Sample records for transportation centers program

  1. 76 FR 37191 - Notice of Competition for University Transportation Centers (UTC) Program Grants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... Competition for University Transportation Centers (UTC) Program Grants AGENCY: Research and Innovative... conduct a competition for University Transportation Centers (UTC) Program grants for the purpose of... of demonstrated ability, research, technology and education resources, leadership, multi-modal...

  2. 78 FR 69173 - University Transportation Centers Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ... DEPARTMENT OF TRANSPORTATION Research and Innovative Technology Administration University... University Transportation Centers (UTCs) program. Funds for this grant program are authorized beginning on..., technology and education resources, leadership, multi-modal research capability, and commitment to...

  3. Transportation Education Demonstration Pilot Program UVM Transportation Research Center

    DOT National Transportation Integrated Search

    2012-06-30

    The Transportation Education Development Pilot Program (TEDPP) develops innovative workforce development programs to attract and retain skilled workers in the transportation sector of Vermont, New Hampshire and Maine and encourages statewide economic...

  4. 75 FR 1681 - University Transportation Centers (UTC) Program Grants (49 U.S.C. 5506); Suspension of Competitions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ... providing notice that it intends to suspend competitions for its University Transportation Centers (UTC... DEPARTMENT OF TRANSPORTATION Research and Innovative Technology Administration University... available about future grant competitions, it will be posted on the UTC Program's Web site, http://utc.dot...

  5. Flight Evaluation of LORAN-C in the State of Vermont

    DOT National Transportation Integrated Search

    1981-09-01

    The Transportation Systems Center, Langley Research Center, the Federal Aviation Administration, and the Agency of Transportation, State of Vermont conducted a program sponsored by the Research and Special Programs Administration of the Department of...

  6. 78 FR 4973 - Notice of Funding Availability for the Small Business Transportation Resource Center Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-23

    ...) Business centered community- based organizations; (2) transportation-related trade associations; (3... chambers of commerce, trade associations, educational institutions and business-centered community based... based entities, colleges and universities, community colleges, and any other qualifying transportation...

  7. National University Rail Transportation Center : Tier 1 : final report.

    DOT National Transportation Integrated Search

    2016-10-17

    This project was a collaborative effort between Michigan Techs Rail Transportation Program (RTP), a member of the National University Rail Center (NURail) and the Michigan Dept of Transportation (MDOT), Office of Rail to advance rail transportatio...

  8. Innovative Approaches to Understanding Transportation/Societal Interactions. Volume 1 : Program Overview and Executive Summaries

    DOT National Transportation Integrated Search

    1981-10-01

    In 1979, the Transportation Systems Center (TSC), under sponsorship of the Urban Mass Transportation Administration (UMTA), began a program of research directed toward improving the understanding of the role of transportation in society, in particula...

  9. User's Guide for the Interactive Scheduling Program : Preliminary Calendar Version

    DOT National Transportation Integrated Search

    1978-08-01

    The Office of Transportation Management of the Urban Mass Transportation Administration (UMTA), in conjunction with the Transportation Systems Center (TSC), designed and developed the Interactive Scheduling Program (ISP) to assist rail-transit operat...

  10. 77 FR 42790 - Notice of Funding Availability for the Small Business Transportation Resource Center Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... the opportunity for business centered community-based organizations, transportation-related trade... commerce, trade associations, educational institutions and business-centered community based organizations..., community based entities, colleges and universities, community colleges, and any other qualifying...

  11. 75 FR 3517 - Notice of Funding Availability for the Small Business Transportation Resource Center Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... for; (1) Business centered community- based organizations; (2) transportation-related trade... community based organizations to establish SBTRCs to provide business training, technical assistance and... solicit proposals from transportation-related trade associations, chambers of commerce, community based...

  12. Transportation Research and Analysis Computing Center (TRACC) Year 6 Quarter 4 Progress Report

    DOT National Transportation Integrated Search

    2013-03-01

    Argonne National Laboratory initiated a FY2006-FY2009 multi-year program with the US Department of Transportation (USDOT) on October 1, 2006, to establish the Transportation Research and Analysis Computing Center (TRACC). As part of the TRACC project...

  13. 78 FR 70617 - Notice of Funding Availability for the Small Business Transportation Resource Center Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... the opportunity for; (1) Business centered community- based organizations; (2) transportation-related... business-centered community based organizations to establish SBTRCs to provide business training, technical..., community based entities, colleges and universities, community colleges, and any other qualifying...

  14. Overview of the Mid-America Transportation Center Research Program

    DOT National Transportation Integrated Search

    2009-10-20

    MATC Research Overview: - U.S.D.O.T. Region VII University Transportation Center - 51 Current Research Projects - 63 Graduate RA's. Improving safety and minimizing risk associated with increasing multi-modal freight movements.

  15. FHWA highway noise barrier design handbook

    DOT National Transportation Integrated Search

    2000-02-01

    The U.S. Department of Transportation, Research and Special Programs Administration, John A. Volpe National Transportation Systems Center (Volpe Center), Acoustics Facility, in support of the Federal Highway Administration (FHWA), Office of Natural E...

  16. Bridge resource program.

    DOT National Transportation Integrated Search

    2013-09-01

    The mission of Rutgers Universitys Center for Advanced Infrastructure and Transportation (CAIT) Bridge Resource Program (BRP) is to provide bridge engineering support to the New Jersey Department of Transportation (NJDOT)s Bridge Engineering an...

  17. NURail Research Experience for Undergraduates (REU) Summer Program in Multimodal Freight Transportation Risk.

    DOT National Transportation Integrated Search

    2013-08-01

    NURail hosted an REU Summer Program in Multimodal Freight Transportation Risk at the Rail Transportation and Engineering Center (RailTEC) in the Department of Civil and Environmental Engineering at the University of Illinois at Urbana-Champaign (UIUC...

  18. Noise measurement flight test of five light helicopters

    DOT National Transportation Integrated Search

    1993-07-01

    The U.S. Department of Transportation, Federal Aviation Administration, (U.S.DOT/FAA), : along with the U.S. DOT, Research and Special Programs Administration, Volpe National : Transportation Systems Center (RSPA/Volpe Center) conducted a helicopter ...

