Science.gov

Sample records for transport number measurements

  1. Transport numbers in the surface layers of asymmetric membranes from initial time measurements

    SciTech Connect

    Compan, V.; Lopez, M.L. ); Sorensen, T.S. ); Garrido, J. )

    1994-09-08

    The initial time asymmetry potentials of two ultra filtration membranes (cellulose acetate and polysulfone membranes) were measured in electrochemical cells using Ag/AgCl electrodes and NaCl solutions. The concentration in the two electrode chambers differed slightly by a fixed concentration difference. Either the membranes were brought to equilibrium with the left-hand solution and subsequently exposed to the right-hand solution at the right-hand face, or the procedure was reversed. From such measurements it is possible to evaluate the transport numbers corresponding to each of the two surface layers of the membrane under conditions such that the effects of autoprotolysis of water and of foreign ions may be neglected. These measurements permit a description of each of the surface layers of the membranes and make possible an electrochemical characterization of the asymmetry of ultrafiltration membranes. The asymmetry is given by the difference between surface layer transport numbers. 31 refs., 13 figs., 4 tabs.

  2. Number-resolved master equation approach to quantum measurement and quantum transport

    NASA Astrophysics Data System (ADS)

    Li, Xin-Qi

    2016-08-01

    In addition to the well-known Landauer-Büttiker scattering theory and the nonequilibrium Green's function technique for mesoscopic transports, an alternative (and very useful) scheme is quantum master equation approach. In this article, we review the particle-number ( n)-resolved master equation ( n-ME) approach and its systematic applications in quantum measurement and quantum transport problems. The n-ME contains rich dynamical information, allowing efficient study of topics such as shot noise and full counting statistics analysis. Moreover, we also review a newly developed master equation approach (and its n-resolved version) under self-consistent Born approximation. The application potential of this new approach is critically examined via its ability to recover the exact results for noninteracting systems under arbitrary voltage and in presence of strong quantum interference, and the challenging non-equilibrium Kondo effect.

  3. Transport numbers in transdermal iontophoresis.

    PubMed

    Mudry, Blaise; Guy, Richard H; Delgado-Charro, M Begoña

    2006-04-15

    Parameters determining ionic transport numbers in transdermal iontophoresis have been characterized. The transport number of an ion (its ability to carry charge) is key to its iontophoretic delivery or extraction across the skin. Using small inorganic ions, the roles of molar fraction and mobility of the co- and counterions present have been demonstrated. A direct, constant current was applied across mammalian skin in vitro. Cations were anodally delivered from either simple M(+)Cl(-) solutions (single-ion case, M(+) = sodium, lithium, ammonium, potassium), or binary and quaternary mixtures thereof. Transport numbers were deduced from ion fluxes. In the single-ion case, maximum cationic fluxes directly related to the corresponding ionic aqueous mobilities were found. Addition of co-ions decreased the transport numbers of all cations relative to the single-ion case, the degree of effect depending upon the molar fraction and mobility of the species involved. With chloride as the principal counterion competing to carry current across the skin (the in vivo situation), a maximum limit on the single or collective cation transport number was 0.6-0.8. Overall, these results demonstrate how current flowing across the skin during transdermal iontophoresis is distributed between competing ions, and establish simple rules with which to optimize transdermal iontophoretic transport.

  4. A Numbering System for MFS Transporter Proteins

    PubMed Central

    Lee, Joanna; Sands, Zara A.; Biggin, Philip C.

    2016-01-01

    The Major Facilitator Superfamily (MFS) is one of the largest classes of secondary active transporters and is widely expressed in many domains of life. It is characterized by a common 12-transmembrane helix motif that allows the selective transport of a vast range of diverse substrates across the membrane. MFS transporters play a central role in many physiological processes and are increasingly recognized as potential drug targets. Despite intensive efforts, there are still only a handful of crystal structures and therefore homology modeling is likely to be a necessary process for providing models to interpret experiments for many years to come. However, the diversity of sequences and the multiple conformational states these proteins can exist in makes the process significantly more complicated, especially for sequences for which there is very little sequence identity to known templates. Inspired by the approach adopted many years ago for GPCRs, we have analyzed the large number of MFS sequences now available alongside the current structural information to propose a series of conserved contact points that can provide additional guidance for the homology modeling process. To enable cross-comparison across MFS models we also present a numbering scheme that can be used to provide a point of reference within each of the 12 transmembrane regions. PMID:27314000

  5. Transportation optimization with fuzzy trapezoidal numbers based on possibility theory.

    PubMed

    He, Dayi; Li, Ran; Huang, Qi; Lei, Ping

    2014-01-01

    In this paper, a parametric method is introduced to solve fuzzy transportation problem. Considering that parameters of transportation problem have uncertainties, this paper develops a generalized fuzzy transportation problem with fuzzy supply, demand and cost. For simplicity, these parameters are assumed to be fuzzy trapezoidal numbers. Based on possibility theory and consistent with decision-makers' subjectiveness and practical requirements, the fuzzy transportation problem is transformed to a crisp linear transportation problem by defuzzifying fuzzy constraints and objectives with application of fractile and modality approach. Finally, a numerical example is provided to exemplify the application of fuzzy transportation programming and to verify the validity of the proposed methods.

  6. Off-Design Reynolds Number Effects for a Supersonic Transport

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Wahls, Richard A.; Rivers, S. Melissa

    2005-01-01

    A high Reynolds number wind tunnel test was conducted to assess Reynolds number effects on the aerodynamic performance characteristics of a realistic, second-generation supersonic transport concept. The tests included longitudinal studies at transonic and low-speed, high-lift conditions across a range of chord Reynolds numbers (8 million to 120 million). Results presented focus on Reynolds number and static aeroelastic sensitivities at Mach 0.30 and 0.90 for a configuration without a tail. Static aeroelastic effects, which mask Reynolds number effects, were observed. Reynolds number effects were generally small and the drag data followed established trends of skin friction as a function of Reynolds number. A more nose-down pitching moment was produced as Reynolds number increased because of an outward movement of the inboard leading-edge separation at constant angles of attack. This study extends the existing Reynolds number database for supersonic transports operating at off-design conditions.

  7. Transportation control measure information documents

    SciTech Connect

    Not Available

    1992-03-01

    The document, sponsored by the United States Environmental Protection Agency, is intended to provide information on Transportation Control Measures (TCMs) to transportation planning and air quality planning management and staff at all government levels. The document provides descriptions and examples of the TCMs listed in Section 108(f) of the Clean Air Act. Each TCM is described in terms of its objectives, variation in the ways it may be applied, expected transportation and emissions impacts, and other important implementation and policy considerations that State, regional, and local decision-making agencies will face.

  8. Toward a new methodology for measuring the threshold Shields number

    NASA Astrophysics Data System (ADS)

    Rousseau, Gauthier; Dhont, Blaise; Ancey, Christophe

    2016-04-01

    A number of bedload transport equations involve the threshold Shields number (corresponding to the threshold of incipient motion for particles resting on the streambed). Different methods have been developed for determining this threshold Shields number; they usually assume that the initial streambed is plane prior to sediment transport. Yet, there are many instances in real-world scenarios, in which the initial streambed is not free of bed forms. We are interested in developing a new methodology for determining the threshold of incipient motion in gravel-bed streams in which smooth bed forms (e.g., anti-dunes) develop. Experiments were conducted in a 10-cm wide, 2.5-m long flume, whose initial inclination was 3%. Flows were supercritical and fully turbulent. The flume was supplied with water and sediment at fixed rates. As bed forms developed and migrated, and sediment transport rates exhibited wide fluctuations, measurements had to be taken over long times (typically 10 hr). Using a high-speed camera, we recorded the instantaneous bed load transport rate at the outlet of the flume by taking top-view images. In parallel, we measured the evolution of the bed slope, water depth, and shear stress by filming through a lateral window of the flume. These measurements allowed for the estimation of the space and time-averaged slope, from which we deduced the space and time-averaged Shields number under incipient bed load transport conditions. In our experiments, the threshold Shields number was strongly dependent on streambed morphology. Experiments are under way to determine whether taking the space and time average of incipient motion experiments leads to a more robust definition of the threshold Shields number. If so, this new methodology will perform better than existing approaches at measuring the threshold Shields number.

  9. Reynolds Number Effects on a Supersonic Transport at Transonic Conditions

    NASA Technical Reports Server (NTRS)

    Wahls, R. N.; Owens, L. R.; Rivers, S. M. B.

    2001-01-01

    A High Speed Civil Transport configuration was tested in the National Transonic Facility at the NASA Langley Research Center as part of NASA's High Speed Research Program. The primary purposes of the tests were to assess Reynolds number scale effects and the high Reynolds number aerodynamic characteristics of a realistic, second generation supersonic transport while providing data for the assessment of computational methods. The tests included longitudinal and lateral/directional studies at low speed high-lift and transonic conditions across a range of Reynolds numbers from that available in conventional wind tunnels to near flight conditions. Results are presented which focus on both the Reynolds number and static aeroelastic sensitivities of longitudinal characteristics at Mach 0.90 for a configuration without an empennage.

  10. Measurement of nonvolatile particle number size distribution

    NASA Astrophysics Data System (ADS)

    Gkatzelis, G. I.; Papanastasiou, D. K.; Florou, K.; Kaltsonoudis, C.; Louvaris, E.; Pandis, S. N.

    2016-01-01

    An experimental methodology was developed to measure the nonvolatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a nonvolatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol (OA; 40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50-60 % of the particles had a nonvolatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon with an 80 % contribution, while OA was responsible for another 15-20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type of OA

  11. Measuring glomerular number from kidney MRI images

    NASA Astrophysics Data System (ADS)

    Thiagarajan, Jayaraman J.; Natesan Ramamurthy, Karthikeyan; Kanberoglu, Berkay; Frakes, David; Bennett, Kevin; Spanias, Andreas

    2016-03-01

    Measuring the glomerular number in the entire, intact kidney using non-destructive techniques is of immense importance in studying several renal and systemic diseases. Commonly used approaches either require destruction of the entire kidney or perform extrapolation from measurements obtained from a few isolated sections. A recent magnetic resonance imaging (MRI) method, based on the injection of a contrast agent (cationic ferritin), has been used to effectively identify glomerular regions in the kidney. In this work, we propose a robust, accurate, and low-complexity method for estimating the number of glomeruli from such kidney MRI images. The proposed technique has a training phase and a low-complexity testing phase. In the training phase, organ segmentation is performed on a few expert-marked training images, and glomerular and non-glomerular image patches are extracted. Using non-local sparse coding to compute similarity and dissimilarity graphs between the patches, the subspace in which the glomerular regions can be discriminated from the rest are estimated. For novel test images, the image patches extracted after pre-processing are embedded using the discriminative subspace projections. The testing phase is of low computational complexity since it involves only matrix multiplications, clustering, and simple morphological operations. Preliminary results with MRI data obtained from five kidneys of rats show that the proposed non-invasive, low-complexity approach performs comparably to conventional approaches such as acid maceration and stereology.

  12. Love number can be hard to measure

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolás

    2014-01-01

    The waveform phase for a neutron star binary can be split into point-particle terms and finite-size terms (characterized by the Love number) that account for equation-of-state effects. The latter first enter at fifth post-Newtonian (5PN) order (i.e., proportional to the tenth power of the orbital velocity), but the former are only known completely to 3.5PN order, with higher-order terms only known to leading order in the mass ratio. We here find that not including point-particle terms at 4PN order to leading and first order in the mass ratio in the template model can severely deteriorate our ability to measure the equation of state. This problem can be solved if one uses numerical waveforms once their own systematic errors are under control.

  13. Sediment transport measurements: Chapter 5

    USGS Publications Warehouse

    Diplas, P.; Kuhnle, R.; Gray, J.; Glysson, D.; Edwards, T.; García, Marcelo H.

    2008-01-01

    Sediment erosion, transport, and deposition in fluvial systems are complex processes that are treated in detail in other sections of this book. Development of methods suitable for the collection of data that contribute to understanding these processes is a still-evolving science. Sediment and ancillary data are fundamental requirements for the proper management of river systems, including the design of structures, the determination of aspects of stream behavior, ascertaining the probable effect of removing an existing structure, estimation of bulk erosion, transport, and sediment delivery to the oceans, ascertaining the long-term usefulness of reservoirs and other public works, tracking movement of solid-phase contaminants, restoration of degraded or otherwise modified streams, and assistance in the calibration and validation of numerical models. This chapter presents techniques for measuring bed-material properties and suspended and bed-load discharges. Well-established and relatively recent, yet adequately tested, sampling equipment and methodologies, with designs that are guided by sound physical and statistical principles, are described. Where appropriate, the theory behind the development of the equipment and guidelines for its use are presented.

  14. Glycaemia regulates the glucose transporter number in the plasma membrane of rat skeletal muscle.

    PubMed Central

    Dimitrakoudis, D; Ramlal, T; Rastogi, S; Vranic, M; Klip, A

    1992-01-01

    The number of glucose transporters was measured in isolated membranes from diabetic-rat skeletal muscle to determine the role of circulating blood glucose levels in the control of glucose uptake into skeletal muscle. Three experimental groups of animals were investigated in the post-absorptive state: normoglycaemic/normoinsulinaemic, hyperglycaemic/normoinsulinaemic and hyperglycaemic/normoinsulinaemic made normoglycaemic/normoinsulinaemic by phlorizin treatment. Hyperglycaemia caused a reversible decrease in total transporter number, as measured by cytochalasin B binding, in both plasma membranes and internal membranes of skeletal muscle. Changes in GLUT4 glucose transporter protein mirrored changes in cytochalasin B binding in plasma membranes. However, there was no recovery of GLUT4 levels in intracellular membranes with correction of glycaemia. GLUT4 mRNA levels decreased with hyperglycaemia and recovered only partially with correction of glycaemia. Conversely, GLUT1 glucose transporters were only detectable in the plasma membranes; the levels of this protein varied directly with glycaemia, i.e. in the opposite direction to GLUT4 glucose transporters. This study demonstrates that hyperglycaemia, in the absence of hypoinsulinaemia, is capable of down-regulating the glucose transport system in skeletal muscle, the major site of peripheral resistance to insulin-stimulated glucose transport in diabetes. Furthermore, correction of hyperglycaemia causes a complete restoration of the transport system in the basal state (determined by the transporter number in the plasma membrane), but possibly only an incomplete recovery of the transport system's ability to respond to insulin (since there is no recovery of GLUT4 levels in the intracellular membrane insulin-responsive transporter pool). Finally, the effect of hyperglycaemia is specific for glucose transporter isoforms, with GLUT1 and GLUT4 proteins varying respectively in parallel and opposite directions to levels of

  15. Experimental studies of Reynolds number dependence of turbulent mixing & transport

    SciTech Connect

    Warhaft, Z.

    1996-12-31

    An overview of recent experiments, in which the author generated high Reynolds number homogeneous grid turbulence, is provided. The author shows that in a small wind tunnel, Reynolds numbers that are sufficiently high (R{sub {lambda}} {approximately} 800, R{sub {ell}} {approximately} 36, 000) such that many of the aspects of turbulence that hitherto have only been observed in large scale anisotropic shear flows, are obtained. In particular the author studied the evolution of the spectrum with Reynolds number, the Kolmogorov constant and the internal intermittency, showing the way they tend to their high Reynolds number asymptotes. Thus the author links previous low Reynolds number laboratory experiments with large scale environmental measurements.

  16. Nonlocal electron transport in magnetized plasmas with arbitrary atomic number

    SciTech Connect

    Bennaceur-Doumaz, D.; Bendib, A.

    2006-09-15

    The numerical solution of the steady-state electron Fokker-Planck equation perturbed with respect to a global equilibrium is presented in magnetized plasmas with arbitrary atomic number Z. The magnetic field is assumed to be constant and the electron-electron collisions are described by the Landau collision operator. The solution is derived in the Fourier space and in the framework of the diffusive approximation which captures the spatial nonlocal effects. The transport coefficients are deduced and used to close a complete set of nonlocal electron fluid equations. This work improves the results of A. Bendib et al. [Phys. Plasmas 9, 1555 (2002)] and of A. V. Brantov et al. [Phys. Plasmas 10, 4633 (2003)] restricted to the local and nonlocal high-Z plasma approximations, respectively. The influence of the magnetic field on the nonlocal effects is discussed. We propose also accurate numerical fits of the relevant transport coefficients with respect to the collisionality parameter {lambda}{sub ei}/L and the atomic number Z, where L is the typical scale length and {lambda}{sub ei} is the electron-ion mean-free-path.

  17. Electroosmosis in Membranes: Effects of Unstirred Layers and Transport Numbers

    PubMed Central

    Barry, P. H.; Hope, A. B.

    1969-01-01

    When a current is passed through a membrane system, differences in transport numbers between the membrane and the adjacent solutions will, in general, result in depletion and enhancement of concentrations at the membrane-solution interfaces. This will be balanced by diffusion back into the bulk solution, diffusion of solute back across the membrane itself, and osmosis resulting from these local concentration gradients. The two main results of such a phenomenon are (1) that there is a current-induced volume flow, which may be mistaken for electroosmosis, and (2) that there will generally develop transient changes in potential difference (PD) across membranes during and after the passage of current through them. PMID:5786317

  18. Homodyne measurement of the average photon number

    NASA Astrophysics Data System (ADS)

    Webb, J. G.; Ralph, T. C.; Huntington, E. H.

    2006-03-01

    We describe a scheme for measurement of the mean photon flux at an arbitrary optical sideband frequency using homodyne detection. Experimental implementation of the technique requires an acousto-optic modulator in addition to the homodyne detector, and does not require phase locking. The technique exhibits polarization and frequency and spatial mode selectivity, as well as much improved speed, resolution, and dynamic range when compared to linear photodetectors and avalanche photodiodes, with potential application to quantum-state tomography and information encoding using an optical frequency basis. Experimental data also support a quantum-mechanical description of vacuum noise.

  19. Homodyne measurement of the average photon number

    SciTech Connect

    Webb, J. G.; Huntington, E. H.; Ralph, T. C.

    2006-03-15

    We describe a scheme for measurement of the mean photon flux at an arbitrary optical sideband frequency using homodyne detection. Experimental implementation of the technique requires an acousto-optic modulator in addition to the homodyne detector, and does not require phase locking. The technique exhibits polarization and frequency and spatial mode selectivity, as well as much improved speed, resolution, and dynamic range when compared to linear photodetectors and avalanche photodiodes, with potential application to quantum-state tomography and information encoding using an optical frequency basis. Experimental data also support a quantum-mechanical description of vacuum noise.

  20. Transportability of Deductive Measurement across Cultures.

    ERIC Educational Resources Information Center

    McCauley, Donald E., Jr.; Colberg, Magda

    1983-01-01

    A theory and test of cross-cultural transportability of measurement were constructed on a logico-mathematical basis regarding the deductive measures and on a basis of syntactic reduction and Latin-based vocabulary regarding the linguistic measuring medium. A pilot study was administered in Spain, France, and the United States. (Author/PN)

  1. The reactive transport of trichloroethene is influenced by residence time and microbial numbers

    NASA Astrophysics Data System (ADS)

    Haest, P. J.; Philips, J.; Springael, D.; Smolders, E.

    2011-01-01

    The dechlorination rate in a flow-through porous matrix can be described by the species specific dechlorination rate observed in a liquid batch unless mass transport limitations prevail. This hypothesis was examined by comparing dechlorination rates in liquid batch with that in column experiments at various flow rates (3-9-12 cm day - 1 ). Columns were loaded with an inoculated sand and eluted with a medium containing 1 mM trichloroethene (TCE) for 247 days. Dechlorination in the column treatments increased with decreasing flow rate, illustrating the effect of the longer residence time. Zeroth order TCE or cis-DCE degradation rates were 4-7 folds larger in columns than in corresponding batch systems which could be explained by the higher measured Geobacter and Dehalococcoides numbers per unit pore volume in the columns. The microbial numbers also explained the variability in dechlorination rate among flow rate treatments marked by a large elution of the dechlorinating species' yield as flow increased. Stop flow events did not reveal mass transport limitations for dechlorination. We conclude that flow rate effects on reactive transport of TCE in this coarse sand are explained by residence time and by microbial transport and that mass transport limitations in this porous matrix are limited.

  2. Teleportation-based number-state manipulation with number-sum measurement

    SciTech Connect

    Kitagawa, Akira; Yamamoto, Katsuji

    2003-10-01

    We examine various manipulations of photon number states which can be implemented by teleportation technique with number-sum measurement. The preparations of the Einstein-Podolsky-Rosen resources as well as the number-sum measurement resulting in projection to certain Bell state may be done conditionally with linear optical elements, i.e., beam splitters, phase shifters, and zero-one-photon detectors. Squeezed vacuum states are used as primary entanglement resource, while single-photon sources are not required.

  3. Heat transport measurements in turbulent rotating Rayleigh-Benard convection

    SciTech Connect

    Ecke, Robert E; Liu, Yuanming

    2008-01-01

    We present experimental heat transport measurements of turbulent Rayleigh-Benard convection with rotation about a vertical axis. The fluid, water with Prandtl number ({sigma}) about 6, was confined in a cell which had a square cross section of 7.3 cm x 7.3 cm and a height of 9.4 cm. Heat transport was measured for Rayleigh numbers 2 x 10{sup 5} < Ra < 5 x 10{sup 8} and Taylor numbers 0 < Ta < 5 x 10{sup 9}. We show the variation of normalized heat transport, the Nusselt number, at fixed dimensional rotation rate {Omega}{sub D}, at fixed Ra varying Ta, at fixed Ta varying Ra, and at fixed Rossby number Ro. The scaling of heat transport in the range 10{sup 7} to about 10{sup 9} is roughly 0.29 with a Ro dependent coefficient or equivalently is also well fit by a combination of power laws of the form a Ra{sup 1/5} + b Ra{sup 1/3} . The range of Ra is not sufficient to differentiate single power law or combined power law scaling. The overall impact of rotation on heat transport in turbulent convection is assessed.

  4. Measurements of classical transport of fast ions

    SciTech Connect

    Zhao, L.; Heidbrink, W.W.; Boehmer, H.; McWilliams, R.; Leneman, D.; Vincena, S.

    2005-05-15

    To study the fast-ion transport in a well controlled background plasma, a 3-cm diameter rf ion gun launches a pulsed, {approx}300 eV ribbon shaped argon ion beam parallel to or at 15 deg. to the magnetic field in the Large Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)] at UCLA. The parallel energy of the beam is measured by a two-grid energy analyzer at two axial locations (z=0.32 m and z=6.4 m) from the ion gun in LAPD. The calculated ion beam slowing-down time is consistent to within 10% with the prediction of classical Coulomb collision theory using the LAPD plasma parameters measured by a Langmuir probe. To measure cross-field transport, the beam is launched at 15 deg. to the magnetic field. The beam then is focused periodically by the magnetic field to avoid geometrical spreading. The radial beam profile measurements are performed at different axial locations where the ion beam is periodically focused. The measured cross-field transport is in agreement to within 15% with the analytical classical collision theory and the solution to the Fokker-Planck kinetic equation. Collisions with neutrals have a negligible effect on the beam transport measurement but do attenuate the beam current.

  5. Fluid transport at low Reynolds number with magnetically actuated artificial cilia.

    PubMed

    Gauger, E M; Downton, M T; Stark, H

    2009-02-01

    By numerical modeling we investigate fluid transport in low-Reynolds-number flow achieved with a special elastic filament or artificIal cilium attached to a planar surface. The filament is made of superparamagnetic particles linked together by DNA double strands. An external magnetic field induces dipolar interactions between the beads of the filament which provides a convenient way of actuating the cilium in a well-controlled manner. The filament has recently been used to successfully construct the first artificial micro-swimmer (R. Dreyfus et al., Nature 437, 862 (2005)). In our numerical study we introduce a measure, which we call pumping performance, to quantify the fluid transport induced by the magnetically actuated cilium and identify an optimum stroke pattern of the filament. It consists of a slow transport stroke and a fast recovery stroke. Our detailed parameter study also reveals that for sufficiently large magnetic fields the artificial cilium is mainly governed by the Mason number that compares frictional to magnetic forces. Initial studies on multi-cilia systems show that the pumping performance is very sensitive to the imposed phase lag between neighboring cilia, i.e., to the details of the initiated metachronal wave.

  6. Fluid transport at low Reynolds number with magnetically actuated artificial cilia

    NASA Astrophysics Data System (ADS)

    Gauger, E. M.; Downton, M. T.; Stark, H.

    2009-02-01

    By numerical modeling we investigate fluid transport in low-Reynolds-number flow achieved with a special elastic filament or artifical cilium attached to a planar surface. The filament is made of superparamagnetic particles linked together by DNA double strands. An external magnetic field induces dipolar interactions between the beads of the filament which provides a convenient way of actuating the cilium in a well-controlled manner. The filament has recently been used to successfully construct the first artificial micro-swimmer (R. Dreyfus et al., Nature 437, 862 (2005)). In our numerical study we introduce a measure, which we call pumping performance, to quantify the fluid transport induced by the magnetically actuated cilium and identify an optimum stroke pattern of the filament. It consists of a slow transport stroke and a fast recovery stroke. Our detailed parameter study also reveals that for sufficiently large magnetic fields the artificial cilium is mainly governed by the Mason number that compares frictional to magnetic forces. Initial studies on multi-cilia systems show that the pumping performance is very sensitive to the imposed phase lag between neighboring cilia, i.e., to the details of the initiated metachronal wave.

  7. Transport-number determination of a protonic ceramic electrolyte membrane via electrode-polarisation correction with the Gorelov method

    NASA Astrophysics Data System (ADS)

    Pérez-Coll, Domingo; Heras-Juaristi, Gemma; Fagg, Duncan P.; Mather, Glenn C.

    2014-01-01

    Analysis of transport numbers is critical for assessing the suitability of an ion-conducting material for a given electrochemical application and the conditions for its employment. In this work, the proton, oxide-ion and electron transport numbers of the candidate protonic ceramic electrolyser and fuel cell material SrZr0.9Y0.1O3-δ (with the addition of 4 mol% ZnO as sintering aid) are measured in wet and dry oxidising atmospheres in the temperature range 700-850 °C. The determination of proton transport numbers is analysed in detail, encompassing the suitability of equivalent circuits in different conditions and the inclusion of an external parallel resistance for the correction of electrode-polarisation effects (Gorelov method). It is confirmed that transport numbers are highly inaccurate if no polarisation correction is applied. In dry oxidising conditions oxide-ion transport numbers, to, lie in the range 0.63-0.78. The conductivity in wet oxidising conditions is dominated by protons and an electronic component, with the proton transport number increasing from 0.79 to 0.88 with increasing pH2O in the range 1.1 × 10-3 ≤ pH2O ≤ 1.27 × 10-2 atm at 700 °C.

  8. Children’s Number-Line Estimation Shows Development of Measurement Skills (Not Number Representations)

    PubMed Central

    Cohen, Dale J.; Sarnecka, Barbara W.

    2016-01-01

    Children’s understanding of numbers is often assessed using a number-line task, where the child is shown a line labeled with 0 at one end and a higher number (e.g., 100) at the other end. The child is then asked where on the line some intermediate number (e.g., 70) should go. Performance on this task changes predictably during childhood, and this has often been interpreted as evidence of a change in the child’s psychological representation of integer quantities. The present article presents theoretical and empirical evidence that the change in number-line performance actually reflects the development of measurement skills used in the task. We compare 2 versions of the number-line task: the bounded version used in the literature and a new, unbounded version. Results indicate that it is only children’s performance on the bounded task (which requires subtraction or division) that changes markedly with age. In contrast, children’s performance on the unbounded task (which requires only addition) remains fairly constant as they get older. Thus, developmental changes in performance on the traditional bounded number-line task likely reflect the growth of task-specific measurement skills rather than changes in the child’s understanding of numerical quantities. PMID:24512172

  9. Measuring the neutron star tidal Love number with inspiral waveforms

    NASA Astrophysics Data System (ADS)

    Favata, Marc

    2014-03-01

    The tidal Love number parameterizes how easily a binary companion deforms a neutron star. This deformation modifies the gravitational field near the neutron star and imprints itself on the binary orbit and gravitational waveform. Measuring the Love number with LIGO or other detectors will help constrain the neutron star equation of state (which is uncertain at high densities). I will discuss an improved parameterization of the waveform's Love-number dependence. I will also discuss how systematic errors will make this number difficult to measure. These systematic errors could arise from unknown post-Newtonian terms that enter at lower orders than tidal effects, or from neglecting small neutron star spins or binary eccentricity.

  10. Intercomparison of number concentration measurements by various aerosol particle counters

    NASA Astrophysics Data System (ADS)

    Ankilov, A.; Baklanov, A.; Colhoun, M.; Enderle, K.-H.; Gras, J.; Julanov, Yu.; Kaller, D.; Lindner, A.; Lushnikov, A. A.; Mavliev, R.; McGovern, F.; Mirme, A.; O'Connor, T. C.; Podzimek, J.; Preining, O.; Reischl, G. P.; Rudolf, R.; Sem, G. J.; Szymanski, W. W.; Tamm, E.; Vrtala, A. E.; Wagner, P. E.; Winklmayr, W.; Zagaynov, V.

    Total aerosol particle number concentrations, as measured by means of 16 different measurement systems, have been quantitatively compared during an international workshop at the Institute for Experimental Physics of the University of Vienna, Austria, which was coordinated within the Committee on Nucleation and Atmospheric Aerosols (ICCP-IUGG). The range of measuring instruments includes Pollak counters (PCO) in use already for several decades, presently available commercial particle counters, as well as laboratory prototypes. The operation of the instruments considered was based on different measurement principles: (1) adiabatic expansion condensation particle counter, (2) flow diffusion condensation particle counter, (3) turbulent mixing condensation particle counter, (4) laser optical particle counter, and (5) electrostatic particle measurement system. Well-defined test aerosols with various chemical compositions were considered: DEHS, sodium chloride, silver, hydrocarbons, and tungsten oxide. The test aerosols were nearly monodispersed with mean particle diameters between 4 and 520 nm, the particle number concentrations were varied over a range from about 4×10 1 to 7×10 6 cm -3. A few measurements were performed with two-component aerosol mixtures. For simultaneous concentration measurements, the various instruments considered were operated under steady state conditions in a linear flow system. A series of at least 10 single concentration measurements was performed by each individual instrument at each set of test aerosol parameters. The average of the concentration data measured by the various instruments was defined as a common reference. The number concentrations obtained from the various instruments typically agreed within a factor of about two over the entire concentration range considered. The agreement of the measured concentrations is notable considering the various different measurement principles applied in this study, and particularly in view of the

  11. Street canyon aerosol pollutant transport measurements.

    PubMed

    Longley, I D; Gallagher, M W; Dorsey, J R; Flynn, M; Bower, K N; Allan, J D

    2004-12-01

    Current understanding of dispersion in street canyons is largely derived from relatively simple dispersion models. Such models are increasingly used in planning and regulation capacities but are based upon a limited understanding of the transport of substances within a real canyon. In recent years, some efforts have been made to numerically model localised flow in idealised canyons (e.g., J. Appl. Meteorol. 38 (1999) 1576-89) and stepped canyons (Assimakopoulos V. Numerical modelling of dispersion of atmospheric pollution in and above urban canopies. PhD thesis, Imperial College, London, 2001) but field studies in real canyons are rare. To further such an understanding, a measurement campaign has been conducted in an asymmetric street canyon with busy one-way traffic in central Manchester in northern England. The eddy correlation method was used to determine fluxes of size-segregated accumulation mode aerosol. Measurements of aerosol at a static location were made concurrently with measurements on a platform lift giving vertical profiles. Size-segregated measurements of ultrafine and coarse particle concentrations were also made simultaneously at various heights. In addition, a small mobile system was used to make measurements of turbulence at various pavement locations within the canyon. From this data, various features of turbulent transport and dispersion in the canyon will be presented. The concentration and the ventilation fluxes of vehicle-related aerosol pollutants from the canyon will be related to controlling factors. The results will also be compared with citywide ventilation data from a separate measurement campaign conducted above the urban canopy.

  12. Turbulent rotating plane Couette flow: Reynolds and rotation number dependency of flow structure and momentum transport

    NASA Astrophysics Data System (ADS)

    Kawata, Takuya; Alfredsson, P. Henrik

    2016-07-01

    Plane Couette flow under spanwise, anticyclonic system rotation [rotating plane Couette flow (RPCF)] is studied experimentally using stereoscopic particle image velocimetry for different Reynolds and rotation numbers in the fully turbulent regime. Similar to the laminar regime, the turbulent flow in RPCF is characterized by roll cells, however both instantaneous snapshots of the velocity field and space correlations show that the roll cell structure varies with the rotation number. All three velocity components are measured and both the mean flow and all four nonzero Reynolds stresses are obtained across the central parts of the channel. This also allows us to determine the wall shear stress from the viscous stress and the Reynolds stress in the center of the channel, and for low rotation rates the wall shear stress increases with increasing rotation rate as expected. The results show that zero absolute vorticity is established in the central parts of the channel of turbulent RPCF for high enough rotation rates, but also that the mean velocity profile for certain parameter ranges shows an S shape giving rise to a negative velocity gradient in the center of the channel. We find that from an analysis of the Reynolds stress transport equation using the present data there is a transport of the Reynolds shear stress towards the center of the channel, which may then result in a negative mean velocity gradient there.

  13. Optical measurement techniques for high Reynolds number train investigations

    NASA Astrophysics Data System (ADS)

    Loose, S.; Richard, H.; Bosbach, J.; Thimm, M.; Becker, W.; Raffel, M.

    2006-04-01

    This article reports on experimental aerodynamic investigations on a generic high-speed train configuration performed within two different wind tunnels. Both wind tunnels are specialized facilities for high Reynolds number investigations and offer low turbulence levels. The wind tunnels are the cryogenic wind tunnel located in Cologne (KKK) and in the high-pressure wind tunnel located in Göttingen (HDG). Both facilities are part of the German Dutch wind tunnel association (DNW). The adaptation and application of three optical measurement techniques for such high Reynolds number investigations is described in the article. The optical methods are: Particle Image Velocimetry for the measurement of velocity fields, Background Oriented Schlieren technique for density gradient measurements, and a white light Digital Speckle Photography technique for model deformation monitoring.

  14. Direct Measurement of Topological Numbers with Spins in Diamond.

    PubMed

    Kong, Fei; Ju, Chenyong; Liu, Ying; Lei, Chao; Wang, Mengqi; Kong, Xi; Wang, Pengfei; Huang, Pu; Li, Zhaokai; Shi, Fazhan; Jiang, Liang; Du, Jiangfeng

    2016-08-01

    Topological numbers can characterize the transition between different topological phases, which are not described by Landau's paradigm of symmetry breaking. Since the discovery of the quantum Hall effect, more topological phases have been theoretically predicted and experimentally verified. However, it is still an experimental challenge to directly measure the topological numbers of various predicted topological phases. In this Letter, we demonstrate quantum simulation of topological phase transition of a quantum wire (QW), by precisely modulating the Hamiltonian of a single nitrogen-vacancy (NV) center in diamond. Deploying a quantum algorithm of finding eigenvalues, we reliably extract both the dispersion relations and topological numbers. This method can be further generalized to simulate more complicated topological systems. PMID:27541449

  15. Direct Measurement of Topological Numbers with Spins in Diamond.

    PubMed

    Kong, Fei; Ju, Chenyong; Liu, Ying; Lei, Chao; Wang, Mengqi; Kong, Xi; Wang, Pengfei; Huang, Pu; Li, Zhaokai; Shi, Fazhan; Jiang, Liang; Du, Jiangfeng

    2016-08-01

    Topological numbers can characterize the transition between different topological phases, which are not described by Landau's paradigm of symmetry breaking. Since the discovery of the quantum Hall effect, more topological phases have been theoretically predicted and experimentally verified. However, it is still an experimental challenge to directly measure the topological numbers of various predicted topological phases. In this Letter, we demonstrate quantum simulation of topological phase transition of a quantum wire (QW), by precisely modulating the Hamiltonian of a single nitrogen-vacancy (NV) center in diamond. Deploying a quantum algorithm of finding eigenvalues, we reliably extract both the dispersion relations and topological numbers. This method can be further generalized to simulate more complicated topological systems.

  16. Direct Measurement of Topological Numbers with Spins in Diamond

    NASA Astrophysics Data System (ADS)

    Kong, Fei; Ju, Chenyong; Liu, Ying; Lei, Chao; Wang, Mengqi; Kong, Xi; Wang, Pengfei; Huang, Pu; Li, Zhaokai; Shi, Fazhan; Jiang, Liang; Du, Jiangfeng

    2016-08-01

    Topological numbers can characterize the transition between different topological phases, which are not described by Landau's paradigm of symmetry breaking. Since the discovery of the quantum Hall effect, more topological phases have been theoretically predicted and experimentally verified. However, it is still an experimental challenge to directly measure the topological numbers of various predicted topological phases. In this Letter, we demonstrate quantum simulation of topological phase transition of a quantum wire (QW), by precisely modulating the Hamiltonian of a single nitrogen-vacancy (NV) center in diamond. Deploying a quantum algorithm of finding eigenvalues, we reliably extract both the dispersion relations and topological numbers. This method can be further generalized to simulate more complicated topological systems.

  17. Beam-transport study of an isocentric rotating ion gantry with minimum number of quadrupoles

    NASA Astrophysics Data System (ADS)

    Pavlovic, Márius; Griesmayer, Erich; Seemann, Rolf

    2005-06-01

    A beam-transport study of an isocentric gantry for ion therapy is presented. The gantry is designed with the number of quadrupoles down to the theoretical minimum, which is the feature published for the first time in this paper. This feature has been achieved without compromising the ion-optical functions of the beam-transport system that is capable of handling non-symmetric beams (beams with different emittances in vertical and horizontal plane), pencil-beam scanning, double-achromatic optics and beam-size control. Ion-optical properties of the beam-transport system are described, discussed and illustrated by computer simulations performed by the TRANSPORT-code.

  18. Intensive statistical complexity measure of pseudorandom number generators

    NASA Astrophysics Data System (ADS)

    Larrondo, H. A.; González, C. M.; Martín, M. T.; Plastino, A.; Rosso, O. A.

    2005-10-01

    A Statistical Complexity measure has been recently proposed to quantify the performance of chaotic Pseudorandom number generators (PRNG) (Physica A 354 (2005) 281). Here we revisit this quantifier and introduce two important improvements: (i) consideration of an intensive statistical complexity (Physica A 334 (2004) 119), and (ii) following the prescription of Brand and Pompe (Phys. Rev. Lett. 88 (2002) 174102-1) in evaluating the probability distribution associated with the PRNG. The ensuing new measure is applied to a very well-tested PRNG advanced by Marsaglia.

  19. Measuring the winding number instability in mesoscopic superconducting rings

    NASA Astrophysics Data System (ADS)

    Lollo, Anthony; Petkovic, Ivana; Devoret, Michel; Glazman, Leonid; Harris, Jack

    In equilibrium, a flux-biased superconducting ring occupies a state that is characterized by the integer winding number of its complex order parameter. Transitions between states of differing winding number occur via phase slips of the order parameter. A number of aspects of these phase slips remain poorly understood, including the particular value of flux bias at which the transition occurs, and the particular state into which the system relaxes. We use cantilever torque magnetometry to address these questions by measuring the equilibrium supercurrent in arrays of isolated aluminum rings over a wide range of applied flux and temperature. We fit the measured supercurrent using one-dimensional stationary Ginzburg Landau theory over the entire field range -Bc 3 < B number changes by unity; this may be because the dynamics of the switching events are overdamped in these rings.

  20. NANONIS TRAMEA - A Quantum Transport Measurement System

    NASA Astrophysics Data System (ADS)

    Kampen, Thorsten; Thissen, Andreas; Schaff, Oliver; Pioda, Alessandro

    Nanonis Tramea is a quantum leap with respect to increased speed for transport measurements taking research onto a new level. Measurements which took several hours in the past can now be done in minutes without compromising signal quality. Tramea uses its fast, high-resolution, high-precision and ultra-low-noise outputs and inputs to generate and acquire up to 20000 data points per second on 24 channels in parallel. This is not only up to 1000 x faster than typical measurement systems but it is also time deterministic with highest precision. Here, the time separation between points is constant so that artefacts caused by unequal point spacings in non-deterministic measurement systems are avoided. The emphasis here is the real-time relation. Tramea comes with a built-in interface which allows for control of the instruments' basic functions from any programming environment. For users requiring more functionality and higher speeds a full-featured LabVIEW-based programming interface or scripting module are available as add-on modules. Due to the modularity and flexibility of the hardware and software architecture of Tramea upgrades with standardized add-on modules are possible. Non-standard requests can still be handled by the various programming options.

  1. 40 CFR 51.213 - Transportation control measures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Transportation control measures. 51.213... Transportation control measures. (a) The plan must contain procedures for obtaining and maintaining data on actual emissions reductions achieved as a result of implementing transportation control measures. (b)...

  2. 40 CFR 51.213 - Transportation control measures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Transportation control measures. 51.213... Transportation control measures. (a) The plan must contain procedures for obtaining and maintaining data on actual emissions reductions achieved as a result of implementing transportation control measures. (b)...

  3. 40 CFR 51.213 - Transportation control measures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Transportation control measures. 51.213... Transportation control measures. (a) The plan must contain procedures for obtaining and maintaining data on actual emissions reductions achieved as a result of implementing transportation control measures. (b)...

  4. 40 CFR 51.213 - Transportation control measures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Transportation control measures. 51.213... Transportation control measures. (a) The plan must contain procedures for obtaining and maintaining data on actual emissions reductions achieved as a result of implementing transportation control measures. (b)...

  5. Measuring the Second Chern Number from Nonadiabatic Effects

    NASA Astrophysics Data System (ADS)

    Kolodrubetz, Michael

    2016-07-01

    The geometry and topology of quantum systems have deep connections to quantum dynamics. In this Letter, I show how to measure the non-Abelian Berry curvature and its related topological invariant, the second Chern number, using dynamical techniques. The second Chern number is the defining topological characteristic of the four-dimensional generalization of the quantum Hall effect and has relevance in systems from three-dimensional topological insulators to Yang-Mills field theory. I illustrate its measurement using the simple example of a spin-3 /2 particle in an electric quadrupole field. I show how one can dynamically measure diagonal components of the Berry curvature in an overcomplete basis of the degenerate ground state space and use this to extract the full non-Abelian Berry curvature. I also show that one can accomplish the same ideas by stochastically averaging over random initial states in the degenerate ground state manifold. Finally, I show how this system can be manufactured and the topological invariant measured in a variety of realistic systems, from superconducting qubits to trapped ions and cold atoms.

  6. Measuring the Second Chern Number from Nonadiabatic Effects.

    PubMed

    Kolodrubetz, Michael

    2016-07-01

    The geometry and topology of quantum systems have deep connections to quantum dynamics. In this Letter, I show how to measure the non-Abelian Berry curvature and its related topological invariant, the second Chern number, using dynamical techniques. The second Chern number is the defining topological characteristic of the four-dimensional generalization of the quantum Hall effect and has relevance in systems from three-dimensional topological insulators to Yang-Mills field theory. I illustrate its measurement using the simple example of a spin-3/2 particle in an electric quadrupole field. I show how one can dynamically measure diagonal components of the Berry curvature in an overcomplete basis of the degenerate ground state space and use this to extract the full non-Abelian Berry curvature. I also show that one can accomplish the same ideas by stochastically averaging over random initial states in the degenerate ground state manifold. Finally, I show how this system can be manufactured and the topological invariant measured in a variety of realistic systems, from superconducting qubits to trapped ions and cold atoms.

  7. Measurement of non-volatile particle number size distribution

    NASA Astrophysics Data System (ADS)

    Gkatzelis, G. I.; Papanastasiou, D. K.; Florou, K.; Kaltsonoudis, C.; Louvaris, E.; Pandis, S. N.

    2015-06-01

    An experimental methodology was developed to measure the non-volatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a non-volatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol, OA (40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50-60 % of the particles had a non-volatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon (BC) with an 80 % contribution, while OA was responsible for another 15-20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type

  8. Measurement of Chern numbers through center-of-mass responses

    NASA Astrophysics Data System (ADS)

    Price, H. M.; Zilberberg, O.; Ozawa, T.; Carusotto, I.; Goldman, N.

    2016-06-01

    Probing the center-of-mass of an ultracold atomic cloud can be used to measure Chern numbers, the topological invariants underlying the quantum Hall effects. In this work, we show how such center-of-mass observables can have a much richer dependence on topological invariants than previously discussed. In fact, the response of the center of mass depends not only on the current density, typically measured in a solid-state system, but also on the particle density, which itself can be sensitive to the topology of the band structure. We apply a semiclassical approach, supported by numerical simulations, to highlight the key differences between center-of-mass responses and more standard conductivity measurements. We illustrate this by analyzing both the two- and four-dimensional quantum Hall effects. These results have important implications for experiments in engineered topological systems, such as ultracold gases and photonics.

  9. Experimental determination of the transport number of water in Nafion 117 membrane

    SciTech Connect

    Fuller, T.F.; Newman, J. . Dept. of Chemical Engineering)

    1992-05-01

    The transport number of water in Nafion 117 membrane over a wide range of water contents is determined experimentally using a concentration cell. The transport number of water, the ratio f[sup m][sub o]/Z[sub o], is about 1.4 for a membrane equilibrated with saturated water vapor at 25[degrees]C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the concentration of water approaches zero. In this paper, the relationship between the transference number, the transport number, and the electro-osmotic drag coefficient is presented, and their relevance to water management is solid-polymer-electrolyte fuel cells is discussed. Results are compared with other data available in the literature and with the theoretical maximum.

  10. Influence of the Prandtl number on the heat transport enhancement in rotating turbulent Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Weiss, Stephan; Wei, Ping; Ahlers, Guenter

    2014-11-01

    We present new Nusselt-number (Nu) measurements for slowly rotating turbulent thermal convection in cylinders with aspect ratio Γ = 1 . By using compressed gasses and various liquids, we now have data in the Prandtl number (Pr) range 0 . 74 < Pr < 35 . 5 and for Rayleigh numbers (Ra) in the range 4 ×108 < Ra < 2 ×1011 . With these data we investigate in detail the effect of Pr and Ra on the heat-transport enhancement close to its onset. This enhancement takes place for rotation rates larger than a critical value, as expressed by the dimensionless inverse Rossby number (1 / Ro), since only then vortices form, in which due to Ekman pumping fluid is transported from the thermal boundary layers into the turbulent bulk. We found that the critical inverse Rossby number (1 / Roc) decreases with increasing Pr, following a power law with exponent α = - 0 . 40 +/- 0 . 02 . For larger rotation rates, the relative heat transport enhancement (Nur) increases first linearly with a slope S = ∂Nur / ∂ (1 / Ro) . We show that also the slope S follows a power law S ~ Prβ Raγ with β = - 0 . 10 +/- 0 . 06 and γ = - 0 . 14 +/- 0 . 04 . We found that the maximum heat transport enhancement (up to 40%) increases with increasing Pr and decreasing Ra. This work was supported by NSF-Grant DMR11-58514. SW thanks the Deutsche Forschungsgesellschaft for financial support.

  11. Estimating the theoretical semivariogram from finite numbers of measurements

    USGS Publications Warehouse

    Zheng, Lingyun; Silliman, S.E.

    2000-01-01

    We investigate from a theoretical basis the impacts of the number, location, and correlation among measurement points on the quality of an estimate of the semivariogram. The unbiased nature of the semivariogram estimator ??/(r) is first established for a general random process Z(x). The variance of ??z(r) is then derived as a function of the sampling parameters (the number of measurements and their locations). In applying this function to the case of estimating the semivariograms of the transmissivity and the hydraulic head field, it is shown that the estimation error depends on the number of the data pairs, the correlation among the data pairs (which, in turn, are determined by the form of the underlying semivariogram ??(r)), the relative locations of the data pairs, and the separation distance at which the semivariogram is to be estimated. Thus design of an optimal sampling program for semivariogram estimation should include consideration of each of these factors. Further, the function derived for the variance of ??z(r) is useful in determining the reliability of a semivariogram developed from a previously established sampling design.

  12. 41 CFR 102-118.170 - Will GSA continue to maintain a centralized numbering system for Government transportation...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... maintain a centralized numbering system for Government transportation documents? 102-118.170 Section 102-118.170 Public Contracts and Property Management Federal Property Management Regulations System... centralized numbering system for Government transportation documents? Yes, GSA will maintain a...

  13. Performance measurements of an airfoil at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Mcghee, Robert J.; Walker, Betty S.

    1989-01-01

    Performance characteristics of an Eppler 387 airfoil using both direct (force) and indirect (pressure) measurement techniques have been obtained at Reynolds numbers from 60,000 to 460,000 in the Langley Low-Turbulence Pressure Tunnel. Lift, drag, and pitching-moment data were obtained from two internally-mounted strain-gage balances specifically designed for small aerodynamic loads. Comparisons of these results with data from a pressure model of an Eppler 387 airfoil are included. Drag data for both models using the wake traverse method are compared with the balance data. Oil flow visualization and surface mounted hot-film sensors were used to determine laminar-separation and turbulent-reattachment locations. Problems associated with obtaining accurate wind-tunnel data at low Reynolds numbers are discussed.

  14. Effects of Lewis number on turbulent scalar transport and its modelling in turbulent premixed flames

    SciTech Connect

    Chakraborty, Nilanjan; Cant, R.S.

    2009-07-15

    The behaviour of the turbulent scalar flux in premixed flames has been studied using Direct Numerical Simulation (DNS) with emphasis on the effects of Lewis number in the context of Reynolds-averaged closure modelling. A database was obtained from DNS of three-dimensional freely propagating statistically planar turbulent premixed flames with simplified chemistry and a range of global Lewis numbers from 0.34 to 1.2. Under the same initial conditions of turbulence, flames with low Lewis numbers are found to exhibit counter-gradient transport, whereas flames with higher Lewis numbers tend to exhibit gradient transport. The Reynolds-averaged transport equation for the turbulent scalar flux is analysed in detail and the performance of existing models for the unclosed terms is assessed with respect to corresponding quantities extracted from DNS data. Based on this assessment, existing models which are able to address the effects of non-unity Lewis number on turbulent scalar flux transport are identified, and new or modified models are suggested wherever necessary. In this way, a complete set of closure models for the scalar flux transport equation is prescribed for use in Reynolds-Averaged Navier-Stokes simulations. (author)

  15. Phonon number measurements using single photon opto-mechanics

    NASA Astrophysics Data System (ADS)

    Basiri-Esfahani, S.; Akram, U.; Milburn, G. J.

    2012-08-01

    We describe a system composed of two coupled optical cavity modes with a coupling modulated by a bulk mechanical resonator. In addition, one of the cavity modes is irreversibly coupled to a single photon source. Our scheme is an opto-mechanical realization of the Jaynes-Cummings model where the qubit is a dual rail optical qubit while the bosonic degree of freedom is a matter degree of freedom realized as the bulk mechanical excitation. We show the possibility of engineering phonon number states of the mechanical oscillator in such a system by computing the conditional state of the mechanics after successive photon counting measurements.

  16. Low Reynolds number Couette flow facility for drag measurements.

    PubMed

    Johnson, Tyler J; Lang, Amy W; Wheelus, Jennifer N; Westcott, Matthew

    2010-09-01

    For this study a new low Reynolds number Couette facility was constructed to investigate surface drag. In this facility, mineral oil was used as the working fluid to increase the shear stress across the surface of the experimental models. A mounted conveyor inside a tank creates a flow above which an experimental model of a flat plate was suspended. The experimental plate was attached to linear bearings on a slide system that connects to a force gauge used to measure the drag. Within the gap between the model and moving belt a Couette flow with a linear velocity profile was created. Digital particle image velocimetry was used to confirm the velocity profile. The drag measurements agreed within 5% of the theoretically predicted Couette flow value. PMID:20887004

  17. Low Reynolds number Couette flow facility for drag measurements.

    PubMed

    Johnson, Tyler J; Lang, Amy W; Wheelus, Jennifer N; Westcott, Matthew

    2010-09-01

    For this study a new low Reynolds number Couette facility was constructed to investigate surface drag. In this facility, mineral oil was used as the working fluid to increase the shear stress across the surface of the experimental models. A mounted conveyor inside a tank creates a flow above which an experimental model of a flat plate was suspended. The experimental plate was attached to linear bearings on a slide system that connects to a force gauge used to measure the drag. Within the gap between the model and moving belt a Couette flow with a linear velocity profile was created. Digital particle image velocimetry was used to confirm the velocity profile. The drag measurements agreed within 5% of the theoretically predicted Couette flow value.

  18. Automatic trajectory measurement of large numbers of crowded objects

    NASA Astrophysics Data System (ADS)

    Li, Hui; Liu, Ye; Chen, Yan Qiu

    2013-06-01

    Complex motion patterns of natural systems, such as fish schools, bird flocks, and cell groups, have attracted great attention from scientists for years. Trajectory measurement of individuals is vital for quantitative and high-throughput study of their collective behaviors. However, such data are rare mainly due to the challenges of detection and tracking of large numbers of objects with similar visual features and frequent occlusions. We present an automatic and effective framework to measure trajectories of large numbers of crowded oval-shaped objects, such as fish and cells. We first use a novel dual ellipse locator to detect the coarse position of each individual and then propose a variance minimization active contour method to obtain the optimal segmentation results. For tracking, cost matrix of assignment between consecutive frames is trainable via a random forest classifier with many spatial, texture, and shape features. The optimal trajectories are found for the whole image sequence by solving two linear assignment problems. We evaluate the proposed method on many challenging data sets.

  19. Flow Visualization of Low Prandtl Number Fluids using Electrochemical Measurements

    NASA Technical Reports Server (NTRS)

    Crunkleton, D.; Anderson, T.; Narayanan, R.; Labrosse, G.

    2003-01-01

    It is well established that residual flows exist in contained liquid metal processes. In 1-g processing, buoyancy forces often drive these flows and their magnitudes can be substantial. It is also known that residual flows can exist during microgravity processing, and although greatly reduced in magnitude, they can influence the properties of the processed materials. Unfortunately, there are very few techniques to visualize flows in opaque, high temperature liquid metals, and those available are not easily adapted to flight investigation. In this study, a novel technique is developed that uses liquid tin as the model fluid and solid-state electrochemical cells constructed from Yttria-Stabilized Zirconia (YSZ) to establish and measure dissolved oxygen boundary conditions. The melt serves as a common electrode for each of the electrochemical cells in this design, while independent reference electrodes are maintained at the outside surfaces of the electrolyte. By constructing isolated electrochemical cells at various locations along the container walls, oxygen is introduced or extracted by imposing a known electrical potential or passing a given current between the melt and the reference electrode. This programmed titration then establishes a known oxygen concentration boundary condition at the selected electrolyte-melt interface. Using the other cells, the concentration of oxygen at the electrolyte-melt interface is also monitored by measuring the open-circuit potentials developed between the melt and reference electrodes. Thus the electrochemical cells serve to both establish boundary conditions for the passive tracer and sense its path. Rayleigh-Benard convection was used to validate the electrochemical approach to flow visualization. Thus, a numerical characterization of the second critical Rayleigh numbers in liquid tin was conducted for a variety of Cartesian aspect ratios. The extremely low Prandtl number of tin represents the lowest value studied numerically

  20. Nature's microfluidic transporter: rotational cytoplasmic streaming at high Péclet numbers.

    PubMed

    van de Meent, Jan-Willem; Tuval, Idan; Goldstein, Raymond E

    2008-10-24

    Cytoplasmic streaming circulates the contents of large eukaryotic cells, often with complex flow geometries. A largely unanswered question is the significance of these flows for molecular transport and mixing. Motivated by "rotational streaming" in Characean algae, we solve the advection-diffusion dynamics of flow in a cylinder with bidirectional helical forcing at the wall. A circulatory flow transverse to the cylinder's long axis, akin to Dean vortices at finite Reynolds numbers, arises from the chiral geometry. Strongly enhanced lateral transport and longitudinal homogenization occur if the transverse Péclet number is sufficiently large, with scaling laws arising from boundary layers.

  1. Variation of bedload transport threshold in two Alpine mountain streams inferred from geophone measurements

    NASA Astrophysics Data System (ADS)

    Rickenmann, Dieter; Weninger, Thomas

    2015-04-01

    Geophone measurements are a surrogate technique to monitor bedload transport in mountain streams. The two mountain streams Fischbach and the Ruetz in Western Austria are fed by glacial meltwater and feature regular bedload transport during the summer months. In spring 2008 the so-called Swiss plate geophone system was installed in the two streams. The sites are operated by the Tyrolean water power company (TIWAG), and discharge data are available as well. The geophone sensors record the motion of bedload particles transported over a steel plate mounted flush with the channel bed. Calibration measurements of the geophone system were performed by TIWAG, and they show an approximately linear relation between number of impulses and bedload mass transported over the sensors. For the period 2008 to 2013, the variation in bedload transport with shear stress was analyzed using an exponential form of the Meyer-Peter & Müller equation proposed by Chen (2002). If the dimensionless threshold shear stress at initiation of motion, i.e. the Shields number, is back-calculated from the measured bedload transport rates, the temporal variability in bedload transport efficiency can be reasonably well described by postulating a corresponding temporal variability in the Shields number. The geophone measurements were also used to qualitatively assess the grain size distribution of the transported particles. It is hypothesized that an increase in the Shields number is associated with a coarsening of the surface grain size distribution of the bed material upstream of the measuring site.

  2. Reynolds Number Effects on Leading Edge Radius Variations of a Supersonic Transport at Transonic Conditions

    NASA Technical Reports Server (NTRS)

    Rivers, S. M. B.; Wahls, R. A.; Owens, L. R.

    2001-01-01

    A computational study focused on leading-edge radius effects and associated Reynolds number sensitivity for a High Speed Civil Transport configuration at transonic conditions was conducted as part of NASA's High Speed Research Program. The primary purposes were to assess the capabilities of computational fluid dynamics to predict Reynolds number effects for a range of leading-edge radius distributions on a second-generation supersonic transport configuration, and to evaluate the potential performance benefits of each at the transonic cruise condition. Five leading-edge radius distributions are described, and the potential performance benefit including the Reynolds number sensitivity for each is presented. Computational results for two leading-edge radius distributions are compared with experimental results acquired in the National Transonic Facility over a broad Reynolds number range.

  3. Measurement of hydrocarbon transport in bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the hydrophobic, volatility, and relatively low aqueous solubility of aliphatic and aromatic hydrocarbons, transport of these chemicals by bacteria has not been extensively studied. These issues make transport assays difficult to carry out, and as a result, strong evidence for the active tran...

  4. Measurement of Hydrocarbon Transport in Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrocarbon uptake by bacteria has not been extensively studied, and strong evidence for active transport of hydrocarbons is lacking. The volatile nature of hydrocarbons, their hydrophobicity, and their relatively low aqueous solubilities can complicate transport assays. Here we present a detailed...

  5. TRANSPORT PROPERTY MEASUREMENTS OF HFC-236EA

    EPA Science Inventory

    The report gives results of an evaluation of transport properties of 1,1,1,2,3,3,-hexafluoropropane (HFC-236ea), with liquid viscosity and thermal conductivity being the two main transport properties of interest. In addition, the specific heat and density of refrigerant/lubrican...

  6. Measurement of Flow and Transport in Macroporous Soils

    NASA Astrophysics Data System (ADS)

    Köhne, J. M.; Mohanty, B. P.; Castiglione, P.

    2002-12-01

    Preferential flow in agricultural regions poses a serious environmental threat by allowing chemicals to bypass the soil matrix and to be channeled into ground water. Although a long-known phenomenon, our understanding of and ability to predict macropore flow and transport remain far from complete. To analyze the processes that control macropore flow in soil, we have built large (25 cm diam., 80 cm length) repacked soil columns with different macropore/matrix domain configurations: (i) In column I, multiple macropores were created in one-half cross-section. Water flow and chloride transport experiments were performed for macropores open to the atmosphere and buried-macropores. Measurements at the bottom boundary as well as across the profile consistently revealed the higher degree of preferential flow in open macropores as compared to the buried macropores. (ii) In column II, a single cylindrical macropore was located in the center of the surrounding soil matrix. We conducted experiments of water flow and solute transport using KBr as a conservative tracer. In the soil matrix, TDR-probes measure soil water content and solute concentration, and mini-tensiometers register matric potential. In and adjacent to the macropore-system, TDR-coil probes (diam. 0.3 cm, length of copper coil 1.5 cm) and mini-tensiometers (ceramic cup diam. 0.1-0.2 cm) monitored macropore flow and provided information to quantify inter-region water transfer. Bromide specific electrodes measured the bromide concentration in the effluent of the macropore region and of the matrix region as well as directly inside the soil matrix. The experimental setup seems promising for analyzing basic flow and transport processes in macroporous soils. In future experimental analyses, the complexity of the macropore configuration will be systematically increased in terms of macropore number, geometry, continuity, and physical properties of macropore walls.

  7. The landscape Reynolds number and other dimensionless measures of Earth surface processes

    NASA Astrophysics Data System (ADS)

    Haff, P. K.

    2007-11-01

    An analogy between turbulent fluid systems and landscape drainage systems [Parker, G., Haff, P.K., Murray, A.B., 2001, EOS, Transactions of the American Geophysical Union, 82, pp. F564.] is suggested by the observation that transport in both systems can be approximated by diffusion with size-proportional effective diffusivities, with a cross-over at small scales to Fickian diffusion. The "landscape" Reynolds number of a typical fluvial landscape is estimated to be of order Re L ˜ 10 6 to 10 9, these large values reflecting the relative efficiency of fluvial transport compared to creep. Re L is the ratio of the large-scale effective diffusivity of rivers to the small-scale diffusivity of creep processes on hillslopes. The spatial dependence of the effective diffusivity produces rivers with logarithmic long-profiles, similar to the profiles of many rivers in nature, and analogous to the logarithmic dependence of mean fluid velocity on distance from a wall in turbulent flow. The landscape example suggests how other generalized "Reynolds numbers" can be constructed as ratios of large-scale to small-scale diffusivities to measure the efficiencies of complex processes that affect the surface. As an example, the global airline transportation network is estimated to have an efficacy relative to that of direct human mechanisms for transport of similar goods and materials of about 10 8 as measured by a corresponding "technology" Reynolds number. The appearance of such large dimensionless numbers, pertaining to the consequences of human invention and design, reflects the emergence of the technosphere as an increasingly efficient overlay on the historical domain of biology and surficial geology.

  8. Transport Measurements on Si Nanostructures with Counted Sb Donors

    NASA Astrophysics Data System (ADS)

    Singh, Meenakshi; Bielejec, Edward; Garratt, Elias; Ten Eyck, Gregory; Bishop, Nathaniel; Wendt, Joel; Luhman, Dwight; Carroll, Malcolm; Lilly, Michael

    2014-03-01

    Donor based spin qubits are a promising platform for quantum computing. Single qubits using timed implant of donors have been demonstrated.1 Extending this to multiple qubits requires precise control over the placement and number of donors. Such control can be achieved by using a combination of low-energy heavy-ion implants (to reduce depth straggle), electron-beam lithography (to define position), focused ion beam (to localize implants to one lithographic site) and counting the number of implants with a single ion detector.2 We report transport measurements on MOS quantum dots implanted with 5, 10 and 20 Sb donors using the approach described above. A donor charge transition is identified by a charge offset in the transport characteristics. Correlation between the number of donors and the charge offsets is studied. These results are necessary first steps towards fabricating donor nanostructures for two qubit interactions. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. 1J. J. Pla et al., Nature 496, 334 (2013) 2J. A. Seamons et al., APL 93, 043124 (2008).

  9. Children's Number-Line Estimation Shows Development of Measurement Skills (Not Number Representations)

    ERIC Educational Resources Information Center

    Cohen, Dale J.; Sarnecka, Barbara W.

    2014-01-01

    Children's understanding of numbers is often assessed using a number-line task, where the child is shown a line labeled with 0 at one end and a higher number (e.g., 100) at the other end. The child is then asked where on the line some intermediate number (e.g., 70) should go. Performance on this task changes predictably during childhood, and…

  10. Reynolds Number Effects on a Supersonic Transport at Subsonic High-Lift Conditions (Invited)

    NASA Technical Reports Server (NTRS)

    Owens, L.R.; Wahls, R. A.

    2001-01-01

    A High Speed Civil Transport configuration was tested in the National Transonic Facility at the NASA Langley Research Center as part of NASA's High Speed Research Program. The primary purposes of the tests were to assess Reynolds number scale effects and high Reynolds number aerodynamic characteristics of a realistic, second generation supersonic transport while providing data for the assessment of computational methods. The tests included longitudinal and lateral/directional studies at transonic and low-speed, high-lift conditions across a range of Reynolds numbers from that available in conventional wind tunnels to near flight conditions. Results are presented which focus on Reynolds number and static aeroelastic sensitivities of longitudinal characteristics at Mach 0.30 for a configuration without an empennage. A fundamental change in flow-state occurred between Reynolds numbers of 30 to 40 million, which is characterized by significantly earlier inboard leading-edge separation at the high Reynolds numbers. Force and moment levels change but Reynolds number trends are consistent between the two states.

  11. Measurements of Molecular Mixing in a High Schmidt Number Rayleigh-Taylor Mixing Layer

    SciTech Connect

    Mueschke, N J; Schilling, O; Youngs, D L; Andrews, M

    2007-12-03

    Molecular mixing measurements are performed for a high Schmidt number (Sc {approx} 10{sup 3}), small Atwood number (A {approx} 7.5 x 10{sup -4}) buoyancy-driven turbulent Rayleigh-Taylor mixing layer in a water channel facility. Salt was added to the top stream to create the desired density difference. The degree of molecular mixing was measured as a function of time by monitoring a diffusion-limited chemical reaction between the two fluid streams. The pH of each stream was modified by the addition of acid or alkali such that a local neutralization reaction occurred as the two fluids molecularly mixed. The progress of this neutralization reaction was tracked by the addition of phenolphthalein - a pH-sensitive chemical indicator - to the acidic stream. Accurately calibrated backlit optical techniques were used to measure the average concentration of the colored chemical indicator. Comparisons of chemical product formation for pre-transitional buoyancy- and shear-driven mixing layers are given. It is also shown that experiments performed at different equivalence ratios (acid/alkali concentration) can be combined to obtain a mathematical relationship between the colored product formed and the density variance. This relationship was used to obtain high-fidelity, quantitative measures of the degree of molecular mixing which are independent of probe resolution constraints. The dependence of such mixing parameters on the Schmidt and Reynolds numbers is examined by comparing the current Sc {approx} 10{sup 3} measurements with Sc = 0.7 gas-phase and Pr = 7 liquid-phase measurements. This comparison indicates that the Schmidt number has a large effect on the bulk quantity of mixed fluid at small Reynolds numbers Re{sub h} < 10{sup 3}. At late times, all mixing parameters indicated a greater degree of molecular mixing and a decreased Schmidt number dependence. Implications for the development and quantitative assessment of turbulent transport and mixing models appropriate for

  12. Characterization of Lorenz number with Seebeck coefficient measurement

    SciTech Connect

    Kim, Hyun-Sik; Gibbs, Zachary M.; Tang, Yinglu; Wang, Heng; Snyder, G. Jeffrey

    2015-04-01

    In analyzing zT improvements due to lattice thermal conductivity (κ{sub L}) reduction, electrical conductivity (σ) and total thermal conductivity (κ{sub Total}) are often used to estimate the electronic component of the thermal conductivity (κ{sub E}) and in turn κ{sub L} from κ{sub L} = ∼ κ{sub Total} − LσT. The Wiedemann-Franz law, κ{sub E} = LσT, where L is Lorenz number, is widely used to estimate κ{sub E} from σ measurements. It is a common practice to treat L as a universal factor with 2.44 × 10{sup −8} WΩK{sup −2} (degenerate limit). However, significant deviations from the degenerate limit (approximately 40% or more for Kane bands) are known to occur for non-degenerate semiconductors where L converges to 1.5 × 10{sup −8} WΩK{sup −2} for acoustic phonon scattering. The decrease in L is correlated with an increase in thermopower (absolute value of Seebeck coefficient (S)). Thus, a first order correction to the degenerate limit of L can be based on the measured thermopower, |S|, independent of temperature or doping. We propose the equation: L=1.5+exp[−(|S|)/(116) ] (where L is in 10{sup −8} WΩK{sup −2} and S in μV/K) as a satisfactory approximation for L. This equation is accurate within 5% for single parabolic band/acoustic phonon scattering assumption and within 20% for PbSe, PbS, PbTe, Si{sub 0.8}Ge{sub 0.2} where more complexity is introduced, such as non-parabolic Kane bands, multiple bands, and/or alternate scattering mechanisms. The use of this equation for L rather than a constant value (when detailed band structure and scattering mechanism is not known) will significantly improve the estimation of lattice thermal conductivity.

  13. Modeling source contributions to submicron particle number concentrations measured in Rochester, New York

    SciTech Connect

    Ogulei, D.; Hopke, P.K.; Chalupa, D.C.; Utell, M.J.

