such as neutrons and electrons can be implemented in future versions of MMAPDNG code using its existing framework.
Lewis, F.M.; Voss, C.I.; Rubin, J.
1987-01-01
Methodologies that account for specific types of chemical reactions in the simulation of solute transport can be developed so they are compatible with solution algorithms employed in existing transport codes. This enables the simulation of reactive transport in complex multidimensional flow regimes, and provides a means for existing codes to account for some of the fundamental chemical processes that occur among transported solutes. Two equilibrium-controlled reaction systems demonstrate a methodology for accommodating chemical interaction into models of solute transport. One system involves the sorption of a given chemical species, as well as two aqueous complexations in which the sorbing species is a participant. The other reaction set involves binary ion exchange coupled with aqueous complexation involving one of the exchanging species. The methodology accommodates these reaction systems through the addition of nonlinear terms to the transport equations for the sorbing species. Example simulation results show (1) the effect equilibrium chemical parameters have on the spatial distributions of concentration for complexing solutes; (2) that an interrelationship exists between mechanical dispersion and the various reaction processes; (3) that dispersive parameters of the porous media cannot be determined from reactive concentration distributions unless the reaction is accounted for or the influence of the reaction is negligible; (4) how the concentration of a chemical species may be significantly affected by its participation in an aqueous complex with a second species which also sorbs; and (5) that these coupled chemical processes influencing reactive transport can be demonstrated in two-dimensional flow regimes. ?? 1987.
LLNL Mercury Project Trinity Open Science Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brantley, Patrick; Dawson, Shawn; McKinley, Scott
2016-04-20
The Mercury Monte Carlo particle transport code developed at Lawrence Livermore National Laboratory (LLNL) is used to simulate the transport of radiation through urban environments. These challenging calculations include complicated geometries and require significant computational resources to complete. As a result, a question arises as to the level of convergence of the calculations with Monte Carlo simulation particle count. In the Trinity Open Science calculations, one main focus was to investigate convergence of the relevant simulation quantities with Monte Carlo particle count to assess the current simulation methodology. Both for this application space but also of more general applicability, wemore » also investigated the impact of code algorithms on parallel scaling on the Trinity machine as well as the utilization of the Trinity DataWarp burst buffer technology in Mercury via the LLNL Scalable Checkpoint/Restart (SCR) library.« less
SQA of finite element method (FEM) codes used for analyses of pit storage/transport packages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russel, E.
1997-11-01
This report contains viewgraphs on the software quality assurance of finite element method codes used for analyses of pit storage and transport projects. This methodology utilizes the ISO 9000-3: Guideline for application of 9001 to the development, supply, and maintenance of software, for establishing well-defined software engineering processes to consistently maintain high quality management approaches.
49 CFR Appendix C to Part 215 - FRA Freight Car Standards Defect Code
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false FRA Freight Car Standards Defect Code C Appendix C... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Pt. 215, App. C Appendix C to... 13/4″. (C)(1) Rim thickness is 11/16″ or less; (2) Rim thickness is 5/8″ or less; (3) Rim thickness...
Development of a new lattice physics code robin for PWR application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, S.; Chen, G.
2013-07-01
This paper presents a description of methodologies and preliminary verification results of a new lattice physics code ROBIN, being developed for PWR application at Shanghai NuStar Nuclear Power Technology Co., Ltd. The methods used in ROBIN to fulfill various tasks of lattice physics analysis are an integration of historical methods and new methods that came into being very recently. Not only these methods like equivalence theory for resonance treatment and method of characteristics for neutron transport calculation are adopted, as they are applied in many of today's production-level LWR lattice codes, but also very useful new methods like the enhancedmore » neutron current method for Dancoff correction in large and complicated geometry and the log linear rate constant power depletion method for Gd-bearing fuel are implemented in the code. A small sample of verification results are provided to illustrate the type of accuracy achievable using ROBIN. It is demonstrated that ROBIN is capable of satisfying most of the needs for PWR lattice analysis and has the potential to become a production quality code in the future. (authors)« less
Extension of the XGC code for global gyrokinetic simulations in stellarator geometry
NASA Astrophysics Data System (ADS)
Cole, Michael; Moritaka, Toseo; White, Roscoe; Hager, Robert; Ku, Seung-Hoe; Chang, Choong-Seock
2017-10-01
In this work, the total-f, gyrokinetic particle-in-cell code XGC is extended to treat stellarator geometries. Improvements to meshing tools and the code itself have enabled the first physics studies, including single particle tracing and flux surface mapping in the magnetic geometry of the heliotron LHD and quasi-isodynamic stellarator Wendelstein 7-X. These have provided the first successful test cases for our approach. XGC is uniquely placed to model the complex edge physics of stellarators. A roadmap to such a global confinement modeling capability will be presented. Single particle studies will include the physics of energetic particles' global stochastic motions and their effect on confinement. Good confinement of energetic particles is vital for a successful stellarator reactor design. These results can be compared in the core region with those of other codes, such as ORBIT3d. In subsequent work, neoclassical transport and turbulence can then be considered and compared to results from codes such as EUTERPE and GENE. After sufficient verification in the core region, XGC will move into the stellarator edge region including the material wall and neutral particle recycling.
Study of negative ion transport phenomena in a plasma source
NASA Astrophysics Data System (ADS)
Riz, D.; Paméla, J.
1996-07-01
NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H-/H+) and charge exchanges (H-/H0). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NI produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter.
Cosmic-ray propagation with DRAGON2: I. numerical solver and astrophysical ingredients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evoli, Carmelo; Gaggero, Daniele; Vittino, Andrea
2017-02-01
We present version 2 of the DRAGON code designed for computing realistic predictions of the CR densities in the Galaxy. The code numerically solves the interstellar CR transport equation (including inhomogeneous and anisotropic diffusion, either in space and momentum, advective transport and energy losses), under realistic conditions. The new version includes an updated numerical solver and several models for the astrophysical ingredients involved in the transport equation. Improvements in the accuracy of the numerical solution are proved against analytical solutions and in reference diffusion scenarios. The novel features implemented in the code allow to simulate the diverse scenarios proposed tomore » reproduce the most recent measurements of local and diffuse CR fluxes, going beyond the limitations of the homogeneous galactic transport paradigm. To this end, several applications using DRAGON2 are presented as well. This new version facilitates the users to include their own physical models by means of a modular C++ structure.« less
NASA Technical Reports Server (NTRS)
Pavish, D. L.; Spaulding, M. L.
1977-01-01
A computer coded Lagrangian marker particle in Eulerian finite difference cell solution to the three dimensional incompressible mass transport equation, Water Advective Particle in Cell Technique, WAPIC, was developed, verified against analytic solutions, and subsequently applied in the prediction of long term transport of a suspended sediment cloud resulting from an instantaneous dredge spoil release. Numerical results from WAPIC were verified against analytic solutions to the three dimensional incompressible mass transport equation for turbulent diffusion and advection of Gaussian dye releases in unbounded uniform and uniformly sheared uni-directional flow, and for steady-uniform plug channel flow. WAPIC was utilized to simulate an analytic solution for non-equilibrium sediment dropout from an initially vertically uniform particle distribution in one dimensional turbulent channel flow.
Modeling Solar Wind Flow with the Multi-Scale Fluid-Kinetic Simulation Suite
Pogorelov, N.V.; Borovikov, S. N.; Bedford, M. C.; ...
2013-04-01
Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) is a package of numerical codes capable of performing adaptive mesh refinement simulations of complex plasma flows in the presence of discontinuities and charge exchange between ions and neutral atoms. The flow of the ionized component is described with the ideal MHD equations, while the transport of atoms is governed either by the Boltzmann equation or multiple Euler gas dynamics equations. We have enhanced the code with additional physical treatments for the transport of turbulence and acceleration of pickup ions in the interplanetary space and at the termination shock. In this article, we present themore » results of our numerical simulation of the solar wind (SW) interaction with the local interstellar medium (LISM) in different time-dependent and stationary formulations. Numerical results are compared with the Ulysses, Voyager, and OMNI observations. Finally, the SW boundary conditions are derived from in-situ spacecraft measurements and remote observations.« less
Nuclide Depletion Capabilities in the Shift Monte Carlo Code
Davidson, Gregory G.; Pandya, Tara M.; Johnson, Seth R.; ...
2017-12-21
A new depletion capability has been developed in the Exnihilo radiation transport code suite. This capability enables massively parallel domain-decomposed coupling between the Shift continuous-energy Monte Carlo solver and the nuclide depletion solvers in ORIGEN to perform high-performance Monte Carlo depletion calculations. This paper describes this new depletion capability and discusses its various features, including a multi-level parallel decomposition, high-order transport-depletion coupling, and energy-integrated power renormalization. Several test problems are presented to validate the new capability against other Monte Carlo depletion codes, and the parallel performance of the new capability is analyzed.
Delayed photo-emission model for beam optics codes
Jensen, Kevin L.; Petillo, John J.; Panagos, Dimitrios N.; ...
2016-11-22
Future advanced light sources and x-ray Free Electron Lasers require fast response from the photocathode to enable short electron pulse durations as well as pulse shaping, and so the ability to model delays in emission is needed for beam optics codes. The development of a time-dependent emission model accounting for delayed photoemission due to transport and scattering is given, and its inclusion in the Particle-in-Cell code MICHELLE results in changes to the pulse shape that are described. Furthermore, the model is applied to pulse elongation of a bunch traversing an rf injector, and to the smoothing of laser jitter onmore » a short pulse.« less
Parallel Numerical Simulations of Water Reservoirs
NASA Astrophysics Data System (ADS)
Torres, Pedro; Mangiavacchi, Norberto
2010-11-01
The study of the water flow and scalar transport in water reservoirs is important for the determination of the water quality during the initial stages of the reservoir filling and during the life of the reservoir. For this scope, a parallel 2D finite element code for solving the incompressible Navier-Stokes equations coupled with scalar transport was implemented using the message-passing programming model, in order to perform simulations of hidropower water reservoirs in a computer cluster environment. The spatial discretization is based on the MINI element that satisfies the Babuska-Brezzi (BB) condition, which provides sufficient conditions for a stable mixed formulation. All the distributed data structures needed in the different stages of the code, such as preprocessing, solving and post processing, were implemented using the PETSc library. The resulting linear systems for the velocity and the pressure fields were solved using the projection method, implemented by an approximate block LU factorization. In order to increase the parallel performance in the solution of the linear systems, we employ the static condensation method for solving the intermediate velocity at vertex and centroid nodes separately. We compare performance results of the static condensation method with the approach of solving the complete system. In our tests the static condensation method shows better performance for large problems, at the cost of an increased memory usage. Performance results for other intensive parts of the code in a computer cluster are also presented.
NASA Astrophysics Data System (ADS)
Zamani, K.; Bombardelli, F.
2011-12-01
Almost all natural phenomena on Earth are highly nonlinear. Even simplifications to the equations describing nature usually end up being nonlinear partial differential equations. Transport (ADR) equation is a pivotal equation in atmospheric sciences and water quality. This nonlinear equation needs to be solved numerically for practical purposes so academicians and engineers thoroughly rely on the assistance of numerical codes. Thus, numerical codes require verification before they are utilized for multiple applications in science and engineering. Model verification is a mathematical procedure whereby a numerical code is checked to assure the governing equation is properly solved as it is described in the design document. CFD verification is not a straightforward and well-defined course. Only a complete test suite can uncover all the limitations and bugs. Results are needed to be assessed to make a distinction between bug-induced-defect and innate limitation of a numerical scheme. As Roache (2009) said, numerical verification is a state-of-the-art procedure. Sometimes novel tricks work out. This study conveys the synopsis of the experiences we gained during a comprehensive verification process which was done for a transport solver. A test suite was designed including unit tests and algorithmic tests. Tests were layered in complexity in several dimensions from simple to complex. Acceptance criteria defined for the desirable capabilities of the transport code such as order of accuracy, mass conservation, handling stiff source term, spurious oscillation, and initial shape preservation. At the begining, mesh convergence study which is the main craft of the verification is performed. To that end, analytical solution of ADR equation gathered. Also a new solution was derived. In the more general cases, lack of analytical solution could be overcome through Richardson Extrapolation and Manufactured Solution. Then, two bugs which were concealed during the mesh convergence study uncovered with the method of false injection and visualization of the results. Symmetry had dual functionality: there was a bug, which was hidden due to the symmetric nature of a test (it was detected afterward utilizing artificial false injection), on the other hand self-symmetry was used to design a new test, and in a case the analytical solution of the ADR equation was unknown. Assisting subroutines designed to check and post-process conservation of mass and oscillatory behavior. Finally, capability of the solver also checked for stiff reaction source term. The above test suite not only was a decent tool of error detection but also it provided a thorough feedback on the ADR solvers limitations. Such information is the crux of any rigorous numerical modeling for a modeler who deals with surface/subsurface pollution transport.
Extensions of the MCNP5 and TRIPOLI4 Monte Carlo Codes for Transient Reactor Analysis
NASA Astrophysics Data System (ADS)
Hoogenboom, J. Eduard; Sjenitzer, Bart L.
2014-06-01
To simulate reactor transients for safety analysis with the Monte Carlo method the generation and decay of delayed neutron precursors is implemented in the MCNP5 and TRIPOLI4 general purpose Monte Carlo codes. Important new variance reduction techniques like forced decay of precursors in each time interval and the branchless collision method are included to obtain reasonable statistics for the power production per time interval. For simulation of practical reactor transients also the feedback effect from the thermal-hydraulics must be included. This requires coupling of the Monte Carlo code with a thermal-hydraulics (TH) code, providing the temperature distribution in the reactor, which affects the neutron transport via the cross section data. The TH code also provides the coolant density distribution in the reactor, directly influencing the neutron transport. Different techniques for this coupling are discussed. As a demonstration a 3x3 mini fuel assembly with a moving control rod is considered for MCNP5 and a mini core existing of 3x3 PWR fuel assemblies with control rods and burnable poisons for TRIPOLI4. Results are shown for reactor transients due to control rod movement or withdrawal. The TRIPOLI4 transient calculation is started at low power and includes thermal-hydraulic feedback. The power rises about 10 decades and finally stabilises the reactor power at a much higher level than initial. The examples demonstrate that the modified Monte Carlo codes are capable of performing correct transient calculations, taking into account all geometrical and cross section detail.
MCNP (Monte Carlo Neutron Photon) capabilities for nuclear well logging calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forster, R.A.; Little, R.C.; Briesmeister, J.F.
The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. The general-purpose continuous-energy Monte Carlo code MCNP (Monte Carlo Neutron Photon), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tally characteristics with standard MCNP features. The time-dependent capabilitymore » of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data. A rich collections of variance reduction features can greatly increase the efficiency of a calculation. MCNP is written in FORTRAN 77 and has been run on variety of computer systems from scientific workstations to supercomputers. The next production version of MCNP will include features such as continuous-energy electron transport and a multitasking option. Areas of ongoing research of interest to the well logging community include angle biasing, adaptive Monte Carlo, improved discrete ordinates capabilities, and discrete ordinates/Monte Carlo hybrid development. Los Alamos has requested approval by the Department of Energy to create a Radiation Transport Computational Facility under their User Facility Program to increase external interactions with industry, universities, and other government organizations. 21 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Da Cruz, D. F.; Rochman, D.; Koning, A. J.