  19. FHWA research and technology evaluation program summary report spring 2016

    DOT National Transportation Integrated Search

    2016-08-01

    This report summarizes the 16 evaluations being conducted by the Volpe National Transportation Systems Center on behalf of FHWAs Research and Technology Program. The FHWA R&T Program furthers the Turner-Fairbank Highway Research Centers goal of...

  20. NASA Propulsion Engineering Research Center, volume 1

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Over the past year, the Propulsion Engineering Research Center at The Pennsylvania State University continued its progress toward meeting the goals of NASA's University Space Engineering Research Centers (USERC) program. The USERC program was initiated in 1988 by the Office of Aeronautics and Space Technology to provide an invigorating force to drive technology advancements in the U.S. space industry. The Propulsion Center's role in this effort is to provide a fundamental basis from which the technology advances in propulsion can be derived. To fulfill this role, an integrated program was developed that focuses research efforts on key technical areas, provides students with a broad education in traditional propulsion-related science and engineering disciplines, and provides minority and other under-represented students with opportunities to take their first step toward professional careers in propulsion engineering. The program is made efficient by incorporating government propulsion laboratories and the U.S. propulsion industry into the program through extensive interactions and research involvement. The Center is comprised of faculty, professional staff, and graduate and undergraduate students working on a broad spectrum of research issues related to propulsion. The Center's research focus encompasses both current and advanced propulsion concepts for space transportation, with a research emphasis on liquid propellant rocket engines. The liquid rocket engine research includes programs in combustion and turbomachinery. Other space transportation modes that are being addressed include anti-matter, electric, nuclear, and solid propellant propulsion. Outside funding supports a significant fraction of Center research, with the major portion of the basic USERC grant being used for graduate student support and recruitment. The remainder of the USERC funds are used to support programs to increase minority student enrollment in engineering, to maintain Center infrastructure, and to develop research capability in key new areas. Significant research programs in propulsion systems for air and land transportation complement the space propulsion focus. The primary mission of the Center is student education. The student program emphasizes formal class work and research in classical engineering and science disciplines with applications to propulsion.

  1. Railroad horn systems research

    DOT National Transportation Integrated Search

    1999-01-01

    The U.S. Department of Transportation, Research and Special Programs Administration, Volpe National Transportation Systems Center, in support of the Federal Railroad Administration is conducting a research program with the goal of reducing the number...

  2. Noise characterization study of the AP.1-88 hovercraft

    DOT National Transportation Integrated Search

    1996-06-01

    During the period, June 1995 through March 1996, the U.S. Department of Transportation, : Research and Special Programs Administration, John A. Volpe National Transportation : Systems Center (Volpe Center), Acoustics Facility, in support of the Unite...

  3. Rail Transit System Cost Study

    DOT National Transportation Integrated Search

    1977-01-01

    The Transportation Systems Center serves as Systems Manager for the Rail Supporting Technology Program of the Urban Mass Transportation Administration. One task under this program has been to assess the cost of constructing, operating and maintaining...

  4. Getting from here to there: evaluating West Virginia's rural nonemergency medical transportation program.

    PubMed

    Bellamy, Gail R; Stone, Kendall; Richardson, Sally K; Goldsteen, Raymond L

    2003-01-01

    With funding from the 21st Century Challenge Fund, the West Virginia Rural Health Access Program created Transportation for Health, a demonstration project for rural nonemergency medical transportation. The project was implemented in 3 sites around the state, building on existing transportation systems--specifically, a multicounty transit authority, a joint senior center/transit system, and a senior services center. An evaluation of the project was undertaken to answer 3 major questions: (1) Did the project reach the population of people who need transportation assistance? (2) Are users of the transportation project satisfied with the service? (3) Is the program sustainable? Preliminary results from survey data indicate that the answers to questions 1 and 2 are affirmative. A break-even analysis of all 3 sites begins to identify programmatic and policy issues that challenge the likelihood of financial sustainability, including salary expenses, unreimbursed mileage, and reliance on Medicaid reimbursement.

  5. Case studies of traffic monitoring programs in large urban areas

    DOT National Transportation Integrated Search

    1997-07-01

    This is one of two documents prepared by the Center for Transportation Information of the Volpe National Transportation Systems Center in support of the Federal Highway Administration's Office of Highway Information Management. This report presents t...

  6. Evaluation -- Northern Virginia Smart Traffic Center (NVSTC) integration program

    DOT National Transportation Integrated Search

    2002-02-01

    The Northern Virginia Smart Traffic Center (NVSTC) Integration Program was an ambitious undertaking to enhance the effectiveness of intelligent transportation systems (ITS) in the Washington metropolitan area by interconnecting regional systems. The ...

  7. Research and Technology: 2003 Annual Report of the John F Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The John F. Kennedy Space Center (KSC) is America's Spaceport Technology Center. The KSC technology development program encompasses the efforts of the entire KSC team, consisting of Government and contractor personnel, working in partnership with academic institutions and commercial industry. KSC's assigned mission areas are space launch operations and spaceport and range technologies. KSC's technology development customers include current space transportation programs, future space transportation programs / initiatives, and enabling technical programs. The KSC Research and Technology 2003 Annual Report encompasses the efforts of contributors to the KSC advanced technology development program and KSC technology transfer activities. Dr. Dave Bartine, KSC Chief Technologist, (321) 867-7069, is responsible for publication of this report and should be contacted for any desired information regarding KSC's research and technology development activities.

  8. Doppler Acoustic Vortex Sensing System

    DOT National Transportation Integrated Search

    1978-10-01

    This is the final report on the Doppler Acoustic Vortex Sensing System, (DAVSS) program carried out by Avco Corporation's Systems Division for the U.S. Department of Transportation, Transportation Systems Center. The objective of the program was the ...

  9. Acoustic and Fuel Consumption Effects Resulting from the Installation of Spiroid Winglets on Aircraft

    DOT National Transportation Integrated Search

    2011-09-01

    The Volpe National Transportation System Centers Environmental Measurement and Modeling Division (Volpe Center), is supporting the FAA in implementing its Next Generation Air Transportation System (NextGen) Program. The objective of the NextGen Pr...