    2007-02-15

    An advanced receptor model was used to elicit source information based on ambient submicron (0.01-0.47 {mu}m) particle number concentrations, gaseous species, and meteorological variables measured at the New York State Department of Environmental Conservation central monitoring site in Rochester, NY. Four seasonal data sets (winter, spring, summer, and fall) were independently investigated. A total of ten different sources were identified, including two traffic factors, two nucleation factors, industrial emissions, residential/commercial heating, secondary nitrate, secondary sulfate, ozone-rich secondary aerosol, and regionally transported aerosol. The resolved sources were generally characterized by similar number modes for either winter, spring, summer or fall. The size distributions for nucleation were dominated by the smallest particles ({lt}10-30 nm) that gradually grew to larger sizes as could be seen by observing the volume profiles. In addition, the nucleation factors were closely linked to traffic rush hours suggesting that cooling of tail-pipe emissions may have induced nucleation activity in the vicinity of the highways. Industrial emissions were dominated by emissions from coal-fired power plants that were located to the northwest of the sampling site. These facilities represent the largest point emission sources of SO{sub 2}, and probably ultrafine ({lt}0.1 {mu}m) or submicron particles, in Rochester. Regionally transported material was characterized by accumulation mode particles. Air parcel back-trajectories showed transport of air masses from the industrial midwest.

  14. Appropriate burnup measurements for transportation burnup credit

    SciTech Connect

    Lancaster, D.; Fuentes, E.

    1997-04-01

    This paper addresses two of the measurement specifications used in analyzing spent fuel packages to gain burnup credit. The philosophy and calculation of rejection criteria and measurement accuracy are discussed. Any assembly for which the declared measured value and reactor record value deviate by more than 10% will be rejected. Measurement accuracy requirements are established for dependent and independent systems. The requirements have been tested and are achievable, ensuring safe operation without extra cost. 6 refs.

  15. Investigation of Transonic Reynolds Number Scaling on a Twin-Engine Transport

    NASA Technical Reports Server (NTRS)

    Curtin, M. M.; Bogue, D. R.; Om, D.; Rivers, S. M. B.; Pendergraft, O. C., Jr.; Wahls, R. A.

    2002-01-01

    This paper discusses Reynolds number scaling for aerodynamic parameters including force and wing pressure measurements. A full-span model of the Boeing 777 configuration was tested at transonic conditions in the National Transonic Facility (NTF) at Reynolds numbers (based on mean aerodynamic chord) from 3.0 to 40.0 million. Data was obtained for a tail-off configuration both with and without wing vortex generators and flap support fairings. The effects of aeroelastics were separated from Reynolds number effects by varying total pressure and temperature independently. Data from the NTF at flight Reynolds number are compared with flight data to establish the wind tunnel/flight correlation. The importance of high Reynolds number testing and the need for developing a process for transonic Reynolds number scaling is discussed. This paper also identifies issues that need to be worked for Boeing Commercial to continue to conduct future high Reynolds number testing in the NTF.

  16. Reynolds Number Effects on the Stability and Control Characteristics of a Supersonic Transport

    NASA Technical Reports Server (NTRS)

    Owens, L. R.; Wahls, R. A.; Elzey, M. B.; Hamner, M. P.

    2002-01-01

    A High Speed Civil Transport (HSCT) configuration was tested in the National Transonic Facility at the NASA Langley Research Center as part of NASA's High Speed Research Program. A series of tests included longitudinal and lateral/directional studies at transonic and low speed, high-lift conditions across a range of Reynolds numbers from that available in conventional wind tunnels to near flight conditions. Results presented focus on Reynolds number sensitivities of the stability and control characteristics at Mach 0.30 and 0.95 for a complete HSCT aircraft configuration including empennage. The angle of attack where the pitching-moment departure occurred increased with higher Reynolds numbers for both the landing and transonic configurations. The stabilizer effectiveness increased with Reynolds number for both configurations. The directional stability also increased with Reynolds number for both configurations. The landing configuration without forebody chines exhibited a large yawing-moment departure at high angles of attack and zero sideslip that varied with increasing Reynolds numbers. This departure characteristic nearly disappeared when forebody chines were added. The landing configuration's rudder effectiveness also exhibited sensitivities to changes in Reynolds number.

  17. Temperature and number density measurements using Raman scattering in turbulent-supersonic-combusting flows

    NASA Astrophysics Data System (ADS)

    Jeyashekar, Nigil Satish

    Scramjet engines propelled at hypersonic velocities have the potential to replace existing rocket launchers. Commercializing the vehicle is an arduous task, owing to issues relating to low combustion efficiency. The performance, thrust, and speed of the engine can be improved by optimizing: turbulence-chemistry interaction to provide mixing conditions favorable for the chemistry, pressure buildup, and re-circulation of hydrogen throughout the engine. The performance of the engine can be measured, flow and chemical dynamics can be evaluated when all three variables in the transport equations are known. The variables are instantaneous flow velocity, static temperature (refers to the macroscopic temperature and not the molecular species temperature), and total number density at a point in the flow. The motive is to build a non-intrusive tool to measure thermodynamic quantities (static temperature and total number density). This can be integrated with a velocity measurement tool, in the future, to obtain all three variables simultaneously and instantaneously. The dissertation describes in detail the motivation for the proposed work, with introduction to the formalism involved, with a concise literature review, followed by mathematical perspective to obtain the working equations for temperature and number density. The design of the adiabatic burner and the experimental setup used for calibration is discussed with the uncertainty involved in measurements. The measurements are made for a certain set of flow conditions in the laminar burner by Raman scattering and is validated by comparing it to the theoretical/adiabatic flame temperature and mole fraction plots, in lean and rich regime. This technique is applied to turbulent, supersonic, hydrogen-air flame of an afterburning rocket nozzle. The statistics of temperature and total number density versus the corresponding values at adiabatic conditions gives the departure from thermal and chemical equilibrium. The extent of

  18. Phase Measurement of Galvanneal Task JPL Task Order Number: RF-152 Amendment Number: 543

    SciTech Connect

    Lynn Lowry; Beverly Tai

    1995-03-01

    The objective of this task was to demonstrate an x-ray fluorescence (XRF) technique which would measure the phase composition of galvanneal coatings of sheet steel rapidly and non-destructively with an accuracy of 0.5%. This data acquisition and analysis method would be implemented as an on-line process control input. The AISI sample matrix evaluated for this study is shown in Appendix I. The Jet Propulsion Laboratory (JPL) and Data Measurement Corporation (DMC) measured iron and zinc XRF responses from these samples. In addition, JPL performed metallograph, x-ray diffraction (XRD), and transmission electron microscopy (TEM) to characterize the samples' galvanneal phase morphology. This data was correlated with the XRF experimental results and then compared to phase composition models, which were generated using a Fundamental Parameters Method (FPM) approach.

  19. Charge-transport anisotropy in black phosphorus: critical dependence on the number of layers.

    PubMed

    Banerjee, Swastika; Pati, Swapan K

    2016-06-28

    Phosphorene is a promising candidate for modern electronics because of the anisotropy associated with high electron-hole mobility. Additionally, superior mechanical flexibility allows the strain-engineering of various properties including the transport of charge carriers in phosphorene. In this work, we have shown the criticality of the number of layers to dictate the transport properties of black phosphorus. Trilayer black phosphorus (TBP) has been proposed as an excellent anisotropic material, based on the transport parameters using Boltzmann transport formalisms coupled with density functional theory. The mobilities of both the electron and the hole are found to be higher along the zigzag direction (∼10(4) cm(2) V(-1) s(-1) at 300 K) compared to the armchair direction (∼10(2) cm(2) V(-1) s(-1)), resulting in the intrinsic directional anisotropy. Application of strain leads to additional electron-hole anisotropy with 10(3) fold higher mobility for the electron compared to the hole. Critical strain for maximum anisotropic response has also been determined. Whether the transport anisotropy is due to the spatial or charge-carrier has been determined through analyses of the scattering process of electrons and holes, and their recombination as well as relaxation dynamics. In this context, we have derived two descriptors (S and F(k)), which are general enough for any 2D or quasi-2D systems. Information on the scattering involving purely the carrier states also helps to understand the layer-dependent photoluminescence and electron (hole) relaxation in black phosphorus. Finally, we justify trilayer black phosphorus (TBP) as the material of interest with excellent transport properties. PMID:27257640

  20. Charge-transport anisotropy in black phosphorus: critical dependence on the number of layers.

    PubMed

    Banerjee, Swastika; Pati, Swapan K

    2016-06-28

    Phosphorene is a promising candidate for modern electronics because of the anisotropy associated with high electron-hole mobility. Additionally, superior mechanical flexibility allows the strain-engineering of various properties including the transport of charge carriers in phosphorene. In this work, we have shown the criticality of the number of layers to dictate the transport properties of black phosphorus. Trilayer black phosphorus (TBP) has been proposed as an excellent anisotropic material, based on the transport parameters using Boltzmann transport formalisms coupled with density functional theory. The mobilities of both the electron and the hole are found to be higher along the zigzag direction (∼10(4) cm(2) V(-1) s(-1) at 300 K) compared to the armchair direction (∼10(2) cm(2) V(-1) s(-1)), resulting in the intrinsic directional anisotropy. Application of strain leads to additional electron-hole anisotropy with 10(3) fold higher mobility for the electron compared to the hole. Critical strain for maximum anisotropic response has also been determined. Whether the transport anisotropy is due to the spatial or charge-carrier has been determined through analyses of the scattering process of electrons and holes, and their recombination as well as relaxation dynamics. In this context, we have derived two descriptors (S and F(k)), which are general enough for any 2D or quasi-2D systems. Information on the scattering involving purely the carrier states also helps to understand the layer-dependent photoluminescence and electron (hole) relaxation in black phosphorus. Finally, we justify trilayer black phosphorus (TBP) as the material of interest with excellent transport properties.

  1. Overview of mitigation policies and measures in transportation

    SciTech Connect

    Ernst, J.

    1996-12-31

    In this paper the author looks at the general question of what can be done in the transportation sector to address the problem of greenhouse gas emissions. Obviously, fewer vehicles is less emission. But on a global scale he reviews the population growth in major cities, the type of transport employed, the correlation of vehicle ownership and gross national product, as well as the costs, direct and indirect of letting more personal wealth drive one to personal vehicles as a way to transport oneself to work. The increased speed comes with many costs for the individual and for society. The development of mass transportation systems provides a number of benefits, in the form of urban development, less reliance on imported fuels, transport system health, general health and productivity of work force, and reduced costs to government to support transportation systems.

  2. Drag and Strouhal number measurements for porous circular cylinders

    NASA Astrophysics Data System (ADS)

    Kanale, Anup; Sellappan, Prabu; Luhar, Mitul

    2015-11-01

    Flow past solid bluff bodies has been studied extensively, and both experimental and computational results are well documented. However, there is limited data available for flows past porous bluff bodies, in spite of their abundance in nature. As an effort in this direction, we study the wake behind porous circular cylinders via water channel experiments employing particle image velocimetry (PIV). The experiments systematically test the effect of three dimensionless parameters: ReP , the Reynolds number based on pore size, ReD , the Reynolds number based on cylinder diamter, and ϕ the porosity of the sleeve. Specifically the PIV data are used to estimate the drag coefficient and Strouhal number for 600 <= ReD <= 5000 , 18 <= ReP <= 600 and 0 . 33 <= ϕ <= 0 . 75 . The results obtained are compared with solid cylinders to identify the effect of cylinder permeability on flow characteristics.

  3. Measurement of tracheal mucous transport rate in the horse

    SciTech Connect

    Nelson, R.; Hampe, D.W.

    1983-06-01

    Tracheal mucous transport rates were measured in 12 nonanesthetized horses after an intratracheal injection of 99mtechnetium-sulfur colloid. The transport rate of the subsequent bolus of radioactivity was determined, using a portable scaler rate meter fitted with a high-energy gamma-scintillation probe. A gamma-scintillation camera was used to verify bolus form and movement in 1 horse. The mean tracheal mucous transport rate was 1.66 +/- 0.24 cm/min.

  4. Black Carbon Particle Number Distribution Measurements during the ATHENS-2013 Winter Campaign

    NASA Astrophysics Data System (ADS)

    Gkatzelis, Georgios; Papanastasiou, Dimitris; Florou, Kalliopi; Kaltsonoudis, Christos; Louvaris, Eyaggelos; Bezentakos, Spiridon; Biskos, Georgios; Pandis, Spuros

    2014-05-01

    burning, clean air transported from other areas, mixed sources, etc. The number fraction remaining after heating at 300 ° C for approximately 15 s during wood burning events was 80-90%, suggesting that practically all particles contained nonvolatile material. Combining the SMPS, MAAP, AMS, and HTDMA measurements we show that most of the sampled material was BC. On the contrary, during rush hour traffic the number fraction remaining was only 50-60% suggesting that more than half of the particles did not contain BC.

  5. Numerical Computation of Mass Transport in Low Reynolds Number Flows and the Concentration Boundary Layer

    NASA Astrophysics Data System (ADS)

    Licata, Nicholas A.; Fuller, Nathaniel J.

    Understanding the physical mechanisms by which an individual cell interacts with its environment often requires detailed information about the fluid in which the cell is immersed. Mass transport between the interior of the cell and the external environment is influenced by the flow of the extracellular fluid and the molecular diffusivity. Analytical calculations of the flow field are challenging in simple geometries, and not generally available in more realistic cases with irregular domain boundaries. Motivated by these problems, we discuss the numerical solution of Stokes equation by implementing a Gauss-Seidel algorithm on a staggered computational grid. The computed velocity profile is used as input to numerically solve the advection-diffusion equation for mass transport. Special attention is paid to the case of two-dimensional flows at large Péclet number. The numerical results are compared with a perturbative analytical treatment of the concentration boundary layer.

  6. Irrationality measure of the number \\frac{\\pi}{\\sqrt{3}}

    NASA Astrophysics Data System (ADS)

    Androsenko, V. A.

    2015-02-01

    Using a new integral construction combining the idea of symmetry suggested by Salikhov in 2007 and the integral introduced by Marcovecchio in 2009, we obtain a new bound for the irrationality measure of \\fracπ{\\sqrt{3}}.

  7. 41 CFR 102-118.170 - Will GSA continue to maintain a centralized numbering system for Government transportation...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Will GSA continue to maintain a centralized numbering system for Government transportation documents? 102-118.170 Section 102... centralized numbering system for Government transportation documents? Yes, GSA will maintain a...

  8. 41 CFR 102-118.170 - Will GSA continue to maintain a centralized numbering system for Government transportation...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Will GSA continue to maintain a centralized numbering system for Government transportation documents? 102-118.170 Section 102... centralized numbering system for Government transportation documents? Yes, GSA will maintain a...

  9. 41 CFR 102-118.170 - Will GSA continue to maintain a centralized numbering system for Government transportation...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Will GSA continue to maintain a centralized numbering system for Government transportation documents? 102-118.170 Section 102... centralized numbering system for Government transportation documents? Yes, GSA will maintain a...

  10. 41 CFR 102-118.170 - Will GSA continue to maintain a centralized numbering system for Government transportation...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Will GSA continue to maintain a centralized numbering system for Government transportation documents? 102-118.170 Section 102... centralized numbering system for Government transportation documents? Yes, GSA will maintain a...

  11. Transported acid aerosols measured in southern Ontario

    NASA Astrophysics Data System (ADS)

    Keeler, Gerald J.; Spengler, John D.; Koutrakis, Petros; Allen, George A.; Raizenne, Mark; Stern, Bonnie

    During the period 29 June 1986-9 August 1986, a field health study assessing the acute health effects of air pollutants on children was conducted at a summer girls' camp on the northern shore of Lake Erie in SW Ontario. Continuous air pollution measurements of SO 2, O 3, NO x, particulate sulfates, light scattering, and meteorological measurements including temperature, dew point, and wind speed and direction were made. Twelve-hour integrated samples of size fractioned particles were also obtained using dichotomous samplers and Harvard impactors equipped with an ammonia denuder for subsequent hydrogen ion determination. Particulate samples were analyzed for trace elements by X-ray fluorescence and Neutron Activation, and for organic and elemental carbon by a thermal/optical technique. The measured aerosol was periodically very acidic with observed 12-h averaged H + concentrations in the range < 10-560 nmoles m -3. The aerosol H + appeared to represent the net strong acidity after H 2SO 4 reaction with NH 3(g). Average daytime concentrations were higher than night-time for aerosol H +, sulfate, fine mass and ozone. Prolonged episodes of atmospheric acidity, sulfate, and ozone were associated with air masses arriving at the measurement site from the west and from the southwest over Lake Erie. Sulfate concentrations measured at the lakeshore camp were more than twice those measured at inland sites during extreme pollution episodes. The concentration gradient observed with onshore flow was potentially due to enhanced deposition near the lakeshore caused by discontinuities in the meteorological fields in this region.

  12. Sensitivity of transport aircraft performance and economics to advanced technology and cruise Mach number

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1974-01-01

    Sensitivity data for advanced technology transports has been systematically collected. This data has been generated in two separate studies. In the first of these, three nominal, or base point, vehicles designed to cruise at Mach numbers .85, .93, and .98, respectively, were defined. The effects on performance and economics of perturbations to basic parameters in the areas of structures, aerodynamics, and propulsion were then determined. In all cases, aircraft were sized to meet the same payload and range as the nominals. This sensitivity data may be used to assess the relative effects of technology changes. The second study was an assessment of the effect of cruise Mach number. Three families of aircraft were investigated in the Mach number range 0.70 to 0.98: straight wing aircraft from 0.70 to 0.80; sweptwing, non-area ruled aircraft from 0.80 to 0.95; and area ruled aircraft from 0.90 to 0.98. At each Mach number, the values of wing loading, aspect ratio, and bypass ratio which resulted in minimum gross takeoff weight were used. As part of the Mach number study, an assessment of the effect of increased fuel costs was made.

  13. The Case for Multiple Measures. Info Brief. Number 52

    ERIC Educational Resources Information Center

    Fuller, Dan; Fitzgerald, Kevin; Lee, Ji Sun

    2008-01-01

    What is the best use for tests? Testing should provide insight and information to educators and students. The primary purpose of testing is to inform teaching and learning. Yet, for too many schools, testing has been perverted to accommodate only measurement. Lesson plans are built around helping students pass the tests. In many instances, schools…

  14. The number comb for a soil physical properties dynamic measurement

    NASA Astrophysics Data System (ADS)

    Olechko, K.; Patiño, P.; Tarquis, A. M.

    2012-04-01

    We propose the prime numbers distribution extracted from the soil digital multiscale images and some physical properties time series as the precise indicator of the spatial and temporal dynamics under soil management changes. With this new indicator the soil dynamics can be studied as a critical phenomenon where each phase transition is estimated and modeled by the graph partitioning induced phase transition. The critical point of prime numbers distribution was correlated with the beginning of Andosols, Vertisols and saline soils physical degradation under the unsustainable soil management in Michoacan, Guanajuato and Veracruz States of Mexico. The data banks corresponding to the long time periods (between 10 and 28 years) were statistically compared by RISK 5.0 software and our own algorithms. Our approach makes us able to distill free-form natural laws of soils physical properties dynamics directly from the experimental data. The Richter (1987) and Schmidt and Lipson (2009) original approaches were very useful to design the algorithms to identify Hamiltonians, Lagrangians and other laws of geometric and momentum conservation especially for erosion case.

  15. Transport Measurements on Individual Branched Nanostructures

    NASA Astrophysics Data System (ADS)

    Sun, Yong; Li, Wenzhi; Naughton, M. J.

    2005-03-01

    We have made electrical measurements on individual branched (``Y-junction") carbon nanotubes. After isolation on silicon substrates and identification via electron microscopy, photo and e-beam lithography were used to deposit metal electrodes (e.g. Au/Ti) onto individual branches of the nanostructures, including 4-probe configurations across a branch point (Y-junction). Various post-processing procedures, such as rapid thermal annealing and electron beam welding, were employed in attempts to improve contact resistances. Four-probe I-V measurements at room temperature yield varied intrinsic conductivity in these nanostructures (resistances between 10^4 and 10^7φ). Transmission microscopy reveals a fishbone internal structure, which could be responsible for the low conductance. We also report on the construction of ``divining rod'' cantilevers out of these branched nanotubes, using an etch-well technique, toward potential SPM applications, and on similar attempts using inorganic (e.g. ZnO2) nanowires.

  16. The influence of the Kubo number on the transport of energetic particles

    NASA Astrophysics Data System (ADS)

    Shalchi, A.

    2016-08-01

    We discuss the interaction between charged energetic particles and magnetized plasmas by using analytical theory. Based on the unified nonlinear transport (UNLT) theory we compute the diffusion coefficient across a large scale magnetic field. To achieve analytical tractability we use a simple Gaussian approach to model the turbulent magnetic fields. We show that the perpendicular diffusion coefficient depends only on two parameters, namely the Kubo number and the parallel mean free path. We combine the aforementioned turbulence model with the UNLT theory and we solve the corresponding integral equation numerically to show how these two parameters control the perpendicular diffusion coefficient. Furthermore, we consider two extreme cases, namely the case of strong and suppressed pitch-angle scattering, respectively. For each case we consider small and large Kubo numbers to achieve a further simplification. All our analytical findings are compared with formulas which are known in diffusion theory.

  17. Experimental studies of Reynolds number dependence of turbulent mixing and transport

    SciTech Connect

    Warhaft, Z.

    1994-07-01

    Predicting turbulent mixing and transport remains a critical problem in industrial flows (combustion chambers, mixers, ventillation systems etc.) and in the environment (smoke plumes etc.). The mixing and transport processes are often a strong function of Reynolds number (Re) and yet there is a paucity of information on their Re dependence. Here we propose experiments of passive scalar mixing in isotropic grid turbulence whereby the Taylor Reynolds number (R{lambda}) will be varied from 30 to over 400 (60 < R{sub l} < 10,000). We will achieve the high R{lambda} by means of an active grid, which consists of grid bars with small wings that rotate and flap in a random way. We propose to study basic statistics (pdf, spectra etc). of a homogeneous passive scalar (linear mean profile), as well as of an inhomogeneous scalar (passive line source) as a function of Re. There are many problems concerning the nature of the fine scale structure of a scalar (e.g., the existence of derivative skewness, the relation of the scalar spectrum to the velocity spectrum, and the rate of spreading (dispersion) of a contaminant plume), placing the similarity theory developed over the past 40 years in doubt, yet there is no information concerning its Reynolds number dependence in isotropic turbulence. The passive scalar will be temperature, although some experiments will be done using helium (which has a Schmidt number of 0.23). Particular emphasis will be placed on higher order statistics of both the signal and its derivative. Our experiments will be related to theory and modelling and to recent advances in Direct Numerical Simulations. We will also do further work on mixing in a jet (also as a function of Re) and will relate this work to the (shearless) grid turbulence. The duration of the proposed research is three years.

  18. Experimental studies of Reynolds number dependence of turbulent mixing and transport

    NASA Astrophysics Data System (ADS)

    Warhaft, Z.

    Predicting turbulent mixing and transport remains a critical problem in industrial flows (combustion chambers, mixers, ventilation systems, etc.) and in the environment (smoke plumes, etc.). The mixing and transport processes are often a strong function of Reynolds number (Re) and yet there is a paucity of information on their Re dependence. We propose experiments of passive scalar mixing in isotropic grid turbulence whereby the Taylor Reynolds number (R(sub lambda)) will be varied from 30 to over 400 (60 less than R(sub l) less than 10,000). We will achieve the high R(sub lambda) by means of an active grid, which consists of grid bars with small wings that rotate and flap in a random way. We propose to study basic statistics (pdf, spectra, etc). of a homogeneous passive scalar (linear mean profile), as well as of an inhomogeneous scalar (passive line source) as a function of Re. There are many problems concerning the nature of the fine scale structure of a scalar (e.g., the existence of derivative skewness, the relation of the scalar spectrum to the velocity spectrum, and the rate of spreading of a contaminant plume), placing the similarity theory developed over the past 40 years in doubt, yet there is no information concerning its Reynolds number dependence in isotropic turbulence. The passive scalar will be temperature, although some experiments will be done using helium (which has a Schmidt number of 0.23). Particular emphasis will be placed on higher order statistics of both the signal and its derivative. Our experiments will be related to theory and modeling and to recent advances in direct numerical simulations. We will also do further work on mixing in a jet (also as a function of Re) and will relate this work to the (shearless) grid turbulence.

  19. Transport coefficients for the shear dynamo problem at small Reynolds numbers

    SciTech Connect

    Singh, Nishant K.; Sridhar, S.

    2011-05-15

    We build on the formulation developed in S. Sridhar and N. K. Singh [J. Fluid Mech. 664, 265 (2010)] and present a theory of the shear dynamo problem for small magnetic and fluid Reynolds numbers, but for arbitrary values of the shear parameter. Specializing to the case of a mean magnetic field that is slowly varying in time, explicit expressions for the transport coefficients {alpha}{sub il} and {eta}{sub iml} are derived. We prove that when the velocity field is nonhelical, the transport coefficient {alpha}{sub il} vanishes. We then consider forced, stochastic dynamics for the incompressible velocity field at low Reynolds number. An exact, explicit solution for the velocity field is derived, and the velocity spectrum tensor is calculated in terms of the Galilean-invariant forcing statistics. We consider forcing statistics that are nonhelical, isotropic, and delta correlated in time, and specialize to the case when the mean field is a function only of the spatial coordinate X{sub 3} and time {tau}; this reduction is necessary for comparison with the numerical experiments of A. Brandenburg, K. H. Raedler, M. Rheinhardt, and P. J. Kaepylae [Astrophys. J. 676, 740 (2008)]. Explicit expressions are derived for all four components of the magnetic diffusivity tensor {eta}{sub ij}({tau}). These are used to prove that the shear-current effect cannot be responsible for dynamo action at small Re and Rm, but for all values of the shear parameter.

  20. Gasificaton Transport: A Multiphase CFD Approach & Measurements

    SciTech Connect

    Dimitri Gidaspow; Veeraya Jiradilok; Mayank Kashyap; Benjapon Chalermsinsuwan

    2009-02-14

    The objective of this project was to develop predictive theories for the dispersion and mass transfer coefficients and to measure them in the turbulent fluidization regime, using existing facilities. A second objective was to use our multiphase CFD tools to suggest optimized gasifier designs consistent with aims of Future Gen. We have shown that the kinetic theory based CFD codes correctly compute: (1) Dispersion coefficients; and (2) Mass transfer coefficients. Hence, the kinetic theory based CFD codes can be used for fluidized bed reactor design without any such inputs. We have also suggested a new energy efficient method of gasifying coal and producing electricity using a molten carbonate fuel cell. The principal product of this new scheme is carbon dioxide which can be converted into useful products such as marble, as is done very slowly in nature. We believe this scheme is a lot better than the canceled FutureGen, since the carbon dioxide is safely sequestered.

  1. Sand transport measurements in Chioggia inlet, Venice lagoon: Theory versus observations

    NASA Astrophysics Data System (ADS)

    Villatoro, Monique M.; Amos, Carl L.; Umgiesser, Georg; Ferrarin, Christian; Zaggia, Luca; Thompson, Charlotte E. L.; Are, Daniele

    2010-05-01

    This paper presents results of recent measurements of sand transport made in Chioggia inlet as part of an extensive monitoring programme in the Venetian inlets. Measurements were made in order: (1) to define a relationship between sand transport magnitude and tidal flow; (2) to derive the thresholds for sand transport; (3) to identify the dominant modes of transport; (4) to evaluate the concentration profiles of sand within the benthic boundary layer; (5) to compare bedload transport observations with model predictions using existent bedload formulae; and (6) to produce yearly estimates of bedload transport across the inlet. The vertical distribution of sand in the water column was sampled using modified Helley-Smith bedload samplers at three sites. Transport was found to vary according to the flow and bed grain size, with considerable temporal and spatial variability. A difference of up to three orders of magnitude in transport was observed through the inlet, with higher transport rates measured on the seaward part. The dominant mode of transport in the central inlet was suspension, while bedload was dominant in the mouths. The measured profiles of sand concentration varied with the tidal stage and seabed grain size according to the Rouse parameter ( R). R was high at the inlet mouths (1< R<2), indicative of a well-developed bedload layer. The inverse movability number ( W s/ U*) was also higher at these sites and appeared to be grain size dependant. Formulae for bedload transport were tested against field data; stochastic methods such as Einstein-Brown, Engelund-Hansen and Van Rijn produce the best fits. The coupled model SHYFEM-Sedtrans05 appears to simulate well observed transport for most conditions of flow. Long-term bedload predictions indicate a dominant export of sand, with a yearly average of 4500 m 3.

  2. Energy Dependence of Measured CT Numbers on Substituted Materials Used for CT Number Calibration of Radiotherapy Treatment Planning Systems

    PubMed Central

    Mahmoudi, Reza; Jabbari, Nasrollah; aghdasi, Mehdi; Khalkhali, Hamid Reza

    2016-01-01

    Introduction For accurate dose calculations, it is necessary to provide a correct relationship between the CT numbers and electron density in radiotherapy treatment planning systems (TPSs). The purpose of this study was to investigate the energy dependence of measured CT numbers on substituted materials used for CT number calibration of radiotherapy TPSs and the resulting errors in the treatment planning calculation doses. Materials and Methods In this study, we designed a cylindrical water phantom with different materials used as tissue equivalent materials for the simulation of tissues and obtaining the related CT numbers. For evaluating the effect of CT number variations of substituted materials due to energy changing of scanner (kVp) on the dose calculation of TPS, the slices of the scanned phantom at three kVp's were imported into the desired TPSs (MIRS and CorePLAN). Dose calculations were performed on two TPSs. Results The mean absolute percentage differences between the CT numbers of CT scanner and two treatment planning systems for all the samples were 3.22%±2.57% for CorePLAN and 2.88%±2.11% for MIRS. It was also found that the maximum absolute percentage difference between all of the calculated doses from each photon beam of linac (6 and 15 MV) at three kVp's was less than 1.2%. Discussion The present study revealed that, for the materials with effective low atomic number, the mean CT number increased with increasing energy, which was opposite for the materials with an effective high atomic number. We concluded that the tissue substitute materials had a different behavior in the energy ranges from 80 to 130 kVp. So, it is necessary to consider the energy dependence of the substitute materials used for the measurement or calibration of CT number for radiotherapy treatment planning systems. PMID:27391672

  3. Molecular transport in collagenous tissues measured by gel electrophoresis.

    PubMed

    Hunckler, Michael D; Tilley, Jennifer M R; Roeder, Ryan K

    2015-11-26

    Molecular transport in tissues is important for drug delivery, nutrient supply, waste removal, cell signaling, and detecting tissue degeneration. Therefore, the objective of this study was to investigate gel electrophoresis as a simple method to measure molecular transport in collagenous tissues. The electrophoretic mobility of charged molecules in tissue samples was measured from relative differences in the velocity of a cationic dye passing through an agarose gel in the absence and presence of a tissue section embedded within the gel. Differences in electrophoretic mobility were measured for the transport of a molecule through different tissues and tissue anisotropy, or the transport of different sized molecules through the same tissue. Tissue samples included tendon and fibrocartilage from the proximal (tensile) and distal (compressive) regions of the bovine flexor tendon, respectively, and bovine articular cartilage. The measured electrophoretic mobility was greatest in the compressive region of the tendon (fibrocartilage), followed by the tensile region of tendon, and lowest in articular cartilage, reflecting differences in the composition and organization of the tissues. The anisotropy of tendon was measured by greater electrophoretic mobility parallel compared with perpendicular to the predominate collagen fiber orientation. Electrophoretic mobility also decreased with increased molecular size, as expected. Therefore, the results of this study suggest that gel electrophoresis may be a useful method to measure differences in molecular transport within various tissues, including the effects of tissue type, tissue anisotropy, and molecular size.

  4. Automated measurement of fast mitochondrial transport in neurons

    PubMed Central

    Miller, Kyle E.; Liu, Xin-An; Puthanveettil, Sathyanarayanan V.

    2015-01-01

    There is growing recognition that fast mitochondrial transport in neurons is disrupted in multiple neurological diseases and psychiatric disorders. However, a major constraint in identifying novel therapeutics based on mitochondrial transport is that the large-scale analysis of fast transport is time consuming. Here we describe methodologies for the automated analysis of fast mitochondrial transport from data acquired using a robotic microscope. We focused on addressing questions of measurement precision, speed, reliably, workflow ease, statistical processing, and presentation. We used optical flow and particle tracking algorithms, implemented in ImageJ, to measure mitochondrial movement in primary cultured cortical and hippocampal neurons. With it, we are able to generate complete descriptions of movement profiles in an automated fashion of hundreds of thousands of mitochondria with a processing time of approximately one hour. We describe the calibration of the parameters of the tracking algorithms and demonstrate that they are capable of measuring the fast transport of a single mitochondrion. We then show that the methods are capable of reliably measuring the inhibition of fast mitochondria transport induced by the disruption of microtubules with the drug nocodazole in both hippocampal and cortical neurons. This work lays the foundation for future large-scale screens designed to identify compounds that modulate mitochondrial motility. PMID:26578890

  5. Numerical upper bounds on convective heat transport in a layer of fluid of finite Prandtl number: Confirmation of Howard's analytical asymptotic single-wave-number bound

    NASA Astrophysics Data System (ADS)

    Vitanov, Nikolay K.

    2005-10-01

    By means of the Howard-Busse method of the optimum theory of turbulence we investigate numerically the upper bounds on the Nusselt number in a heated-from-below horizontal layer of fluid of finite Prandtl number for the case of rigid boundaries. The bounds are obtained by the solutions of the Euler-Lagrange equations of a variational problem possessing up to three wave numbers. The obtained results are compared to the numerical results for the case of fluid layer with stress-free boundaries [N. K. Vitanov and F. H. Busse, "Upper bounds on heat transport in a horizontal fluid layer with stress-free boundaries," ZAMP 48, 310 (1997)] as well as to the numerical and analytical asymptotic results obtained by Howard ["Heat transport by turbulent convection," J. Fluid Mech. 17, 405 (1963)], Busse ["On Howard's upper bound for heat transport by turbulent convection," J. Fluid Mech. 37, 457 (1969)], and Strauss ["On the upper bounding approach to thermal convection at moderate Rayleigh numbers, II. Rigid boundaries," Dyn. Atm. Oceans 1, 77 (1976)]. We show that for low and intermediate Rayleigh numbers the numerical bounds are positioned below the analytical asymptotic bounds obtained by Howard and Busse. For large Rayleigh numbers the numerical bounds tend to approach the analytical asymptotic bounds. We confirm numerically the bound obtained by Howard for the case of one-wave-number solution of the Euler-Lagrange equations. As the region of validity of the results of the analytical asymptotic theory for solutions of the Euler-Lagrange equations with two and three wave numbers lies in the area of very high Rayleigh numbers the values of the second and third wave numbers are different from their analytical asymptotic values for the values of the Rayleigh number reached by the numerical computation.

  6. A rain splash transport equation assimilating field and laboratory measurements

    NASA Astrophysics Data System (ADS)

    Dunne, Thomas; Malmon, Daniel V.; Mudd, Simon M.

    2010-03-01

    Process-based models of hillslope evolution require transport equations relating sediment flux to its major controls. An equation for rain splash transport in the absence of overland flow was constructed by modifying an approach developed by Reeve (1982) and parameterizing it with measurements from single-drop laboratory experiments and simulated rainfall on a grassland in East Africa. The equation relates rain splash to hillslope gradient, the median raindrop diameter of a storm, and ground cover density; the effect of soil texture on detachability can be incorporated from other published results. The spatial and temporal applicability of such an equation for rain splash transport in the absence of overland flow on uncultivated hillslopes can be estimated from hydrological calculations. The predicted transport is lower than landscape-averaged geologic erosion rates from Kenya but is large enough to modify short, slowly eroding natural hillslopes as well as microtopographic interrill surfaces between which overland flow transports the mobilized sediment.

  7. Economic evaluation of traffic safety measures for transport companies.

    PubMed

    Rienstra, S A; Rietveld, P; Lindeijer, J E

    2000-09-01

    This paper addresses the economic feasibility of measures to reduce the material damage of transport companies. Results are presented of a series of interviews among transport companies as well as from a postal questionnaire survey. Next, calculations are presented for three types of companies: a small family company, a large family company and a large formalised company. From the viewpoint of costs and benefits, damage prevention measures appear to be particularly interesting to larger companies. Small companies, being the largest group, tend to have an informal culture in which measures are less effective. Especially those measures for which no large investments are needed, which influence the behaviour of drivers and need not to be contracted out, are perceived as attractive by the transport companies.

  8. On-road particle number measurements using a portable emission measurement system (PEMS)

    NASA Astrophysics Data System (ADS)

    Gallus, Jens; Kirchner, Ulf; Vogt, Rainer; Börensen, Christoph; Benter, Thorsten

    2016-01-01

    In this study the on-road particle number (PN) performance of a Euro-5 direct-injection (DI) gasoline passenger car was investigated. PN emissions were measured using the prototype of a portable emission measurement system (PEMS). PN PEMS correlations with chassis dynamometer tests show a good agreement with a chassis dynamometer set-up down to emissions in the range of 1·1010 #/km. Parallel on-line soot measurements by a photo acoustic soot sensor (PASS) were applied as independent measurement technique and indicate a good on-road performance for the PN-PEMS. PN-to-soot ratios were 1.3·1012 #/mg, which was comparable for both test cell and on-road measurements. During on-road trips different driving styles as well as different road types were investigated. Comparisons to the world harmonized light-duty test cycle (WLTC) 5.3 and to European field operational test (euroFOT) data indicate the PEMS trips to be representative for normal driving. Driving situations in varying traffic seem to be a major contributor to a high test-to-test variability of PN emissions. However, there is a trend to increasing PN emissions with more severe driving styles. A cold start effect is clearly visible for PN, especially at low ambient temperatures down to 8 °C.

  9. Velocity Resolved---Scalar Modeled Simulations of High Schmidt Number Turbulent Transport

    NASA Astrophysics Data System (ADS)

    Verma, Siddhartha

    The objective of this thesis is to develop a framework to conduct velocity resolved - scalar modeled (VR-SM) simulations, which will enable accurate simulations at higher Reynolds and Schmidt (Sc) numbers than are currently feasible. The framework established will serve as a first step to enable future simulation studies for practical applications. To achieve this goal, in-depth analyses of the physical, numerical, and modeling aspects related to Sc " 1 are presented, specifically when modeling in the viscous-convective subrange. Transport characteristics are scrutinized by examining scalar-velocity Fourier mode interactions in Direct Numerical Simulation (DNS) datasets and suggest that scalar modes in the viscous-convective subrange do not directly affect large-scale transport for high Sc . Further observations confirm that discretization errors inherent in numerical schemes can be sufficiently large to wipe out any meaningful contribution from subfilter models. This provides strong incentive to develop more effective numerical schemes to support high Sc simulations. To lower numerical dissipation while maintaining physically and mathematically appropriate scalar bounds during the convection step, a novel method of enforcing bounds is formulated, specifically for use with cubic Hermite polynomials. Boundedness of the scalar being transported is effected by applying derivative limiting techniques, and physically plausible single sub-cell extrema are allowed to exist to help minimize numerical dissipation. The proposed bounding algorithm results in significant performance gain in DNS of turbulent mixing layers and of homogeneous isotropic turbulence. Next, the combined physical/mathematical behavior of the subfilter scalar-flux vector is analyzed in homogeneous isotropic turbulence, by examining vector orientation in the strain-rate eigenframe. The results indicate no discernible dependence on the modeled scalar field, and lead to the identification of the tensor

  10. Learning from jellyfish: Fluid transport in muscular pumps at intermediate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Nawroth, Janna; Dabiri, John

    2010-11-01

    Biologically inspired hydrodynamic propulsion and maneuvering strategies promise the advancement of medical implants and minimally invasive clinical tools. We have chosen juvenile jellyfish as a model system for investigating fluid dynamics and morphological properties underlying fluid transport by a muscular pump at intermediate Reynolds numbers. Recently we have described how natural variations in viscous forces are balanced by changes in jellyfish body shape (phenotypic plasticity), to the effect of facilitating efficient body-fluid interaction. Complementing these studies in our live model organisms, we are also engaged in engineering an artificial jellyfish, that is, a jellyfish-inspired construct of a flexible plastic sheet actuated by a monolayer of rat cardiomyocytes. The main challenges here are (1) to derive a body shape and deformation suitable for effective fluid transport under physiological conditions, (2) to understand the mechanical properties of the muscular film and derive a design capable of the desired deformation, (3) to master the proper alignment and timely contraction of the muscle component needed to achieve the desired deformation, and (4) to evaluate the performance of the design.

  11. Non-spherical aerosol transport under oscillatory shear flows at low-Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Shachar Berman, Lihi; Delorme, Yann; Hofemeier, Philipp; Frankel, Steven; Sznitman, Josue

    2014-11-01

    Most airborne particles are intrinsically non-spherical. In particular, non-spherical particles with high aspect ratios, such as fibers, are acknowledged to be more hazardous than their spherical counterparts due to their ability to penetrate into deeper lung regions, causing serious pulmonary diseases. Not only do particle properties such as size, shape, and density have a major impact on particle transport, for non-spherical aerosols, their orientations also greatly influence particle trajectories due to modified lift and drag characteristics. Until present, however, most of our understanding of the dynamics of inhaled particles in the deep airways of the lungs has been limited to spherical particles only. In the present work, we seek to quantify through numerical simulations the transport of non-spherical airborne particles and their deposition under oscillatory shear flows at low Reynolds numbers, characteristic of acinar airways. Here, the Euler-Lagrangian model is used to solve the translational movement of a fiber, whereas the Eulerian rotational equations are introduced and solved to predict detailed unsteady fiber orientations. Overall, our efforts provide new insight into realistic dynamics of inhaled non-spherical aerosols under characteristic breathing motions.

  12. Effects of Lewis number on vorticity and enstrophy transport in turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Chakraborty, Nilanjan; Konstantinou, Ilias; Lipatnikov, Andrei

    2016-01-01

    The effects of Lewis number Le on both vorticity and enstrophy transport within the flame brush have been analysed using direct numerical simulation data of freely propagating statistically planar turbulent premixed flames, representing the thin reaction zone regime of premixed turbulent combustion. In the simulations, Le was ranged from 0.34 to 1.2 by keeping the laminar flame speed, thermal thickness, Damköhler, Karlovitz, and Reynolds numbers unchanged. The enstrophy has been shown to decay significantly from the unburned to the burned gas side of the flame brush in the Le ≈ 1.0 flames. However, a considerable amount of enstrophy generation within the flame brush has been observed for the Le = 0.34 case and a similar qualitative behaviour has been observed in a much smaller extent for the Le = 0.6 case. The vorticity components have been shown to exhibit anisotropic behaviour within the flame brush, and the extent of anisotropy increases with decreasing Le. The baroclinic torque term has been shown to be principally responsible for this anisotropic behaviour. The vortex stretching and viscous dissipation terms have been found to be the leading order contributors to the enstrophy transport for all cases, but the baroclinic torque and the sink term due to dilatation play increasingly important role for flames with decreasing Le. Furthermore, the correlation between the fluctuations of enstrophy and dilatation rate has been shown to play an important role in determining the material derivative of enstrophy based on the mean flow in the case of a low Le.

  13. An experimental analysis of bed load transport in gravel-bed braided rivers with high grain Reynolds numbers

    NASA Astrophysics Data System (ADS)

    De Vincenzo, Annamaria; Brancati, Francesco; Pannone, Marilena

    2016-08-01

    Laboratory experiments were performed with nearly uniform fluvial gravel (D50=9 mm, D10=5 mm and D90=13 mm) to analyse the relationship between stream power and bed load transport rate in gravel-bed braided rivers at high grain Reynolds numbers. The values of the unit-width dimensionless bed-load rate qb* and unit-width dimensionless stream power ω* were evaluated in equilibrium conditions based on ten different experimental runs. Then, they were plotted along with values obtained during particularly representative field studies documented in the literature, and a regression law was derived. For comparison, a regression analysis was performed using the data obtained from laboratory experiments characterized by smaller grain sizes and, therefore, referring to relatively low grain Reynolds numbers. A numerical integration of Exner's equation was performed to reconstruct the local and time-dependent functional dependence of qb* and ω*. The results led to the following conclusions: 1) At equilibrium, the reach-averaged bed load transport rate is related to the reach-averaged stream power by different regression laws at high and low grain Reynolds numbers. Additionally, the transition from bed to suspended load transport is accelerated by low Re*, with the corresponding bed load discharge increasing with stream power at a lower, linear rate. 2) When tested against the gravel laboratory measurements, the high Re* power law derived in the present study performs considerably better than do previous formulas. 3) The longitudinal variability of the section-averaged equilibrium stream power is much more pronounced than that characterizing the bed load rate, at least for high Re*. Thus, the stream power and its local-scale heterogeneity seem to be directly responsible for transverse sediment re-distribution and, ultimately, for the determination of the spatial and temporal scales that characterize the gravel bedforms. 4) Finally, the stochastic interpretation of the wetted

  14. A four-probe thermal transport measurement method for nanostructures

    SciTech Connect

    Kim, Jaehyun; Ou, Eric; Sellan, Daniel P.; Shi, Li

    2015-04-15

    Several experimental techniques reported in recent years have enabled the measurement of thermal transport properties of nanostructures. However, eliminating the contact thermal resistance error from the measurement results has remained a critical challenge. Here, we report a different four-probe measurement method that can separately obtain both the intrinsic thermal conductance and the contact thermal resistance of individual nanostructures. The measurement device consists of four microfabricated, suspended metal lines that act as resistive heaters and thermometers, across which the nanostructure sample is assembled. The method takes advantage of the variation in the heat flow along the suspended nanostructure and across its contacts to the four suspended heater and thermometer lines, and uses sixteen sets of temperature and heat flow measurements to obtain nine of the thermal resistances in the measurement device and the nanostructure sample, including the intrinsic thermal resistance and the two contact thermal resistances to the middle suspended segment of the nanostructure. Two single crystalline Si nanowires with different cross sections are measured in this work to demonstrate the effectiveness of the method. This four-probe thermal transport measurement method can lead to future discoveries of unique size-dependent thermal transport phenomena in nanostructures and low-dimensional materials, in addition to providing reliable experimental data for calibrating theoretical models.

  15. Measurement of particle transport coefficients on Alcator C-Mod

    SciTech Connect

    Luke, T.C.T.

    1994-10-01

    The goal of this thesis was to study the behavior of the plasma transport during the divertor detachment in order to explain the central electron density rise. The measurement of particle transport coefficients requires sophisticated diagnostic tools. A two color interferometer system was developed and installed on Alcator C-Mod to measure the electron density with high spatial ({approx} 2 cm) and high temporal ({le} 1.0 ms) resolution. The system consists of 10 CO{sub 2} (10.6 {mu}m) and 4 HeNe (.6328 {mu}m) chords that are used to measure the line integrated density to within 0.08 CO{sub 2} degrees or 2.3 {times} 10{sup 16}m{sup {minus}2} theoretically. Using the two color interferometer, a series of gas puffing experiments were conducted. The density was varied above and below the threshold density for detachment at a constant magnetic field and plasma current. Using a gas modulation technique, the particle diffusion, D, and the convective velocity, V, were determined. Profiles were inverted using a SVD inversion and the transport coefficients were extracted with a time regression analysis and a transport simulation analysis. Results from each analysis were in good agreement. Measured profiles of the coefficients increased with the radius and the values were consistent with measurements from other experiments. The values exceeded neoclassical predictions by a factor of 10. The profiles also exhibited an inverse dependence with plasma density. The scaling of both attached and detached plasmas agreed well with this inverse scaling. This result and the lack of change in the energy and impurity transport indicate that there was no change in the underlying transport processes after detachment.

  16. Transport of a lattice gas under continuous measurement

    NASA Astrophysics Data System (ADS)

    Cheung, Hil F. H.; Patil, Yogesh Sharad; Madjarov, Ivaylo S.; Chen, Huiyao Y.; Vengalattore, Mukund

    2016-05-01

    The act of measurement has a profound consequence on a quantum system. While this backaction has hitherto been discussed as a limitation to the precision of measurements, it is increasingly being appreciated that measurement backaction is a powerful means of quantum control. We have previously demonstrated that backaction from position measurement can modify the coherent tunneling rate of a lattice gas through the Quantum Zeno effect. By suitably designing measurement landscapes we can control the transport properties of the lattice gas. We describe a quantitative study of lattice gas dynamics under continuous quantum measurement in the context of a quantum to classical transition where the atom dynamics goes from a quantum walk at low measurement strengths to classical diffusion at high measurement strengths. We further discuss the prospect of using disorder measurement landscapes to realize a new form of Anderson localization. This work is supported by the ARO MURI on non-equilibrium dynamics.

  17. Dynamic characterization of external and internal mass transport in heterotrophic biofilms from microsensors measurements.

    PubMed

    Guimerà, Xavier; Dorado, Antonio David; Bonsfills, Anna; Gabriel, Gemma; Gabriel, David; Gamisans, Xavier

    2016-10-01

    Knowledge of mass transport mechanisms in biofilm-based technologies such as biofilters is essential to improve bioreactors performance by preventing mass transport limitation. External and internal mass transport in biofilms was characterized in heterotrophic biofilms grown on a flat plate bioreactor. Mass transport resistance through the liquid-biofilm interphase and diffusion within biofilms were quantified by in situ measurements using microsensors with a high spatial resolution (<50 μm). Experimental conditions were selected using a mathematical procedure based on the Fisher Information Matrix to increase the reliability of experimental data and minimize confidence intervals of estimated mass transport coefficients. The sensitivity of external and internal mass transport resistances to flow conditions within the range of typical fluid velocities over biofilms (Reynolds numbers between 0.5 and 7) was assessed. Estimated external mass transfer coefficients at different liquid phase flow velocities showed discrepancies with studies considering laminar conditions in the diffusive boundary layer near the liquid-biofilm interphase. The correlation of effective diffusivity with flow velocities showed that the heterogeneous structure of biofilms defines the transport mechanisms inside biofilms. Internal mass transport was driven by diffusion through cell clusters and aggregates at Re below 2.8. Conversely, mass transport was driven by advection within pores, voids and water channels at Re above 5.6. Between both flow velocities, mass transport occurred by a combination of advection and diffusion. Effective diffusivities estimated at different biofilm densities showed a linear increase of mass transport resistance due to a porosity decrease up to biofilm densities of 50 g VSS·L(-1). Mass transport was strongly limited at higher biofilm densities. Internal mass transport results were used to propose an empirical correlation to assess the effective diffusivity

  18. Dynamic characterization of external and internal mass transport in heterotrophic biofilms from microsensors measurements.

    PubMed

    Guimerà, Xavier; Dorado, Antonio David; Bonsfills, Anna; Gabriel, Gemma; Gabriel, David; Gamisans, Xavier

    2016-10-01

    Knowledge of mass transport mechanisms in biofilm-based technologies such as biofilters is essential to improve bioreactors performance by preventing mass transport limitation. External and internal mass transport in biofilms was characterized in heterotrophic biofilms grown on a flat plate bioreactor. Mass transport resistance through the liquid-biofilm interphase and diffusion within biofilms were quantified by in situ measurements using microsensors with a high spatial resolution (<50 μm). Experimental conditions were selected using a mathematical procedure based on the Fisher Information Matrix to increase the reliability of experimental data and minimize confidence intervals of estimated mass transport coefficients. The sensitivity of external and internal mass transport resistances to flow conditions within the range of typical fluid velocities over biofilms (Reynolds numbers between 0.5 and 7) was assessed. Estimated external mass transfer coefficients at different liquid phase flow velocities showed discrepancies with studies considering laminar conditions in the diffusive boundary layer near the liquid-biofilm interphase. The correlation of effective diffusivity with flow velocities showed that the heterogeneous structure of biofilms defines the transport mechanisms inside biofilms. Internal mass transport was driven by diffusion through cell clusters and aggregates at Re below 2.8. Conversely, mass transport was driven by advection within pores, voids and water channels at Re above 5.6. Between both flow velocities, mass transport occurred by a combination of advection and diffusion. Effective diffusivities estimated at different biofilm densities showed a linear increase of mass transport resistance due to a porosity decrease up to biofilm densities of 50 g VSS·L(-1). Mass transport was strongly limited at higher biofilm densities. Internal mass transport results were used to propose an empirical correlation to assess the effective diffusivity

  19. Measurements of the transport efficiency of the fragment mass analyzer

    SciTech Connect

    Back, B.B.; Blumenthal, D.J.; Davids, C.N.

    1995-08-01

    Extensive calculations of the transport of reaction products were carried out during the design phase of the instrument using the computer code GIOS. These show that the energy acceptance depends strongly on the angular deviation from the optical axis of the instrument. In order to reliably measure cross sections using this instrument it is therefore necessary to verify these calculations empirically.

  20. Radial ion transport measurements in a nonaxisymmetric magnetic mirror

    SciTech Connect

    Goodman, D.L.; Petty, C.C.; Post, R.S. )

    1990-09-01

    Experimental radial ion transport rates and diffusion coefficients are presented for the Constance-B magnetic mirror (Phys. Rev. Lett. {bold 58}, 1853 (1987)). The transport experiments are performed by measuring steady state equilibrium radial profiles of plasma density, ionization source, end loss current, electric field, electron temperature, and ion temperature. A charge coupled device (CCD) camera system (Rev. Sci. Instrum. {bold 60}, 2835 (1989)) is used to measure the two-dimensional radial density, source, and electron temperature profiles. End loss diagnostics including movable Faraday cups, electrostatic end loss analyzers, and an ion time-of-flight analyzer (Rev. Sci. Instrum. {bold 59}, 601 (1988)) are used to measure radial profiles of potential and ion temperature. The ion confinement time perpendicular to the magnetic field is found to be an order of magnitude shorter than predicted by classical and neoclassical transport theories. The radial profiles of the perpendicular diffusion coefficient ({ital D}{sub {perpendicular}}) are presented for hydrogen, helium, and argon plasmas. The coefficients are a factor of 10 larger than the maximum classical and neoclassical coefficients in all three plasmas. Plasma fluctuations resulting from whistler mode microinstability (Phys. Rev. Lett. {bold 59}, 1821 (1987)) as well as nonaxisymmetric potentials are suggested as possible explanations for the experimentally measured radial transport rate.

  1. Measurement of the radiative transport properties of reticulated alumina foams

    SciTech Connect

    Hale, M.J.; Bohn, M.S.

    1992-12-01

    This paper presents a method for determining radiative transport properties of reticulated materials. The method has both experimental and analytical components. A polar nephelometer is used to measure the scattering profile of a sample of the reticulated material. The results of a Monte Carlo simulation of the experiment are then combined with the experimental results to give the scatter albedo and extinction coefficient. This paper presents the results of using this method to determine the radiative transport properties of four different porosities (10, 20, 30, 65 pores per inch) of cylindrical reticulated alumina samples ranging in thickness form 0.5 inches to 2. 5 inches.

  2. MAGNETOROTATIONAL TURBULENCE TRANSPORTS ANGULAR MOMENTUM IN STRATIFIED DISKS WITH LOW MAGNETIC PRANDTL NUMBER BUT MAGNETIC REYNOLDS NUMBER ABOVE A CRITICAL VALUE

    SciTech Connect

    Oishi, Jeffrey S.

    2011-10-10

    The magnetorotational instability (MRI) may dominate outward transport of angular momentum in accretion disks, allowing material to fall onto the central object. Previous work has established that the MRI can drive a mean-field dynamo, possibly leading to a self-sustaining accretion system. Recently, however, simulations of the scaling of the angular momentum transport parameter {alpha}{sub SS} with the magnetic Prandtl number Pm have cast doubt on the ability of the MRI to transport astrophysically relevant amounts of angular momentum in real disk systems. Here, we use simulations including explicit physical viscosity and resistivity to show that when vertical stratification is included, mean-field dynamo action operates, driving the system to a configuration in which the magnetic field is not fully helical. This relaxes the constraints on the generated field provided by magnetic helicity conservation, allowing the generation of a mean field on timescales independent of the resistivity. Our models demonstrate the existence of a critical magnetic Reynolds number Rm{sub crit}, below which transport becomes strongly Pm-dependent and chaotic, but above which the transport is steady and Pm-independent. Prior simulations showing Pm dependence had Rm < Rm{sub crit}. We conjecture that this steady regime is possible because the mean-field dynamo is not helicity-limited and thus does not depend on the details of the helicity ejection process. Scaling to realistic astrophysical parameters suggests that disks around both protostars and stellar mass black holes have Rm >> Rm{sub crit}. Thus, we suggest that the strong Pm dependence seen in recent simulations does not occur in real systems.

  3. Magnetorotational Turbulence Transports Angular Momentum in Stratified Disks with Low Magnetic Prandtl Number but Magnetic Reynolds Number above a Critical Value

    SciTech Connect

    Oishi, Jeffrey S.; Low, Mordecai-Mark Mac; /Amer. Museum Natural Hist.

    2012-02-14

    The magnetorotational instability (MRI) may dominate outward transport of angular momentum in accretion disks, allowing material to fall onto the central object. Previous work has established that the MRI can drive a mean-field dynamo, possibly leading to a self-sustaining accretion system. Recently, however, simulations of the scaling of the angular momentum transport parameter {alpha}{sub SS} with the magnetic Prandtl number Pm have cast doubt on the ability of the MRI to transport astrophysically relevant amounts of angular momentum in real disk systems. Here, we use simulations including explicit physical viscosity and resistivity to show that when vertical stratification is included, mean field dynamo action operates, driving the system to a configuration in which the magnetic field is not fully helical. This relaxes the constraints on the generated field provided by magnetic helicity conservation, allowing the generation of a mean field on timescales independent of the resistivity. Our models demonstrate the existence of a critical magnetic Reynolds number Rm{sub crit}, below which transport becomes strongly Pm-dependent and chaotic, but above which the transport is steady and Pm-independent. Prior simulations showing Pm-dependence had Rm < Rm{sub crit}. We conjecture that this steady regime is possible because the mean field dynamo is not helicity-limited and thus does not depend on the details of the helicity ejection process. Scaling to realistic astrophysical parameters suggests that disks around both protostars and stellar mass black holes have Rm >> Rm{sub crit}. Thus, we suggest that the strong Pm dependence seen in recent simulations does not occur in real systems.

  4. Longterm Measurements of Bedload-Transport in alpine Catchments

    NASA Astrophysics Data System (ADS)

    Achleitner, Stefan; Kammerlander, Johannes; Eichner, Bernhard; Schöber, Johannes; Chiari, Michael

    2016-04-01

    In recent years the necessity of predicting the long-term behavior of sediment transport has increased. On the one hand, the effects of technical measures (e.g. retaining measures, hydropower, etc.) in the natural system are to be evaluated. On the other hand long term ecological studies that are strongly linked to the sediment budgets and its variation are more and more evolving. The ACRP Project DevoBeta-CC addresses the dynamics of long term sediment transport dynamics and its temporal altering. The focus is put on smaller tributary catchments enabling the model development. In total the data from ten catchments connected to the hydropower station Kaunertal (Tyrol/Austria) and eleven catchments linked to the power plant group Sellrain-Silz (Tyrol/Austria) are available. The considered catchments vary regarding their characteristics such as size (3 km³ to 27 km²), glaciation (0 % to 53 %), mean catchment slope (53 % to 92 %) and mean channel gradient (4 % to 49 %). The main data basis are records from the water intake structures operated (partly since 1965) by the TIWAG (Tiroler Wasserkraft AG). The sedimentation dynamics and operational flushings of the connected settling basins are used to measure the transported sediments. Since 1985 even high resolution data (15min intervals) are available. At selected catchments, the operationally recorded data (flushings, load membrane measurements,...) are verified within measuring campaigns using bed load traps upstream. Further, the sedimentation dynamics and grain size distributions in the settling basins are evaluated. Therefor two water intakes were put temporally out of operation, allowing an improved measurement of settled volumes by means of terrestrial surveying. Uncertainty assessments reveal an overall accuracy of estimated annual bed load volumes lower than a factor of two. Additionally, the data set enables to address sediment transport at a sub-annual basis, hence, the presented data set is unique regarding

  5. A rain splash transport equation assimilating field and laboratory measurements

    USGS Publications Warehouse

    Dunne, T.; Malmon, D.V.; Mudd, S.M.

    2010-01-01

    Process-based models of hillslope evolution require transport equations relating sediment flux to its major controls. An equation for rain splash transport in the absence of overland flow was constructed by modifying an approach developed by Reeve (1982) and parameterizing it with measurements from single-drop laboratory experiments and simulated rainfall on a grassland in East Africa. The equation relates rain splash to hillslope gradient, the median raindrop diameter of a storm, and ground cover density; the effect of soil texture on detachability can be incorporated from other published results. The spatial and temporal applicability of such an equation for rain splash transport in the absence of overland flow on uncultivated hillslopes can be estimated from hydrological calculations. The predicted transport is lower than landscape-averaged geologic erosion rates from Kenya but is large enough to modify short, slowly eroding natural hillslopes as well as microtopographic interrill surfaces between which overland flow transports the mobilized sediment. Copyright 2010 by the American Geophysical Union. Copyright 2010 by the American Geophysical Union.

  6. LIF Diagnostic for Measuring Beam-Transport Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Jones, T. G.; Noonan, W. A.; Ottinger, P. F.

    1996-11-01

    A novel, spatially-resolved diagnostic is being developed to measure magnetic fields associated with intense ion beam propagation through a low-pressure gas, as is envisioned for light ion-driven ICF. The diagnostic technique uses laser-induced fluorescence (LIF) spectroscopy, and can be varied to measure either small or large fields. Small fields, as expected in ballistic transport with solenoidal lens focusing using ~ 1 Torr gas, produce Zeeman shifts, Δ λ_Z, smaller than the transition linewidth, Δ λ. High sensitivity to measure these shifts is achieved by a variation on the Babcock technique.^1 Large fields, as expected in self-pinched transport using 10--100 mTorr gas, produce Δ λZ larger than Δ λ, which can be measured with a high-resolution spectrometer. Results of proof-of-principle experiments using calibrated B-fields for both the small- and large-field techniques will be presented. Progress in fielding this diagnostic on the Gamble-II accelerator for beam-transport studies will also be presented. This work is supported by DoE through Sandia National Laboratories. ^ NRC-NRL Research Associate. ^ Present address University of Maryland, College Park, MD. ^1 W.A. Noonan, et al., accepted for publication in Rev. Sci. Instrum.

  7. Functional requirements for the Automated Transportation Management System: TTP number: RL 439002

    SciTech Connect

    Portsmouth, J.H.

    1992-12-31

    This requirements analysis, documents Department of Energy (DOE) transportation management procedures for the purpose of providing a clear and mutual understanding between users and designers of the proposed Automated Transportation Management System (ATMS). It is imperative that one understand precisely how DOE currently performs traffic management tasks; only then can an integrated system be proposed that successfully satisfies the major requirements of transportation managers and other system users. Accordingly, this report describes the current workings of DOE transportation organizations and then proposes a new system which represents a synthesis of procedures (both current and desired) which forms the basis for further systems development activities.

  8. Porous medium convection at large Rayleigh number: Studies of coherent structure, transport, and reduced dynamics

    NASA Astrophysics Data System (ADS)

    Wen, Baole

    Buoyancy-driven convection in fluid-saturated porous media is a key environmental and technological process, with applications ranging from carbon dioxide storage in terrestrial aquifers to the design of compact heat exchangers. Porous medium convection is also a paradigm for forced-dissipative infinite-dimensional dynamical systems, exhibiting spatiotemporally chaotic dynamics if not "true" turbulence. The objective of this dissertation research is to quantitatively characterize the dynamics and heat transport in two-dimensional horizontal and inclined porous medium convection between isothermal plane parallel boundaries at asymptotically large values of the Rayleigh number Ra by investigating the emergent, quasi-coherent flow. This investigation employs a complement of direct numerical simulations (DNS), secondary stability and dynamical systems theory, and variational analysis. The DNS confirm the remarkable tendency for the interior flow to self-organize into closely-spaced columnar plumes at sufficiently large Ra (up to Ra ≃ 105), with more complex spatiotemporal features being confined to boundary layers near the heated and cooled walls. The relatively simple form of the interior flow motivates investigation of unstable steady and time-periodic convective states at large Ra as a function of the domain aspect ratio L. To gain insight into the development of spatiotemporally chaotic convection, the (secondary) stability of these fully nonlinear states to small-amplitude disturbances is investigated using a spatial Floquet analysis. The results indicate that there exist two distinct modes of instability at large Ra: a bulk instability mode and a wall instability mode. The former usually is excited by long-wavelength disturbances and is generally much weaker than the latter. DNS, strategically initialized to investigate the fully nonlinear evolution of the most dangerous secondary instability modes, suggest that the (long time) mean inter-plume spacing in

  9. Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer-aquitard complexes.

    PubMed

    Zhang, Yong; Green, Christopher T; Tick, Geoffrey R

    2015-01-01

    This study evaluates the role of the Peclet number as affected by molecular diffusion in transient anomalous transport, which is one of the major knowledge gaps in anomalous transport, by combining Monte Carlo simulations and stochastic model analysis. Two alluvial settings containing either short- or long-connected hydrofacies are generated and used as media for flow and transport modeling. Numerical experiments show that 1) the Peclet number affects both the duration of the power-law segment of tracer breakthrough curves (BTCs) and the transition rate from anomalous to Fickian transport by determining the solute residence time for a given low-permeability layer, 2) mechanical dispersion has a limited contribution to the anomalous characteristics of late-time transport as compared to molecular diffusion due to an almost negligible velocity in floodplain deposits, and 3) the initial source dimensions only enhance the power-law tail of the BTCs at short travel distances. A tempered stable stochastic (TSS) model is then applied to analyze the modeled transport. Applications show that the time-nonlocal parameters in the TSS model relate to the Peclet number, Pe. In particular, the truncation parameter in the TSS model increases nonlinearly with a decrease in Pe due to the decrease of the mean residence time, and the capacity coefficient increases with an increase in molecular diffusion which is probably due to the increase in the number of immobile particles. The above numerical experiments and stochastic analysis therefore reveal that the Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer-aquitard complexes.

  10. Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer-aquitard complexes

    USGS Publications Warehouse

    Zhang, Yong; Green, Christopher T.; Tick, Geoffrey R.

    2015-01-01

    This study evaluates the role of the Peclet number as affected by molecular diffusion in transient anomalous transport, which is one of the major knowledge gaps in anomalous transport, by combining Monte Carlo simulations and stochastic model analysis. Two alluvial settings containing either short- or long-connected hydrofacies are generated and used as media for flow and transport modeling. Numerical experiments show that 1) the Peclet number affects both the duration of the power-law segment of tracer breakthrough curves (BTCs) and the transition rate from anomalous to Fickian transport by determining the solute residence time for a given low-permeability layer, 2) mechanical dispersion has a limited contribution to the anomalous characteristics of late-time transport as compared to molecular diffusion due to an almost negligible velocity in floodplain deposits, and 3) the initial source dimensions only enhance the power-law tail of the BTCs at short travel distances. A tempered stable stochastic (TSS) model is then applied to analyze the modeled transport. Applications show that the time-nonlocal parameters in the TSS model relate to the Peclet number, Pe. In particular, the truncation parameter in the TSS model increases nonlinearly with a decrease in Pe due to the decrease of the mean residence time, and the capacity coefficient increases with an increase in molecular diffusion which is probably due to the increase in the number of immobile particles. The above numerical experiments and stochastic analysis therefore reveal that the Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer–aquitard complexes.

  11. Review on measurement techniques of transport properties of nanowires.

    PubMed

    Rojo, Miguel Muñoz; Calero, Olga Caballero; Lopeandia, A F; Rodriguez-Viejo, J; Martín-Gonzalez, Marisol

    2013-12-01

    Physical properties at the nanoscale are novel and different from those in bulk materials. Over the last few decades, there has been an ever growing interest in the fabrication of nanowire structures for a wide variety of applications including energy generation purposes. Nevertheless, the study of their transport properties, such as thermal conductivity, electrical conductivity or Seebeck coefficient, remains an experimental challenge. For instance, in the particular case of nanostructured thermoelectrics, theoretical calculations have shown that nanowires offer a promising way of enhancing the hitherto low efficiency of these materials in the conversion of temperature differences into electricity. Therefore, within the thermoelectrical community there has been a great experimental effort in the measurement of these quantities in actual nanowires. The measurements of these properties at the nanoscale are also of interest in fields other than energy, such as electrical components for microchips, field effect transistors, sensors, and other low scale devices. For all these applications, knowing the transport properties is mandatory. This review deals with the latest techniques developed to perform the measurement of these transport properties in nanowires. A thorough overview of the most important and modern techniques used for the characterization of different kinds of nanowires will be shown. PMID:24113712

  12. LIF Diagnostic for Measuring Beam-Transport Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Jones, T. G.; Hinshelwood, D. D.; Neri, J. M.; Ottinger, P. F.; Noonan, W. A.