2012-07-01
This paper discusses the uncertainty analysis on reactivity and inventory for a typical PWR fuel element as a result of uncertainties in {sup 235,238}U nuclear data. A typical Westinghouse 3-loop fuel assembly fuelled with UO{sub 2} fuel with 4.8% enrichment has been selected. The Total Monte-Carlo method has been applied using the deterministic transport code DRAGON. This code allows the generation of the few-groups nuclear data libraries by directly using data contained in the nuclear data evaluation files. The nuclear data used in this study is from the JEFF3.1 evaluation, and the nuclear data files for {sup 238}U and {supmore » 235}U (randomized for the generation of the various DRAGON libraries) are taken from the nuclear data library TENDL. The total uncertainty (obtained by randomizing all {sup 238}U and {sup 235}U nuclear data in the ENDF files) on the reactor parameters has been split into different components (different nuclear reaction channels). Results show that the TMC method in combination with a deterministic transport code constitutes a powerful tool for performing uncertainty and sensitivity analysis of reactor physics parameters. (authors)« less
VICTORIA: A mechanistic model for radionuclide behavior in the reactor coolant system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaperow, J.H.; Bixler, N.E.
1996-12-31
VICTORIA is the U.S. Nuclear Regulatory Commission`s (NRC`s) mechanistic, best-estimate code for analysis of fission product release from the core and subsequent transport in the reactor vessel and reactor coolant system. VICTORIA requires thermal-hydraulic data (i.e., temperatures, pressures, and velocities) as input. In the past, these data have been taken from the results of calculations from thermal-hydraulic codes such as SCDAP/RELAP5, MELCOR, and MAAP. Validation and assessment of VICTORIA 1.0 have been completed. An independent peer review of VICTORIA, directed by Brookhaven National Laboratory and supported by experts in the areas of fuel release, fission product chemistry, and aerosol physics,more » has been undertaken. This peer review, which will independently assess the code`s capabilities, is nearing completion with the peer review committee`s final report expected in Dec 1996. A limited amount of additional development is expected as a result of the peer review. Following this additional development, the NRC plans to release VICTORIA 1.1 and an updated and improved code manual. Future plans mainly involve use of the code for plant calculations to investigate specific safety issues as they arise. Also, the code will continue to be used in support of the Phebus experiments.« less
NASA Astrophysics Data System (ADS)
Sayre, George Anthony
The purpose of this dissertation was to develop the C ++ program Emergency Dose to calculate transport of radionuclides through indoor spaces using intermediate fidelity physics that provides improved spatial heterogeneity over well-mixed models such as MELCORRTM and much lower computation times than CFD codes such as FLUENTRTM . Modified potential flow theory, which is an original formulation of potential flow theory with additions of turbulent jet and natural convection approximations, calculates spatially heterogeneous velocity fields that well-mixed models cannot predict. Other original contributions of MPFT are: (1) generation of high fidelity boundary conditions relative to well-mixed-CFD coupling methods (conflation), (2) broadening of potential flow applications to arbitrary indoor spaces previously restricted to specific applications such as exhaust hood studies, and (3) great reduction of computation time relative to CFD codes without total loss of heterogeneity. Additionally, the Lagrangian transport module, which is discussed in Sections 1.3 and 2.4, showcases an ensemble-based formulation thought to be original to interior studies. Velocity and concentration transport benchmarks against analogous formulations in COMSOLRTM produced favorable results with discrepancies resulting from the tetrahedral meshing used in COMSOLRTM outperforming the Cartesian method used by Emergency Dose. A performance comparison of the concentration transport modules against MELCORRTM showed that Emergency Dose held advantages over the well-mixed model especially in scenarios with many interior partitions and varied source positions. A performance comparison of velocity module against FLUENTRTM showed that viscous drag provided the largest error between Emergency Dose and CFD velocity calculations, but that Emergency Dose's turbulent jets well approximated the corresponding CFD jets. Overall, Emergency Dose was found to provide a viable intermediate solution method for concentration transport with relatively low computation times.
Track-structure simulations for charged particles.
Dingfelder, Michael
2012-11-01
Monte Carlo track-structure simulations provide a detailed and accurate picture of radiation transport of charged particles through condensed matter of biological interest. Liquid water serves as a surrogate for soft tissue and is used in most Monte Carlo track-structure codes. Basic theories of radiation transport and track-structure simulations are discussed and differences compared to condensed history codes highlighted. Interaction cross sections for electrons, protons, alpha particles, and light and heavy ions are required input data for track-structure simulations. Different calculation methods, including the plane-wave Born approximation, the dielectric theory, and semi-empirical approaches are presented using liquid water as a target. Low-energy electron transport and light ion transport are discussed as areas of special interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas
Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of acid mine drainage remediation, waste disposal sites, hydrothermal convection, contaminant transport, and groundwater quality. We have developed a comprehensive numerical simulator, TOUGHREACT, which considers non-isothermal multi-component chemical transport in both liquid and gas phases. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The code can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity.
Hybrid transport and diffusion modeling using electron thermal transport Monte Carlo SNB in DRACO
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey; Moses, Gregory
2017-10-01
The iSNB (implicit Schurtz Nicolai Busquet) multigroup diffusion electron thermal transport method is adapted into an Electron Thermal Transport Monte Carlo (ETTMC) transport method to better model angular and long mean free path non-local effects. Previously, the ETTMC model had been implemented in the 2D DRACO multiphysics code and found to produce consistent results with the iSNB method. Current work is focused on a hybridization of the computationally slower but higher fidelity ETTMC transport method with the computationally faster iSNB diffusion method in order to maximize computational efficiency. Furthermore, effects on the energy distribution of the heat flux divergence are studied. Work to date on the hybrid method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.
Lovasi, Gina S.; Schwartz-Soicher, Ofira; Neckerman, Kathryn; Konty, Kevin; Kerker, Bonnie; Quinn, James; Rundle, Andrew
2013-01-01
Background One strategy to address health problems related to insufficient physical activity is to examine modifiable neighborhood characteristics associated with active transportation. Purpose To evaluate whether neighborhoods with more aesthetic amenities (sidewalk cafés, street trees, clean sidewalks) and fewer safety hazards (pedestrian-auto fatalities, homicides) are associated with active transportation. Methods The 2003 Community Health Survey in New York City, which asked about active transportation (walking or bicycling >10 blocks) in the past 30 days, was linked to ZIP-code population census and built environment characteristics. Adjusted associations were estimated for dichotomous (any active transportation versus none), and continuous (log-transformed trip frequency) active transportation outcomes. Results Among 8,034 adults, those living near sidewalk cafés were 10% more likely to report active transportation (p=0.01). Homicide rate was associated with less frequent active transportation among those reporting active transportation (p=0.002). Conclusions Investments in aesthetic amenities or homicide prevention may help to promote active transportation. PMID:23011913
Recent Progress in the Development of a Multi-Layer Green's Function Code for Ion Beam Transport
NASA Technical Reports Server (NTRS)
Tweed, John; Walker, Steven A.; Wilson, John W.; Tripathi, Ram K.
2008-01-01
To meet the challenge of future deep space programs, an accurate and efficient engineering code for analyzing the shielding requirements against high-energy galactic heavy radiation is needed. To address this need, a new Green's function code capable of simulating high charge and energy ions with either laboratory or space boundary conditions is currently under development. The computational model consists of combinations of physical perturbation expansions based on the scales of atomic interaction, multiple scattering, and nuclear reactive processes with use of the Neumann-asymptotic expansions with non-perturbative corrections. The code contains energy loss due to straggling, nuclear attenuation, nuclear fragmentation with energy dispersion and downshifts. Previous reports show that the new code accurately models the transport of ion beams through a single slab of material. Current research efforts are focused on enabling the code to handle multiple layers of material and the present paper reports on progress made towards that end.
Higher order turbulence closure models
NASA Technical Reports Server (NTRS)
Amano, Ryoichi S.; Chai, John C.; Chen, Jau-Der
1988-01-01
Theoretical models are developed and numerical studies conducted on various types of flows including both elliptic and parabolic. The purpose of this study is to find better higher order closure models for the computations of complex flows. This report summarizes three new achievements: (1) completion of the Reynolds-stress closure by developing a new pressure-strain correlation; (2) development of a parabolic code to compute jets and wakes; and, (3) application to a flow through a 180 deg turnaround duct by adopting a boundary fitted coordinate system. In the above mentioned models near-wall models are developed for pressure-strain correlation and third-moment, and incorporated into the transport equations. This addition improved the results considerably and is recommended for future computations. A new parabolic code to solve shear flows without coordinate tranformations is developed and incorporated in this study. This code uses the structure of the finite volume method to solve the governing equations implicitly. The code was validated with the experimental results available in the literature.
Solar proton exposure of an ICRU sphere within a complex structure part II: Ray-trace geometry.
Slaba, Tony C; Wilson, John W; Badavi, Francis F; Reddell, Brandon D; Bahadori, Amir A
2016-06-01
A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z ≤ 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency. Published by Elsevier Ltd.
The MCNP6 Analytic Criticality Benchmark Suite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.
2016-06-16
Analytical benchmarks provide an invaluable tool for verifying computer codes used to simulate neutron transport. Several collections of analytical benchmark problems [1-4] are used routinely in the verification of production Monte Carlo codes such as MCNP® [5,6]. Verification of a computer code is a necessary prerequisite to the more complex validation process. The verification process confirms that a code performs its intended functions correctly. The validation process involves determining the absolute accuracy of code results vs. nature. In typical validations, results are computed for a set of benchmark experiments using a particular methodology (code, cross-section data with uncertainties, and modeling)more » and compared to the measured results from the set of benchmark experiments. The validation process determines bias, bias uncertainty, and possibly additional margins. Verification is generally performed by the code developers, while validation is generally performed by code users for a particular application space. The VERIFICATION_KEFF suite of criticality problems [1,2] was originally a set of 75 criticality problems found in the literature for which exact analytical solutions are available. Even though the spatial and energy detail is necessarily limited in analytical benchmarks, typically to a few regions or energy groups, the exact solutions obtained can be used to verify that the basic algorithms, mathematics, and methods used in complex production codes perform correctly. The present work has focused on revisiting this benchmark suite. A thorough review of the problems resulted in discarding some of them as not suitable for MCNP benchmarking. For the remaining problems, many of them were reformulated to permit execution in either multigroup mode or in the normal continuous-energy mode for MCNP. Execution of the benchmarks in continuous-energy mode provides a significant advance to MCNP verification methods.« less
Fully-kinetic Ion Simulation of Global Electrostatic Turbulent Transport in C-2U
NASA Astrophysics Data System (ADS)
Fulton, Daniel; Lau, Calvin; Bao, Jian; Lin, Zhihong; Tajima, Toshiki; TAE Team
2017-10-01
Understanding the nature of particle and energy transport in field-reversed configuration (FRC) plasmas is a crucial step towards an FRC-based fusion reactor. The C-2U device at Tri Alpha Energy (TAE) achieved macroscopically stable plasmas and electron energy confinement time which scaled favorably with electron temperature. This success led to experimental and theoretical investigation of turbulence in C-2U, including gyrokinetic ion simulations with the Gyrokinetic Toroidal Code (GTC). A primary objective of TAE's new C-2W device is to explore transport scaling in an extended parameter regime. In concert with the C-2W experimental campaign, numerical efforts have also been extended in A New Code (ANC) to use fully-kinetic (FK) ions and a Vlasov-Poisson field solver. Global FK ion simulations are presented. Future code development is also discussed.
FLUKA simulation of TEPC response to cosmic radiation.
Beck, P; Ferrari, A; Pelliccioni, M; Rollet, S; Villari, R
2005-01-01
The aircrew exposure to cosmic radiation can be assessed by calculation with codes validated by measurements. However, the relationship between doses in the free atmosphere, as calculated by the codes and from results of measurements performed within the aircraft, is still unclear. The response of a tissue-equivalent proportional counter (TEPC) has already been simulated successfully by the Monte Carlo transport code FLUKA. Absorbed dose rate and ambient dose equivalent rate distributions as functions of lineal energy have been simulated for several reference sources and mixed radiation fields. The agreement between simulation and measurements has been well demonstrated. In order to evaluate the influence of aircraft structures on aircrew exposure assessment, the response of TEPC in the free atmosphere and on-board is now simulated. The calculated results are discussed and compared with other calculations and measurements.
Verification and Validation of the k-kL Turbulence Model in FUN3D and CFL3D Codes
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Carlson, Jan-Renee; Rumsey, Christopher L.
2015-01-01
The implementation of the k-kL turbulence model using multiple computational uid dy- namics (CFD) codes is reported herein. The k-kL model is a two-equation turbulence model based on Abdol-Hamid's closure and Menter's modi cation to Rotta's two-equation model. Rotta shows that a reliable transport equation can be formed from the turbulent length scale L, and the turbulent kinetic energy k. Rotta's equation is well suited for term-by-term mod- eling and displays useful features compared to other two-equation models. An important di erence is that this formulation leads to the inclusion of higher-order velocity derivatives in the source terms of the scale equations. This can enhance the ability of the Reynolds- averaged Navier-Stokes (RANS) solvers to simulate unsteady ows. The present report documents the formulation of the model as implemented in the CFD codes Fun3D and CFL3D. Methodology, veri cation and validation examples are shown. Attached and sepa- rated ow cases are documented and compared with experimental data. The results show generally very good comparisons with canonical and experimental data, as well as matching results code-to-code. The results from this formulation are similar or better than results using the SST turbulence model.
An information theoretic approach to use high-fidelity codes to calibrate low-fidelity codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Allison, E-mail: lewis.allison10@gmail.com; Smith, Ralph; Williams, Brian
For many simulation models, it can be prohibitively expensive or physically infeasible to obtain a complete set of experimental data to calibrate model parameters. In such cases, one can alternatively employ validated higher-fidelity codes to generate simulated data, which can be used to calibrate the lower-fidelity code. In this paper, we employ an information-theoretic framework to determine the reduction in parameter uncertainty that is obtained by evaluating the high-fidelity code at a specific set of design conditions. These conditions are chosen sequentially, based on the amount of information that they contribute to the low-fidelity model parameters. The goal is tomore » employ Bayesian experimental design techniques to minimize the number of high-fidelity code evaluations required to accurately calibrate the low-fidelity model. We illustrate the performance of this framework using heat and diffusion examples, a 1-D kinetic neutron diffusion equation, and a particle transport model, and include initial results from the integration of the high-fidelity thermal-hydraulics code Hydra-TH with a low-fidelity exponential model for the friction correlation factor.« less
Transport Test Problems for Hybrid Methods Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaver, Mark W.; Miller, Erin A.; Wittman, Richard S.