  10. USDOT Tier 1 University Transportation Center Program progress performance report #5.

    DOT National Transportation Integrated Search

    2016-04-29

    MarTREC is a USDOT Tier 1 University Transportation Center funded in September 30, 2013 : under MAP-21. Our consortium consists of the University of Arkansas (UARK), Fayetteville, AR; : Jackson State University (JSU), Jackson, MS; Louisiana State Uni...

  11. Utah Department of Transportation traffic operation center operator training.

    DOT National Transportation Integrated Search

    2010-11-01

    This paper is a summary of work performed by the Utah Traffic Lab (UTL) to develop training programs for the Utah Department of Transportation (UDOT) Traffic Operations Center (TOC) operators at both the basic and advanced levels. The basic training ...

  12. Study of the acoustic characteristics of railroad horn systems

    DOT National Transportation Integrated Search

    1993-07-01

    The U.S. Department of Transportation, Research and Special Programs Administration, Volpe National Transportation Systems Center, in support of the Federal Railroad Administration is conducting a research program with the goal of reducing the number...

  13. International Guide to Highway Transportation Information: Volume 1 - Highway Transportation Libraries and Information Centers

    DOT National Transportation Integrated Search

    2013-01-01

    The FHWA Road Weather Management Program partnered with Utah DOT to develop and implement advanced traveler information strategies during weather events. UDOT already has one of the most sophisticated Traffic Operations Centers (TOCs) in the country ...

  14. Development of national reference energy mean emission levels for the FHWA traffic noise model (FHWA TNM), version 1.0

    DOT National Transportation Integrated Search

    1995-11-01

    Research and Special Programs Administration, John A. Volpe National Transportation Systems Center (Volpe Center), Acoustics Facility, in support of the Federal Highway Administration (FHWA) and 25 sponsoring state transportation agencies, conducted ...

  15. KSC-2012-1847

    NASA Image and Video Library

    2012-02-17

    Commercial Crew Program: The Commercial Crew Program at Kennedy Space Center is leading NASA’s efforts to develop the next United States capability for crew transportation and rescue services to and from the International Space Station ISS and other low Earth orbit destinations by the middle of the decade. The outcome of this capability is expected to stimulate and expand the U.S. space transportation industry. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA

  16. The Center for Aerospace Research: A NASA Center of Excellence at North Carolina Agricultural and Technical State University

    NASA Technical Reports Server (NTRS)

    Lai, Steven H.-Y.

    1992-01-01

    This report documents the efforts and outcomes of our research and educational programs at NASA-CORE in NCA&TSU. The goal of the center was to establish a quality aerospace research base and to develop an educational program to increase the participation of minority faculty and students in the areas of aerospace engineering. The major accomplishments of this center in the first year are summarized in terms of three different areas, namely, the center's research programs area, the center's educational programs area, and the center's management area. In the center's research programs area, we focus on developing capabilities needed to support the development of the aerospace plane and high speed civil transportation system technologies. In the educational programs area, we developed an aerospace engineering option program ready for university approval.

  17. Development of a statewide transportation data warehousing and mining system under the louisiana transportation information system (LATIS) program.

    DOT National Transportation Integrated Search

    2008-06-01

    More jurisdictions including states and metropolitan areas are establishing traffic management centers to assist in reducing congestion. To a lesser extent, these centers are helpful in providing information that assists engineers in making such adju...

  18. Parallel barrier effectiveness under free-flowing traffic conditions

    DOT National Transportation Integrated Search

    1992-04-01

    The U.S. Department of Transportation, Research and Special Programs Administration, Volpe National Transportation Systems Center, in support of the Federal Highway Administration and seventeen sponsoring state transportation agencies, is conducting ...

  19. NPS National Transit Inventory, 2012

    DOT National Transportation Integrated Search

    2013-07-01

    Working in coordination with the NPS regions and the U.S. Department of Transportations Volpe National Transportation Systems Center, the Alternative transportation program (ATP) developed a definition of National Park Service (NPS) transit system...

  20. Innovative Approaches to Understanding Transportation/Societal Interactions. Volume 2 : Study Design Reports

    DOT National Transportation Integrated Search

    1981-10-01

    In 1979, the Transportation Systems Center (TSC), under sponsorship of the Urban Mass Transportation Administration (UMTA), began a program of research directed toward improving the understanding of the role of transportation in society, in particula...

  1. Supplement to the bridge resource program : state-of-the-art practices of mass concrete - a literature review.

    DOT National Transportation Integrated Search

    2013-09-01

    The mission of Rutgers Universitys Center for Advanced Infrastructure and Transportation (CAIT) Bridge Resource Program : (BRP) is to provide bridge engineering support to the New Jersey Department of Transportation (NJDOT)s Bridge : Engineerin...

  2. Arizona Intelligent Vehicle Research Program - Phase Two(b) : 2001-2002

    DOT National Transportation Integrated Search

    2003-09-01

    This report covers Phase Two(b) of a long-term in-house advanced vehicle research program of the Arizona Department of Transportation (ADOT) and its Arizona Transportation Research Center (ATRC). The focus of the research evolved early to winter main...

  3. FAA/NASA Proceedings, Workshop on Wake Vortex Alleviation and Avoidance. Presented at the U.S. Department of Transportation Research and Special Programs Administration Transportation Systems Center, Cambridge, MA 02142, November 28-29, 1978.

    DOT National Transportation Integrated Search

    1979-10-01

    This document is a record of the joint FAA/NASA Workshop on Wake Vortex Alleviation and Avoidance conducted at the DOT Transportation Systems Center, November 28-29, 1978. The workshop was sponsored by the Federal Aviation Administration to apprise t...

  4. The intelligent transportation aystems public safety program : opportunities for technological advancement in detecting, responding and recovering from community emergencies

    DOT National Transportation Integrated Search

    1993-08-01

    This report is the third in a series produced for the Federal Transit Administration (FTA) and the Federal Highway Administration (FHWA) by the Volpe National Transportation Systems Center (Volpe Center). This formal, comprehensive review of the plan...

  5. Energy savings from transit passes : an evaluation of the University at Buffalo NFTA transit pass program for students, faculty, and staff.

    DOT National Transportation Integrated Search

    2014-04-01

    The University Transportation Research Center Region 2 supported a study entitled Connections Beyond Campus: An Evaluation of the Niagara Frontier Transportation : Authority University at Buffalo Transit Pass Program. Unlimited Access t...