    1997-11-01

    A novel, spatially-resolved diagnostic is being developed to measure magnetic fields associated with intense ion beam propagation through a low-pressure gas, as is envisioned for light ion-driven ICF. The diagnostic technique uses laser-induced fluorescence (LIF) spectroscopy, and can be varied to measure either small or large fields. Small fields, as expected in ballistic transport with solenoidal lens focusing using ~ 1 Torr gas, produce Zeeman shifts, Δ λ_Z, smaller than the transition linewidth, Δ λ. High sensitivity to measure these shifts is achieved by a variation on the Babcock technique.^1 Large fields, as expected in self-pinched transport using 1--100 mTorr gas, produce Δ λZ larger than Δ λ. These Δ λZ will be resolved using an etalon as a narrowband, high-throughput optical filter. Available results from benchtop experiments using calibrated B-fields for both the small- and large-field techniques, and progress in fielding this diagnostic on the Gamble-II accelerator for beam-transport studies will be presented. Work supported by DOE through Sandia National Laboratories. ^ National Research Council Research Associate. ^ Present address University of Maryland, College Park, MD. ^1 W.A. Noonan, et al., Rev. Sci. Instrum. 68, 1032 (1997).

  13. Review on measurement techniques of transport properties of nanowires.

    PubMed

    Rojo, Miguel Muñoz; Calero, Olga Caballero; Lopeandia, A F; Rodriguez-Viejo, J; Martín-Gonzalez, Marisol

    2013-12-01

    Physical properties at the nanoscale are novel and different from those in bulk materials. Over the last few decades, there has been an ever growing interest in the fabrication of nanowire structures for a wide variety of applications including energy generation purposes. Nevertheless, the study of their transport properties, such as thermal conductivity, electrical conductivity or Seebeck coefficient, remains an experimental challenge. For instance, in the particular case of nanostructured thermoelectrics, theoretical calculations have shown that nanowires offer a promising way of enhancing the hitherto low efficiency of these materials in the conversion of temperature differences into electricity. Therefore, within the thermoelectrical community there has been a great experimental effort in the measurement of these quantities in actual nanowires. The measurements of these properties at the nanoscale are also of interest in fields other than energy, such as electrical components for microchips, field effect transistors, sensors, and other low scale devices. For all these applications, knowing the transport properties is mandatory. This review deals with the latest techniques developed to perform the measurement of these transport properties in nanowires. A thorough overview of the most important and modern techniques used for the characterization of different kinds of nanowires will be shown.

  14. The Effects of Digital Measuring Equipment on the Concept of Number.

    ERIC Educational Resources Information Center

    Pickard, Poppy; Alexander, Patricia

    Over the last 20 years, the use of calculators and digital measuring equipment has to some extent replaced mathematical mental/written activity and also the use of analogue measuring equipment. This paper explores some aspects of number concept, reading the number line, and estimation from scales. The students being considered are mainly part of a…

  15. Millisecond measurement of transport during and after an electroporation pulse.

    PubMed Central

    Prausnitz, M R; Corbett, J D; Gimm, J A; Golan, D E; Langer, R; Weaver, J C

    1995-01-01

    Electroporation involves the application of an electric field pulse that creates transient aqueous pathways in lipid bilayer membranes. Transport through these pathways can occur by different mechanisms during and after a pulse. To determine the time scale of transport and the mechanism(s) by which it occurs, efflux of a fluorescent molecule, calcein, across erythrocyte ghost membranes was measured with a fluorescence microscope photometer with millisecond time resolution during and after electroporation pulses several milliseconds in duration. One of four outcomes was typically observed. Ghosts were: (1) partially emptied of calcein, involving efflux primarily after the pulse; (2) completely emptied of calcein, involving efflux primarily after the pulse; (3) completely emptied of calcein, involving efflux both during and after the pulse; or (4) completely emptied of calcein, involving efflux primarily during the pulse. Partial emptying, involving significant efflux during the pulse, was generally not observed. We conclude that under some conditions transport caused by electroporation occurs predominantly by electrophoresis and/or electroosmosis during a pulse, although under other conditions transport occurs in part or almost completely by diffusion within milliseconds to seconds after a pulse. PMID:7612828

  16. Prediction uncertainty of plume characteristics derived from a small number of measuring points

    NASA Astrophysics Data System (ADS)

    French, H. K.; van der Zee, S. E. A. T. M.; Leijnse, A.

    A small number of measuring points may inflict a bias on the characterisation of flow and transport based on field experiments in the unsaturated zone. Simulation of pure advective transport of a Gaussian plume through a setup of 30 regularly placed measuring points revealed regular temporal fluctuations about the real spatial moments. An irregular setup predicted both irregular fluctuations and larger discrepancies from the real value. From these considerations, a regular setup is recommended. Spatial moments were sensitive to the plume size relative to the distance between individual measuring points. To reduce prediction errors of the variance, the distance between the measuring points should be less than twice the standard deviation of the examined plume. The total size of the setup should cover several standard deviations of the plume to avoid mass being lost from the monitored area. Numerical simulations of a dispersing plume (comparing calculations based on 9000 nodes with 30 measuring points) revealed that vertical and horizontal centres of mass were predicted well at all degrees of heterogeneity, and the same was the case for horizontal variances. Vertical variances were more susceptible to prediction errors, but estimates were of the same order of magnitude as the real values. Résumé Lorsque l'on cherche à caractériser l'écoulement et le transport à partir d'expériences de terrain dans la zone saturée, il arrive qu'un petit nombre de points introduisent un biais. La simulation d'un transport purement advectif d'un panache gaussien au travers d'un ensemble de 30 points de mesures espacés régulièrement fait apparaître des variations temporelles régulières autour des moments spatiaux réels. Un ensemble irrégulier conduit à prédire à la fois des variations irrégulières et de plus grandes divergences par rapport à la valeur réelle. A partir de ces constations, un ensemble régulier est recommandé. Les moments spatiaux sont apparus

  17. Transportable IOT measurement station for direct-broadcast satellites

    NASA Astrophysics Data System (ADS)

    Ulbricht, Michael

    A transportable 11.7-12.5-GHz flux-density measurement facility for use in the in-orbit testing (IOT) of the FRG TV-Sat direct-broadcast satellites is described. Major components include a 1.2-m-diameter antenna, the fluxmeter, a radiometer to determine atmospheric attenuation, a weather station, and a control and data-processing computer; all of the components are mounted on a 5.10 x 2.35 x 2.70-m trailer. IOT performance parameters include gain/temperature ratio 15.9 dB/K, measurement range -97 to -117 dBW/sq m, measurement accuracy less than 0.5 dB rms, and measurement rate 250-650 msec. Photographs and a block diagram are provided.

  18. Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program

    SciTech Connect

    1995-08-01

    This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

  19. Methods for measuring and transporting angular momentum in general relativity

    NASA Astrophysics Data System (ADS)

    Nichols, David; Flanagan, Eanna; Stein, Leo; Vines, Justin

    2016-03-01

    For an observer in a curved spacetime, elements of the dual space of the set of linearized Poincare transformations from the observer's tangent space to itself can naturally be interpreted as local linear and angular momenta. We give an operational procedure by which the observer can measure such local linear and angular momenta from the local spacetime geometry. These momenta can be interpreted as approximate versions of the linear and angular momenta of the spacetime about the observer's location. The measurement algorithm allows for a more accurate determination of the linear and angular momentum of stationary, asymptotically flat systems than previous proposals do. We also describe a prescription by which observers at different locations can compare values of their measured linear and angular momentum by using a specific transport equation, which refines previous proposals. These operational definitions may also prove useful for clarifying the physical interpretation of Bondi-Metzner-Sachs asymptotic charges in asymptotically flat spacetimes.

  20. Hysteresis in Transport Critical-Current Measurements of Oxide Superconductors

    PubMed Central

    Goodrich, L. F.; Stauffer, T. C.

    2001-01-01

    We have investigated magnetic hysteresis in transport critical-current (Ic) measurements of Ag-matrix (Bi,Pb)2Sr2Ca2Cu3O10–x (Bi-2223) and AgMg-matrix Bi2Sr2CaCu2O8+x (Bi-2212) tapes. The effect of magnetic hysteresis on the measured critical current of high temperature superconductors is a very important consideration for every measurement procedure that involves more than one sweep of magnetic field, changes in field angle, or changes in temperature at a given field. The existence of this hysteresis is well known; however, the implications for a measurement standard or interlaboratory comparisons are often ignored and the measurements are often made in the most expedient way. A key finding is that Ic at a given angle, determined by sweeping the angles in a given magnetic field, can be 17 % different from the Ic determined after the angle was fixed in zero field and the magnet then ramped to the given field. Which value is correct is addressed in the context that the proper sequence of measurement conditions reflects the application conditions. The hysteresis in angle-sweep and temperature-sweep data is related to the hysteresis observed when the field is swept up and down at constant angle and temperature. The necessity of heating a specimen to near its transition temperature to reset it to an initial state between measurements at different angles and temperatures is discussed. PMID:27500042

  1. k-Space Image Correlation Spectroscopy: A Method for Accurate Transport Measurements Independent of Fluorophore Photophysics

    PubMed Central

    Kolin, David L.; Ronis, David; Wiseman, Paul W.

    2006-01-01

    We present the theory and application of reciprocal space image correlation spectroscopy (kICS). This technique measures the number density, diffusion coefficient, and velocity of fluorescently labeled macromolecules in a cell membrane imaged on a confocal, two-photon, or total internal reflection fluorescence microscope. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or “blinking”. Furthermore, these quantities can be calculated without nonlinear curve fitting, or any knowledge of the beam radius of the exciting laser. The number densities calculated by kICS are less sensitive to spatial inhomogeneity of the fluorophore distribution than densities measured using image correlation spectroscopy. We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. We also show the application of kICS to measurements of the transport dynamics of α5-integrin/enhanced green fluorescent protein constructs in a transfected CHO cell imaged on a total internal reflection fluorescence microscope using charge-coupled device area detection. PMID:16861272

  2. Accurate measurement of liquid transport through nanoscale conduits

    PubMed Central

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2016-01-01

    Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems. PMID:27112404

  3. Nanoscale Electron Transport Measurements of Immobilized Cytochrome P450 Proteins

    PubMed Central

    Bostick, Christopher D.; Flora, Darcy R.; Gannett, Peter M.; Tracy, Timothy S.; Lederman, David

    2015-01-01

    Gold nanopillars, functionalized with an organic self-assembled monolayer, can be used to measure the electrical conductance properties of immobilized proteins without aggregation. Measurements of the conductance of nanopillars with cytochrome P450 2C9 (CYP2C9) proteins using conducting probe atomic force microscopy demonstrate that a correlation exists between the energy barrier height between hopping sites and CYP2C9 metabolic activity. Measurements performed as a function of tip force indicate that, when subjected to a large force, the protein is more stable in the presence of a substrate. This agrees with the hypothesis that substrate entry into the active site helps to stabilize the enzyme. The relative distance between hopping sites also increases with increasing force, possibly because protein functional groups responsible for electron transport depend on the structure of the protein. The inhibitor sulfaphenazole, in addition to the previously studied aniline, increased the barrier height for electron transfer and thereby makes CYP2C9 reduction more difficult and inhibits metabolism. This suggests that P450 Type II binders may decrease the ease of electron transport processes in the enzyme, in addition to occupying the active site. PMID:25804257

  4. Accurate measurement of liquid transport through nanoscale conduits

    NASA Astrophysics Data System (ADS)

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2016-04-01

    Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems.

  5. Accurate measurement of liquid transport through nanoscale conduits.

    PubMed

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2016-01-01

    Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems. PMID:27112404

  6. Linking criteria for incipient motion to field-based measures of bed load transport capacity

    NASA Astrophysics Data System (ADS)

    Pitlick, J.

    2015-12-01

    Early studies of sediment transport, such as those of Gilbert (1914) and Shields (1936), laid the groundwork for countless other studies of bed load entrainment and transport. Gilbert and Shields emphasized somewhat different aspects of sediment transport in their writing, but they had similar objectives in experimenting with conditions that affect both incipient motion and bed load transport capacity. The problem of predicting incipient motion is thus inextricably linked to the problem of predicting bed load transport capacity. In this talk I will discuss field-based approaches for evaluating incipient motion at channel-length scales ranging from a few km to many 10s of km. In the best-case scenario, where time and equipment are available to sample the bed load, the most robust approach for determining incipient motion is to extrapolate from measurements taken over a range of flows, and find the shear stress corresponding to a low but measureable transport rate. Alternatively, if channel properties (width, depth, slope and grain size) can be measured at a sufficient number of locations (say, more than 20), the reference shear stress can be estimated by assuming it scales with the channel-forming (bankfull) shear stress. Another new approach, which makes use of repeat aerial LiDAR and records of daily discharge, is to develop a two-parameter sediment rating curve that produces the same sediment flux for a time series of daily flows as the sediment flux estimated from topographic differencing. Last, in situations where a qualitative (yes/no) assessment of sediment motion is sufficient (e.g. during a reservoir release), longitudinal variations in bed load transport intensity can be detected with acoustical sensors- hydrophones- mounted on a kayak or boat equipped with a global positioning system (GPS). Pros and cons of these different approaches will also be discussed.

  7. Transportation control measure: State Implementation Plan guidance (revised final report)

    SciTech Connect

    Eisinger, D.S.; Deakin, E.A.; Mahoney, L.A.; Morris, R.E.; Ireson, R.G.

    1990-09-01

    The document has been developed for the United States Environmental Protection Agency to summarize current knowledge about transportation control measures (TCMs). The target audience includes transportation and air quality management staff at all government levels. The guidance development effort is motivated by the need to provide post-1987 guidance to attain National Ambient Air Quality Standards (NAAQS). The document provides descriptions and examples of the most frequently implemented TCMs; institutional guidance such as assessing feasibility, agency responsibilities, and funding; and techniques for monitoring and enforcing TCMs. In addition, the document describes the tools available for evaluating TCM impacts on hydrocarbons, nitrogen oxides, and carbon monoxide emissions. Appendices present approaches to estimate TCM effects on PM-10 emissions; important sources of additional information; implementation experiences in various cities; and rules of thumb to quantitatively evaluate TCM transportation system effects. The information presented demonstrates that there have been significant advances in TCM development over the past decade, and that TCMs are appropriate control options for state implementation plans.

  8. The Indonesian's Road Transportations as the Contexts to Support Primary School Students Learning Number Operation

    ERIC Educational Resources Information Center

    Kairuddin; Darmawijoyo

    2011-01-01

    This paper highlights the Indonesian's road transportation contexts, namely, angkot, that used in learning and teaching of addition and subtraction in first grade and second grade MIN-2 Palembang. PMRI approach that adopt from RME [Realistic Mathematics Education] was used in this design research. From teaching experiment was founded that the…

  9. Field measurements of tracer gas transport by barometric pumping

    SciTech Connect

    Lagus, P.L.; McKinnis, W.B.; Hearst, J.R.; Burkhard, N.R.; Smith, C.F.

    1994-07-28

    Vertical gas motions induced by barometric pressure variations can carry radioactive gases out of the rubblized region produced by an underground nuclear explosion, through overburden rock, into the atmosphere. To better quantify transit time and amount of transport, field experiments were conducted at two sites on Pahute Mesa, Kapelli and Tierra, where radioactive gases had been earlier detected in surface cracks. At each site, two tracer gases were injected into the rubblized chimney 300-400 m beneath the surface and their arrival was monitored by concentration measurements in gas samples extracted from shallow collection holes. The first ``active`` tracer was driven by a large quantity of injected air; the second ``passive`` tracer was introduced with minimal gas drive to observe the natural transport by barometric pumping. Kapelli was injected in the fall of 1990, followed by Tierra in the fall of 1991. Data was collected at both sites through the summer of 1993. At both sites, no surface arrival of tracer was observed during the active phase of the experiment despite the injection of several million cubic feet of air, suggesting that cavity pressurization is likely to induce horizontal transport along high permeability layers rather than vertical transport to the surface. In contrast, the vertical pressure gradients associated with barometric pumping brought both tracers to the surface in comparable concentrations within three months at Kapelli, whereas 15 months elapsed before surface arrival at Tierra. At Kapelli, a quasisteady pumping regime was established, with tracer concentrations in effluent gases 1000 times smaller than concentrations thought to exist in the chimney. Tracer concentrations observed at Tierra were typically an order of magnitude smaller. Comparisons with theoretical calculations suggest that the gases are traveling through {approximately}1 millimeter vertical fractures spaced 2 to 4 meters apart. 6 refs., 18 figs., 3 tabs.

  10. Continuous measurement of atom-number moments of a Bose-Einstein condensate by photodetection

    SciTech Connect

    Prataviera, G.A.; Oliveira, M.C. de

    2004-07-01

    We propose a measurement scheme that allows determination of even moments of a Bose-Einstein condensate (BEC) atom number, in a ring cavity, by continuous photodetection of an off-resonant quantized optical field. A fast cavity photocounting process limits the heating of atomic samples with a relatively small number of atoms, being convenient for BECs on microchip scale applications. The measurement back-action introduces a counting-conditioned phase damping, suppressing the condensate typical collapse and revival dynamics.

  11. Mach-Number Measurement with Laser and Pressure Probes in Humid Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Herring, G. C.

    2008-01-01

    Mach-number measurements using a nonintrusive optical technique, laser-induced thermal acoustics (LITA), are compared to pressure probes in humid supersonic airflow. The two techniques agree well in dry flow (-35 C dew point), but LITA measurements show about five times larger fractional change in Mach number than that of the pressure-probe when water is purposefully introduced into the flow. Possible reasons for this discrepancy are discussed.

  12. Anharmonic effects on a phonon-number measurement of a quantum-mesoscopic-mechanical oscillator

    SciTech Connect

    Santamore, D.H.; Goan Hsisheng; Milburn, G.J.; Roukes, M.L.

    2004-11-01

    We generalize a proposal for detecting single-phonon transitions in a single nanoelectromechanical system (NEMS) to include the intrinsic anharmonicity of each mechanical oscillator. In this scheme two NEMS oscillators are coupled via a term quadratic in the amplitude of oscillation for each oscillator. One NEMS oscillator is driven and strongly damped and becomes a transducer for phonon number in the other measured oscillator. We derive the conditions for this measurement scheme to be quantum limited and find a condition on the size of the anharmonicity. We also derive the relation between the phase diffusion back-action noise due to number measurement and the localization time for the measured system to enter a phonon-number eigenstate. We relate both these time scales to the strength of the measured signal, which is an induced current proportional to the position of the read-out oscillator.

  13. Parallel Monte Carlo Particle Transport and the Quality of Random Number Generators: How Good is Good Enough?

    SciTech Connect

    Procassini, R J; Beck, B R

    2004-12-07

    It might be assumed that use of a ''high-quality'' random number generator (RNG), producing a sequence of ''pseudo random'' numbers with a ''long'' repetition period, is crucial for producing unbiased results in Monte Carlo particle transport simulations. While several theoretical and empirical tests have been devised to check the quality (randomness and period) of an RNG, for many applications it is not clear what level of RNG quality is required to produce unbiased results. This paper explores the issue of RNG quality in the context of parallel, Monte Carlo transport simulations in order to determine how ''good'' is ''good enough''. This study employs the MERCURY Monte Carlo code, which incorporates the CNPRNG library for the generation of pseudo-random numbers via linear congruential generator (LCG) algorithms. The paper outlines the usage of random numbers during parallel MERCURY simulations, and then describes the source and criticality transport simulations which comprise the empirical basis of this study. A series of calculations for each test problem in which the quality of the RNG (period of the LCG) is varied provides the empirical basis for determining the minimum repetition period which may be employed without producing a bias in the mean integrated results.

  14. Distance-Based Functional Diversity Measures and Their Decomposition: A Framework Based on Hill Numbers

    PubMed Central

    Chiu, Chun-Huo; Chao, Anne

    2014-01-01

    Hill numbers (or the “effective number of species”) are increasingly used to characterize species diversity of an assemblage. This work extends Hill numbers to incorporate species pairwise functional distances calculated from species traits. We derive a parametric class of functional Hill numbers, which quantify “the effective number of equally abundant and (functionally) equally distinct species” in an assemblage. We also propose a class of mean functional diversity (per species), which quantifies the effective sum of functional distances between a fixed species to all other species. The product of the functional Hill number and the mean functional diversity thus quantifies the (total) functional diversity, i.e., the effective total distance between species of the assemblage. The three measures (functional Hill numbers, mean functional diversity and total functional diversity) quantify different aspects of species trait space, and all are based on species abundance and species pairwise functional distances. When all species are equally distinct, our functional Hill numbers reduce to ordinary Hill numbers. When species abundances are not considered or species are equally abundant, our total functional diversity reduces to the sum of all pairwise distances between species of an assemblage. The functional Hill numbers and the mean functional diversity both satisfy a replication principle, implying the total functional diversity satisfies a quadratic replication principle. When there are multiple assemblages defined by the investigator, each of the three measures of the pooled assemblage (gamma) can be multiplicatively decomposed into alpha and beta components, and the two components are independent. The resulting beta component measures pure functional differentiation among assemblages and can be further transformed to obtain several classes of normalized functional similarity (or differentiation) measures, including N-assemblage functional generalizations of

  15. Skin Friction and Transition Location Measurement on Supersonic Transport Models

    NASA Technical Reports Server (NTRS)

    Kennelly, Robert A., Jr.; Goodsell, Aga M.; Olsen, Lawrence E. (Technical Monitor)

    2000-01-01

    Flow visualization techniques were used to obtain both qualitative and quantitative skin friction and transition location data in wind tunnel tests performed on two supersonic transport models at Mach 2.40. Oil-film interferometry was useful for verifying boundary layer transition, but careful monitoring of model surface temperatures and systematic examination of the effects of tunnel start-up and shutdown transients will be required to achieve high levels of accuracy for skin friction measurements. A more common technique, use of a subliming solid to reveal transition location, was employed to correct drag measurements to a standard condition of all-turbulent flow on the wing. These corrected data were then analyzed to determine the additional correction required to account for the effect of the boundary layer trip devices.

  16. Direct measurements of transport properties are essential for site characterization

    SciTech Connect

    Wright, J.; Conca, J.L.

    1994-08-01

    Direct measurements of transport parameters on subsurface sediments using, the UFA method provided detailed hydrostratigraphic mapping, and subsurface flux distributions at a mixed-waste disposal site at Hanford. Seven hundred unsaturated conductivity measurements on fifty samples were obtained in only six months total of UFA run time. These data are used to provide realistic information to conceptual models, predictive models and restoration strategies. The UFA instrument consists of an ultracentrifuge with a constant, ultralow flow pump that provides fluid to the sample surface through a rotating seal assembly and microdispersal system. Effluent from the sample is collected in a transparent, volumetrically-calibrated chamber at the bottom of the sample assembly. Using a strobe light, an observer can check the chamber while the sample is being centrifuged. Materials can be run in the UFA as recomposited samples or in situ samples can be subcored directly into the sample UFA chamber.

  17. Testing a model of componential processing of multi-symbol numbers-evidence from measurement units.

    PubMed

    Huber, Stefan; Bahnmueller, Julia; Klein, Elise; Moeller, Korbinian

    2015-10-01

    Research on numerical cognition has addressed the processing of nonsymbolic quantities and symbolic digits extensively. However, magnitude processing of measurement units is still a neglected topic in numerical cognition research. Hence, we investigated the processing of measurement units to evaluate whether typical effects of multi-digit number processing such as the compatibility effect, the string length congruity effect, and the distance effect are also present for measurement units. In three experiments, participants had to single out the larger one of two physical quantities (e.g., lengths). In Experiment 1, the compatibility of number and measurement unit (compatible: 3 mm_6 cm with 3 < 6 and mm < cm; incompatible: 3 cm_6 mm with 3 < 6 but cm > mm) as well as string length congruity (congruent: 1 m_2 km with m < km and 2 < 3 characters; incongruent: 2 mm_1 m with mm < m, but 3 > 2 characters) were manipulated. We observed reliable compatibility effects with prolonged reaction times (RT) for incompatible trials. Moreover, a string length congruity effect was present in RT with longer RT for incongruent trials. Experiments 2 and 3 served as control experiments showing that compatibility effects persist when controlling for holistic distance and that a distance effect for measurement units exists. Our findings indicate that numbers and measurement units are processed in a componential manner and thus highlight that processing characteristics of multi-digit numbers generalize to measurement units. Thereby, our data lend further support to the recently proposed generalized model of componential multi-symbol number processing.

  18. Spin transport measurements in gallium arsenide quantum dots

    NASA Astrophysics Data System (ADS)

    Folk, Joshua Alexander

    This thesis presents a series of measurements investigating the spin physics of lateral quantum dots, defined electrostatically in the 2-D electron gas at the interface of a GaAs/AlGaAs heterostructure. The experiments span a range from open dots, where the leads of the dot carry at least one fully transmitting mode, to closed dots, where the leads are set to be tunnel barriers. For open dots, spin physics is inferred from measurements of conductance fluctuations; the effects of spin degeneracy in the orbital levels as well as a spin-orbit interaction are observed. In the closed dot measurements, ground state spin transitions as electrons are added to the dot may be determined from the motion of Coulomb blockade peaks in an in-plane magnetic field. In addition, this thesis demonstrates for the first time a direct measurement of the spin polarization of current emitted from a quantum dot, or a quantum point contact, during transport. These experiments make use of a spin-sensitive focusing geometry in which a quantum point contact serves as a spin analyzer for the mesoscopic device under test. Measurements are presented both in the open dot regime, where good agreement with theory is found, as well as the closed dot regime, where the data defies a simple theoretical explanation.

  19. Unsteady pressure measurements on a supercritical airfoil at high Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Hess, R. W.

    1989-01-01

    Steady and unsteady pressures were measured on a 14 percent supercritical airfoil at transonic Mach numbers at Reynolds numbers from 6,000,000 to 35,000,000. Instrumentation techniques were developed to measure unsteady pressures in a cryogenic tunnel at flight Reynolds numbers. Experimental steady data, corrected for wall effects show very good agreement with calculations from a full potential code with an interacted boundary layer. The steady and unsteady pressures both show a shock position that is dependent on Reynolds number. For a supercritical pressure distribution at a chord Reynolds number of 35,000,000 laminar flow was observed between the leading edge and the shock wave at 45 percent chord.

  20. A Guide to Measures of Social Support and Family Behaviors. Monograph Number 1.

    ERIC Educational Resources Information Center

    Dunst, Carl; Trivette, Carol

    Following a brief explanation of the study of social support in families, the paper presents a selective list of measures of social support as well as a number of different outcome measures that support has been found to mediate. Key terms, (social networks, social support, well-being and stress, coping) are defined and research is cited to…

  1. Soliton-collision interferometer for the quantum nondemolition measurement of photon number: numerical results

    SciTech Connect

    Sakai, Y. Telephone Corporation, Musashino-shi, Tokyo 180 ); Hawkins, R.J. ); Friberg, S.R. Telephone Corporation, Musashino-shi, Tokyo 180 )

    1990-02-15

    Using analytic theory and numerical experiments, we show that a quantum nondemolition measurement of the photon number of optical solitons in a single-mode optical fiber can be made. We describe the soliton-collision interferometer with which we propose to make this measurement and discuss simulations of the performance of this interferometer.

  2. Measurements of air pollution emission factors for marine transportation

    NASA Astrophysics Data System (ADS)

    Alföldy, B.; Balzani Lööv, J.; Lagler, F.; Mellqvist, J.; Berg, N.; Beecken, J.; Weststrate, H.; Duyzer, J.; Bencs, L.; Horemans, B.; Cavalli, F.; Putaud, J.-P.; Janssens-Maenhout, G.; Pintér Csordás, A.; Van Grieken, R.; Borowiak, A.; Hjorth, J.

    2012-12-01

    The chemical composition of the plumes of seagoing ships was investigated during a two weeks long measurement campaign in the port of Rotterdam, Hoek van Holland, The Netherlands, in September 2009. Altogether, 497 ships were monitored and a statistical evaluation of emission factors (g kg-1 fuel) was provided. The concerned main atmospheric components were SO2, NO2, NOx and the aerosol particle number. In addition, the elemental and water-soluble ionic composition of the emitted particulate matter was determined. Emission factors were expressed as a function of ship type, power and crankshaft rotational speed. The average SO2 emission factor was found to be roughly half of what is allowed in sulphur emission control areas (16 vs. 30 g kg-1 fuel), and exceedances of this limit were rarely registered. A significant linear relationship was observed between the SO2 and particle number emission factor. The intercept of the regression line, 0.5 × 1016 (kg fuel)-1, gives the average number of particles formed during the burning of 1 kg zero sulphur content fuel, while the slope, 2 × 1018, provides the average number of particles formed with 1 kg sulphur burnt with the fuel. Water-soluble ionic composition analysis of the aerosol samples from the plumes showed that ~144 g of particulate sulphate was emitted from 1 kg sulphur burnt with the fuel. The mass median diameter of sulphate particles estimated from the measurements was ~42 nm.

  3. Bidirectional transepithelial water transport: measurement and governing mechanisms.

    PubMed Central

    Phillips, J E; Wong, L B; Yeates, D B

    1999-01-01

    In the search for the mechanisms whereby water is transported across biological membranes, we hypothesized that in the airways, the hydration of the periciliary fluid layer is regulated by luminal-to-basolateral water transport coupled to active transepithelial sodium transport. The luminal-to-basolateral (JWL-->B) and the basolateral-to-luminal (JWB-->L) transepithelial water fluxes across ovine tracheal epithelia were measured simultaneously. The JWL-->B (6.1 microliter/min/cm2) was larger than JWB-->L (4.5 microliter/min/cm2, p < 0.05, n = 30). The corresponding water diffusional permeabilities were PdL-->B = 1.0 x 10(-4) cm/s and PdB-->L = 7.5 x 10(-5) cm/s. The activation energy (Ea) of JWL-->B (11.6 kcal/mol) was larger than the Ea of JWB-->L (6.5 kcal/mol, p < 0.05, n = 5). Acetylstrophanthidin (100 microM basolateral) reduced JWL-->B from 6.1 to 4.4 microliter/min/cm2 (p < 0. 05, n = 5) and abolished the PD. Amiloride (10 microM luminal) reduced JWL-->B from 5.7 to 3.7 microliter/min/cm2 (p < 0.05, n = 5) and reduced PD by 44%. Neither of these agents significantly changed JWB-->L. These data indicate that in tracheal epithelia under homeostatic conditions, JWB-->L was dominated by diffusion (Ea = 4.6 kcal/mol), whereas approximately 30% of JWL-->B was coupled to the active Na+,K+-ATPase pump (Ea = 27 kcal/mol). PMID:9929488

  4. A particle number conserving Lagrangian method for mixing-driven reactive transport

    NASA Astrophysics Data System (ADS)

    Bolster, Diogo; Paster, Amir; Benson, David A.

    2016-02-01

    The purely Lagrangian algorithm for chemical reactions introduced by Benson and Meerschaert (2008) suffers from a low-concentration resolution problem. We alleviate the problem by redefining the probabilistic collision/reaction (birth/death) stochastic process as a mass-reduction operation. Theoretically, this corresponds to replacing an on/off particle with a large number of "subparticles" and tracking the number fraction. The new particle reaction process maintains the original particle numbers but adjusts each particle's mass upon reaction. Several simulations show the veracity as well as the gains in low-concentration resolution offered by the algorithm. We also compare the results to those obtained by a traditional finite difference model with suitably defined initial condition, demonstrating that the Lagrangian models match these.

  5. Transport measurements on monolayer and few-layer WSe2

    NASA Astrophysics Data System (ADS)

    Palomaki, Tauno; Zhao, Wenjin; Finney, Joe; Fei, Zaiyao; Nguyen, Paul; McKay, Frank; Cobden, David

    The behavior of the electrical contacts often dominates transport measurements in mono and few-layer transition metal dichalcogenide (TMD) devices. Creating good contacts for some TMDs is particularly challenging since the fabrication procedure should prevent the TMD from oxidizing or chemically interacting with the contacts. In this talk, we discuss our progress on creating mono and few-layer WSe2 devices with both good electrical contacts and minimal effects from the substrate, polymer contamination, oxidation and other chemistry. For example, we have developed a technique for encapsulating metallic contacts and WSe2 flakes together in hexagonal boron nitride with multiple gates to separate and control the contributions from the channel and the Schottky barriers at the contacts. Research supported in part by Samsung GRO grant US 040814

  6. Mass transport measurements and modeling for chemical vapor infiltration

    SciTech Connect

    Starr, T.L.; Chiang, D.Y.; Fiadzo, O.G.; Hablutzel, N.

    1997-12-01

    This project involves experimental and modeling investigation of densification behavior and mass transport in fiber preforms and partially densified composites, and application of these results to chemical vapor infiltration (CVI) process modeling. This supports work on-going at ORNL in process development for fabrication of ceramic matrix composite (CMC) tubes. Tube-shaped composite preforms are fabricated at ORNL with Nextel{trademark} 312 fiber (3M Corporation, St. Paul, MN) by placing and compressing several layers of braided sleeve on a tubular mandrel. In terms of fiber architecture these preforms are significantly different than those made previously with Nicalon{trademark} fiber (Nippon Carbon Corp., Tokyo, Japan) square weave cloth. The authors have made microstructure and permeability measurements on several of these preforms and a few partially densified composites so as to better understand their densification behavior during CVI.

  7. Experimental measurements of the laminar separation bubble on an Eppler 387 airfoil at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Cole, Gregory M.; Mueller, Thomas J.

    1990-01-01

    An experimental investigation was conducted to measure the flow velocity in the boundary layer of an Eppler 387 airfoil. In particular, the laminar separation bubble that this airfoil exhibits at low Reynolds numbers was the focus. Single component laser Doppler velocimetry data were obtained at a Reynolds number of 100,000 at an angle of attack of 2.0 degree. Static Pressure and flow visualization data for the Eppler 387 airfoil were also obtained. The difficulty in obtaining accurate experimental measurements at low Reynolds numbers is addressed. Laser Doppler velocimetry boundary layer data for the NACA 663-018 airfoil at a Reynolds number of 160,000 and angle of attack of 12 degree is also presented.

  8. Measuring the spin Chern number in time-reversal-invariant Hofstadter optical lattices

    NASA Astrophysics Data System (ADS)

    Zhang, Dan-Wei; Cao, Shuai

    2016-10-01

    We propose an experimental scheme to directly measure the spin Chern number of the time-reversal-invariant Hofstadter model in optical lattices. We first show that this model can be realized by using ultracold Fermi atoms with two pseudo-spin states encoded by the internal Zeeman states in a square optical lattice and the corresponding topological Bloch bands are characterized by the spin Chern number. We then propose and numerically demonstrate that this topological invariant can be extracted from the shift of the hybrid Wannier center in the optical lattice. By spin-resolved in situ detection of the atomic densities along the transverse direction combined with time-of-flight measurement along another spatial direction, the spin Chern number in this system is directly measured.

  9. Turbulent Boundary Layer Measurements in the Princeton/ONR High Reynolds Number Test Facility

    NASA Astrophysics Data System (ADS)

    Allen, James; Smits, Alexander

    2003-11-01

    Zero pressure gradient, high Reynolds number boundary layers are studied in the Princeton/ONR High Reynolds Number Test Facility (HRTF). The HRTF uses air at pressures up to 2500Ψ as the working fluid. Mean flow velocity profiles and turbulence measurements have been obtained at Reynolds numbers based on momentum thickness from 5× 10^3 up to 10^5. The log region at this Reynolds number is approximately two decades long in terms of y^+. The maximum y^+ achieved before departure from the log curve is of order y^+≃ 10,000. Results will be presented on the form of the best fit for the log law over this large Reynolds number range.

  10. A collision-based model for measuring bedload transport from the seismic waves generated by rivers

    NASA Astrophysics Data System (ADS)

    Roth, D. L.; Finnegan, N. J.; Brodsky, E. E.; Stark, C. P.

    2011-12-01

    Accurately predicting rates of coarse sediment transport in river channels is a central goal of fluvial geomorphology and civil engineering. However, it is difficult to evaluate sediment transport and bedrock abrasion models in large rivers because quantitative measures of bedload transport are labor intensive and often dangerous to obtain in floods. Two recent studies show that the amplitude of seismic waves near rivers may record bedload flux, indicating that seismometers near rivers provide a potential means of monitoring bedload transport. In an effort to better interpret seismic waves generated by rivers, we seek a relationship between the variables governing bedload transport and seismic waves. Our approach relies on the fact that elastic waves are generated when momentum is transferred to the bed during a bedload particle impact. For an impacting particle of known mass and velocity, the momentum transfer can be computed from Hertzian impact theory. Here we combine analytic results based on Hertzian and elastic wave theories with empirical equations developed to describe the ballistics of bedload particles in terms of fluid shear stress and grain size. From this synthesis we arrive at a semi-analytic expression that predicts how the characteristic frequencies and amplitudes of seismic waves generated from saltating bedload particles should scale with fluid shear stress, grain size, and coarse sediment flux. Preliminary tests of our predictions using previously published and newly acquired laboratory data indicate that seismic signals near rivers can record information about the size, velocity and number of particles impacting the bed. Additionally, our analytical results help identify bedload transport events in seismic data collected along the Chijiawan River in Taiwan. Here the river is evolving rapidly in response to a dam removal - resulting in predictable changes in bedload transport efficiency in time and space that we can compare to local seismic data.

  11. Backward-facing step measurements at low Reynolds number, Re(sub h)=5000

    NASA Technical Reports Server (NTRS)

    Jovic, Srba; Driver, David M.

    1994-01-01

    An experimental study of the flow over a backward-facing step at low Reynolds number was performed for the purpose of validating a direct numerical simulation (DNS) which was performed by the Stanford/NASA Center for Turbulence Research. Previous experimental data on back step flows were conducted at Reynolds numbers and/or expansion ratios which were significantly different from that of the DNS. The geometry of the experiment and the simulation were duplicated precisely, in an effort to perform a rigorous validation of the DNS. The Reynolds number used in the DNS was Re(sub h)=5100 based on step height, h. This was the maximum possible Reynolds number that could be economically simulated. The boundary layer thickness, d, was approximately 1.0 h in the simulation and the expansion ratio was 1.2. The Reynolds number based on the momentum thickness, Re(sub theta), upstream of the step was 610. All of these parameters were matched experimentally. Experimental results are presented in the form of tables, graphs and a floppy disk (for easy access to the data). An LDV instrument was used to measure mean velocity components and three Reynolds stresses components. In addition, surface pressure and skin friction coefficients were measured. LDV measurements were acquired in a measuring domain which included the recirculating flow region.

  12. Velocity measurements of low Reynolds number tube flow using fiber-optic technology

    SciTech Connect

    Bianchi, J.C.

    1993-03-01

    In 1988 Nielsen started work to measure the spatial variability of the mass flux vector being transported in a porous medium. To measure the spatial variability of the mass flux vector, the spatial variability of its components(velocity, concentration) must be measured. Nielsen was successful in measuring the pore level concentration at many different pores and in verifying the assumption that a nonuniform concentration field exists within the mixing zone between two miscible fluids. However, Nielsen was unable to conduct the necessary pore level velocity measurements needed. Nielsen's work is being continued and a probe is being developed that will measure both velocity and concentration components at pore level. The probe is essentially the same probe used to make the pore level concentration measurements with added capabilities needed to make the velocity measurements. This probe has several design variables, dealing primarily with the velocity component, that need further investigation. The research presented in this thesis investigates these parameters by performing experiments in a capillary tube. The tube is a controlled system where the velocity of the fluid can be determined from the volumetric flow rate using Poiseuille's solution for viscous flow. Also, a statistically based relationship between the velocity measured with the probe and the velocity determined from the volumetric flow rate has been developed.

  13. Velocity measurements of low Reynolds number tube flow using fiber-optic technology

    SciTech Connect

    Bianchi, J.C.

    1993-03-01

    In 1988 Nielsen started work to measure the spatial variability of the mass flux vector being transported in a porous medium. To measure the spatial variability of the mass flux vector, the spatial variability of its components(velocity, concentration) must be measured. Nielsen was successful in measuring the pore level concentration at many different pores and in verifying the assumption that a nonuniform concentration field exists within the mixing zone between two miscible fluids. However, Nielsen was unable to conduct the necessary pore level velocity measurements needed. Nielsen`s work is being continued and a probe is being developed that will measure both velocity and concentration components at pore level. The probe is essentially the same probe used to make the pore level concentration measurements with added capabilities needed to make the velocity measurements. This probe has several design variables, dealing primarily with the velocity component, that need further investigation. The research presented in this thesis investigates these parameters by performing experiments in a capillary tube. The tube is a controlled system where the velocity of the fluid can be determined from the volumetric flow rate using Poiseuille`s solution for viscous flow. Also, a statistically based relationship between the velocity measured with the probe and the velocity determined from the volumetric flow rate has been developed.

  14. Near-wall turbulent transport of large-Schmidt-number passive scalars.

    PubMed

    Garcia-Ybarra, P L

    2009-06-01

    Turbulent diffusion of a passive scalar with a large-Schmidt number (Sc > 1) is considered in the viscous sublayer of a turbulent channel flow. Close to the wall, the corresponding eddy diffusivity coefficient is expanded as a power series in terms of the viscous distance to the wall y . The coefficients of the series depend on the Schmidt number and the analysis of recent numerical results allows to conclude that in the close vicinity of the wall (y < Sc(-1/3)) , the y(3) term is the dominant term; whereas, at distances relatively large from the wall (Sc(-1/3)< y <1) , the y(4) term becomes dominant. Accordingly, in this region the turbulent Schmidt number is not constant but follows a hyperbolic law in terms of the distance to the wall that matches the values taken in the vicinity of the wall, on the order of Sc(-1/3) , with the values of order unity in the rest of the viscous layer. The implications of this behavior on the surface-transfer coefficient are analyzed. PMID:19658632

  15. Near-wall turbulent transport of large-Schmidt-number passive scalars.

    PubMed

    Garcia-Ybarra, P L

    2009-06-01

    Turbulent diffusion of a passive scalar with a large-Schmidt number (Sc > 1) is considered in the viscous sublayer of a turbulent channel flow. Close to the wall, the corresponding eddy diffusivity coefficient is expanded as a power series in terms of the viscous distance to the wall y . The coefficients of the series depend on the Schmidt number and the analysis of recent numerical results allows to conclude that in the close vicinity of the wall (y < Sc(-1/3)) , the y(3) term is the dominant term; whereas, at distances relatively large from the wall (Sc(-1/3)< y <1) , the y(4) term becomes dominant. Accordingly, in this region the turbulent Schmidt number is not constant but follows a hyperbolic law in terms of the distance to the wall that matches the values taken in the vicinity of the wall, on the order of Sc(-1/3) , with the values of order unity in the rest of the viscous layer. The implications of this behavior on the surface-transfer coefficient are analyzed.

  16. Testing a model of componential processing of multi-symbol numbers-evidence from measurement units.

    PubMed

    Huber, Stefan; Bahnmueller, Julia; Klein, Elise; Moeller, Korbinian

    2015-10-01

    Research on numerical cognition has addressed the processing of nonsymbolic quantities and symbolic digits extensively. However, magnitude processing of measurement units is still a neglected topic in numerical cognition research. Hence, we investigated the processing of measurement units to evaluate whether typical effects of multi-digit number processing such as the compatibility effect, the string length congruity effect, and the distance effect are also present for measurement units. In three experiments, participants had to single out the larger one of two physical quantities (e.g., lengths). In Experiment 1, the compatibility of number and measurement unit (compatible: 3 mm_6 cm with 3 < 6 and mm < cm; incompatible: 3 cm_6 mm with 3 < 6 but cm > mm) as well as string length congruity (congruent: 1 m_2 km with m < km and 2 < 3 characters; incongruent: 2 mm_1 m with mm < m, but 3 > 2 characters) were manipulated. We observed reliable compatibility effects with prolonged reaction times (RT) for incompatible trials. Moreover, a string length congruity effect was present in RT with longer RT for incongruent trials. Experiments 2 and 3 served as control experiments showing that compatibility effects persist when controlling for holistic distance and that a distance effect for measurement units exists. Our findings indicate that numbers and measurement units are processed in a componential manner and thus highlight that processing characteristics of multi-digit numbers generalize to measurement units. Thereby, our data lend further support to the recently proposed generalized model of componential multi-symbol number processing. PMID:25651800

  17. Measuring hydrodynamics and sediment transport processes in the Dee estuary

    NASA Astrophysics Data System (ADS)

    Bolaños, R.; Souza, A.

    2010-03-01

    The capability of monitoring and predicting the marine environment leads to a more sustainable development of coastal and offshore regions. Therefore, the continuous measurement of environmental processes become an important source of information. The present paper shows data collected during 6 years, and in particular during 2008, in the Dee Estuary. The data aims to improve the observations of the mobile sediments in coastal areas and its forcing hydrodynamics and turbulence. Data involves the deployment of instrumented rigs measuring sediment in suspension, currents, waves, sea level, sediment size and bedforms as well as cruise work including grab sampling, CTD profiles and side-scan sonar. The data covers flood and ebb tides during spring and neap periods with moderate and mild wave events, thus, having a good coverage of the processes needed to improve knowledge of sediment transport and the parameterizations used in numerical modelling. The data, in raw and treated, is being banked at BODC (British Oceanographic Data Centre, http://www.bodc.ac.uk/) which is the formal British organization for looking after and distributing data concerning the marine environment.

  18. Measuring hydrodynamics and sediment transport processes in the Dee Estuary

    NASA Astrophysics Data System (ADS)

    Bolaños, R.; Souza, A.

    2010-06-01

    The capability of monitoring and prediction in the marine environment provides information that may allow sustainable development of coastal and offshore regions. Therefore, the continuous measurement of environmental processes becomes an important source of information. The present paper shows data collected during 6 years, and in particular during 2008, in the Dee Estuary. The aim of the data collection is to improve the observations of the mobile sediments in coastal areas and its forcing hydrodynamics and turbulence. Data includes information from the deployment of instrumented rigs measuring sediment in suspension, currents, waves, sea level, sediment size and bedforms as well as cruise work including grab sampling, CTD profiles and side-scan sonar. The data cover flood and ebb tides during spring and neap periods with moderate and mild wave events, thus, having a good coverage of the processes needed to improve knowledge of sediment transport and the parameterizations used in numerical modelling. The data, in raw and treated, are being banked at BODC (British Oceanographic Data Centre, http://www.bodc.ac.uk/) which is the formal British organization for looking after and distributing data concerning the marine environment.

  19. Direct measurement of sub-wavelength interference using thermal light and photon-number-resolved detection

    SciTech Connect

    Zhai, Yanhua E-mail: jfan@nist.gov; Fan, Jingyun E-mail: jfan@nist.gov; Migdall, Alan; Becerra, Francisco E.

    2014-09-08

    We examine thermal light diffracted through a double slit using photon-number-resolved detection to directly measure high-order spatial correlations, and we see sinusoidal modulations of those correlations. The fringe width can, in principal, be made arbitrarily small, and we have experimentally obtained fringe widths as small as 30 nm with 800 nm wavelength light. This extreme sub-wavelength resolution, along with this direct detection technique, offers potential for high precision measurement applications.

  20. Direct measurement of sub-wavelength interference using thermal light and photon-number-resolved detection

    NASA Astrophysics Data System (ADS)

    Zhai, Yanhua; Becerra, Francisco E.; Fan, Jingyun; Migdall, Alan

    2014-09-01

    We examine thermal light diffracted through a double slit using photon-number-resolved detection to directly measure high-order spatial correlations, and we see sinusoidal modulations of those correlations. The fringe width can, in principal, be made arbitrarily small, and we have experimentally obtained fringe widths as small as 30 nm with 800 nm wavelength light. This extreme sub-wavelength resolution, along with this direct detection technique, offers potential for high precision measurement applications.

  1. A Reynolds Number Study of Wing Leading-Edge Effects on a Supersonic Transport Model at Mach 0.3

    NASA Technical Reports Server (NTRS)

    Williams, M. Susan; Owens, Lewis R., Jr.; Chu, Julio

    1999-01-01

    A representative supersonic transport design was tested in the National Transonic Facility (NTF) in its original configuration with small-radius leading-edge flaps and also with modified large-radius inboard leading-edge flaps. Aerodynamic data were obtained over a range of Reynolds numbers at a Mach number of 0.3 and angles of attack up to 16 deg. Increasing the radius of the inboard leading-edge flap delayed nose-up pitching moment to a higher lift coefficient. Deflecting the large-radius leading-edge flap produced an overall decrease in lift coefficient and delayed nose-up pitching moment to even higher angles of attack as compared with the undeflected large- radius leading-edge flap. At angles of attack corresponding to the maximum untrimmed lift-to-drag ratio, lift and drag coefficients decreased while lift-to-drag ratio increased with increasing Reynolds number. At an angle of attack of 13.5 deg., the pitching-moment coefficient was nearly constant with increasing Reynolds number for both the small-radius leading-edge flap and the deflected large-radius leading-edge flap. However, the pitching moment coefficient increased with increasing Reynolds number for the undeflected large-radius leading-edge flap above a chord Reynolds number of about 35 x 10 (exp 6).

  2. [Ultrafine particle number concentration and size distribution measurements in a street canyon].

    PubMed

    Li, Xin-Ling; Huang, Zhen; Wang, Jia-Song; Tu, Xiao-Dong; Ye, Chun

    2007-04-01

    A field experiment was conducted to measure concentrations and size distributions of particle (10 nm < D(p) < 487 nm) at four heights in an asymmetric street canyon on Beijing East Road in Shanghai, China. It shows that particle number size distributions are bimodal or trimodal lognormal in form. At a certain height in the range from 1.5 to 20 m, particle number concentrations and size distributions significantly vary with the height. Particle number concentrations in nuclei mode drop significantly and the mode diameters shift to the larger diameter. The variations of particle number concentration and size distribution in accumulation mode are less significant than that in nuclei mode. Particle number concentrations and size distributions slightly change with increasing the height in the range from 20 to 38 m. Concentrations of CO and PM(2.5) were also measured. Power laws are found to be well fitted for the concentration decay of total particle number, total particle volume, CO and PM(2.5). Due to the effect of the wind speed and direction, the total particle volume, PM(2.5) and CO concentrations are lower for Test I (high wind speed and step-up street canyon) than for test II (low wind speed and wind channeling along the canyon), at the meantime, the decay rates of the total particle number, the total particle volume, CO and PM(2.5) concentrations for test I are lower than for test II . No matter how the wind direction changes, the decay rates of the total particle number concentrations are larger than those of CO and PM(2.5), which clearly shows that coagulation and deposition besides dilution processes affect the total particle number concentration.

  3. Measurement of the Copy Number of the Master Quorum-Sensing Regulator of a Bacterial Cell

    NASA Astrophysics Data System (ADS)

    Teng, Shu-Wen; Wang, Yufang; Tu, Kimberly C.; Long, Tao; Mehta, Pankaj; Wingreen, Ned S.; Bassler, Bonnie L.; Ong, N. P.

    2010-05-01

    Quorum sensing is the mechanism by which bacteria communicate and synchronize group behaviors. Quantitative information on parameters such as the copy number of particular quorum-sensing proteins should contribute strongly to understanding how the quorum-sensing network functions. Here we show that the copy number of the master regulator protein LuxR in Vibrio harveyi, can be determined in vivo by exploiting small-number fluctuations of the protein distribution when cells undergo division. When a cell divides, both its volume and LuxR protein copy number N are partitioned with slight asymmetries. We have measured the distribution functions describing the partitioning of the protein fluorescence and the cell volume. The fluorescence distribution is found to narrow systematically as the LuxR population increases while the volume partitioning is unchanged. Analyzing these changes statistically, we have determined that N = 80-135 dimers at low cell density and 575 dimers at high cell density. In addition, we have measured the static distribution of LuxR over a large (3,000) clonal population. Combining the static and time-lapse experiments, we determine the magnitude of the Fano factor of the distribution. This technique has broad applicability as a general, in vivo technique for measuring protein copy number and burst size.

  4. Instrument Development Procedures for Mathematics Measures. Technical Report Number 08-02

    ERIC Educational Resources Information Center

    Jung, Eunju; Liu, Kimy; Ketterlin-Geller, Leanne R.; Tindal, Gerald

    2008-01-01

    The purpose of this study was to develop general outcome measures (GOM) in mathematics so that teachers could focus their instruction on needed prerequisite skills. We describe in detail, the manner in which content-related evidence was established and then present a number of statistical analyses conducted to evaluate the technical adequacy of…

  5. Chloride transport across placental microvillous membranes measured by fluorescence

    SciTech Connect

    Illsley, N.P.; Glaubensklee, C.; Davis, B.; Verkman, A.S. )

    1988-12-01

    Chloride transport across human placental microvillous vesicle membrane was investigated using the fluorescent probe SPQ (6-methoxy-N(3-sulfopropyl)quinolinium). Chloride influx (J{sub Cl}) was calculated from the initial rate of quenching of intravesicular SPQ fluorescence by chloride. J{sub Cl} measured by SPQ fluorescence was not significantly different from J{sub Cl} measured by uptake of {sup 36}Cl; SPQ did not affect measurements of J{sub Cl}. J{sub Cl} was increased 51% by a 58-mV membrane potential. Voltage-stimulated J{sub Cl} showed a saturable dependence on chloride concentration with a dissociation constant (K{sub d}) of 18 {plus minus} 5 mM and was inhibited by diphenylamine-2-carboxylate with an apparent inhibitory constant of 0.13 {plus minus} 0.03 mM. The activation energy calculated for voltage-stimulated J{sub Cl} was 4.6 {plus minus} 0.6 kcal/mol. J{sub Cl} was also stimulated by a reduction in the external pH from 7.0 to 5.5 (internal pH = 70). pH-stimulated chloride influx was increased by trans-HCO{sub 3} and was inhibited by dihydro-4,4{prime}-diisothiocyano-2,2{prime}-disulfonic stilbene. Uptake of {sup 36}Cl into microvillous vesicles was stimulated by trans-Cl. pH-stimulated J{sub Cl} showed a saturable dependence on chloride with a K{sub d} of 38 {plus minus} 6 mM but was not affected by membrane potential. No evidence was found for Na- or K-coupled chloride cotransport. These findings demonstrate the presence of a saturable chloride conductance and an electroneutral chloride-bicarbonate exchanger in the placental microvillous membrane.

  6. Multi-bit quantum random number generation by measuring positions of arrival photons

    SciTech Connect

    Yan, Qiurong; Zhao, Baosheng; Liao, Qinghong; Zhou, Nanrun

    2014-10-15

    We report upon the realization of a novel multi-bit optical quantum random number generator by continuously measuring the arrival positions of photon emitted from a LED using MCP-based WSA photon counting imaging detector. A spatial encoding method is proposed to extract multi-bits random number from the position coordinates of each detected photon. The randomness of bits sequence relies on the intrinsic randomness of the quantum physical processes of photonic emission and subsequent photoelectric conversion. A prototype has been built and the random bit generation rate could reach 8 Mbit/s, with random bit generation efficiency of 16 bits per detected photon. FPGA implementation of Huffman coding is proposed to reduce the bias of raw extracted random bits. The random numbers passed all tests for physical random number generator.

  7. Multi-bit quantum random number generation by measuring positions of arrival photons.

    PubMed

    Yan, Qiurong; Zhao, Baosheng; Liao, Qinghong; Zhou, Nanrun

    2014-10-01

    We report upon the realization of a novel multi-bit optical quantum random number generator by continuously measuring the arrival positions of photon emitted from a LED using MCP-based WSA photon counting imaging detector. A spatial encoding method is proposed to extract multi-bits random number from the position coordinates of each detected photon. The randomness of bits sequence relies on the intrinsic randomness of the quantum physical processes of photonic emission and subsequent photoelectric conversion. A prototype has been built and the random bit generation rate could reach 8 Mbit/s, with random bit generation efficiency of 16 bits per detected photon. FPGA implementation of Huffman coding is proposed to reduce the bias of raw extracted random bits. The random numbers passed all tests for physical random number generator.

  8. In-flight surface-flow measurements on a subsonic transport high-lift flap system

    NASA Technical Reports Server (NTRS)

    Yip, Long P.; Vijgen, Paul M. H. W.; Hardin, Jay D.

    1992-01-01

    As part of a multiphased program for subsonic transport high-lift flight research, flight tests were conducted on the Transport Systems Research Vehicle (B737-100 aircraft) at the NASA Langley Research Center, to obtain detailed flow characteristics of the high-lift flap system for correlation with computational and wind-tunnel investigations. Pressure distributions, skin friction, and flow-visualization measurements were made on a triple-slotted flap system for a range of flap deflections, chord Reynolds numbers (10 to 21 million), and Mach numbers (0.16 to 0.36). Experimental test results are given for representative flap settings indicating flow separation on the fore-flap element for the largest flap deflection. Comparisons of the in-flight flow measurements were made with predictions from available viscous multielement computational methods modified with simple-sweep theory. Computational results overpredicted the experimentally measured pressures, particularly in the case involving separation of the fore lap, indicating the need for better modeling of confluent boundary layers and three-dimensional sweep effects.

  9. Quantitative measurement of the nanoparticle size and number concentration from liquid suspensions by atomic force microscopy.

    PubMed

    Baalousha, M; Prasad, A; Lead, J R

    2014-05-01

    Microscopy techniques are indispensable to the nanoanalytical toolbox and can provide accurate information on the number size distribution and number concentration of nanoparticles (NPs) at low concentrations (ca. ppt to ppb range) and small sizes (ca. <20 nm). However, the high capabilities of microscopy techniques are limited by the traditional sample preparation based on drying a small volume of suspension of NPs on a microscopy substrate. This method is limited by low recovery of NPs (ca. <10%), formation of aggregates during the drying process, and thus, the complete misrepresentation of the NP suspensions under consideration. This paper presents a validated quantitative sampling technique for atomic force microscopy (AFM) that overcomes the above-mentioned shortcomings and allows full recovery and representativeness of the NPs under consideration by forcing the NPs into the substrate via ultracentrifugation and strongly attaches the NPs to the substrate by surface functionalization of the substrate or by adding cations to the NP suspension. The high efficiency of the analysis is demonstrated by the uniformity of the NP distribution on the substrate (that is low variability between the number of NPs counted on different images on different areas of the substrate), the high recovery of the NPs up to 71%) and the good correlation (R > 0.95) between the mass and number concentrations. Therefore, for the first time, we developed a validated quantitative sampling technique that enables the use of the full capabilities of microscopy tools to quantitatively and accurately determine the number size distribution and number concentration of NPs at environmentally relevant low concentrations (i.e. 0.34-100 ppb). This approach is of high environmental relevance and can be applied widely in environmental nanoscience and nanotoxicology for (i) measuring the number concentration dose in nanotoxicological studies and (ii) accurately measuring the number size distribution of

  10. Relationship between Objectively Measured Transportation Behaviors and Health Characteristics in Older Adults

    PubMed Central

    Takemoto, Michelle; Carlson, Jordan A.; Moran, Kevin; Godbole, Suneeta; Crist, Katie; Kerr, Jacqueline

    2015-01-01

    This study used objective Global Positioning Systems (GPS) to investigate the relationship between pedestrian and vehicle trips to physical, cognitive, and psychological functioning in older adults living in retirement communities. Older adults (N = 279; mean age = 83 ± 6 years) wore a GPS and accelerometer for 6 days. Participants completed standard health measures. The Personal Activity and Location Measurement System (PALMS) was used to calculate the average daily number of trips, distance, and minutes traveled for pedestrian and vehicle trips from the combined GPS and accelerometer data. Linear mixed effects regression models explored relationships between these transportation variables and physical, psychological and cognitive functioning. Number, distance, and minutes of pedestrian trips were positively associated with physical and psychological functioning but not cognitive functioning. Number of vehicle trips was negatively associated with fear of falls; there were no other associations between the vehicle trip variables and functioning. Vehicle travel did not appear to be related to functioning in older adults in retirement communities except that fear of falling was related to number of vehicle trips. Pedestrian trips had moderate associations with multiple physical and psychological functioning measures, supporting a link between walking and many aspects of health in older adults. PMID:26528999

  11. Relationship between Objectively Measured Transportation Behaviors and Health Characteristics in Older Adults.

    PubMed

    Takemoto, Michelle; Carlson, Jordan A; Moran, Kevin; Godbole, Suneeta; Crist, Katie; Kerr, Jacqueline

    2015-10-30

    This study used objective Global Positioning Systems (GPS) to investigate the relationship between pedestrian and vehicle trips to physical, cognitive, and psychological functioning in older adults living in retirement communities. Older adults (N = 279; mean age = 83 ± 6 years) wore a GPS and accelerometer for 6 days. Participants completed standard health measures. The Personal Activity and Location Measurement System (PALMS) was used to calculate the average daily number of trips, distance, and minutes traveled for pedestrian and vehicle trips from the combined GPS and accelerometer data. Linear mixed effects regression models explored relationships between these transportation variables and physical, psychological and cognitive functioning. Number, distance, and minutes of pedestrian trips were positively associated with physical and psychological functioning but not cognitive functioning. Number of vehicle trips was negatively associated with fear of falls; there were no other associations between the vehicle trip variables and functioning. Vehicle travel did not appear to be related to functioning in older adults in retirement communities except that fear of falling was related to number of vehicle trips. Pedestrian trips had moderate associations with multiple physical and psychological functioning measures, supporting a link between walking and many aspects of health in older adults.

  12. Intervention measures, turning point, and reproduction number for dengue, Singapore, 2005.

    PubMed

    Hsieh, Ying-Hen; Ma, Stefan

    2009-01-01

    The 2005 dengue outbreak in Singapore cumulated in > 14,000 cases and 27 reported dengue deaths. We fit the single-phase Richards model to weekly dengue notification numbers to detect the turning point for the outbreak, which enables us to study the impact of intervention measures relating to the turning point. The results indicate that turning point had most likely occurred in late August or early September, before large-scale intervention measures were implemented. The "initial" reproduction number for the outbreak is estimated to be ~1.89-2.23 (95% confidence interval: 1.15-3.00). One of the lessons learned from the 2003 severe acute respiratory syndrome (SARS) outbreak is that multiple phases of outbreak were observed in some affected countries when efforts to intensify intervention or to sustain vigilance were compromised. Intensive and continuing efforts in the implementation of control measures are essential in reducing further dengue occurrences during any resurgence of dengue.

  13. Evaluating quantitative methods for measuring plasmid copy numbers in single cells

    PubMed Central

    Tal, Shay; Paulsson, Johan

    2013-01-01

    The life of plasmids is a constant battle against fluctuations: failing to correct copy number fluctuations can increase the plasmid loss rate by many orders of magnitude, as can a failure to more evenly divide the copies between daughters at cell division. Plasmids are therefore long-standing model systems for stochastic processes in cells, much thanks to the efforts of Kurt Nordström to whose memory this issue is dedicated. Here we analyze a range of experimental methods for measuring plasmid copy numbers in single cells, focusing on challenges, trade-offs and necessary experimental controls. In particular we analyze published and unpublished strategies to infer copy numbers from expression of plasmid-encoded reporters, direct labeling of plasmids with fluorescent probes or DNA binding proteins fused to fluorescent reporters, PCR based methods applied to single cell lysates, and plasmid-specific replication arrest. We conclude that no method currently exists to measure plasmid copy numbers in single cells, and that most methods instead inadvertently measure various types of experimental noise. We also discuss how accurate methods can be developed. PMID:22305922

  14. Ozone Measurements and a 3D Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Douglass, Anne R.; Frith, Stacey; Steenrod, Steven; Polansky, Brian

    2004-01-01

    We have used our three-dimensional chemical transport model (CTM) to calculate the expected reponse of stratospheric composition over the past 30 years to forcing by chlorine and bromine compounds, solar ultraviolet, and volcanic aerosols. The CTM uses off-line winds and temperatures fiom a 50-year run of the finite volume general circulation model (FVGCM). We compare the total column ozone and the ozone profile fiom the CTM output to a variety of data sources. These include a merged total ozone data set from TOMS and SBUV using the new version 8 algorithm. Total ozone fiom the CTM are compared to ground-station measurements of total ozone at specific locations. Ozone profiles are compared to satellite meausrements fiom SBUV, SAGE, and HALOE. Profiles are also compared to ozonesondes over several locations. The results of the comparisons are quantified by using a time-series statistical analysis to determine trends, solar cycle, and volcanic reponse in both the model and in the data. Initial results indicate that the model responds to forcings in a way that is similar to the observed atmospheric response. The model does seem to be more sensitive to the chlorine and bromine perturbation ihan is the data. Further details and comparisons wiii be discussed.

  15. Improvements of a nano-scale crossed hot-wire for high Reynolds number measurements

    NASA Astrophysics Data System (ADS)

    Fan, Yuyang; Hultmark, Marcus

    2015-11-01

    Hot-wire anemometry, despite its limited spatial and temporal resolution, is still the preferred tool for high Reynolds number flow measurements, mainly due to the continuous signal. To address the resolution issues, the Nano-Scale Thermal Anemometry Probe (NSTAP) was developed at Princeton University. The NSTAP has a sensing volume more than one order of magnitude smaller than conventional hot-wires, and it has displayed superior performance. However, the NSTAP can only measure a single component of the velocity. Using a novel combining method, a probe that enables two-component velocity measurements has been created (the x-NSTAP). The measurement volume is approximately 50 × 50 × 50 μ m, more than one order of magnitude smaller in all directions compared to conventional crossed hot-wires. The x-NSTAP has been further improved to allow more accurate measurements with the help of flow visualization using a scaled model but matching Reynolds number. Results from turbulent flow measurements with the new x-NSTAP are also presented. Supported under NSF grant CBET-1510100 (program manager Dimitrios Papavassiliou).

  16. Electrophysiological Motor Unit Number Estimation (MUNE) Measuring Compound Muscle Action Potential (CMAP) in Mouse Hindlimb Muscles.

    PubMed

    Arnold, W David; Sheth, Kajri A; Wier, Christopher G; Kissel, John T; Burghes, Arthur H; Kolb, Stephen J

    2015-09-25

    Compound muscle action potential (CMAP) and motor unit number estimation (MUNE) are electrophysiological techniques that can be used to monitor the functional status of a motor unit pool in vivo. These measures can provide insight into the normal development and degeneration of the neuromuscular system. These measures have clear translational potential because they are routinely applied in diagnostic and clinical human studies. We present electrophysiological techniques similar to those employed in humans to allow recordings of mouse sciatic nerve function. The CMAP response represents the electrophysiological output from a muscle or group of muscles following supramaximal stimulation of a peripheral nerve. MUNE is an electrophysiological technique that is based on modifications of the CMAP response. MUNE is a calculated value that represents the estimated number of motor neurons or axons (motor control input) supplying the muscle or group of muscles being tested. We present methods for recording CMAP responses from the proximal leg muscles using surface recording electrodes following the stimulation of the sciatic nerve in mice. An incremental MUNE technique is described using submaximal stimuli to determine the average single motor unit potential (SMUP) size. MUNE is calculated by dividing the CMAP amplitude (peak-to-peak) by the SMUP amplitude (peak-to-peak). These electrophysiological techniques allow repeated measures in both neonatal and adult mice in such a manner that facilitates rapid analysis and data collection while reducing the number of animals required for experimental testing. Furthermore, these measures are similar to those recorded in human studies allowing more direct comparisons.

  17. Electrophysiological Motor Unit Number Estimation (MUNE) Measuring Compound Muscle Action Potential (CMAP) in Mouse Hindlimb Muscles.

    PubMed

    Arnold, W David; Sheth, Kajri A; Wier, Christopher G; Kissel, John T; Burghes, Arthur H; Kolb, Stephen J

    2015-01-01

    Compound muscle action potential (CMAP) and motor unit number estimation (MUNE) are electrophysiological techniques that can be used to monitor the functional status of a motor unit pool in vivo. These measures can provide insight into the normal development and degeneration of the neuromuscular system. These measures have clear translational potential because they are routinely applied in diagnostic and clinical human studies. We present electrophysiological techniques similar to those employed in humans to allow recordings of mouse sciatic nerve function. The CMAP response represents the electrophysiological output from a muscle or group of muscles following supramaximal stimulation of a peripheral nerve. MUNE is an electrophysiological technique that is based on modifications of the CMAP response. MUNE is a calculated value that represents the estimated number of motor neurons or axons (motor control input) supplying the muscle or group of muscles being tested. We present methods for recording CMAP responses from the proximal leg muscles using surface recording electrodes following the stimulation of the sciatic nerve in mice. An incremental MUNE technique is described using submaximal stimuli to determine the average single motor unit potential (SMUP) size. MUNE is calculated by dividing the CMAP amplitude (peak-to-peak) by the SMUP amplitude (peak-to-peak). These electrophysiological techniques allow repeated measures in both neonatal and adult mice in such a manner that facilitates rapid analysis and data collection while reducing the number of animals required for experimental testing. Furthermore, these measures are similar to those recorded in human studies allowing more direct comparisons. PMID:26436455

  18. Electrophysiological Motor Unit Number Estimation (MUNE) Measuring Compound Muscle Action Potential (CMAP) in Mouse Hindlimb Muscles

    PubMed Central

    Arnold, W. David; Sheth, Kajri A.; Wier, Christopher G.; Kissel, John T.; Burghes, Arthur H.; Kolb, Stephen J.