2011-12-28
This report presents 9 test problems to guide testing and development of hybrid calculations for the ADVANTG code at ORNL. These test cases can be used for comparing different types of radiation transport calculations, as well as for guiding the development of variance reduction methods. Cases are drawn primarily from existing or previous calculations with a preference for cases which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22.
Prompt Radiation Protection Factors
2018-02-01
dimensional Monte-Carlo radiation transport code MCNP (Monte Carlo N-Particle) and the evaluation of the protection factors (ratio of dose in the open to...radiation was performed using the three dimensional Monte- Carlo radiation transport code MCNP (Monte Carlo N-Particle) and the evaluation of the protection...by detonation of a nuclear device have placed renewed emphasis on evaluation of the consequences in case of such an event. The Defense Threat
Space Radiation Transport Codes: A Comparative Study for Galactic Cosmic Rays Environment
NASA Astrophysics Data System (ADS)
Tripathi, Ram; Wilson, John W.; Townsend, Lawrence W.; Gabriel, Tony; Pinsky, Lawrence S.; Slaba, Tony
For long duration and/or deep space human missions, protection from severe space radiation exposure is a challenging design constraint and may be a potential limiting factor. The space radiation environment consists of galactic cosmic rays (GCR), solar particle events (SPE), trapped radiation, and includes ions of all the known elements over a very broad energy range. These ions penetrate spacecraft materials producing nuclear fragments and secondary particles that damage biological tissues, microelectronic devices, and materials. In deep space missions, where the Earth's magnetic field does not provide protection from space radiation, the GCR environment is significantly enhanced due to the absence of geomagnetic cut-off and is a major component of radiation exposure. Accurate risk assessments critically depend on the accuracy of the input information as well as radiation transport codes used, and so systematic verification of codes is necessary. In this study, comparisons are made between the deterministic code HZETRN2006 and the Monte Carlo codes HETC-HEDS and FLUKA for an aluminum shield followed by a water target exposed to the 1977 solar minimum GCR spectrum. Interaction and transport of high charge ions present in GCR radiation environment provide a more stringent constraint in the comparison of the codes. Dose, dose equivalent and flux spectra are compared; details of the comparisons will be discussed, and conclusions will be drawn for future directions.
NASA Astrophysics Data System (ADS)
Jia, Shouqing; La, Dongsheng; Ma, Xuelian
2018-04-01
The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.
Approach to ignition of tokamak reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigmar, D.J.
1981-02-01
Recent transport modeling results for JET, INTOR, and ETF are reviewed and analyzed with respect to existing uncertainties in the underlying physics, the self-consistency of the very large numerical codes, and the margin for ignition. The codes show ignition to occur in ETF/INTOR-sized machines if empirical scaling can be extrapolated to ion temperatures (and beta values) much higher than those presently achieved, if there is no significant impurity accumulation over the first 7 s, and if the known ideal and resistive MHD instabilities remain controllable for the evolving plasma profiles during ignition startup.
Shielding Analyses for VISION Beam Line at SNS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popova, Irina; Gallmeier, Franz X
2014-01-01
Full-scale neutron and gamma transport analyses were performed to design shielding around the VISION beam line, instrument shielding enclosure, beam stop, secondary shutter including a temporary beam stop for the still closed neighboring beam line to meet requirement is to achieve dose rates below 0.25 mrem/h at 30 cm from the shielding surface. The beam stop and the temporary beam stop analyses were performed with the discrete ordinate code DORT additionally to Monte Carlo analyses with the MCNPX code. Comparison of the results is presented.
Transportation fuel research and development : statistically validated codes and standards
DOT National Transportation Integrated Search
2007-08-28
The recent establishment of the National University Transportation Center at MST under the "Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users," expands the research and education activities to include alternative tr...
Gyrokinetic Simulations of Transport Scaling and Structure
NASA Astrophysics Data System (ADS)
Hahm, Taik Soo
2001-10-01
There is accumulating evidence from global gyrokinetic particle simulations with profile variations and experimental fluctuation measurements that microturbulence, with its time-averaged eddy size which scales with the ion gyroradius, can cause ion thermal transport which deviates from the gyro-Bohm scaling. The physics here can be best addressed by large scale (rho* = rho_i/a = 0.001) full torus gyrokinetic particle-in-cell turbulence simulations using our massively parallel, general geometry gyrokinetic toroidal code with field-aligned mesh. Simulation results from device-size scans for realistic parameters show that ``wave transport'' mechanism is not the dominant contribution for this Bohm-like transport and that transport is mostly diffusive driven by microscopic scale fluctuations in the presence of self-generated zonal flows. In this work, we analyze the turbulence and zonal flow statistics from simulations and compare to nonlinear theoretical predictions including the radial decorrelation of the transport events by zonal flows and the resulting probability distribution function (PDF). In particular, possible deviation of the characteristic radial size of transport processes from the time-averaged radial size of the density fluctuation eddys will be critically examined.
Code of Federal Regulations, 2010 CFR
2010-01-01
... this part: (a) Air transportation means foreign air transportation or interstate air transportation as defined in 49 U.S.C. 40102 (a)(23) and (25) respectively. (b) Carrier means any air carrier or foreign air... scheduled passenger air transportation, including by wet lease. (c) Code-sharing arrangement means an...
[Development of a video image system for wireless capsule endoscopes based on DSP].
Yang, Li; Peng, Chenglin; Wu, Huafeng; Zhao, Dechun; Zhang, Jinhua
2008-02-01
A video image recorder to record video picture for wireless capsule endoscopes was designed. TMS320C6211 DSP of Texas Instruments Inc. is the core processor of this system. Images are periodically acquired from Composite Video Broadcast Signal (CVBS) source and scaled by video decoder (SAA7114H). Video data is transported from high speed buffer First-in First-out (FIFO) to Digital Signal Processor (DSP) under the control of Complex Programmable Logic Device (CPLD). This paper adopts JPEG algorithm for image coding, and the compressed data in DSP was stored to Compact Flash (CF) card. TMS320C6211 DSP is mainly used for image compression and data transporting. Fast Discrete Cosine Transform (DCT) algorithm and fast coefficient quantization algorithm are used to accelerate operation speed of DSP and decrease the executing code. At the same time, proper address is assigned for each memory, which has different speed;the memory structure is also optimized. In addition, this system uses plenty of Extended Direct Memory Access (EDMA) to transport and process image data, which results in stable and high performance.
Green's function methods in heavy ion shielding
NASA Technical Reports Server (NTRS)
Wilson, John W.; Costen, Robert C.; Shinn, Judy L.; Badavi, Francis F.
1993-01-01
An analytic solution to the heavy ion transport in terms of Green's function is used to generate a highly efficient computer code for space applications. The efficiency of the computer code is accomplished by a nonperturbative technique extending Green's function over the solution domain. The computer code can also be applied to accelerator boundary conditions to allow code validation in laboratory experiments.
A Green's function method for heavy ion beam transport
NASA Technical Reports Server (NTRS)
Shinn, J. L.; Wilson, J. W.; Schimmerling, W.; Shavers, M. R.; Miller, J.; Benton, E. V.; Frank, A. L.; Badavi, F. F.
1995-01-01
The use of Green's function has played a fundamental role in transport calculations for high-charge high-energy (HZE) ions. Two recent developments have greatly advanced the practical aspects of implementation of these methods. The first was the formulation of a closed-form solution as a multiple fragmentation perturbation series. The second was the effective summation of the closed-form solution through nonperturbative techniques. The nonperturbative methods have been recently extended to an inhomogeneous, two-layer transport media to simulate the lead scattering foil present in the Lawrence Berkeley Laboratories (LBL) biomedical beam line used for cancer therapy. Such inhomogeneous codes are necessary for astronaut shielding in space. The transport codes utilize the Langley Research Center atomic and nuclear database. Transport code and database evaluation are performed by comparison with experiments performed at the LBL Bevalac facility using 670 A MeV 20Ne and 600 A MeV 56Fe ion beams. The comparison with a time-of-flight and delta E detector measurement for the 20Ne beam and the plastic nuclear track detectors for 56Fe show agreement up to 35%-40% in water and aluminium targets, respectively.
Monte Carlo Analysis of Pion Contribution to Absorbed Dose from Galactic Cosmic Rays
NASA Technical Reports Server (NTRS)
Aghara, S.K.; Battnig, S.R.; Norbury, J.W.; Singleterry, R.C.
2009-01-01
Accurate knowledge of the physics of interaction, particle production and transport is necessary to estimate the radiation damage to equipment used on spacecraft and the biological effects of space radiation. For long duration astronaut missions, both on the International Space Station and the planned manned missions to Moon and Mars, the shielding strategy must include a comprehensive knowledge of the secondary radiation environment. The distribution of absorbed dose and dose equivalent is a function of the type, energy and population of these secondary products. Galactic cosmic rays (GCR) comprised of protons and heavier nuclei have energies from a few MeV per nucleon to the ZeV region, with the spectra reaching flux maxima in the hundreds of MeV range. Therefore, the MeV - GeV region is most important for space radiation. Coincidentally, the pion production energy threshold is about 280 MeV. The question naturally arises as to how important these particles are with respect to space radiation problems. The space radiation transport code, HZETRN (High charge (Z) and Energy TRaNsport), currently used by NASA, performs neutron, proton and heavy ion transport explicitly, but it does not take into account the production and transport of mesons, photons and leptons. In this paper, we present results from the Monte Carlo code MCNPX (Monte Carlo N-Particle eXtended), showing the effect of leptons and mesons when they are produced and transported in a GCR environment.
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Bass, E. M.; Heidbrink, W. W.; VanZeeland, M. A.
2015-11-01
Recent experiments with the DIII-D tilted neutral beam injection (NBI) varying the beam energetic particle (EP) source profiles have provided strong evidence that unstable Alfven eigenmodes (AE) drive stiff EP transport at a critical EP density gradient [Heidbrink et al 2013 Nucl. Fusion 53 093006]. Here the critical gradient is identified by the local AE growth rate being equal to the local ITG/TEM growth rate at the same low toroidal mode number. The growth rates are taken from the gyrokinetic code GYRO. Simulation show that the slowing down beam-like EP distribution has a slightly lower critical gradient than the Maxwellian. The ALPHA EP density transport code [Waltz and Bass 2014 Nucl. Fusion 54 104006], used to validate the model, combines the low-n stiff EP critical density gradient AE mid-core transport with the Angioni et al (2009 Nucl. Fusion 49 055013) energy independent high-n ITG/TEM density transport model controling the central core EP density profile. For the on-axis NBI heated DIII-D shot 146102, while the net loss to the edge is small, about half the birth fast ions are transported from the central core r/a < 0.5 and the central density is about half the slowing down density. These results are in good agreement with experimental fast ion pressure profiles inferred from MSE constrained EFIT equilibria.
Verification of Modelica-Based Models with Analytical Solutions for Tritium Diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rader, Jordan D.; Greenwood, Michael Scott; Humrickhouse, Paul W.
Here, tritium transport in metal and molten salt fluids combined with diffusion through high-temperature structural materials is an important phenomenon in both magnetic confinement fusion (MCF) and molten salt reactor (MSR) applications. For MCF, tritium is desirable to capture for fusion fuel. For MSRs, uncaptured tritium potentially can be released to the environment. In either application, quantifying the time- and space-dependent tritium concentration in the working fluid(s) and structural components is necessary.Whereas capability exists specifically for calculating tritium transport in such systems (e.g., using TMAP for fusion reactors), it is desirable to unify the calculation of tritium transport with othermore » system variables such as dynamic fluid and structure temperature combined with control systems such as those that might be found in a system code. Some capability for radioactive trace substance transport exists in thermal-hydraulic systems codes (e.g., RELAP5-3D); however, this capability is not coupled to species diffusion through solids. Combined calculations of tritium transport and thermal-hydraulic solution have been demonstrated with TRIDENT but only for a specific type of MSR.Researchers at Oak Ridge National Laboratory have developed a set of Modelica-based dynamic system modeling tools called TRANsient Simulation Framework Of Reconfigurable Models (TRANSFORM) that were used previously to model advanced fission reactors and associated systems. In this system, the augmented TRANSFORM library includes dynamically coupled fluid and solid trace substance transport and diffusion. Results from simulations are compared against analytical solutions for verification.« less
Verification of Modelica-Based Models with Analytical Solutions for Tritium Diffusion
Rader, Jordan D.; Greenwood, Michael Scott; Humrickhouse, Paul W.
2018-03-20
Here, tritium transport in metal and molten salt fluids combined with diffusion through high-temperature structural materials is an important phenomenon in both magnetic confinement fusion (MCF) and molten salt reactor (MSR) applications. For MCF, tritium is desirable to capture for fusion fuel. For MSRs, uncaptured tritium potentially can be released to the environment. In either application, quantifying the time- and space-dependent tritium concentration in the working fluid(s) and structural components is necessary.Whereas capability exists specifically for calculating tritium transport in such systems (e.g., using TMAP for fusion reactors), it is desirable to unify the calculation of tritium transport with othermore » system variables such as dynamic fluid and structure temperature combined with control systems such as those that might be found in a system code. Some capability for radioactive trace substance transport exists in thermal-hydraulic systems codes (e.g., RELAP5-3D); however, this capability is not coupled to species diffusion through solids. Combined calculations of tritium transport and thermal-hydraulic solution have been demonstrated with TRIDENT but only for a specific type of MSR.Researchers at Oak Ridge National Laboratory have developed a set of Modelica-based dynamic system modeling tools called TRANsient Simulation Framework Of Reconfigurable Models (TRANSFORM) that were used previously to model advanced fission reactors and associated systems. In this system, the augmented TRANSFORM library includes dynamically coupled fluid and solid trace substance transport and diffusion. Results from simulations are compared against analytical solutions for verification.« less
1978-01-01
complex, applications of the code . NASCAP CODE DESCRIPTION The NASCAP code is a finite-element spacecraft-charging simulation that is written in FORTRAN ...transport code POEM (ref. 1), is applicable to arbitrary dielectrics, source spectra, and current time histories. The code calculations are illustrated by...iaxk ’. Vlbouced _DstributionL- 9TNA Availability Codes %ELECTEf Nationa Aeronautics and Dist. Spec al TAvalland/or. MAY 2 21980 Space Administration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behafarid, F.; Shaver, D. R.; Bolotnov, I. A.