  6. Operator performance-enhancing technologies to improve safety. A US DOT safety initiative for meeting the human-centered systems challenge.

    DOT National Transportation Integrated Search

    1999-11-01

    The program implements DOT Human Factors Coordinating Committee (HFCC) recommendations for a coordinated Departmental Human Factors Research Program to advance the human-centered systems approach for enhancing transportation safety. Human error is a ...

  7. Impacts of dialysis transportation on Florida's coordinated public transportation programs.

    DOT National Transportation Integrated Search

    2014-04-01

    The National Center for Transit Research (NCTR) at the University of South Florida (USF) collected quantitative and qualitative data from Community Transportation Coordinators (CTCs) throughout Florida. An online survey and a series of personal inter...

  8. Threat Assessment of Hazardous Materials Transportation in Aircraft Cargo Compartments.

    DOT National Transportation Integrated Search

    1999-12-01

    The Volpe National Transportation Systems Center of the U.S. Department of Transportation's (DOT's) Research and Special Programs Administration (RSPA) has conducted a quantitative threat assessment for RSPA's Office of Hazardous Materials Safety (OH...

  9. 20 CFR 638.408 - Transportation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Transportation. 638.408 Section 638.408 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR JOB CORPS PROGRAM UNDER... the Job Corps § 638.408 Transportation. The transportation of students to and from centers shall occur...

  10. 20 CFR 638.408 - Transportation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false Transportation. 638.408 Section 638.408 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR JOB CORPS PROGRAM UNDER... the Job Corps § 638.408 Transportation. The transportation of students to and from centers shall occur...

  11. 20 CFR 638.408 - Transportation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Transportation. 638.408 Section 638.408 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR JOB CORPS PROGRAM UNDER... the Job Corps § 638.408 Transportation. The transportation of students to and from centers shall occur...

  12. Intelligent transportation systems Professional Capacity Building Program : planning and deploying ITS : six white papers describing current and planned programs of five transportation associations and four university ITS Research Centers of Excellence

    DOT National Transportation Integrated Search

    1997-12-01

    In the fall of 1997, the ITS Professional Capacity Building Program initiated the development of six White Papers to briefly describe the current status of, and plans for future education and training activities of six organizations engaged in ...

  13. Joint University Program for Air Transportation Research, 1983

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    The research conducted during 1983 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The material was presented at a conference held at the Federal Aviation Administration Technical Center, Altantic City, New Jersey, December 16, 1983. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and bibliographies are presented for research topics, which include navigation, guidance, control, and display concepts. An overview of the year's activities for each of the universities is also presented.

  14. 25 CFR 39.705 - Are schools eligible for transportation funds to transport special education students?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... school that transports a special education student from home to a treatment center and back to home on a... 25 Indians 1 2012-04-01 2011-04-01 true Are schools eligible for transportation funds to transport... INTERIOR EDUCATION THE INDIAN SCHOOL EQUALIZATION PROGRAM Student Transportation Eligibility for Funds § 39...

  15. 25 CFR 39.705 - Are schools eligible for transportation funds to transport special education students?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...? Yes. A school that transports a special education student from home to a treatment center and back to... 25 Indians 1 2011-04-01 2011-04-01 false Are schools eligible for transportation funds to... THE INTERIOR EDUCATION THE INDIAN SCHOOL EQUALIZATION PROGRAM Student Transportation Eligibility for...

  16. 25 CFR 39.705 - Are schools eligible for transportation funds to transport special education students?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...? Yes. A school that transports a special education student from home to a treatment center and back to... 25 Indians 1 2014-04-01 2014-04-01 false Are schools eligible for transportation funds to... THE INTERIOR EDUCATION THE INDIAN SCHOOL EQUALIZATION PROGRAM Student Transportation Eligibility for...

  17. 25 CFR 39.705 - Are schools eligible for transportation funds to transport special education students?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...? Yes. A school that transports a special education student from home to a treatment center and back to... 25 Indians 1 2013-04-01 2013-04-01 false Are schools eligible for transportation funds to... THE INTERIOR EDUCATION THE INDIAN SCHOOL EQUALIZATION PROGRAM Student Transportation Eligibility for...

  18. Research and technology at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1989-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center is placing increasing emphasis on the Center's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of current mission, the technical tools are developed needed to execute Center's mission relative to future programs. The Engineering Development Directorate encompasses most of the laboratories and other Center resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this Kennedy Space Center 1989 Annual Report.

  19. Breakthrough propulsion physics research program

    NASA Astrophysics Data System (ADS)

    Millis, Marc G.

    1997-01-01

    In 1996, a team of government, university and industry researchers proposed a program to seek the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, propulsion that can approach and, if possible, circumvent light speed, and breakthrough methods of energy production to power such devices. This Breakthrough Propulsion Physics program, managed by Lewis Research Center, is one part of a comprehensive, long range Advanced Space Transportation Plan managed by Marshall Space Flight Center. Because the breakthrough goals are beyond existing science, a main emphasis of this program is to establish metrics and ground rules to produce near-term credible progress toward these incredible possibilities. An introduction to the emerging scientific possibilities from which such solutions can be sought is also presented.

  20. Breakthrough Propulsion Physics Research Program

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1996-01-01

    In 1996, a team of government, university and industry researchers proposed a program to seek the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, propulsion that can approach and, if possible, circumvent light speed, and breakthrough methods of energy production to power such devices. This Breakthrough Propulsion Physics program, managed by Lewis Research Center, is one part of a comprehensive, long range Advanced Space Transportation Plan managed by Marshall Space Flight Center. Because the breakthrough goals are beyond existing science, a main emphasis of this program is to establish metrics and ground rules to produce near-term credible progress toward these incredible possibilities. An introduction to the emerging scientific possibilities from which such solutions can be sought is also presented.