    2015-01-01

    Compound muscle action potential (CMAP) and motor unit number estimation (MUNE) are electrophysiological techniques that can be used to monitor the functional status of a motor unit pool in vivo. These measures can provide insight into the normal development and degeneration of the neuromuscular system. These measures have clear translational potential because they are routinely applied in diagnostic and clinical human studies. We present electrophysiological techniques similar to those employed in humans to allow recordings of mouse sciatic nerve function. The CMAP response represents the electrophysiological output from a muscle or group of muscles following supramaximal stimulation of a peripheral nerve. MUNE is an electrophysiological technique that is based on modifications of the CMAP response. MUNE is a calculated value that represents the estimated number of motor neurons or axons (motor control input) supplying the muscle or group of muscles being tested. We present methods for recording CMAP responses from the proximal leg muscles using surface recording electrodes following the stimulation of the sciatic nerve in mice. An incremental MUNE technique is described using submaximal stimuli to determine the average single motor unit potential (SMUP) size. MUNE is calculated by dividing the CMAP amplitude (peak-to-peak) by the SMUP amplitude (peak-to-peak). These electrophysiological techniques allow repeated measures in both neonatal and adult mice in such a manner that facilitates rapid analysis and data collection while reducing the number of animals required for experimental testing. Furthermore, these measures are similar to those recorded in human studies allowing more direct comparisons. PMID:26436455

  19. Detailed noise measurements on the SR-7A propeller: Tone behavior with helical tip Mach number

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Hall, David G.

    1991-01-01

    Detailed noise measurements were taken on the SR-7A propeller to investigate the behavior of the noise with helical tip Mach number and then to level off as Mach number was increased further. This behavior was further investigated by obtaining detailed pressure-time histories of data. The pressure-time histories indicate that a portion of the primary pressure pulse is progressively cancelled by a secondary pulse which results in the noise leveling off as the helical tip Mach number is increased. This second pulse appears to originate on the same blade as the primary pulse and is in some way connected to the blade itself. This leaves open the possibility of redesigning the blade to improve the cancellation; thereby, the propeller noise is reduced.

  20. Electrophysiological measurement of the number of rhodopsin molecules in single Limulus photoreceptors

    PubMed Central

    1977-01-01

    Two partly independent electrophysiological methods are described for measuring the number of rhodopsin molecules (R) in single ventral photoreceptors. Method 1 is based on measurements of the relative intensity required to elicit a quantal response and the relative intensity required to half-saturate the early receptor potential (ERP). Method 2 is based on measurements of the absolute intensity required to elicit a quantal response. Both methods give values of R approximately equal to 10(9). From these and other measurements, estimates are derived for the surface density of rhodopsin (8,000/micrometer2), the charge movement during the ERP per isomerized rhodopsin (20 X 10(-21) C), and the half-time for thermal isomerization of rhodopsin (36yr). PMID:591915

  1. Cloud Liquid Water, Mean Droplet Radius and Number Density Measurements Using a Raman Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Melfi, S. Harvey

    1999-01-01

    A new technique for measuring cloud liquid water, mean droplet radius and droplet number density is outlined. The technique is based on simultaneously measuring Raman and Mie scattering from cloud liquid droplets using a Raman lidar. Laboratory experiments on liquid micro-spheres have shown that the intensity of Raman scattering is proportional to the amount of liquid present in the spheres. This fact is used as a constraint on calculated Mie intensity assuming a gamma function particle size distribution. The resulting retrieval technique is shown to give stable solutions with no false minima. It is tested using Raman lidar data where the liquid water signal was seen as an enhancement to the water vapor signal. The general relationship of retrieved average radius and number density is consistent with traditional cloud physics models. Sensitivity to the assumed maximum cloud liquid water amount and the water vapor mixing ratio calibration are tested. Improvements to the technique are suggested.

  2. Vacuum chamber pressure effects on thrust measurements of low Reynolds number nozzles

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.; Penko, P. F.; Grisnik, S. P.; Whalen, M. V.

    1985-01-01

    Tests were conducted to investigate the effect of vacuum facility pressure on the performance of small thruster nozzles. Thrust measurements of two converging-diverging nozzles with an area ratio of 140 and an orifice plate flowing unheated nitrogen and hydrogen were taken over a wide range of vacuum facility pressures and nozzle throat Reynolds numbers. In the Reynolds number range of 2200 to 12 000 there was no discernable viscous effect on thrust below an ambient to total pressure ratio of 1000. In nearly all cases, flow separation occurred at a pressure ratio of about 1000. This was the upper limit for obtaining an accurate thrust measurement for a conical nozzle with an area ratio of 140.

  3. High-speed quantum-random number generation by continuous measurement of arrival time of photons

    SciTech Connect

    Yan, Qiurong; Zhao, Baosheng; Hua, Zhang; Liao, Qinghong; Yang, Hao

    2015-07-15

    We demonstrate a novel high speed and multi-bit optical quantum random number generator by continuously measuring arrival time of photons with a common starting point. To obtain the unbiased and post-processing free random bits, the measured photon arrival time is converted into the sum of integral multiple of a fixed period and a phase time. Theoretical and experimental results show that the phase time is an independent and uniform random variable. A random bit extraction method by encoding the phase time is proposed. An experimental setup has been built and the unbiased random bit generation rate could reach 128 Mb/s, with random bit generation efficiency of 8 bits per detected photon. The random numbers passed all tests in the statistical test suite.

  4. Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar

    SciTech Connect

    Whiteman, David N.; Melfi, S. Harvey

    1999-12-27

    A new technique for measuring cloud liquid water, mean droplet radius, and droplet number density is outlined. The technique is based on simultaneously measuring Raman and Mie scattering from cloud liquid droplets using a Raman lidar. Laboratory experiments on liquid microspheres have shown that the intensity of Raman scattering is proportional to the amount of liquid present in the spheres. This fact is used as a constraint on calculated Mie intensity assuming a gamma function particle size distribution. The resulting retrieval technique is shown to give stable solutions with no false minima. It is tested using Raman lidar data where the liquid water signal was seen as an enhancement to the water vapor signal. The general relationship of retrieved average radius and number density is consistent with traditional cloud physics models. Sensitivity to the assumed maximum cloud liquid water amount and the water vapor mixing ratio calibration are tested. Improvements to the technique are suggested. (c) 1999 American Geophysical Union.

  5. Quantum Yield Determination Based on Photon Number Measurement, Protocols for Firefly Bioluminescence Reactions.

    PubMed

    Niwa, Kazuki

    2016-01-01

    Quantum yield (QY), which is defined as the probability of photon production by a single bio/chemiluminescence reaction, is an important factor to characterize luminescence light intensity emitted diffusively from the reaction solution mixture. Here, methods to measure number of photons to determine QY according to the techniques of national radiometry standards are described. As an example, experiments using firefly bioluminescence reactions are introduced. PMID:27424895

  6. Quantum Yield Determination Based on Photon Number Measurement, Protocols for Firefly Bioluminescence Reactions.

    PubMed

    Niwa, Kazuki

    2016-01-01

    Quantum yield (QY), which is defined as the probability of photon production by a single bio/chemiluminescence reaction, is an important factor to characterize luminescence light intensity emitted diffusively from the reaction solution mixture. Here, methods to measure number of photons to determine QY according to the techniques of national radiometry standards are described. As an example, experiments using firefly bioluminescence reactions are introduced.

  7. Measured and modelled cloud condensation nuclei number concentration at the high alpine site Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Jurányi, Z.; Gysel, M.; Weingartner, E.; Decarlo, P. F.; Kammermann, L.; Baltensperger, U.

    2010-08-01

    Atmospheric aerosol particles are able to act as cloud condensation nuclei (CCN) and are therefore important for the climate and the hydrological cycle, but their properties are not fully understood. Total CCN number concentrations at 10 different supersaturations in the range of SS=0.12-1.18% were measured in May 2008 at the remote high alpine research station, Jungfraujoch, Switzerland (3580 m a.s.l.). In this paper, we present a closure study between measured and predicted CCN number concentrations. CCN predictions were done using dry number size distribution (scanning particle mobility sizer, SMPS) and bulk chemical composition data (aerosol mass spectrometer, AMS, and multi-angle absorption photometer, MAAP) in a simplified Köhler theory. The predicted and the measured CCN number concentrations agree very well and are highly correlated. A sensitivity study showed that the temporal variability of the chemical composition at the Jungfraujoch can be neglected for a reliable CCN prediction, whereas it is important to know the mean chemical composition. The exact bias introduced by using a too low or too high hygroscopicity parameter for CCN prediction was further quantified and shown to be substantial for the lowest supersaturation. Despite the high average organic mass fraction (~45%) in the fine mode, there was no indication that the surface tension was substantially reduced at the point of CCN activation. A comparison between hygroscopicity tandem differential mobility analyzer (HTDMA), AMS/MAAP, and CCN derived κ values showed that HTDMA measurements can be used to determine particle hygroscopicity required for CCN predictions if no suitable chemical composition data are available.

  8. Photon-number statistics of twin beams: Self-consistent measurement, reconstruction, and properties

    SciTech Connect

    Peřina, Jan Jr.; Haderka, Ondřej; Michálek, Václav

    2014-12-04

    A method for the determination of photon-number statistics of twin beams using the joint signal-idler photocount statistics obtained by an iCCD camera is described. It also provides absolute quantum detection efficiency of the camera. Using the measured photocount statistics, quasi-distributions of integrated intensities are obtained. They attain negative values occurring in characteristic strips an a consequence of pairing of photons in twin beams.

  9. The measurement of a complete set of transport properties for a concentrated solid polymer electrolyte solution

    SciTech Connect

    Ma, Y.; Doyle, M.; Doeff, M.M.; De Jonghe, L.C.; Newman, J.; Fuller, T.F.

    1995-06-01

    Polymer electrolytes based on alkali metal salts in poly(ethylene oxides) are important for possible use in rechargeable batteries for both electric vehicle and consumer electronics applications. The authors measure a complete set of transport properties for one particular binary salt solution: sodium trifluoromethanesulfonate in poly(ethylene oxide), over a wide range of salt concentrations (0.1 to 2.6M) at 85 C. The properties measured include the conductivity, the salt diffusion coefficient, and the Na ion transference number. The mean molar activity coefficient of the salt is also determined. The conductivity and diffusion coefficients of NaCF{sub 3}SO{sub 3} are similar in magnitude to those of LiCF{sub 3}SO{sub 3} in (polyethylene oxide). The transference number and thermodynamic factor are found by combining concentration cell data with the results of galvanostatic polarization experiments. A theoretical analysis of the experimental method based on concentrated-solution theory is given. The study verifies that the transference numbers derived from the experiments retain fundamental significance in applications involving both steady and transient processes and in systems coupling the polymer electrolyte with electrodes of all types (stoichiometries). The relevant transference numbers can be determined independently of any knowledge of speciation of the polymer electrolyte. The transference numbers found here for the sodium ion are much lower than those reported for the lithium ion, especially in the concentrated solutions. The transference number of the sodium ion is negative in the more concentrated solutions and levels off at its maximum value of 0.31 in the dilute concentration range. The transference number results are interpreted in terms of complexation of the sodium ion with the anionic species.

  10. Measurement of High Reynolds Number Near-Field Turbulent Sphere Wakes under Stratified Conditions

    NASA Astrophysics Data System (ADS)

    Kalumuck, Kenneth; Brandt, Alan; Decker, Kirk; Shipley, Kara

    2015-11-01

    To characterize the near-field of a stratified wake at Reynolds numbers, Re = 2 x 105 - 106, experiments were conducted with a large diameter (0.5 m) sphere towed through a thermally stratified fresh water lake. Stratification produced BV frequencies, N, up to 0.07/s (42 cph) resulting in Froude numbers F = U/ND >= 15. The submerged sphere and associated instrumentation including two Acoustic Doppler Velocimeters (ADVs) and an array of fast response thermistors were affixed to a common frame towed over a range of speeds. Three components of the instantaneous wake velocities were obtained simultaneously at two cross-wake locations with the ADVs while density fluctuations were inferred from temperature measurements made by the thermistors. These measurements were used to determine the mean, rms, and spectra of all three components of the turbulent velocity field and density fluctuations at multiple locations. The turbulence power spectra follow the expected -5/3 slope with wavenumber. Existing stratified near-field wake data for spheres are for Re =104 and less, and only a very limited set of data under unstratified conditions exists at these large values of Re. Those data are primarily measurements of the sphere drag, surface pressure distribution, and separation rather than in wake turbulence. Advances in CFD modeling have enabled simulations at these high Reynolds numbers without quantitative data available for validation. Sponsored by ONR Turbulence and Wakes program.

  11. The generation of 68 Gbps quantum random number by measuring laser phase fluctuations.

    PubMed

    Nie, You-Qi; Huang, Leilei; Liu, Yang; Payne, Frank; Zhang, Jun; Pan, Jian-Wei

    2015-06-01

    The speed of a quantum random number generator is essential for practical applications, such as high-speed quantum key distribution systems. Here, we push the speed of a quantum random number generator to 68 Gbps by operating a laser around its threshold level. To achieve the rate, not only high-speed photodetector and high sampling rate are needed but also a very stable interferometer is required. A practical interferometer with active feedback instead of common temperature control is developed to meet the requirement of stability. Phase fluctuations of the laser are measured by the interferometer with a photodetector and then digitalized to raw random numbers with a rate of 80 Gbps. The min-entropy of the raw data is evaluated by modeling the system and is used to quantify the quantum randomness of the raw data. The bias of the raw data caused by other signals, such as classical and detection noises, can be removed by Toeplitz-matrix hashing randomness extraction. The final random numbers can pass through the standard randomness tests. Our demonstration shows that high-speed quantum random number generators are ready for practical usage.

  12. The generation of 68 Gbps quantum random number by measuring laser phase fluctuations

    SciTech Connect

    Nie, You-Qi; Liu, Yang; Zhang, Jun Pan, Jian-Wei; Huang, Leilei; Payne, Frank

    2015-06-15

    The speed of a quantum random number generator is essential for practical applications, such as high-speed quantum key distribution systems. Here, we push the speed of a quantum random number generator to 68 Gbps by operating a laser around its threshold level. To achieve the rate, not only high-speed photodetector and high sampling rate are needed but also a very stable interferometer is required. A practical interferometer with active feedback instead of common temperature control is developed to meet the requirement of stability. Phase fluctuations of the laser are measured by the interferometer with a photodetector and then digitalized to raw random numbers with a rate of 80 Gbps. The min-entropy of the raw data is evaluated by modeling the system and is used to quantify the quantum randomness of the raw data. The bias of the raw data caused by other signals, such as classical and detection noises, can be removed by Toeplitz-matrix hashing randomness extraction. The final random numbers can pass through the standard randomness tests. Our demonstration shows that high-speed quantum random number generators are ready for practical usage.

  13. Measuring and controlling the transport of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Stephens, Jason R.

    Despite the large body of literature describing the synthesis of magnetic nanoparticles, few analytical tools are commonly used for their purification and analysis. Due to their unique physical and chemical properties, magnetic nanoparticles are appealing candidates for biomedical applications and analytical separations. Yet in the absence of methods for assessing and assuring their purity, the ultimate use of magnetic particles and heterostructures is likely to be limited. For magnetic nanoparticles, it is the use of an applied magnetic flux or field gradient that enables separations. Flow based techniques are combined with applied magnetic fields to give methods such as magnetic field flow fractionation and high gradient magnetic separation. Additional techniques have been explored for manipulating particles in microfluidic channels and in mesoporous membranes. This thesis further describes development of these and new analytical tools for separation and analysis of colloidal particles is critically important to enable the practical use of these, particularly for medicinal purposes. Measurement of transport of nanometer scale particles through porous media is important to begin to understand the potential environmental impacts of nanomaterials. Using a diffusion cell with two compartments separated by either a porous alumina or polycarbonate membrane as a model system, diffusive flux through mesoporous materials is examined. Experiments are performed as a function of particle size, pore diameter, and solvent, and the particle fluxes are monitored by the change in absorbance of the solution in the receiving cell. Using the measured extinction coefficient and change in absorbance of the solution as a function of time, the fluxes of 3, 8, and 14 nm diameter CoFe2O4 particles are determined as they are translocated across pores with diameters 30, 50, 100, and 200 nm in hexane and aqueous solutions. In general, flux decreases with increasing particle size and

  14. Measurement of particle number and related pollutant concentrations in an urban area in South Brazil

    NASA Astrophysics Data System (ADS)

    Agudelo-Castañeda, D. M.; Teixeira, E. C.; Rolim, S. B. A.; Pereira, F. N.; Wiegand, F.

    2013-05-01

    The purpose of the present study was to analyze atmospheric particle number concentration at Sapucaia do Sul, in the Metropolitan Area of Porto Alegre, and associate it with the pollutants NO, NO2, and O3. Measurements were performed in two periods: August to October, in 2010 and 2011. We used the following equipment: the continuous particulate monitor (CPM), the chemiluminescent nitrogen oxide analyzer (AC32M), and the UV photometric ozone analyzer (O342M). Daily and hourly particle number concentrations in fractions PR1.0 (0.3-1.0 μm), PR2.5 (1.0-2.5 μm), and PR10 (2.5-10 μm), and concentrations of pollutants NO, NO2, NOx, and O3 were measured. These data were correlated with meteorological parameters such as wind speed, temperature, relative humidity, and solar radiation. The daily variation of OX (NO2 + O3) and its relation with NO2 were also established. The results obtained for daily particle number concentration (particles L-1) showed that the area of study had higher particle number of PR2.5 and PR1.0 size ranges, with values of 19.5 and 28.51 particles L-1, respectively. Differences in particle number concentrations in PR1 and PR2.5 size ranges were found between weekdays and weekends. The daily variation per hour of concentrations of particle number, NO, and NOx showed peaks during increased traffic flow in the morning and in the evening. NO2 showed peaks at different times, with the first peak (morning) 2 h after the peak of NO, and a second peak in the evening (19:00). This is due to the oxidation of NO and to the photolysis of NO3 formed overnight. Correlation analysis suggests that there may be a relationship between the fine and ultrafine particles and NO, probably indicating that they have similar sources, such as vehicular emissions. In addition, a possible relationship of solar radiation with fine particle number concentrations, as well as with O3 was also observed. The results, too, show an inverse relationship between particle number

  15. Unsteady force measurements in sphere flow from subcritical to supercritical Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Norman, A. K.; McKeon, B. J.

    2011-11-01

    The flow over a smooth sphere is examined in the Reynolds number range of 5.0 × 104 < Re < 5.0 × 105 via measurements of the fluctuating forces and particle image velocimetry measurements in a planar cut of the velocity field. Comprehensive studies of the statistics and spectra of the forces are presented for a range of subcritical and supercritical Reynolds numbers. While the subcritical lateral force spectra are dominated by activity corresponding to the large-scale vortex shedding frequency at a Strouhal number of approximately 0.18, there is no such peak apparent in the supercritical spectra, although resolution effects may become important in this region. Nor does the large-scale vortex shedding appear to have a significant effect on the drag force fluctuations at either sub- or super-critical Reynolds numbers. A simple double spring model is shown to capture the main features of the lateral force spectra. The low-frequency force fluctuations observed in earlier computational studies are shown to have important implications for statistical convergence, and in particular, the apparent mean side force observed in earlier studies. At least one thousand dimensionless time units are required for reasonable estimates of the second and higher moments below the critical Reynolds number and even more for supercritical flow, stringent conditions for computational studies. Lastly, investigation of the relationship between the motion of the instantaneous wake shape, defined via the local position where the streamwise velocity is equal to half the freestream value, and the in-plane lateral force for subcritical flow reveals a significant negative correlation throughout the near wake, which is shown to be related to a structure inferred to arise from the large-scale vortex shedding convecting downstream at 61% of the freestream velocity. In addition to its utility in understanding basic sphere flow, the apparatus is also a testbed that will be used in future studies

  16. Number and measure: Hermann von Helmholtz at the crossroads of mathematics, physics, and psychology.

    PubMed

    Darrigol, Olivier

    2003-09-01

    In 1887 Helmholtz discussed the foundations of measurement in science as a last contribution to his philosophy of knowledge. This essay borrowed from earlier debates on the foundations of mathematics (Grassmann/Du Bois), on the possibility of quantitative psychology (Fechner/Kries, Wundt/Zeller), and on the meaning of temperature measurement (Maxwell,Mach.). Late nineteenth-century scrutinisers of the foundations of mathematics (Dedekind, Cantor, Frege, Russell) made little of Helmholtz's essay. Yet it inspired two mathematicians with an eye on physics (Poincaré and Hölder), and a few philosopher-physicists (Mach, Duhem,Campbell). The aim of the present paper is to situate Helmholtz's contribution in this complex array of nineteenth-century philosophies of number, quantity, and measurement.

  17. Particle concentrations and number size distributions in the planetary boundary layer derived from airship based measurements

    NASA Astrophysics Data System (ADS)

    Tillmann, Ralf; Zhao, Defeng; Ehn, Mikael; Hofzumahaus, Andreas; Holland, Frank; Rohrer, Franz; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-05-01

    Atmospheric particles play a key role for regional and global climate due to their direct and indirect radiative forcing effects. The concentration and size of the particles are important variables to these effects. Within the continental planetary boundary layer (PBL) the particle number size distribution is influenced by meteorological parameters, local sinks and sources resulting in variable spatial distributions. However, measurements of particle number size distributions over a broad vertical range of the PBL are rare. The airship ZEPPELIN NT is an ideal platform to measure atmospheric aerosols on a regional scale within an altitude range up to 1000 m. For campaigns in the Netherlands, Northern Italy and South Finland in 2012 and 2013 the airship was deployed with a wide range of instruments, including measurements of different trace gases, short lived radicals, solar radiation, aerosols and meteorological parameters. Flights were carried out at different times of the day to investigate the influence of the diurnal evolution of the PBL on atmospheric trace gases and aerosols. During night and early morning hours the concentration and size distribution of atmospheric particles were found to be strongly influenced by the layered structure of the PBL, i.e. the nocturnal boundary layer and the residual layer. Within the residual layer particle concentrations stay relatively constant as this layer is decoupled from ground sources. The particles persist in the accumulation mode as expected for an aged aerosol. In the nocturnal boundary layer particle concentrations and size are more dynamic with higher concentrations than in the residual layer. A few hours after sunrise, the layered structure of the PBL intermixes. During daytime the PBL is well mixed and a negative concentration gradient with increasing height is observed. Several height profiles at different times of the day and at different locations in Europe were measured. The aerosol measurements will be

  18. Measurements and modeling of deposited particle transport by foot traffic indoors.

    PubMed

    Sippola, Mark R; Sextro, Richard G; Thatcher, Tracy L

    2014-04-01

    Deposited particles are transported into and within buildings by adhering to and releasing from people's shoes. To better understand transport of deposited particulate contaminants and exposures to these materials, experimental data on tracking by foot traffic are needed. Laboratory experiments measured uptake and downlay mass transfer efficiencies of particles between shoes and floors in a step-simulation chamber. Equilibrium uptake transfer fractions, the net mass fraction transferred from floors to shoes after several steps, were also measured. Single-step uptake and downlay transfer efficiencies ranged from 0.02 to 0.22 and equilibrium uptake transfer fractions were 0.10-0.40. Particle size, particle loading, shoe type, floor type, step pressure, and step sequence were all investigated. Experiments demonstrated that single-step downlay transfer efficiencies decrease with each successive step onto clean floors. A simple empirical model is proposed to estimate these transfers as a function of step number. Simulations using the transfer efficiency values measured here illustrate the spread of deposited particles by people walking in a hypothetical hallway. These simulations show that in locations where a few people walk over the same area each minute, tracking can spread deposited material over length scales comparable to building dimensions in just a few hours.

  19. Mobile lidar system for measurement of water vapor mixing ratio and ozone number density

    NASA Technical Reports Server (NTRS)

    Whiteman, D.

    1988-01-01

    The Water Vapor Lidar was modified and extended to make differential absorption measurements of ozone. Water vapor measurements make use of a weak molecular scattering process known as Raman scattering. It is characterized by a shift in wavelength of the scattered beam of light relative to the incident one. Some of the energy of the incident photon is converted to vibrational or rotational energy within the molecule leaving the scattered photon shifted to a slightly longer wavelength. When performing water vapor measurements, profiles are acquired of water vapor mixing ratio from near the ground to beyond 7 km every 2 minutes. By forming a color composite image of the individual profiles, the spatial and temporal evolution of water vapor is visible with vertical resolution of 75 to 150m and temporal resolution of 2 minutes. The ozone lidar is intended for use as a cross calibration facility for other stationary ozone lidar systems. The ozone measurement employs the technique known as differential absorption. The backscattered laser radiation from two different wavelengths is measured. Successful measurements of 308 nm returns were made from 80 km with an averaging period of 6 hours. Using these data and a standard atmosphere density curve, an ozone number density profile was made which agrees very well with the standard ozone curve between 20 and 40 km.

  20. Measuring the number and spacing of molecular motors propelling a gliding microtubule

    NASA Astrophysics Data System (ADS)

    Fallesen, Todd L.; Macosko, Jed C.; Holzwarth, G.

    2011-01-01

    The molecular motor gliding assay, in which a microtubule or other filament moves across a surface coated with motors, has provided much insight into how molecular motors work. The kinesin-microtubule system is also a strong candidate for the job of nanoparticle transporter in nanotechnology devices. In most cases, several motors transport each filament. Each motor serves both to bind the microtubule to a stationary surface and to propel the microtubule along the surface. By applying a uniform transverse force of 4-19 pN to a superparamagnetic bead attached to the trailing end of the microtubule, we have measured the distance d between binding points (motors). The average value of d was determined as a function of motor surface density σ. The measurements agree well with the scaling model of Duke, Holy, and Liebler, which predicts that ~σ-2/5 if 0.05⩽σ⩽20μm-2 [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.74.330 74, 330 (1995)]. The distribution of d fits an extension of the model. The radius of curvature of a microtubule bent at a binding point by the force of the magnetic bead was ≈1 μm, 5000-fold smaller than the radius of curvature of microtubules subjected only to thermal forces. This is evidence that at these points of high bending stress, generated by the force on the magnetic bead, the microtubule is in the more flexible state of a two-state model of microtubule bending proposed by Heussinger, Schüller, and Frey [Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.81.021904 81, 021904 (2010)].

  1. Simple and versatile molecular method of copy-number measurement using cloned competitors.

    PubMed

    Kim, Hyun-Kyoung; Hwang, Hai-Li; Park, Seong-Yeol; Lee, Kwang Man; Park, Won Cheol; Kim, Han-Seong; Um, Tae-Hyun; Hong, Young Jun; Lee, Jin Kyung; Joo, Sun-Young; Seoh, Ju-Young; Song, Yeong-Wook; Kim, Soo-Youl; Kim, Yong-Nyun; Hong, Kyeong-Man

    2013-01-01

    Variations and alterations of copy numbers (CNVs and CNAs) carry disease susceptibility and drug responsiveness implications. Although there are many molecular methods to measure copy numbers, sensitivity, reproducibility, cost, and time issues remain. In the present study, we were able to solve those problems utilizing our modified real competitive PCR method with cloned competitors (mrcPCR). First, the mrcPCR for ERBB2 copy number was established, and the results were comparable to current standard methods but with a shorter assay time and a lower cost. Second, the mrcPCR assays for 24 drug-target genes were established, and the results in a panel of NCI-60 cells were comparable to those from real-time PCR and microarray. Third, the mrcPCR results for FCGR3A and the FCGR3B CNVs were comparable to those by the paralog ratio test (PRT), but without PRT's limitations. These results suggest that mrcPCR is comparable to the currently available standard or the most sensitive methods. In addition, mrcPCR would be invaluable for measurement of CNVs in genes with variants of similar structures, because combination of the other methods is not necessary, along with its other advantages such as short assay time, small sample amount requirement, and applicability to all sequences and genes.

  2. Simple and Versatile Molecular Method of Copy-Number Measurement Using Cloned Competitors

    PubMed Central

    Kim, Hyun-Kyoung; Hwang, Hai-Li; Park, Seong-Yeol; Lee, Kwang Man; Park, Won Cheol; Kim, Han-Seong; Um, Tae-Hyun; Hong, Young Jun; Lee, Jin Kyung; Joo, Sun-Young; Seoh, Ju-Young; Song, Yeong-Wook; Kim, Soo-Youl; Kim, Yong-Nyun; Hong, Kyeong-Man

    2013-01-01

    Variations and alterations of copy numbers (CNVs and CNAs) carry disease susceptibility and drug responsiveness implications. Although there are many molecular methods to measure copy numbers, sensitivity, reproducibility, cost, and time issues remain. In the present study, we were able to solve those problems utilizing our modified real competitive PCR method with cloned competitors (mrcPCR). First, the mrcPCR for ERBB2 copy number was established, and the results were comparable to current standard methods but with a shorter assay time and a lower cost. Second, the mrcPCR assays for 24 drug-target genes were established, and the results in a panel of NCI-60 cells were comparable to those from real-time PCR and microarray. Third, the mrcPCR results for FCGR3A and the FCGR3B CNVs were comparable to those by the paralog ratio test (PRT), but without PRT's limitations. These results suggest that mrcPCR is comparable to the currently available standard or the most sensitive methods. In addition, mrcPCR would be invaluable for measurement of CNVs in genes with variants of similar structures, because combination of the other methods is not necessary, along with its other advantages such as short assay time, small sample amount requirement, and applicability to all sequences and genes. PMID:23936009

  3. Tomo-PIV Measurement of High Reynolds Number Dissipation Scale Structures

    NASA Astrophysics Data System (ADS)

    Worth, Nicholas; Nickels, Timothy

    2008-11-01

    Understanding the sources of dissipative intermittency in high Reynolds number turbulence is of significant interest, especially given the increasing affordability of LES. Coherent dissipation scale structures have been identified in numerous numerical and experiment investigations, although the latter are typically restricted by the need for accurate resolution of extremely small fast motions. These investigations are therefore often limited to one-dimensional measurements, making the study of these 3D structures and their relationship to the dissipation field difficult. The current investigation employs a very large water mixing tank (2m in diameter), which uses counter-rotating impellors to generate high Reynolds number turbulence (Rλ 1000) that is close to isotropic and homogeneous. The large scale of the tank brings the smallest scales within the resolution of Tomo-PIV, allowing full 3D realization of these structures. This unique experimental setup presents a number of challenges, which include: seeding density limitations imposed by optical attenuation through the tank; demanding light sheet intensity requirements; and the extremely high computational cost of Tomographic reconstruction for the thousands of velocity fields required for statistical analysis. Initial results will be presented along with future plans for measurement refinement.

  4. Interpretation of measurements of the number of muons in extensive air shower experiments

    NASA Astrophysics Data System (ADS)

    Prado, Raul R.; Conceição, Ruben; Pimenta, Mário; de Souza, Vitor

    2016-10-01

    In this paper we analyze the energy evolution of the muon content of air showers between 1018.4 and 1019.6 eV to be able to determine the most likely mass composition scenario from future number of muons measurements. The energy and primary mass evolution of the number of muons is studied based on the Heitler-Matthews model and Monte Carlo simulation of the air shower. A simple model to describe the evolution of the first and second moments of number of muons distributions is proposed and validated. An analysis approach based on the comparison between this model's predictions and data to discriminate among a set of composition scenarios is presented and tested with simulations. It is shown that the composition scenarios can be potentially discriminated under the conditions imposed by the method. The discrimination power of the proposed analysis is stable under systematic changes of the absolute number of muons from model predictions and on the scale of the reconstructed energy.

  5. Markstein Numbers of Negatively-Stretched Premixed Flames: Microgravity Measurements and Computations

    NASA Technical Reports Server (NTRS)

    Ibarreta, Alfonso F.; Driscoll, James F.; Feikema, Douglas A.; Salzman, Jack (Technical Monitor)

    2001-01-01

    The effect of flame stretch, composed of strain and curvature, plays a major role in the propagation of turbulent premixed flames. Although all forms of stretch (positive and negative) are present in turbulent conditions, little research has been focused on the stretch due to curvature. The present study quantifies the Markstein number (which characterizes the sensitivity of the flame propagation speed to the imposed stretch rate) for an inwardly-propagating flame (IPF). This flame is of interest because it is negatively stretched, and is subjected to curvature effects alone, without the competing effects of strain. In an extension of our previous work, microgravity experiments were run using a vortex-flame interaction to create a pocket of reactants surrounded by an IPF. Computations using the RUN-1DL code of Rogg were also performed in order to explain the measurements. It was found that the Markstein number of an inwardly-propagating flame, for both the microgravity experiment and the computations, is significantly larger than that of an outwardly-propagating flame. Further insight was gained by running the computations for the simplified (hypothetical) cases of one step chemistry, unity Lewis number, and negligible heat release. Results provide additional evidence that the Markstein numbers associated with strain and curvature have different values.

  6. Prediction and measurement of thermal transport across interfaces between isotropic solids and graphitic materials.

    SciTech Connect

    Norris, Pamela M.; Smoyer, Justin L.; Duda, John Charles.; Hopkins, Patrick E.

    2010-06-01

    Due to the high intrinsic thermal conductivity of carbon allotropes, there have been many attempts to incorporate such structures into existing thermal abatement technologies. In particular, carbon nanotubes (CNTs) and graphitic materials (i.e., graphite and graphene flakes or stacks) have garnered much interest due to the combination of both their thermal and mechanical properties. However, the introduction of these carbon-based nanostructures into thermal abatement technologies greatly increases the number of interfaces per unit length within the resulting composite systems. Consequently, thermal transport in these systems is governed as much by the interfaces between the constituent materials as it is by the materials themselves. This paper reports the behavior of phononic thermal transport across interfaces between isotropic thin films and graphite substrates. Elastic and inelastic diffusive transport models are formulated to aid in the prediction of conductance at a metal-graphite interface. The temperature dependence of the thermal conductance at Au-graphite interfaces is measured via transient thermoreflectance from 78 to 400 K. It is found that different substrate surface preparations prior to thin film deposition have a significant effect on the conductance of the interface between film and substrate.

  7. Experiment to measure fast ion transport by magnetic fluctuations

    NASA Astrophysics Data System (ADS)

    Preiwisch, Adam; Heidbrink, William; Boehmer, Heinz; McWilliams, Roger; Carter, Troy; Gekelman, Walter; Tripathi, Shreekrishna; van Compernolle, Bart; Vincena, Steve

    2013-10-01

    Fast ion transport in a linear magnetic field is studied at the upgraded Large Plasma Device. Recent developments allow for the generation of turbulent magnetic flux ropes, produced by a hot LaB6 cathode situated in the main chamber.1 A large-gyroradius, energetic lithium ion beam (300 <= Efast /Ti <= 1000) is passed through the turbulent region and collected by a collimated analyzer downstream, yielding a detailed plane profile of the fast ion distribution.2 Magnetic fluctuations, density, and temperature profiles are also obtained via probes. Enhanced fast-ion transport is clearly observed in the form of beam broadening. Early analysis shows broadband ion saturation current and magnetic fluctuations attributed to the flux ropes. A follow up experiment is currently under way to address whether the increased transport is primarily attributed to magnetic fields, associated electric fields, or increased Coulomb scattering.

  8. Improvement of Pulping Uniformity by Measurement of Single Fiber Kappa Number

    SciTech Connect

    Richard R. Gustafson; James B. Callis

    2001-11-20

    A method to measure the kappa of single fibers by staining with a fluorescent dye, Acridine Orange (AO), has been developed. This method is now applied to develop and automated flow-through instrument that permits routine kappa analysis on thousands of images of AO stained fibers to give the fiber kappa number distribution of a pulp sample in a few minutes. The design and operation of the instrument are similar to that of a flow cytometer but with the addition of extensive fiber imaging capability. Fluorescence measurements in the flow-through instrument are found to be consistent with those made with fluorescence microscope provided the signal processing in the flow-thou instrument is handled propertly. The kappa distributions of pulps that were analyzed by means of a density gradient column are compared to those measured with the flow-through instrument with good results. The kappa distributions of various laboratory pulps and commercial pulps have been measured. It has been found that all pulps are non-uniform but that ommercial pulps generally have broader kappa distributions thatn their laboratory counterparts. The effects of different pulping methods and chip pretreatments on pulp uniformity are discussed in the report. Finally, the application of flow-through fluorescence technology to other single fiber measurements are presented.

  9. Estimation of volcanic ash emission profiles using ceilometer measurements and transport models

    NASA Astrophysics Data System (ADS)

    Chan, Ka Lok; Geiß, Alexander; Gasteiger, Josef; Wagner, Frank; Wiegner, Matthias

    2016-04-01

    In recent years, the number of active remote sensing systems grows rapidly, since several national weather services initiated ceilometer networks. These networks are excellent tools to monitor the dispersion of volcanic ash clouds and to validate chemical transport models. Moreover, it is expected that the can be used to refine model calculations to better predict situations that might be dangerous for aviation. As a ceilometer can be considered as a simple single-wavelength backscatter lidar, quantitative aerosol profile information, i.e., the aerosol backscatter coefficient (βp) profile, can be derived provided that the ceilometer is calibrated. Volcanic ash concentration profile can then be estimated by using prior optical properties of volcanic ash. These profiles are then used for the inverse calculation of the emission profile of the volcanic eruption, thus, improving one of the most critical parameters of the numerical simulation. In this study, the Lagrangian particle dispersion model FLEXPART (FLEXible PARTicle dispersion model) is used to simulate the dispersion of volcanic ash. We simulate the distribution of ash for a given time/height grid, in order to compute the sensitivity functions for each measurements. As an example we use ceilometer measurements of the German weather service to reconstruct the temporal and spatial emission profile of Eyjafjallajökull eruption in April 2010. We have also examined the sensitivity of the retrieved emission profiles to different measurement parameters, e.g., geolocation of the measurement sites, total number of measurement sites, temporal and vertical resolution of the measurements, etc. The first results show that ceilometer measurements in principle are feasible for the inversion of volcanic ash emission profiles.

  10. Design and measurement considerations of hairpin resonator probes for determining electron number density in collisional plasmas

    NASA Astrophysics Data System (ADS)

    Sands, Brian L.; Siefert, Nicholas S.; Ganguly, Biswa N.

    2007-11-01

    The hairpin resonator probe has been developed in recent years into a sophisticated diagnostic technique capable of measuring spatially resolved electron number densities in sub-Torr discharges. In this paper, we extend the use of this technique to discharges at pressures greater than 1 Torr. In this regime, the effects of electron-neutral collisions become significant and a suitable correction is applied in conjunction with the sheath correction. We also describe elements of hairpin design and coupling that need to be more carefully controlled in order to maximize the range of electron densities that can be detected at higher pressures. Finally, we discuss limitations to the transmission-line model used routinely to interpret hairpin data as they apply to measurements in a nonuniform plasma.

  11. A framework for operationalization of strategic plans and metrics for corporate performance measurement in transportation asset management

    NASA Astrophysics Data System (ADS)

    Mteri, Hassan H.

    This thesis investigated the business processes required to translate corporate-level strategic plans into tactical and operational plans in the context of transportation asset management. The study also developed a framework for effective performance measure for departments of transportation. The thesis was based on a case study of transportation agencies in the U.S.A. and Canada. The scope is therefore limited or more directly applicable to transportation assets such as pavement, bridges and culverts. The goal was to address the problem of translating or managing strategic plans, especially in the context of the public sector responsible for operating transportation infrastructure. It was observed that many agencies have been successful in formulating good strategic plans but they have performed relatively poorly in translating such corporate-level strategic plans into operational activities. A questionnaire survey was designed and targeted about 30 state agencies that are currently active in transportation asset management. Twenty one (21) transportation agencies in the USA and Canada responded to the questionnaire. The analysis of the questionnaire data showed that there is a lack of a standard approach to managing corporate strategic plans in transportation agencies. The results also indicated that most transportation agencies operate in three organizational levels but there was no systematic approach of translating goal and objectives from high level to lower levels. Approaches in performance measurement were found to vary from agency to agency. A number of limitations were identified in the existing practice on performance measurements. Key weaknesses include the large number of measures in use (as many as 25 or more), and the disconnection between the measures used and the corporate goals and objectives. Lessons from the private sector were thoroughly reviewed in order to build the groundwork for adapting existing tools to the public sector. The existing

  12. Five-years of atmospheric aerosol number size distribution measurements in Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kalivitis, Nikolaos; Kouvarakis, Giorgos; Bougiatioti, Aikaterini; Stavroulas, Iasonas; Wiedensohler, Alfred; Mihalopoulos, Nikolaos

    2014-05-01

    The first long term measurements of atmospheric particle size distributions from the Eastern Mediterranean region are reported. Atmospheric aerosol number size distributions have been measured at the environmental research station of University of Crete at Finokalia, Crete, Greece (35° 20' N, 25° 40' E, 250m a.s.l) on a continuous base since 2008. A custom built (TROPOS type) scanning mobility particle sizer (SMPS) is used covering size ranges from 8 to 900 nm. The system is humidity controlled so that relative humidity is kept below 40% most of the time. Throughout the measuring period the average number concentration of the particles in the studied size range was found to be 2354 ± 1332 cm-3 (median of 2098 cm-3). Maximum concentrations are observed during summer while minimum during winter, reflecting the effectiveness of the removal processes in the region. Clear annual circles are found for the number concentrations of nucleation, Aitken and accumulation mode particles. Nucleation mode is presenting different pattern from the other two modes, with the highest concentrations during winter (and March) and the lowest during summer. New particle formation events are more frequently observed during March and October. The number size distributions present different seasonal patterns. During summer, unimodal distributions centering on the lower end of the accumulation mode size range are dominant in our observations. The prevailing meteorology characterized by the Etesian winds (Meltemi) and the lack of precipitation along the trajectory results to the arrival of well mixed air masses at Finokalia, carrying aged aerosol mainly from central and Eastern Europe. Regarding the other seasons, the shape of the distributions is more variable and strongly dependent on the air mass history: When the air masses are of marine origin or precipitation has affected them, the size distributions are mainly bimodal (peaking both in Aitken and in Accumulation mode). These

  13. Characteristics of stratospheric turbulent layers measured by LITOS and their relation to the Richardson number

    NASA Astrophysics Data System (ADS)

    Haack, A.; Gerding, M.; Lübken, F.-J.

    2014-09-01

    Based on high-resolution turbulence measurements performed with the newly established balloon-borne instrument Leibniz Institute Turbulence Observations in the Stratosphere (LITOS) during the Balloon Experiments for University Students (BEXUS) 6 and BEXUS 8 campaigns from Kiruna, we derived characteristics of stratospheric turbulence layers, like their thickness and distance in between. Typically, the layers are ˜15-130 m thick and have a distance of ˜60-270 m, and their number increases with altitude. Due to the very high measurement resolution of LITOS in the range of millimeters, we obtain energy dissipation rate profiles with unprecedented precision. Within the turbulent layers we get a mean dissipation rate of 3.4×10-2W/kg (BEXUS 6) and 1.1 × 10-2 W/kg (BEXUS 8) corresponding to a heating rate of 1 to ˜3 K/d. The profiles show an increase of the energy dissipation with altitude. Comparisons with the Richardson number Ri preclude a clear correlation between the occurrence of turbulence and Ri<1/4. Despite the expected occurrence of turbulence at Ri<1/4, we also observed turbulent layers where Ri was >1/4 and far beyond, independent of the scale over which Ri has been determined.

  14. Measurement and modeling of phosphorous transport in shallow groundwater environments

    NASA Astrophysics Data System (ADS)

    Hendricks, G. S.; Shukla, S.; Obreza, T. A.; Harris, W. G.

    2014-08-01

    Leaching of phosphorus (P) from agricultural soils, especially those that are sandy, is adversely impacting P-limited ecosystems like Florida's Everglades. A more developed understanding of P and water management strategies and their effects on P leaching is needed to achieve reductions in subsurface P losses, especially from intensively managed dual cropping systems under plastic mulch in shallow water regions. We compared the effects of conservation P and water management strategies with traditional practices on P transport to groundwater. A 3-year experiment was conducted on hydrologically isolated plots with plastic-mulched successive cropping systems to compare high (HEI) and soil test based recommended (REI) external input (water and fertilizer P) systems with traditional sub-irrigation (seepage), and REI with a potential water conservation subsurface drip irrigation system (REI-SD) with regard to groundwater P concentrations above and below the low conductivity spodic horizon (Bh). The REI treatments had higher available storage for rainfall and P than HEI. Use of both REI systems (REI = 2098 μg/L and REI-SD = 2048 μg/L) reduced groundwater P concentrations above the Bh horizon by 33% compared to HEI (3090 μg/L), and results were significant at the 0.05 level. Although the subsurface drip system saved water, it did not offer any groundwater quality (P) benefit. Mixing and dilution of influent P below the low conductivity Bh horizon between treatments and with the regional groundwater system resulted in no significant differences in groundwater P concentration below the Bh horizon. Groundwater P concentrations from this study were higher than reported elsewhere due to low soil P storage capacity (SPSC), high hydraulic conductivity of sandy soils, and a high water table beneath crop beds. The HEI system leached more P due to ferilizer P in excess of SPSC and used higher irrigation volumes compared with REI systems. Despite a 40% difference in the average

  15. Measurement and modeling of phosphorous transport in shallow groundwater environments.

    PubMed

    Hendricks, G S; Shukla, S; Obreza, T A; Harris, W G

    2014-08-01

    Leaching of phosphorus (P) from agricultural soils, especially those that are sandy, is adversely impacting P-limited ecosystems like Florida's Everglades. A more developed understanding of P and water management strategies and their effects on P leaching is needed to achieve reductions in subsurface P losses, especially from intensively managed dual cropping systems under plastic mulch in shallow water regions. We compared the effects of conservation P and water management strategies with traditional practices on P transport to groundwater. A 3-year experiment was conducted on hydrologically isolated plots with plastic-mulched successive cropping systems to compare high (HEI) and soil test based recommended (REI) external input (water and fertilizer P) systems with traditional sub-irrigation (seepage), and REI with a potential water conservation subsurface drip irrigation system (REI-SD) with regard to groundwater P concentrations above and below the low conductivity spodic horizon (Bh). The REI treatments had higher available storage for rainfall and P than HEI. Use of both REI systems (REI=2098μg/L and REI-SD=2048μg/L) reduced groundwater P concentrations above the Bh horizon by 33% compared to HEI (3090μg/L), and results were significant at the 0.05 level. Although the subsurface drip system saved water, it did not offer any groundwater quality (P) benefit. Mixing and dilution of influent P below the low conductivity Bh horizon between treatments and with the regional groundwater system resulted in no significant differences in groundwater P concentration below the Bh horizon. Groundwater P concentrations from this study were higher than reported elsewhere due to low soil P storage capacity (SPSC), high hydraulic conductivity of sandy soils, and a high water table beneath crop beds. The HEI system leached more P due to ferilizer P in excess of SPSC and used higher irrigation volumes compared with REI systems. Despite a 40% difference in the average amount of

  16. Measurement and modeling of phosphorous transport in shallow groundwater environments.

    PubMed

    Hendricks, G S; Shukla, S; Obreza, T A; Harris, W G

    2014-08-01

    Leaching of phosphorus (P) from agricultural soils, especially those that are sandy, is adversely impacting P-limited ecosystems like Florida's Everglades. A more developed understanding of P and water management strategies and their effects on P leaching is needed to achieve reductions in subsurface P losses, especially from intensively managed dual cropping systems under plastic mulch in shallow water regions. We compared the effects of conservation P and water management strategies with traditional practices on P transport to groundwater. A 3-year experiment was conducted on hydrologically isolated plots with plastic-mulched successive cropping systems to compare high (HEI) and soil test based recommended (REI) external input (water and fertilizer P) systems with traditional sub-irrigation (seepage), and REI with a potential water conservation subsurface drip irrigation system (REI-SD) with regard to groundwater P concentrations above and below the low conductivity spodic horizon (Bh). The REI treatments had higher available storage for rainfall and P than HEI. Use of both REI systems (REI=2098μg/L and REI-SD=2048μg/L) reduced groundwater P concentrations above the Bh horizon by 33% compared to HEI (3090μg/L), and results were significant at the 0.05 level. Although the subsurface drip system saved water, it did not offer any groundwater quality (P) benefit. Mixing and dilution of influent P below the low conductivity Bh horizon between treatments and with the regional groundwater system resulted in no significant differences in groundwater P concentration below the Bh horizon. Groundwater P concentrations from this study were higher than reported elsewhere due to low soil P storage capacity (SPSC), high hydraulic conductivity of sandy soils, and a high water table beneath crop beds. The HEI system leached more P due to ferilizer P in excess of SPSC and used higher irrigation volumes compared with REI systems. Despite a 40% difference in the average amount of

  17. Investigation of Aerosol Surface Area Estimation from Number and Mass Concentration Measurements: Particle Density Effect

    PubMed Central

    Ku, Bon Ki; Evans, Douglas E.

    2015-01-01

    For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as “Maynard’s estimation method”) is used. Therefore, it is necessary to quantitatively investigate how much the Maynard’s estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard’s estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard’s estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of

  18. Review of Skin Friction Measurements Including Recent High-Reynolds Number Results from NASA Langley NTF

    NASA Technical Reports Server (NTRS)

    Watson, Ralph D.; Hall, Robert M.; Anders, John B.

    2000-01-01

    This paper reviews flat plate skin friction data from early correlations of drag on plates in water to measurements in the cryogenic environment of The NASA Langley National Transonic Facility (NTF) in late 1996. The flat plate (zero pressure gradient with negligible surface curvature) incompressible skin friction at high Reynolds numbers is emphasized in this paper, due to its importance in assessing the accuracy of measurements, and as being important to the aerodynamics of large scale vehicles. A correlation of zero pressure gradient skin friction data minimizing extraneous effects between tests is often used as the first step in the calculation of skin friction in complex flows. Early data compiled by Schoenherr for a range of momentum thickness Reynolds numbers, R(sub Theta) from 860 to 370,000 contained large scatter, but has proved surprisingly accurate in its correlated form. Subsequent measurements in wind tunnels under more carefully controlled conditions have provided inputs to this database, usually to a maximum R(sub Theta) of about 40,000. Data on a large axisymmetric model in the NASA Langley National Transonic Facility extends the upper limit in incompressible R(sub Theta) to 619,800 using the van Driest transformation. Previous data, test techniques, and error sources ar discussed, and the NTF data will be discussed in detail. The NTF Preston tube and Clauser inferred data accuracy is estimated to be within -2 percent of a power-law curve fit, and falls above the Spalding theory by 1 percent at R(sub Theta) of about 600,000.

  19. Macroscale lattice-Boltzmann methods for low Peclet number solute and heat transport in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Walsh, S. D. C.; Saar, M. O.

    2010-07-01

    This paper introduces new methods for simulating subsurface solute and heat transport in heterogeneous media using large-scale lattice-Boltzmann models capable of representing both macroscopically averaged porous media and open channel flows. Previous examples of macroscopically averaged lattice-Boltzmann models for solute and heat transport are only applicable to homogeneous media. Here, we extend these models to properly account for heterogeneous pore-space distributions. For simplicity, in the majority of this paper we assume low Peclet number flows with an isotropic dispersion tensor. Nevertheless, this approach may also be extended to include anisotropic-dispersion by using multiple relaxation time lattice-Boltzmann methods. We describe two methods for introducing heterogeneity into macroscopically averaged lattice-Boltzmann models. The first model delivers the desired behavior by introducing an additional time-derivative term to the collision rule; the second model by separately weighting symmetric and anti-symmetric components of the fluid packet densities. Chapman-Enskog expansions are conducted on the governing equations of the two models, demonstrating that the correct constitutive behavior is obtained in both cases. In addition, methods for improving model stability at low porosities are also discussed: (1) an implicit formulation of the model; and (2) a local transformation that normalizes the lattice-Boltzmann model by the local porosity. The model performances are evaluated through comparisons of simulated results with analytical solutions for one- and two-dimensional flows, and by comparing model predictions to finite element simulations of advection isotropic-dispersion in heterogeneous porous media. We conclude by presenting an example application, demonstrating the ability of the new models to couple with simulations of reactive flow and changing flow geometry: a simulation of groundwater flow through a carbonate system.

  20. A method for the measurement and analysis of ride vibrations of transportation systems

    NASA Technical Reports Server (NTRS)

    Catherines, J. J.; Clevenson, S. A.; Scholl, H. F.

    1972-01-01

    The measurement and recording of ride vibrations which affect passenger comfort in transportation systems and the subsequent data-reduction methods necessary for interpreting the data present exceptional instrumentation requirements and necessitate the use of computers for specialized analysis techniques. A method is presented for both measuring and analyzing ride vibrations of the type encountered in ground and air transportation systems. A portable system for measuring and recording low-frequency, low-amplitude accelerations and specialized data-reduction procedures are described. Sample vibration measurements in the form of statistical parameters representative of typical transportation systems are also presented to demonstrate the utility of the techniques.

  1. Differences in rating curve and hydrograph uncertainty due to streamflow dynamics and number of discharge measurements

    NASA Astrophysics Data System (ADS)

    Rosenstand Poulsen, Jane; Bering Ovesen, Niels; Larsen, Søren Erik; Tornbjerg, Henrik

    2015-04-01

    The uncertainty related to the use of rating curves for hydrograph estimation is strongly affected if changes in cross-sectional geometry or friction properties occur, especially if the changes are abrupt. In lowland moderately sized streams in temperate regions, such flow changes are often associated with seasonal weed growth. The gradual increase in channel bed roughness caused by weed growth is commonly accounted for by a likewise gradual shift of the rating curve according to monthly discharge measurements. However, this measurement approach is sensitive to abrupt changes in flow, which occur for instance in dynamic streams exhibiting a large difference between maximum and minimum flow or during high summer flows or winter flooding. Hence, the purpose of this study is to investigate the role that dynamic versus stable streams play in terms of uncertainty of establishing rating curves and calculating hydrographs with the traditional stage-discharge approach. Such an analysis is highly valuable in terms of addressing the possibility of adapting hydrograph estimation procedures to the specific streamflow dynamics, thereby quantifying and potentially lowering the uncertainty of hydrograph estimates. Based on results from the Danish national rainfall-runoff model, ratios between yearly median maximum and median minimum stream discharge were calculated for 15 km2 sub-catchments for the entire country. Based on these values, ten gauging stations were selected, located to cover the range of flow regimes represented by the calculated max/min discharge ratios. The selected gauging stations were all stations that had at least three consecutive years with historical data series where direct stream discharge had been measured twenty or more times each year. Based on these data series, new sub-series were created by continuously thinning out the number of discharge measurements. Then, for each of these constructed data series a rating curve and a hydrograph were established

  2. Inverse constraints for emission fluxes of atmospheric tracers estimated from concentration measurements and Lagrangian transport

    NASA Astrophysics Data System (ADS)

    Pisso, Ignacio; Patra, Prabir; Breivik, Knut

    2015-04-01

    Lagrangian transport models based on times series of Eulerian fields provide a computationally affordable way of achieving very high resolution for limited areas and time periods. This makes them especially suitable for the analysis of point-wise measurements of atmospheric tracers. We present an application illustrated with examples of greenhouse gases from anthropogenic emissions in urban areas and biogenic emissions in Japan and of pollutants in the Arctic. We asses the algorithmic complexity of the numerical implementation as well as the use of non-procedural techniques such as Object-Oriented programming. We discuss aspects related to the quantification of uncertainty from prior information in the presence of model error and limited number of observations. The case of non-linear constraints is explored using direct numerical optimisation methods.

  3. Number size distribution measurements of biological aerosols under contrasting environments and seasons from southern tropical India

    NASA Astrophysics Data System (ADS)

    Valsan, Aswathy; Cv, Biju; Krishna, Ravi; Huffman, Alex; Poschl, Ulrich; Gunthe, Sachin

    2016-04-01

    Biological aerosols constitute a wide range of dead and alive biological materials and structures that are suspended in the atmosphere. They play an important role in the atmospheric physical, chemical and biological processes and health of living being by spread of diseases among humans, plants, and, animals. The atmospheric abundance, sources, physical properties of PBAPs as compared to non-biological aerosols, however, is poorly characterized. Though omnipresent, their concentration and composition exhibit large spatial and temporal variations depending up on their sources, land-use, and local meteorology. The Indian tropical region, which constitutes approximately 18% of the world's total population exhibits vast geographical extend and experiences a distinctive meteorological phenomenon by means of Indian Summer Monsoon (IMS). Thus, the sources, properties and characteristics of biological aerosols are also expected to have significant variations over the Indian subcontinent depending upon the location and seasons. Here we present the number concentration and size distribution of Fluorescent Biological Aerosol Particles (FBAP) from two contrasting locations in Southern tropical India measured during contrasting seasons using Ultra Violet Aerodynamic Particle Sizer (UV-APS). Measurements were carried out at a pristine high altitude continental site, Munnar (10.09 N, 77.06 E; 1605 m asl) during two contrasting seasons, South-West Monsoon (June-August, 2014) and winter (Jan - Feb, 2015) and in Chennai, a coastal urban area, during July - November 2015. FBAP concentrations at both the locations showed large variability with higher concentrations occurring at Chennai. Apart from regional variations, the FBAP concentrations also exhibited variations over two different seasons under the same environmental condition. In Munnar the FBAP concentration increased by a factor of four from South-West Monsoon to winter season. The average size distribution of FBAP at both

  4. Truly random number generation based on measurement of phase noise of a laser.

    PubMed

    Guo, Hong; Tang, Wenzhuo; Liu, Yu; Wei, Wei

    2010-05-01

    We present a simple approach to realize truly random number generator based on measuring the phase noise of a single-mode vertical cavity surface emitting laser. The true randomness of the quantum phase noise originates from the spontaneous emission of photons and the random bit generation rate is ultimately limited only by the laser linewidth. With the final bit generation rate of 20 Mbit/s, the truly random bit sequence guaranteed by the uncertainty principle of quantum mechanics passes the three standard randomness tests (ENT, Diehard, and NIST Statistical Test Suites). Moreover, a continuously generated random bit sequence, with length up to 14 Gbit, is verified by two additional criteria for its true randomness.

  5. Measured transonic unsteady pressures on an energy efficient transport wing with oscillating control surfaces

    NASA Technical Reports Server (NTRS)

    Cazier, F. W., Jr.; Watson, J. J.; Doggett, R. V., Jr.; Sandford, M. C.; Ricketts, R. H.

    1981-01-01

    Highlight results are presented from subsonic and transonic pressure measurement studies conducted in the Langley Transonic Dynamics Tunnel on a supercritical wing model representative of an energy efficient transport design. Steady- and unsteady-pressure data were acquired on the upper and lower wing surface at an off-design Mach number of 0.60 and at the design Mach number of 0.78, for a Reynolds number of 2.2 x 10(6) (based on the wing average chord). The model configuration consisted of a sidewall-Mounted half-body fuselage and a semi-span wing with an aspect ratio of 10.76, a leading-edge sweepback angle of 28.8 degrees, and supercritical airfoil sections. The wing is instrumented with 252 static pressure orifices and 164 dynamic pressure gages. Model test variables included wing angle of attack, control-surface mean deflection angle, control-surface oscillating deflection angle and frequency, and phasing between oscillating leading-edge and trailing-edge controls when used together.

  6. Drag measurements on long thin cylinders at small angles and high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Keith, William L.; Cipolla, Kimberly M.; Hart, David R.; Furey, Deborah A.

    2005-06-01

    Measurements of the drag caused by turbulent boundary layer mean wall shear stress on cylinders at small angles of attack and high length Reynolds numbers (8×106measured with digital photography, and streamwise drag was measured with a strut-mounted load cell at the tow point. The measured tangential drag was very sensitive to small increases in angle at all tow speeds. A momentum thickness length scale is proposed to scale the tangential drag coefficient. The effects of the cross-flow resulting from the small angles of tow have a significant effect on the tangential drag coefficient values. A scaling for the orthogonal force on the cylinders was determined and provides a correction to published normal drag coefficient values for pure cross-flow. The presence of the axial turbulent boundary layer has a significant effect on these orthogonal forces.

  7. Externally driven global Alfvén eigenmodes applied for effective mass number measurement on TCABR

    SciTech Connect

    Puglia, P. G. P. P.; Elfimov, A. G.; Ruchko, L. F.; Galvão, R. M. O.; Guimarães-Filho, Z.; Ronchi, G.

    2014-12-15

    The excitation and detection of Global Alfvén Eigenmodes on TCABR for diagnostic purposes are presented. The modes can be excited with one or two in-vessel antennae, with up to 15 A of current in each, in the frequency range from 2 to 4 MHz. This scheme allows the estimation of the effective mass number at the plasma center, which value is affected by impurity concentration in the core. An amplifier based on MOSFETs is used to excite the waves driven by low power, in order to not change the basic plasma parameters. The variation of the GAE with density is verified and the location of the mode resonance at the plasma center is confirmed by the sawtooth beating, so that the correspondingly beating phase inversion improves the precision on the resonant condition determination. The toroidal parity of the modes N = 1,2 is determined by use of two opposite located antennae with different phase of the RF current. Knowledge of toroidal mode number is important as it identifies GAE location and defines the estimated effective mass value. The estimated value for A{sub eff} is ∼1.4–1.5, corresponding to 5–7% of carbon impurity concentration. The measured value of A{sub eff} is used to estimate Z{sub eff}, which is compared to older TCA experiments and the value obtained by the Spitzer conductivity.

  8. Measuring effective radium concentration with large numbers of samples. Part II--general properties and representativity.

    PubMed

    Girault, Frédéric; Perrier, Frédéric

    2012-11-01

    Effective radium concentration EC(Ra), product of radium concentration and radon emanation, is the source term for radon release into the pore space of rocks and the environment. Over a period of three years, we performed more than 6000 radon-222 accumulation experiments in the laboratory with scintillation flasks and SSNTDs and we obtained experimental EC(Ra) values from more than 1570 rock and soil samples. With this method, which allowed the measurement of EC(Ra) from large numbers of samples with sufficient accuracy and uncertainty, as detailed in the companion paper, the dependence of the emanation factor on temperature and moisture content is revisited. In addition, with such a large EC(Ra) dataset, dispersion of EC(Ra) can be studied at sample-scale (cm to dm) and at scarp-scale (m to tens of m). Furthermore, we are able to discuss the representativity of obtained EC(Ra) values at field-scale, and to investigate the spatial variations of EC(Ra) over kilometric scales, within geological formations and across formations and faults. This experimental study opens new perspectives in the understanding of radium geochemistry and illustrates the importance of studying the radon source term with large numbers of samples for the modelling of geological and environmental processes, and also for the assessment of the radon health hazard.

  9. Automated 3D trajectory measuring of large numbers of moving particles.

    PubMed

    Wu, Hai Shan; Zhao, Qi; Zou, Danping; Chen, Yan Qiu

    2011-04-11

    Complex dynamics of natural particle systems, such as insect swarms, bird flocks, fish schools, has attracted great attention of scientists for years. Measuring 3D trajectory of each individual in a group is vital for quantitative study of their dynamic properties, yet such empirical data is rare mainly due to the challenges of maintaining the identities of large numbers of individuals with similar visual features and frequent occlusions. We here present an automatic and efficient algorithm to track 3D motion trajectories of large numbers of moving particles using two video cameras. Our method solves this problem by formulating it as three linear assignment problems (LAP). For each video sequence, the first LAP obtains 2D tracks of moving targets and is able to maintain target identities in the presence of occlusions; the second one matches the visually similar targets across two views via a novel technique named maximum epipolar co-motion length (MECL), which is not only able to effectively reduce matching ambiguity but also further diminish the influence of frequent occlusions; the last one links 3D track segments into complete trajectories via computing a globally optimal assignment based on temporal and kinematic cues. Experiment results on simulated particle swarms with various particle densities validated the accuracy and robustness of the proposed method. As real-world case, our method successfully acquired 3D flight paths of fruit fly (Drosophila melanogaster) group comprising hundreds of freely flying individuals.

  10. Automated 3D trajectory measuring of large numbers of moving particles.

    PubMed

    Wu, Hai Shan; Zhao, Qi; Zou, Danping; Chen, Yan Qiu

    2011-04-11

    Complex dynamics of natural particle systems, such as insect swarms, bird flocks, fish schools, has attracted great attention of scientists for years. Measuring 3D trajectory of each individual in a group is vital for quantitative study of their dynamic properties, yet such empirical data is rare mainly due to the challenges of maintaining the identities of large numbers of individuals with similar visual features and frequent occlusions. We here present an automatic and efficient algorithm to track 3D motion trajectories of large numbers of moving particles using two video cameras. Our method solves this problem by formulating it as three linear assignment problems (LAP). For each video sequence, the first LAP obtains 2D tracks of moving targets and is able to maintain target identities in the presence of occlusions; the second one matches the visually similar targets across two views via a novel technique named maximum epipolar co-motion length (MECL), which is not only able to effectively reduce matching ambiguity but also further diminish the influence of frequent occlusions; the last one links 3D track segments into complete trajectories via computing a globally optimal assignment based on temporal and kinematic cues. Experiment results on simulated particle swarms with various particle densities validated the accuracy and robustness of the proposed method. As real-world case, our method successfully acquired 3D flight paths of fruit fly (Drosophila melanogaster) group comprising hundreds of freely flying individuals. PMID:21503074

  11. Measurements of mass attenuation coefficient, effective atomic number and electron density of some amino acids

    NASA Astrophysics Data System (ADS)

    Kore, Prashant S.; Pawar, Pravina P.

    2014-05-01

    The mass attenuation coefficients of some amino acids, such as DL-aspartic acid-LR(C4H7NO4), L-glutamine (C4H10N2O3), creatine monohydrate LR(C4H9N3O2H2O), creatinine hydrochloride (C4H7N3O·HCl) L-asparagine monohydrate(C4H9N3O2H2O), L-methionine LR(C5H11NO2S), were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies using a well-collimated narrow beam good geometry set-up. The gamma-rays were detected using NaI (Tl) scintillation detection system with a resolution of 0.101785 at 662 keV. The attenuation coefficient data were then used to obtain the effective atomic numbers (Zeff), and effective electron densities (Neff) of amino acids. It was observed that the effective atomic number (Zeff) and effective electron densities (Neff) initially decrease and tend to be almost constant as a function of gamma-ray energy. Zeff and Neff experimental values showed good agreement with the theoretical values with less than 1% error for amino acids.

  12. Fast response temperature and humidity sensors for measurements in high Reynolds number flows

    NASA Astrophysics Data System (ADS)

    Fan, Yuyang; Arwatz, Gilad; Vallikivi, Margit; Hultmark, Marcus

    2013-11-01

    Conventional hot/cold wires have been widely used in measuring velocity and temperature in turbulent flows due to their fine resolutions and fast response. However, for very high Reynolds number flows, limitations on the resolution appear. A very high Reynolds number flow is the atmospheric boundary layer. In order to accurately predict the energy balance at the Earth's surface, one needs information about the different turbulent scalar fields, mainly temperature and humidity, which together with velocity, contribute to the turbulent fluxes away from the surface. The nano-scaled thermal anemometry probe (NSTAP) was previously developed at Princeton and has proven to have much higher spatial and temporal resolution than the regular hot wires. Here we introduce new fast-response temperature and humidity sensors that have been developed and tested. These sensors are made in-house using standard MEMS manufacturing techniques, leaving high flexibility in the process for optimization to different conditions. The small dimensions of these novel sensors enable very high spatial resolution while the small thermal mass allows significant improvements in the frequency response. These sensors have shown promising results in acquiring un-biased data of turbulent scalar and vector fields. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim).

  13. Multipoint incremental motor unit number estimation as an outcome measure in ALS

    PubMed Central

    Watson, M.L.; Simionescu, L.; Caress, J.B.; Burns, T.M.; Maragakis, N.J.; Benatar, M.; David, W.S.; Sharma, K.R.; Rutkove, S.B.

    2011-01-01

    Background: Improved outcome measures are necessary to reduce sample size and increase power in amyotrophic lateral sclerosis (ALS) clinical trials. Motor unit number estimation (MUNE) is a potentially attractive tool. MUNE methods previously employed in multicenter trials exhibited excessive variability and were prone to artifact. Objective: To evaluate a modification of standard incremental MUNE in a multicenter natural history study of subjects with ALS. Methods: Fifty healthy subjects were evaluated twice and 71 subjects with ALS were studied repeatedly for up to 500 days. Side and nerve studied was based on clinical examination findings. Nerves were stimulated at 3 specified locations and 3 increments were obtained at each location. Average single motor unit action potential (SMUP) amplitude was calculated by adding the amplitude of the third increment at each location and dividing by 9; SMUP was divided into maximum CMAP amplitude to determine the MUNE. Results: Test-retest variability was 9% in normal subjects. Average MUNE for normal subjects was 225 (±87), and was 41.9 (±39) among subjects with ALS at baseline. Subjects with ALS showed clear decrements over time, with an overage rate of decline of approximately 9% per month. SMUP amplitude increased with time in a fashion consistent with the known pathophysiology of ALS. Conclusion: Multipoint incremental MUNE has a number of attributes that make it attractive as an outcome measure in ALS and other diseases characterized by motor unit loss. It can be rapidly performed on any EMG machine and has repeatability and rates of decline that favorably compare to other previously described methods. PMID:21676915

  14. [Measurement of atomic number of alkali vapor and pressure of buffer gas based on atomic absorption].