The required technological and safety standards for future Gen IV Reactors can only be achieved if advanced simulation capabilities become available, which combine high performance computing with the necessary level of modeling detail and high accuracy of predictions. The purpose of this paper is to present new results of multi-scale three-dimensional (3D) simulations of the inter-related phenomena, which occur as a result of fuel element heat-up and cladding failure, including the injection of a jet of gaseous fission products into a partially blocked Sodium Fast Reactor (SFR) coolant channel, and gas/molten sodium transport along the coolant channels. The computational approachmore » to the analysis of the overall accident scenario is based on using two different inter-communicating computational multiphase fluid dynamics (CMFD) codes: a CFD code, PHASTA, and a RANS code, NPHASE-CMFD. Using the geometry and time history of cladding failure and the gas injection rate, direct numerical simulations (DNS), combined with the Level Set method, of two-phase turbulent flow have been performed by the PHASTA code. The model allows one to track the evolution of gas/liquid interfaces at a centimeter scale. The simulated phenomena include the formation and breakup of the jet of fission products injected into the liquid sodium coolant. The PHASTA outflow has been averaged over time to obtain mean phasic velocities and volumetric concentrations, as well as the liquid turbulent kinetic energy and turbulence dissipation rate, all of which have served as the input to the core-scale simulations using the NPHASE-CMFD code. A sliding window time averaging has been used to capture mean flow parameters for transient cases. The results presented in the paper include testing and validation of the proposed models, as well the predictions of fission-gas/liquid-sodium transport along a multi-rod fuel assembly of SFR during a partial loss-of-flow accident. (authors)« less
Linear energy transfer in water phantom within SHIELD-HIT transport code
NASA Astrophysics Data System (ADS)
Ergun, A.; Sobolevsky, N.; Botvina, A. S.; Buyukcizmeci, N.; Latysheva, L.; Ogul, R.
2017-02-01
The effect of irradiation in tissue is important in hadron therapy for the dose measurement and treatment planning. This biological effect is defined by an equivalent dose H which depends on the Linear Energy Transfer (LET). Usually, H can be expressed in terms of the absorbed dose D and the quality factor K of the radiation under consideration. In literature, various types of transport codes have been used for modeling and simulation of the interaction of the beams of protons and heavier ions with tissue-equivalent materials. In this presentation we used SHIELD-HIT code to simulate decomposition of the absorbed dose by LET in water for 16O beams. A more detailed description of capabilities of the SHIELD-HIT code can be found in the literature.
Overview of Edge Simulation Laboratory (ESL)
NASA Astrophysics Data System (ADS)
Cohen, R. H.; Dorr, M.; Hittinger, J.; Rognlien, T.; Umansky, M.; Xiong, A.; Xu, X.; Belli, E.; Candy, J.; Snyder, P.; Colella, P.; Martin, D.; Sternberg, T.; van Straalen, B.; Bodi, K.; Krasheninnikov, S.
2006-10-01
The ESL is a new collaboration to build a full-f electromagnetic gyrokinetic code for tokamak edge plasmas using continuum methods. Target applications are edge turbulence and transport (neoclassical and anomalous), and edge-localized modes. Initially the project has three major threads: (i) verification and validation of TEMPEST, the project's initial (electrostatic) edge code which can be run in 4D (neoclassical and transport-timescale applications) or 5D (turbulence); (ii) design of the next generation code, which will include more complete physics (electromagnetics, fluid equation option, improved collisions) and advanced numerics (fully conservative, high-order discretization, mapped multiblock grids, adaptivity), and (iii) rapid-prototype codes to explore the issues attached to solving fully nonlinear gyrokinetics with steep radial gradiens. We present a brief summary of the status of each of these activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naqvi, S
2014-06-15
Purpose: Most medical physics programs emphasize proficiency in routine clinical calculations and QA. The formulaic aspect of these calculations and prescriptive nature of measurement protocols obviate the need to frequently apply basic physical principles, which, therefore, gradually decay away from memory. E.g. few students appreciate the role of electron transport in photon dose, making it difficult to understand key concepts such as dose buildup, electronic disequilibrium effects and Bragg-Gray theory. These conceptual deficiencies manifest when the physicist encounters a new system, requiring knowledge beyond routine activities. Methods: Two interactive computer simulation tools are developed to facilitate deeper learning of physicalmore » principles. One is a Monte Carlo code written with a strong educational aspect. The code can “label” regions and interactions to highlight specific aspects of the physics, e.g., certain regions can be designated as “starters” or “crossers,” and any interaction type can be turned on and off. Full 3D tracks with specific portions highlighted further enhance the visualization of radiation transport problems. The second code calculates and displays trajectories of a collection electrons under arbitrary space/time dependent Lorentz force using relativistic kinematics. Results: Using the Monte Carlo code, the student can interactively study photon and electron transport through visualization of dose components, particle tracks, and interaction types. The code can, for instance, be used to study kerma-dose relationship, explore electronic disequilibrium near interfaces, or visualize kernels by using interaction forcing. The electromagnetic simulator enables the student to explore accelerating mechanisms and particle optics in devices such as cyclotrons and linacs. Conclusion: The proposed tools are designed to enhance understanding of abstract concepts by highlighting various aspects of the physics. The simulations serve as virtual experiments that give deeper and long lasting understanding of core principles. The student can then make sound judgements in novel situations encountered beyond routine clinical activities.« less
NASA Astrophysics Data System (ADS)
Fensin, Michael Lorne
Monte Carlo-linked depletion methods have gained recent interest due to the ability to more accurately model complex 3-dimesional geometries and better track the evolution of temporal nuclide inventory by simulating the actual physical process utilizing continuous energy coefficients. The integration of CINDER90 into the MCNPX Monte Carlo radiation transport code provides a high-fidelity completely self-contained Monte-Carlo-linked depletion capability in a well established, widely accepted Monte Carlo radiation transport code that is compatible with most nuclear criticality (KCODE) particle tracking features in MCNPX. MCNPX depletion tracks all necessary reaction rates and follows as many isotopes as cross section data permits in order to achieve a highly accurate temporal nuclide inventory solution. This work chronicles relevant nuclear history, surveys current methodologies of depletion theory, details the methodology in applied MCNPX and provides benchmark results for three independent OECD/NEA benchmarks. Relevant nuclear history, from the Oklo reactor two billion years ago to the current major United States nuclear fuel cycle development programs, is addressed in order to supply the motivation for the development of this technology. A survey of current reaction rate and temporal nuclide inventory techniques is then provided to offer justification for the depletion strategy applied within MCNPX. The MCNPX depletion strategy is then dissected and each code feature is detailed chronicling the methodology development from the original linking of MONTEBURNS and MCNP to the most recent public release of the integrated capability (MCNPX 2.6.F). Calculation results of the OECD/NEA Phase IB benchmark, H. B. Robinson benchmark and OECD/NEA Phase IVB are then provided. The acceptable results of these calculations offer sufficient confidence in the predictive capability of the MCNPX depletion method. This capability sets up a significant foundation, in a well established and supported radiation transport code, for further development of a Monte Carlo-linked depletion methodology which is essential to the future development of advanced reactor technologies that exceed the limitations of current deterministic based methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Wei; Petrosian, Vahe; Mariska, John T.
2009-09-10
Acceleration and transport of high-energy particles and fluid dynamics of atmospheric plasma are interrelated aspects of solar flares, but for convenience and simplicity they were artificially separated in the past. We present here self-consistently combined Fokker-Planck modeling of particles and hydrodynamic simulation of flare plasma. Energetic electrons are modeled with the Stanford unified code of acceleration, transport, and radiation, while plasma is modeled with the Naval Research Laboratory flux tube code. We calculated the collisional heating rate directly from the particle transport code, which is more accurate than those in previous studies based on approximate analytical solutions. We repeated themore » simulation of Mariska et al. with an injection of power law, downward-beamed electrons using the new heating rate. For this case, a {approx}10% difference was found from their old result. We also used a more realistic spectrum of injected electrons provided by the stochastic acceleration model, which has a smooth transition from a quasi-thermal background at low energies to a nonthermal tail at high energies. The inclusion of low-energy electrons results in relatively more heating in the corona (versus chromosphere) and thus a larger downward heat conduction flux. The interplay of electron heating, conduction, and radiative loss leads to stronger chromospheric evaporation than obtained in previous studies, which had a deficit in low-energy electrons due to an arbitrarily assumed low-energy cutoff. The energy and spatial distributions of energetic electrons and bremsstrahlung photons bear signatures of the changing density distribution caused by chromospheric evaporation. In particular, the density jump at the evaporation front gives rise to enhanced emission, which, in principle, can be imaged by X-ray telescopes. This model can be applied to investigate a variety of high-energy processes in solar, space, and astrophysical plasmas.« less
22 CFR 228.22 - Air transportation.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Air transportation. 228.22 Section 228.22... § 228.22 Air transportation. The Fly America Act, Title 49 of the United States Code, Subtitle VII, part A, subpart I, Chapter 401, 40118—Government-Financed Air Transportation, is applicable to all...
22 CFR 228.22 - Air transportation.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Air transportation. 228.22 Section 228.22... § 228.22 Air transportation. The Fly America Act, Title 49 of the United States Code, Subtitle VII, part A, subpart I, Chapter 401, 40118—Government-Financed Air Transportation, is applicable to all...
22 CFR 228.22 - Air transportation.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Air transportation. 228.22 Section 228.22... § 228.22 Air transportation. The Fly America Act, Title 49 of the United States Code, Subtitle VII, part A, subpart I, Chapter 401, 40118—Government-Financed Air Transportation, is applicable to all...
Development of the V4.2m5 and V5.0m0 Multigroup Cross Section Libraries for MPACT for PWR and BWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kang Seog; Clarno, Kevin T.; Gentry, Cole
2017-03-01
The MPACT neutronics module of the Consortium for Advanced Simulation of Light Water Reactors (CASL) core simulator is a 3-D whole core transport code being developed for the CASL toolset, Virtual Environment for Reactor Analysis (VERA). Key characteristics of the MPACT code include (1) a subgroup method for resonance selfshielding and (2) a whole-core transport solver with a 2-D/1-D synthesis method. The MPACT code requires a cross section library to support all the MPACT core simulation capabilities which would be the most influencing component for simulation accuracy.
Code of Federal Regulations, 2013 CFR
2013-01-01
... hermetically sealed containers; closures; code marking; heat processing; incubation. 355.25 Section 355.25... processing and hermetically sealed containers; closures; code marking; heat processing; incubation. (a... storage and transportation as evidenced by the incubation test. (h) Lots of canned products shall be...
Code of Federal Regulations, 2012 CFR
2012-01-01
... hermetically sealed containers; closures; code marking; heat processing; incubation. 355.25 Section 355.25... processing and hermetically sealed containers; closures; code marking; heat processing; incubation. (a... storage and transportation as evidenced by the incubation test. (h) Lots of canned products shall be...
Code of Federal Regulations, 2011 CFR
2011-01-01
... hermetically sealed containers; closures; code marking; heat processing; incubation. 355.25 Section 355.25... processing and hermetically sealed containers; closures; code marking; heat processing; incubation. (a... storage and transportation as evidenced by the incubation test. (h) Lots of canned products shall be...
Code of Federal Regulations, 2014 CFR
2014-01-01
... hermetically sealed containers; closures; code marking; heat processing; incubation. 355.25 Section 355.25... processing and hermetically sealed containers; closures; code marking; heat processing; incubation. (a... storage and transportation as evidenced by the incubation test. (h) Lots of canned products shall be...
Code of Federal Regulations, 2010 CFR
2010-01-01
... hermetically sealed containers; closures; code marking; heat processing; incubation. 355.25 Section 355.25... processing and hermetically sealed containers; closures; code marking; heat processing; incubation. (a... storage and transportation as evidenced by the incubation test. (h) Lots of canned products shall be...
30 CFR 56.19096 - Familiarity with signal code.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Familiarity with signal code. 56.19096 Section... Hoisting Signaling § 56.19096 Familiarity with signal code. Any person responsible for receiving or giving signals for cages, skips, and mantrips when persons or materials are being transported shall be familiar...
30 CFR 57.19096 - Familiarity with signal code.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Familiarity with signal code. 57.19096 Section... Hoisting Signaling § 57.19096 Familiarity with signal code. Any person reponsible for receiving or giving signals for cages, skips, and mantrips when persons or materials are being transported shall be familiar...
49 CFR 173.52 - Classification codes and compatibility groups of explosives.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Classification codes and compatibility groups of... Class 1 § 173.52 Classification codes and compatibility groups of explosives. (a) The classification..., consists of the division number followed by the compatibility group letter. Compatibility group letters are...
30 CFR 56.19096 - Familiarity with signal code.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Familiarity with signal code. 56.19096 Section... Hoisting Signaling § 56.19096 Familiarity with signal code. Any person responsible for receiving or giving signals for cages, skips, and mantrips when persons or materials are being transported shall be familiar...
30 CFR 56.19096 - Familiarity with signal code.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Familiarity with signal code. 56.19096 Section... Hoisting Signaling § 56.19096 Familiarity with signal code. Any person responsible for receiving or giving signals for cages, skips, and mantrips when persons or materials are being transported shall be familiar...
30 CFR 57.19096 - Familiarity with signal code.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Familiarity with signal code. 57.19096 Section... Hoisting Signaling § 57.19096 Familiarity with signal code. Any person reponsible for receiving or giving signals for cages, skips, and mantrips when persons or materials are being transported shall be familiar...
30 CFR 57.19096 - Familiarity with signal code.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Familiarity with signal code. 57.19096 Section... Hoisting Signaling § 57.19096 Familiarity with signal code. Any person reponsible for receiving or giving signals for cages, skips, and mantrips when persons or materials are being transported shall be familiar...
30 CFR 57.19096 - Familiarity with signal code.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Familiarity with signal code. 57.19096 Section... Hoisting Signaling § 57.19096 Familiarity with signal code. Any person reponsible for receiving or giving signals for cages, skips, and mantrips when persons or materials are being transported shall be familiar...
30 CFR 56.19096 - Familiarity with signal code.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Familiarity with signal code. 56.19096 Section... Hoisting Signaling § 56.19096 Familiarity with signal code. Any person responsible for receiving or giving signals for cages, skips, and mantrips when persons or materials are being transported shall be familiar...
Radiation analysis for manned missions to the Jupiter system
NASA Technical Reports Server (NTRS)
De Angelis, G.; Clowdsley, M. S.; Nealy, J. E.; Tripathi, R. K.; Wilson, J. W.
2004-01-01
An analysis for manned missions targeted to the Jovian system has been performed in the framework of the NASA RASC (Revolutionary Aerospace Systems Concepts) program on Human Exploration beyond Mars. The missions were targeted to the Jupiter satellite Callisto. The mission analysis has been divided into three main phases, namely the interplanetary cruise, the Jupiter orbital insertion, and the surface landing and exploration phases. The interplanetary phase is based on departure from the Earth-Moon L1 point. Interplanetary trajectories based on the use of different propulsion systems have been considered, with resulting overall cruise phase duration varying between two and five years. The Jupiter-approach and the orbital insertion trajectories are considered in detail, with the spacecraft crossing the Jupiter radiation belts and staying around the landing target. In the surface exploration phase the stay on the Callisto surface is considered. The satellite surface composition has been modeled based on the most recent results from the GALILEO spacecraft. In the transport computations the surface backscattering has been duly taken into account. Particle transport has been performed with the HZETRN heavy ion code for hadrons and with an in-house developed transport code for electrons and bremsstrahlung photons. The obtained doses have been compared to dose exposure limits. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Radiation analysis for manned missions to the Jupiter system.