  1. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    From left, NASA Public Affairs Officer Stephanie Schierholz, NASA Administrator Charles Bolden, Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, Kathy Lueders, program manager of NASA's Commercial Crew Program, and Astronaut Mike Fincke, a former commander of the International Space Station, are seen during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  2. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Kathy Lueders, program manager of NASA's Commercial Crew Program, speaks, as Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, left, and Astronaut Mike Fincke, a former commander of the International Space Station look on during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  3. Measurement of highway-related noise

    DOT National Transportation Integrated Search

    1996-05-01

    The U.S. Department of Transportation, Research and Special Programs Administration, John A. Volpe National Transportation Systems Center, Acoustics Facility, in support of the Federal Highway Administration (FHWA), Office of Environment and Planning...

  4. Environmental Technology Verification Report: Taconic Energy, Inc. TEA Fuel Additive

    EPA Science Inventory

    The Greenhouse Gas Technology Center (GHG Center) is one of six verification organizations operating under EPA’s ETV program. One sector of significant interest to GHG Center stakeholders is transportation - particularly technologies that result in fuel economy improvements. Taco...

  5. Research and technology

    NASA Technical Reports Server (NTRS)

    1988-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery and operational support of Space Transportation System elements and payloads, Kennedy Space Center is placing emphasis on its research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of our current mission, we are developing the technological tools needed to execute the Center's mission relative to future programs. The Engineering Development Directorate encompasses most of the laboratories and other Center resources that are key elements of research and technology program implementation, and is responsible for implementation of the majority of the projects in this Kennedy Space Center 1988 Annual Report.

  6. Research and technology

    NASA Technical Reports Server (NTRS)

    1986-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center is placing increasing emphasis on the Center's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of our current mission, we are developing the technological tools needed to execute the Center's mission relative to future programs. The Engineering Development Directorate encompasses most of the laboratories and other Center resources that are key elements of research and technology program implementation, and is responsible for implementation of the majority of the projects in this Kennedy Space Center 1986 Annual Report.

  7. Evaluation of WYDOT's research center and research program.

    DOT National Transportation Integrated Search

    2008-03-01

    This study examined multiple aspects of the Wyoming Department of Transportations Research Program. It provides numerous observations of : the overall program and the research investment portfolio as well as guidance for developing a strategic res...

  8. A-5A on lakebed.

    NASA Image and Video Library

    1963-03-25

    A North American Aviation A-5A Vigilante (Navy serial number 147858/NASA tail number 858) arrived from the Naval Air Test Center, Patuxent River, MD, on December 19, 1962, at the NASA Flight Research Center (now, Dryden Flight Research Center, Edwards, CA). The Center flew the A-5A in a year-long series of flights in support of the U.S. supersonic transport program. The Center flew the aircraft to determine the let-down and approach conditions of a supersonic transport flying into a dense air traffic network. With the completion of the research flights, the Center sent the A-5A back to the Navy on December 20, 1963.

  9. A-5A on lakebed.

    NASA Image and Video Library

    1963-10-25

    A North American Aviation A-5A Vigilante (Navy serial number 147858/NASA tail number 858) arrived from the Naval Air Test Center, Patuxent River, MD, on December 19, 1962, at the NASA Flight Research Center (now, Dryden Flight Research Center, Edwards, CA). The Center flew the A-5A in a year-long series of flights in support of the U.S. supersonic transport program. The Center flew the aircraft to determine the let-down and approach conditions of a supersonic transport flying into a dense air traffic network. With the completion of the research flights, the Center sent the A-5A back to the Navy on December 20, 1963.

  10. Research and technology 1987 annual report of the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1987-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center is placing increasing emphasis on the Center's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of our current mission, we are developing the technological tools needed to execute the Center's mission relative to future programs. The Engineering Development Directorate encompasses most of the laboratories and other Center resources that are key elements of research and technology program implementation, and is responsible for implementation of the majority of the projects of this Kennedy Space Center 1987 Annual Report.

  11. 14 CFR 142.39 - Training program curriculum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Training program curriculum requirements... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Aircrew Curriculum and Syllabus Requirements § 142.39 Training program curriculum requirements. Each training program curriculum...

  12. 14 CFR 142.39 - Training program curriculum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Training program curriculum requirements... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Aircrew Curriculum and Syllabus Requirements § 142.39 Training program curriculum requirements. Each training program curriculum...

  13. Facilitating outreach programs for students in rural Texas.

    DOT National Transportation Integrated Search

    2011-04-01

    Since 1998, the Texas Transportation Institute (TTI) has expanded its efforts to build dynamic partnerships among the : business, industry, and education sectors. Previous grants from the Southwest University Transportation Center : (SWUTC) created p...

  14. Space Shuttle Program

    NASA Image and Video Library

    2012-09-12

    Ronnie Rigney (r), chief of the Propulsion Test Office in the Project Directorate at Stennis Space Center, stands with agency colleagues to receive the prestigious American Institute of Aeronautics and Astronautics George M. Low Space Transportation Award on Sept. 12. Rigney accepted the award on behalf of the NASA and contractor team at Stennis for their support of the Space Shuttle Program that ended last summer. From 1975 to 2009, Stennis Space Center tested every main engine used to power 135 space shuttle missions. Stennis continued to provide flight support services through the end of the Space Shuttle Program in July 2011. The center also supported transition and retirement of shuttle hardware and assets through September 2012. The 2012 award was presented to the space shuttle team 'for excellence in the conception, development, test, operation and retirement of the world's first and only reusable space transportation system.' Joining Rigney for the award ceremony at the 2012 AIAA Conference in Pasadena, Calif., were: (l to r) Allison Zuniga, NASA Headquarters; Michael Griffin, former NASA administrator; Don Noah, Johnson Space Center in Houston; Steve Cash, Marshall Space Flight Center in Huntsville, Ala.; and Pete Nickolenko, Kennedy Space Center in Florida.

  15. 78 FR 26684 - Notice of Funding Availability for the Small Business Transportation Resource Center Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... (OSDBU) announces the opportunity for; (1) business centered community- based organizations; (2... business-centered community based organizations to establish SBTRCs to provide business training, technical..., community based entities, colleges and universities, community colleges, and any other qualifying...

  16. Performance evaluation of experimental highway noise barriers

    DOT National Transportation Integrated Search

    1994-05-01

    During the period October 1986 through April 1994, the U.S. Department of Transportation, Research and Special Programs Administration, John A. Volpe National Transportation Systems Center, in support of the Federal Highway Administration and 17 spon...