    PubMed

    Zheng, Hui-jie; Quan, Wei; Liu, Xiang; Chen, Yao; Lu, Ji-xi

    2015-02-01

    High sensitivitymagnetic measurementscanbe achieved by utilizing atomic spinmanipulation in the spin-exchange-relaxation-free (SERF) regime, which uses an alkali cell as a sensing element. The atomic number density of the alkali vapor and the pressure of the buffer gasare among the most important parameters of the cell andrequire accurate measurement. A method has been proposed and developedto measure the atomic number density and the pressure based on absorption spectroscopy, by sweeping the absorption line and fittingthe experiment data with a Lorentzian profile to obtainboth parameters. Due to Doppler broadening and pressure broadening, which is mainly dominated by the temperature of the cell and the pressure of buffer gas respectively, this work demonstrates a simulation of the errorbetween the peaks of the Lorentzian profile and the Voigt profile caused by bothfactors. The results indicates that the Doppler broadening contribution is insignificant with an error less than 0.015% at 313-513 K for a 4He density of 2 amg, and an error of 0.1% in the presence of 0.6-5 amg at 393 K. We conclude that the Doppler broadening could be ignored under above conditions, and that the Lorentzianprofile is suitably applied to fit the absorption spectrumobtainingboth parameters simultaneously. In addition we discuss the resolution and the instability due to thelight source, wavelength and the temperature of the cell. We find that the cell temperature, whose uncertainty is two orders of magnitude larger than the instability of the light source and the wavelength, is one of the main factors which contributes to the error.

  15. Molybdate transport in a chemically complex aquifer: Field measurements compared with solute-transport model predictions

    USGS Publications Warehouse

    Stollenwerk, K.G.

    1998-01-01

    A natural-gradient tracer test was conducted in an unconfined sand and gravel aquifer on Cape Cod, Massachusetts. Molybdate was included in the injectate to study the effects of variable groundwater chemistry on its aqueous distribution and to evaluate the reliability of laboratory experiments for identifying and quantifying reactions that control the transport of reactive solutes in groundwater. Transport of molybdate in this aquifer was controlled by adsorption. The amount adsorbed varied with aqueous chemistry that changed with depth as freshwater recharge mixed with a plume of sewage-contaminated groundwater. Molybdate adsorption was strongest near the water table where pH (5.7) and the concentration of the competing solutes phosphate (2.3 micromolar) and sulfate (86 micromolar) were low. Adsorption of molybdate decreased with depth as pH increased to 6.5, phosphate increased to 40 micromolar, and sulfate increased to 340 micromolar. A one-site diffuse-layer surface-complexation model and a two-site diffuse-layer surface-complexation model were used to simulate adsorption. Reactions and equilibrium constants for both models were determined in laboratory experiments and used in the reactive-transport model PHAST to simulate the two-dimensional transport of molybdate during the tracer test. No geochemical parameters were adjusted in the simulation to improve the fit between model and field data. Both models simulated the travel distance of the molybdate cloud to within 10% during the 2-year tracer test; however, the two-site diffuse-layer model more accurately simulated the molybdate concentration distribution within the cloud.

  16. Thermoelectric Transport Measurements of Graphene on hBN

    NASA Astrophysics Data System (ADS)

    Duan, Junxi; Wang, Xiaoming; Li, Guohong; Lai, Xinyuan; Zebarjadi, Mona; Andrei, Eva Y.

    The unique electronic transport properties of graphene, arising from massless charge carriers whose sign and density can be tuned by gating, have been studied extensively. Much less work was devoted to graphene's thermal properties. Unlike electrical transport which depends on total carrier density, the thermopower is determined by the net charge transferred and not by the carrier density. This leads to profound differences between the two phenomena. For example, when the Fermi level is close to the Dirac point (DP) where electron-hole (e-h) puddles are populated symmetrically, the electron and hole contributions to the thermopower cancel out. In contrast, their contributions to the electrical current add up. We studied the thermoelectric properties of high quality graphene supported on an hBN substrate, where the e-h puddle regime is significantly reduced compared to that on SiO2 substrates, which allows closer access to the DP. At room temperature we find that the maximum Seebeck coefficient close to the DP reaches up to twice the values on SiO2 substrates. Upon cooling down to 77K it decreases in a non-linear fashion with temperature. We will discuss possible origins of this behavior. Work Supported by DOE-FG02-99ER45742, NSF DMR 1207108 and FA9550-14-1-0316.

  17. Scaling of elliptic flow in heavy-ion collisions with the number of constituent quarks in a transport model

    NASA Astrophysics Data System (ADS)

    Singha, Subhash; Nasim, Md.

    2016-03-01

    We studied the number of constituent quark scaling (NCQ) behavior of elliptic flow (v2) under the framework of a multiphase transport model (AMPT) at both top-RHIC and LHC energies. The NCQ-scaling in v2 holds at top RHIC energy with AMPT string melting version, while it breaks in Pb+Pb collisions at LHC energy using the same framework. The breaking of NCQ scaling at LHC energy has been studied by varying the magnitude of parton-parton scattering cross sections and lifetime of hadronic cascade as implemented in AMPT. We find that the breaking of NCQ scaling in Pb+Pb collisions at √{sNN}=2.76 TeV is independent of the magnitude of parton-parton cross sections and the later stage hadronic interactions. Further we observed that scaling holds in a small collision system like Si+Si at √{sNN}=2.76 TeV. We discussed that the breaking of NCQ scaling is possibly due to high phase-space density of constituents quarks in Pb+Pb collisions at √{sNN}=2.76 TeV.

  18. Measuring effective radium concentration with large numbers of samples. Part I--experimental method and uncertainties.

    PubMed

    Girault, Frédéric; Perrier, Frédéric

    2012-11-01

    Effective radium concentration EC(Ra), product of radium concentration and radon emanation, is the source term for radon release into the pore space of rocks and the environment. To measure EC(Ra), we have conducted, over a period of three years, more than 5500 radon-222 accumulation experiments in the laboratory with scintillation flasks, and about 700 with integrating solid state nuclear track detectors, leading to experimental values of EC(Ra) for more than 1570 rock and soil samples. Through detailed systematic checks and intercomparison between various repeated experiments, the experimental uncertainty has been assessed, and ranges from 30% (1 σ) for EC(Ra) values smaller than 0.2 Bq kg(-1) to about 8-10% for EC(Ra) values larger than 50 Bq kg(-1). The detection limit, defined as the 90% probability for obtaining a non-zero experimental EC(Ra) value at 68% confidence level, depends on the mass of the sample with respect to the volume of the accumulation volume, and typically varies between 0.04 and 0.09 Bq kg(-1). To measure EC(Ra) from large numbers of samples with sufficient accuracy and uncertainty for our purpose, i.e. for the most natural objects encountered in the environment, the accumulation method with scintillation flask emerged as particularly useful and robust. Properties of EC(Ra) and interpretations inferred from this large data set are presented in the companion paper.

  19. Fitness measures in selection analyses: sensitivity to the overall number of offspring produced in a lifetime.

    PubMed

    Dugdale, H L; Nouvellet, P; Pope, L C; Burke, T; Macdonald, D W

    2010-02-01

    Age at first (alpha) and last (omega) breeding are important life-history traits; however, the direction and strength of selection detected on traits may vary depending on the fitness measure used. We provide the first estimates of lifetime breeding success (LBS) and lambda(ind) (the population growth rate of an individual) of European badgers Meles meles, by genotyping 915 individuals, sampled over 18 years, for 22 microsatellites. Males are slightly larger than females, and the opportunity for selection was slightly greater for males, as predicted. lambda(ind) and LBS both performed well in predicting the number of grand-offspring, and both detected selection for a late omega, until the age of eight. Differential selection (S'(alpha)) for an early alpha, however, was only detected using LBS, not with lambda(ind). In declining populations (lambda(ind) < 1) selection favours reproduction later in life, whereas early reproduction is selected in increasing populations (lambda(ind) > 1). As 41% of badgers were assigned only one offspring (lambda(ind) < 1), whereas 40% were assigned more than two (lambda(ind) > 1), this cancelled out S'(alpha) measured by lambda(ind). PMID:20002246

  20. The Measurement of the Number of Light Neutrino Species at LEP

    NASA Astrophysics Data System (ADS)

    Mele, Salvatore

    2015-07-01

    Within weeks of the start of the data taking at the LEP accelerator, the ALEPH, DELPHI, L3 and OPAL experiments were able to confirm the existence of just three light neutrino species. This measurement relies on the Standard Model relation between the `invisible' width of the Z-boson and the cross-sections for Z-boson production and subsequent decay into hadrons. The full data sample collected by the experiments at and around the Z-boson resonance allows a high-precision measurement of the number of light neutrino species as 2.9840 ± 0.0082. The uncertainty is mostly due to the understanding of the low-angle Bhabha scattering process used to determine the experimental luminosity. This result is independently confirmed by the elegant direct observation of the e^-e^+ to ν bar{ν}γ process, through the detection of an initial-state-radiation photon in otherwise empty detectors. This result confirms expectations from the existence of three charged leptons species, and contributes to the fields of astrophysics and cosmology. Alongside other LEP achievements, the precision of this result is a testament to the global cooperation underpinning CERN's fourth decade. LEP saw the onset of large-scale collaboration across experiments totaling over 2000 scientists, together with a strong partnership within the wider high-energy physics community: from accelerator operations to the understanding of theoretical processes.

  1. Ionospheric electron number densities from CUTLASS dual-frequency velocity measurements using artificial backscatter over EISCAT

    NASA Astrophysics Data System (ADS)

    Sarno-Smith, Lois K.; Kosch, Michael J.; Yeoman, Timothy; Rietveld, Michael; Nel, Amore'; Liemohn, Michael W.

    2016-08-01

    Using quasi-simultaneous line-of-sight velocity measurements at multiple frequencies from the Hankasalmi Cooperative UK Twin Auroral Sounding System (CUTLASS) on the Super Dual Auroral Radar Network (SuperDARN), we calculate electron number densities using a derivation outlined in Gillies et al. (2010, 2012). Backscatter targets were generated using the European Incoherent Scatter (EISCAT) ionospheric modification facility at Tromsø, Norway. We use two methods on two case studies. The first approach is to use the dual-frequency capability on CUTLASS and compare line-of-sight velocities between frequencies with a MHz or greater difference. The other method used the kHz frequency shifts automatically made by the SuperDARN radar during routine operations. Using ray tracing to obtain the approximate altitude of the backscatter, we demonstrate that for both methods, SuperDARN significantly overestimates Ne compared to those obtained from the EISCAT incoherent scatter radar over the same time period. The discrepancy between the Ne measurements of both radars may be largely due to SuperDARN sensitivity to backscatter produced by localized density irregularities which obscure the background levels.

  2. Number Sense and the Calculating Child: Measure, Multiplicity and Mathematical Monsters

    ERIC Educational Resources Information Center

    de Freitas, Elizabeth

    2016-01-01

    Children and animals of all kinds are said to develop some degree of number sense. The search for "number neurons" and neural correlates of computational thinking aims to identify biological primitives to explain the emergence of number sense. This work typically looks for the sources of number sense in organisms, but one might extend…

  3. Measurement of black carbon and particle number emission factors from individual heavy-duty trucks.

    PubMed

    Ban-Weiss, George A; Lunden, Melissa M; Kirchstetter, Thomas W; Harley, Robert A

    2009-03-01

    Emission factors for black carbon (BC) and particle number (PN) were measured from 226 individual heavy-duty (HD) diesel trucks driving through a 1-km-long California highway tunnel in August 2006. Emission factors were based on concurrent increases in BC, PN, and CO2 concentrations (measured at 1 Hz) that corresponded to the passage of individual HD trucks. The distributions of BC and PN emission factors from individual HD trucks are skewed, meaning that a large fraction of pollution comes from a small fraction of the in-use vehicle fleet. The highest-emitting 10% of trucks were responsible for approximately 40% of total BC and PN emissions from all HD trucks. BC emissions were log-normally distributed with a mean emission factor of 1.7 g kg(-1) and maximum values of approximately 10 g kg(-1). Corresponding values for PN emission factors were 4.7 x 10(15) and 4 x 10(16) # kg(-1). There was minimal overlap among high-emitters of these two pollutants: only 1 of the 226 HD trucks measured was found to be among the highest 10% for both BC and PN. Monte Carlo resampling of the distribution of BC emission factors observed in this study revealed that uncertainties (1sigma) in extrapolating from a random sample of n HD trucks to a population mean emission factor ranged from +/- 43% for n=10 to +/- 8% for n=300, illustrating the importance of vehicle sample sizes in emissions studies. When n=10, sample means are more likely to be biased due to misrepresentation of high-emitters. As vehicles become cleaner on average in the future, skewness of the emissions distributions will increase, and thus sample sizes needed to extrapolate reliably from a subset of vehicles to the entire in-use vehicle fleet will become more of a challenge. PMID:19350913

  4. Measurement of Black Carbon and Particle Number Emission Factors from Individual Heavy-Duty Trucks

    SciTech Connect

    Ban-Weiss, George A.; Lunden, Melissa M.; Kirchstetter, Thomas W.; Harley, Robert A.

    2009-02-02

    Emission factors for black carbon (BC) and particle number (PN) were measured from 226 individual heavy-duty (HD) diesel-fueled trucks driving through a 1 km-long California highway tunnel in August 2006. Emission factors were based on concurrent increases in BC, PN, and CO{sub 2}B concentrations (measured at 1 Hz) that corresponded to the passage of individual HD trucks. The distributions of BC and PN emission factors from individual HD trucks are skewed, meaning that a large fraction of pollution comes from a small fraction of the in-use vehicle fleet. The highest-emitting 10% of trucks were responsible for {approx} 40% of total BC and PN emissions from all HD trucks. BC emissions were log-normally distributed with a mean emission factor of 1.7 g kg {sup -1} and maximum values of {approx} 10 g kg{sup -1}. Corresponding values for PN emission factors were 4.7 x 10{sup 15} and 4 x 10{sup 16} kg{sup -1}. There was minimal overlap among high-emitters of these two pollutants: only 1 of the 226 HD trucks measured was found to be among the highest 10% for both BC and PN. Monte Carlo resampling of the distribution of BC emission factors observed in this study revealed that uncertainties (1{sigma}) in extrapolating from a random sample of n HD trucks to a population mean emission factor ranged from {+-} 43% for n = 10 to {+-} 8% for n = 300, illustrating the importance of sufficiently large vehicle sample sizes in emissions studies. Studies with low sample sizes are also more easily biased due to misrepresentation of high-emitters. As vehicles become cleaner on average in future years, skewness of the emissions distributions will increase, and thus sample sizes needed to extrapolate reliably from a subset of vehicles to the entire in-use vehicle fleet are expected to become more of a challenge.

  5. Air transport flight parameter measurements program - Concepts and benefits

    NASA Technical Reports Server (NTRS)

    Morris, G. J.; Crabill, N. L.

    1980-01-01

    A program is described in which statistical flight loads and operating practice data for both narrow- and wide-body airline transport aircraft, intended primarily for use by manufacturers in updating design criteria, are obtained from existing, on-board digital flight data recorders. Procedures for editing and processing the data are explained, and differences between these and past NACA/NASA analog data are discussed. One major such difference is the automatic bandpass filtering of normal acceleration data to separate high-frequency gust response from low-frequency maneuver response. Plans and preliminary efforts for the development of an on-board data processing system, able to derive statistical aircraft operating parameters directly from real-time data, are also reviewed.

  6. Electronic measurement of strain effects on spin transport in silicon

    NASA Astrophysics Data System (ADS)

    Qing, Lan; Tinkey, Holly; Appelbaum, Ian

    Spin transport in silicon is limited by the Elliott-Yafet spin relaxation mechanism, which is driven by scattering between degenerate conduction band valleys. Mechanical strain along a valley axis partially breaks this degeneracy, and will ultimately quench intervalley spin relaxation for transitions between states on orthogonal axes. Using a custom-designed and constructed strain probe, we study the effects of uniaxial compressive strain along the < 100 > direction on ballistic tunnel junction devices used to inject spin-polarized electrons into silicon. The effects of strain-induced valley splitting will be presented and compared to our theoretical model. This work is supported by the Office of Naval Research under Contract No. N000141410317, the National Science Foundation under Contract No. ECCS-1231855, the Defense Threat Reduction Agency under Contract No. HDTRA1-13-1-0013, and the Maryland NanoCenter.

  7. Measurement of off-diagonal transport coefficients in two-phase flow in porous media.

    PubMed

    Ramakrishnan, T S; Goode, P A

    2015-07-01

    The prevalent description of low capillary number two-phase flow in porous media relies on the independence of phase transport. An extended Darcy's law with a saturation dependent effective permeability is used for each phase. The driving force for each phase is given by its pressure gradient and the body force. This diagonally dominant form neglects momentum transfer from one phase to the other. Numerical and analytical modeling in regular geometries have however shown that while this approximation is simple and acceptable in some cases, many practical problems require inclusion of momentum transfer across the interface. Its inclusion leads to a generalized form of extended Darcy's law in which both the diagonal relative permeabilities and the off-diagonal terms depend not only on saturation but also on the viscosity ratio. Analogous to application of thermodynamics to dynamical systems, any of the extended forms of Darcy's law assumes quasi-static interfaces of fluids for describing displacement problems. Despite the importance of the permeability coefficients in oil recovery, soil moisture transport, contaminant removal, etc., direct measurements to infer the magnitude of the off-diagonal coefficients have been lacking. The published data based on cocurrent and countercurrent displacement experiments are necessarily indirect. In this paper, we propose a null experiment to measure the off-diagonal term directly. For a given non-wetting phase pressure-gradient, the null method is based on measuring a counter pressure drop in the wetting phase required to maintain a zero flux. The ratio of the off-diagonal coefficient to the wetting phase diagonal coefficient (relative permeability) may then be determined. The apparatus is described in detail, along with the results obtained. We demonstrate the validity of the experimental results and conclude the paper by comparing experimental data to numerical simulation. PMID:25748636

  8. Quality Assurance of Spectral Ultraviolet Measurements in Europe through the Development of a Transportable Unit (QASUME)

    NASA Astrophysics Data System (ADS)

    Gröbner, J.; Qasume Members

    2003-04-01

    QASUME is a European Commission funded project that aims to develop and test a transportable spectrometer system for providing quality assurance to solar ultraviolet (UV) spectroradiometric measurements in Europe. The spectrometer system essentially consists of a temperature stabilised Bentham DM-150 spectroradiometer, a shaped teflon diffuser input optic optimised for global irradiance measurements and a portable calibrator with a set of 100 W lamps. The irradiance scale is traceable to the primary standard of the Physikalisch Technische Bundesanstalt in Braunschweig, Germany through a set of 1000 W quartz halogen lamps held at the JRC. During the first year of operation, the system was assembled and characterised and validated against a selected number of reference spectroradiometers from different monitoring sites in Europe. In May 2002 a two week campaign held at the Joint Research Centre of the European Commission in Ispra, Italy compared solar UV measurements from the transportable unit to the six spectroradiometers and established a reference for all subsequent intercomparisons. In the following five months (June to October) the travelling unit visited in turn the home sites of all participating laboratories to check the consistency of the travelling unit and its stability during travel. The overall results from the six site visits are the following: Innsbruck (A), -2/+2% (intercomparison/home site); RIVM (NL), +5/+6%; UMIST (GB), +3/+26%; FMI (FI), +5/+4%; UHAN (D), -5/-5%; LAP (GR), +5/+3%. These values can be partly explained by the differences in irradiance standards used by the participating laboratories. We estimate that these results have an uncertainty range of ±6% based on the observed diurnal variations between the instruments. We conclude that presently, the travelling unit is able to provide quality assurance with an uncertainty of ±5% and an absolute irradiance scale traceable to six independent solar UV monitoring laboratories in Europe.

  9. Validation of bed-load transport measurements with time-sequenced bathymetric data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advances in bathymetric data acquisition have made it possible to adopt a new, expedient method for measuring bed load transport in rivers. The method consists of comparing time sequenced bathymetric data sets and utilizing a simple mass conservation relation for bed load transport. Assuming a tri...

  10. In-situ measurement of the Schmidt number within a PMSE layer

    NASA Astrophysics Data System (ADS)

    Lübken, Franz-Josef; Giebeler, Jochen; Blix, Tom; Thrane, Eivind; Singer, Werner; Bremer, Jürgen

    1994-07-01

    During the SCALE campaign in July and August 1993, rocket borne in situ measurements of neutral and electron small scale density fluctuations were performed in the mesosphere over Andøya (69° N16°E) at the same time as the EISCAT 224 MHz radar in Tromsø observed strong polar mesosphere summer echoes (PMSE). Strong neutral air turbulence was observed in the height of the PMSE with a turbulent energy dissipation rate of ɛ = 630mW/kg. In the same altitude range, electron density fluctuations were observed extending to scales smaller than found in the neutrals. From a comparison of the neutral and electron density fluctuation spectrum we obtained a Schmidt number Sc of 6.8 (Sc = ν/D ; ν = kinematic viscosity ; D = molecular diffusion coefficient for the electrons). From the above numbers we deduced ℓoD&K = 5.2m (ℓoD&K is the ‘break-off’ scale between the viscous-convective and the viscous-diffusive subrange of the turbulence spectrum). The half wavelength of the EISCAT 224 MHz radar (λ/2 = 0.67m) is therefore well located in the viscous-diffusive subrange of the turbulence spectrum, despite the fact that Sc > 1, which shifts ℓoD&K towards smaller scales. Our results indicate that the theoretical model of Driscoll and Kennedy [1985], frequently used in this context, is not appropriate under PMSE conditions at scales significantly smaller than ℓoD&K.

  11. Measurement of lentiviral vector titre and copy number by cross-species duplex quantitative PCR.

    PubMed

    Christodoulou, I; Patsali, P; Stephanou, C; Antoniou, M; Kleanthous, M; Lederer, C W

    2016-01-01

    Lentiviruses are the vectors of choice for many preclinical studies and clinical applications of gene therapy. Accurate measurement of biological vector titre before treatment is a prerequisite for vector dosing, and the calculation of vector integration sites per cell after treatment is as critical to the characterisation of modified cell products as it is to long-term follow-up and the assessment of risk and therapeutic efficiency in patients. These analyses are typically based on quantitative real-time PCR (qPCR), but as yet compromise accuracy and comparability between laboratories and experimental systems, the former by using separate simplex reactions for the detection of endogene and lentiviral sequences and the latter by designing different PCR assays for analyses in human cells and animal disease models. In this study, we validate in human and murine cells a qPCR system for the single-tube assessment of lentiviral vector copy numbers that is suitable for analyses in at least 33 different mammalian species, including human and other primates, mouse, pig, cat and domestic ruminants. The established assay combines the accuracy of single-tube quantitation by duplex qPCR with the convenience of one-off assay optimisation for cross-species analyses and with the direct comparability of lentiviral transduction efficiencies in different species. PMID:26202078

  12. Measurement and analysis of the noise radiated by low Mach numbers centrifugal blowers

    NASA Astrophysics Data System (ADS)

    Yeager, D. M.; Lauchle, G. C.

    1987-11-01

    The broad band, aerodynamically generated noise in low tip-speed Mach number, centrifugal air moving devices is investigated. An interdisciplinary approach was taken which involved investigation of the aerodynamic and acoustic fields, and their mutual relationship. The noise generation process was studied using two experimental vehicles: (1) a scale model of a homologous family of centrifugal blowers typical of those used to cool computer and business equipment, and (2) a single blade from a centrifugal blower impeller which was placed in a known, controllable flow field. The radiation characteristics of the model blower were investigated by measuring the acoustic intensity distribution near the blower inlet and comparing it with the intensity near the inlet to an axial flow fan. Aerodynamic studies of the flow field in the inlet and at the discharge to the rotating impeller were used to assess the mean flow distribution through the impeller blade channels and to identify regions of excessive turbulence near the rotating blade row. New frequency-domain expressions for the correlation area and dipole source strength per unit area on a surface immersed in turbulence were developed which can be used to characterize the noise generation process over a rigid surface immersed in turbulence. An investigation of the noise radiated from the single, isolated airfoil (impeller blade) was performed using modern correlation and spectral analysis techniques.

  13. Spray washing, absorbent cornstarch powder, and dry time to reduce bacterial numbers on soiled transport cage flooring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Broiler transport cages are often used repeatedly without washing and fecal matter deposited on the floor surface can transfer Campylobacter from one flock to another. Allowing feces to dry is an effective but slow and logistically impractical means to kill Campylobacter in soiled transport cages. ...

  14. Turbulent transport measurements in a model of GT-combustor

    NASA Astrophysics Data System (ADS)

    Chikishev, L. M.; Gobyzov, O. A.; Sharaborin, D. K.; Lobasov, A. S.; Dulin, V. M.; Markovich, D. M.; Tsatiashvili, V. V.

    2016-10-01

    To reduce NOx formation modern industrial power gas-turbines utilizes lean premixed combustion of natural gas. The uniform distribution of local fuel/air ratio in the combustion chamber plays one of the key roles in the field of lean combustion to prevent thermo-acoustic pulsations. Present paper reports on simultaneous Particle Image Velocimetry and acetone Planar Laser Induced Fluorescence measurements in a cold model of GT-combustor to investigate mixing processes which are relevant to the organization of lean premixed combustion. Velocity and passive admixture pulsations correlations were measured to verify gradient closer model, which is often used in Reynolds-Averaged Navier-Stokes (RANS) simulation of turbulent mixing.

  15. Reference dataset of volcanic ash physicochemical and optical properties for atmospheric measurement retrievals and transport modelling

    NASA Astrophysics Data System (ADS)

    Vogel, Andreas; Durant, Adam; Sytchkova, Anna; Diplas, Spyros; Bonadonna, Costanza; Scarnato, Barbara; Krüger, Kirstin; Kylling, Arve; Kristiansen, Nina; Stohl, Andreas

    2016-04-01

    Explosive volcanic eruptions emit up to 50 wt.% (total erupted mass) of fine ash particles (<63 microns), which individually can have theoretical atmospheric lifetimes that span hours to days. Depending on the injection height, fine ash may be subsequently transported and dispersed by the atmosphere over 100s - 1000s km and can pose a major threat for aviation operations. Recent volcanic eruptions, such as the 2010 Icelandic Eyjafjallajökull event, illustrated how volcanic ash can severely impact commercial air traffic. In order to manage the threat, it is important to have accurate forecast information on the spatial extent and absolute quantity of airborne volcanic ash. Such forecasts are constrained by empirically-derived estimates of the volcanic source term and the nature of the constituent volcanic ash properties. Consequently, it is important to include a quantitative assessment of measurement uncertainties of ash properties to provide realistic ash forecast uncertainty. Currently, information on volcanic ash physicochemical and optical properties is derived from a small number of somewhat dated publications. In this study, we provide a reference dataset for physical (size distribution and shape), chemical (bulk vs. surface chemistry) and optical properties (complex refractive index in the UV-vis-NIR range) of a representative selection of volcanic ash samples from 10 different volcanic eruptions covering the full variability in silica content (40-75 wt.% SiO2). Through the combination of empirical analytical methods (e.g., image analysis, Energy Dispersive Spectroscopy, X-ray Photoelectron Spectroscopy, Transmission Electron Microscopy and UV/Vis/NIR/FTIR Spectroscopy) and theoretical models (e.g., Bruggeman effective medium approach), it was possible to fully capture the natural variability of ash physicochemical and optical characteristics. The dataset will be applied in atmospheric measurement retrievals and atmospheric transport modelling to determine

  16. Mahler measure of the Horie unit and Weber's Class Number Problem in the Cyclotomic Zp-extension of Q

    NASA Astrophysics Data System (ADS)

    Morisawa, Takayuki

    2010-07-01

    Let p be a prime number. It is an interesting problem to consider whether a prime number ℓ divides the class numbers of the intermediate fields of the cyclotomic Zp-extension of Q. In the case p = 2, R. Okazaki developed a theory for this problem by using Mahler measure. In this paper, we focus on the case p = 3 and show that a prime number ℓ does not divide the class numbers of the intermediate fields of the cyclotomic Z33-extension of Q if ℓ satisfies ℓ≢±1 mod 27.

  17. Measurement and Analysis of the Noise Radiated by Low Mach Number Centrifugal Blowers.

    NASA Astrophysics Data System (ADS)

    Yeager, David Marvin

    An investigation was performed of the broad band, aerodynamically generated noise in low tip-speed Mach number, centrifugal air moving devices. An interdisciplinary experimental approach was taken which involved investigation of the aerodynamic and acoustic fields, and their mutual relationship. The noise generation process was studied using two experimental vehicles: (1) a scale model of a homologous family of centrifugal blowers typical of those used to cool computer and business equipment, and (2) a single blade from a centrifugal blower impeller placed in a known, controllable flow field. The radiation characteristics of the model blower were investigated by measuring the acoustic intensity distribution near the blower inlet and comparing it with the intensity near the inlet to an axial flow fan. Results showed that the centrifugal blower is a distributed, random noise source, unlike an axial fan which exhibited the effects of a coherent, interacting source distribution. Aerodynamic studies of the flow field in the inlet and at the discharge to the rotating impeller were used to assess the mean flow distribution through the impeller blade channels and to identify regions of excessive turbulence near the rotating blade row. Both circumferential and spanwise mean flow nonuniformities were identified along with a region of increased turbulence just downstream of the scroll cutoff. The fluid incidence angle, normally taken as an indicator of blower performance, was estimated from mean flow data as deviating considerably from an ideal impeller design. An investigation of the noise radiated from the single, isolated airfoil was performed using modern correlation and spectral analysis techniques. Radiation from the single blade in flow was characterized using newly developed expressions for the correlation area and the dipole source strength per unit area, and from the relationship between the blade surface pressure and the incident turbulent flow field. Results

  18. From computing with numbers to computing with words. From manipulation of measurements to manipulation of perceptions.

    PubMed

    Zadeh, L A

    2001-04-01

    Interest in issues relating to consciousness has grown markedly during the last several years. And yet, nobody can claim that consciousness is a well-understood concept that lends itself to precise analysis. It may be argued that, as a concept, consciousness is much too complex to fit into the conceptual structure of existing theories based on Aristotelian logic and probability theory. An approach suggested in this paper links consciousness to perceptions and perceptions to their descriptors in a natural language. In this way, those aspects of consciousness which relate to reasoning and concept formation are linked to what is referred to as the methodology of computing with words (CW). Computing, in its usual sense, is centered on manipulation of numbers and symbols. In contrast, computing with words, or CW for short, is a methodology in which the objects of computation are words and propositions drawn from a natural language (e.g., small, large, far, heavy, not very likely, the price of gas is low and declining, Berkeley is near San Francisco, it is very unlikely that there will be a significant increase in the price of oil in the near future, etc.). Computing with words is inspired by the remarkable human capability to perform a wide variety of physical and mental tasks without any measurements and any computations. Familiar examples of such tasks are parking a car, driving in heavy traffic, playing golf, riding a bicycle, understanding speech, and summarizing a story. Underlying this remarkable capability is the brain's crucial ability to manipulate perceptions--perceptions of distance, size, weight, color, speed, time, direction, force, number, truth, likelihood, and other characteristics of physical and mental objects. Manipulation of perceptions plays a key role in human recognition, decision and execution processes. As a methodology, computing with words provides a foundation for a computational theory of perceptions: a theory which may have an important

  19. From computing with numbers to computing with words. From manipulation of measurements to manipulation of perceptions.

    PubMed

    Zadeh, L A

    2001-04-01

    Interest in issues relating to consciousness has grown markedly during the last several years. And yet, nobody can claim that consciousness is a well-understood concept that lends itself to precise analysis. It may be argued that, as a concept, consciousness is much too complex to fit into the conceptual structure of existing theories based on Aristotelian logic and probability theory. An approach suggested in this paper links consciousness to perceptions and perceptions to their descriptors in a natural language. In this way, those aspects of consciousness which relate to reasoning and concept formation are linked to what is referred to as the methodology of computing with words (CW). Computing, in its usual sense, is centered on manipulation of numbers and symbols. In contrast, computing with words, or CW for short, is a methodology in which the objects of computation are words and propositions drawn from a natural language (e.g., small, large, far, heavy, not very likely, the price of gas is low and declining, Berkeley is near San Francisco, it is very unlikely that there will be a significant increase in the price of oil in the near future, etc.). Computing with words is inspired by the remarkable human capability to perform a wide variety of physical and mental tasks without any measurements and any computations. Familiar examples of such tasks are parking a car, driving in heavy traffic, playing golf, riding a bicycle, understanding speech, and summarizing a story. Underlying this remarkable capability is the brain's crucial ability to manipulate perceptions--perceptions of distance, size, weight, color, speed, time, direction, force, number, truth, likelihood, and other characteristics of physical and mental objects. Manipulation of perceptions plays a key role in human recognition, decision and execution processes. As a methodology, computing with words provides a foundation for a computational theory of perceptions: a theory which may have an important

  20. Measurement of plasma current dependent changes in impurity transport and comparison with nonlinear gyrokinetic simulation

    SciTech Connect

    Howard, N. T.; Greenwald, M.; White, A. E.; Reinke, M. L.; Ernst, D.; Podpaly, Y.; Mikkelsen, D. R.; Candy, J.

    2012-05-15

    Measured impurity transport coefficients are found to demonstrate a strong dependence on plasma current in the core of Alcator C-Mod. These measurements are compared directly with linear and nonlinear gyrokinetic simulation in an attempt to both qualitatively and quantitatively reproduce the measured impurity transport. Discharges constituting a scan of plasma current from 0.6 to 1.2 MA were performed during the 2010 run campaign. The impurity transport from these discharges was determined using a novel set of spectroscopic diagnostics available on Alcator C-Mod. This diagnostic suite allowed for the effective constraint of impurity transport coefficient profiles inside of r/a = 0.6. A decrease in the measured impurity diffusivity and inward convection is found with increased plasma current. Global, nonlinear gyrokinetic simulations were performed using the GYRO code [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] for all discharges in the experimental scan and are found to reproduce the experimental trends, while demonstrating good quantitative agreement with measurement. A more comprehensive quantitative comparison was performed on the 0.8 MA discharge of the current scan which demonstrates that simultaneous agreement between experiment and simulation in both the impurity particle transport and ion heat transport channels is attainable within experimental uncertainties.

  1. Measurement of plasma current dependent changes in impurity transport and comparison with nonlinear gyrokinetic simulationa)

    NASA Astrophysics Data System (ADS)

    Howard, N. T.; Greenwald, M.; Mikkelsen, D. R.; White, A. E.; Reinke, M. L.; Ernst, D.; Podpaly, Y.; Candy, J.

    2012-05-01

    Measured impurity transport coefficients are found to demonstrate a strong dependence on plasma current in the core of Alcator C-Mod. These measurements are compared directly with linear and nonlinear gyrokinetic simulation in an attempt to both qualitatively and quantitatively reproduce the measured impurity transport. Discharges constituting a scan of plasma current from 0.6 to 1.2 MA were performed during the 2010 run campaign. The impurity transport from these discharges was determined using a novel set of spectroscopic diagnostics available on Alcator C-Mod. This diagnostic suite allowed for the effective constraint of impurity transport coefficient profiles inside of r/a = 0.6. A decrease in the measured impurity diffusivity and inward convection is found with increased plasma current. Global, nonlinear gyrokinetic simulations were performed using the GYRO code [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] for all discharges in the experimental scan and are found to reproduce the experimental trends, while demonstrating good quantitative agreement with measurement. A more comprehensive quantitative comparison was performed on the 0.8 MA discharge of the current scan which demonstrates that simultaneous agreement between experiment and simulation in both the impurity particle transport and ion heat transport channels is attainable within experimental uncertainties.

  2. Measurement of the atom number distribution in an optical tweezer using single-photon counting

    SciTech Connect

    Fuhrmanek, A.; Sortais, Y. R. P.; Grangier, P.; Browaeys, A.

    2010-08-15

    We demonstrate in this paper a method to reconstruct the atom number distribution of a cloud containing a few tens of cold atoms. The atoms are first loaded from a magneto-optical trap into a microscopic optical dipole trap and then released in a resonant light probe where they undergo a Brownian motion and scatter photons. We count the number of photon events detected on an image intensifier. Using the response of our detection system to a single atom as a calibration, we extract the atom number distribution when the trap is loaded with more than one atom. The atom number distribution is found to be compatible with a Poisson distribution.

  3. Resonant Acoustic Measurement of Vapor Phase Transport Phenomenon

    NASA Astrophysics Data System (ADS)

    Schuhmann, R. J.; Garrett, S. L.; Matson, J. V.

    2002-12-01

    A major impediment to accurate non steady-state diffusion measurements is the ability to accurately measure and track a rapidly changing gas concentration without disturbing the system. Non-destructive methods that do not interfere with system dynamics have been developed in the past. These methods, however, have tended to be cumbersome or inaccurate at low concentrations. A new experimental approach has been developed to measure gaseous diffusion in free air and through porous materials. The method combines the traditional non steady-state laboratory methodology with resonant acoustic gas analysis. A phase-locked-loop (PLL) resonance frequency tracker is combined with a thermally insulated copper resonator. A piston sealed with a metal bellows excites the fundamental standing wave resonance of the resonator. The PLL maintains a constant phase difference (typically 90§) between the accelerometer mounted on the piston and a microphone near the piston to track the resonance frequency in real time. A capillary or glass bead filled core is fitted into an o-ring sealed opening at the end of the resonator opposite the bellows. The rate at which the tracer gas is replaced by air within the resonator is controlled by the diffusion coefficient of the gas in free air through the capillary (DA) or by the effective diffusion coefficient of the gas through the core (De). The mean molecular weight of the gas mixture in the resonator is directly determined six times each minute from the ratio of the absolute temperature to the square of the fundamental acoustic resonance frequency. Average system stability (temperature divided by frequency squared) is better than 350 ppm. DA values for a 0.3-inch diameter capillary were in excellent agreement with published values. De values for porous media samples (0.5 mm glass beads) of four different lengths (1 through 4 inches) using three different tracer gases (He, CH4, Kr) will be reported. Comments will be offered regarding tracer gas

  4. Measuring intestinal fluid transport in vitro: Gravimetric method versus non-absorbable marker.

    PubMed

    Whittamore, Jonathan M; Genz, Janet; Grosell, Martin; Wilson, Rod W

    2016-04-01

    The gut sac is a long-standing, widely used in vitro preparation for studying solute and water transport, and calculation of these fluxes requires an accurate assessment of volume. This is commonly determined gravimetrically by measuring the change in mass over time. While convenient this likely under-estimates actual net water flux (Jv) due to tissue edema. We evaluated whether the popular in vivo volume marker [(14)C]-PEG 4000, offers a more representative measure of Jvin vitro. We directly compared these two methods in five teleost species (toadfish, flounder, rainbow trout, killifish and tilapia). Net fluid absorption by the toadfish intestine based on PEG was significantly higher, by almost 4-fold, compared to gravimetric measurements, compatible with the latter under-estimating Jv. Despite this, PEG proved inconsistent for all of the other species frequently resulting in calculation of net secretion, in contrast to absorption seen gravimetrically. Such poor parallelism could not be explained by the absorption of [(14)C]-PEG (typically <1%). We identified a number of factors impacting the effectiveness of PEG. One was adsorption to the surface of sample tubes. While it was possible to circumvent this using unlabelled PEG 4000, this had a deleterious effect on PEG-based Jv. We also found sequestration of PEG within the intestinal mucus. In conclusion, the short-comings associated with the accurate representation of Jv by gut sac preparations are not overcome by [(14)C]-PEG. The gravimetric method therefore remains the most reliable measure of Jv and we urge caution in the use of PEG as a volume marker. PMID:26794612

  5. Measurements of fluctuating pressure in a rectangular cavity in transonic flow at high Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Tracy, M. B.; Plentovich, E. B.; Chu, Julio

    1992-01-01

    An experiment was performed in the Langley 0.3 meter Transonic Cryogenic Tunnel to study the internal acoustic field generated by rectangular cavities in transonic and subsonic flows and to determine the effect of Reynolds number and angle of yaw on the field. The cavity was 11.25 in. long and 2.50 in. wide. The cavity depth was varied to obtain length-to-height (l/h) ratios of 4.40, 6.70, 12.67, and 20.00. Data were obtained for a free stream Mach number range from 0.20 to 0.90, a Reynolds number range from 2 x 10(exp 6) to 100 x 10(exp 6) per foot with a nearly constant boundary layer thickness, and for two angles of yaw of 0 and 15 degs. Results show that Reynolds number has little effect on the acoustic field in rectangular cavities at angle of yaw of 0 deg. Cavities with l/h = 4.40 and 6.70 generated tones at transonic speeds, whereas those with l/h = 20.00 did not. This trend agrees with data obtained previously at supersonic speeds. As Mach number decreased, the amplitude, and bandwidth of the tones changed. No tones appeared for Mach number = 0.20. For a cavity with l/h = 12.67, tones appeared at Mach number = 0.60, indicating a possible change in flow field type. Changes in acoustic spectra with angle of yaw varied with Reynolds number, Mach number, l/h ratios, and acoustic mode number.

  6. Results and perspectives of particle transport measurements in gases in microgravity

    NASA Astrophysics Data System (ADS)

    Vedernikov, Andrei; Balapanov, Daniyar; Beresnev, Sergey

    2016-07-01

    Solid or liquid particles floating in a gas belong to dispersed systems, most often referred to as aerosols or dust clouds. They are widely spread in nature, involving both environmental and technological issues. They attract growing attention in microgravity, particularly in complex plasma, simulation of protoplanetary dust clouds, atmospheric aerosol, etc. Brownian random walk, motion of particles in gravity, electrostatic and magnetic fields, are well defined. We present the survey showing that the quantitative description of a vast variety of other types of motion is much less accurate, often known only in a limited region of parameters, sometimes described by the contradictory models, poorly verified experimentally. It is true even for the most extensively investigated transport phenomena - thermophoresis and photophoresis, not to say about diffusiophoresis, gravito-photophoresis, various other types of particle motion driven by physicochemical transformation and accommodation peculiarities on the particle-gas interface, combination of different processes. The number of publications grow very quickly, only those dealing with thermophoresis exceeded 300 in 2015. Hence, there is a strong need in high quality experimental data on particle transport properties with growing interest to expand the scope for non-isometric particles, agglomerates, dense clouds, interrelation with the two-phase flow dynamics. In most cases, the accuracy and sometimes the entire possibility of the measurement is limited by the presence of gravity. Floating particles have the density considerably different from that of the gas. They sediment, often with gliding and tumbling, that perturbs the motion trajectory, local hydrodynamic environment around particles, all together complicating definition of the response. Measurements at very high or very low Knudsen numbers (rarefied gas or too big particles) are of particular difficulty. Experiments assume creating a well-defined force, i

  7. Atmospheric effects on infrared measurements at ground level: Application to monitoring of transport infrastructures

    NASA Astrophysics Data System (ADS)

    Boucher, Vincent; Dumoulin, Jean

    2014-05-01

    and the water. These changes in refractive indexes lead to the evolution of extinction coefficient Kext according to relative humidity. Using such models in very low visibility conditions leads to the following question: Up to which optical depth (i.e. tau=Kext.d) can we use a simple scattering model as Mie Theory? To show the effect of multiple scattering on previous transmission estimation, Monte-Carlo calculations have been performed. Calculations used a software dedicated to photometrical rendering of fog (PROF [5]). Up to an optical depth tau=1, simple and multiple scatterings differ of less than 2%. For tau >1 the simple scattering model is no more available to keep the error less than 10%. Finally, study of fog effect is proposed. Results obtained by numerical simulations but also by experiments carried out in a dedicated fog tunnel are presented and discussed. Perspectives about possible implementation on on site measurement systems are evocated. REFERENCES [1]Proto M. et al., , 2010. Transport infrastructure surveillance and monitoring by electromagnetic sensing: the ISTIMES project. Sensors, 10,10620-10639, doi: 10.3390/s101210620. [2]J. Dumoulin, A. Crinière, R. Averty ," Detection and thermal characterization of the inner structure of the "Musmeci" bridge deck by infrared thermography monitoring ",Journal of Geophysics and Engineering, Volume 10, Number 2, November 2013, IOP Science, doi:10.1088/1742-2132/10/6/064003. [3]Shettle. P. and Fenn R. W., "Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties", Air Force Geophysics Laboratory 79-0214, (1979). [4]30. Hänel, Gottfried, "The properties of atmospheric aerosol particles as functions of the relarive humidity at thermodynamic equilibrium with the surrounding moist air, in Advances in Geophysics, 73-188. Edited by H.E. Landsberg, and J. Van Mieghem, Academic Press, New York, 1976. [5]31. Dumont E., "Semi-Monte Carlo light tracing applied to

  8. PARALLEL MEASUREMENT AND MODELING OF TRANSPORT IN THE DARHT II BEAMLINE ON ETA II

    SciTech Connect

    Chambers, F W; Raymond, B A; Falabella, S; Lee, B S; Richardson, R A; Weir, J T; Davis, H A; Schultze, M E

    2005-05-31

    To successfully tune the DARHT II transport beamline requires the close coupling of a model of the beam transport and the measurement of the beam observables as the beam conditions and magnet settings are varied. For the ETA II experiment using the DARHT II beamline components this was achieved using the SUICIDE (Simple User Interface Connecting to an Integrated Data Environment) data analysis environment and the FITS (Fully Integrated Transport Simulation) model. The SUICIDE environment has direct access to the experimental beam transport data at acquisition and the FITS predictions of the transport for immediate comparison. The FITS model is coupled into the control system where it can read magnet current settings for real time modeling. We find this integrated coupling is essential for model verification and the successful development of a tuning aid for the efficient convergence on a useable tune. We show the real time comparisons of simulation and experiment and explore the successes and limitations of this close coupled approach.

  9. In-flight boundary-layer measurements on a hollow cylinder at a Mach number of 3.0

    NASA Technical Reports Server (NTRS)

    Quinn, R. D.; Gong, L.

    1980-01-01

    Skin temperatures, shear forces, surface static pressures, boundary layer pitot pressures, and boundary layer total temperatures were measured on the external surface of a hollow cylinder that was 3.04 meters long and 0.437 meter in diameter and was mounted beneath the fuselage of the YF-12A airplane. The data were obtained at a nominal free stream Mach number of 3.0 (a local Mach number of 2.9) and at wall to recovery temperature ratios of 0.66 to 0.91. The local Reynolds number had a nominal value of 4,300,000 per meter. Heat transfer coefficients and skin friction coefficients were derived from skin temperature time histories and shear force measurements, respectively. In addition, boundary layer velocity profiles were derived from pitot pressure measurements, and a Reynolds analogy factor was obtained from the heat transfer and skin friction measurements. The measured data are compared with several boundary layer prediction methods.

  10. TR-PIV measurement of the wake behind a grooved cylinder at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Liu, Ying Zheng; Shi, Liu Liu; Yu, Jun

    2011-04-01

    A comparative study of the wakes behind cylinders with grooved and smooth surfaces was performed with a view to understand the wake characteristics associated with the adult Saguaro cacti. A low-speed recirculation water channel was established for the experiment; the Reynolds number, based on the free-stream velocity and cylinder diameter (D), was kept at ReD=1500. State-of-the-art time-resolved particle image velocimetry (TR-PIV) was employed to measure a total of 20 480 realizations of the wake field at a frame rate of 250 Hz, enabling a comprehensive view of the time- and phase-averaged wake pattern. In comparison to the wake behind the smooth cylinder, the length of the recirculation zone behind the grooved cylinder was extended by nearly 18.2%, yet the longitudinal velocity fluctuation intensity was considerably weakened. A global view of the peaked spectrum of the longitudinal velocity component revealed that the intermediate region for the grooved cylinder, which approximately corresponds to the transition region where the shear layer vortices interact, merge and shed before the formation of the Karman-like vortex street, was much wider than that for the smooth one. The unsteady events near St=0.3-0.4 were detected in the intermediate region behind the grooved cylinder, but no such events were found in the smooth cylinder system. Although the formation of the Karman-like vortex street was delayed by about 0.6D downstream for the grooved cylinder, no prominent difference in the vortex street region was found in the far wake for both cylinders. The Proper Orthogonal Decomposition (POD) method was used extensively to decompose the vector and swirling strength fields, which gave a close-up view of the vortices in the near wake. The first two POD modes of the swirling strength clarified the spatio-temporal characteristics of the shear layer vortices behind the grooved cylinder. The small-scale vortices superimposed on the shear layers behind the grooved cylinder

  11. Evaluation of the H+/site ratio of mitochondrial electron transport from rate measurements.

    PubMed

    Reynafarje, B; Brand, M D; Lehninger, A L

    1976-12-10

    The mitochondrial H+/site ratio (i.e. the number of protons ejected per pair of electrons traversing each of the energy-conserving sites of the respiratory chain) has been evaluated employing a new experimental approach. In this method the rates of oxygen uptake and H+ ejection were measured simultaneously during the initial period of respiration evoked by addition of succinate to aerobic, rotenone-inhibited, de-energized mitochondria. Either K+, in the presence of valinomycin, or Ca2+, was used as mobile cation to dissipate the membrane potential and allow quantitative H+ ejection into the medium. The H+/site ratio observed with this method in the absence of precautions to inhibit the uptake of phosphate was close to 2.0, in agreement with values obtained using the oxygen pulse technique (Mitchell, P. and Moyle, J. (1967) Biochem. J. 105, 1147-1162). However, when phosphate movements were eliminated either by inhibition of the phosphate-hydroxide antiporter with N-ethylamaleimide or by depleting the mitochondria of their endogenous phosphate content, H+/site ratios close to 4.0 were consistently observed. This ratio was independent of the concentration of succinate, of mitochondrial protein, of pH between 6 and 8, and of ionic composition of the medium, provided that sufficient K+ (plus valinomycin) or Ca2+ were present. Specific inhibitors of the hydrolysis of endogenous ATP or transport of other ions (adenine nucleotides, tricarboxylates, HCO3-, etc.) were shown not to affect the observed H+/site ratio. Furthermore, the replacement of succinate by alpha-glycerol phosphate, a substrate which is oxidized on the outer surface of the inner membrane and thus does not need to enter the matrix, gave the same H+/site ratios as did succinate. It is concluded that the H+/site ratio of mitochondrial electron transport, when phosphate movements are eliminated, may be close to 4.0.

  12. Reliable neural modeling of pHEMT from a smaller number of measurement data

    NASA Astrophysics Data System (ADS)

    Joodaki, Mojtaba; Kompa, Guenter

    2002-12-01

    A systematic approach is presented to achieve a reliable neural model for microwave active devices with different numbers of training data. The method is implemented for a small-signal bias depended modeling of pHEMT in tow different environments, on a standard test-fixture and in the New Generation Quasi-Monolithic Integration Technology (NGQMIT), with different numbers of training data. The errors for different numbers of training data have been compared to each other and show that by using this method a reliable model is achievable even though the number of training data is considerably small. The method aims at constructing a model, which can satisfy the criteria of minimum training error, maximum smoothness (to avoid the problem of over-fitting), and simplest network structure.

  13. Measurement of effective atomic number of gunshot residues using scattering of gamma rays

    NASA Astrophysics Data System (ADS)

    Yılmaz, Demet; Turşucu, Ahmet; Uzunoğlu, Zeynep; Korucu, Demet

    2014-09-01

    Better understanding of gunshot residues and the major elemental composition would be valuable to forensic scientists for their analysis work and interpretation of results. In the present work, the effective atomic numbers of gunshot residues (cartridge case, bullet core, bullet jacket and gunpowder) were analyzed using energy dispersive X-ray analysis (EDX). The scattering of 59.54 keV gamma rays is studied using a high-resolution HPGe detector. The experiment is performed on various elements with atomic number in the 4≤Z≤82. The intensity ratio of coherent to Compton scattered peaks, corrected for photo-peak efficiency of gamma detector and absorption of photons in the sample and air, is plotted as a function of atomic number and constituted a best-fit-curve. From this fit-curve, the respective effective atomic numbers of gunshot residues are determined.

  14. Effect of the Number of Variables on Measures of Fit in Structural Equation Modeling.

    ERIC Educational Resources Information Center

    Kenny, David A.; McCoach, D. Betsy

    2003-01-01

    Used three approaches to understand the effect of the number of variables in the model on model fit in structural equation modeling through computer simulation. Developed a simple formula for the theoretical value of the comparative fit index. (SLD)

  15. The role of clustering effects in interpreting nondiffusive transport measurements in tokamaks

    NASA Astrophysics Data System (ADS)

    Graves, J. P.; Dendy, R. O.; Hopcraft, K. I.; Jakeman, E.

    2002-05-01

    Recent measurements in tokamak plasmas provide clear evidence for rapid nondiffusive transport and non-Gaussian fluctuations, and have been widely interpreted in terms of the sandpile and self-organized criticality (SOC) paradigms. Many of the statistical physics inferences that can be drawn from observations of, for example, avalanching transport remain to be explored. This paper will show that the statistical characterization of both experimentally observed and simulated avalanching transport phenomena reveals several points of contact with existing stochastic process models that have seldom been deployed in a plasma physics context. It will be shown that statistical physics techniques developed to model clustering of events can be used to characterize microscopic fluctuations in both local density and flux, as well as the global transport properties to which they give rise. This provides a fresh interpretation for some of the key aspects of observed critical gradient-driven transport phenomenology in tokamaks. In particular it provides new evidence for scale-free correlations in the fluctuations which drive the transport, and quantifies their distribution in terms of few-parameter non-Gaussian models. The correlation properties of density fluctuations can be interpreted in terms of random walk models, whereas flux fluctuations cannot: instead they can be described by the discrete negative binomial distribution, which again indicates clustering. Some of the spatio-temporal correlations considered emulate multichannel measurements in tokamaks, and it is shown how these can be used to characterize the transport of naturally arising coherent structures.

  16. Analysis of Low-Frequency Geostrophic Transport in the Southern Ocean Measurable with Ocean Bottom Pressure

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Chambers, D. P.

    2015-12-01

    We sought to understand the relative importance of barotropic transport as measured from bottom pressure to total transport in the Southern Ocean. We used ocean bottom pressure and velocity data from the Estimating the Circulation and Climate of the Ocean (ECCO) state estimate run at Jet Propulsion Laboratory to quantify the percentage of total transport in various areas of the Southern Ocean that can be explained by ocean bottom pressure measurements. Only low-frequency (> 1-year) transport variations from 1993 to 2011 were considered. We examined the standard deviations, correlation, and percent variance for low-pass filtered transport integrated from 65°S - 40°S for each 1° longitude from 50°E to 150°E by vertically integrating the zonal velocity, the zonal component of the bottom current, and geostrophic current from bottom pressure gradients. We found that the transport computed from bottom pressure explained more of the full transport variability than that calculated from the bottom current.

  17. Review of measured vibration and noise environments experienced by passengers in aircraft and in ground transportation systems

    NASA Technical Reports Server (NTRS)

    Stephens, D. G.

    1975-01-01

    Measured vibration and interior noise data are presented for a number of air and surface vehicles. Consideration is given to the importance of direction effects; of vehicle operations such as take-off, cruise, and landing; and of measurement location on the level and frequency of the measurements. Various physical measurement units or descriptors are used to quantify and compare the data. Results suggest the range of vibration and noise associated with a particular mode of transportation and illustrate the comparative levels in terms of each of the descriptors. Collectively, the results form a data base which may be useful in assessing the ride of existing or future systems relative to vehicles in current operation.

  18. Direct measurement of chiral structure and transport in single- and multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cui, Taoran; Lin, Letian; Qin, Lu-Chang; Washburn, Sean

    2016-11-01

    Electrical devices based on suspended multi-wall carbon nanotubes were constructed and studied. The chiral structure of each shell in a particular nanotube was determined using nanobeam electron diffraction in a transmission electron microscope. The transport properties of the carbon nanotube were also measured. The nanotube device length was short enough that the transport was nearly ballistic, and multiple subbands contributed to the conductance. Thermal excitation of carriers significantly affected nanotube resistance at room temperature.

  19. Direct measurement of chiral structure and transport in single- and multi-walled carbon nanotubes.

    PubMed

    Cui, Taoran; Lin, Letian; Qin, Lu-Chang; Washburn, Sean

    2016-11-30

    Electrical devices based on suspended multi-wall carbon nanotubes were constructed and studied. The chiral structure of each shell in a particular nanotube was determined using nanobeam electron diffraction in a transmission electron microscope. The transport properties of the carbon nanotube were also measured. The nanotube device length was short enough that the transport was nearly ballistic, and multiple subbands contributed to the conductance. Thermal excitation of carriers significantly affected nanotube resistance at room temperature. PMID:27633072

  20. Direct measurement of chiral structure and transport in single- and multi-walled carbon nanotubes.

    PubMed

    Cui, Taoran; Lin, Letian; Qin, Lu-Chang; Washburn, Sean

    2016-11-30

    Electrical devices based on suspended multi-wall carbon nanotubes were constructed and studied. The chiral structure of each shell in a particular nanotube was determined using nanobeam electron diffraction in a transmission electron microscope. The transport properties of the carbon nanotube were also measured. The nanotube device length was short enough that the transport was nearly ballistic, and multiple subbands contributed to the conductance. Thermal excitation of carriers significantly affected nanotube resistance at room temperature.

  1. Long-term Validation of Cloud-droplet Number Concentration Value Added Product (NDROP VAP) Retrieved from Surface Measurements

    NASA Astrophysics Data System (ADS)

    Lim, K. S. S.; Riihimaki, L.; Comstock, J. M.; Schmid, B.; Sivaraman, C.; Shi, Y.; McFarquhar, G. M.

    2015-12-01

    A new cloud-droplet number concentration (NDROP) Value Added Product (VAP) has been produced at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site for the 13 years from January 1998 to January 2011. The droplet number concentration values are retrieved from surface radiometer measurements of cloud optical depth from the multi-filter rotating shadow-band radiometer (MFRSR) and liquid water path from the microwave radiometer (MWR). We validate the NDROP VAP with in situ aircraft measurements from the Cloud and Aerosol Spectrometer probe during the long-term aircraft field campaign, Routine ARM Aerial Facility (AAF) CLOWD Optical Radiative Observations (RACORO). The NDROP VAP considers entrainment effects rather than assuming an adiabatic cloud, which improves the values of the NDROP VAP by reducing the magnitude of cloud-droplet number concentration. The NDROP VAP captures the primary mode of in situ measured droplet number concentration, but produces too wide a distribution due to too frequent high cloud-droplet number concentrations. The large droplet number concentration error corresponds to errors in the MWR retrievals at low liquid water paths due to the limitations of the instrument. Modification of the NDROP VAP through the diagnosed liquid water path, which is constrained by the coordinated solution using cloud optical depth and cloud-droplet effective radius retrievals, alleviates this problem, leading to better agreement with in situ measurements.

  2. Direct and High-Resolution Measurements of Retardation and Transport in Whole Rock Samples under Unsaturated Conditions

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Wang, J.

    2001-12-01

    Evaluation of chemical sorption and transport is very important in the investigations of contaminant remediation, risk assessment, and waste disposal (e.g., the potential high-level nuclear waste repository at Yucca Mountain, Nevada). Characterization of transport parameters for whole rock samples has typically been performed in batch systems with arbitrary grain sizes and a high water/rock ratio. Measurement of these parameters under conditions more representative of fractured rocks in situ provides a better understanding of the processes occurring there. The effective Kd approach has been commonly employed to quantify the extent of contaminant-medium-fluid interactions. Unrepresentative Kd values will lead to unrealistic assessments of contaminant transport. Experimentally determined Kd values are predominantly obtained from batch experiments under saturated and well-mixed conditions. Batch-sorption experiments can be problematic because: (1) saturated conditions with large waterrock ratios are not representative of the in situ vadose condition, and (2) crushed rock samples are used, with the sample size (in the range of microns to sub-millimeters) chosen more or less arbitrarily and mainly for experimental convenience, and (3) for weakly sorbing contaminants, a batch-sorption approach can yield variable and even negative Kd values, because of the inherent methodology of calculating the Kd values by subtracting two large numbers (i.e., initial and final aqueous concentration). In this work, we use an unsaturated transport-sorption approach to quantify the sorption behavior of contaminants and evaluate the applicability of the conventional batch-sorption approach in unsaturated rock. Transient experiments are designed to investigate water imbibition and chemical transport into the rock sample (with size in the centimeter range) by contacting one end of a sample with water containing chemical tracers. Capillary-driven imbibition transports chemicals farther away

  3. Analysis of Fluctuating Static Pressure Measurements in a Large High Reynolds Number Transonic Cryogenic Wind Tunnel. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Igoe, William B.

    1991-01-01

    Dynamic measurements of fluctuating static pressure levels were made using flush mounted high frequency response pressure transducers at eleven locations in the circuit of the National Transonic Facility (NTF) over the complete operating range of this wind tunnel. Measurements were made at test section Mach numbers from 0.2 to 1.2, at pressure from 1 to 8.6 atmospheres and at temperatures from ambient to -250 F, resulting in dynamic flow disturbance measurements at the highest Reynolds numbers available in a transonic ground test facility. Tests were also made independently at variable Mach number, variable Reynolds number, and variable drivepower, each time keeping the other two variables constant thus allowing for the first time, a distinct separation of these three important variables. A description of the NTF emphasizing its flow quality features, details on the calibration of the instrumentation, results of measurements with the test section slots covered, downstream choke, effects of liquid nitrogen injection and gaseous nitrogen venting, comparisons between air and nitrogen, isolation of the effects of Mach number, Reynolds number, and fan drive power, and identification of the sources of significant flow disturbances is included. The results indicate that primary sources of flow disturbance in the NTF may be edge-tones generated by test section sidewall re-entry flaps and the venting of nitrogen gas from the return leg of the tunnel circuit between turns 3 and 4 in the cryogenic mode of operation. The tests to isolate the effects of Mach number, Reynolds number, and drive power indicate that Mach number effects predominate. A comparison with other transonic wind tunnels shows that the NTF has low levels of test section fluctuating static pressure especially in the high subsonic Mach number range from 0.7 to 0.9.

  4. Prescriptions for measuring and transporting local angular momenta in general relativity

    NASA Astrophysics Data System (ADS)

    Flanagan, Éanna É.; Nichols, David A.; Stein, Leo C.; Vines, Justin

    2016-05-01

    For observers in curved spacetimes, elements of the dual space of the set of linearized Poincaré transformations from an observer's tangent space to itself can be naturally interpreted as local linear and angular momenta. We present an operational procedure by which observers can measure such quantities using only information about the spacetime curvature at their location. When applied by observers near spacelike or null infinity in stationary, vacuum, asymptotically flat spacetimes, there is a sense in which the procedure yields the well-defined linear and angular momenta of the spacetime. We also describe a general method by which observers can transport local linear and angular momenta from one point to another, which improves previous prescriptions. This transport is not path independent in general, but becomes path independent for the measured momenta in the same limiting regime. The transport prescription is defined in terms of differential equations, but it can also be interpreted as parallel transport in a particular direct-sum vector bundle. Using the curvature of the connection on this bundle, we compute and discuss the holonomy of the transport law. We anticipate that these measurement and transport definitions may ultimately prove useful for clarifying the physical interpretation of the Bondi-Metzner-Sachs charges of asymptotically flat spacetimes.

  5. Transportation.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with transportation and energy use. Its objective is for the student to be able to discuss the implication of energy usage as it applies to the area of transportation. Some topics covered are efficiencies of various transportation…

  6. Nitrite transport in chloroplast inner envelope vesicles. I. Direct measurement of proton-linked transport

    SciTech Connect

    Shingles, R.; Roh, M.H.; McCarty, R.E.

    1996-11-01

    Chloroplast inner envelope membrane vesicles that are loaded with the pH-sensitive fluorophore, pyranine, show rapid internal acidification when nitrite is added. Acidification is dependent upon {Delta}pH, with the inside of vesicles being alkaline with respect to the outside. The rate of vesicle acidification was directly proportional to the concentration of nitrite that was added and the imposed pH difference across the membrane. In contrast, added nitrate had no effect on vesicle acidification. Nitrite also caused acidification of asolectin vesicles that were prepared by extrusion were approximately the same size, allowing them to be compared when the final extent of acidification, measured after the pH gradient had collapsed, was similar. The rate of nitrite-dependent acidification was similar in these two preparations at any single nitrite concentration. These results indicate that nitrite movement occurs by rapid diffusion across membranes as nitrous acid, and this movement is dependent on a proton gradient across the lipid bilayer. Under conditions approximating these in vivo, the rate of diffusion of nitrous acid far exceeds that of nitrite reduction within chloroplasts. 26 refs., 5 figs., 1 tab.

  7. What basic number processing measures in kindergarten explain unique variability in first-grade arithmetic proficiency?

    PubMed

    Bartelet, Dimona; Vaessen, Anniek; Blomert, Leo; Ansari, Daniel

    2014-01-01

    Relations between children's mathematics achievement and their basic number processing skills have been reported in both cross-sectional and longitudinal studies. Yet, some key questions are currently unresolved, including which kindergarten skills uniquely predict children's arithmetic fluency during the first year of formal schooling and the degree to which predictors are contingent on children's level of arithmetic proficiency. The current study assessed kindergarteners' non-symbolic and symbolic number processing efficiency. In addition, the contribution of children's underlying magnitude representations to differences in arithmetic achievement was assessed. Subsequently, in January of Grade 1, their arithmetic proficiency was assessed. Hierarchical regression analysis revealed that children's efficiency to compare digits, count, and estimate numerosities uniquely predicted arithmetic differences above and beyond the non-numerical factors included. Moreover, quantile regression analysis indicated that symbolic number processing efficiency was consistently a significant predictor of arithmetic achievement scores regardless of children's level of arithmetic proficiency, whereas their non-symbolic number processing efficiency was not. Finally, none of the task-specific effects indexing children's representational precision was significantly associated with arithmetic fluency. The implications of the results are 2-fold. First, the findings indicate that children's efficiency to process symbols is important for the development of their arithmetic fluency in Grade 1 above and beyond the influence of non-numerical factors. Second, the impact of children's non-symbolic number processing skills does not depend on their arithmetic achievement level given that they are selected from a nonclinical population. PMID:24128690

  8. Measurements of the number density of water molecules in plasma by using a combined spectral-probe method

    NASA Astrophysics Data System (ADS)

    Bernatskiy, A. V.; Ochkin, V. N.; Afonin, O. N.; Antipenkov, A. B.

    2015-09-01

    A novel method for measuring the number density of water molecules in low-temperature plasma is developed. The absolute intensities of rotational lines of the (0,0) band of the OH( A 2Σ- X 2П) transition are used. Lines with sufficiently large rotational quantum numbers referring to the so-called "hot" group of molecules produced by electron-impact dissociative excitation of water molecules are chosen for measurements. The excitation rate of a process with a known cross section is determined by measuring the parameters of plasma electrons by means of the probe method. The measured number densities of molecules are compared with those in the initial plasma-forming mixture. The time evolution of the particle densities in plasma is investigated. The problems of the sensitivity and applicability of the absolute spectral method are considered.

  9. Measurements of the number density of water molecules in plasma by using a combined spectral−probe method

    SciTech Connect

    Bernatskiy, A. V. Ochkin, V. N.; Afonin, O. N.; Antipenkov, A. B.

    2015-09-15

    A novel method for measuring the number density of water molecules in low-temperature plasma is developed. The absolute intensities of rotational lines of the (0,0) band of the OH(A{sup 2}Σ–X{sup 2}Π) transition are used. Lines with sufficiently large rotational quantum numbers referring to the so-called “hot” group of molecules produced by electron-impact dissociative excitation of water molecules are chosen for measurements. The excitation rate of a process with a known cross section is determined by measuring the parameters of plasma electrons by means of the probe method. The measured number densities of molecules are compared with those in the initial plasma-forming mixture. The time evolution of the particle densities in plasma is investigated. The problems of the sensitivity and applicability of the absolute spectral method are considered.

  10. 76 FR 41859 - Waiver Petition Docket Numbers FRA-2011-0002, CSX Transportation Railroad, and FRA-2004-17565...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ..., and FRA-2004-17565, Union Pacific Railroad; Public Hearing On February 23, 2011, the Federal Railroad Administration (FRA) published a notice in the Federal Register (76 FR 10087) announcing the CSX Transportation... Register (75 FR 224) announcing the Union Pacific Railroad's request for an amendment to their...

  11. Spray washing, absorbent corn starch powder and dry time to reduce bacterial numbers on soiled boiler transport cage flooring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most broilers in the U.S. are transported live to slaughter facilities in cages with fiberglass floors. Cages are often used repeatedly without washing and fecal matter deposited on the floor surface can transfer Campylobacter from one flock to another. Drying feces out between uses is an effectiv...

  12. Unified Measurement System with Suction Control for Gas Transport Parameters in Porous Media

    NASA Astrophysics Data System (ADS)

    Kawamoto, K.; Rouf, M. A.; Hamamoto, S.; Sakaki, T.; Komatsu, T.; Moldrup, P.