De Angelis, G; Clowdsley, M S; Nealy, J E; Tripathi, R K; Wilson, J W
2004-01-01
An analysis for manned missions targeted to the Jovian system has been performed in the framework of the NASA RASC (Revolutionary Aerospace Systems Concepts) program on Human Exploration beyond Mars. The missions were targeted to the Jupiter satellite Callisto. The mission analysis has been divided into three main phases, namely the interplanetary cruise, the Jupiter orbital insertion, and the surface landing and exploration phases. The interplanetary phase is based on departure from the Earth-Moon L1 point. Interplanetary trajectories based on the use of different propulsion systems have been considered, with resulting overall cruise phase duration varying between two and five years. The Jupiter-approach and the orbital insertion trajectories are considered in detail, with the spacecraft crossing the Jupiter radiation belts and staying around the landing target. In the surface exploration phase the stay on the Callisto surface is considered. The satellite surface composition has been modeled based on the most recent results from the GALILEO spacecraft. In the transport computations the surface backscattering has been duly taken into account. Particle transport has been performed with the HZETRN heavy ion code for hadrons and with an in-house developed transport code for electrons and bremsstrahlung photons. The obtained doses have been compared to dose exposure limits. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
RADTRAD: A simplified model for RADionuclide Transport and Removal And Dose estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphreys, S.L.; Miller, L.A.; Monroe, D.K.
1998-04-01
This report documents the RADTRAD computer code developed for the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Reactor Regulation (NRR) to estimate transport and removal of radionuclides and dose at selected receptors. The document includes a users` guide to the code, a description of the technical basis for the code, the quality assurance and code acceptance testing documentation, and a programmers` guide. The RADTRAD code can be used to estimate the containment release using either the NRC TID-14844 or NUREG-1465 source terms and assumptions, or a user-specified table. In addition, the code can account for a reduction in themore » quantity of radioactive material due to containment sprays, natural deposition, filters, and other natural and engineered safety features. The RADTRAD code uses a combination of tables and/or numerical models of source term reduction phenomena to determine the time-dependent dose at user-specified locations for a given accident scenario. The code system also provides the inventory, decay chain, and dose conversion factor tables needed for the dose calculation. The RADTRAD code can be used to assess occupational radiation exposures, typically in the control room; to estimate site boundary doses; and to estimate dose attenuation due to modification of a facility or accident sequence.« less
Implementation of the reduced charge state method of calculating impurity transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crume, E.C. Jr.; Arnurius, D.E.
1982-07-01
A recent review article by Hirshman and Sigmar includes expressions needed to calculate the parallel friction coefficients, the essential ingredients of the plateau-Pfirsch-Schluter transport coefficients, using the method of reduced charge states. These expressions have been collected and an expanded notation introduced in some cases to facilitate differentiation between reduced charge state and full charge state quantities. A form of the Coulomb logarithm relevant to the method of reduced charge states is introduced. This method of calculating the f/sub ij//sup ab/ has been implemented in the impurity transport simulation code IMPTAR and has resulted in an overall reduction in computationmore » time of approximately 25% for a typical simulation of impurity transport in the Impurity Study Experiment (ISX-B). Results obtained using this treatment are almost identical to those obtained using an earlier approximate theory of Hirshman.« less
Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code.
Yoriyaz, H; dos Santos, A; Stabin, M G; Cabezas, R
2000-07-01
A new approach for calculating internal dose estimates was developed through the use of a more realistic computational model of the human body. The present technique shows the capability to build a patient-specific phantom with tomography data (a voxel-based phantom) for the simulation of radiation transport and energy deposition using Monte Carlo methods such as in the MCNP-4B code. MCNP-4B absorbed fractions for photons in the mathematical phantom of Snyder et al. agreed well with reference values. Results obtained through radiation transport simulation in the voxel-based phantom, in general, agreed well with reference values. Considerable discrepancies, however, were found in some cases due to two major causes: differences in the organ masses between the phantoms and the occurrence of organ overlap in the voxel-based phantom, which is not considered in the mathematical phantom.
Development and validation of a GEANT4 radiation transport code for CT dosimetry
Carver, DE; Kost, SD; Fernald, MJ; Lewis, KG; Fraser, ND; Pickens, DR; Price, RR; Stabin, MG
2014-01-01
We have created a radiation transport code using the GEANT4 Monte Carlo toolkit to simulate pediatric patients undergoing CT examinations. The focus of this paper is to validate our simulation with real-world physical dosimetry measurements using two independent techniques. Exposure measurements were made with a standard 100-mm CT pencil ionization chamber, and absorbed doses were also measured using optically stimulated luminescent (OSL) dosimeters. Measurements were made in air, a standard 16-cm acrylic head phantom, and a standard 32-cm acrylic body phantom. Physical dose measurements determined from the ionization chamber in air for 100 and 120 kVp beam energies were used to derive photon-fluence calibration factors. Both ion chamber and OSL measurement results provide useful comparisons in the validation of our Monte Carlo simulations. We found that simulated and measured CTDI values were within an overall average of 6% of each other. PMID:25706135
Development and validation of a GEANT4 radiation transport code for CT dosimetry.
Carver, D E; Kost, S D; Fernald, M J; Lewis, K G; Fraser, N D; Pickens, D R; Price, R R; Stabin, M G
2015-04-01
The authors have created a radiation transport code using the GEANT4 Monte Carlo toolkit to simulate pediatric patients undergoing CT examinations. The focus of this paper is to validate their simulation with real-world physical dosimetry measurements using two independent techniques. Exposure measurements were made with a standard 100-mm CT pencil ionization chamber, and absorbed doses were also measured using optically stimulated luminescent (OSL) dosimeters. Measurements were made in air with a standard 16-cm acrylic head phantom and with a standard 32-cm acrylic body phantom. Physical dose measurements determined from the ionization chamber in air for 100 and 120 kVp beam energies were used to derive photon-fluence calibration factors. Both ion chamber and OSL measurement results provide useful comparisons in the validation of the Monte Carlo simulations. It was found that simulated and measured CTDI values were within an overall average of 6% of each other.
Schwab, Stefan; Ramos, Humberto J; Souza, Emanuel M; Pedrosa, Fábio O; Yates, Marshall G; Chubatsu, Leda S; Rigo, Liu U
2007-05-01
Random mutagenesis using transposons with promoterless reporter genes has been widely used to examine differential gene expression patterns in bacteria. Using this approach, we have identified 26 genes of the endophytic nitrogen-fixing bacterium Herbaspirillum seropedicae regulated in response to ammonium content in the growth medium. These include nine genes involved in the transport of nitrogen compounds, such as the high-affinity ammonium transporter AmtB, and uptake systems for alternative nitrogen sources; nine genes coding for proteins responsible for restoring intracellular ammonium levels through enzymatic reactions, such as nitrogenase, amidase, and arginase; and a third group includes metabolic switch genes, coding for sensor kinases or transcription regulation factors, whose role in metabolism was previously unknown. Also, four genes identified were of unknown function. This paper describes their involvement in response to ammonium limitation. The results provide a preliminary profile of the metabolic response of Herbaspirillum seropedicae to ammonium stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Guoyong; Budny, Robert; Gorelenkov, Nikolai
We report here the work done for the FY14 OFES Theory Performance Target as given below: "Understanding alpha particle confinement in ITER, the world's first burning plasma experiment, is a key priority for the fusion program. In FY 2014, determine linear instability trends and thresholds of energetic particle-driven shear Alfven eigenmodes in ITER for a range of parameters and profiles using a set of complementary simulation models (gyrokinetic, hybrid, and gyrofluid). Carry out initial nonlinear simulations to assess the effects of the unstable modes on energetic particle transport". In the past year (FY14), a systematic study of the alpha-driven Alfvenmore » modes in ITER has been carried out jointly by researchers from six institutions involving seven codes including the transport simulation code TRANSP (R. Budny and F. Poli, PPPL), three gyrokinetic codes: GEM (Y. Chen, Univ. of Colorado), GTC (J. McClenaghan, Z. Lin, UCI), and GYRO (E. Bass, R. Waltz, UCSD/GA), the hybrid code M3D-K (G.Y. Fu, PPPL), the gyro-fluid code TAEFL (D. Spong, ORNL), and the linear kinetic stability code NOVA-K (N. Gorelenkov, PPPL). A range of ITER parameters and profiles are specified by TRANSP simulation of a hybrid scenario case and a steady-state scenario case. Based on the specified ITER equilibria linear stability calculations are done to determine the stability boundary of alpha-driven high-n TAEs using the five initial value codes (GEM, GTC, GYRO, M3D-K, and TAEFL) and the kinetic stability code (NOVA-K). Both the effects of alpha particles and beam ions have been considered. Finally, the effects of the unstable modes on energetic particle transport have been explored using GEM and M3D-K.« less
Development of MCNPX-ESUT computer code for simulation of neutron/gamma pulse height distribution
NASA Astrophysics Data System (ADS)
Abolfazl Hosseini, Seyed; Vosoughi, Naser; Zangian, Mehdi
2015-05-01
In this paper, the development of the MCNPX-ESUT (MCNPX-Energy Engineering of Sharif University of Technology) computer code for simulation of neutron/gamma pulse height distribution is reported. Since liquid organic scintillators like NE-213 are well suited and routinely used for spectrometry in mixed neutron/gamma fields, this type of detectors is selected for simulation in the present study. The proposed algorithm for simulation includes four main steps. The first step is the modeling of the neutron/gamma particle transport and their interactions with the materials in the environment and detector volume. In the second step, the number of scintillation photons due to charged particles such as electrons, alphas, protons and carbon nuclei in the scintillator material is calculated. In the third step, the transport of scintillation photons in the scintillator and lightguide is simulated. Finally, the resolution corresponding to the experiment is considered in the last step of the simulation. Unlike the similar computer codes like SCINFUL, NRESP7 and PHRESP, the developed computer code is applicable to both neutron and gamma sources. Hence, the discrimination of neutron and gamma in the mixed fields may be performed using the MCNPX-ESUT computer code. The main feature of MCNPX-ESUT computer code is that the neutron/gamma pulse height simulation may be performed without needing any sort of post processing. In the present study, the pulse height distributions due to a monoenergetic neutron/gamma source in NE-213 detector using MCNPX-ESUT computer code is simulated. The simulated neutron pulse height distributions are validated through comparing with experimental data (Gohil et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 664 (2012) 304-309.) and the results obtained from similar computer codes like SCINFUL, NRESP7 and Geant4. The simulated gamma pulse height distribution for a 137Cs source is also compared with the experimental data.
Weatherill, D.; Simmons, C.T.; Voss, C.I.; Robinson, N.I.
2004-01-01
This study proposes the use of several problems of unstable steady state convection with variable fluid density in a porous layer of infinite horizontal extent as two-dimensional (2-D) test cases for density-dependent groundwater flow and solute transport simulators. Unlike existing density-dependent model benchmarks, these problems have well-defined stability criteria that are determined analytically. These analytical stability indicators can be compared with numerical model results to test the ability of a code to accurately simulate buoyancy driven flow and diffusion. The basic analytical solution is for a horizontally infinite fluid-filled porous layer in which fluid density decreases with depth. The proposed test problems include unstable convection in an infinite horizontal box, in a finite horizontal box, and in an infinite inclined box. A dimensionless Rayleigh number incorporating properties of the fluid and the porous media determines the stability of the layer in each case. Testing the ability of numerical codes to match both the critical Rayleigh number at which convection occurs and the wavelength of convection cells is an addition to the benchmark problems currently in use. The proposed test problems are modelled in 2-D using the SUTRA [SUTRA-A model for saturated-unsaturated variable-density ground-water flow with solute or energy transport. US Geological Survey Water-Resources Investigations Report, 02-4231, 2002. 250 p] density-dependent groundwater flow and solute transport code. For the case of an infinite horizontal box, SUTRA results show a distinct change from stable to unstable behaviour around the theoretical critical Rayleigh number of 4??2 and the simulated wavelength of unstable convection agrees with that predicted by the analytical solution. The effects of finite layer aspect ratio and inclination on stability indicators are also tested and numerical results are in excellent agreement with theoretical stability criteria and with numerical results previously reported in traditional fluid mechanics literature. ?? 2004 Elsevier Ltd. All rights reserved.
Projectile and Lab Frame Differential Cross Sections for Electromagnetic Dissociation
NASA Technical Reports Server (NTRS)
Norbury, John W.; Adamczyk, Anne; Dick, Frank
2008-01-01
Differential cross sections for electromagnetic dissociation in nuclear collisions are calculated for the first time. In order to be useful for three - dimensional transport codes, these cross sections have been calculated in both the projectile and lab frames. The formulas for these cross sections are such that they can be immediately used in space radiation transport codes. Only a limited amount of data exists, but the comparison between theory and experiment is good.
NASA Technical Reports Server (NTRS)
Albert, Mary R.
2012-01-01
Dr. Albert's current research is centered on transfer processes in porous media, including air-snow exchange in the Polar Regions and in soils in temperate areas. Her research includes field measurements, laboratory experiments, and theoretical modeling. Mary conducts field and laboratory measurements of the physical properties of natural terrain surfaces, including permeability, microstructure, and thermal conductivity. Mary uses the measurements to examine the processes of diffusion and advection of heat, mass, and chemical transport through snow and other porous media. She has developed numerical models for investigation of a variety of problems, from interstitial transport to freezing of flowing liquids. These models include a two-dimensional finite element code for air flow with heat, water vapor, and chemical transport in porous media, several multidimensional codes for diffusive transfer, as well as a computational fluid dynamics code for analysis of turbulent water flow in moving-boundary phase change problems.
NASA Astrophysics Data System (ADS)
Grosskopf, M. J.; Drake, R. P.; Trantham, M. R.; Kuranz, C. C.; Keiter, P. A.; Rutter, E. M.; Sweeney, R. M.; Malamud, G.
2012-10-01
The radiation hydrodynamics code developed by the Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan has been used to model experimental designs for high-energy-density physics campaigns on OMEGA and other high-energy laser facilities. This code is an Eulerian, block-adaptive AMR hydrodynamics code with implicit multigroup radiation transport and electron heat conduction. CRASH model results have shown good agreement with a experimental results from a variety of applications, including: radiative shock, Kelvin-Helmholtz and Rayleigh-Taylor experiments on the OMEGA laser; as well as laser-driven ablative plumes in experiments by the Astrophysical Collisionless Shocks Experiments with Lasers (ACSEL), collaboration. We report a series of results with the CRASH code in support of design work for upcoming high-energy-density physics experiments, as well as comparison between existing experimental data and simulation results. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.
A new Monte Carlo code for light transport in biological tissue.