  17. Research and technology 1991 annual report

    NASA Technical Reports Server (NTRS)

    1991-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, NASA Kennedy is placing increasing emphasis on the center's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of the current mission, the technical tools are being developed which are needed to execute the center's mission relative to future programs. The Engineering Development Directorate encompasses most of the labs and other center resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this Kennedy Space Center 1991 annual report.

  18. UIUC concrete tie and fastener field testing at TTC.

    DOT National Transportation Integrated Search

    2014-07-01

    In July 2012, the University of Illinois at Urbana-Champaign (UIUC) began an extensive : experimental program at the Transportation : Technology Center (TTC) in Pueblo, CO. The : field experimentation program was part of a : larger research program f...

  19. HAARP diesel engine-generator(s) noise study

    DOT National Transportation Integrated Search

    2005-01-07

    This document presents the results and corresponding analysis of an outdoor noise measurement program conducted by the John A. Volpe National Transportation Systems Centers Acoustic Facility (Volpe Center) at the United States Air Forces High F...

  20. Pennsylvania safe routes to school program.

    DOT National Transportation Integrated Search

    2010-10-21

    In October 2007, the Center for Nutrition and Activity promotion at Penn State Hershey Children's Hospital (Center) began working under contract with the Pennsylvania Deaprtment of Transportation )PennDOT) to develop, coordinate, and administer the n...

  1. Station Platform-Railcar Threshold Gap Study

    DOT National Transportation Integrated Search

    1982-03-01

    This study was conducted for the Transportation Systems Center by the Veterans Administration Rehabilitation Engineering Center (VAREC). It is part of a program to improve railcar accessibility for the handicapped riders. The purpose of this investig...

  2. Los Angeles Downtown People Mover (DPM) Operational Analysis

    DOT National Transportation Integrated Search

    1981-06-01

    Two different studies were performed by the Research and Special Programs Administration of the Transportation Systems Center in response to the concerns of the Urban Mass Transportation Administration about the ability of the planned Los Angeles Dow...

  3. A Sensitivity Analysis of the Rigid Pavement Life-Cycle Cost Analysis Program

    DOT National Transportation Integrated Search

    2000-12-01

    Original Report Date: September 1999. This report describes the sensitivity analysis performed on the Rigid Pavement Life-Cycle Cost Analysis program, a computer program developed by the Center for Transportation Research for the Texas Department of ...

  4. Ridesharing: Transportation demand management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdez, R.; Wang, J.; Flynn, C.P.

    1989-01-01

    The 13 papers in the report deal with the following areas: Comparison of transportation demand management market research study results and transportation management association development in three suburban activity centers; Ten cities' strategies for transportation demand management; Key considerations for developing local government transportation system management programs; First Hill Action Plan: A unique public/private approach to transportation demand management; Comparison of travel behavior before and after the opening of HOV lanes in a suburban travel corridor; Evaluation of Springfield instant carpooling; George Washington Bridge bus-carpool lane: 1-Year Operational Report; Guaranteed Ride Home: An insurance program for HOV users; Evaluation ofmore » Ridefinders and Central Richmond Association's transportation and parking information service; Vanpools: Pricing and market penetration; Cost-effectiveness of private employer ridesharing programs: An employer's assessment; Temporal analysis of handicapped ridership in specialized transportation service: Lexington/Fayette County experience; Characterization of the 'publico' system of Puerto Rico.« less

  5. The 1991 Marshall Space Flight Center research and technology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A compilation of 194 articles addressing research and technology activities at the Marshall Space Flight Center (MSFC) is given. Activities are divided into three major areas: advanced studies addressing transportation systems, space systems, and space science activities conducted primarily in the Program Development Directorate; research tasks carried out in the Space Science Laboratory; and technology programs hosted by a wide array of organizations at the Center. The theme for this year's report is 'Building for the Future'.

  6. Development of a 21st Century Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Holmes, Bruce J.; Hansen, Frederick

    2000-01-01

    The National Aeronautics and Space Administration (NASA), U.S. Department of Transportation, Federal Aviation Administration, industry stakeholders, and academia, have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This strategic undertaking has a 25-year goal to bring the next-generation technologies and improve travel between remote communities and transportation centers in urban areas by utilizing the nation's 5,400 public use general aviation airports. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. The Nebraska NASA EPSCoR Program has proposed to deliver research support in key public infrastructure areas in coordination with the General Aviation Program Office at the NASA Langley Research Center. Ultimately, SATS may permit tripling aviation system throughput capacity by tapping the underutilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  7. Supplementary Services for Handicapped Students Early Childhood Language-Centered Intervention Program. O.E.E. Evaluation Report, 1981-82.

    ERIC Educational Resources Information Center

    Tobias, Robert; And Others

    The Early Childhood Language Centered Intervention Program of the New York City Public Schools was designed to provide classroom instruction and transportation for preschool children with primary and secondary speech/language handicaps, and to train parents to participate in the education of these children. Using individual education plans (IEPs),…

  8. NASA breakthrough propulsion physics program

    NASA Astrophysics Data System (ADS)

    Millis, Marc G.

    1999-05-01

    In 1996, NASA established the Breakthrough Propulsion Physics program to seek the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, propulsion that attains the maximum transit speeds physically possible, and breakthrough methods of energy production to power such devices. Topics of interest include experiments and theories regarding the coupling of gravity and electromagnetism, vacuum fluctuation energy, warp drives and wormholes, and superluminal quantum effects. Because these propulsion goals are presumably far from fruition, a special emphasis is to identify affordable, near-term, and credible research that could make measurable progress toward these propulsion goals. The methods of the program and the results of the 1997 workshop are presented. This Breakthrough Propulsion Physics program, managed by Lewis Research Center, is one part of a comprehensive, long range Advanced Space Transportation Plan managed by Marshall Space Flight Center.

  9. NASA Breakthrough Propulsion Physics Program

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1998-01-01

    In 1996, NASA established the Breakthrough Propulsion Physics program to seek the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, propulsion that attains the maximum transit speeds physically possible, and breakthrough methods of energy production to power such devices. Topics of interest include experiments and theories regarding the coupling of gravity and electromagnetism, vacuum fluctuation energy, warp drives and worm-holes, and superluminal quantum effects. Because these propulsion goals are presumably far from fruition, a special emphasis is to identify affordable, near-term, and credible research that could make measurable progress toward these propulsion goals. The methods of the program and the results of the 1997 workshop are presented. This Breakthrough Propulsion Physics program, managed by Lewis Research Center, is one part of a comprehensive, long range Advanced Space Transportation Plan managed by Marshall Space Flight Center.