    2010-12-01

    Pore geometric parameters including pore size distribution, total and air-filled porosities, pore tortuosity and connectivity strongly influence air flow in porous media, and, thus, characterize gas transport parameters such as gas diffusion coefficient Dp and air permeability ka. In this study, the gas transport parameters were measured for porous media with varying textures under repeated drying and wetting cycles using a newly-developed measurement system, and the hysteretic behaviors in the gas transport parameters were examined. A unified measurement system with suction control (UMS_SC) was developed for measuring soil water characteristics curve and gas transport parameters sequentially under drying and wetting cycles. It consisted of a porous plate, diffusion chamber, sample ring (15 cm in inner diameter and 12 cm in height), tensiometer, soil moisture sensor, oxygen electrodes and air pressure gauges. Soil water characteristics curve and gas transport parameters (gas diffusion coefficient Dp and air permeability ka) for differently textured materials including sand, molten slag , and a mixture material of MS and volcanic ash soil were measured under repeated drying and wetting cycles. The measurement for each porous material was initiated from a full saturation and suction head was increased/decreased in steps in the drainage/wetting cycles. Moreover, independent measurements of Dp and ka were carried out for repacked air-dried samples using a cylindrical mold (15 cm in inner diameter and 12 cm in height) in order to obtain the Dp and ka values at a full dry condition. The newly-developed UMS_SC performed well for the applied suction head less than 50 cm of water with corresponding saturation of roughly 0.3-0.5. The gas transport parameters were well measured at each suction head level under repeated drying and wetting cycles, and the measured gas transport parameters including the independent measurements were verified by literature data as well as

  13. Experimental measurement of efficiency and transport coherence of a cold-atom Brownian motor in optical lattices.

    PubMed

    Zelan, M; Hagman, H; Labaigt, G; Jonsell, S; Dion, C M

    2011-02-01

    The rectification of noise into directed movement or useful energy is utilized by many different systems. The peculiar nature of the energy source and conceptual differences between such Brownian motor systems makes a characterization of the performance far from straightforward. In this work, where the Brownian motor consists of atoms interacting with dissipative optical lattices, we adopt existing theory and present experimental measurements for both the efficiency and the transport coherence. We achieve up to 0.3% for the efficiency and 0.01 for the Péclet number.

  14. Tabulated pressure measurements on a large subsonic transport model airplane with high bypass ratio, powered, fan jet engines

    NASA Technical Reports Server (NTRS)

    Flechner, S. G.; Patterson, J. C., Jr.

    1972-01-01

    An experimental wind-tunnel investigation to determine the aerodynamic interference and the jet-wake interference associated with the wing, pylon, and high-bypass-ratio, powered, fan-jet model engines has been conducted on a typical high-wing logistics transport airplane configuration. Pressures were measured on the wing and pylons and on the surfaces of the engine fan cowl, turbine cowl, and plug. Combinations of wing, pylons, engines, and flow-through nacelles were tested, and the pressure coefficients are presented in tabular form. Tests were conducted at Mach numbers from 0.700 to 0.825 and angles of attack from -2 to 4 deg.

  15. Electrical Noise and the Measurement of Absolute Temperature, Boltzmann's Constant and Avogadro's Number.

    ERIC Educational Resources Information Center

    Ericson, T. J.

    1988-01-01

    Describes an apparatus capable of measuring absolute temperatures of a tungsten filament bulb up to normal running temperature and measuring Botzmann's constant to an accuracy of a few percent. Shows that electrical noise techniques are convenient to demonstrate how the concept of temperature is related to the micro- and macroscopic world. (CW)

  16. Lipid Droplets Purified from Drosophila Embryos as an Endogenous Handle for Precise Motor Transport Measurements

    PubMed Central

    Bartsch, Tobias F.; Longoria, Rafael A.; Florin, Ernst-Ludwig; Shubeita, George T.

    2013-01-01

    Molecular motor proteins are responsible for long-range transport of vesicles and organelles. Recent works have elucidated the richness of the transport complex, with multiple teams of similar and dissimilar motors and their cofactors attached to individual cargoes. The interaction among these different proteins, and with the microtubules along which they translocate, results in the intricate patterns of cargo transport observed in cells. High-precision and high-bandwidth measurements are required to capture the dynamics of these interactions, yet the crowdedness in the cell necessitates performing such measurements in vitro. Here, we show that endogenous cargoes, lipid droplets purified from Drosophila embryos, can be used to perform high-precision and high-bandwidth optical trapping experiments to study motor regulation in vitro. Purified droplets have constituents of the endogenous transport complex attached to them and exhibit long-range motility. A novel method to determine the quality of the droplets for high-resolution measurements in an optical trap showed that they compare well with plastic beads in terms of roundness, homogeneity, position sensitivity, and trapping stiffness. Using high-resolution and high-bandwidth position measurements, we demonstrate that we can follow the series of binding and unbinding events that lead to the onset of active transport. PMID:24010661

  17. Assessment of Sugarcane Yield Potential across Large Numbers of Genotypes Using Canopy Reflectance Measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canopy reflectance indices have been used to monitor plant growth and estimate yields in many field crops. Little is known if canopy reflectance of sugarcane (a complex hybrid of Saccharum spp.) can be used to estimate growth and yield potential across large numbers of genotypes (clones) in the earl...

  18. Measuring Physical Activity with Pedometers in Older Adults with Intellectual Disability: Reactivity and Number of Days

    ERIC Educational Resources Information Center

    Hilgenkamp, Thessa; Van Wijck, Ruud; Evenhuis, Heleen

    2012-01-01

    The minimum number of days of pedometer monitoring needed to estimate valid average weekly step counts and reactivity was investigated for older adults with intellectual disability. Participants (N = 268) with borderline to severe intellectual disability ages 50 years and older were instructed to wear a pedometer for 14 days. The outcome measure…

  19. In-flight pressure distributions and skin-friction measurements on a subsonic transport high-lift wing section

    NASA Technical Reports Server (NTRS)

    Yip, Long P.; Vijgen, Paul M. H. W.; Hardin, Jay D.; Vandam, C. P.

    1993-01-01

    Flight experiments are being conducted as part of a multiphased subsonic transport high-lift research program for correlation with wind-tunnel and computational results. The NASA Langley Transport Systems Research Vehicle (B737-100 aircraft) is used to obtain in-flight flow characteristics at full-scale Reynolds numbers to contribute to the understanding of 3-D high-lift, multi-element flows including attachment-line transition and relaminarization, confluent boundary-layer development, and flow separation characteristics. Flight test results of pressure distributions and skin friction measurements were obtained for a full-chord wing section including the slat, main-wing, and triple-slotted, Fowler flap elements. Test conditions included a range of flap deflections, chord Reynolds numbers (10 to 21 million), and Mach numbers (0.16 to 0.40). Pressure distributions were obtained at 144 chordwise locations of a wing section (53-percent wing span) using thin pressure belts over the slat, main-wing, and flap elements. Flow characteristics observed in the chordwise pressure distributions included leading-edge regions of high subsonic flows, leading-edge attachment-line locations, slat and main-wing cove-flow separation and reattachment, and trailing-edge flap separation. In addition to the pressure distributions, limited skin-friction measurements were made using Preston-tube probes. Preston-tube measurements on the slat upper surface suggested relaminarization of the turbulent flow introduced by the pressure belt on the slat leading-edge surface when the slat attachment line was laminar. Computational analysis of the in-flight pressure measurements using two-dimensional, viscous multielement methods modified with simple-sweep theory showed reasonable agreement. However, overprediction of the pressures on the flap elements suggests a need for better detailed measurements and improved modeling of confluent boundary layers as well as inclusion of three-dimensional viscous

  20. Assimilating aircraft-based measurements to improve forecast accuracy of volcanic ash transport

    NASA Astrophysics Data System (ADS)

    Fu, G.; Lin, H. X.; Heemink, A. W.; Segers, A. J.; Lu, S.; Palsson, T.

    2015-08-01

    The 2010 Eyjafjallajökull volcano eruption had serious consequences to civil aviation. This has initiated a lot of research on volcanic ash transport forecast in recent years. For forecasting the volcanic ash transport after eruption onset, a volcanic ash transport and diffusion model (VATDM) needs to be run with Eruption Source Parameters (ESP) such as plume height and mass eruption rate as input, and with data assimilation techniques to continuously improve the initial conditions of the forecast. Reliable and accurate ash measurements are crucial for providing a successful ash clouds advice. In this paper, simulated aircraft-based measurements, as one type of volcanic ash measurements, will be assimilated into a transport model to identify the potential benefit of this kind of observations in an assimilation system. The results show assimilating aircraft-based measurements can significantly improve the state of ash clouds, and further providing an improved forecast as aviation advice. We also show that for advice of aeroplane flying level, aircraft-based measurements should be preferably taken from this level to obtain the best performance on it. Furthermore it is shown that in order to make an acceptable advice for aviation decision makers, accurate knowledge about uncertainties of ESPs and measurements is of great importance.

  1. Density-of-states effective mass and scattering parameter measurements by transport phenomena in thin films

    NASA Astrophysics Data System (ADS)

    Young, D. L.; Coutts, T. J.; Kaydanov, V. I.

    2000-02-01

    A novel machine has been developed to measure transport coefficients in the temperature range of 50-350 K of thin films deposited on electrically insulating substrates. The measured coefficients—resistivity, Hall, Seebeck, and Nernst—are applied to solutions of the Boltzmann transport equation to give information about the film's density-of-states effective mass, the Fermi energy level, and an energy-dependent scattering parameter. The machine is designed to eliminate or compensate for simultaneously occurring transport phenomena that would interfere with the desired measured quantity, while allowing for all four coefficients to be measured on the same sample. An average density-of-states effective mass value of 0.29±0.04me was measured on the transparent conductive oxide, cadmium stannate (CTO), over a carrier concentration range of 2-7×1020cm-3. This effective mass value matched previous results obtained by optical and thermoelectric modeling. The measured scattering parameter indicates that neutral impurities or a mixture of scattering mechanisms may inhibit the transport of carriers in CTO.

  2. Particle Size, Number Density, And Velocity Measurements In A 2800 K Combustion System

    NASA Astrophysics Data System (ADS)

    Farmer, W. M.; Schwartz, F. A.; Stallings, E. S.; Belz, R. A.

    1983-10-01

    Particle size and velocity measurements have been obtained in a low-speed (6 to 10 m/s), 2800 K combustor 30 cm in diameter. The measurements were obtained using a particle-sizing interferometer coupled to a 0.5 m spectrometer for background light rejection from radiant particles. Results obtained for the combustion of powdered coke clearly indicate the capabilities of this type of instrument to estimate combustor efficiency as a function of temperature. Comparison of the optically sampled measurements with other sampling techniques shows reasonable agreement.

  3. Spin transport and precession in graphene measured by nonlocal and three-terminal methods

    SciTech Connect

    Dankert, André Kamalakar, Mutta Venkata; Bergsten, Johan; Dash, Saroj P.

    2014-05-12

    We investigate the spin transport and precession in graphene by using the Hanle effect in nonlocal and three-terminal measurement geometries. Identical spin lifetimes, spin diffusion lengths, and spin polarizations are observed in graphene devices for both techniques over a wide range of temperatures. The magnitude of the spin signals is well explained by spin transport models. These observations rules out any signal enhancements or additional scattering mechanisms at the interfaces for both geometries. This validates the applicability of both the measurement methods for graphene based spintronics devices and their reliable extractions of spin parameters.

  4. Measurement of the transport spin polarization of FeV using point-contact Andreev reflection

    SciTech Connect

    Bailey, William; Osofsky, Mike; Bussman, Konrad; Parker, David S; Cheng, L

    2013-01-01

    The Fe1 xVx alloy system exhibits the lowest known Gilbert relaxation rate of any ferromagnetic metal or binary alloy with G1 435MHz at x1 427% V. Low relaxation rates are of particular interest in modern spin electronic applications involving spin torque. The transport spin polarization of a series of sputtered epitaxial Fe1 xVx samples was measured using point contact Andreev reflection. Values of the transport spin polarization agree well with those measured for pure Fe and are independent of composition. The results indicate that the substitution of up to 50% of V for Fe does not reduce the spin polarization in the alloy.

  5. Measurement of Optical, Mechanical and Transport properties of the hexagonal closed packed 4H polytype of metallic silver

    NASA Astrophysics Data System (ADS)

    Chakraborty, Indrani; Shirodkar, Sharmila N.; Gohil, Smita; Waghmare, Umesh; Ayyub, Pushan

    2013-03-01

    Optical, mechanical and transport property measurements were done on the hexagonal closed packed (hcp) 4H polytype of Ag with stacking sequence ABCBABCB.. grown as bulk films on Al2O3 substrates. Diffused reflectance measurements done on the 4H films showed a general loss of reflectivity amounting to a decrease of 35% as compared to normal fcc (3C) Ag near 500 nm with a blueshift of 5nm in the bulk plasmon frequency, possibly due to the modified electronic structure of the hcp form. Raman spectroscopic measurements showed the appearance of a peak at 64.3 cm-1 at 4K which underwent ``Mode softening,'' that is shifted to lower wave numbers with increase of temperature and disappeared above 350K. Low temperature transport measurements done on 4H films gave the in-plane resistivity value to be 39 times higher than that of a similarly synthesized fcc Ag film at 295 K. Vicker's microhardness measurements done on the 4H films showed that the 4H samples to be almost 5 times harder than the 3C Ag. Density functional theory simulations were done to obtain the phonon dispersion, band structure and nature of Fermi surface for the 4H Ag which corroborated with the experimental observations. The 4H form appears to be a much less metallic, darker and harder form of Ag.

  6. Measuring effects of voluntary attention: a comparison among predictive arrow, colour, and number cues.

    PubMed

    Olk, Bettina; Tsankova, Elena; Petca, A Raisa; Wilhelm, Adalbert F X

    2014-10-01

    The Posner cueing paradigm is one of the most widely used paradigms in attention research. Importantly, when employing it, it is critical to understand which type of orienting a cue triggers. It has been suggested that large effects elicited by predictive arrow cues reflect an interaction of involuntary and voluntary orienting. This conclusion is based on comparisons of cueing effects of predictive arrows, nonpredictive arrows (involuntary orienting), and predictive numbers (voluntary orienting). Experiment 1 investigated whether this conclusion is restricted to comparisons with number cues and showed similar results to those of previous studies, but now for comparisons to predictive colour cues, indicating that the earlier conclusion can be generalized. Experiment 2 assessed whether the size of a cueing effect is related to the ease of deriving direction information from a cue, based on the rationale that effects for arrows may be larger, because it may be easier to process direction information given by symbols such as arrows than that given by other cues. Indeed, direction information is derived faster and more accurately from arrows than from colour and number cues in a direction judgement task, and cueing effects are larger for arrows than for the other cues. Importantly though, performance in the two tasks is not correlated. Hence, the large cueing effects of arrows are not a result of the ease of information processing, but of the types of orienting that the arrows elicit. PMID:24697668

  7. Understanding the effects of the number of pyrazines and their positions on charge-transport properties in silylethynylated N-heteropentacenes.

    PubMed

    Zhang, Shou-Feng; Chen, Xian-Kai; Fan, Jian-Xun; Guo, Jing-Fu; Ren, Ai-Min; Li, Yu-Wei

    2014-11-01

    The charge-transport properties of a series of silylethynylated N-heteropentacenes (TIPS-PEN-xN; x = 2, 4) were systematically investigated using Marcus electron-transfer theory coupled with kinetic Monte Carlo simulations. Electronic structure calculations showed that introducing more pyrazine rings decreases the energy levels of the lowest unoccupied molecular orbitals (LUMOs) and should aid electron transfer. The number and the positions of the pyrazine rings greatly influence the molecular packing in crystals and hence the intermolecular electronic coupling. Furthermore, the introduction of internal (rather than external) pyrazine rings leads to a better charge-transport network. Transport parameters evaluated from the hopping and band-like models both demonstrate that, among the TIPS-PEN-xN molecules, B-TIPS-PEN-4N-which has two internal pyrazine rings-is the most promising n-type material. PMID:25367043

  8. Spin/orbital and magnetic quantum number selective magnetization measurements for CoFeB/MgO multilayer films.

    PubMed

    Yamazoe, M; Kato, T; Suzuki, K; Adachi, M; Shibayama, A; Hoshi, K; Itou, M; Tsuji, N; Sakurai, Y; Sakurai, H

    2016-11-01

    Spin selective magnetic hysteresis (SSMH) curves, orbital selective magnetic hysteresis (OSMH) curves and magnetic quantum number selective SSMH curves are obtained for CoFeB/MgO multilayer films by combining magnetic Compton profile measurements and superconducting quantum interference device (SQUID) magnetometer measurements. Although the SQUID magnetometer measurements do not show perpendicular magnetic anisotropy (PMA) in the CoFeB/MgO multilayer film, PMA behavior is observed in the OSMH and SSMH curves for the |m|  =  2 magnetic quantum number states. These facts indicate that magnetization switching behavior is dominated by the orbital magnetization of the |m|  =  2 magnetic quantum number states. PMID:27602698

  9. Load-pull measurement analysis of AlGaN/GaN HEMT taking into account number of gate fingers

    NASA Astrophysics Data System (ADS)

    Tiwat, Pongthavornkamol; Guoguo, Liu; Tingting, Yuan; Yingkui, Zheng; Xinyu, Liu

    2016-06-01

    This paper investigates load-pull measurement of AlGaN/GaN high electron mobility transistors (HEMTs) at different numbers of gate fingers. Scalable small-signal models are extracted to analyze the relationship between each model's parameters and the number of device's gate fingers. The simulated S-parameters from the small-signal models are compared with the reflection coefficients measured from the load-pull measurement system at X-band frequencies of 8.8 and 10.4 GHz. The dependency between the number of device's gate fingers and load-pull characterization is presented. Project supported by the National Natural Science Foundation of China (No. 61204086).

  10. Spin/orbital and magnetic quantum number selective magnetization measurements for CoFeB/MgO multilayer films

    NASA Astrophysics Data System (ADS)

    Yamazoe, M.; Kato, T.; Suzuki, K.; Adachi, M.; Shibayama, A.; Hoshi, K.; Itou, M.; Tsuji, N.; Sakurai, Y.; Sakurai, H.

    2016-11-01

    Spin selective magnetic hysteresis (SSMH) curves, orbital selective magnetic hysteresis (OSMH) curves and magnetic quantum number selective SSMH curves are obtained for CoFeB/MgO multilayer films by combining magnetic Compton profile measurements and superconducting quantum interference device (SQUID) magnetometer measurements. Although the SQUID magnetometer measurements do not show perpendicular magnetic anisotropy (PMA) in the CoFeB/MgO multilayer film, PMA behavior is observed in the OSMH and SSMH curves for the |m|  =  2 magnetic quantum number states. These facts indicate that magnetization switching behavior is dominated by the orbital magnetization of the |m|  =  2 magnetic quantum number states.

  11. Measurement of bedload transport in sand-bed rivers: a look at two indirect sampling methods

    USGS Publications Warehouse

    Holmes, Robert R.; Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.

    2010-01-01

    Sand-bed rivers present unique challenges to accurate measurement of the bedload transport rate using the traditional direct sampling methods of direct traps (for example the Helley-Smith bedload sampler). The two major issues are: 1) over sampling of sand transport caused by “mining” of sand due to the flow disturbance induced by the presence of the sampler and 2) clogging of the mesh bag with sand particles reducing the hydraulic efficiency of the sampler. Indirect measurement methods hold promise in that unlike direct methods, no transport-altering flow disturbance near the bed occurs. The bedform velocimetry method utilizes a measure of the bedform geometry and the speed of bedform translation to estimate the bedload transport through mass balance. The bedform velocimetry method is readily applied for the estimation of bedload transport in large sand-bed rivers so long as prominent bedforms are present and the streamflow discharge is steady for long enough to provide sufficient bedform translation between the successive bathymetric data sets. Bedform velocimetry in small sandbed rivers is often problematic due to rapid variation within the hydrograph. The bottom-track bias feature of the acoustic Doppler current profiler (ADCP) has been utilized to accurately estimate the virtual velocities of sand-bed rivers. Coupling measurement of the virtual velocity with an accurate determination of the active depth of the streambed sediment movement is another method to measure bedload transport, which will be termed the “virtual velocity” method. Much research remains to develop methods and determine accuracy of the virtual velocity method in small sand-bed rivers.

  12. Stochastic analysis of concentration measurements in the transport experiment at Twin Lake Site

    NASA Astrophysics Data System (ADS)

    Dagan, G.; Indelman, P.; Moltyaner, G.

    1997-04-01

    A procedure to identify the parameters characterizing flow and transport in heterogeneous aquifers with the aid of concentration measurements in tracer field experiments is developed. Unlike previous studies, which employed the measured plume spatial moments at different times and their theoretical expressions, we rely here on breakthrough curves and temporal moments in order to analyze the field tests at Chalk River Site. In these experiments, breakthrough curves of a radioactive tracer were measured continuously at a large number of points in parallel control planes. We derive theoretical expressions of the temporal moments of the breakthrough curves by the same Lagrangian approach that was used previously for spatial moment. We assume a stationary random velocity field of constant mean and relate it to the axisymmetric log conductivity covariance by a first-order approximation in the variance, with neglect of the effect of pore-scale dispersion. The final theoretical results relate the temporal moments to U (the mean velocity), σY2 (the log conductivity variance), IYh (the horizontal integral scale), and b(e) (a function of the anisotropy ratio e=IYυ/IYh). By assuming ergodicity, we identify the temporal moments at the Chalk River Site experiment from measured breakthrough curves. With the aid of the theoretical results and by a best fit we could estimate U, σY2, IYh, and IYh/b(e). An attempt to identify the vertical and transverse integral scales from temporal-spatial moments in the control planes was not successful. We took advantage of the dense measurements of breakthrough curves along vertical transects (at intervals of 1 cm) in order to identify the experimental concentration two-point covariance. We derived a simplified theoretical expression for its dependence on the log conductivity vertical integral scale IYυ, which was identified by a best fit with experimental results. This procedure, applied for the first time to analysis of field tests, led to

  13. Suspended solids transport: an analysis based on turbidity measurements and event based fully calibrated hydrodynamic models.

    PubMed

    Langeveld, J G; Veldkamp, R G; Clemens, F

    2005-01-01

    Modelling suspended solids transport is a key issue for predicting the pollution load discharged by CSOs. Nonetheless, there is still much debate on the main drivers for suspended solids transport and on the modelling approach to be adopted. Current sewer models provide suspended solids transport models. These models, however, rely upon erosion-deposition criteria developed in fluvial environments, therewith oversimplifying the sewer sediment characteristics. Consequently, the performance of these models is poor from a theoretical point of view. To get an improved understanding of the temporal and spatial variations in suspended solids transport, a measuring network was installed in the sewer system of Loenen in conjunction with a hydraulic measuring network from June through December 2001. During the measuring period, 15 storm events rendered high-quality data on both the hydraulics and the turbidity. For each storm event, a hydrodynamic model was calibrated using the Clemens' method. The conclusion of the paper is that modelling of suspended solids transport has been and will be one of the challenges in the field of urban drainage modelling. A direct relation of either shear stress or flow velocity with turbidity could not be found, likely because of the time varying characteristics of the suspended solids.

  14. Quantum dissipation theory and applications to quantum transport and quantum measurement in mesoscopic systems

    NASA Astrophysics Data System (ADS)

    Cui, Ping

    -electrode coupling is further proposed to recover all existing nonlinear current-voltage behaviors including the nonequilibrium Kondo effect. Transport theory based on the exact QDT formalism will be developed in future. In Chapter 8, we study the quantum measurement of a qubit with a quantum-point-contact detector. On the basis of a unified quantum master equation (a form of QDT), we study the measurement-induced relaxation and dephasing of the qubit. Our treatment pays particular attention on the detailed-balance relation, which is a consequence of properly accounting for the energy exchange between the qubit and detector during the measurement process. We also derive a conditional quantum master equation for quantum measurement in general, and study the readout characteristics of the qubit measurement. Our theory is applicable to the quantum measurement at arbitrary voltage and temperature. A number of remarkable new features are found and highlighted in concern with their possible relevance to future experiments. In Chapter 9, we discuss the further development of QDT, aiming at an efficient evaluation of many-electron systems. This will be carried out by reducing the many-particle (Fermion or Boson) QDT to a single-particle one by exploring, e.g. the Wick's contraction theorem. It also results in a time-dependent density functional theory (TDDFT) for transport through complex large-scale (e.g. molecules) systems. Primary results of the TDDFT-QDT are reported. In Chapter 10, we summary the thesis, and comment and remark on the future work on both the theoretical and application aspects of QDT.

  15. Quantum feedback by discrete quantum nondemolition measurements: Towards on-demand generation of photon-number states

    SciTech Connect

    Dotsenko, I.; Haroche, S.; Mirrahimi, M.; Brune, M.; Raimond, J.-M.; Rouchon, P.

    2009-07-15

    We propose a quantum feedback scheme for the preparation and protection of photon-number states of light trapped in a high-Q microwave cavity. A quantum nondemolition measurement of the cavity field provides information on the photon-number distribution. The feedback loop is closed by injecting into the cavity a coherent pulse adjusted to increase the probability of the target photon number. The efficiency and reliability of the closed-loop state stabilization is assessed by quantum Monte Carlo simulations. We show that, in realistic experimental conditions, the Fock states are efficiently produced and protected against decoherence.

  16. Measuring ATP Concentration in a Small Number of Murine Hematopoietic Stem Cells.

    PubMed

    Szade, Krzysztof; Zukowska, Monika; Jozkowicz, Alicja; Dulak, Jozef

    2016-01-01

    The metabolism of quiescent adult stem cells differs from the metabolism of differentiated cells. The metabolic processes are tightly regulated and their alterations disturb function of stem cells. One of the indicators of metabolic status of cells is the ATP level. While the method of measuring the ATP levels has been known for many years, estimating ATP levels in small population of defined stem cells isolated directly from the tissue has remained challenging. Here, we show our method of measuring the ATP levels in hematopoietic stem cells sorted from murine bone marrow. We used magnetic sorting as well as cell sorter and adopted the commonly used bioluminescence-based detection kits in described protocol. Our strategy allows to measure ATP levels in 1000 highly purified HSC.

  17. Shack Hartmann wave-front measurement with a large F-number plastic microlens array

    NASA Astrophysics Data System (ADS)

    Yoon, Geun Young; Jitsuno, Takahisa; Nakatsuka, Masahiro; Nakai, Sadao

    1996-01-01

    A new plastic microlens array, consisting of 900 lenslets, has been developed for the Shack Hartmann wave-front sensor. The individual lens, is 300 mu m \\times 300 mu m and has a focal length of 10 mm, which provides the same focal size, 60 mu m in diameter, with a constant peak intensity. One can improve the wave-front measurement accuracy by reducing the spot centroiding error by averaging a few frame memories of an image processor. A deformable mirror for testing the wave-front sensor gives an appropriate defocus and astigmatism, and the laser wave front is measured with a Shack Hartmann wave-front sensor. The measurement accuracy and reproducibility of our wave-front sensor are better than lambda /20 and lambda /50 ( lambda = 632.8 nm), respectively, in rms.

  18. Measuring ATP Concentration in a Small Number of Murine Hematopoietic Stem Cells.

    PubMed

    Szade, Krzysztof; Zukowska, Monika; Jozkowicz, Alicja; Dulak, Jozef

    2016-01-01

    The metabolism of quiescent adult stem cells differs from the metabolism of differentiated cells. The metabolic processes are tightly regulated and their alterations disturb function of stem cells. One of the indicators of metabolic status of cells is the ATP level. While the method of measuring the ATP levels has been known for many years, estimating ATP levels in small population of defined stem cells isolated directly from the tissue has remained challenging. Here, we show our method of measuring the ATP levels in hematopoietic stem cells sorted from murine bone marrow. We used magnetic sorting as well as cell sorter and adopted the commonly used bioluminescence-based detection kits in described protocol. Our strategy allows to measure ATP levels in 1000 highly purified HSC. PMID:27138010

  19. Extending the Capabilities of Single Particle Mass Spectrometry: I. Measurements of Aerosol Number Concentration, Size Distribution, and Asphericity

    SciTech Connect

    Vaden, Timothy D.; Imre, D.; Beranek, Josef; Zelenyuk, Alla

    2011-01-04

    Single particle mass spectrometers have traditionally been deployed to measure the size and composition of individual particles at relatively slow sampling rates that are determined by the rate at which the ionization lasers can fire and/or mass spectra can be recorded. To take advantage of the fact that under most conditions SPLAT can detect and size particles at much higher rates we developed a dual data acquisition mode, in which particle number concentrations, size distributions, and asphericity parameters are measured at a particle concentration determined rate, all the while the instrument generates and records mass-spectra at an operator set rate. We show that with this approach particle number concentration and asphericity parameters are measured with 1 sec resolution and particle vacuum aerodynamic size distributions are measured with 10 sec to 60 sec resolution. SPLAT measured particle number concentrations are in perfect agreement with the PCASP. Particle asphericity parameters are based on measured particle beam divergence. We illustrate the effect that high particle concentrations can have on the measured size distributions and develop a method to remove these effects and correct the size distributions.

  20. The Aggregate behavior of branch points--measuring the number and velocity of atmospheric turbulence layers.

    PubMed

    Oesch, Denis W; Sanchez, Darryl J; Matson, Charles L

    2010-10-11

    Optical waves propagating through atmospheric turbulence develop spatial and temporal variations in their phase. For sufficiently strong turbulence, these phase differences can lead to interference in the propagating wave and the formation of branch points; positions of zero amplitude. Under the assumption of a layered turbulence model, we show that these branch points can be used to estimate the number and velocities of atmospheric layers. We describe how to carry out this estimation process and demonstrate its robustness in the presence of sensor noise.

  1. Stability and performance characteristics of a fixed arrow wing supersonic transport configuration (SCAT 15F-9898) at Mach numbers from 0.60 to 1.20

    NASA Technical Reports Server (NTRS)

    Decker, J. P.; Jacobs, P. F.

    1978-01-01

    Tests on a 0.015 scale model of a supersonic transport were conducted at Mach numbers from 0.60 to 1.20. Tests of the complete model with three wing planforms, two different leading-edge radii, and various combinations of component parts, including both leading- and trailing-edge flaps, were made over an angle-of-attack range from about -6 deg to 13 deg and at sideslip angles of 0 deg and 2 deg.

  2. THE DEVELOPMENT OF ACHIEVEMENT MEASURES FOR TRADE AND TECHNICAL EDUCATION. PROGRESS REPORT NUMBER TWO.

    ERIC Educational Resources Information Center

    North Carolina State Univ., Raleigh.

    THE 11 INSTITUTIONS AGREEING TO PARTICIPATE IN THE STUDY TO DISCOVER MORE ADEQUATE WAYS OF MEASURING IMPORTANT TACTILE-KINESTHETIC MODALITIES WERE VISITED, AND THE OPERATING PROCEDURES AND INFORMATION ON WHAT WOULD BE EXPECTED OF EACH INSTITUTION WERE OUTLINED. APPROXIMATELY 20 INSTRUCTORS BEGAN WORK ON A DETAILED CURRICULUM ANALYSIS IN THEIR…

  3. Life Expectancy at Birth: Teaching Guide. Measures of Progress: Poster Kit Number 1.

    ERIC Educational Resources Information Center

    World Bank, Washington, DC.

    This teaching guide accompanies the Life Expectancy at Birth poster kit, which presents statistics on life expectancy from 128 countries with populations of more than one million. The statistics relate to economic development and the changes it is bringing about in the world. Sometimes called indicators, the statistics are measures of social and…

  4. Half-life Measurements of Excited Levels in Fission Products around Mass Number 150

    SciTech Connect

    Kojima, Y.; Shima, Y.; Hayashi, H.; Taniguchi, A.; Shibata, M.

    2014-06-15

    A spectrometer to measure nuclear level half-lives has been installed at the on-line isotope separator of the Kyoto University Reactor. This spectrometer consists of a LaBr3 scintillator, a thin plastic scintillator and an HPGe detector. Half-lives are deduced using the β-γ-γ delayed coincidence method. The prompt-time distribution curves measured with the spectrometer give a time resolution (FWHM) of 600 ps for 100-keV γ rays. This resolution means that half-lives down to the subnanosecond range or shorter can be measured. We reported recent measurements of the half-life of {sup 149}Pr and {sup 149}Nd. Some of the more interesting results include the first determination of the half-lives of {sup 149}Pr levels at 86.5 and 125.6 keV, which are 4.2(5) ns and 1.0(2) ns, respectively. In addition, the data indicate that the half-life of the 270.8-keV level in {sup 149}Nd is not 5.1(3) ns as reported previously, but 0.42(3) ns.

  5. A generalized method for measuring weak lensing magnification with weighted number counts

    NASA Astrophysics Data System (ADS)

    Gillis, Bryan R.; Taylor, Andy N.

    2016-03-01

    We present a derivation of a generalized optimally weighted estimator for the weak lensing magnification signal, including a calculation of errors. With this estimator, we present a local method for optimally estimating the local effects of magnification from weak gravitational lensing, using a comparison of number counts in an arbitrary region of space to the expected unmagnified number counts. We show that when equivalent lens and source samples are used, this estimator is simply related to the optimally weighted correlation function estimator used in past work and vice-versa, but this method has the benefits that it can calculate errors with significantly less computational time, that it can handle overlapping lens and source samples, and that it can easily be extended to mass-mapping. We present a proof-of-principle test of this method on data from the Canada-France-Hawaii Telescope Lensing Survey, showing that its calculated magnification signals agree with predictions from model fits to shear data. Finally, we investigate how magnification data can be used to supplement shear data in determining the best-fitting model mass profiles for galaxy dark matter haloes. We find that at redshifts greater than z ˜ 0.6, the inclusion of magnification can often significantly improve the constraints on the components of the mass profile which relate to galaxies' local environments relative to shear alone, and in high-redshift low- and medium-mass bins, it can have a higher signal-to-noise than the shear signal.

  6. Measurement of electron spin transport in graphene on 6H-silicon carbide(0001)

    NASA Astrophysics Data System (ADS)

    Abel, Joseph

    The focus of this thesis is to demonstrate the potential of wafer scale graphene spintronics. Graphene is a single atomic layer of sp 2-bonded carbon atoms that has high carrier mobilities, making it a desirable material for future nanoscale electronic devices. The vision of spintronics is to utilize the spin of the electron to produce novel high-speed low power consuming devices. Materials with long spin relaxation times and spin diffusion lengths are needed to realize these goals. Graphene is an ideal material as it meets these requirements and is amenable to planar device geometries. In this thesis, spin transport in wafer scale epitaxial graphene grown on the silicon face of silicon carbide is demonstrated. Non-local Hanle spin precession measurement devices were fabricated using graphene with and without a hafnium oxide interface layer between the ferromagnetic metal and graphene. The structural properties of the devices were investigated with Raman spectroscopy, x-ray photoelectric spectroscopy, Rutherford backscattering spectroscopy, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. The electrical properties of the graphene were measured utilizing Hall transport measurements. The magnetic properties of the contacts were investigated with vibrating sample magnetometery. The processes developed to fabricate the Hanle measurement devices are presented as well. A custom Hanle measurement setup was developed and utilized for the Hanle spin precession measurements. Spin precession is observed in the epitaxial graphene on silicon carbide, with improved spin transport properties with the utilization of a hafnium oxide barrier between the ferromagnetic contacts and graphene. The charge transport and spin transport properties are compared to determine the relevant spin relaxation mechanism in the devices. These results demonstrate that graphene has great potential for wafer scale production of future spintronic devices.

  7. Measurements of Combined Axial Mass and Heat Transport in He II.

    ERIC Educational Resources Information Center

    Johnson, Warren W.; Jones, Michael C.

    An experiment was performed that allowed measurements of both axial mass and heat transport of He-II (the superfluid phase of helium 4) in a long tube. The apparatus allowed the pressure difference and the temperature difference across the flow tube to each be independently adjusted, and the resulting steady-state values of net fluid velocity and…

  8. On the Dielectric Constant for Acetanilide: Experimental Measurements and Effect on Energy Transport

    NASA Astrophysics Data System (ADS)

    Careri, G.; Compatangelo, E.; Christiansen, P. L.; Halding, J.; Skovgaard, O.

    1987-01-01

    Experimental measurements of the dielectric constant for crystalline acetanilide powder for temperatures ranging from - 140°C to 20°C and for different hydration levels are presented. A Davydov-soliton computer model predicts dramatic changes in the energy transport and storage for typically increased values of the dielectric constant.

  9. Turbulence measurements over immobile gravel with additions of sand from supply limited to capacity transport conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurement of the turbulence that drives sand transport over and through immobile gravels is relevant to efforts to model sediment movement downstream of dams, where fine sediments are eroded from coarse substrates and are not replaced due to the presence of the upstream dam. The relative elevatio...

  10. Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report number 8, October 1--December 31, 1995

    SciTech Connect

    1996-03-15

    The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. On the other hand, Mulled Coal does not cause the fugitive and airborne dust problems normally associated with thermally dried coal. The objectives of this project are to demonstrate that: the Mulled Coal process, which has been proved to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality, and at a convincing rate of production in a commercial coal preparation plant; the wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation; and a wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems.

  11. Resonance lamp absorption measurement of OH number density and temperature in expansion tube scramjet engine tests

    NASA Technical Reports Server (NTRS)

    Lempert, Walter R.; Trucco, Richard E.; Bittner, Robert D.

    1992-01-01

    In this paper, we report results of hydroxyl radical and static temperature measurements performed in the General Applied Science Laboratories-NASA HYPULSE expansion tube facility using the microwave resonance lamp absorption technique. Data were obtained as part of a series of hydrogen/air and hydrogen/oxygen combustion tests at stagnation enthalpies corresponding to Mach 17 flight speeds. Data from a representative injector configuration is compared to a full Navier-Stokes CFD solution.

  12. Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development.

    PubMed

    Owens, Nick D L; Blitz, Ira L; Lane, Maura A; Patrushev, Ilya; Overton, John D; Gilchrist, Michael J; Cho, Ken W Y; Khokha, Mustafa K

    2016-01-26

    Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack a comprehensive understanding of transcript kinetics, which limits quantitative biology. This is an acute challenge in embryonic development, where rapid changes in gene expression dictate cell fate decisions. By ultra-high-frequency sampling of Xenopus embryos and absolute normalization of sequence reads, we present smooth gene expression trajectories in absolute transcript numbers. During a developmental period approximating the first 8 weeks of human gestation, transcript kinetics vary by eight orders of magnitude. Ordering genes by expression dynamics, we find that "temporal synexpression" predicts common gene function. Remarkably, a single parameter, the characteristic timescale, can classify transcript kinetics globally and distinguish genes regulating development from those involved in cellular metabolism. Overall, our analysis provides unprecedented insight into the reorganization of maternal and embryonic transcripts and redefines our ability to perform quantitative biology.

  13. Measurement of thermal transport using time-resolved thermal wave microscopy

    SciTech Connect

    Marat Khafizov; David H. Hurley

    2011-10-01

    A theoretical and experimental analysis of time-resolved thermal wave microscopy (TRTWM) technique used for thermal wave imaging is presented. TRTWM combines the elements of both frequency and time domain laser based thermoreflectance approaches widely used for thermal wave imaging and measurement of thermal transport. An analytical thermal wave model used for analysis is described and compared to experimental results. Implementation of TRTWM to measure thermal conductivities of materials of interest is demonstrated.

  14. Statistical Measurements of Contact Conditions of 478 Transport-airplane Landings During Routine Daytime Operations

    NASA Technical Reports Server (NTRS)

    Silsby, Norman S

    1955-01-01

    Statistical measurements of contact conditions have been obtained, by means of a special photographic technique, of 478 landings of present-day transport airplanes made during routine daylight operations in clear air at the Washington National Airport. From the measurements, sinking speeds, rolling velocities, bank angles, and horizontal speeds at the instant before contact have been evaluated and a limited statistical analysis of the results has been made and is reported in this report.

  15. Development of a scanning tunneling potentiometry system for measurement of electronic transport at short length scales

    NASA Astrophysics Data System (ADS)

    Rozler, Michael

    It is clear that complete understanding of macroscopic properties of materials is impossible without a thorough knowledge of behavior at the smallest length scales. While the past 25 years have witnessed major advances in a variety of techniques that probe the nanoscale properties of matter, electrical transport measurements -- the heart of condensed matter research -- have lagged behind, never progressing beyond bulk measurements. This thesis describes a scanning tunneling potentiometry (STP) system developed to simultaneously map the transport-related electrochemical potential distribution of a biased sample along with its surface topography, extending electronic transport measurements to the nanoscale. Combining a novel sample biasing technique with a continuous current-nulling feedback scheme pushes the noise performance of the measurement to its fundamental limit - the Johnson noise of the STM tunnel junction. The resulting 130 nV voltage sensitivity allows us to spatially resolve local potentials at scales down to 2 nm, while maintaining atomic scale STM imaging, all at scan sizes of up to 15 microns. A mm-range two-dimensional coarse positioning stage and the ability to operate from liquid helium to room temperature with a fast turn-around time greatly expand the versatility of the instrument. Use of carefully selected model materials, combined with excellent topographic and voltage resolution has allowed us to distinguish measurement artifacts caused by surface roughness from true potentiometric features, a major problem in previous STP measurements. The measurements demonstrate that STP can produce physically meaningful results for homogeneous transport as well as non-uniform conduction dominated by material microstructures. Measurements of several physically interesting materials systems are presented as well, revealing new behaviors at the smallest length sales. The results establish scanning tunneling potentiometry as a useful tool for physics and

  16. Sea level variation as an indicator of Florida current volume transport: comparisons with direct measurements.

    PubMed

    Maul, G A; Chew, F; Bushnell, M; Mayer, D A

    1985-01-18

    Sea level measurements from tide gauges at Miami, Florida, and Cat Cay, Bahamas, and bottom pressure measurements from a water depth of 50 meters off Jupiter, Florida, and a water depth of 10 meters off Memory Rock, Bahamas, were correlated with 81 concurrent direct volume transport observations in the Straits of Florida. Daily-averaged sea level from either gauge on the Bahamian side of the Straits was poorly correlated with transport. Bottom pressure off Jupiter had a linear coefficient of determination ofr(2) = 0.93, and Miami sea level, when adjusted for weather effects, had r(2) = 0.74; the standard errors of estimating transports were +/- 1.2 x 10(6) and +/- 1.9 x 10(6) cubic meters per second, respectively. A linear multivariate regression, which combined bottom pressure, weather, and the submarine cable observations between Jupiter and the Bahamas, had r(2) = 0.94 with a standard error of estimating transport of +/- 1.1 x 10(6) cubic meters per second. These results suggest that a combination of easily obtained observations is sufficient to adequatelv monitor the daily volume transport fluctuations of the Florida Current. PMID:17742102

  17. Measurement of carrier transport and recombination parameter in heavily doped silicon

    NASA Technical Reports Server (NTRS)

    Swanson, Richard M.

    1986-01-01

    The minority carrier transport and recombination parameters in heavily doped bulk silicon were measured. Both Si:P and Si:B with bulk dopings from 10 to the 17th and 10 to the 20th power/cu cm were studied. It is shown that three parameters characterize transport in bulk heavily doped Si: the minority carrier lifetime tau, the minority carrier mobility mu, and the equilibrium minority carrier density of n sub 0 and p sub 0 (in p-type and n-type Si respectively.) However, dc current-voltage measurements can never measure all three of these parameters, and some ac or time-transient experiment is required to obtain the values of these parameters as a function of dopant density. Using both dc electrical measurements on bipolar transitors with heavily doped base regions and transients optical measurements on heavily doped bulk and epitaxially grown samples, lifetime, mobility, and bandgap narrowing were measured as a function of both p and n type dopant densities. Best fits of minority carrier mobility, bandgap narrowing and lifetime as a function of doping density (in the heavily doped range) were constructed to allow accurate modeling of minority carrier transport in heavily doped Si.

  18. Lost in transportation: Information measures and cognitive limits in multilayer navigation.

    PubMed

    Gallotti, Riccardo; Porter, Mason A; Barthelemy, Marc

    2016-02-01

    Cities and their transportation systems become increasingly complex and multimodal as they grow, and it is natural to wonder whether it is possible to quantitatively characterize our difficulty navigating in them and whether such navigation exceeds our cognitive limits. A transition between different search strategies for navigating in metropolitan maps has been observed for large, complex metropolitan networks. This evidence suggests the existence of a limit associated with cognitive overload and caused by a large amount of information that needs to be processed. In this light, we analyzed the world's 15 largest metropolitan networks and estimated the information limit for determining a trip in a transportation system to be on the order of 8 bits. Similar to the "Dunbar number," which represents a limit to the size of an individual's friendship circle, our cognitive limit suggests that maps should not consist of more than 250 connection points to be easily readable. We also show that including connections with other transportation modes dramatically increases the information needed to navigate in multilayer transportation networks. In large cities such as New York, Paris, and Tokyo, more than 80% of the trips are above the 8-bit limit. Multimodal transportation systems in large cities have thus already exceeded human cognitive limits and, consequently, the traditional view of navigation in cities has to be revised substantially.

  19. Lost in transportation: Information measures and cognitive limits in multilayer navigation

    PubMed Central

    Gallotti, Riccardo; Porter, Mason A.; Barthelemy, Marc

    2016-01-01

    Cities and their transportation systems become increasingly complex and multimodal as they grow, and it is natural to wonder whether it is possible to quantitatively characterize our difficulty navigating in them and whether such navigation exceeds our cognitive limits. A transition between different search strategies for navigating in metropolitan maps has been observed for large, complex metropolitan networks. This evidence suggests the existence of a limit associated with cognitive overload and caused by a large amount of information that needs to be processed. In this light, we analyzed the world’s 15 largest metropolitan networks and estimated the information limit for determining a trip in a transportation system to be on the order of 8 bits. Similar to the “Dunbar number,” which represents a limit to the size of an individual’s friendship circle, our cognitive limit suggests that maps should not consist of more than 250 connection points to be easily readable. We also show that including connections with other transportation modes dramatically increases the information needed to navigate in multilayer transportation networks. In large cities such as New York, Paris, and Tokyo, more than 80% of the trips are above the 8-bit limit. Multimodal transportation systems in large cities have thus already exceeded human cognitive limits and, consequently, the traditional view of navigation in cities has to be revised substantially. PMID:26989769

  20. Power of Latent Growth Modeling for Detecting Linear Growth: Number of Measurements and Comparison with Other Analytic Approaches

    ERIC Educational Resources Information Center

    Fan, Xitao; Fan, Xiaotao

    2005-01-01

    The authors investigated 2 issues concerning the power of latent growth modeling (LGM) in detecting linear growth: the effect of the number of repeated measurements on LGM's power in detecting linear growth and the comparison between LGM and some other approaches in terms of power for detecting linear growth. A Monte Carlo simulation design was…

  1. 40 CFR Table C-1 to Subpart C of... - Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration...

  2. 40 CFR Table C-1 to Subpart C of... - Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration...

  3. 40 CFR Table C-1 to Subpart C of... - Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration...

  4. 40 CFR Table C-1 to Subpart C of... - Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration...

  5. An evaluation of the reliability of muscle fiber cross-sectional area and fiber number measurements in rat skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The reliability of estimating muscle fiber cross-sectional area (measure of muscle fiber size) and fiber number from only a subset of fibers in rat hindlimb muscle cross-sections has not been systematically evaluated. This study examined the variability in mean estimates of fiber cross-s...

  6. Historical Increase in the Number of Factors Measured by Commercial Tests of Cognitive Ability: Are We Overfactoring?

    ERIC Educational Resources Information Center

    Frazier, Thomas W.; Youngstrom, Eric A.

    2007-01-01

    A historical increase in the number of factors purportedly measured by commercial tests of cognitive ability may result from four distinct pressures including: increasingly complex models of intelligence, test publishers' desires to provide clinically useful assessment instruments with greater interpretive value, test publishers' desires to…

  7. Framework for evaluating transportation control measures: Energy, air quality, and mobility tradeoffs. Research report

    SciTech Connect

    Euritt, M.A.; Qin, J.; Meesomboon, J.; Walton, C.M.

    1994-07-01

    Transportation planners, engineers, and air quality analysts are increasingly understanding the need for coordinated efforts in providing efficient and effective transportation systems while addressing serious energy and environmental concerns. At present, however, transportation planning and air quality analysis models are rather incompatible. Emissions models require detailed inputs which are not generally provided by transportation planning and analysis tools. Traditionally, transportation planning is comprised of four stages: trip generation, trip distribution, mode choice, and network assignment. In general, a forecast population, auto ownership, employment, and land use are inputs into the stages sequentially. This planning process does not adequately account for the manner in which individuals make travel decisions. The only travel-related decision that can be predicted using this traditional planning method is the mode of travel, while transportation control measures (TCMs), affect trip generation and trip distribution as well as route and mode choice. Variables required for emissions estimation have not routinely been components of transportation planning models. What is needed is a methodology for combining transportation planning and analysis models with emissions factor models for predicting the effectiveness of various TCMs. The application of the macro-framework is demonstrated through analyses of two sample networks. The results show that the effectiveness of a TCM depends on the characteristics of the urban environment in which it is implemented. Failure to analyze the implication of a TCM prior to its implementation may yield results inconsistent with environmental and energy policy objectives. In addition, the results show that the choice of an emissions model is very critical in air quality analysis.

  8. Turbulent-Spot Growth Characteristics: Wind-Tunnel and Flight Measurements of Natural Transition at High Reynolds and Mach Numbers

    NASA Technical Reports Server (NTRS)

    Clark, J. P.; Jones, T. V.; LaGraff, J. E.

    2007-01-01

    A series of experiments are described which examine the growth of turbulent spots on a flat plate at Reynolds and Mach numbers typical of gas-turbine blading. A short-duration piston tunnel is employed and rapid-response miniature surface-heat-transfer gauges are used to asses the state of the boundary layer. The leading- and trailing-edge velocities of spots are reported for different external pressure gradients and Mach numbers. Also, the lateral spreading angle is determined from the heat-transfer signals which demonstrate dramatically the reduction in spot growth associated with favorable pressure gradients. An associated experiment on the development of turbulent wedges is also reported where liquid-crystal heat-transfer techniques are employed in low-speed wind tunnel to visualize and measure the wedge characteristics. Finally, both liquid crystal techniques and hot-film measurements from flight tests at Mach number of 0.6 are presented.

  9. Challenges in Measuring and Predicting Medium Term (Weeks to Annual) Aeolian Sediment Transport in Beach-Dune Systems

    NASA Astrophysics Data System (ADS)

    Delgado-Fernandez, I.

    2009-05-01

    Coastal dune budgets depend on sediment input by wind from the beach. Calculation of aeolian transport is thus a primary factor to understand coastal dune evolution and beach-dune coupled dynamics. However, measuring aeolian sediment transport in coastal areas presents fundamental technical and conceptual limitations that make numerical modeling difficult. Wind tunnel experiments isolate and reduce the number of variables to study, which is a necessary procedure to clearly manifest mechanistic relationships between cause and effect. But even with refinement and inclusion of new variables, traditional sediment transport formulas derived from wind tunnel experiments do not usually work well in natural areas. Short-term experiments may include precise instrumentation to obtain high frequency, detail time series of variables involved in aeolian transport, but inferring information at larger scales is problematic without knowledge of the timing and magnitude of particular transport events. There are two primary problems in attempting to predict sediment inputs to coastal dunes over periods of weeks, months or years: 1) to determine an appropriate set of predictive equations that incorporate complexities such as surface moisture content, beach width and the presence of vegetation; and 2) to provide quantitative data on these variables for input into the model at this time scale. Remote sensing techniques and the use of GIS software open the possibility to monitor key parameters regulating sediment transport dynamics at high spatial and temporal resolution over time scales beyond short-term experiments. These were applied at Greenwich Dunes, Prince Edward Island National Park (Canada), in an attempt to measure factors affecting aeolian sediment input to the foredune at a medium scale. Three digital cameras covering different sections of the beach and foredune provide time series on shoreline position, fetch distances, vegetation cover, ice/snow presence, or superficial

  10. Microphysics of mass-transport in coupled droplet-pairs at low Reynolds number and the role of convective dynamics

    NASA Astrophysics Data System (ADS)

    Dong, Qingming; Sau, Amalendu

    2016-06-01

    Interfacial mass-transport and redistribution in the micro-scale liquid droplets are important in diverse fields of research interest. The role of the "inflow" and the "outflow" type convective eddy-pairs in the entrainment of outer solute and internal relocation are examined for different homogeneous and heterogeneous water droplet pairs appearing in a tandem arrangement. Two micro-droplets of pure (rain) water interact with an oncoming outer air stream (Re ≤ 100) contaminated by uniformly distributed SO2. By virtue of separation/attachment induced non-uniform interfacial shear-stress gradient, the well-defined inflow/outflow type pairs of recirculating eddy-based convective motion quickly develops, and the eddies effectively attract/repel the accumulated outer solute and control the physical process of mass-transport in the droplet-pair. The non-uniformly shear-driven flow interaction and bifurcation of the circulatory internal flow lead to growth of important micro-scale "secondary" eddies which suitably regroup with the adjacent "primary" one to create the sustained inflow/outflow type convective dynamics. The presently derived flow characteristics and in-depth analysis help to significantly improve our understanding of the micro-droplet based transport phenomena in a wider context. By tuning "Re" (defined in terms of the droplet diameter and the average oncoming velocity of the outer air) and gap-ratio "α," the internal convective forcing and the solute entrainment efficiency could be considerably enhanced. The quantitative estimates for mass entrainment, convective strength, and saturation characteristics for different coupled micro-droplet pairs are extensively examined here for 0.2 ≤ α ≤ 2.0 and 30 ≤ Re ≤ 100. Interestingly, for the compound droplets, with suitably tuned radius-ratio "B" (of upstream droplet with respect to downstream one) the generated "inflow" type coherent convective dynamics helped to significantly augment the centre

  11. The relation between resolution measurements and numbers of retinal ganglion cells in the same human subjects.

    PubMed

    Popovic, Zoran; Sjöstrand, Johan

    2005-08-01

    Limiting factors of resolution have previously only been investigated by using resolution data and retinal ganglion cell spacing data from different individuals. We report on our unique opportunity to study the intra-individual relationship in three human subjects between retinal ganglion cell separations and resolution thresholds, measured with high-pass resolution perimetry. Our data show that resolution is directly proportional to half the midget population, in accordance with the hypothesis that a dichotomous midget ON/OFF population mediates resolution. PMID:15924946

  12. Optimum number of technical replicates for the measurement of compression of lamb meat.

    PubMed

    Hoban, J M; van de Ven, R J; Hopkins, D L

    2016-05-01

    Up to six (average 4.63) replicate compression values were collected on cooked m. semimembranosus of lambs that had been raised at six sites across southern Australia (n=1817). Measurements on each sample were made with one of two Lloyd Texture analyser machines, with each machine having a 0.63 cm diameter plunger. Based on a log normal model with common variance on the log scale for within sample replicate results, estimates of the within sample variability of compression values were obtained, resulting in a quality control procedure for compression testing based on the coefficient of variation. PMID:26775151

  13. A lower bound on the number of cosmic ray events required to measure source catalogue correlations

    NASA Astrophysics Data System (ADS)

    Dolci, Marco; Romero-Wolf, Andrew; Wissel, Stephanie

    2016-10-01

    Recent analyses of cosmic ray arrival directions have resulted in evidence for a positive correlation with active galactic nuclei positions that has weak significance against an isotropic source distribution. In this paper, we explore the sample size needed to measure a highly statistically significant correlation to a parent source catalogue. We compare several scenarios for the directional scattering of ultra-high energy cosmic rays given our current knowledge of the galactic and intergalactic magnetic fields. We find significant correlations are possible for a sample of >1000 cosmic ray protons with energies above 60 EeV.

  14. How to estimate how well people estimate: evaluating measures of individual differences in the approximate number system.

    PubMed

    Chesney, Dana; Bjalkebring, Par; Peters, Ellen

    2015-11-01

    At a glance, one can tell that there are more individual fruits in a pile of 100 apples than in a pile of 20 watermelons, even though the watermelons take up more space. People's ability to distinguish between such nonsymbolic numerical magnitudes without counting is derived from the approximate number system (ANS). Individual differences in this ability (ANS acuity) are emerging as an important predictor in research areas ranging from children's understanding of arithmetic to adults' use of numbers in judgment and decision making. However, ANS acuity must be assessed through proxy tasks that might not show consistent relationships with this ability. Furthermore, practical limitations often confine researchers to using abbreviated measures of this ability, whose reliability is questionable. Here, we developed and tested several novel ANS acuity measures: a nonsymbolic discrimination task designed to account for participants' lapses in attention; three estimation tasks, including one task in which participants estimated the number of dots in a briefly presented set, one in which they estimated the ratio between two sets of dots, and one in which they indicated the correct position of a set of dots on a "number-line" anchored by two sets of dots, as well as a similar number-line task using symbolic numbers. The results indicated that the discrimination task designed to account for lapses in participants' attention holds promise as a reliable measure of ANS acuity, considered in terms of both internal and test-retest reliability. We urge researchers to use acuity measures whose reliability has been demonstrated. PMID:26335207

  15. Cryogenic wind tunnel technology. A way to measurement at higher Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Beck, J. W.

    1984-01-01

    The goals, design, problems, and value of cryogenic transonic wind tunnels being developed in Europe are discussed. The disadvantages inherent in low-Reynolds-number (Re) wind tunnel simulations of aircraft flight at high Re are reviewed, and the cryogenic tunnel is shown to be the most practical method to achieve high Re. The design proposed for the European Transonic Wind tunnel (ETW) is presented: parameters include cross section. DISPLAY 83A46484/2 = 4 sq m, operating pressure = 5 bar, temperature = 110-120 K, maximum Re = 40 x 10 to the 6th, liquid N2 consumption = 40,000 metric tons/year, and power = 39,5 MW. The smaller Cologne subsonic tunnel being adapted to cryogenic use for preliminary studies is described. Problems of configuration, materials, and liquid N2 evaporation and handling and the research underway to solve them are outlined. The benefits to be gained by the construction of these costly installations are seen more in applied aerodynamics than in basic research in fluid physics. The need for parallel development of both high Re tunnels and computers capable of performing high-Re numerical analysis is stressed.

  16. Measurement of the internal magnetic fluctuation by the transport of runaways on J-TEXT

    NASA Astrophysics Data System (ADS)

    Chen, Z. Y.; Huang, D. W.; Tong, R. H.; Yan, W.; Wei, Y. N.; Ma, T. K.; Jiang, Z. H.; Zhang, X. Q.; Chen, Z. P.; Yang, Z. J.; Zhuang, G.

    2016-11-01

    The measurement of internal magnetic fluctuation is important for the study of transport in tokamak plasmas. The runaway electron transport induced by the sawtooth crash can be used to obtain the internal magnetic fluctuation. Inversed sawtooth-like activities on hard x-ray (HXR) fluxes following sawtooth activities were observed after the application of electrode biasing on J-TEXT tokamak. The runaway diffusion coefficient Dr is deduced to be about 30 m2/s according to the time delay of HXR flux peaks to the sawtooth crashes. The averaged value of normalized magnetic fluctuation in the discharges with electrode biasing was increased to the order of 1 × 10-4.

  17. Computer-implemented remote sensing techniques for measuring coastal productivity and nutrient transport systems

    NASA Technical Reports Server (NTRS)

    Butera, M. K.

    1981-01-01

    An automatic technique has been developed to measure marsh plant production by inference from a species classification derived from Landsat MSS data. A separate computer technique has been developed to calculate the transport path length of detritus and nutrients from their point of origin in the marsh to the shoreline from Landsat data. A nutrient availability indicator, the ratio of production to transport path length, was derived for each marsh-identified Landsat cell. The use of a data base compatible with the Landsat format facilitated data handling and computations.

  18. Measuring acuity of the approximate number system reliably and validly: the evaluation of an adaptive test procedure

    PubMed Central

    Lindskog, Marcus; Winman, Anders; Juslin, Peter; Poom, Leo

    2013-01-01

    Two studies investigated the reliability and predictive validity of commonly used measures and models of Approximate Number System acuity (ANS). Study 1 investigated reliability by both an empirical approach and a simulation of maximum obtainable reliability under ideal conditions. Results showed that common measures of the Weber fraction (w) are reliable only when using a substantial number of trials, even under ideal conditions. Study 2 compared different purported measures of ANS acuity as for convergent and predictive validity in a within-subjects design and evaluated an adaptive test using the ZEST algorithm. Results showed that the adaptive measure can reduce the number of trials needed to reach acceptable reliability. Only direct tests with non-symbolic numerosity discriminations of stimuli presented simultaneously were related to arithmetic fluency. This correlation remained when controlling for general cognitive ability and perceptual speed. Further, the purported indirect measure of ANS acuity in terms of the Numeric Distance Effect (NDE) was not reliable and showed no sign of predictive validity. The non-symbolic NDE for reaction time was significantly related to direct w estimates in a direction contrary to the expected. Easier stimuli were found to be more reliable, but only harder (7:8 ratio) stimuli contributed to predictive validity. PMID:23964256

  19. Measuring acuity of the approximate number system reliably and validly: the evaluation of an adaptive test procedure.

    PubMed

    Lindskog, Marcus; Winman, Anders; Juslin, Peter; Poom, Leo

    2013-01-01

    Two studies investigated the reliability and predictive validity of commonly used measures and models of Approximate Number System acuity (ANS). Study 1 investigated reliability by both an empirical approach and a simulation of maximum obtainable reliability under ideal conditions. Results showed that common measures of the Weber fraction (w) are reliable only when using a substantial number of trials, even under ideal conditions. Study 2 compared different purported measures of ANS acuity as for convergent and predictive validity in a within-subjects design and evaluated an adaptive test using the ZEST algorithm. Results showed that the adaptive measure can reduce the number of trials needed to reach acceptable reliability. Only direct tests with non-symbolic numerosity discriminations of stimuli presented simultaneously were related to arithmetic fluency. This correlation remained when controlling for general cognitive ability and perceptual speed. Further, the purported indirect measure of ANS acuity in terms of the Numeric Distance Effect (NDE) was not reliable and showed no sign of predictive validity. The non-symbolic NDE for reaction time was significantly related to direct w estimates in a direction contrary to the expected. Easier stimuli were found to be more reliable, but only harder (7:8 ratio) stimuli contributed to predictive validity. PMID:23964256

  20. Identification of Inhibitor Concentrations to Efficiently Screen and Measure Inhibition Ki Values against Solute Carrier Transporters

    PubMed Central

    Zheng, Xiaowan; Polli, James

    2010-01-01

    The objective was to identify inhibitor concentrations to efficiently screen and measure inhibition Ki values of solute carrier (SLC) transporters. The intestinal bile acid transporter and its native substrate taurocholate were used as a model system. Inhibition experiments were conducted using 27 compounds. For each compound, the inhibition constant Ki was obtained from the comprehensive inhibition profile, and referred as the reference Ki. Ki values were also estimated from various partial profiles and were compared to the reference Ki. A screening Ki was estimated from one data point and also compared to the reference Ki. Results indicate that Ki can be accurately measured using an inhibitor concentration range of only 0-Ki via five different inhibitor concentrations. Additionally, a screening concentration of 10-fold the substrate affinity Kt for potent inhibitors (Ki < 20Kt) and 100-fold Kt for nonpotent inhibitors (Ki > 20Kt) provided an accurate Ki estimation. Results were validated through inhibition studies of two other SLC transporters. In conclusion, experimental conditions to screen and measure accurate transporter inhibition constant Ki are suggested where a low range of inhibitor concentrations can be used. This approach is advantageous in that minimal compound is needed to perform studies and accommodates compounds with low aqueous solubility. PMID:20553862

  1. Correlating spin transport and electrode magnetization in a graphene spin valve: Simultaneous magnetic microscopy and non-local measurements

    SciTech Connect

    Berger, Andrew J. Page, Michael R.; Bhallamudi, Vidya P.; Chris Hammel, P.; Wen, Hua; Kawakami, Roland K.; McCreary, Kathleen M.

    2015-10-05

    Using simultaneous magnetic force microscopy and transport measurements of a graphene spin valve, we correlate the non-local spin signal with the magnetization of the device electrodes. The imaged magnetization states corroborate the influence of each electrode within a one-dimensional spin transport model and provide evidence linking domain wall pinning to additional features in the transport signal.

  2. Sequential Measurement of Intermodal Variability in Public Transportation PM2.5 and CO Exposure Concentrations.

    PubMed

    Che, W W; Frey, H Christopher; Lau, Alexis K H

    2016-08-16

    A sequential measurement method is demonstrated for quantifying the variability in exposure concentration during public transportation. This method was applied in Hong Kong by measuring PM2.5 and CO concentrations along a route connecting 13 transportation-related microenvironments within 3-4 h. The study design takes into account ventilation, proximity to local sources, area-wide air quality, and meteorological conditions. Portable instruments were compacted into a backpack to facilitate measurement under crowded transportation conditions and to quantify personal exposure by sampling at nose level. The route included stops next to three roadside monitors to enable comparison of fixed site and exposure concentrations. PM2.5 exposure concentrations were correlated with the roadside monitors, despite differences in averaging time, detection method, and sampling location. Although highly correlated in temporal trend, PM2.5 concentrations varied significantly among microenvironments, with mean concentration ratios versus roadside monitor ranging from 0.5 for MTR train to 1.3 for bus terminal. Measured inter-run variability provides insight regarding the sample size needed to discriminate between microenvironments with increased statistical significance. The study results illustrate the utility of sequential measurement of microenvironments and policy-relevant insights for exposure mitigation and management.

  3. Better Understanding Transport Related Differences Between CCMs and Trace Gas Measurements With an Idealized Stratospheric Model

    NASA Astrophysics Data System (ADS)

    Ray, E. A.; Moore, F. L.; Rosenlof, K. H.; Plummer, D. A.; Kolonjari, F.; Walker, K. A.

    2015-12-01

    We use a modified version of the tropical leaky pipe (TLP) model of the stratosphere to explore how well an idealized model can (1) reproduce global chemistry-climate model (CCM) output and (2) constrain transport characteristics necessary to replicate measurements of long-lived trace gases. The version of the TLP model we use includes the simulation of long-lived trace gases, such as SF6 and CO2, as well as photochemically active trace gases such as CFC-11, CFC-12 and N2O. The TLP model was found to accurately replicate trace gas output from the Canadian Middle Atmosphere Model (CMAM) for time-averaged profiles in the tropics and each extratropical region. With confidence that the TLP model could represent the basic transport features in CMAM we then used the TLP model to interpret differences between ACE satellite and balloon measurements and CMAM output. The TLP model is shown to uniquely determine mean circulation and recirculation (mixing between the extratropics and tropics) changes necessary for CMAM to more accurately simulate the measurements. This guidance on transport changes is novel, and cannot readily be obtained from direct comparison of CCM output with measurements. The TLP model can thus be used as a bridge between measurements and CCMs to allow more targeted modification of the CCMs than would otherwise be possible.

  4. Sequential Measurement of Intermodal Variability in Public Transportation PM2.5 and CO Exposure Concentrations.

    PubMed

    Che, W W; Frey, H Christopher; Lau, Alexis K H

    2016-08-16

    A sequential measurement method is demonstrated for quantifying the variability in exposure concentration during public transportation. This method was applied in Hong Kong by measuring PM2.5 and CO concentrations along a route connecting 13 transportation-related microenvironments within 3-4 h. The study design takes into account ventilation, proximity to local sources, area-wide air quality, and meteorological conditions. Portable instruments were compacted into a backpack to facilitate measurement under crowded transportation conditions and to quantify personal exposure by sampling at nose level. The route included stops next to three roadside monitors to enable comparison of fixed site and exposure concentrations. PM2.5 exposure concentrations were correlated with the roadside monitors, despite differences in averaging time, detection method, and sampling location. Although highly correlated in temporal trend, PM2.5 concentrations varied significantly among microenvironments, with mean concentration ratios versus roadside monitor ranging from 0.5 for MTR train to 1.3 for bus terminal. Measured inter-run variability provides insight regarding the sample size needed to discriminate between microenvironments with increased statistical significance. The study results illustrate the utility of sequential measurement of microenvironments and policy-relevant insights for exposure mitigation and management. PMID:27182735

  5. Measuring and modelling the local-scale spatio-temporal variation of urban particle number size distributions and black carbon

    NASA Astrophysics Data System (ADS)

    Ruths, Matthias; von Bismarck-Osten, Clemens; Weber, Stephan

    2014-10-01

    Mobile measurements were performed to study the spatio-temporal variation of particle number size distributions (NSD) in the range 11 < Dp < 365 nm as well as total particle number and black carbon concentrations in Braunschweig, Germany during the winter and summer period 2012/2013. The study area of about 1 km2 consisted of six different outdoor microenvironments (ME) that were classified according to different traffic intensities and dominant land use types along the measurement route. Highest averaged total number concentrations measured at roadside (RO) were 2.5 × 104 pt cm-3 (with a maximum of 7.6 × 104 pt cm-3) during winter and about 1.2 × 104 pt cm-3 on average during the summer campaign. Measurement spots which are more distant to traffic were characterised by lower concentrations of 1.6 × 104 pt cm-3 and 9.0 × 103 pt cm-3 during winter and summer, respectively. Black carbon (BC) concentrations were also clearly related to traffic emissions and resulted in concentrations of 2.8 μg m-3 on average (absolute maximum of 6.2 μg m-3) at RO-sites. The concentrations of particles and BC in the different ME (aggregated from the single measurement spots) documented the concentration of both metrics to be a function of distance of the measurement to fresh traffic emissions. A multiple regression based model was established to identify significant parameters which can be used to model the microscale variation of particle NSD in the outdoor ME. Two models with different numbers of input parameters were calculated. The first contained all measured parameters as input, the second only a reduced number consisting of TNC, BC and wind speed. Both models worked convincingly, even the approach with the limited number of input parameters. The average size integrated (TNC) deviation to observed data in all ME during both seasons was <13%. The best agreement between model and observations is given for the near-traffic ME.