Torres-García, Eugenio; Oros-Pantoja, Rigoberto; Aranda-Lara, Liliana; Vieyra-Reyes, Patricia
2018-04-01
The aim of this work was to develop an event-by-event Monte Carlo code for light transport (called MCLTmx) to identify and quantify ballistic, diffuse, and absorbed photons, as well as their interaction coordinates inside the biological tissue. The mean free path length was computed between two interactions for scattering or absorption processes, and if necessary scatter angles were calculated, until the photon disappeared or went out of region of interest. A three-layer array (air-tissue-air) was used, forming a semi-infinite sandwich. The light source was placed at (0,0,0), emitting towards (0,0,1). The input data were: refractive indices, target thickness (0.02, 0.05, 0.1, 0.5, and 1 cm), number of particle histories, and λ from which the code calculated: anisotropy, scattering, and absorption coefficients. Validation presents differences less than 0.1% compared with that reported in the literature. The MCLTmx code discriminates between ballistic and diffuse photons, and inside of biological tissue, it calculates: specular reflection, diffuse reflection, ballistics transmission, diffuse transmission and absorption, and all parameters dependent on wavelength and thickness. The MCLTmx code can be useful for light transport inside any medium by changing the parameters that describe the new medium: anisotropy, dispersion and attenuation coefficients, and refractive indices for specific wavelength.
Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Benjamin, E-mail: collinsbs@ornl.gov; Stimpson, Shane, E-mail: stimpsonsg@ornl.gov; Kelley, Blake W., E-mail: kelleybl@umich.edu
2016-12-01
A consistent “2D/1D” neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-classmore » computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.« less
Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT
Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; ...
2016-08-25
We derived a consistent “2D/1D” neutron transport method from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. Our paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. We also performed several applications on both leadership-class and industry-classmore » computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.« less
Voss, Clifford I.; Provost, A.M.
2002-01-01
SUTRA (Saturated-Unsaturated Transport) is a computer program that simulates fluid movement and the transport of either energy or dissolved substances in a subsurface environment. This upgraded version of SUTRA adds the capability for three-dimensional simulation to the former code (Voss, 1984), which allowed only two-dimensional simulation. The code employs a two- or three-dimensional finite-element and finite-difference method to approximate the governing equations that describe the two interdependent processes that are simulated: 1) fluid density-dependent saturated or unsaturated ground-water flow; and 2) either (a) transport of a solute in the ground water, in which the solute may be subject to: equilibrium adsorption on the porous matrix, and both first-order and zero-order production or decay; or (b) transport of thermal energy in the ground water and solid matrix of the aquifer. SUTRA may also be used to simulate simpler subsets of the above processes. A flow-direction-dependent dispersion process for anisotropic media is also provided by the code and is introduced in this report. As the primary calculated result, SUTRA provides fluid pressures and either solute concentrations or temperatures, as they vary with time, everywhere in the simulated subsurface system. SUTRA flow simulation may be employed for two-dimensional (2D) areal, cross sectional and three-dimensional (3D) modeling of saturated ground-water flow systems, and for cross sectional and 3D modeling of unsaturated zone flow. Solute-transport simulation using SUTRA may be employed to model natural or man-induced chemical-species transport including processes of solute sorption, production, and decay. For example, it may be applied to analyze ground-water contaminant transport problems and aquifer restoration designs. In addition, solute-transport simulation with SUTRA may be used for modeling of variable-density leachate movement, and for cross sectional modeling of saltwater intrusion in aquifers at near-well or regional scales, with either dispersed or relatively sharp transition zones between freshwater and saltwater. SUTRA energy-transport simulation may be employed to model thermal regimes in aquifers, subsurface heat conduction, aquifer thermal-energy storage systems, geothermal reservoirs, thermal pollution of aquifers, and natural hydrogeologic convection systems. Mesh construction, which is quite flexible for arbitrary geometries, employs quadrilateral finite elements in 2D Cartesian or radial-cylindrical coordinate systems, and hexahedral finite elements in 3D systems. 3D meshes are currently restricted to be logically rectangular; in other words, they are similar to deformable finite-difference-style grids. Permeabilities may be anisotropic and may vary in both direction and magnitude throughout the system, as may most other aquifer and fluid properties. Boundary conditions, sources and sinks may be time dependent. A number of input data checks are made to verify the input data set. An option is available for storing intermediate results and restarting a simulation at the intermediate time. Output options include fluid velocities, fluid mass and solute mass or energy budgets, and time-varying observations at points in the system. Both the mathematical basis for SUTRA and the program structure are highly general, and are modularized to allow for straightforward addition of new methods or processes to the simulation. The FORTRAN-90 coding stresses clarity and modularity rather than efficiency, providing easy access for later modifications.
2nd-Order CESE Results For C1.4: Vortex Transport by Uniform Flow
NASA Technical Reports Server (NTRS)
Friedlander, David J.
2015-01-01
The Conservation Element and Solution Element (CESE) method was used as implemented in the NASA research code ez4d. The CESE method is a time accurate formulation with flux-conservation in both space and time. The method treats the discretized derivatives of space and time identically and while the 2nd-order accurate version was used, high-order versions exist, the 2nd-order accurate version was used. In regards to the ez4d code, it is an unstructured Navier-Stokes solver coded in C++ with serial and parallel versions available. As part of its architecture, ez4d has the capability to utilize multi-thread and Messaging Passage Interface (MPI) for parallel runs.
Comparison of FDNS liquid rocket engine plume computations with SPF/2
NASA Technical Reports Server (NTRS)
Kumar, G. N.; Griffith, D. O., II; Warsi, S. A.; Seaford, C. M.
1993-01-01
Prediction of a plume's shape and structure is essential to the evaluation of base region environments. The JANNAF standard plume flowfield analysis code SPF/2 predicts plumes well, but cannot analyze base regions. Full Navier-Stokes CFD codes can calculate both zones; however, before they can be used, they must be validated. The CFD code FDNS3D (Finite Difference Navier-Stokes Solver) was used to analyze the single plume of a Space Transportation Main Engine (STME) and comparisons were made with SPF/2 computations. Both frozen and finite rate chemistry models were employed as well as two turbulence models in SPF/2. The results indicate that FDNS3D plume computations agree well with SPF/2 predictions for liquid rocket engine plumes.
Newly-Developed 3D GRMHD Code and its Application to Jet Formation
NASA Technical Reports Server (NTRS)
Mizuno, Y.; Nishikawa, K.-I.; Koide, S.; Hardee, P.; Fishman, G. J.
2006-01-01
We have developed a new three-dimensional general relativistic magnetohydrodynamic code by using a conservative, high-resolution shock-capturing scheme. The numerical fluxes are calculated using the HLL approximate Riemann solver scheme. The flux-interpolated constrained transport scheme is used to maintain a divergence-free magnetic field. We have performed various 1-dimensional test problems in both special and general relativity by using several reconstruction methods and found that the new 3D GRMHD code shows substantial improvements over our previous model. The . preliminary results show the jet formations from a geometrically thin accretion disk near a non-rotating and a rotating black hole. We will discuss the jet properties depended on the rotation of a black hole and the magnetic field strength.
Numerical solution of Space Shuttle Orbiter flow field including real gas effects
NASA Technical Reports Server (NTRS)
Prabhu, D. K.; Tannehill, J. C.
1984-01-01
The hypersonic, laminar flow around the Space Shuttle Orbiter has been computed for both an ideal gas (gamma = 1.2) and equilibrium air using a real-gas, parabolized Navier-Stokes code. This code employs a generalized coordinate transformation; hence, it places no restrictions on the orientation of the solution surfaces. The initial solution in the nose region was computed using a 3-D, real-gas, time-dependent Navier-Stokes code. The thermodynamic and transport properties of equilibrium air were obtained from either approximate curve fits or a table look-up procedure. Numerical results are presented for flight conditions corresponding to the STS-3 trajectory. The computed surface pressures and convective heating rates are compared with data from the STS-3 flight.
Galactic Cosmic Ray Event-Based Risk Model (GERM) Code
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Plante, Ianik; Ponomarev, Artem L.; Kim, Myung-Hee Y.
2013-01-01
This software describes the transport and energy deposition of the passage of galactic cosmic rays in astronaut tissues during space travel, or heavy ion beams in patients in cancer therapy. Space radiation risk is a probability distribution, and time-dependent biological events must be accounted for physical description of space radiation transport in tissues and cells. A stochastic model can calculate the probability density directly without unverified assumptions about shape of probability density function. The prior art of transport codes calculates the average flux and dose of particles behind spacecraft and tissue shielding. Because of the signaling times for activation and relaxation in the cell and tissue, transport code must describe temporal and microspatial density of functions to correlate DNA and oxidative damage with non-targeted effects of signals, bystander, etc. These are absolutely ignored or impossible in the prior art. The GERM code provides scientists data interpretation of experiments; modeling of beam line, shielding of target samples, and sample holders; and estimation of basic physical and biological outputs of their experiments. For mono-energetic ion beams, basic physical and biological properties are calculated for a selected ion type, such as kinetic energy, mass, charge number, absorbed dose, or fluence. Evaluated quantities are linear energy transfer (LET), range (R), absorption and fragmentation cross-sections, and the probability of nuclear interactions after 1 or 5 cm of water equivalent material. In addition, a set of biophysical properties is evaluated, such as the Poisson distribution for a specified cellular area, cell survival curves, and DNA damage yields per cell. Also, the GERM code calculates the radiation transport of the beam line for either a fixed number of user-specified depths or at multiple positions along the Bragg curve of the particle in a selected material. The GERM code makes the numerical estimates of basic physical and biophysical quantities of high-energy protons and heavy ions that have been studied at the NASA Space Radiation Laboratory (NSRL) for the purpose of simulating space radiation biological effects. In the first option, properties of monoenergetic beams are treated. In the second option, the transport of beams in different materials is treated. Similar biophysical properties as in the first option are evaluated for the primary ion and its secondary particles. Additional properties related to the nuclear fragmentation of the beam are evaluated. The GERM code is a computationally efficient Monte-Carlo heavy-ion-beam model. It includes accurate models of LET, range, residual energy, and straggling, and the quantum multiple scattering fragmentation (QMSGRG) nuclear database.
49 CFR 1503.407 - Military personnel.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY ADMINISTRATIVE AND PROCEDURAL RULES INVESTIGATIVE AND ENFORCEMENT PROCEDURES... the Department of Defense who is subject to the Uniform Code of Military Justice (10 U.S.C. chapter 47...
49 CFR 1503.407 - Military personnel.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY ADMINISTRATIVE AND PROCEDURAL RULES INVESTIGATIVE AND ENFORCEMENT PROCEDURES... the Department of Defense who is subject to the Uniform Code of Military Justice (10 U.S.C. chapter 47...
49 CFR 1503.407 - Military personnel.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY ADMINISTRATIVE AND PROCEDURAL RULES INVESTIGATIVE AND ENFORCEMENT PROCEDURES... the Department of Defense who is subject to the Uniform Code of Military Justice (10 U.S.C. chapter 47...
49 CFR 1503.407 - Military personnel.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY ADMINISTRATIVE AND PROCEDURAL RULES INVESTIGATIVE AND ENFORCEMENT PROCEDURES... the Department of Defense who is subject to the Uniform Code of Military Justice (10 U.S.C. chapter 47...
49 CFR 1503.407 - Military personnel.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY ADMINISTRATIVE AND PROCEDURAL RULES INVESTIGATIVE AND ENFORCEMENT PROCEDURES... the Department of Defense who is subject to the Uniform Code of Military Justice (10 U.S.C. chapter 47...
Study of negative ion transport phenomena in a plasma source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riz, D.; Pamela, J.
1996-07-01
NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H{sup {minus}}/H{sup +}) and charge exchanges (H{sup {minus}}/H{sup 0}). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NImore » produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter. {copyright} {ital 1996 American Institute of Physics.}« less
Goblet Cell Hyperplasia Requires High Bicarbonate Transport To Support Mucin Release.
Gorrieri, Giulia; Scudieri, Paolo; Caci, Emanuela; Schiavon, Marco; Tomati, Valeria; Sirci, Francesco; Napolitano, Francesco; Carrella, Diego; Gianotti, Ambra; Musante, Ilaria; Favia, Maria; Casavola, Valeria; Guerra, Lorenzo; Rea, Federico; Ravazzolo, Roberto; Di Bernardo, Diego; Galietta, Luis J V
2016-10-27
Goblet cell hyperplasia, a feature of asthma and other respiratory diseases, is driven by the Th-2 cytokines IL-4 and IL-13. In human bronchial epithelial cells, we find that IL-4 induces the expression of many genes coding for ion channels and transporters, including TMEM16A, SLC26A4, SLC12A2, and ATP12A. At the functional level, we find that IL-4 enhances calcium- and cAMP-activated chloride/bicarbonate secretion, resulting in high bicarbonate concentration and alkaline pH in the fluid covering the apical surface of epithelia. Importantly, mucin release, elicited by purinergic stimulation, requires the presence of bicarbonate in the basolateral solution and is defective in cells derived from cystic fibrosis patients. In conclusion, our results suggest that Th-2 cytokines induce a profound change in expression and function in multiple ion channels and transporters that results in enhanced bicarbonate transport ability. This change is required as an important mechanism to favor release and clearance of mucus.
Goblet Cell Hyperplasia Requires High Bicarbonate Transport To Support Mucin Release
Gorrieri, Giulia; Scudieri, Paolo; Caci, Emanuela; Schiavon, Marco; Tomati, Valeria; Sirci, Francesco; Napolitano, Francesco; Carrella, Diego; Gianotti, Ambra; Musante, Ilaria; Favia, Maria; Casavola, Valeria; Guerra, Lorenzo; Rea, Federico; Ravazzolo, Roberto; Di Bernardo, Diego; Galietta, Luis J. V.
2016-01-01
Goblet cell hyperplasia, a feature of asthma and other respiratory diseases, is driven by the Th-2 cytokines IL-4 and IL-13. In human bronchial epithelial cells, we find that IL-4 induces the expression of many genes coding for ion channels and transporters, including TMEM16A, SLC26A4, SLC12A2, and ATP12A. At the functional level, we find that IL-4 enhances calcium- and cAMP-activated chloride/bicarbonate secretion, resulting in high bicarbonate concentration and alkaline pH in the fluid covering the apical surface of epithelia. Importantly, mucin release, elicited by purinergic stimulation, requires the presence of bicarbonate in the basolateral solution and is defective in cells derived from cystic fibrosis patients. In conclusion, our results suggest that Th-2 cytokines induce a profound change in expression and function in multiple ion channels and transporters that results in enhanced bicarbonate transport ability. This change is required as an important mechanism to favor release and clearance of mucus. PMID:27786259
Impurity transport in enhanced confinement regimes in RFX-mod Reversed Field Pinch
NASA Astrophysics Data System (ADS)
Carraro, Lorella; Menmuir, Sheena; Fassina, Alessandro
2010-11-01
The results of impurity transport studies in RFX-mod enhanced confinement quasi-single helicity (QSH) and single helical axis (SHAx) regimes are presented and discussed. The impurity diffusion coefficient and pinch velocity are obtained through comparing experimental emission pattern (line emission and SXR time evolutions, SXR profiles) with the results of a 1-D impurity transport code. Previous analysis [S. Menmuir et al. to be published in Plasma Phys. Contr. Fus.] of impurity transport in RFX-mod standard discharges showed that the impurity pinch velocity, always directed outwards, features a barrier with high values around r/a = 0.8, where the diffusion coefficient decreases by one order of magnitude. In the QSH regime, the transition region in D and v is more internal and the barrier in velocity is wider and stronger. New results have been obtained in experiments with Ni laser blow-off (LBO) injection in high current discharges (Ip>1.5 MA) with long lasting QSH, to better characterize the Ni behavior inside the helical magnetic topology.