  10. Alternative Fuels Data Center

    Science.gov Websites

    Alternative Fuel Vehicle (AFV) Registration Tracking Program The Texas Department of Transportation to the Texas Legislature detailing the results of each data collection year. For the purpose of this . (Reference Texas Statutes, Transportation Code, 502-004

  11. Analysis of the market potential for distance learning opportunities in transportation professional development

    DOT National Transportation Integrated Search

    2001-04-01

    This research investigated the feasibility and sustainability of a distance learning program at the Texas : Transportation Institute through the Center for Professional Development. Through a literature review and : an on-line questionnaire completed...

  12. Feasibility of developing a pilot car training and certification program in Alabama.

    DOT National Transportation Integrated Search

    2010-09-01

    The State of Alabama does not currently require certification for the pilot car drivers who escort : oversize/overweight vehicles. The Alabama Department of Transportation contracted with The University : Transportation Center for Alabama (UTCA) to i...

  13. Feasibility of developing a pilot car training and certification program in Alabama

    DOT National Transportation Integrated Search

    2010-09-01

    The State of Alabama does not currently require certification for the pilot car drivers who escort : oversize/overweight vehicles. The Alabama Department of Transportation contracted with The University : Transportation Center for Alabama (UTCA) to i...

  14. Connected vehicle environment : Governance Roundtable Proceedings from June 20, 2011.

    DOT National Transportation Integrated Search

    2011-08-01

    This report documents a governance roundtable discussion hosted by the Intelligent Transportation Systems (ITS) Joint Program Office (JPO) on June 20, 2011 at the U.S. DOTs John A. Volpe National Transportation Systems Center in Cambridge, Massach...

  15. Automotive Energy Efficiency Program - Presented Papers at the Contractors Coordination Meeting, January 15-17, 1975

    DOT National Transportation Integrated Search

    1975-06-01

    This volume contains working papers presented at the Contractors Coordination Meeting of the Automotive Energy Efficiency Program held at the DOT Transportation Systems Center, January 15-17, 1975. This program is the Federal Government's major effor...

  16. Automotive Energy Efficiency Program : Papers Presented at the Project Coordination Meeting, November 4-6, 1975

    DOT National Transportation Integrated Search

    1976-06-01

    This volume contains working papers presented at the Contractors Coordination Meeting of the Automotive Energy Efficiency Program held at the DOT Transportation Systems Center, January 15-17, 1975. This program is the Federal Government's major effor...

  17. 78 FR 79477 - Announcement of Funding Awards, Choice Neighborhoods Grant Program, Fiscal Year 2013

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... to community development centered on housing transformation. The program aims to transform...-functioning services, effective schools and education programs, public assets, public transportation, and... comprehensive neighborhood revitalization strategy, or Transformation Plan. The Transformation Plan will become...

  18. Saturn Apollo Program

    NASA Image and Video Library

    1968-03-01

    The Saturn 1B first stage (S-IB) enters the NASA barge Point Barrow, in March 1968. The Marshall Space Flight Center (MSFC) utilized a number of water transportation craft to transport the Saturn stages to-and-from the manufacturing facilities and test sites, as well as delivery to the Kennedy Space Center for launch. Developed by the Marshall Space Flight Center and built by the Chrysler Corporation at Michoud Assembly Facility (MAF), the S-IB utilized the eight H-1 engines and each produced 200,000 pounds of thrust, a combined thrust of 1,600,000 pounds.

  19. 77 FR 36034 - Notice of Funding Availability for the Small Business Transportation Resource Center Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... construct a database of regional small businesses that currently or may in the future participate in DOT direct and DOT funded transportation related contracts, and make this database available to OSDBU, upon request. 2. Utilize the database of regional transportation-related small businesses to match...

  20. Research and technology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center is placing increasing emphasis on the Center's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safe, more efficient, and more economical execution of our current mission, we are developing the technological tools needed to execute the Center's mission relative to Space Station and other future programs. The Engineering Development Directorate encompasses most of the laboratories and other Center resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this Kennedy Space Center 1985 Annual Report. The report contains brief descriptions of research and technology projects in major areas of Kennedy Space Center's disciplinary expertise.

  1. 25 CFR 170.175 - What Indian LTAP-sponsored transportation training and educational opportunities exist?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Indian Reservation Roads Program Policy and... education and training opportunities, contact the regional Indian LTAP center or BIA regional road engineer...

  2. 25 CFR 170.175 - What Indian LTAP-sponsored transportation training and educational opportunities exist?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Indian Reservation Roads Program Policy and... education and training opportunities, contact the regional Indian LTAP center or BIA regional road engineer...

  3. Parametric study of track response

    DOT National Transportation Integrated Search

    1977-12-01

    This report was prepared as part of the Improved Track Structures Research Program : managed by the Transportation Systems Center. This program is sponsored by the : Office of Rail Safety Research, Improved Track Structures Research Division, of : th...

  4. ATCRBS Improvement Program Reflector Antenna Development

    DOT National Transportation Integrated Search

    1976-06-01

    This report describes the results of a program undertaken by Texas Instruments Incorporated, under contract to the Transportation Systems Center (TSC), to investigate improved antennas for the Air Traffic Control Radar Beacon System (ATCRBS). Under t...

  5. Analyses of track-related railroad accident data

    DOT National Transportation Integrated Search

    1978-12-01

    The Federal Railroad Administration (FRA), as part if a comprehensive research program, has sponsored the Improved Track Structures Research Program (ITSRP) at the Transportation Systems Center (TSC). The study, documented in this report, supports th...

  6. Metra operations management development program : 2010 - 2015.

    DOT National Transportation Integrated Search

    2016-11-04

    On behalf of the Urban Transportation Center, the University of Illinois (UIC) Great Cities Institute (GCI) provided curriculum development and training services to Metra for a workforce education program targeted to new and experienced managers. Met...