  6. Phase Averaged Measurements of the Coherent Structure of a Mach Number 0.6 Jet. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Emami, S.

    1983-01-01

    The existence of a large scale structure in a Mach number 0.6, axisymmetric jet of cold air was proven. In order to further characterize the coherent structure, phase averaged measurements of the axial mass velocity, radial velocity, and the product of the two were made. These measurements yield information about the percent of the total fluctuations contained in the coherent structure. These measured values were compared to the total fluctuation levels for each quantity and the result expressed as a percent of the total fluctuation level contained in the organized structure at a given frequency. These measurements were performed for five frequencies (St=0.16, 0.32, 0.474, 0.95, and 1.26). All of the phase averaged measurements required that the jet be artificially excited.

  7. Calorimetric measurement of water transport and intracellular ice formation during freezing in cell suspensions.

    PubMed

    Mori, Shoji; Choi, Jeunghwan; Devireddy, Ram V; Bischof, John C

    2012-12-01

    The current study presents a new and novel analysis of heat release signatures measured by a differential scanning calorimeter (DSC) associated with water transport (WT), intracellular ice formation (IIF) and extracellular ice formation (EIF). Correlative cryomicroscopy experiments were also performed to validate the DSC data. The DSC and cryomicroscopy experiments were performed on human dermal fibroblast cells (HDFs) at various cytocrit values (0-0.8) at various cooling rates (0.5-250 °C/min). A comparison of the cryomicroscopy experiments with the DSC analysis show reasonable agreement in the water transport (cellular dehydration) and IIF characteristics between both the techniques with the caveat that IIF measured by DSC lagged that measured by cryomicroscopy. This was ascribed to differences in the techniques (i.e. cell vs. bulk measurement) and the possibility that not all IIF is associated with visual darkening. High and low rates of 0.5 °C/min and 250 °C/min were chosen as HDFs did not exhibit significant IIF or WT at each of these extremes respectively. Analysis of post-thaw viability data suggested that 10 °C/min was the presumptive optimal cooling rate for HDFs and was independent of the cytocrit value. The ratio of measured heat values associated with IIF (q(IIF)) to the total heat released from both IIF and water transport or from the total cell water content in the sample (q(CW)) was also found to increase as the cooling rate was increased from 10 to 250 °C/min and was independent of the sample cytocrit value. Taken together, these observations suggest that the proposed analysis is capable of deconvolving water transport and IIF data from the measured DSC latent heat thermograms in cell suspensions during freezing.

  8. Characterization of the transport properties of channel delta-doped structures by light-modulated Shubnikov-de Haas measurements

    NASA Technical Reports Server (NTRS)

    Mena, R. A.; Schacham, S. E.; Haugland, E. J.; Alterovitz, S. A.; Young, P. G.; Bibyk, S. B.; Ringel, S. A.

    1995-01-01

    The transport properties of channel delta-doped quantum well structures were characterized by conventional Hall effect and light-modulated Shubnikov-de Haas (SdH) effect measurements. The large number of carriers that become available due to the delta-doping of the channel, leads to an apparent degeneracy in the well. As a result of this degeneracy, the carrier mobility remains constant as a function of temperature from 300 K down to 1.4 K. The large amount of impurity scattering, associated with the overlap of the charge carriers and the dopants, resulted in low carrier mobilities and restricted the observation of the oscillatory magneto-resistance used to characterize the two-dimensional electron gas (2DEG) by conventional SdH measurements. By light-modulating the carriers, we were able to observe the SdH oscillation at low magnetic fields, below 1.4 tesla, and derive a value for the quantum scattering time. Our results for the ratio of the transport and quantum scattering times are lower than those previously measured for similar structures using much higher magnetic fields.

  9. Local transport measurements at mesoscopic length scales using scanning tunneling potentiometry.

    PubMed

    Wang, Weigang; Munakata, Ko; Rozler, Michael; Beasley, Malcolm R

    2013-06-01

    Under mesoscopic conditions, the transport potential on a thin film carrying a current is theoretically expected to bear spatial variation due to quantum interference. Scanning tunneling potentiometry is the ideal tool to investigate such variation, by virtue of its high spatial resolution. We report in this Letter the first detailed measurement of transport potential under mesoscopic conditions. Epitaxial graphene at a temperature of 17 K was chosen as the initial system for study because the characteristic transport length scales in this material are relatively large. Tip jumping artifacts are a major possible contribution to systematic errors; and we mitigate such problems by using custom-made slender and sharp tips manufactured by focused ion beam. In our data, we observe residual resistivity dipoles associated with topographical defects, and local peaks and dips in the potential that are not associated with topographical defects.

  10. Potential of public transit as a transportation control measure: Case studies

    SciTech Connect

    Sillings, M.

    1998-07-01

    This report is the final product of the Clean Air Project of the National Association of Regional Councils/NARC. It documents a nationwide study of transit projects and programs initiated in the wake of the 1990 Clean Air Act Amendments/CAAA and the Intermodal Surface Transportation Efficiency Act of 1991/ISTEA. The study purpose was to assess the experience, limitations, and value of public transit as a potential transportation control measure/TCM, i.e., generates significant air quality benefits by eliminating or reducing emissions from motor vehicles. Four in-depth case studies and six additional projects featured as innovations in transportation are offered as examples investigating the potential of transit as a TCM. These case studies and innovations highlight the efforts of ten metropolitan areas and transit agencies which have succeed in developing and implementing innovative transit strategies.

  11. Local Transport Measurements at Mesoscopic Length Scales Using Scanning Tunneling Potentiometry

    NASA Astrophysics Data System (ADS)

    Wang, Weigang; Munakata, Ko; Rozler, Michael; Beasley, Malcolm R.

    2013-06-01

    Under mesoscopic conditions, the transport potential on a thin film carrying a current is theoretically expected to bear spatial variation due to quantum interference. Scanning tunneling potentiometry is the ideal tool to investigate such variation, by virtue of its high spatial resolution. We report in this Letter the first detailed measurement of transport potential under mesoscopic conditions. Epitaxial graphene at a temperature of 17 K was chosen as the initial system for study because the characteristic transport length scales in this material are relatively large. Tip jumping artifacts are a major possible contribution to systematic errors; and we mitigate such problems by using custom-made slender and sharp tips manufactured by focused ion beam. In our data, we observe residual resistivity dipoles associated with topographical defects, and local peaks and dips in the potential that are not associated with topographical defects.

  12. High-Reynolds Number Active Blowing Semi-Span Force Measurement System Development

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.; Rhew, Ray D.; Acheson, Michael J.; Jones, Gregory S.; Milholen, William E.; Goodliff, Scott L.

    2012-01-01

    Recent wind-tunnel tests at the NASA Langley Research Center National Transonic Facility utilized high-pressure bellows to route air to the model for evaluating aircraft circulation control. The introduction of these bellows within the Sidewall Model Support System significantly impacted the performance of the external sidewall mounted semi-span balance. As a result of this impact on the semi-span balance measurement performance, it became apparent that a new capability needed to be built into the National Transonic Facility s infrastructure to allow for performing pressure tare calibrations on the balance in order to properly characterize its performance under the influence of static bellows pressure tare loads and bellows thermal effects. The objective of this study was to design both mechanical calibration hardware and an experimental calibration design that can be employed at the facility in order to efficiently and precisely perform the necessary loadings in order to characterize the semi-span balance under the influence of multiple calibration factors (balance forces/moments and bellows pressure/temperature). Using statistical design of experiments, an experimental design was developed allowing for strategically characterizing the behavior of the semi-span balance for use in circulation control and propulsion-type flow control testing at the National Transonic Facility.

  13. Do we really need a large number of particles to simulate bimolecular reactive transport with random walk methods? A kernel density estimation approach

    NASA Astrophysics Data System (ADS)

    Rahbaralam, Maryam; Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier

    2015-12-01

    Random walk particle tracking methods are a computationally efficient family of methods to solve reactive transport problems. While the number of particles in most realistic applications is in the order of 106-109, the number of reactive molecules even in diluted systems might be in the order of fractions of the Avogadro number. Thus, each particle actually represents a group of potentially reactive molecules. The use of a low number of particles may result not only in loss of accuracy, but also may lead to an improper reproduction of the mixing process, limited by diffusion. Recent works have used this effect as a proxy to model incomplete mixing in porous media. In this work, we propose using a Kernel Density Estimation (KDE) of the concentrations that allows getting the expected results for a well-mixed solution with a limited number of particles. The idea consists of treating each particle as a sample drawn from the pool of molecules that it represents; this way, the actual location of a tracked particle is seen as a sample drawn from the density function of the location of molecules represented by that given particle, rigorously represented by a kernel density function. The probability of reaction can be obtained by combining the kernels associated to two potentially reactive particles. We demonstrate that the observed deviation in the reaction vs time curves in numerical experiments reported in the literature could be attributed to the statistical method used to reconstruct concentrations (fixed particle support) from discrete particle distributions, and not to the occurrence of true incomplete mixing. We further explore the evolution of the kernel size with time, linking it to the diffusion process. Our results show that KDEs are powerful tools to improve computational efficiency and robustness in reactive transport simulations, and indicates that incomplete mixing in diluted systems should be modeled based on alternative mechanistic models and not on a

  14. Subdiffraction-Resolution Optical Measurements of Molecular Transport in Thin Polymer Films.

    PubMed

    Pahal, Suman; Raichur, Ashok M; Varma, Manoj M

    2016-06-01

    The measurement of molecular transport within polymer films yields information about the internal structural organization of the films and is useful in applications such as the design of polymeric capsules for drug delivery. Layer-by-layer assembly of polyelectrolyte multilayer films has been widely used in such applications where the multilayer structure often exhibits anisotropic transport resulting in different diffusivities in the lateral (parallel to the film) and transverse (normal to the film) directions. Although lateral transport can be probed using techniques such as fluorescence recovery after photobleaching (FRAP), it cannot be applied to probing transverse diffusivity in polymer films smaller than the diffraction limit of light. Here we present a technique to probe the transport of molecules tagged with fluorphores in polymer films thinner than the optical diffraction limit using the modulation of fluorescence emission depending on the distance of the tagged molecules from a metal surface. We have used this technique to probe the diffusion of proteins biotin and bovine serum albumin (BSA) in polyelectrolyte multilayer films. We also studied the interdiffusion of chains in multilayer films using this technique. We observed a 3 order of magnitude increase in interdiffusion as a function of the ionic strength of the medium. This technique, along with FRAP, will be useful in studying anisotropic transport in polymer films, even those thinner than the diffraction limit, because the signal in this technique arises only from transverse and not lateral transport. Finally, this technique is also applicable to studying the diffusion of chromophore-labeled species within a polymer film. We demonstrate this aspect by measuring the transverse diffusion of methylene blue in the PAH-PAA multilayer system.

  15. PTV measurements of Lagrangian particle transport by surface gravity wave groups

    NASA Astrophysics Data System (ADS)

    van den Bremer, Ton; Whittaker, Colin; Raby, Alison; Taylor, Paul

    2015-11-01

    We present detailed PTV (particle tracking velocimetry) measurements of the Lagrangian transport and trajectories of neutrally buoyant particles underneath two-dimensional surface gravity wave groups in a laboratory flume. By focussing our attention on wave groups of moderate steepness, we confirm the predictions of standard second-order multi-chromatic wave theory, in which the body of fluid satisfies the potential flow equations. Particles near the surface are transported forwards and their motion is dominated by Stokes drift. Particles at sufficient depth are transported backwards by the Eulerian return current that was first described by Longuet-Higgins & Stewart (1962) and forms an inseparable counterpart of Stokes drift for surface wave groups ensuring the (irrotational) mass balance holds. Finally, we provide experimental validation of a simple scaling relationship, derived based under the assumption of separation of scales, for the transition depth: the depth above which Lagrangian particles are transported forwards by the Stokes drift and below which such particles are transported backwards by the return current. We present results for a range of effective water depths.

  16. Determination of car on-road black carbon and particle number emission factors and comparison between mobile and stationary measurements

    NASA Astrophysics Data System (ADS)

    Ježek, I.; Drinovec, L.; Ferrero, L.; Carriero, M.; Močnik, G.

    2015-01-01

    We have used two methods for measuring emission factors (EFs) in real driving conditions on five cars in a controlled environment: the stationary method, where the investigated vehicle drives by the stationary measurement platform and the composition of the plume is measured, and the chasing method, where a mobile measurement platform drives behind the investigated vehicle. We measured EFs of black carbon and particle number concentration. The stationary method was tested for repeatability at different speeds and on a slope. The chasing method was tested on a test track and compared to the portable emission measurement system. We further developed the data processing algorithm for both methods, trying to improve consistency, determine the plume duration, limit the background influence and facilitate automatic processing of measurements. The comparison of emission factors determined by the two methods showed good agreement. EFs of a single car measured with either method have a specific distribution with a characteristic value and a long tail of super emissions. Measuring EFs at different speeds or slopes did not significantly influence the EFs of different cars; hence, we propose a new description of vehicle emissions that is not related to kinematic or engine parameters, and we rather describe the vehicle EF with a characteristic value and a super emission tail.

  17. Determination of car on-road black carbon and particle number emission factors and comparison between mobile and stationary measurements

    NASA Astrophysics Data System (ADS)

    Ježek, I.; Drinovec, L.; Ferrero, L.; Carriero, M.; Močnik, G.

    2014-06-01

    We have used two methods for measuring emission factors (EF) in real driving conditions on five cars in a controlled environment: the stationary method, where the investigated vehicle drives by the stationary measurement platform and the composition of the plume is measured; and the chasing method, where a mobile measurement platform drives behind the investigated vehicle. We measured EF of black carbon and particle number concentration. The stationary method was tested for repeatability at different speeds and on a slope. The chasing method was tested on a test track and compared to the portable emission measurement system. We further developed the data processing algorithm for both methods, trying to improve consistency, determine the plume duration, limit the background influence and facilitate automatic processing of measurements. The comparison of emission factors determined by the two methods showed good agreement. EFs of a single car measured with either method have a specific distribution with a characteristic value and a long tail of super emissions. Measuring EFs at different speeds or slopes did not significantly influence the EFs of different cars, hence we propose a new description of vehicle emissions that is not related to kinematic or engine parameters, rather we describe the vehicle EF with a characteristic value and a "super emission" tail.

  18. Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal-organic ionic molten salts.

    PubMed

    Chen, Fangfang; Forsyth, Maria

    2016-07-28

    Mixed salts of Ionic Liquids (ILs) and alkali metal salts, developed as electrolytes for lithium and sodium batteries, have shown a remarkable ability to facilitate high rate capability for lithium and sodium electrochemical cycling. It has been suggested that this may be due to a high alkali metal ion transference number at concentrations approaching 50 mol% Li(+) or Na(+), relative to lower concentrations. Computational investigations for two IL systems illustrate the formation of extended alkali-anion aggregates as the alkali metal ion concentration increases. This tends to favor the diffusion of alkali metal ions compared with other ionic species in electrolyte solutions; behavior that has recently been reported for Li(+) in a phosphonium ionic liquid, thus an increasing alkali transference number. The mechanism of alkali metal ion diffusion via this extended coordination environment present at high concentrations is explained and compared to the dynamics at lower concentrations. Heterogeneous alkali metal ion dynamics are also evident and, somewhat counter-intuitively, it appears that the faster ions are those that are generally found clustered with the anions. Furthermore these fast alkali metal ions appear to correlate with fastest ionic liquid solvent ions. PMID:27375042

  19. Measuring the misfit between seismograms using an optimal transport distance: application to full waveform inversion

    NASA Astrophysics Data System (ADS)

    Métivier, L.; Brossier, R.; Mérigot, Q.; Oudet, E.; Virieux, J.

    2016-04-01

    Full waveform inversion using the conventional L2 distance to measure the misfit between seismograms is known to suffer from cycle skipping. An alternative strategy is proposed in this study, based on a measure of the misfit computed with an optimal transport distance. This measure allows to account for the lateral coherency of events within the seismograms, instead of considering each seismic trace independently, as is done generally in full waveform inversion. The computation of this optimal transport distance relies on a particular mathematical formulation allowing for the non-conservation of the total energy between seismograms. The numerical solution of the optimal transport problem is performed using proximal splitting techniques. Three synthetic case studies are investigated using this strategy: the Marmousi 2 model, the BP 2004 salt model, and the Chevron 2014 benchmark data. The results emphasize interesting properties of the optimal transport distance. The associated misfit function is less prone to cycle skipping. A workflow is designed to reconstruct accurately the salt structures in the BP 2004 model, starting from an initial model containing no information about these structures. A high-resolution P-wave velocity estimation is built from the Chevron 2014 benchmark data, following a frequency continuation strategy. This estimation explains accurately the data. Using the same workflow, full waveform inversion based on the L2 distance converges towards a local minimum. These results yield encouraging perspectives regarding the use of the optimal transport distance for full waveform inversion: the sensitivity to the accuracy of the initial model is reduced, the reconstruction of complex salt structure is made possible, the method is robust to noise, and the interpretation of seismic data dominated by reflections is enhanced.

  20. Comparison of bedload transport measurements at the Suggadinbach stream with geophones and modified pipe hydrophones

    NASA Astrophysics Data System (ADS)

    Chiari, Michael; Berktold, Maximilian; Jäger, Gerald; Hübl, Johannes

    2016-04-01

    A new bedload transport monitoring station has been designed by the Institute of Mountain Risk engineering at the Suggadinbach in Austria (Vorarlberg). In cooperation with the Austrian Service for Torrent and Avalanche Control the station has been installed in June 2013 in a check dam. Two different types of measuring systems are installed: 13 Swiss type geophone sensors record the vibrations of the transported sediment. Additionally 3 modified Japanese pipe hydrophones are mounted under steel plates in order to record the acoustic signal produced by the sediment transport. Both systems can be compared directly because they are arranged consecutively in flow direction. For calibration of the sensors a series of systematic tests have been carried out during low water conditions. Sediment has been fed by a crane with a concrete container. A flume has been installed in order to obtain controlled flow and transport over the measuring system. Four different grain classes up to 64 mm and a mixture of all classes were tested. A total amount of 4 tons were fed during the experiments. The signal was recorded with 9.6 kHz. Frequency analyses were performed for different grain-classes in order to investigate the influence of the grain-size distribution on the shape of the signal and the influence of neighbouring sensors. The standard evaluation and storage procedure for 1 minute aggregated data show that the modified pipe hydrophone is able to detect finer grain-sizes than the geophone sensor.

  1. Coincidence measurements between fragment ions and the number of emitted electrons in heavy ion collisions with polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Murai, T.; Majima, T.; Kishimoto, T.; Tsuchida, H.; Itoh, A.

    2012-11-01

    We have studied multiple ionization and multifragmentation of a chlorofluorocarbon molecule, CH2FCF3, induced by collisions of 580-keV C+ ions. Coincidence measurements of product ions and the number of emitted electrons from CH2FCF3 were performed under charge-changing conditions of C+ → Cq+ (q = 0, 2, 3). A fully inclusive measurement regardless of outgoing projectile charge state was also performed by making coincidence with a pulsed ion beam. Mass distributions of fragment ions and number distributions of emitted electrons were both found to change greatly according to charge-changing conditions. Highly multiple ionization emitting up to about 10 electrons was observed in electron loss collisions.

  2. A measurement of the muon number in showers using inclined events detected at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Rodriguez, G.

    2013-06-01

    The average muon content of measured showers with zenith angles between 62∘ and 80∘ detected at the Pierre Auger Observatory is obtained as a function of shower energy using a reconstruction method specifically designed for inclined showers and the hybrid character of the detector. The reconstruction of inclined showers relies on a comparison between the measured signals at ground and reference patterns at ground level from which an overall normalization factor is obtained. Since inclined showers are dominated by muons this factor gives the relative muon size. It can be calibrated using a subsample of showers simultaneously recorded with the fluorescence detector (FD) and the surface detector (SD) which provides an independent calorimetric measurement of the energy. The muon size obtained for each shower becomes a measurement of the relative number of muons with respect to the reference distributions. The precision of the measurement is assessed using simulated events which are reconstructed using exactly the same procedure. We compare the relative number of muons versus energy as obtained to simulations. Proton simulations with QGSJETII show a factor of 2.13 ± 0.04(stat) ± 0.11(sys) at 1019eV without significant variations in the energy range explored between 4 × 1018eV to 7 × 1019eV. We find that none of the current shower models, neither for proton nor for iron primaries, are able to predict as many muons as are observed.

  3. Protactinium-231 measurement and application to a uranium series transport model

    NASA Astrophysics Data System (ADS)

    Golian, C.; Nightingale, T.; Airey, P. L.

    1984-06-01

    Precise measurements of small deviations of 230Th/ 234U and 231Pa/ 235U contribute to the modelling of the geochemical transport of uranium series nuclides. The use of alpha-spectrometry to measure the second-order daughter product 227Th was the analytical technique chosen. It was thereby assumed that the intermediate 227Ac is immobile. Complete methematical expressions for the count rate in various regions of the spectrum have been developed. They allow calculation of the initial yield from the cumulative counts of 227Th and the interfering 223Ra. 224Ra and 212Bi for extended time periods. The resulting increase in precision is particularly useful at low levels. The approach to modelling the transport of uranium series nuclides down-gradient of deposits within the Alligator Rivers Uranium Province of the Northern Territory of Australia is outlined. Some preliminary data are presented which call into question the assumption of the immobility of the 227Ac.

  4. Mobile measurements of aerosol number and volume size distributions in an Alpine valley: Influence of traffic versus wood burning

    NASA Astrophysics Data System (ADS)

    Weimer, S.; Mohr, C.; Richter, R.; Keller, J.; Mohr, M.; Prévôt, A. S. H.; Baltensperger, U.

    The spatial variability of highly time resolved size distributions was investigated in a narrow valley which provides the opportunity to study the impact of different sources on ambient particle concentrations during summer and winter time. The measurements were performed with a Fast Mobility Particle Sizer (FMPS) from TSI, Inc. on a mobile laboratory in Southern Switzerland. The results indicate enhanced number concentrations (between 150 000 and 500 000 cm -3) along the busy highway A2 which is the main transit route through the Swiss Alps connecting the northern and southern part of Switzerland. Especially the nanoparticles with diameters lower than 30 nm showed strongly increased number concentrations on the highway both in summer and winter. In winter time, high aerosol volume concentrations (PM 0.3) were found in villages where wood burning is often used for heating purposes. Both traffic and wood burning were found to be important sources for particulate mass which accumulates during temperature inversions in winter time. Traffic was the dominant and wood burning a minor source for the nanoparticle number concentration. This is important regarding health impacts and its attribution to different sources because wood burning might contribute most to particulate mass whereas at the same time and place traffic contributes most to particulate number. In addition, during summer time volatility measurements were performed with the FMPS showing that the nucleation mode prevalently seen on the highway was removed by more than 95% by thermal treatment.

  5. The large volume radiometric calorimeter system: A transportable device to measure scrap category plutonium

    SciTech Connect

    Duff, M.F.; Wetzel, J.R.; Breakall, K.L.; Lemming, J.F.

    1987-01-01

    An innovative design concept has been used to design a large volume calorimeter system. The new design permits two measuring cells to fit in a compact, nonevaporative environmental bath. The system is mounted on a cart for transportability. Samples in the power range of 0.50 to 12.0 W can be measured. The calorimeters will receive samples as large as 22.0 cm in diameter by 43.2 cm high, and smaller samples can be measured without lengthening measurement time or increasing measurement error by using specially designed sleeve adapters. This paper describes the design considerations, construction, theory, applications, and performance of the large volume calorimeter system. 2 refs., 5 figs., 1 tab.

  6. Sediment transport time measured with U-Series isotopes: Resultsfrom ODP North Atlantic Drill Site 984

    SciTech Connect

    DePaolo, Donald J.; Maher, Kate; Christensen, John N.; McManus,Jerry

    2006-06-05

    High precision uranium isotope measurements of marineclastic sediments are used to measure the transport and storage time ofsediment from source to site of deposition. The approach is demonstratedon fine-grained, late Pleistocene deep-sea sediments from Ocean DrillingProgram Site 984A on the Bjorn Drift in the North Atlantic. The sedimentsare siliciclastic with up to 30 percent carbonate, and dated by sigma 18Oof benthic foraminifera. Nd and Sr isotopes indicate that provenance hasoscillated between a proximal source during the last three interglacialperiods volcanic rocks from Iceland and a distal continental sourceduring glacial periods. An unexpected finding is that the 234U/238Uratios of the silicate portion of the sediment, isolated by leaching withhydrochloric acid, are significantly less than the secular equilibriumvalue and show large and systematic variations that are correlated withglacial cycles and sediment provenance. The 234U depletions are inferredto be due to alpha-recoil loss of234Th, and are used to calculate"comminution ages" of the sediment -- the time elapsed between thegeneration of the small (<_ 50 mu-m) sediment grains in the sourceareas by comminution of bedrock, and the time of deposition on theseafloor. Transport times, the difference between comminution ages anddepositional ages, vary from less than 10 ky to about 300 to 400 ky forthe Site 984A sediments. Long transport times may reflect prior storagein soils, on continental shelves, or elsewhere on the seafloor. Transporttime may also be a measure of bottom current strength. During the mostrecent interglacial periods the detritus from distal continental sourcesis diluted with sediment from Iceland that is rapidly transported to thesite of deposition. The comminution age approach could be used to dateQuaternary non-marine sediments, soils, and atmospheric dust, and may beenhanced by concomitant measurement of 226Ra/230Th, 230Th/234U, andcosmogenic nuclides.

  7. Two-path transport measurements with bias dependence on a triple quantum dot

    SciTech Connect

    Kotzian, M.; Rogge, M. C.; Haug, R. J.

    2013-12-04

    We present transport measurements on a lateral triple quantum dot with a star-like geometry and one lead attached to each dot. The system is studied in a regime close to established quadruple points, where all three dots are in resonance. The specific sample structure allows us to apply two different bias voltages to the two source leads and thus to study the influence between the paths with serial double dots.

  8. Using RFID and accelerometer-embedded tracers to measure probabilities of bed load transport, step lengths, and rest times in a mountain stream

    NASA Astrophysics Data System (ADS)

    Olinde, Lindsay; Johnson, Joel P. L.

    2015-09-01

    We present new measurements of bed load tracer transport in a mountain stream over several snowmelt seasons. Cumulative displacements were measured using passive tracers, which consisted of gravel and cobbles embedded with radio frequency identification tags. The timing of bed load motion during 11 transporting events was quantified with active tracers, i.e., accelerometer-embedded cobbles. Probabilities of cobble transport increased with discharge above a threshold, and exhibited slight to moderate hysteresis during snowmelt hydrographs. Dividing cumulative displacements by the number of movements recorded by each active tracer constrained average step lengths. Average step lengths increased with discharge, and distributions of average step lengths and cumulative displacements were thin tailed. Distributions of rest times followed heavy-tailed power law scaling. Rest time scaling varied somewhat with discharge and with the degree to which tracers were incorporated into the streambed. The combination of thin-tailed displacement distributions and heavy-tailed rest time distributions predict superdiffusive dispersion.

  9. CFD Study of Pectoral Fins of Larval Zebrafish: Effect of Reynolds Number and Fin Bending in Fluid Structures and Transport

    NASA Astrophysics Data System (ADS)

    Islam, Toukir; Curet, Oscar M.

    2015-11-01

    Zebrafish exhibits significant changes in fin morphology as well as fin actuation during its physical development. In larval stage (Re ~ 10), they beat pectoral fins asymmetrically during slow swimming and prey tracking and a hypothesis suggests pectoral fin motion enhances fluid mixing to assist respiration. We performed a series of computational simulations to study effect of Reynolds number (Re) and pectoral fin kinematics in the fluid dynamics and mixing around a larval zebrafish. The CFD algorithm is based on a constraint formulation where the kinematics of the zebrafish are specified. We simulated experimental zebrafish kinematics at different Re (17 to 300) and considered variations on the fin kinematics to evaluate role of fin deformation in the fluid structures generated by the pectoral fins. Using Lagrangian Coherent Structures and Lagrangian fluid tracers, we identified distinctly dynamic fluid regions and found that mixing around the pectoral fin significantly increases with Re and fin bending enhance fluid mixing at low Re. However, as zebrafish matures and its Re increases, the need to beat the pectoral fins to enhance mixing is reduced.

  10. Polysulfide transport through separators measured by a linear voltage sweep method

    NASA Astrophysics Data System (ADS)

    Cui, Yi; Fu, Yongzhu

    2015-07-01

    Shuttle of polysulfide from the sulfur cathode to lithium metal anode in rechargeable lithium-sulfur batteries is a critical issue hindering cycling efficiency and life. Several approaches have been developed to minimize it including polysulfide-blocking separators; there is a need for measuring polysulfide transport through separators. We here show a linear voltage sweep method to measure anodic (oxidization) current of polysulfide crossed separators, which can be used as a quantitative measurement of the polysulfide transport. The electrochemical oxidation of polysulfide is diffusion controlled. The electrical charge in Coulombs produced by the oxidation of polysulfide is linearly related to the concentration of polysulfide within a certain range (≤0.5 M). Separators with a high porosity (large pore size) show high anodic currents, resulting in fast capacity degradation and low Coulombic efficiencies in Li-S cells. These results demonstrate this method can be used to correlate the polysulfide transport through separators with the separator structure and battery performance, therefore provide guidance for developing new separators for lithium-sulfur batteries.

  11. Measuring Cation Transport by Na,K- and H,K-ATPase in Xenopus Oocytes by Atomic Absorption Spectrophotometry: An Alternative to Radioisotope Assays

    PubMed Central

    Dürr, Katharina L.; Tavraz, Neslihan N.; Spiller, Susan; Friedrich, Thomas

    2013-01-01

    Whereas cation transport by the electrogenic membrane transporter Na+,K+-ATPase can be measured by electrophysiology, the electroneutrally operating gastric H+,K+-ATPase is more difficult to investigate. Many transport assays utilize radioisotopes to achieve a sufficient signal-to-noise ratio, however, the necessary security measures impose severe restrictions regarding human exposure or assay design. Furthermore, ion transport across cell membranes is critically influenced by the membrane potential, which is not straightforwardly controlled in cell culture or in proteoliposome preparations. Here, we make use of the outstanding sensitivity of atomic absorption spectrophotometry (AAS) towards trace amounts of chemical elements to measure Rb+ or Li+ transport by Na+,K+- or gastric H+,K+-ATPase in single cells. Using Xenopus oocytes as expression system, we determine the amount of Rb+ (Li+) transported into the cells by measuring samples of single-oocyte homogenates in an AAS device equipped with a transversely heated graphite atomizer (THGA) furnace, which is loaded from an autosampler. Since the background of unspecific Rb+ uptake into control oocytes or during application of ATPase-specific inhibitors is very small, it is possible to implement complex kinetic assay schemes involving a large number of experimental conditions simultaneously, or to compare the transport capacity and kinetics of site-specifically mutated transporters with high precision. Furthermore, since cation uptake is determined on single cells, the flux experiments can be carried out in combination with two-electrode voltage-clamping (TEVC) to achieve accurate control of the membrane potential and current. This allowed e.g. to quantitatively determine the 3Na+/2K+ transport stoichiometry of the Na+,K+-ATPase and enabled for the first time to investigate the voltage dependence of cation transport by the electroneutrally operating gastric H+,K+-ATPase. In principle, the assay is not limited to K+-transporting

  12. Method and apparatus for measuring coupled flow, transport, and reaction processes under liquid unsaturated flow conditions

    DOEpatents

    McGrail, Bernard P.; Martin, Paul F.; Lindenmeier, Clark W.

    1999-01-01

    The present invention is a method and apparatus for measuring coupled flow, transport and reaction processes under liquid unsaturated flow conditions. The method and apparatus of the present invention permit distinguishing individual precipitation events and their effect on dissolution behavior isolated to the specific event. The present invention is especially useful for dynamically measuring hydraulic parameters when a chemical reaction occurs between a particulate material and either liquid or gas (e.g. air) or both, causing precipitation that changes the pore structure of the test material.

  13. Retrieval of sodium number density profiles in the mesosphere and lower thermosphere from SCIAMACHY limb emission measurements

    NASA Astrophysics Data System (ADS)

    Langowski, M. P.; von Savigny, C.; Burrows, J. P.; Rozanov, V. V.; Dunker, T.; Hoppe, U.-P.; Sinnhuber, M.; Aikin, A. C.

    2016-01-01

    An algorithm has been developed for the retrieval of sodium atom (Na) number density on a latitude and altitude grid from SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) limb measurements of the Na resonance fluorescence. The results are obtained between 50 and 150 km altitude and the resulting global seasonal variations of Na are analyzed. The retrieval approach is adapted from that used for the retrieval of magnesium atom (Mg) and magnesium ion (Mg+) number density profiles recently reported by Langowski et al. (2014). Monthly mean values of Na are presented as a function of altitude and latitude. This data set was retrieved from the 4 years of spectroscopic limb data of the SCIAMACHY mesosphere and lower thermosphere (MLT) measurement mode (mid-2008 to early 2012). The Na layer has a nearly constant peak altitude of 90-93 km for all latitudes and seasons, and has a full width at half maximum of 5-15 km. Small but significant seasonal variations in Na are identified for latitudes less than 40°, where the maximum Na number densities are 3000-4000 atoms cm-3. At middle to high latitudes a clear seasonal variation with a winter maximum of up to 6000 atoms cm-3 is observed. The high latitudes, which are only measured in the summer hemisphere, have lower number densities, with peak densities being approximately 1000 Na atoms cm-3. The full width at half maximum of the peak varies strongly at high latitudes and is 5 km near the polar summer mesopause, while it exceeds 10 km at lower latitudes. In summer the Na atom concentration at high latitudes and at altitudes below 88 km is significantly smaller than that at middle latitudes. The results are compared with other observations and models and there is overall a good agreement with these.

  14. Modeling Fluorescence Recovery After Photobleaching in Loaded Bone: Potential Applications in Measuring Fluid and Solute Transport in the Osteocytic Lacunar-Canalicular System

    PubMed Central

    Zhou, Xiaozhou; Novotny, John E.; Wang, Liyun

    2009-01-01

    Solute transport through the bone lacunar-canalicular system is essential for osteocyte viability and function, and it can be measured using fluorescence recovery after photobleaching (FRAP). The mathematical model developed here aims to analyze solute transport during FRAP in mechanically loaded bone. Combining both whole bone-level poroelasticity and cellular-level solute transport, we found that load-induced solute transport during FRAP is characterized by an exponential recovery rate, which is determined by the dimensionless Strouhal (St) number that characterizes the oscillation effects over the mean flows, and significant transport occurs only for St values below a threshold, when the solute stroke displacement exceeds the distance between the source and sink (the canalicular length). This threshold mechanism explains the general flow behaviors such as increasing transport with increasing magnitude and decreasing frequency. Mechanical loading is predicted to enhance transport of all tracers relative to diffusion, with the greatest enhancement for medium-sized tracers and less enhancement for small and large tracers. This study provides guidelines for future FRAP experiments, based on which the model can be used to quantify bone permeability, solute-matrix interaction, and flow velocities. These studies should provide insights into bone adaptation and metabolism, and help to treat various bone diseases and conditions. PMID:18810639

  15. Detection and correction of blinking bias in image correlation transport measurements of quantum dot tagged macromolecules.

    PubMed

    Durisic, Nela; Bachir, Alexia I; Kolin, David L; Hebert, Benedict; Lagerholm, B Christoffer; Grutter, Peter; Wiseman, Paul W

    2007-08-15

    Semiconductor nanocrystals or quantum dots (QDs) are becoming widely used as fluorescent labels for biological applications. Here we demonstrate that fluorescence fluctuation analysis of their diffusional mobility using temporal image correlation spectroscopy is highly susceptible to systematic errors caused by fluorescence blinking of the nanoparticles. Temporal correlation analysis of fluorescence microscopy image time series of streptavidin-functionalized (CdSe)ZnS QDs freely diffusing in two dimensions shows that the correlation functions are fit well to a commonly used diffusion decay model, but the transport coefficients can have significant systematic errors in the measurements due to blinking. Image correlation measurements of the diffusing QD samples measured at different laser excitation powers and analysis of computer simulated image time series verified that the effect we observe is caused by fluorescence intermittency. We show that reciprocal space image correlation analysis can be used for mobility measurements in the presence of blinking emission because it separates the contributions of fluctuations due to photophysics from those due to transport. We also demonstrate application of the image correlation methods for measurement of the diffusion coefficient of glycosyl phosphatidylinositol-anchored proteins tagged with QDs as imaged on living fibroblasts.

  16. MIM Simulation of Cl- and B Transport: Comparison with Measured Data from an Irrigated Field

    NASA Astrophysics Data System (ADS)

    Vaughan, P. J.; Suarez, D. L.

    2003-12-01

    The mobile-immobile water (MIM) model of solute transport can provide an improved representation of solute transport in soils especially for intact soil samples or field soils. The Unsatchem model of multicomponent solute transport was upgraded to include the MIM model. A field-based test of the MIM model consisted of running Unsatchem for 45 locations within a 65 ha field in the San Joaquin Valley. Soil sampling was done for 6 depths (0-1.8 m), all locations, five different sampling periods starting in November, 1995 and ending in November, 1997. Cl- transport was calculated for both standard uniform flow (UFM) and MIM models. The MIM model parameters, ω , the transfer coefficient, and θ im, the immobile water content, were varied systematically to determine their influence on the match between the model results and measured resident chloride concentrations. The MIM model performed better than UFM with the best match occurring for the highest θ im and 10-4<=ω <=10-3.

  17. Noninvasive quantitative measurement of colloid transport in mesoscale porous media using time lapse fluorescence imaging.

    PubMed

    Bridge, Jonathan W; Banwart, Steven A; Heathwaite, A Louise

    2006-10-01

    We demonstrate noninvasive quantitative imaging of colloid and solute transport at millimeter to decimeter (meso-) scale. Ultraviolet (UV) excited fluorescent solute and colloid tracers were independently measured simultaneously during co-advection through saturated quartz sand. Pulse-input experiments were conducted at constant flow rates and ionic strengths 10(-3), 10(-2) and 10(-1) M NaCl. Tracers were 1.9 microm carboxylate latex microspheres and disodium fluorescein. Spatial moments analysis was used to quantify relative changes in mass distribution of the colloid and solute tracers over time. The solute advected through the sand at a constant velocity proportional to flow rate and was described well by a conservative transport model (CXTFIT). In unfavorable deposition conditions increasing ionic strength produced significant reduction in colloid center of mass transport velocity over time. Velocity trends correlated with the increasing fraction of colloid mass retained along the flowpath. Attachment efficiencies (defined by colloid filtration theory) calculated from nondestructive retained mass data were 0.013 +/- 0.03, 0.09 +/- 0.02, and 0.22 +/- 0.05 at 10(-3), 10(-2), and 10(-1) M ionic strength, respectively, which compared well with previously published data from breakthrough curves and destructive sampling. Mesoscale imaging of colloid mass dynamics can quantify key deposition and transport parameters based on noninvasive, nondestructive, spatially high-resolution data.

  18. DUF1220 copy number is linearly associated with increased cognitive function as measured by total IQ and mathematical aptitude scores.

    PubMed

    Davis, Jonathon M; Searles, Veronica B; Anderson, Nathan; Keeney, Jonathon; Raznahan, Armin; Horwood, L John; Fergusson, David M; Kennedy, Martin A; Giedd, Jay; Sikela, James M

    2015-01-01

    DUF1220 protein domains exhibit the greatest human lineage-specific copy number expansion of any protein-coding sequence in the genome, and variation in DUF1220 copy number has been linked to both brain size in humans and brain evolution among primates. Given these findings, we examined associations between DUF1220 subtypes CON1 and CON2 and cognitive aptitude. We identified a linear association between CON2 copy number and cognitive function in two independent populations of European descent. In North American males, an increase in CON2 copy number corresponded with an increase in WISC IQ (R (2) = 0.13, p = 0.02), which may be driven by males aged 6-11 (R (2) = 0.42, p = 0.003). We utilized ddPCR in a subset as a confirmatory measurement. This group had 26-33 copies of CON2 with a mean of 29, and each copy increase of CON2 was associated with a 3.3-point increase in WISC IQ (R (2) = 0.22, p = 0.045). In individuals from New Zealand, an increase in CON2 copy number was associated with an increase in math aptitude ability (R (2) = 0.10 p = 0.018). These were not confounded by brain size. To our knowledge, this is the first study to report a replicated association between copy number of a gene coding sequence and cognitive aptitude. Remarkably, dosage variations involving DUF1220 sequences have now been linked to human brain expansion, autism severity and cognitive aptitude, suggesting that such processes may be genetically and mechanistically inter-related. The findings presented here warrant expanded investigations in larger, well-characterized cohorts.

  19. DUF1220 copy number is linearly associated with increased cognitive function as measured by total IQ and mathematical aptitude scores.

    PubMed

    Davis, Jonathon M; Searles, Veronica B; Anderson, Nathan; Keeney, Jonathon; Raznahan, Armin; Horwood, L John; Fergusson, David M; Kennedy, Martin A; Giedd, Jay; Sikela, James M

    2015-01-01

    DUF1220 protein domains exhibit the greatest human lineage-specific copy number expansion of any protein-coding sequence in the genome, and variation in DUF1220 copy number has been linked to both brain size in humans and brain evolution among primates. Given these findings, we examined associations between DUF1220 subtypes CON1 and CON2 and cognitive aptitude. We identified a linear association between CON2 copy number and cognitive function in two independent populations of European descent. In North American males, an increase in CON2 copy number corresponded with an increase in WISC IQ (R (2) = 0.13, p = 0.02), which may be driven by males aged 6-11 (R (2) = 0.42, p = 0.003). We utilized ddPCR in a subset as a confirmatory measurement. This group had 26-33 copies of CON2 with a mean of 29, and each copy increase of CON2 was associated with a 3.3-point increase in WISC IQ (R (2) = 0.22, p = 0.045). In individuals from New Zealand, an increase in CON2 copy number was associated with an increase in math aptitude ability (R (2) = 0.10 p = 0.018). These were not confounded by brain size. To our knowledge, this is the first study to report a replicated association between copy number of a gene coding sequence and cognitive aptitude. Remarkably, dosage variations involving DUF1220 sequences have now been linked to human brain expansion, autism severity and cognitive aptitude, suggesting that such processes may be genetically and mechanistically inter-related. The findings presented here warrant expanded investigations in larger, well-characterized cohorts. PMID:25287832

  20. A transverse emittance and acceptance measurement system in a low-energy beam transport line

    SciTech Connect

    Kashiwagi, H. Miyawaki, N.; Kurashima, S.; Okumura, S.

    2014-02-15

    A transverse beam emittance and acceptance measurement system has been developed to visualize the relationship between the injected beam emittance and the acceptance of a cyclotron. The system is composed of a steering magnet, two pairs of slits to limit the horizontal and vertical phase-space, a beam intensity detector just behind the slits for the emittance measurement, and a beam intensity detector in the cyclotron for the acceptance measurement. The emittance is obtained by scanning the slits and measuring the beam intensity distribution. The acceptance is obtained by measuring the distribution of relative beam transmission by injecting small emittance beams at various positions in a transverse phase-space using the slits. In the acceptance measurement, the beam from an ion source is deflected to the defined region by the slits using the steering magnet so that measurable acceptance area covers a region outside the injection beam emittance. Measurement tests were carried out under the condition of accelerating a beam of {sup 16}O{sup 6+} from 50.2 keV to 160 MeV. The emittance of the injected beam and the acceptance for accelerating and transporting the beam to the entrance of the extraction deflector were successfully measured. The relationship between the emittance and acceptance is visualized by displaying the results in the same phase-plane.

  1. Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures

    DOE PAGES

    Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; et al

    2015-11-27

    Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domainmore » thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.« less

  2. Measuring Phonon Mean Free Path Distributions by Probing Quasiballistic Phonon Transport in Grating Nanostructures

    NASA Astrophysics Data System (ADS)

    Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang

    2015-11-01

    Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.

  3. Measuring Phonon Mean Free Path Distributions by Probing Quasiballistic Phonon Transport in Grating Nanostructures.

    PubMed

    Zeng, Lingping; Collins, Kimberlee C; Hu, Yongjie; Luckyanova, Maria N; Maznev, Alexei A; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A; Chen, Gang

    2015-11-27

    Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.

  4. Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures

    SciTech Connect

    Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang

    2015-11-27

    Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.

  5. Measuring Phonon Mean Free Path Distributions by Probing Quasiballistic Phonon Transport in Grating Nanostructures.

    PubMed

    Zeng, Lingping; Collins, Kimberlee C; Hu, Yongjie; Luckyanova, Maria N; Maznev, Alexei A; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A; Chen, Gang

    2015-01-01

    Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials. PMID:26612032

  6. Measuring Phonon Mean Free Path Distributions by Probing Quasiballistic Phonon Transport in Grating Nanostructures

    PubMed Central

    Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang

    2015-01-01

    Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials. PMID:26612032

  7. Charge Transport of Self-assembled DNA Networks measured by Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Lee, Hea-Yeon; Tanaka, Hidekazu; Kawai, Tomoji

    2001-03-01

    DNA is important not only a source of biological information but also an important scaffold for nanostructure. Recently, electrical transport measurements on micrometer-long DNA ropes in film or networks have indicated that DNA behaves as a good linear conductor. A structure containing a single type of base pair appears to be a good candidate for one-dimensional energy transfer and conduction along the Ĉ-electron cloudes of stacked bases. Especially, it is found that the poly (dG)-poly (dC) DNA has the best conductivity and can act as a conducting nanowire. Here we will describe measurement of the electrical transport characteristic through double-stranded poly (dG)-poly (dC) DNA molecules using a conducting probe atomic force microscope (CP-AFM). Self-assembled poly (dG)-poly (dC) networks performing the uniform two-dimensional reticulate structure _1) show the rectification character by current-voltage (I-V) curve. Charge transport structure will be present by an asymmetric bands diagram. The research has significant implication for the application of DNA in electronic devices and DNA-based electrochemical biosensors. --- _1) T. Kanno, H. Tanaka, N. Miyoshi, T. Kawai, Jpn. J Appl. Phys., 39 (2000) L269 : L. Cai, H. Tabata, T. Kawai Appl. Phys. Lett., 77 (2000) 3105

  8. Transport of mineral dust derived from airborne wind lidar measurements during SALTRACE

    NASA Astrophysics Data System (ADS)

    Chouza, Fernando; Reitebuch, Oliver; Groß, Silke; Rahm, Stephan; Freudenthaler, Volker; Toledano, Carlos; Weinzierl, Bernadett

    2015-04-01

    During the SALTRACE field experiment conducted between the 10 of June and the 15 of July 2013, the transport and properties of Saharan dust were characterized by a 2-µm Doppler wind lidar (DWL) deployed on the DLR Falcon 20 research aircraft. Unlike aerosol lidars, the DLW is able to simultaneously measure wind fields and -by means of an adequate calibration- aerosol optical properties, which is more adequate for aerosol transport studies. The retrieved horizontal and vertical wind speed provide a direct observation of dust long range transport mechanisms across the Atlantic (e.g. by the African easterly jet) from Western Africa to the Caribbean. Vertical wind observations revealed the structure of island induced lee waves in the Cape Verde and Barbados regions. A novel method for the calibration of DWLs based on simultaneous measurements with a ground-based aerosol lidar and sun photometer was developed. After being calibrated, the system is able to retrieve quantitative aerosol backscatter and extinction coefficients, which is usually not obtained from coherent lidars. Results from the validation with a ground-based aerosol lidar in Barbados and the CALIPSO satellite instrument will be discussed.

  9. First Measurements of Edge Transport Driven by the Shoelace Antenna on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Golfinopoulos, T.; Labombard, B.; Parker, R. R.; Burke, W. M.; Hughes, J. W.; Brunner, D. F.; Davis, E. M.; Ennever, P. C.; Granetz, R. S.; Greenwald, M. J.; Irby, J. H.; Leccacorvi, R.; Marmar, E. S.; Parkin, W. C.; Porkolab, M.; Terry, J. L.; Vieira, R. F.; Wolfe, S. M.; Wukitch, S. J.; Alcator C-Mod Team

    2015-11-01

    The Shoelace antenna is a unique device designed to couple to the Quasi-Coherent Mode (QCM, k⊥ ~ 1 . 5 cm-1, 50 < f < 200 kHz) and Weakly-Coherent Mode (WCM, k⊥ ~ 1 . 5 cm-1, 200 < f < 500 kHz), continuous edge fluctuations that sustain high-performance confinement regimes by exhausting impurities. The antenna is used to explore whether modes like the QCM and WCM may be exploited to actively regulate edge transport. In initial experiments, the antenna excited a resonance at the QCM frequency and phase velocity, but transport measurements were unavailable. A subsequent redesign of the winding pitch allows the antenna to be field-aligned while mapping magnetically to the Mirror Langmuir Probe (MLP) on the last-closed flux surface. This has enabled the first measurements of edge transport induced by the antenna-driven fluctuation, which has been further enhanced by quadrupling the antenna source power. This work was supported by U.S. Department of Energy award DE-FC02-99ER54512, using Alcator C-Mod, a DOE SC User Facility.

  10. Multi-energy soft-x-ray technique for impurity transport measurements in the fusion plasma edge

    NASA Astrophysics Data System (ADS)

    Clayton, D. J.; Tritz, K.; Stutman, D.; Finkenthal, M.; Kaye, S. M.; Kumar, D.; LeBlanc, B. P.; Paul, S.; Sabbagh, S. A.

    2012-10-01

    A new diagnostic technique was developed to produce high-resolution impurity transport measurements of the steep-gradient edge of fusion plasmas. Perturbative impurity transport measurements were performed for the first time in the NSTX plasma edge (r/a ˜ 0.6 to the SOL) with short neon gas puffs, and the resulting line and continuum emission was measured with the new edge multi-energy soft-x-ray (ME-SXR) diagnostic. Neon transport is modeled with the radial impurity transport code STRAHL and the resulting x-ray emission is computed using the ADAS atomic database. The radial transport coefficient profiles D(r) and v(r), and the particle flux from the gas puff Φ(t), are the free parameters in this model and are varied to find the best fit to experimental x-ray emissivity measurements, with bolometry used to constrain the impurity source. Initial experiments were successful and results were consistent with previous measurements of core impurity transport and neoclassical transport calculations. New diagnostic tools will be implemented on NSTX-U to further improve these transport measurements.

  11. Describing and compensating gas transport dynamics for accurate instantaneous emission measurement

    NASA Astrophysics Data System (ADS)

    Weilenmann, Martin; Soltic, Patrik; Ajtay, Delia

    Instantaneous emission measurements on chassis dynamometers and engine test benches are becoming increasingly usual for car-makers and for environmental emission factor measurement and calculation, since much more information about the formation conditions can be extracted than from the regulated bag measurements (integral values). The common exhaust gas analysers for the "regulated pollutants" (carbon monoxide, total hydrocarbons, nitrogen oxide, carbon dioxide) allow measurement at a rate of one to ten samples per second. This gives the impression of having after-the-catalyst emission information with that chronological precision. It has been shown in recent years, however, that beside the reaction time of the analysers, the dynamics of gas transport in both the exhaust system of the car and the measurement system last significantly longer than 1 s. This paper focuses on the compensation of all these dynamics convoluting the emission signals. Most analysers show linear and time-invariant reaction dynamics. Transport dynamics can basically be split into two phenomena: a pure time delay accounting for the transport of the gas downstream and a dynamic signal deformation since the gas is mixed by turbulence along the way. This causes emission peaks to occur which are smaller in height and longer in time at the sensors than they are after the catalyst. These dynamics can be modelled using differential equations. Both mixing dynamics and time delay are constant for modelling a raw gas analyser system, since the flow in that system is constant. In the exhaust system of the car, however, the parameters depend on the exhaust volume flow. For gasoline cars, the variation in overall transport time may be more than 6 s. It is shown in this paper how all these processes can be described by invertible mathematical models with the focus on the more complex case of the car's exhaust system. Inversion means that the sharp emission signal at the catalyst out location can be

  12. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Astrophysics Data System (ADS)

    Meadows, B.; Davis, K.; Barrick, J. D. W.; Browell, E. V.; Chen, G.; Dobler, J. T.; Fried, A.; Lauvaux, T.; Lin, B.; McGill, M. J.; Miles, N. L.; Nehrir, A. R.; Obland, M. D.; O'Dell, C.; Sweeney, C.; Yang, M. M.

    2015-12-01

    NASA announced the research opportunity Earth Venture Suborbital - 2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport - America (ACT - America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT - America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2 and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  13. Analytical interpretation of nondiffusive phonon transport in thermoreflectance thermal conductivity measurements

    NASA Astrophysics Data System (ADS)

    Regner, K. T.; McGaughey, A. J. H.; Malen, J. A.

    2014-08-01

    We derive an analytical solution to the Boltzmann transport equation (BTE) to relate nondiffusive thermal conductivity measurements by thermoreflectance techniques to the bulk thermal conductivity accumulation function, which quantifies cumulative contributions to thermal conductivity from different mean free path energy carriers (here, phonons). Our solution incorporates two experimentally defined length scales: thermal penetration depth and heating laser spot radius. We identify two thermal resistances based on the predicted spatial temperature and heat flux profiles. The first resistance is associated with the interaction between energy carriers and the surface of the solution domain. The second resistance accounts for transport of energy carriers through the solution domain and is affected by the experimentally defined length scales. Comparison of the BTE result with that from conventional heat diffusion theory enables a mapping of mean-free-path-specific contributions to the measured thermal conductivity based on the experimental length scales. In general, the measured thermal conductivity will be influenced by the smaller of the two length scales and the surface properties of the system. The result is used to compare nondiffusive thermal conductivity measurements of silicon with first-principles-based calculations of its thermal conductivity accumulation function.

  14. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Technical Reports Server (NTRS)

    Meadows, Byron; Davis, Ken; Barrick, John; Browell, Edward; Chen, Gao; Dobler, Jeremy; Fried, Alan; Lauvaux, Thomas; Lin, Bing; McGill, Matt; Miles, Natasha; Nehrir, Amin; Obland, Michael; O'Dell, Chris; Sweeney, Colm; Yang, Melissa

    2015-01-01

    NASA announced the research opportunity Earth Venture Suborbital -2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport -America (ACT -America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT -America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  15. Effect of data length and bin numbers on distribution entropy (DistEn) measurement in analyzing healthy aging.

    PubMed

    Udhayakumar, Radhagayathri K; Karmakar, Chandan; Peng Li; Palaniswami, Marimuthu

    2015-01-01

    Complexity analysis of a given time series is executed using various measures of irregularity, the most commonly used being Approximate entropy (ApEn), Sample entropy (SampEn) and Fuzzy entropy (FuzzyEn). However, the dependence of these measures on the critical parameter of tolerance `r' leads to precarious results, owing to random selections of r. Attempts to eliminate the use of r in entropy calculations introduced a new measure of entropy namely distribution entropy (DistEn) based on the empirical probability distribution function (ePDF). DistEn completely avoids the use of a variance dependent parameter like r and replaces it by a parameter M, which corresponds to the number of bins used in the histogram to calculate it. When tested for synthetic data, M has been observed to produce a minimal effect on DistEn as compared to the effect of r on other entropy measures. Also, DistEn is said to be relatively stable with data length (N) variations, as far as synthetic data is concerned. However, these claims have not been analyzed for physiological data. Our study evaluates the effect of data length N and bin number M on the performance of DistEn using both synthetic and physiologic time series data. Synthetic logistic data of `Periodic' and `Chaotic' levels of complexity and 40 RR interval time series belonging to two groups of healthy aging population (young and elderly) have been used for the analysis. The stability and consistency of DistEn as a complexity measure as well as a classifier have been studied. Experiments prove that the parameters N and M are more influential in deciding the efficacy of DistEn performance in the case of physiologic data than synthetic data. Therefore, a generalized random selection of M for a given data length N may not always be an appropriate combination to yield good performance of DistEn for physiologic data.

  16. Measurements of Electron Transport in Foils Irradiated with a Picosecond Time Scale Laser Pulse

    SciTech Connect

    Brown, C. R. D.; Hoarty, D. J.; James, S. F.; Swatton, D.; Hughes, S. J.; Morton, J. W.; Guymer, T. M.; Hill, M. P.; Chapman, D. A.; Andrew, J. E.; Comley, A. J.; Shepherd, R.; Dunn, J.; Chen, H.; Schneider, M.; Brown, G.; Beiersdorfer, P.; Emig, J.

    2011-05-06

    The heating of solid foils by a picosecond time scale laser pulse has been studied by using x-ray emission spectroscopy. The target material was plastic foil with a buried layer of a spectroscopic tracer material. The laser pulse length was either 0.5 or 2 ps, which resulted in a laser irradiance that varied over the range 10{sup 16}-10{sup 19} W/cm{sup 2}. Time-resolved measurements of the buried layer emission spectra using an ultrafast x-ray streak camera were used to infer the density and temperature conditions as a function of laser parameters and depth of the buried layer. Comparison of the data to different models of electron transport showed that they are consistent with a model of electron transport that predicts the bulk of the target heating is due to return currents.

  17. Transport and Measurements of High-Current Electron Beams from X pinches

    SciTech Connect

    Agafonov, Alexey V.; Mingaleev, Albert R.; Romanova, Vera M.; Tarakanov, Vladimir P.; Shelkovenko, Tatiana A.; Pikuz, Sergey A.; Blesener, Isaac C.; Kusse, Bruce R.; Hammer, David A.

    2009-01-21

    Generation of electron beams is an unavoidable property of X-pinches and other pulsed-power-driven pinches of different geometry. Some issues concerning high-current electron beam transport from the X pinch to the diagnostic system and measurements of the beam current by Faraday cups with different geometry's are discussed. Of particular interest is the partially neutralized nature of the beam propagating from the X-pinch to a diagnostic system. Two scenarios of electron beam propagation from X-pinch to Faraday cup are analyzed by means of computer simulation using the PIC-code KARAT. The first is longitudinal neutralization by ions extracted from plasma at an output window of the X-pinch diode; the second is the beam transport through a plasma background between the diode and a diagnostic system.

  18. Measuring the electronic transport properties of individual nano-objects under high pressures

    NASA Astrophysics Data System (ADS)

    Caillier, C.; Ayari, A.; Le Floch, S.; Féret, H.; Guiraud, G.; San-Miguel, A.

    2011-09-01

    We describe a setup to carry out electronic transport measurements under high pressures on individual nano-objects. It is based on a home-automated three-stage gas compressor working with argon or helium up to 1 GPa. The setup was successfully tested on contacted individual nanotubes, for which we evidence strong evolutions of the transport properties. These evolutions are related to fundamental issues such as the modification of the nano-object contact resistance, the pressure-induced modification of the nano-object geometry or pressure-induced changes in the intrinsic electronic properties of the nanosystem. A cryostat has also been adapted to the pressure cell, allowing combined pressure and temperature experiments down to 12 K.

  19. Airborne lidar measurements of pollution transport in central and southern California during CalNEX 2010

    NASA Astrophysics Data System (ADS)

    Senff, C. J.; Alvarez, R. J., II; Hardesty, R.; Langford, A. O.; Banta, R. M.; Brewer, A.; Davies, F.; Sandberg, S.; Marchbanks, R.; Weickmann, A.

    2010-12-01

    During the CalNEX experiment from May through July 2010, we co-deployed NOAA’s airborne ozone and aerosol lidar TOPAZ and the University of Leeds scanning Doppler wind lidar on a Twin Otter aircraft. We flew a total of 46 missions over central and southern California, focusing primarily on the Los Angeles Basin and Sacramento areas. The downward-looking lidars provided highly resolved measurements of ozone concentration, aerosol backscatter, and wind speed and direction in the boundary layer and lower free troposphere. We will use the airborne lidar data to characterize transport of ozone and aerosols on regional and local scales. In particular, we will focus on pollutant transport between air basins and the role of flow patterns in complex terrain, such as gap flows and orographic lifting and venting along mountain slopes, on pollutant distribution.

  20. Evaluation and monitoring of transportation control measures. Final research report, September 1991-September 1995

    SciTech Connect

    Knapp, K.K.; Rao, K.S.; Crawford, J.A.; Krammes, R.A.

    1995-09-01

    The mandates of the Clean Air Act Amendments (CAAAs) and Intermodal Surface Transportation Efficiency Act (ISTEA) Congestion Mitigation and Air Quality (CMAQ) Improvement Program require the evaluation and monitoring of transportation control measure (TCM) emission impacts. The objective of the research documented herein was to investigate issues related to the evaluation and monitoring of TCM impacts. Researchers reviewed the advantages and limitations of TCM evaluation methods currently available, and identified two critical issues which influence their capabilities and accuracy. The TCM evaluation methods reviewed include the use of comparative empirical data, network-based models, and sketch-planning tools. The structure of TCM monitoring programs was also studied. Monitoring programs are presented for four TCMs: transit plazas, intersection improvements, ridesharing, and park-and-ride lots.

  1. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Dubovik, Oleg; Holben, Brent; Kaufman, Yoram; chu, Allen; Anderson, Tad; Quinn, Patricia

    2003-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  2. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies Among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Chu, Allen; Levy, Robert; Remer, Lorraine; Kaufman, Yoram; Dubovik, Oleg; Holben, Brent; Eck, Tom; Anderson, Tad; Quinn, Patricia

    2004-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, .biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERON" at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  3. Radicals and Reservoirs in the GMI Chemistry and Transport Model: Comparison to Measurements

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Stolarski, Richard S.; Strahan, Susan E.; Connell, Peter S.

    2004-01-01

    We have used a three-dimensional chemistry and transport model (CTM), developed under the Global Modeling Initiative (GMI), to carry out two simulations of the composition of the stratosphere under changing halogen loading for 1995 through 2030. The two simulations differ only in that one uses meteorological fields from a general circulation model while the other uses meteorological fields from a data assimilation system. A single year's winds and temperatures are repeated for each 36-year simulation. We compare results from these two simulations with an extensive collection of data from satellite and ground-based measurements for 1993-2000. Comparisons of simulated fields with observations of radical and reservoir species for some of the major ozone-destroying compounds are of similar quality for both simulations. Differences in the upper stratosphere, caused by transport of total reactive nitrogen and methane, impact the balance among the ozone loss processes and the sensitivity of the two simulations to the change in composition.

  4. Sensor applications and spin-transport measurements in carbon nanotube nanocomposites

    NASA Astrophysics Data System (ADS)

    Sanders, J.; Gass, J.; Srikanth, H.; Perkins, F. K.; Snow, E. S.

    2006-03-01

    Vertical and horizontal carbon nanotubes have been grown at USF using CVD and PECVD techniques with Ni and Fe nanoparticle catalysts. At NRL we have used CVD to produce carbon nanotube networks on SiO2/Si^++ substrates to build sensors for chemical and bio agents by measuring capacitance and conductance. Various chemical vapors are able to be sensed with a fast response and recovery as well as a high degree of selectivity. A microfluidic flow system has been developed to extend the sensing applications to biological analytes. It is also known that carbon nanotubes are excellent transmission channels for charge and spin transport. In addition to the biosensors, we will also report on our experiments probing charge and spin transport through nanotube networks using point contact Andreev reflection (PCAR) based on superconducting and ferromagnetic junctions. Work at USF supported by DARPA/ARO through grant # W911NF-05-1-0354

  5. Information entropy to measure the spatial and temporal complexity of solute transport in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Li, Weiyao; Huang, Guanhua; Xiong, Yunwu

    2016-04-01

    The complexity of the spatial structure of porous media, randomness of groundwater recharge and discharge (rainfall, runoff, etc.) has led to groundwater movement complexity, physical and chemical interaction between groundwater and porous media cause solute transport in the medium more complicated. An appropriate method to describe the complexity of features is essential when study on solute transport and conversion in porous media. Information entropy could measure uncertainty and disorder, therefore we attempted to investigate complexity, explore the contact between the information entropy and complexity of solute transport in heterogeneous porous media using information entropy theory. Based on Markov theory, two-dimensional stochastic field of hydraulic conductivity (K) was generated by transition probability. Flow and solute transport model were established under four conditions (instantaneous point source, continuous point source, instantaneous line source and continuous line source). The spatial and temporal complexity of solute transport process was characterized and evaluated using spatial moment and information entropy. Results indicated that the entropy increased as the increase of complexity of solute transport process. For the point source, the one-dimensional entropy of solute concentration increased at first and then decreased along X and Y directions. As time increased, entropy peak value basically unchanged, peak position migrated along the flow direction (X direction) and approximately coincided with the centroid position. With the increase of time, spatial variability and complexity of solute concentration increase, which result in the increases of the second-order spatial moment and the two-dimensional entropy. Information entropy of line source was higher than point source. Solute entropy obtained from continuous input was higher than instantaneous input. Due to the increase of average length of lithoface, media continuity increased, flow and

  6. Measurement of total acid number (TAN) and TAN boiling point distribution in petroleum products by electrospray ionization mass spectrometry.

    PubMed

    Qian, Kuangnan; Edwards, Kathleen E; Dechert, Gary J; Jaffe, Stephen B; Green, Larry A; Olmstead, William N

    2008-02-01

    We report a new method for rapid measurement of total acid number (TAN) and TAN boiling point (BP) distribution for petroleum crude and products. The technology is based on negative ion electrospray ionization mass spectrometry (ESI-MS) for selective ionization of petroleum acid and quantification of acid structures and molecular weight distributions. A chip-based nanoelectrospray system enables microscale (<200 mg) and higher throughput (20 samples/h) measurement. Naphthenic acid structures were assigned based on nominal masses of a set of predefined acid structures. Stearic acid is used as an internal standard to calibrate ESI-MS response factors for quantification purposes. With the use of structure-property correlations, boiling point distributions of TAN values can be calculated from the composition. The rapid measurement of TAN BP distributions by ESI is demonstrated for a series of high-TAN crudes and distillation cuts. TAN values determined by the technique agree well with those by the titration method. The distributed properties compare favorably with those measured by distillation and measurement of TAN of corresponding cuts.

  7. Model and measurement analysis of springtime transport and chemistry of the Pacific basin

    NASA Astrophysics Data System (ADS)

    Hess, P. G.

    2001-01-01

    Extensive chemical measurements from the Mauna Loa Observatory (MLO) Photochemistry Experiment 2c (MLOPEX 2c) (April 15 to May 15, 1992) field campaign are analyzed in relation to the photochemistry, transport, and physical losses in the Pacific basin utilizing an episodic chemical transport model christened HANK. The budgets of NOy and O3 are examined in particular, as are model-measurement discrepancies in the NOy budget. For the long-lived species the bias of the simulated means (measured minus simulated divided by measured) of CO, CH4, C2H6, C3H8, O3, and NOx is less than 20%. The bias of ln ([C3H8]/[C2H6]) is less than 4%, and the modeled and measured means of C3H8 are not significantly different. H2O2, CH3OOH, and radon agree within a standard deviation. The simulated concentrations of NOy, HNO3, and peroxyacetyl nitrate (PAN) are high, while the short-lived hydrocarbons (C2H6 and C2H4) are low. Frequency distributions and species' cross correlations are also used to diagnose and evaluate the simulation. Sensitivities in the model formulation are discussed. The results indicate that the subtropics demarcate a transition between a regime characterized by Hadley cell transport to the south and one characterized by rapid isentropic mixing to the north. Vigorous photochemical processing occurs in the remote subtropical Pacific as PAN is converted to NOx, which in turn is converted to HNO3. This rapid photochemistry is related to the slope of the isentropic surfaces in the subtropics. It maintains elevated levels of NOx in the remote Pacific, reduced levels of HNO3/NOx, and increases the net ozone production. The model and measurements show that as air masses are processed photochemically (as measured by AGE) the relative concentrations of PAN and NOx decrease, as does PAN/NOy; corresponding increases occur in HNO3, HNO3/NOx, and HNO3/NOy. In both the model and measurements, H2O2, CH3OOH, and HNO3/NOx are tracers of photochemically processed air, while high

  8. Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing a large number of atoms

    NASA Astrophysics Data System (ADS)

    Areshkin, Denis A.; Nikolić, Branislav K.

    2010-04-01

    The recent fabrication of graphene nanoribbon (GNR) field-effect transistors poses a challenge for first-principles modeling of carbon nanoelectronics due to many thousand atoms present in the device. The state of the art quantum transport algorithms, based on the nonequilibrium Green function formalism combined with the density-functional theory (NEGF-DFT), were originally developed to calculate self-consistent electron density in equilibrium and at finite bias voltage (as a prerequisite to obtain conductance or current-voltage characteristics, respectively) for small molecules attached to metallic electrodes where only a few hundred atoms are typically simulated. Here we introduce combination of two numerically efficient algorithms which make it possible to extend the NEGF-DFT framework to device simulations involving large number of atoms. Our first algorithm offers an alternative to the usual evaluation of the equilibrium part of electron density via numerical contour integration of the retarded Green function in the upper complex half-plane. It is based on the replacement of the Fermi function f(E) with an analytic function f˜(E) coinciding with f(E) inside the integration range along the real axis, but decaying exponentially in the upper complex half-plane. Although f˜(E) has infinite number of poles, whose positions and residues are determined analytically, only a finite number of those poles have non-negligible residues. We also discuss how this algorithm can be extended to compute the nonequilibrium contribution to electron density, thereby evading cumbersome real-axis integration (within the bias voltage window) of NEGFs which is very difficult to converge for systems with large number of atoms while maintaining current conservation. Our second algorithm combines the recursive formulas with the geometrical partitioning of an arbitrary multiterminal device into nonuniform segments in order to reduce the computational complexity of the retarded Green

  9. A Transport Analysis of In Situ Airborne Ozone Measurements from the 2011 DISCOVER-AQ Campaign

    NASA Astrophysics Data System (ADS)

    Arkinson, H. L.; Brent, L. C.; He, H.; Loughner, C.; Stehr, J. W.; Weinheimer, A. J.; Dickerson, R. R.