Full-Process Computer Model of Magnetron Sputter, Part I: Test Existing State-of-Art Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walton, C C; Gilmer, G H; Wemhoff, A P
2007-09-26
This work is part of a larger project to develop a modeling capability for magnetron sputter deposition. The process is divided into four steps: plasma transport, target sputter, neutral gas and sputtered atom transport, and film growth, shown schematically in Fig. 1. Each of these is simulated separately in this Part 1 of the project, which is jointly funded between CMLS and Engineering. The Engineering portion is the plasma modeling, in step 1. The plasma modeling was performed using the Object-Oriented Particle-In-Cell code (OOPIC) from UC Berkeley [1]. Figure 2 shows the electron density in the simulated region, using magneticmore » field strength input from experiments by Bohlmark [2], where a scale of 1% is used. Figures 3 and 4 depict the magnetic field components that were generated using two-dimensional linear interpolation of Bohlmark's experimental data. The goal of the overall modeling tool is to understand, and later predict, relationships between parameters of film deposition we can change (such as gas pressure, gun voltage, and target-substrate distance) and key properties of the results (such as film stress, density, and stoichiometry.) The simulation must use existing codes, either open-source or low-cost, not develop new codes. In part 1 (FY07) we identified and tested the best available code for each process step, then determined if it can cover the size and time scales we need in reasonable computation times. We also had to determine if the process steps are sufficiently decoupled that they can be treated separately, and identify any research-level issues preventing practical use of these codes. Part 2 will consider whether the codes can be (or need to be) made to talk to each other and integrated into a whole.« less
Guidelines for developing vectorizable computer programs
NASA Technical Reports Server (NTRS)
Miner, E. W.
1982-01-01
Some fundamental principles for developing computer programs which are compatible with array-oriented computers are presented. The emphasis is on basic techniques for structuring computer codes which are applicable in FORTRAN and do not require a special programming language or exact a significant penalty on a scalar computer. Researchers who are using numerical techniques to solve problems in engineering can apply these basic principles and thus develop transportable computer programs (in FORTRAN) which contain much vectorizable code. The vector architecture of the ASC is discussed so that the requirements of array processing can be better appreciated. The "vectorization" of a finite-difference viscous shock-layer code is used as an example to illustrate the benefits and some of the difficulties involved. Increases in computing speed with vectorization are illustrated with results from the viscous shock-layer code and from a finite-element shock tube code. The applicability of these principles was substantiated through running programs on other computers with array-associated computing characteristics, such as the Hewlett-Packard (H-P) 1000-F.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagert, Irina; Even, Wesley Paul; Strother, Terrance Timothy
Here, we perform two-dimensional implosion simulations using a Monte Carlo kinetic particle code. The application of a kinetic transport code is motivated, in part, by the occurrence of nonequilibrium effects in inertial confinement fusion capsule implosions, which cannot be fully captured by hydrodynamic simulations. Kinetic methods, on the other hand, are able to describe both continuum and rarefied flows. We perform simple two-dimensional disk implosion simulations using one-particle species and compare the results to simulations with the hydrodynamics code rage. The impact of the particle mean free path on the implosion is also explored. In a second study, we focusmore » on the formation of fluid instabilities from induced perturbations. We find good agreement with hydrodynamic studies regarding the location of the shock and the implosion dynamics. Differences are found in the evolution of fluid instabilities, originating from the higher resolution of rage and statistical noise in the kinetic studies.« less
Sagert, Irina; Even, Wesley Paul; Strother, Terrance Timothy
2017-05-17
Here, we perform two-dimensional implosion simulations using a Monte Carlo kinetic particle code. The application of a kinetic transport code is motivated, in part, by the occurrence of nonequilibrium effects in inertial confinement fusion capsule implosions, which cannot be fully captured by hydrodynamic simulations. Kinetic methods, on the other hand, are able to describe both continuum and rarefied flows. We perform simple two-dimensional disk implosion simulations using one-particle species and compare the results to simulations with the hydrodynamics code rage. The impact of the particle mean free path on the implosion is also explored. In a second study, we focusmore » on the formation of fluid instabilities from induced perturbations. We find good agreement with hydrodynamic studies regarding the location of the shock and the implosion dynamics. Differences are found in the evolution of fluid instabilities, originating from the higher resolution of rage and statistical noise in the kinetic studies.« less
NASA Astrophysics Data System (ADS)
Russkova, Tatiana V.
2017-11-01
One tool to improve the performance of Monte Carlo methods for numerical simulation of light transport in the Earth's atmosphere is the parallel technology. A new algorithm oriented to parallel execution on the CUDA-enabled NVIDIA graphics processor is discussed. The efficiency of parallelization is analyzed on the basis of calculating the upward and downward fluxes of solar radiation in both a vertically homogeneous and inhomogeneous models of the atmosphere. The results of testing the new code under various atmospheric conditions including continuous singlelayered and multilayered clouds, and selective molecular absorption are presented. The results of testing the code using video cards with different compute capability are analyzed. It is shown that the changeover of computing from conventional PCs to the architecture of graphics processors gives more than a hundredfold increase in performance and fully reveals the capabilities of the technology used.
Short Alleles, Bigger Smiles? The Effect of 5-HTTLPR on Positive Emotional Expressions
Haase, Claudia M.; Beermann, Ursula; Saslow, Laura R.; Shiota, Michelle N.; Saturn, Sarina R.; Lwi, Sandy J.; Casey, James J.; Nguyen, Nguyen K.; Whalen, Patrick K.; Keltner, Dacher J.; Levenson, Robert W.
2015-01-01
The present research examined the effect of the 5-HTTLPR polymorphism in the serotonin transporter gene on objectively coded positive emotional expressions (i.e., laughing and smiling behavior objectively coded using the Facial Action Coding System). Three studies with independent samples of participants were conducted. Study 1 examined young adults watching still cartoons. Study 2 examined young, middle-aged, and older adults watching a thematically ambiguous yet subtly amusing film clip. Study 3 examined middle-aged and older spouses discussing an area of marital conflict (which typically produces both positive and negative emotion). Aggregating data across studies, results showed that the short allele of 5-HTTLPR predicted heightened positive emotional expressions. Results remained stable when controlling for age, gender, ethnicity, and depressive symptoms. These findings are consistent with the notion that the short allele of 5-HTTLPR functions as an emotion amplifier, which may confer heightened susceptibility to environmental conditions. PMID:26029940
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gwo, J.P.; Jardine, P.M.; Yeh, G.T.
Matrix diffusion, a diffusive mass transfer process,in the structured soils and geologic units at ORNL, is believe to be an important subsurface mass transfer mechanism; it may affect off-site movement of radioactive wastes and remediation of waste disposal sites by locally exchanging wastes between soil/rock matrix and macropores/fractures. Advective mass transfer also contributes to waste movement but is largely neglected by researchers. This report presents the first documented 2-D multiregion solute transport code (MURT) that incorporates not only diffusive but also advective mass transfer and can be applied to heterogeneous porous media under transient flow conditions. In this report, theoreticalmore » background is reviewed and the derivation of multiregion solute transport equations is presented. Similar to MURF (Gwo et al. 1994), a multiregion subsurface flow code, multiplepore domains as suggested by previous investigators (eg, Wilson and Luxmoore 1988) can be implemented in MURT. Transient or steady-state flow fields of the pore domains can be either calculated by MURF or by modelers. The mass transfer process is briefly discussed through a three-pore-region multiregion solute transport mechanism. Mass transfer equations that describe mass flux across pore region interfaces are also presented and parameters needed to calculate mass transfer coefficients detailed. Three applications of MURT (tracer injection problem, sensitivity analysis of advective and diffusive mass transfer, hillslope ponding infiltration and secondary source problem) were simulated and results discussed. Program structure of MURT and functions of MURT subroutiness are discussed so that users can adapt the code; guides for input data preparation are provided in appendices.« less
Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles. Part 1; Formulation
NASA Technical Reports Server (NTRS)
Walsh, J. L.; Townsend, J. C.; Salas, A. O.; Samareh, J. A.; Mukhopadhyay, V.; Barthelemy, J.-F.
2000-01-01
An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity, finite element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a highspeed civil transport configuration. The paper describes the engineering aspects of formulating the optimization by integrating these analysis codes and associated interface codes into the system. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture (CORBA) compliant software product. A companion paper presents currently available results.
Design Considerations of a Virtual Laboratory for Advanced X-ray Sources
NASA Astrophysics Data System (ADS)
Luginsland, J. W.; Frese, M. H.; Frese, S. D.; Watrous, J. J.; Heileman, G. L.
2004-11-01
The field of scientific computation has greatly advanced in the last few years, resulting in the ability to perform complex computer simulations that can predict the performance of real-world experiments in a number of fields of study. Among the forces driving this new computational capability is the advent of parallel algorithms, allowing calculations in three-dimensional space with realistic time scales. Electromagnetic radiation sources driven by high-voltage, high-current electron beams offer an area to further push the state-of-the-art in high fidelity, first-principles simulation tools. The physics of these x-ray sources combine kinetic plasma physics (electron beams) with dense fluid-like plasma physics (anode plasmas) and x-ray generation (bremsstrahlung). There are a number of mature techniques and software packages for dealing with the individual aspects of these sources, such as Particle-In-Cell (PIC), Magneto-Hydrodynamics (MHD), and radiation transport codes. The current effort is focused on developing an object-oriented software environment using the Rational© Unified Process and the Unified Modeling Language (UML) to provide a framework where multiple 3D parallel physics packages, such as a PIC code (ICEPIC), a MHD code (MACH), and a x-ray transport code (ITS) can co-exist in a system-of-systems approach to modeling advanced x-ray sources. Initial software design and assessments of the various physics algorithms' fidelity will be presented.
Progress of IRSN R&D on ITER Safety Assessment
NASA Astrophysics Data System (ADS)
Van Dorsselaere, J. P.; Perrault, D.; Barrachin, M.; Bentaib, A.; Gensdarmes, F.; Haeck, W.; Pouvreau, S.; Salat, E.; Seropian, C.; Vendel, J.
2012-08-01
The French "Institut de Radioprotection et de Sûreté Nucléaire" (IRSN), in support to the French "Autorité de Sûreté Nucléaire", is analysing the safety of ITER fusion installation on the basis of the ITER operator's safety file. IRSN set up a multi-year R&D program in 2007 to support this safety assessment process. Priority has been given to four technical issues and the main outcomes of the work done in 2010 and 2011 are summarized in this paper: for simulation of accident scenarios in the vacuum vessel, adaptation of the ASTEC system code; for risk of explosion of gas-dust mixtures in the vacuum vessel, adaptation of the TONUS-CFD code for gas distribution, development of DUST code for dust transport, and preparation of IRSN experiments on gas inerting, dust mobilization, and hydrogen-dust mixtures explosion; for evaluation of the efficiency of the detritiation systems, thermo-chemical calculations of tritium speciation during transport in the gas phase and preparation of future experiments to evaluate the most influent factors on detritiation; for material neutron activation, adaptation of the VESTA Monte Carlo depletion code. The first results of these tasks have been used in 2011 for the analysis of the ITER safety file. In the near future, this R&D global programme may be reoriented to account for the feedback of the latter analysis or for new knowledge.
49 CFR 1248.3 - Carload and L.C.L. traffic defined.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 9 2010-10-01 2010-10-01 false Carload and L.C.L. traffic defined. 1248.3 Section 1248.3 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION... STATISTICS § 1248.3 Carload and L.C.L. traffic defined. (a) Commodity codes 01 through 422 and 44 through 462...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-16
... Establishing Quality Assurance Programs for Packaging Used in Transport of Radioactive Material AGENCY: Nuclear..., ``Establishing Quality Assurance Programs for Packaging Used in Transport of Radioactive Material.'' This draft... regulations for the packaging and transportation of radioactive material in Part 71 of Title 10 of the Code of...
Tearing Mode Stability of Evolving Toroidal Equilibria
NASA Astrophysics Data System (ADS)
Pletzer, A.; McCune, D.; Manickam, J.; Jardin, S. C.
2000-10-01
There are a number of toroidal equilibrium (such as JSOLVER, ESC, EFIT, and VMEC) and transport codes (such as TRANSP, BALDUR, and TSC) in our community that utilize differing equilibrium representations. There are also many heating and current drive (LSC and TORRAY), and stability (PEST1-3, GATO, NOVA, MARS, DCON, M3D) codes that require this equilibrium information. In an effort to provide seamless compatibility between the codes that produce and need these equilibria, we have developed two Fortran 90 modules, MEQ and XPLASMA, that serve as common interfaces between these two classes of codes. XPLASMA provides a common equilibrium representation for the heating and current drive applications while MEQ provides common equilibrium and associated metric information needed by MHD stability codes. We illustrate the utility of this approach by presenting results of PEST-3 tearing stability calculations of an NSTX discharge performed on profiles provided by the TRANSP code. Using the MEQ module, the TRANSP equilibrium data are stored in a Fortran 90 derived type and passed to PEST3 as a subroutine argument. All calculations are performed on the fly, as the profiles evolve.
Transport of Light Ions in Matter
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Cucinotta, F. A.; Tai, H.; Shinn, J. L.; Chun, S. Y.; Tripathi, R. K.; Sihver, L.
1998-01-01
A recent set of light ion experiments are analyzed using the Green's function method of solving the Boltzmann equation for ions of high charge and energy (the GRNTRN transport code) and the NUCFRG2 fragmentation database generator code. Although the NUCFRG2 code reasonably represents the fragmentation of heavy ions, the effects of light ion fragmentation requires a more detailed nuclear model including shell structure and short range correlations appearing as tightly bound clusters in the light ion nucleus. The most recent NTJCFRG2 code is augmented with a quasielastic alpha knockout model and semiempirical adjustments (up to 30 percent in charge removal) in the fragmentation process allowing reasonable agreement with the experiments to be obtained. A final resolution of the appropriate cross sections must await the full development of a coupled channel reaction model in which shell structure and clustering can be accurately evaluated.
A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes
NASA Astrophysics Data System (ADS)
Schurtz, G. P.; Nicolaï, Ph. D.; Busquet, M.