    2013-12-01

    Baltimore and Washington are currently designated as nonattainment areas with respect to the 2008 EPA National Ambient Air Quality Standard (NAAQS) for 8-hour Ozone (O3). Tropospheric O3 is the dominant component of summertime photochemical smog, and at high levels, has deleterious effects on human health, ecosystems, and materials. The University of Maryland (UMD) Regional Atmospheric Measurement Modeling and Prediction Program (RAMMPP) strives to improve understanding of air quality in the Mid-Atlantic States and to elucidate contributions of pollutants such as O3 from regional transport versus local sources through a combination of modeling and in situ measurements. The NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) project investigates the connection between column measurements and surface conditions to explore the potential of remote sensing observations in diagnosing air quality at ground level where pollutants can affect human health. During the 2011 DISCOVER-AQ field campaign, in situ airborne measurements of trace gases and aerosols were performed along the Interstate 95 corridor between Baltimore and Washington from the NASA P3B aircraft. To augment this data and provide regional context, measurements of trace gases and aerosols were also performed by the RAMMPP Cessna 402B aircraft over nearby airports in Maryland and Virginia. This work presents an analysis of O3 measurements made by the Ultraviolet (UV) Photometric Ambient O3 Analyzer on the RAMMPP Cessna 402B and by the NCAR 4-Channel Chemiluminescence instrument on the NASA P3B. In this analysis, spatial and temporal patterns of O3 data are examined within the context of forward and backward trajectories calculated from 12-km North American Mesoscale (NAM) meteorological data using the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model and from a high resolution Weather Research and

  10. The application of electrical resistance measurements to water transport in lime-masonry systems

    NASA Astrophysics Data System (ADS)

    Ball, R. J.; Allen, G. C.; Carter, M. A.; Wilson, M. A.; Ince, C.; El-Turki, A.

    2012-03-01

    The paper describes an experimental determination of impedance spectroscopy derived resistance measurements to record water transport in lime-masonry systems. It strongly supports the use of Sharp Front theory and Boltzmann's distribution law of statistical thermodynamics to corroborate the data obtained. A novel approach is presented for the application of impedance measurements to the water transport between freshly mixed mortars and clay brick substrates. Once placed, fresh mortar is dewatered by brick and during this time the volume fraction water content of the mortar is reduced. An equation is derived relating this change in water content to the bulk resistance of the mortar. Experimental measurements on hydraulic lime mortars placed in contact with brick prisms confirm the theoretical predictions. Further, the results indicate the time at which dewatering of a mortar bed of given depth is completed. The technique has then potential to be applied for in situ monitoring of dewatering as a means of giving insight into the associated changes in mechanical and chemical properties.

  11. A digitally configurable measurement platform using audio cards for high-resolution electronic transport studies

    NASA Astrophysics Data System (ADS)

    Gopman, D. B.; Bedau, D.; Kent, A. D.

    2012-05-01

    We report on a software-defined digitally configurable measurement platform for determining electronic transport properties in nanostructures with small readout signals. By using a high-resolution audio analog-to-digital/digital-to-analog converter in a digitally compensated bridge configuration we significantly increase the measurement speed compared to established techniques and simultaneously acquire large and small signal characteristics. We characterize the performance (16 bit resolution, 100 dB dynamic range at 192 kS/s) and demonstrate the application of this measurement platform for studying the transport properties of spin-valve nanopillars, a two-terminal device that exhibits giant magnetoresistance and whose resistance can be switched between two levels by applied magnetic fields and by currents applied by the audio card. The high resolution and fast sampling capability permits rapid acquisition of deep statistics on the switching of a spin-valve nanopillar and reduces the time to acquire the basic properties of the device - a state-diagram showing the magnetic configurations as function of applied current and magnetic field - by orders of magnitude.

  12. A nu-space for ICS: characterization and application to measure protein transport in live cells

    PubMed Central

    Potvin-Trottier, Laurent; Chen, Lingfeng; Horwitz, Alan Rick; Wiseman, Paul W.

    2013-01-01

    We introduce a new generalized theoretical framework for image correlation spectroscopy (ICS). Using this framework, we extend the ICS method in time-frequency (ν, nu) space to map molecular flow of fluorescently tagged proteins in individual living cells. Even in the presence of a dominant immobile population of fluorescent molecules, nu-space ICS (nICS) provides an unbiased velocity measurement, as well as the diffusion coefficient of the flow, without requiring filtering. We also develop and characterize a tunable frequency-filter for STICS that allows quantification of the density, the diffusion coefficient and the velocity of biased diffusion. We show that the techniques are accurate over a wide range of parameter space in computer simulation. We then characterize the retrograde flow of adhesion proteins (α6- and αLβ2-GFP integrins and mCherry-paxillin) in CHO.B2 cells plated on laminin and ICAM ligands respectively. STICS with a tunable frequency filter, in conjunction with nICS, measures two new transport parameters, the density and transport bias coefficient (a measure of the diffusive character of a flow/biased diffusion), showing that molecular flow in this cell system has a significant diffusive component. Our results suggest that the integrinligand interaction, along with the internal myosin-motor generated force, varies for different integrin-ligand pairs, consistent with previous results. PMID:24223019

  13. A digitally configurable measurement platform using audio cards for high-resolution electronic transport studies.

    PubMed

    Gopman, D B; Bedau, D; Kent, A D

    2012-05-01

    We report on a software-defined digitally configurable measurement platform for determining electronic transport properties in nanostructures with small readout signals. By using a high-resolution audio analog-to-digital/digital-to-analog converter in a digitally compensated bridge configuration we significantly increase the measurement speed compared to established techniques and simultaneously acquire large and small signal characteristics. We characterize the performance (16 bit resolution, 100 dB dynamic range at 192 kS/s) and demonstrate the application of this measurement platform for studying the transport properties of spin-valve nanopillars, a two-terminal device that exhibits giant magnetoresistance and whose resistance can be switched between two levels by applied magnetic fields and by currents applied by the audio card. The high resolution and fast sampling capability permits rapid acquisition of deep statistics on the switching of a spin-valve nanopillar and reduces the time to acquire the basic properties of the device - a state-diagram showing the magnetic configurations as function of applied current and magnetic field - by orders of magnitude. PMID:22667635

  14. A Backward Modeling Study of Intercontinental Pollution Transport Using Aircraft Measurements

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Forster, C.; Eckhardt, S.; Huntrieser, H.; Heland, J.; Schlager, H.; Aufmhoff, H.; Arnold, F.; Cooper, O.

    2002-12-01

    In this paper we present simulations with a Lagrangian particle dispersion model to study the intercontinental transport of pollution from North America during an aircraft measurement campaign over Europe. The model was used for both the flight planning and a detailed source analysis after the campaign, which is described here with examples from two episodes. First, forward calculations of emission tracers from North America, Europe and Asia were made to understand the transport processes. Both episodes were preceded by stagnant conditions over North America, leading to the accumulation of pollutants in the North American boundary layer. This pollution was then exported by warm conveyor belts to the middle and upper troposphere, and transported rapidly to Europe. Concentrations of many chemical trace species (CO, NOy, CO2, acetone, and several VOCs; O3 in one case) measured aboard the research aircraft were clearly enhanced in the pollution plumes compared to the conditions outside the plumes. Backward simulations with the particle model were introduced as an indispensable tool for a more detailed analysis of the plume's source region. They make trajectory analyses, which to date were mainly used to interpret aircraft measurement data, obsolete for establishing source-receptor relationships. Using an emission inventory, we could decompose the tracer mixing ratios at the receptors (i.e., along the flight tracks) into contributions from every grid cell of the inventory. For both North America plumes, we found that emission sources contributing to the tracer concentrations over Europe were distributed over large areas in North America. In one case, the region around New York was clearly the largest contributor, but in the other case, sources in California, Texas, and Florida contributed almost equally. Smaller contributions were made by sources reaching from the Yucatan peninsula to Canada in this case.

  15. Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis

    SciTech Connect

    Yang, S T; Matthews, M J; Elhadj, S; Draggoo, V G; Bisson, S E

    2009-07-07

    In situ spatial and temporal temperature measurements of pristine fused silica surfaces heated with a 10.6 {micro}m CO{sub 2} laser were obtained using an infrared radiation thermometer based on a Mercury Cadmium Telluride (MCT) camera. Laser spot sizes ranged from 250 {micro}m to 1000 {micro}m diameter with peak axial irradiance levels of 0.13 to 16 kW/cm{sup 2}. For temperatures below 2800K, the measured steady-state surface temperature is observed to rise linearly with both increasing beam size and incident laser irradiance. The effective thermal conductivity estimated over this range was approximately 2W/mK, in good agreement with classical calculations based on phonon heat capacities. Similarly, time-dependent temperature measurements up to 2000K yielded thermal diffusivity values which were close to reported values of 7 x 10{sup -7} m{sup 2}/s. Above {approx}2800K, the fused silica surface temperature asymptotically approaches 3100K as laser power is further increased, consistent with the onset of evaporative heat losses near the silica boiling point. These results show that in the laser heating regime studied here, the T{sup 3} temperature dependent thermal conductivity due to radiation transport can be neglected, but at temperatures above 2800K heat transport due to evaporation must be considered. The thermal transport in fused silica up to 2800K, over a range of conditions, can then be adequately described by a linear diffusive heat equation assuming constant thermal properties.

  16. Heat transfer measurements on an incidence-tolerant low pressure turbine blade in a high speed linear cascade at low to moderate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Moualeu, Leolein Patrick Gouemeni

    Runway-independent aircraft are expected to be the future for short-haul flights by improving air transportation and reducing area congestion encountered in airports. The Vehicle Systems Program of NASA identified a Large Civil Tilt-Rotor, equipped with variable-speed power-turbine engines, as the best concept. At cruise altitude, the engine rotor-speed will be reduced by as much as the 50% of take-off speed. The large incidence variation in the low pressure turbine associated with the change in speed can be detrimental to the engine performance. Low pressure turbine blades in cruise altitude are more predisposed to develop regions of boundary layer separation. Typical phenomenon such as impinging wakes on downstream blades and mainstream turbulences enhance the complexity of the flow in low pressure turbines. It is therefore important to be able to understand the flow behavior to accurately predict the losses. Research facilities are seldom able to experimentally reproduce low Reynolds numbers at relevant engine Mach number. Having large incidence swing as an additional parameter in the investigation of the boundary layer development, on a low pressure turbine blade, makes this topic unique and as a consequence requires a unique facility to conduct the experimental research. The compressible flow wind tunnel facility at the University of North Dakota had been updated to perform steady state experiments on a modular-cascade, designed to replicate a large variation of the incidence angles. The high speed and low Reynolds number facility maintained a sealed and closed loop configuration for each incidence angle. The updated facility is capable to produce experimental Reynolds numbers as low as 45,000 and as high as 570,000 at an exit Mach number of 0.72. Pressure and surface temperature measurements were performed at these low pressure turbine conditions. The present thesis investigates the boundary layer development on the surface of an Incidence-tolerant blade. The

  17. Measurement of absolute CO number densities in CH3F/O2 plasmas by optical emission self-actinometry

    NASA Astrophysics Data System (ADS)

    Karakas, Erdinc; Kaler, Sanbir; Lou, Qiaowei; Donnelly, Vincent M.; Economou, Demetre J.

    2014-02-01

    CH3F/O2 inductively coupled plasmas at 10 mTorr were investigated using optical emission spectroscopy. A ‘self-actinometry’ method was developed to measure the absolute number density of CO that formed in reactions following dissociation of CH3F and O2 in the plasma. In this method, small amounts of CO were added to the plasma, leading to small increases in the CO emission intensity. By carefully accounting for small perturbations to the plasma electron density and/or electron energy distribution, and by showing that very little of the CO added to the plasma was decomposed by electron impact or other reactions, it was possible to derive absolute number densities for the CO content of the plasma. With equal fractions (0.50) of CH3F and O2 in the feed gas, the CO mole fraction as a function of plasma power saturated at a value of 0.20-0.25. As O2 in the feed gas was varied at a constant power of 100 W, the CO mole fraction went through a maximum of about 0.25 near an O2 feed gas fraction of 0.5. The relative CO number densities determined by ‘standard’ actinometry followed the same functional dependence as the absolute mole fractions determined by self-actinometry, aided by the fact that electron temperature did not change appreciably with power or feed gas composition.

  18. On measurements and their quality. Paper 4: verbal anchors and the number of response options in rating scales.

    PubMed

    Beckstead, Jason W

    2014-05-01

    This is the last in a short series of papers on measurement theory and practice with particular relevance to intervention research in nursing, midwifery, and healthcare. Understanding how it is that people respond to the questions posed by researchers is fundamental to progress in the social and health sciences. For decades methodologists in psychology, marketing, education, and survey research have studied this issue. In this paper I review this diverse empirical literature to synthesize basic principles for creating rating scales which can reduce measurement error and increase the quality of resulting data. After introducing a theoretical framework known as the cognitive aspects of survey methods (CASM), I review the fundamentals of psychological scaling theory and discuss how it has been used to study the meanings of verbal response options and provide an illustration of how the quality of measurements may be influenced by our choice of the verbal phrases we present as response options. Next, I review the research on the optimal number of response options to use in various measurement situations and how verbal and numeric anchors can combine to influence data quality. Finally, I summarize the issues covered and present recommendations for best practice when creating and using rating scales in research. PMID:24125584

  19. Copy number of adenoviral vector genome transduced into target cells can be measured using quantitative PCR: application to vector titration.

    PubMed

    Pei, Zheng; Kondo, Saki; Kanegae, Yumi; Saito, Izumu

    2012-01-20

    Both transfection and adenovirus vectors are commonly used in studies measuring gene expression. However, the real DNA copy number that is actually transduced into target cells cannot be measured using quantitative PCR because attached DNA present on the cell surface is difficult to distinguish from successfully transduced DNA. Here, we used Cre/loxP system to show that most of the transfected DNA was in fact attached to the cell surface; in contrast, most of the viral vector DNA used to infect the target cells was present inside the cells after the cells were washed according to the conventional infection protocol. We applied this characteristic to adenoviral vector titration. Current methods of vector titration using the growth of 293 cells are influenced by the effect of the expressed gene product as well as the cell conditions and culture techniques. The titration method proposed here indicates the copy numbers introduced to the target cells using a control vector that is infected in parallel (relative vector titer: rVT). Moreover, the new titration method is simple and reliable and may replace the current titration methods of viral vectors.

  20. Temperature dependent spin transport properties of platinum inferred from spin Hall magnetoresistance measurements

    SciTech Connect

    Meyer, Sibylle Althammer, Matthias; Geprägs, Stephan; Opel, Matthias; Goennenwein, Sebastian T. B.; Gross, Rudolf

    2014-06-16

    We study the temperature dependence of the spin Hall magnetoresistance (SMR) in yttrium iron garnet/platinum hybrid structures via magnetization orientation dependent magnetoresistance measurements. Our experiments show a decrease of the SMR magnitude with decreasing temperature. Using the sensitivity of the SMR to the spin transport properties of the normal metal, we interpret our data in terms of a decrease of the spin Hall angle in platinum from 0.11 at room temperature to 0.075 at 10 K, while the spin diffusion length and the spin mixing conductance of the ferrimagnetic insulator/normal metal interface remain almost constant.

  1. Measurement of Temperature, Density, and Particle Transport with Localized Dopants in Wire-Array Z Pinches

    SciTech Connect

    Jones, B.; Deeney, C.; McKenney, J. L.; Ampleford, D. J.; Coverdale, C. A.; LePell, P. D.; Shelton, K. P.; Safronova, A. S.; Kantsyrev, V. L.; Osborne, G.; Sotnikov, V. I.; Ivanov, V. V.; Fedin, D.; Nalajala, V.; Yilmaz, F.; Shrestha, I.

    2008-03-14

    Axially localized NaF dopants are coated onto Al cylindrical wire arrays in order to act as spectroscopic tracers in the stagnated z-pinch plasma. Non-local-thermodynamic-equilibrium kinetic models fit to Na K-shell lines provide an independent measurement of the density and temperature that is consistent with spectroscopic analysis of K-shell emissions from Al and an alloyed Mg dopant. Axial transport of the Na dopant is observed, enabling quantitative study of instabilities in dense z-pinch plasmas.

  2. Measurement of hot electron transport in overdense plasma VIA self induced giant magnetic pulses

    NASA Astrophysics Data System (ADS)

    Mondal, S.; Narayanan, V.; Lad, Amit D.; Ahmed, Saima; Sengupta, S.; Das, A.; Sheng, Z. M.; Kaw, P. K.; Kumar, G. Ravindra

    2010-08-01

    Spatial and temporal resolved ultrashort(8ps) multimegagauss(65 MG) magnetic field has been measured in plasma produced on Al-coated BK-7 glass by the interaction of a relativististic intensity laser(4x1018W/cm2, 30 fs) using pump-probe polarimetry. The 2D profile of magnetic field is captured using a CCD camera. Mapping of this magnetic field maps the transport of relativistic electrons in the plasma. The magnetic field profiles indicate filamentary behavior (Weibel-like instability). Particle in cell simulation are used to explain the result obtained.

  3. Adsorbate-induced quantum Hall system probed by scanning tunneling spectroscopy combined with transport measurements

    SciTech Connect

    Masutomi, Ryuichi Okamoto, Tohru

    2015-06-22

    An adsorbate-induced quantum Hall system at the cleaved InSb surfaces is investigated in magnetic fields up to 14 T using low-temperature scanning tunneling microscopy and spectroscopy combined with transport measurements. We show that an enhanced Zeeman splitting in the Shubnikov-de Haas oscillations is explained by an exchange enhancement of spin splitting and potential disorder, both of which are obtained from the spatially averaged density of states (DOS). Moreover, the Altshuler–Aronov correlation gap is observed in the spatially averaged DOS at 0 T.

  4. Quantum transport measurement of few-layer WTe2 field effect devices

    NASA Astrophysics Data System (ADS)

    Chen, Jianhao; Liu, Xin; Tian, Shibing; Zhang, Chenglong; Jia, Shuang

    2015-03-01

    We have performed systematic quantum transport measurement on field effect devices fabricated from few-layer WTe2 single crystals. We found that the magnetoresistance of few-layer WTe2 could be very different from that of bulk samples, which may arise from the imbalance of electron and hole carriers in the samples. We shall discuss our findings in more details in light of recent progress in our experiment. This work is supported by National Natural Science Foundation of China (11374021 and 11327406); by China Ministry of Science and Technology under Contract # 2014CB920900 and 2013CB921900; and by the Young 1000-Talent Program of China.

  5. Turbulent transport and length scale measurement experiments with comfined coaxial jets

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Roback, R.

    1984-01-01

    A three phase experimental study of mixing downstream of swirling and nonswirling confined coaxial jets was conducted to obtain data for the evaluation and improvement of turbulent transport models currently employed in a variety of computational procedures. The present effort was directed toward the acquisition of length scale and dissipation rate data that provide more accurate inlet boundary conditions for the computational procedures and a data base to evaluate the turbulent transport models in the near jet region where recirculation does not occur, and the acquisition of mass and momentum turbulent transport data for a nonswirling flow condition with a blunt inner jet inlet configuration rather than the tapered inner jet inlet. A measurement technique, generally used to obtain approximate integral length and microscales of turbulence and dissipation rates, was computerized. Results showed the dissipation rate varied by 2 1/2 orders of magnitude across the inlet plane, by 2 orders of magnitude 51 mm from the inlet plane, and by 1 order of magnitude at 102 mm from the inlet plane for a nonswirling flow test conditions.

  6. Gold nanoparticles grown inside carbon nanotubes: synthesis and electrical transport measurements

    PubMed Central

    2014-01-01

    The hybrid structures composed of gold nanoparticles and carbon nanotubes were prepared using porous alumina membranes as templates. Carbon nanotubes were synthesized inside the pores of these templates by the non-catalytic decomposition of acetylene. The inner cavity of the supported tubes was used as nanoreactors to grow gold particles by impregnation with a gold salt, followed by a calcination-reduction process. The samples were characterized by transmission electron microscopy and X-ray energy dispersion spectroscopy techniques. The resulting hybrid products are mainly encapsulated gold nanoparticles with different shapes and dimensions depending on the concentration of the gold precursor and the impregnation procedure. In order to understand the electronic transport mechanisms in these nanostructures, their conductance was measured as a function of temperature. The samples exhibit a ‘non-metallic’ temperature dependence where the dominant electron transport mechanism is 1D hopping. Depending on the impregnation procedure, the inclusion of gold nanoparticles inside the CNTs can introduce significant changes in the structure of the tubes and the mechanisms for electronic transport. The electrical resistance of these hybrid structures was monitored under different gas atmospheres at ambient pressure. Using this hybrid nanostructures, small amounts of acetylene and hydrogen were detected with an increased sensibility compared with pristine carbon nanotubes. Although the sensitivity of these hybrid nanostructures is rather low compared to alternative sensing elements, their response is remarkably fast under changing gas atmospheres. PMID:24910571

  7. Comparison between Measured and Calculated Sediment Transport Rates in North Fork Caspar Creek, California

    NASA Astrophysics Data System (ADS)

    Kim, T. W.; Yarnell, S. M.; Yager, E.; Leidman, S. Z.

    2015-12-01

    Caspar Creek is a gravel-bedded stream located in the Jackson Demonstration State Forest in the coast range of California. The Caspar Creek Experimental Watershed has been actively monitored and studied by the Pacific Southwest Research Station and California Department of Forestry and Fire Protection for over five decades. Although total annual sediment yield has been monitored through time, sediment transport during individual storm events is less certain. At a study site on North Fork Caspar Creek, cross-section averaged sediment flux was collected throughout two storm events in December 2014 and February 2015 to determine if two commonly used sediment transport equations—Meyer-Peter-Müller and Wilcock—approximated observed bedload transport. Cross-section averaged bedload samples were collected approximately every hour during each storm event using a Helley-Smith bedload sampler. Five-minute composite samples were collected at five equally spaced locations along a cross-section and then sieved to half-phi sizes to determine the grain size distribution. The measured sediment flux values varied widely throughout the storm hydrographs and were consistently less than two orders of magnitude in value in comparison to the calculated values. Armored bed conditions, changing hydraulic conditions during each storm and variable sediment supply may have contributed to the observed differences.

  8. Turbulent transport measurements in a cold model of GT-burner at realistic flow rates

    NASA Astrophysics Data System (ADS)

    Gobyzov, Oleg; Chikishev, Leonid; Lobasov, Alexey; Sharaborin, Dmitriy; Dulin, Vladimir; Bilsky, Artur; Tsatiashvili, Vakhtang; Avgustinovich, Valery; Markovich, Dmitriy

    2016-03-01

    In the present work simultaneous velocity field and passive admixture concentration field measurements at realistic flow-rates conditions in a non-reacting flow in a model of combustion chamber with an industrial mixing device are reported. In the experiments for safety reasons the real fuel (natural gas) was replaced with neon gas to simulate stratification in a strongly swirling flow. Measurements were performed by means of planar laser-induced fluorescence (PLIF) and particle image velocimetry technique (PIV) at Reynolds number, based on the mean flow rate and nozzle diameter, ≈300 000. Details on experimental technique, features of the experimental setup, images and data preprocessing procedures and results of performed measurements are given in the paper. In addition to the raw velocity and admixture concentration data in-depth evaluation approaches aimed for estimation of turbulent kinetic energy (TKE) components, assessment of turbulent Schmidt number and analysis of the gradient closure hypothesis from experimental data are presented in the paper.

  9. Incorporation of Fine-Grained Sediment Erodibility Measurements into Sediment Transport Modeling, Capitol Lake, Washington

    USGS Publications Warehouse

    Stevens, Andrew W.; Gelfenbaum, Guy; Elias, Edwin; Jones, Craig

    2008-01-01

    lab with Sedflume, an apparatus for measuring sediment erosion-parameters. In this report, we present results of the characterization of fine-grained sediment erodibility within Capitol Lake. The erodibility data were incorporated into the previously developed hydrodynamic and sediment transport model. Model simulations using the measured erodibility parameters were conducted to provide more robust estimates of the overall magnitudes and spatial patterns of sediment transport resulting from restoration of the Deschutes Estuary.

  10. Bedload transport formulae calibration using a single measurement: testing high and low

    NASA Astrophysics Data System (ADS)

    Hinton, D. D.; Hotchkiss, R. H.

    2012-12-01

    Due to the difficulty in accurately predicting bedload transport using traditional equations, bedload samples are often collected in the field and used to calibrate predictions. However, sampling bedload is time consuming and expensive. In lieu of conducting an exhaustive sampling campaign in the field, some researchers have recommended collecting one to three low flow samples in the field. This work addresses the question of whether a single bedload measurement near bankfull is more successful at calibrating a predictive equation than a low flow measurement. The Pagosa Good/Fair, Wilcock Surface-based Two Fraction, and Barry et al. General Power Equation formulae are compared using a single calibration point at low flow and then another at bankfull discharge. The comparison is conducted using 2,500 measurements from a database of a total of 8,000 available measurements. The results show that a measurement at bankfull is a better predictor than a low flow measurement, but acceptable results at low flow are provided by the Pagosa and Barry formulae. This work also recommends that sampling methodology be a consideration for formula selection. In other words, certain formulae work better for Helley-Smith samplers while others are better suited for data collected in net or pit traps. For example, the predictive curve produced by the Pagosa and Barry formulae better fit Helley-Smith data than the Wilcock, which is recommended for data collected in net or pit traps.

  11. Viscous flow through slowly expanding or contracting porous walls with low seepage Reynolds number: a model for transport of biological fluids through vessels.

    PubMed

    Dinarvand, Saeed

    2011-10-01

    In this article, the problem of laminar, isothermal, incompressible and viscous flow in a rectangular domain bounded by two moving porous walls, which enable the fluid to enter or exit during successive expansions or contractions, is investigated. The governing non-linear equations and their associated boundary conditions are transformed into a highly non-linear ordinary differential equation. The series solution of the problem is obtained by utilising the homotopy perturbation method. Graphical results are presented to investigate the influence of the non-dimensional wall dilation rate and seepage Reynolds number (Re) on the velocity, normal pressure distribution and wall shear stress. Since the transport of biological fluids through contracting or expanding vessels is characterised by low seepage Res, the current study focuses on the viscous flow driven by small wall contractions and expansions of two weakly permeable walls.

  12. Measurements of air pollution emission factors for marine transportation in SECA

    NASA Astrophysics Data System (ADS)

    Alföldy, B.; Lööv, J. B.; Lagler, F.; Mellqvist, J.; Berg, N.; Beecken, J.; Weststrate, H.; Duyzer, J.; Bencs, L.; Horemans, B.; Cavalli, F.; Putaud, J.-P.; Janssens-Maenhout, G.; Csordás, A. P.; Van Grieken, R.; Borowiak, A.; Hjorth, J.

    2013-07-01

    The chemical composition of the plumes of seagoing ships was measured during a two week long measurement campaign in the port of Rotterdam, Hoek van Holland The Netherlands, in September 2009. Altogether, 497 ships were monitored and a statistical evaluation of emission factors (g kg-1 fuel) was provided. The concerned main atmospheric components were SO2, NO2, NOx and the aerosol particle number. In addition, the elemental and water-soluble ionic composition of the emitted particulate matter was determined. Emission factors were expressed as a function of ship type, power and crankshaft rotational speed. The average SO2 emission factor was found to be roughly half of what is allowed in sulphur emission control areas (16 vs. 30 g kg-1 fuel), and exceedances of this limit were rarely registered. A significant linear relationship was observed between the SO2 and particle number emission factors. The intercept of the regression line, 4.8 × 1015 (kg fuel)-1, gives the average number of particles formed during the burning of 1 kg zero sulphur content fuel, while the slope, 2 × 1018, provides the average number of particles formed with 1 kg sulphur burnt with the fuel. Water-soluble ionic composition analysis of the aerosol samples from the plumes showed that ~144 g of particulate sulphate was emitted from 1 kg sulphur burnt with the fuel. The mass median diameter of sulphate particles estimated from the measurements was ~42 nm.

  13. Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models

    NASA Astrophysics Data System (ADS)

    Viatte, C.; Strong, K.; Hannigan, J.; Nussbaumer, E.; Emmons, L.; Conway, S.; Paton-Walsh, C.; Hartley, J.; Benmergui, J.; Lin, J.

    2014-10-01

    We investigate Arctic tropospheric composition using ground-based Fourier Transform Infrared (FTIR) solar absorption spectra, recorded at the Polar Environment Atmospheric Research Laboratory (PEARL, Eureka, Nunavut, Canada, 80°5' N, 86°42' W) and at Thule (Greenland, 76°53' N, -68°74' W) from 2008 to 2012. The target species: carbon monoxide (CO), hydrogen cyanide (HCN), ethane (C2H6), acetylene (C2H2), formic acid (HCOOH), and formaldehyde (H2CO) are emitted by biomass burning and can be transported from mid-latitudes to the Arctic. By detecting simultaneous enhancements of three biomass burning tracers (HCN, CO, and C2H6), ten and eight fire events are identified at Eureka and Thule, respectively, within the five-year FTIR timeseries. Analyses of Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) back-trajectories coupled with Moderate Resolution Imaging Spectroradiometer (MODIS) fire hot spot data, Stochastic Time-Inverted Lagrangian Transport model (STILT) footprints, and Ozone Monitoring Instrument (OMI) UV aerosol index maps are used to attribute burning source regions and travel time durations of the plumes. By taking into account the effect of aging of the smoke plumes, measured FTIR enhancement ratios were corrected to obtain emission ratios and equivalent emission factors. The means of emission factors for extratropical forest estimated with the two FTIR datasets are 0.39 ± 0.15 g kg-1 for HCN, 1.23 ± 0.49 g kg-1 for C2H6, 0.34 ± 0.16 g kg-1 for C2H2, 2.13 ± 0.92 g kg-1 for HCOOH, and 3.14 ± 1.28 g kg-1 for CH3OH. To improve our knowledge concerning the dynamical and chemical processes associated with Arctic pollution from fires, the two sets of FTIR measurements were compared to the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Seasonal cycles and day-to-day variabilities were compared to assess the ability of the model to reproduce emissions from fires and their transport. Good agreement in winter

  14. Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models

    NASA Astrophysics Data System (ADS)

    Viatte, C.; Strong, K.; Hannigan, J.; Nussbaumer, E.; Emmons, L. K.; Conway, S.; Paton-Walsh, C.; Hartley, J.; Benmergui, J.; Lin, J.

    2015-03-01

    We investigate Arctic tropospheric composition using ground-based Fourier transform infrared (FTIR) solar absorption spectra, recorded at the Polar Environment Atmospheric Research Laboratory (PEARL, Eureka, Nunavut, Canada, 80°05' N, 86°42' W) and at Thule (Greenland, 76°53' N, -68°74' W) from 2008 to 2012. The target species, carbon monoxide (CO), hydrogen cyanide (HCN), ethane (C2H6), acetylene (C2H2), formic acid (HCOOH), and formaldehyde (H2CO) are emitted by biomass burning and can be transported from mid-latitudes to the Arctic. By detecting simultaneous enhancements of three biomass burning tracers (HCN, CO, and C2H6), ten and eight fire events are identified at Eureka and Thule, respectively, within the 5-year FTIR time series. Analyses of Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model back-trajectories coupled with Moderate Resolution Imaging Spectroradiometer (MODIS) fire hotspot data, Stochastic Time-Inverted Lagrangian Transport (STILT) model footprints, and Ozone Monitoring Instrument (OMI) UV aerosol index maps, are used to attribute burning source regions and travel time durations of the plumes. By taking into account the effect of aging of the smoke plumes, measured FTIR enhancement ratios were corrected to obtain emission ratios and equivalent emission factors. The means of emission factors for extratropical forest estimated with the two FTIR data sets are 0.40 ± 0.21 g kg-1 for HCN, 1.24 ± 0.71 g kg-1 for C2H6, 0.34 ± 0.21 g kg-1 for C2H2, and 2.92 ± 1.30 g kg-1 for HCOOH. The emission factor for CH3OH estimated at Eureka is 3.44 ± 1.68 g kg-1. To improve our knowledge concerning the dynamical and chemical processes associated with Arctic pollution from fires, the two sets of FTIR measurements were compared to the Model for OZone And Related chemical Tracers, version 4 (MOZART-4). Seasonal cycles and day-to-day variabilities were compared to assess the ability of the model to reproduce emissions from fires and

  15. Measurement of the Critical Deposition Velocity in Slurry Transport through a Horizontal Pipe

    SciTech Connect

    Erian, Fadel F.; Furfari, Daniel J.; Kellogg, Michael I.; Park, Walter R.

    2001-03-01

    Critical Deposition Velocity (CDV) is an important design and operational parameter in slurry transport. Almost all existing correlations that are used to predict this parameter have been obtained experimentally from slurry transport tests featuring single solid species in the slurry mixture. No correlations have been obtained to describe this parameter when the slurry mixture contains more than one solid species having a wide range of specific gravities, particle size distributions, and volume concentrations within the overall slurry mixture. There are no physical or empirical bases that can justify the extrapolation or modification of the existing single species correlations to include all these effects. New experiments must be carried out to obtain new correlations that would be suited for these types of slurries, and that would clarify the mechanics of solids deposition as a function of the properties of the various solid species. Our goal in this paper is to describe a robust experimental technique for the accurate determination of the critical deposition velocity associated with the transport of slurries in horizontal or slightly inclined pipes. Because of the relative difficulty encountered during the precise determination of this useful operational parameter, it has been the practice to connect it with some transitional behavior of more easily measurable flow parameters such as the pressure drop along the slurry pipeline. In doing so, the critical deposition velocity loses its unique and precise definition due to the multitude of factors that influence such transitional behaviors. Here, data has been obtained for single species slurries made up of washed garnet and water and flowing through a 1- inch clear pipe. The selected garnet had a narrow particle size distribution with a mean diameter of 100 mm, approximately. The critical deposition velocity was measured for garnet/water slurries of 10, 20, and 30 percent solids concentration by volume.

  16. ICET - International Collaboration on Experiments in Turbulence: Coordinated Measurements in High Reynolds Number Turbulent Boundary Layers from Three Wind Tunnels

    NASA Astrophysics Data System (ADS)

    Nagib, H.; Smits, A.; Marusic, I.; Alfredsson, P. H.

    2009-11-01

    Zero pressure gradient (ZPG) boundary layers are one of the canonical, wall-bounded, turbulent flows that have been the focus of experimental and analytical investigations for several decades. Over the past few years, four groups have focused on systematic comparison between several measurement techniques and three facilities. Two closed return wind tunnels with ZPG boundary layers developed on a plate suspended near the mid-height of the test section (at KTH and IIT), and an open return facility with a large and long test section and a boundary layer developing along its floor (at the University of Melbourne), are used for these coordinated efforts. The development length of the boundary layers and the free-stream velocity in the three facilities range from 5.5 to 22 m, and from 10 to 60 m/s, respectively. Various arrangements for adjustable test section ceilings are employed to generate ZPG boundary layers over the range of momentum thickness Reynolds numbers from 11,000 to 70,000. Oil film interferometry (OFI) is employed to directly measure the wall shear stress, and various sizes of Pitot probes and types of hot-wire sensors are used to measure wall-normal velocity profiles at different locations and free-stream velocities. Mean velocity, turbulence statistics and integral parameters are examined.

  17. Versatile variable temperature insert at the DEIMOS beamline for in situ electrical transport measurements.

    PubMed

    Joly, L; Muller, B; Sternitzky, E; Faullumel, J G; Boulard, A; Otero, E; Choueikani, F; Kappler, J P; Studniarek, M; Bowen, M; Ohresser, P

    2016-05-01

    The design and the first experiments are described of a versatile cryogenic insert used for its electrical transport capabilities. The insert is designed for the cryomagnet installed on the DEIMOS beamline at the SOLEIL synchrotron dedicated to magnetic characterizations through X-ray absorption spectroscopy (XAS) measurements. This development was spurred by the multifunctional properties of novel materials such as multiferroics, in which, for example, the magnetic and electrical orders are intertwined and may be probed using XAS. The insert thus enables XAS to in situ probe this interplay. The implementation of redundant wiring and careful shielding also enables studies on operating electronic devices. Measurements on magnetic tunnel junctions illustrate the potential of the equipment toward XAS studies of in operando electronic devices.

  18. Direct electrical transport measurement on a single thermoelectric nanowire embedded in an alumina template.

    PubMed

    Ben Khedim, Meriam; Cagnon, Laurent; Garagnon, Christophe; Serradeil, Valerie; Bourgault, Daniel

    2016-04-28

    Electrical conductivity is a key parameter to increase the performance of thermoelectric materials. However, the measurement of such performance remains complex for 1D structures, involving tedious processing. In this study, we present a non-destructive, rapid and easy approach for the characterization of electrical conductivity of Bi2Te3 based single nanowires. By controlling the nanowire overgrowth, each nanowire emerges in the form of a micrometric hemisphere constituting a unique contact zone for direct nanoprobing. As nanowires need no preliminary preparation and remain in their template during measurement, we avoid oxidation effects and time-consuming processing. Electrical transport results show a low nanowire resistivity for compact nanowires obtained at low overpotential. Such values are comparable to bulk materials and thin films. This method not only confirmed its reliability, but it could also be adopted for other semiconducting or metallic electrodeposited nanowires. PMID:27086560

  19. Electrostatic and magnetic measurements of turbulence and transport in Extrap T2

    NASA Astrophysics Data System (ADS)

    Möller, Anders; Sallander, Eva

    1999-10-01

    Langmuir probe and magnetic pick-up coil measurements are used to study edge turbulence in the Extrap T2 reversed field pinch. Magnetic fluctuations resonant outside the toroidal field reversal surface are observed where previously only fluctuations in the spectra of potential and electron density and temperature have been measured. Results are presented which imply that these fluctuations are coupled to and also correlated to the internally resonant tearing mode fluctuations. Evidence of coupling between low-frequency (<100 kHz) and high-frequency fluctuations is also presented. The normalized floating potential fluctuations are seen to increase with the edge electron temperature. This causes an increase of the potential and density fluctuation driven transport with the temperature which is faster than linear. These results, in combination, are consistent with a picture where internally resonant fluctuations couple to edge fluctuations through radial heat conduction from the stochastic core to the edge.

  20. Comparison of nickel silicide and aluminium ohmic contact metallizations for low-temperature quantum transport measurements

    PubMed Central

    2011-01-01

    We examine nickel silicide as a viable ohmic contact metallization for low-temperature, low-magnetic-field transport measurements of atomic-scale devices in silicon. In particular, we compare a nickel silicide metallization with aluminium, a common ohmic contact for silicon devices. Nickel silicide can be formed at the low temperatures (<400°C) required for maintaining atomic precision placement in donor-based devices, and it avoids the complications found with aluminium contacts which become superconducting at cryogenic measurement temperatures. Importantly, we show that the use of nickel silicide as an ohmic contact at low temperatures does not affect the thermal equilibration of carriers nor contribute to hysteresis in a magnetic field. PMID:21968083

  1. In situ measurements of aerosols optical properties and number size distributions in a subarctic coastal region of Norway

    NASA Astrophysics Data System (ADS)

    Mogo, S.; Cachorro, V. E.; Lopez, J. F.; Montilla, E.; Torres, B.; Rodríguez, E.; Bennouna, Y.; de Frutos, A. M.

    2011-12-01

    In situ measurements of aerosol optical properties were made in the summer of 2008 at the ALOMAR station facility (69°16 N, 16°00 E), located at a rural site in the north of the island of Andøya (Vesterålen archipelago), approximately 300 km north of the Arctic Circle. The extended three-month campaign was part of the POLARCAT Project (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) of the International Polar Year (IPY-2007-2008). Its goal was to characterize the aerosols of this sub-Arctic area, which are frequently transported to the Arctic region. The ambient light-scattering coefficient, σs (550 nm), at ALOMAR had a measured hourly mean value of 5.41 Mm-1 (StD = 3.55 Mm-1), and the light-absorption coefficient, σa (550 nm), had a measured hourly mean value of 0.40 Mm-1 (StD = 0.27 Mm-1). The scattering/absorption Ångström exponents, αs,a, are used for a detailed analysis of the variations of the spectral shape of σs,a. Whereas αs demonstrates the presence of two particle sizes corresponding to two types of aerosols, the αa demonstrates only one type of absorbing aerosol particles. Values of αa above 1 were not observed. The single-scattering albedo, ω0, ranged from 0.62 to 0.99 (mean = 0.91, StD = 0.05), and the relationships of this property to the absorption/scattering coefficients and the Ångström exponents are presented. The concentration of the particles was monitored using a scanning mobility particle sizer (SMPS), an aerodynamic particle sizer (APS) and an ultrafine condensation particle counter (UCPC). The shape of the median size distribution of the particles in the submicrometer fraction was bimodal, and the submicrometer, micrometer and total concentrations presented hourly mean values of 1277 cm3 (StD = 1563 cm3), 1 cm3 (StD = 1 cm3) and 2463 cm3 (StD = 4251 cm3), respectively. The modal correlations were investigated, and the concentration of particles

  2. Rapid Measurement of Molecular Transport and Interaction inside Living Cells Using Single Plane Illumination

    PubMed Central

    Hedde, Per Niklas; Stakic, Milka; Gratton, Enrico

    2014-01-01

    The ability to measure biomolecular dynamics within cells and tissues is very important to understand fundamental physiological processes including cell adhesion, signalling, movement, division or metabolism. Usually, such information is obtained using particle tracking methods or single point fluctuation spectroscopy. We show that image mean square displacement analysis, applied to single plane illumination microscopy data, is a faster and more efficient way of unravelling rapid, three-dimensional molecular transport and interaction within living cells. From a stack of camera images recorded in seconds, the type of dynamics such as free diffusion, flow or binding can be identified and quantified without being limited by current camera frame rates. Also, light exposure levels are very low and the image mean square displacement method does not require calibration of the microscope point spread function. To demonstrate the advantages of our approach, we quantified the dynamics of several different proteins in the cyto- and nucleoplasm of living cells. For example, from a single measurement, we were able to determine the diffusion coefficient of free clathrin molecules as well as the transport velocity of clathrin-coated vesicles involved in endocytosis. Used in conjunction with dual view detection, we further show how protein-protein interactions can be quantified. PMID:25394360

  3. Time-Domain Thermoreflectance Measurements of Thermal Transport in Amorphous SiC Thin Films

    NASA Astrophysics Data System (ADS)

    Daly, Brian; Hondongwa, Donald; King, Sean

    2010-03-01

    We present ultrafast optical pump-probe measurements of thermal transport in a series of amorphous SiC samples. The samples were grown on Si wafers by plasma enhanced chemical vapor deposition utilizing various combinations of methylsilanes and H2 and He diluent gases. The sample films were well characterized and found to have densities (1.3 -- 2.3 g cm-3) and dielectric constants (4.0 -- 7.2) that spanned a wide range of values. Prior to their measurement, the samples were coated with 40-70 nm of polycrystalline Al. The pump-probe measurements were performed at room temperature using a modelocked Ti:sapphire laser that produced sub-picosecond pulses of a few nJ. The pulses heat the Al coating, causing a transient reflectivity change. As the Al film cools into the SiC film, the reflectivity change can be measured, giving a measure of the thermal effusivity of the SiC film. We then extract values for the thermal conductivity of the SiC films and find that it varies from less than half of the thermal conductivity of amorphous SiO2 for the lower density materials to somewhat larger than amorphous SiO2 for the highest density films.

  4. A classification method based on similarity measures of generalized fuzzy numbers in building expert system for postoperative patients.

    PubMed

    Luukka, Pasi

    2010-01-01

    In this research, we concentrate to build an expert system for a problem where task is to determine where patients in a postoperative recovery area should be sent to next. Data set created from postoperative patients is used to build proposed expert system to determine, based on hypothermia condition, whether patients in a postoperative recovery area should be sent to Intensive Care Unit (ICU), general hospital floor, or go home. What makes this task particularly difficult is that most of the measured attributes have linguistic values (e.g., stable, moderately stable, unstable, etc.). We are using generalized fuzzy numbers to model the data and introduce new fuzzy similarity based classification procedure which can deal with these linguistic attributes and classify them accordingly. Results are compared to existing result in literature, and this system provides mean classification accuracy of 66.2% which compared well to earlier results reported in literature. PMID:20865480

  5. Assessing the Ecological Response of Dung Beetles in an Agricultural Landscape Using Number of Individuals and Biomass in Diversity Measures.

    PubMed

    Cultid-Medina, C A; Escobar, F

    2016-04-01

    The global increase in demand for productive land requires us to increase our knowledge of the value of agricultural landscapes for the management and conservation of biodiversity, particularly in tropical regions. Thus, comparative studies of how different community attributes respond to changes in land use under different levels of deforestation intensity would be useful. We analyzed patterns of dung beetle diversity in an Andean region dominated by sun-grown coffee. Diversity was estimated using two measures of species abundance (the number of individuals and biomass) and was compared among four types of vegetation cover (forest, riparian forest, sun-grown coffee, and pastures) in three landscape plots with different degrees of deforestation intensity (low, intermediate, and high). We found that dung beetle diversity patterns differed between types of vegetation cover and degree of deforestation, depending on whether the number of individuals or biomass was used. Based on biomass, inequality in the dung beetle community was lowest in the forest, and increased in the sun-grown coffee and pastures across all levels of deforestation, particularly for the increasing dominance of large species. The number of beetles and biomass indicate that the spatial dominance of sun-grown coffee does not necessarily imply the drastic impoverishment of dung beetle diversity. In fact, for these beetles, it would seem that the landscape studied has not yet crossed "a point of no return." This system offers a starting point for exploring biodiversity management and conservation options in the sun-grown coffee landscapes of the Colombian Andes. PMID:26803806

  6. PIV measurement of high-Reynolds-number homogeneous and isotropic turbulence in an enclosed flow apparatus with fan agitation

    NASA Astrophysics Data System (ADS)

    Dou, Zhongwang; Pecenak, Zachary K.; Cao, Lujie; Woodward, Scott H.; Liang, Zach; Meng, Hui

    2016-03-01

    Enclosed flow apparatuses with negligible mean flow are emerging as alternatives to wind tunnels for laboratory studies of homogeneous and isotropic turbulence (HIT) with or without aerosol particles, especially in experimental validation of Direct Numerical Simulation (DNS). It is desired that these flow apparatuses generate HIT at high Taylor-microscale Reynolds numbers ({{R}λ} ) and enable accurate measurement of turbulence parameters including kinetic energy dissipation rate and thereby {{R}λ} . We have designed an enclosed, fan-driven, highly symmetric truncated-icosahedron ‘soccer ball’ airflow apparatus that enables particle imaging velocimetry (PIV) and other whole-field flow measurement techniques. To minimize gravity effect on inertial particles and improve isotropy, we chose fans instead of synthetic jets as flow actuators. We developed explicit relations between {{R}λ} and physical as well as operational parameters of enclosed HIT chambers. To experimentally characterize turbulence in this near-zero-mean flow chamber, we devised a new two-scale PIV approach utilizing two independent PIV systems to obtain both high resolution and large field of view. Velocity measurement results show that turbulence in the apparatus achieved high homogeneity and isotropy in a large central region (48 mm diameter) of the chamber. From PIV-measured velocity fields, we obtained turbulence dissipation rates and thereby {{R}λ} by using the second-order velocity structure function. A maximum {{R}λ} of 384 was achieved. Furthermore, experiments confirmed that the root mean square (RMS) velocity increases linearly with fan speed, and {{R}λ} increases with the square root of fan speed. Characterizing turbulence in such apparatus paves the way for further investigation of particle dynamics in particle-laden homogeneous and isotropic turbulence.

  7. No Effect of Genome-Wide Copy Number Variation on Measures of Intelligence in a New Zealand Birth Cohort

    PubMed Central

    Bagshaw, Andrew T. M.; Horwood, L. John; Liu, Youfang; Fergusson, David M.; Sullivan, Patrick F.; Kennedy, Martin A.

    2013-01-01

    Variation in human intelligence is approximately 50% heritable, but understanding of the genes involved is limited. Several forms of genetic variation remain under-studied in relation to intelligence, one of which is copy number variation (CNV). Using single-nucleotide polymorphism (SNP) -based microarrays, we genotyped CNVs genome-wide in a birth cohort of 723 New Zealanders, and correlated them with four intelligence-related phenotypes. We found no significant association for any common CNV after false discovery correction, which is consistent with previous work. In contrast to a previous study, however, we found no effect on any cognitive measure of rare CNV burden, defined as total number of bases inserted or deleted in CNVs rarer than 5%. We discuss possible reasons for this failure to replicate, including interaction between CNV and aging in determining the effects of rare CNVs. While our results suggest that no CNV assayable by SNP chips contributes more than a very small amount to variation in human intelligence, it remains possible that common CNVs in segmental duplication arrays, which are not well covered by SNP chips, are important contributors. PMID:23383111

  8. Vertical distribution of aerosol number concentration in the troposphere over Siberia derived from airborne in-situ measurements

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail Yu.; Belan, Boris D.; Paris, Jean-Daniel; Machida, Toshinobu; Kozlov, Alexandr; Malyskin, Sergei; Simonenkov, Denis; Davydov, Denis; Fofonov, Alexandr

    2016-04-01

    Knowledge of the vertical distribution of aerosols particles is very important when estimating aerosol radiative effects. To date there are a lot of research programs aimed to study aerosol vertical distribution, but only a few ones exist in such insufficiently explored region as Siberia. Monthly research flights and several extensive airborne campaigns carried out in recent years in Siberian troposphere allowed the vertical distribution of aerosol number concentration to be summarized. In-situ aerosol measurements were performed in a wide range of particle sizes by means of improved version of the Novosibirsk-type diffusional particle sizer and GRIMM aerosol spectrometer Model 1.109. The data on aerosol vertical distribution enabled input parameters for the empirical equation of Jaenicke (1993) to be derived for Siberian troposphere up to 7 km. Vertical distributions of aerosol number concentration in different size ranges averaged for the main seasons of the year will be presented. This work was supported by Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); and Russian Foundation for Basic Research (grant No. 14-05-00526). Jaenicke R. Tropospheric aerosols, in Aerosol-Cloud-Climate Interactions, edited by P.V. Hobs. -Academic Press, San Diego, CA, 1993.- P. 1-31.

  9. First measurements of the two-dimensional horizontal wave number spectrum from CCD images of the nightglow

    NASA Astrophysics Data System (ADS)

    Hecht, J. H.; Walterscheid, R. L.; Ross, M. N.

    1994-06-01

    A narrow wavelength band CCD camera, built at Aerospace, has been used to obtain images of the OH Meinel (6,2) band and the O2 atmospheric (0,1) band nightglow. The field of view of the camera is approximately 100 by 100 km at an altitude of 90 km, the nominal height of the nightglow. It is shown how Fourier techniques can be applied to these data to optimally smooth the images, to identify the presence of monochromatic waves, and to obtain both the one-dimensional and, for the first time, the two-dimensional horizontal wave number spectrum of gravity waves passing through the emission layers. Both measures of the spectrum depend, to a certain extent, on a technique which makes use of Krassovsky's ɛ ratio. These techniques are applied to sample data taken from May 9, 1989, during the Arecibo Initiative in Dynamics of the Atmosphere (AIDA) campaign in Puerto Rico, and from the recent Collaborative Observations Regarding the Nightglow (CORN) campaign in Illinois. While future papers will describe these data in more detail, a brief comparison is made with recent models of the two-dimensional horizontal wave number spectra presented by Gardner et al. (1993) and Gardner (1994).

  10. Global surface pressure measurements of static and dynamic stall on a wind turbine airfoil at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Disotell, Kevin J.; Nikoueeyan, Pourya; Naughton, Jonathan W.; Gregory, James W.

    2016-05-01

    Recognizing the need for global surface measurement techniques to characterize the time-varying, three-dimensional loading encountered on rotating wind turbine blades, fast-responding pressure-sensitive paint (PSP) has been evaluated for resolving unsteady aerodynamic effects in incompressible flow. Results of a study aimed at demonstrating the laser-based, single-shot PSP technique on a low Reynolds number wind turbine airfoil in static and dynamic stall are reported. PSP was applied to the suction side of a Delft DU97-W-300 airfoil (maximum thickness-to-chord ratio of 30 %) at a chord Reynolds number of 225,000 in the University of Wyoming open-return wind tunnel. Static and dynamic stall behaviors are presented using instantaneous and phase-averaged global pressure maps. In particular, a three-dimensional pressure topology driven by a stall cell pattern is detected near the maximum lift condition on the steady airfoil. Trends in the PSP-measured pressure topology on the steady airfoil were confirmed using surface oil visualization. The dynamic stall case was characterized by a sinusoidal pitching motion with mean angle of 15.7°, amplitude of 11.2°, and reduced frequency of 0.106 based on semichord. PSP images were acquired at selected phase positions, capturing the breakdown of nominally two-dimensional flow near lift stall, development of post-stall suction near the trailing edge, and a highly three-dimensional topology as the flow reattaches. Structural patterns in the surface pressure topologies are considered from the analysis of the individual PSP snapshots, enabled by a laser-based excitation system that achieves sufficient signal-to-noise ratio in the single-shot images. The PSP results are found to be in general agreement with observations about the steady and unsteady stall characteristics expected for the airfoil.

  11. Quantitative measurements and modeling of cargo-motor interactions during fast transport in the living axon

    NASA Astrophysics Data System (ADS)

    Seamster, Pamela E.; Loewenberg, Michael; Pascal, Jennifer; Chauviere, Arnaud; Gonzales, Aaron; Cristini, Vittorio; Bearer, Elaine L.

    2012-10-01

    The kinesins have long been known to drive microtubule-based transport of sub-cellular components, yet the mechanisms of their attachment to cargo remain a mystery. Several different cargo-receptors have been proposed based on their in vitro binding affinities to kinesin-1. Only two of these—phosphatidyl inositol, a negatively charged lipid, and the carboxyl terminus of the amyloid precursor protein (APP-C), a trans-membrane protein—have been reported to mediate motility in living systems. A major question is how these many different cargo, receptors and motors interact to produce the complex choreography of vesicular transport within living cells. Here we describe an experimental assay that identifies cargo-motor receptors by their ability to recruit active motors and drive transport of exogenous cargo towards the synapse in living axons. Cargo is engineered by derivatizing the surface of polystyrene fluorescent nanospheres (100 nm diameter) with charged residues or with synthetic peptides derived from candidate motor receptor proteins, all designed to display a terminal COOH group. After injection into the squid giant axon, particle movements are imaged by laser-scanning confocal time-lapse microscopy. In this report we compare the motility of negatively charged beads with APP-C beads in the presence of glycine-conjugated non-motile beads using new strategies to measure bead movements. The ensuing quantitative analysis of time-lapse digital sequences reveals detailed information about bead movements: instantaneous and maximum velocities, run lengths, pause frequencies and pause durations. These measurements provide parameters for a mathematical model that predicts the spatiotemporal evolution of distribution of the two different types of bead cargo in the axon. The results reveal that negatively charged beads differ from APP-C beads in velocity and dispersion, and predict that at long time points APP-C will achieve greater progress towards the presynaptic

  12. Quantitative measurements and modeling of cargo–motor interactions during fast transport in the living axon

    PubMed Central

    Seamster, Pamela E; Loewenberg, Michael; Pascal, Jennifer; Chauviere, Arnaud; Gonzales, Aaron; Cristini, Vittorio; Bearer, Elaine L

    2013-01-01

    The kinesins have long been known to drive microtubule-based transport of sub-cellular components, yet the mechanisms of their attachment to cargo remain a mystery. Several different cargo-receptors have been proposed based on their in vitro binding affinities to kinesin-1. Only two of these—phosphatidyl inositol, a negatively charged lipid, and the carboxyl terminus of the amyloid precursor protein (APP-C), a trans-membrane protein—have been reported to mediate motility in living systems. A major question is how these many different cargo, receptors and motors interact to produce the complex choreography of vesicular transport within living cells. Here we describe an experimental assay that identifies cargo–motor receptors by their ability to recruit active motors and drive transport of exogenous cargo towards the synapse in living axons. Cargo is engineered by derivatizing the surface of polystyrene fluorescent nanospheres (100 nm diameter) with charged residues or with synthetic peptides derived from candidate motor receptor proteins, all designed to display a terminal COOH group. After injection into the squid giant axon, particle movements are imaged by laser-scanning confocal time-lapse microscopy. In this report we compare the motility of negatively charged beads with APP-C beads in the presence of glycine-conjugated non-motile beads using new strategies to measure bead movements. The ensuing quantitative analysis of time-lapse digital sequences reveals detailed information about bead movements: instantaneous and maximum velocities, run lengths, pause frequencies and pause durations. These measurements provide parameters for a mathematical model that predicts the spatiotemporal evolution of distribution of the two different types of bead cargo in the axon. The results reveal that negatively charged beads differ from APP-C beads in velocity and dispersion, and predict that at long time points APP-C will achieve greater progress towards the presynaptic

  13. Mesoscale Backtracking by Means of Atmospheric Transport Modeling of Xenon Plumes Measured by Radionuclide Gas Stations

    NASA Astrophysics Data System (ADS)

    Armand, P. P.; Achim, P.; Taffary, T.

    2006-12-01

    The monitoring of atmospheric radioactive xenon concentration is performed for nuclear safety regulatory requirements. It is also planned to be used for the detection of hypothetical nuclear tests in the framework of the Comprehensive nuclear-Test-Ban Treaty (CTBT). In this context, the French Atomic Energy Commission designed a high sensitive and automated fieldable station, named SPALAX, to measure the activity concentrations of xenon isotopes in the atmosphere. SPALAX stations were set up in Western Europe and have been operated quite continuously for three years or more, detecting principally xenon-133 and more scarcely xenon-135, xenon-133m and xenon-131m. There are around 150 nuclear power plants in the European Union, research reactors, reprocessing plants, medical production and application facilities releasing radioactive xenon in normal or incidental operations. A numerical study was carried out aiming to explain the SPALAX measurements. The mesoscale Atmospheric Transport Modelling involves the MM5 suite (PSU- NCAR) to predict the wind fields on nested domains, and FLEXPART, a 3D Lagrangian particle dispersion code, used to simulate the backward transport of xenon plumes detected by the SPALAX. For every event of detection, at least one potential xenon source has a significant efficiency of emission. The identified likely sources are located quite close to the SPALAX stations (some tens of kilometres), or situated farther (a few hundreds of kilometres). A base line of some mBq per cubic meter in xenon-133 is generated by the nuclear power plants. Peaks of xenon-133 ranging from tens to hundreds of mBq per cubic meter originate from a radioisotope production facility. The calculated xenon source terms required to obtain the SPALAX measurements are discussed and seem consistent with realistic emissions from the xenon sources in Western Europe.

  14. Utilizing Turbidity and Measurements of Suspended Sediment Concentrations to Better Understand Sediment Transport within Urban Streams

    NASA Astrophysics Data System (ADS)

    Elkins, T. M.; Napieralski, J. A.

    2009-12-01

    The Rouge River watershed in Southeast Michigan is an urban watershed, which has been exposed to more than 100 years of anthropogenic activities related to industrialization and urbanization. This urbanization has degraded water quality by increasing erosion and altering the transport mechanism and chemistry of bed and suspended sediments. This study aims to explore the relationship between development within the Lower Rouge watershed and watershed hydrology through an examination of USGS discharge data, stream water quality and suspended sediment loads during storm and base flow. Two YSI dataloggers are used to continuously measure water quality parameters during baseflow and storm events (varying hydrologic conditions), including: turbidity, dissolved oxygen, conductivity, salinity, total dissolved solids, and temperature. Depth-integrated sediment samples are collected and analyzed for sediment concentration using Imhoff cones and filtration methods. Correlations between discharge weighted continuous turbidity measurements and discharge weighted suspended sediment samples are used to estimate sediment loads; essentially, turbidity readings and measured sediment concentrations form a near-linear relationship. In addition, sediment samples are analyzed for inorganic heavy metal contaminants common to Southeast Michigan to characterize both suspended sediments and sediments frequently deposited on adjacent floodplains. These metals (i.e. Lead, Copper, Chromium, Nickle) are commonly known as the “Michigan Metals” and represent indicator species of mobilized and deposited contaminants associated with urbanization and industrialization. The results will provide a baseline for better understanding the transport and fate of contaminated sediments within the Rouge watershed, as well as guide ongoing development and management practices along the Rouge River.

  15. Fluorescence measurements of anion transport by the GABA receptor in reconstituted membrane preparations

    SciTech Connect

    Dunn, S.M.J.; Shelman, R.A.; Agey, M.W. )

    1989-03-21

    A fluorescence assay for measuring the functional properties of the GABA{sub A} receptor in reconstituted membrane vesicles is described. This assay is based on a method previously described to measure monovalent cation transport mediated by the nicotinic acetylcholine receptor in membranes from Torpedo electric organ. The GABA{sub A} receptor has been solubilized from bovine brain membranes and reconstituted into phospholipid vesicles. Influx of chloride or iodide into the vesicles has been measured in stopped-flow experiments by monitoring the fluorescence quench of an anion-sensitive fluorophore trapped within the vesicles. Muscimol, a GABA{sub A} receptor agonist, stimulated a rapid uptake of either chloride or iodide. Stimulation of chloride influx was dependent on the concentration of muscimol, and the midpoint of the dose-response curve occurred at approximately 0.3 {mu}M. Agonist-stimulated uptake was enhanced by diazepam and blocked by desensitization and by the antagonists bicuculline and picrotoxin. These receptor-mediated effects are shown to be qualitatively similar to measurements of {sup 36}Cl{sup {minus}} and {sup 125}I{sup {minus}} efflux using synaptoneurosomes prepared from rat cerebral cortex. The advantages of the fluorescence method in terms of its improved time resolution, sensitivity, and suitability for quantitating GABA{sub A} receptor function are discussed.

  16. Measurements of Fast Ion Transport Due to n = 3 Magnetic Perturbations on DIII-D

    NASA Astrophysics Data System (ADS)

    van Zeeland, M. A.; Evans, T. E.; Ferraro, N. M.; Lanctot, M. J.; Pace, D. C.; Collins, C.; Heidbrink, W. W.; Garcia-Munoz, M.; Hanson, J. M.; Grierson, B. A.; Kramer, G. J.; Nazikian, R.; Allen, S. L.; Lasnier, C. J.; Meyer, W. H.

    2014-10-01

    Measurements of fast ion (FI) transport due to applied n = 3 magnetic perturbations on DIII-D have been made in both ELM suppressed H-mode as well as L-mode discharges. FIDA measurements probe the confined FI profile in the edge and losses to the wall are obtained with scintillator detectors as well as an infrared periscope. In ELM suppressed plasmas FIDA data show a significant depletion of the edge FI profile during application of n = 3 fields. IR imaging of the beam ion prompt loss footprint shows a difference in wall heating depending on phase of the n = 3 perturbation. Measurements of both the impact on the confined FI profile and prompt losses will be compared to full-orbit modeling which predicts up to 10%-15% of the injected beam ions are lost before thermalization. Orbit following simulations also predict an increase in losses due to resonance between the FI drift orbits and the applied n = 3 fields. Measurements during L-mode current ramp plasmas used to scan for signatures of these resonances will be discussed. Work supported in part by the US DOE under DE-FC02-04ER54698, SC-G903402, DE-FG02-04ER54761, DE-AC02-09CH11466, DE-AC52-07NA27344.

  17. Automated pressure probe for measurement of water transport properties of higher plant cells

    NASA Astrophysics Data System (ADS)

    Cosgrove, Daniel J.; Durachko, Daniel M.

    1986-10-01

    A computer-assisted instrument was constructed to measure the fundamental physical properties that regulate water transport at the cell level in plants. With this automated pressure probe, we measure a cell's hydrostatic pressure by inserting an oil-filled glass capillary into the cell. The capillary is connected to a pressure sensor and to a plunger controlled by a stepper motor. At the capillary tip an interface forms between the cell sap and oil. The image of this interface is directed through a microscope to a video camera. The interface position is detected by a video processor sampling at 60 Hz and is regulated by a microcomputer which advances or retracts the plunger at rates up to 280 steps per second. To determine the hydraulic conductance of cell membranes, the computer carries out pressure-relaxation and pressure-clamp experiments. Pressure is recorded with a resolution of 0.02 bar and is regulated in pressure-clamp experiments at ±0.02 bar. The instrument measures the cell volumetric elastic modulus by injecting or removing small volumes from the cell while simultaneously measuring cell turgor pressure. This system was tested on the cells of pea seedlings and proved superior to the previous techniques, especially for pressure-clamp experiments and volumetric elastic modulus determinations.

  18. Integral measurements of mass transport and heat content in the Strait of Gibraltar from acoustic transmissions

    NASA Astrophysics Data System (ADS)

    Send, Uwe; Worcester, Peter F.; Cornuelle, Bruce D.; Tiemann, Christopher O.; Baschek, Burkard

    those derived from current-meter data. The fractional uncertainty variance for the lower layer tidal transport from a single tomographic path was estimated to be 0.017 (i.e. 98% of the a priori tidal transport variance was resolved). The spatial scales of the sub-tidal flow are thought to be significantly shorter than those of the tidal flow, however, which means that a more elaborate monitoring network is required to achieve the same performance for sub-tidal variability. Finally, sum travel times from the reciprocal transmissions were found to provide good measurements of the temperature and heat content in the lower layer.

  19. Measurement and modeling of engineered nanoparticle transport and aging dynamics in a reactive porous medium

    NASA Astrophysics Data System (ADS)

    Naftaly, Aviv; Dror, Ishai; Berkowitz, Brian

    2016-07-01

    A continuous time random walk particle tracking (CTRW-PT) method was employed to model flow cell experiments that measured transport of engineered nanoparticles (ENPs) in a reactive porous medium. The experiments involved a water-saturated medium containing negatively charged, polyacrylamide beads, resembling many natural soils and aquifer materials, and having the same refraction index as water. Negatively and positively charged ENPs were injected into a uniform flow field in a 3-D horizontal flow cell, and the spatial and temporal concentrations of the evolving ENP plumes were obtained via image analysis. As a benchmark, and to calibrate the model, Congo red tracer was employed in 1-D column and 3-D flow cell experiments, containing the same beads. Negatively charged Au and Ag ENPs demonstrated migration patterns resembling those of the tracer but were slightly more dispersive; the transport was well represented by the CTRW-PT model. In contrast, positively charged AgNPs displayed an unusual behavior: establishment of an initial plume of essentially immobilized ENPs, followed by development of a secondary, freely migrating plume. The mobile plume was found to contain ENPs that, with aging, exhibited aggregation and charge inversion, becoming negatively charged and mobile. In this case, the CTRW-PT model was modified to include a probabilistic law for particle immobilization, to account for the decreasing tendency (over distance and time) of the positively charged AgNPs to attach to the porous medium. The agreement between experimental results and modeling suggests that the CTRW-PT framework can account for the non-Fickian and surface-charge-dependent transport and aging exhibited by ENPs in porous media.

  20. A backward modeling study of intercontinental pollution transport using aircraft measurements

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Forster, C.; Eckhardt, S.; Spichtinger, N.; Huntrieser, H.; Heland, J.; Schlager, H.; Wilhelm, S.; Arnold, F.; Cooper, O.

    2003-06-01

    In this paper we present simulations with a Lagrangian particle dispersion model to study the intercontinental transport of pollution from North America during an aircraft measurement campaign over Europe. The model was used for both the flight planning and a detailed source analysis after the campaign, which is described here with examples from two episodes. Forward calculations of emission tracers from North America, Europe, and Asia were made in order to understand the transport processes. Both episodes were preceded by stagnant conditions over North America, leading to the accumulation of pollutants in the North American boundary layer. Both anthropogenic sources and, to a lesser extent, forest fire emissions contributed to this pollution, which was then exported by warm conveyor belts to the middle and upper troposphere, where it was transported rapidly to Europe. Concentrations of many trace gases (CO, NOy, CO2, acetone, and several volatile organic compounds; O3 in one case) and of ambient atmospheric ions measured aboard the research aircraft were clearly enhanced in the pollution plumes compared to the conditions outside the plumes. Backward simulations with the particle model were introduced as an indispensable tool for a more detailed analysis of the plume's source region. They make trajectory analyses (which, to date, were mainly used to interpret aircraft measurement data) obsolete. Using an emission inventory, we could decompose the tracer mixing ratios at the receptors (i.e., along the flight tracks) into contributions from every grid cell of the inventory. For both plumes we found that emission sources contributing to the tracer concentrations over Europe were distributed over large areas in North America. In one case, sources in California, Texas, and Florida contributed almost equally, and smaller contributions were also made by other sources located between the Yucatan Peninsula and Canada. In the other case, sources in eastern North America