2000-10-01
Numerical simulation of laser driven Inertial Confinement Fusion (ICF) related experiments require the use of large multidimensional hydro codes. Though these codes include detailed physics for numerous phenomena, they deal poorly with electron conduction, which is the leading energy transport mechanism of these systems. Electron heat flow is known, since the work of Luciani, Mora, and Virmont (LMV) [Phys. Rev. Lett. 51, 1664 (1983)], to be a nonlocal process, which the local Spitzer-Harm theory, even flux limited, is unable to account for. The present work aims at extending the original formula of LMV to two or three dimensions of space. This multidimensional extension leads to an equivalent transport equation suitable for easy implementation in a two-dimensional radiation-hydrodynamic code. Simulations are presented and compared to Fokker-Planck simulations in one and two dimensions of space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacFarlane, Joseph J.; Golovkin, I. E.; Woodruff, P. R.
2009-08-07
This Final Report summarizes work performed under DOE STTR Phase II Grant No. DE-FG02-05ER86258 during the project period from August 2006 to August 2009. The project, “Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments,” was led by Prism Computational Sciences (Madison, WI), and involved collaboration with subcontractors University of Nevada-Reno and Voss Scientific (Albuquerque, NM). In this project, we have: Developed and implemented a multi-dimensional, multi-frequency radiation transport model in the LSP hybrid fluid-PIC (particle-in-cell) code [1,2]. Updated the LSP code to support the use of accurate equation-of-state (EOS) tables generated by Prism’smore » PROPACEOS [3] code to compute more accurate temperatures in high energy density physics (HEDP) plasmas. Updated LSP to support the use of Prism’s multi-frequency opacity tables. Generated equation of state and opacity data for LSP simulations for several materials being used in plasma jet experimental studies. Developed and implemented parallel processing techniques for the radiation physics algorithms in LSP. Benchmarked the new radiation transport and radiation physics algorithms in LSP and compared simulation results with analytic solutions and results from numerical radiation-hydrodynamics calculations. Performed simulations using Prism radiation physics codes to address issues related to radiative cooling and ionization dynamics in plasma jet experiments. Performed simulations to study the effects of radiation transport and radiation losses due to electrode contaminants in plasma jet experiments. Updated the LSP code to generate output using NetCDF to provide a better, more flexible interface to SPECT3D [4] in order to post-process LSP output. Updated the SPECT3D code to better support the post-processing of large-scale 2-D and 3-D datasets generated by simulation codes such as LSP. Updated atomic physics modeling to provide for more comprehensive and accurate atomic databases that feed into the radiation physics modeling (spectral simulations and opacity tables). Developed polarization spectroscopy modeling techniques suitable for diagnosing energetic particle characteristics in HEDP experiments. A description of these items is provided in this report. The above efforts lay the groundwork for utilizing the LSP and SPECT3D codes in providing simulation support for DOE-sponsored HEDP experiments, such as plasma jet and fast ignition physics experiments. We believe that taken together, the LSP and SPECT3D codes have unique capabilities for advancing our understanding of the physics of these HEDP plasmas. Based on conversations early in this project with our DOE program manager, Dr. Francis Thio, our efforts emphasized developing radiation physics and atomic modeling capabilities that can be utilized in the LSP PIC code, and performing radiation physics studies for plasma jets. A relatively minor component focused on the development of methods to diagnose energetic particle characteristics in short-pulse laser experiments related to fast ignition physics. The period of performance for the grant was extended by one year to August 2009 with a one-year no-cost extension, at the request of subcontractor University of Nevada-Reno.« less
1992-12-01
DATA DES . ELEMENT NAME ATlNPUTES Conditional TD401 152 Special Handling Code C ID 2/3 Code specifying special transportation handling instructions. HAN...Executhre Age"t for Eketronic Conmnerce/Electmnlc Dots lnterchange/Protection of Logistica Undaasslfled/Serssltlve Systerr Executive Agent for EC/EDI...PRICEISALES CATALOG ANSI ASC X12 VERSIONIRELEASE 003030DOD_ 7 Communications Transport Protocol ISA /_Interchange Control Header GS/ Functional Group Header
NASA Astrophysics Data System (ADS)
Horst, Felix; Schuy, Christoph; Weber, Uli; Brinkmann, Kai-Thomas; Zink, Klemens
2017-08-01
4He ions are considered to be used for hadron radiotherapy due to their favorable physical and radiobiological properties. For an accurate dose calculation the fragmentation of the primary 4He ions occurring as a result of nuclear collisions must be taken into account. Therefore precise nuclear reaction models need to be implemented in the radiation transport codes used for dose calculation. A fragmentation experiment using thin graphite targets was conducted at the Heidelberg Ion Beam Therapy Center (HIT) to obtain new and precise 4He-nucleus cross section data in the clinically relevant energy range. Measured values for the charge-changing cross section, mass-changing cross section, as well as the inclusive 3He production cross section for 4He+12C collisions at energies between 80 and 220 MeV /u are presented. These data are compared to the 4He-nucleus reaction model by DeVries and Peng as well as to the parametrizations by Tripathi et al. and by Cucinotta et al., which are implemented in the treatment planning code trip98 and several other radiation transport codes.
Nagai, Yuri; Nogami, Satoru; Kumagai-Sano, Fumi; Ohya, Yoshikazu
2003-03-01
VMA1-derived endonuclease (VDE), a site-specific endonuclease in Saccharomyces cerevisiae, enters the nucleus to generate a double-strand break in the VDE-negative allelic locus, mediating the self-propagating gene conversion called homing. Although VDE is excluded from the nucleus in mitotic cells, it relocalizes at premeiosis, becoming localized in both the nucleus and the cytoplasm in meiosis. The nuclear localization of VDE is induced by inactivation of TOR kinases, which constitute central regulators of cell differentiation in S. cerevisiae, and by nutrient depletion. A functional genomic approach revealed that at least two karyopherins, Srp1p and Kap142p, are required for the nuclear localization pattern. Genetic and physical interactions between Srp1p and VDE imply direct involvement of karyopherin-mediated nuclear transport in this process. Inactivation of TOR signaling or acquisition of an extra nuclear localization signal in the VDE coding region leads to artificial nuclear localization of VDE and thereby induces homing even during mitosis. These results serve as evidence that VDE utilizes the host systems of nutrient signal transduction and nucleocytoplasmic transport to ensure the propagation of its coding region.
Nagai, Yuri; Nogami, Satoru; Kumagai-Sano, Fumi; Ohya, Yoshikazu
2003-01-01
VMA1-derived endonuclease (VDE), a site-specific endonuclease in Saccharomyces cerevisiae, enters the nucleus to generate a double-strand break in the VDE-negative allelic locus, mediating the self-propagating gene conversion called homing. Although VDE is excluded from the nucleus in mitotic cells, it relocalizes at premeiosis, becoming localized in both the nucleus and the cytoplasm in meiosis. The nuclear localization of VDE is induced by inactivation of TOR kinases, which constitute central regulators of cell differentiation in S. cerevisiae, and by nutrient depletion. A functional genomic approach revealed that at least two karyopherins, Srp1p and Kap142p, are required for the nuclear localization pattern. Genetic and physical interactions between Srp1p and VDE imply direct involvement of karyopherin-mediated nuclear transport in this process. Inactivation of TOR signaling or acquisition of an extra nuclear localization signal in the VDE coding region leads to artificial nuclear localization of VDE and thereby induces homing even during mitosis. These results serve as evidence that VDE utilizes the host systems of nutrient signal transduction and nucleocytoplasmic transport to ensure the propagation of its coding region. PMID:12588991
Calculation of natural convection test at Phenix using the NETFLOW++ code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mochizuki, H.; Kikuchi, N.; Li, S.
2012-07-01
The present paper describes modeling and analyses of a natural convection of the pool-type fast breeder reactor Phenix. The natural convection test was carried out as one of the End of Life Tests of the Phenix. Objective of the present study is to assess the applicability of the NETFLOW++ code which has been verified thus far using various water facilities and validated using the plant data of the loop-type FBR 'Monju' and the loop-type experimental fast reactor 'Joyo'. The Phenix primary heat transport system is modeled based on the benchmark documents available from IAEA. The calculational model consists of onlymore » the primary heat transport system with boundary conditions on the secondary-side of IHX. The coolant temperature at the primary pump inlet, the primary coolant temperature at the IHX inlet and outlet, the secondary coolant temperatures and other parameters are calculated by the code where the heat transfer between the hot and cold pools is explicitly taken into account. A model including the secondary and tertiary systems was prepared, and the calculated results also agree well with the measured data in general. (authors)« less
Development of deterministic transport methods for low energy neutrons for shielding in space
NASA Technical Reports Server (NTRS)
Ganapol, Barry
1993-01-01
Transport of low energy neutrons associated with the galactic cosmic ray cascade is analyzed in this dissertation. A benchmark quality analytical algorithm is demonstrated for use with BRYNTRN, a computer program written by the High Energy Physics Division of NASA Langley Research Center, which is used to design and analyze shielding against the radiation created by the cascade. BRYNTRN uses numerical methods to solve the integral transport equations for baryons with the straight-ahead approximation, and numerical and empirical methods to generate the interaction probabilities. The straight-ahead approximation is adequate for charged particles, but not for neutrons. As NASA Langley improves BRYNTRN to include low energy neutrons, a benchmark quality solution is needed for comparison. The neutron transport algorithm demonstrated in this dissertation uses the closed-form Green's function solution to the galactic cosmic ray cascade transport equations to generate a source of neutrons. A basis function expansion for finite heterogeneous and semi-infinite homogeneous slabs with multiple energy groups and isotropic scattering is used to generate neutron fluxes resulting from the cascade. This method, called the FN method, is used to solve the neutral particle linear Boltzmann transport equation. As a demonstration of the algorithm coded in the programs MGSLAB and MGSEMI, neutron and ion fluxes are shown for a beam of fluorine ions at 1000 MeV per nucleon incident on semi-infinite and finite aluminum slabs. Also, to demonstrate that the shielding effectiveness against the radiation from the galactic cosmic ray cascade is not directly proportional to shield thickness, a graph of transmitted total neutron scalar flux versus slab thickness is shown. A simple model based on the nuclear liquid drop assumption is used to generate cross sections for the galactic cosmic ray cascade. The ENDF/B V database is used to generate the total and scattering cross sections for neutrons in aluminum. As an external verification, the results from MGSLAB and MGSEMI were compared to ANISN/PC, a routinely used neutron transport code, showing excellent agreement. In an application to an aluminum shield, the FN method seems to generate reasonable results.
The National Transport Code Collaboration Module Library
NASA Astrophysics Data System (ADS)
Kritz, A. H.; Bateman, G.; Kinsey, J.; Pankin, A.; Onjun, T.; Redd, A.; McCune, D.; Ludescher, C.; Pletzer, A.; Andre, R.; Zakharov, L.; Lodestro, L.; Pearlstein, L. D.; Jong, R.; Houlberg, W.; Strand, P.; Wiley, J.; Valanju, P.; John, H. St.; Waltz, R.; Mandrekas, J.; Mau, T. K.; Carlsson, J.; Braams, B.
2004-12-01
This paper reports on the progress in developing a library of code modules under the auspices of the National Transport Code Collaboration (NTCC). Code modules are high quality, fully documented software packages with a clearly defined interface. The modules provide a variety of functions, such as implementing numerical physics models; performing ancillary functions such as I/O or graphics; or providing tools for dealing with common issues in scientific programming such as portability of Fortran codes. Researchers in the plasma community submit code modules, and a review procedure is followed to insure adherence to programming and documentation standards. The review process is designed to provide added confidence with regard to the use of the modules and to allow users and independent reviews to validate the claims of the modules' authors. All modules include source code; clear instructions for compilation of binaries on a variety of target architectures; and test cases with well-documented input and output. All the NTCC modules and ancillary information, such as current standards and documentation, are available from the NTCC Module Library Website http://w3.pppl.gov/NTCC. The goal of the project is to develop a resource of value to builders of integrated modeling codes and to plasma physics researchers generally. Currently, there are more than 40 modules in the module library.
A new code for modelling the near field diffusion releases from the final disposal of nuclear waste
NASA Astrophysics Data System (ADS)
Vopálka, D.; Vokál, A.
2003-01-01
The canisters with spent nuclear fuel produced during the operation of WWER reactors at the Czech power plants are planned, like in other countries, to be disposed of in an underground repository. Canisters will be surrounded by compacted bentonite that will retard the migration of safety-relevant radionuclides into the host rock. A new code that enables the modelling of the critical radionuclides transport from the canister through the bentonite layer in the cylindrical geometry was developed. The code enables to solve the diffusion equation for various types of initial and boundary conditions by means of the finite difference method and to take into account the non-linear shape of the sorption isotherm. A comparison of the code reported here with code PAGODA, which is based on analytical solution of the transport equation, was made for the actinide chain 4N+3 that includes 239Pu. A simple parametric study of the releases of 239Pu, 129I, and 14C into geosphere is discussed.
van den Berg, L; Kwant, L; Hestand, M S; van Oost, B A; Leegwater, P A J
2005-01-01
Aggressive behavior is the most frequently encountered behavioral problem in dogs. Abnormalities in brain serotonin metabolism have been described in aggressive dogs. We studied canine serotonergic genes to investigate genetic factors underlying canine aggression. Here, we describe the characterization of three genes of the canine serotonergic system: the serotonin receptor 1A and 2A gene (htr1A and htr2A) and the serotonin transporter gene (slc6A4). We isolated canine bacterial artificial chromosome clones containing these genes and designed oligonucleotides for genomic sequencing of coding regions and intron-exon boundaries. Golden retrievers were analyzed for DNA sequence variations. We found two nonsynonymous single nucleotide polymorphisms (SNPs) in the coding sequence of htr1A; one SNP close to a splice site in htr2A; and two SNPs in slc6A4, one in the coding sequence and one close to a splice site. In addition, we identified a polymorphic microsatellite marker for each gene. Htr1A is a strong candidate for involvement in the domestication of the dog. We genotyped the htr1A SNPs in 41 dogs of seven breeds with diverse behavioral characteristics. At least three SNP haplotypes were found. Our results do not support involvement of the gene in domestication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
H.E. Mynick, N. Pomphrey and P. Xanthopoulos
Recent progress in reducing turbulent transport in stellarators and tokamaks by 3D shaping using a stellarator optimization code in conjunction with a gyrokinetic code is presented. The original applications of the method focussed on ion temperature gradient transport in a quasi-axisymmetric stellarator design. Here, an examination of both other turbulence channels and other starting configurations is initiated. It is found that the designs evolved for transport from ion temperature gradient turbulence also display reduced transport from other transport channels whose modes are also stabilized by improved curvature, such as electron temperature gradient and ballooning modes. The optimizer is also appliedmore » to evolving from a tokamak, finding appreciable turbulence reduction for these devices as well. From these studies, improved understanding is obtained of why the deformations found by the optimizer are beneficial, and these deformations are related to earlier theoretical work in both stellarators and tokamaks.« less