  7. Transportation of Critically Ill Patients on Extracorporeal Membrane Oxygenation

    PubMed Central

    Broman, L. Mikael; Frenckner, Björn

    2016-01-01

    Extracorporeal membrane oxygenation (ECMO) may be a life-saving procedure for patients with severe reversible pulmonary or cardiac failure or for patients in need for a bridge to transplantation. ECMO is provided by specialized centers, but patients in need of ECMO are frequently taken care of at other centers. Conventional transports to an ECMO center can be hazardous and deaths have been described. For this reason, many ECMO centers have developed transport programs with mobile ECMO. After request, the mobile team including all necessary equipment to initiate ECMO is sent to the referring hospital, where the patient is cannulated and ECMO commenced. The patient is then transported on ECMO to the ECMO facility by road, helicopter, or fixed-wing aircraft depending on distance, weather conditions, etc. Eight publications have reported series of more than 50 transports on ECMO of which the largest included over 700. Together, these papers report on more than 1400 patient transports on ECMO. Two deaths during transport have occurred. A number of other adverse events are described, but without effect on patient outcome. Survival of patients transported on ECMO is equivalent to that of non-transported ECMO patients. It is concluded that long-, short-distance interhospital transports on ECMO can be performed safely. The staff should be experienced and highly competent in intensive care, ECMO cannulation, ECMO treatment, intensive care transport, and air transport medicine. PMID:27379221

  8. Rules of the Road for Transporting Children--Guidelines for Developing a Motor Vehicle Safety Program.

    ERIC Educational Resources Information Center

    Hooker, Bruce; Gearhart, Kentin

    1999-01-01

    Discusses safety issues for child care centers that provide transportation for children. Notes the importance of vehicle usage and control, driver qualifications, vehicle maintenance, child securement, accident procedures, and driver education and training. (JPB)

  9. 25 CFR 170.166 - What services do Indian LTAP centers provide?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... technology implementation in cooperation with the private sector; (9) Develop educational programs to... transportation technology transfer services, including education, training, technical assistance and related... developing and sharing tribal transportation technology and traffic safety systems and information with other...

  10. Rail Safety/Equipment Crashworthiness : Volume 1. A Systems Analysis of Injury Minimization in Rail Systems

    DOT National Transportation Integrated Search

    1978-07-01

    The Department of Transportation, Transportation Systems Center (TSC), is providing technical assistance to the Federal Railroad Administration (FRA) in a program to improve railroad safety and efficiency by providing a technological basis for improv...

  11. Detection and assessment of secondary sonic booms in New England

    DOT National Transportation Integrated Search

    1980-05-01

    This report documents the results of a secondary sonic boom detection and assessment program conducted by the U.S. Dept. of Transportation, Transportation Systems Center in New England during the summer of 1979. Measurements of both acoustic and infr...

  12. Integration of weather information in transportation management center operations : self-evaluation and planning guide

    DOT National Transportation Integrated Search

    2008-06-30

    The Federal Highway Administrations Road Weather Management Program is helping to reduce the adverse impacts of weather on the transportation system by assisting agencies in integrating weather information and technologies into their daily Transpo...

  13. Partnering for transportation safety : human-centered systems : operator fatigue management conference

    DOT National Transportation Integrated Search

    2000-01-01

    This Conference was intended to enlist support for, and participation in, a new multi-modal DOT safety initiative. This initiative builds on the modal agency programs within DOT to develop techniques that transportation operating companies can employ...

  14. Experiments on Four Different Techniques for Automatically Locating Land Vehicles - A Summary of Results

    DOT National Transportation Integrated Search

    1977-06-01

    In 1975, to further the development and to refine and dmonstrate multiuser Automatic Vehicle Monitoring (AVM) application, the Urban Mass Transportation Administration and the Transportation Systems Center (TSC) initiated a two-phase program. Phase I...

  15. GIS tools for strategic SB375 planning and program participation

    DOT National Transportation Integrated Search

    2010-12-02

    The just-completed (2009-2010) phase of this project corresponds to the second year of an envisioned three-year initiative on integrated transportation and land use planning supported by the Leonard Transportation Center (LTC) and USDOT, and performe...

  16. Wyoming Department of Transportation (WYDOT) road condition reporting application for weather responsive traffic management.

    DOT National Transportation Integrated Search

    2016-01-01

    FHWAs Road Weather Management Program partnered with WYDOT to develop a new software application to improve the way maintenance personnel report road and weather conditions to their statewide Transportation Management Center (TMC), recommend varia...

  17. Student Work Safety Guidelines in Roadside Applications and Work Zones : Safety Guidelines for Transportation Researchers

    DOT National Transportation Integrated Search

    2018-01-01

    The Smart City Demonstration Program is intended to improve access through expanded mobility options in major job centers, enhance visitor experience by better connecting visitors to transportation options, stimulate regional economic prosperity and ...

  18. Research and technology: 1994 annual report of the John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1994-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1994 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. The Technology Programs and Commercialization Office (DE-TPO), (407) 867-3017, is responsible for publication of this report and should be contacted for any desired information regarding the advanced technology program.

  19. Joint University Program for Air Transportation Research, 1984

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    The research conducted during 1984 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and bibliographies are presented for research topics, which include navigation, guidance, control and display concepts. An overview of the year's activities for each of the schools is also presented.

  20. Smart Columbus : Systems Engineering Management Plan (SEMP) for Smart Columbus Demonstration Program

    DOT National Transportation Integrated Search

    2018-01-16

    The Smart City Demonstration Program is intended to improve access through expanded mobility options in major job centers, enhance visitor experience by better connecting visitors to transportation options, stimulate regional economic prosperity and ...

  1. Noise measurement data : New Jersey expanded east coast plan

    DOT National Transportation Integrated Search

    1991-12-31

    This document presents the results of a noise measurement program conducted by the Research and Special Program Administration, Volpe National Transportation Systems Center (RSPA/VNTSC) in nine communities around the greater Newark, New Jersy, area d...

  2. Alternative Fuels Data Center

    Science.gov Websites

    Provision for Establishment of Hydrogen Program The Texas Department of Transportation (TxDOT) may . TxDOT must report the results of this monitoring, analysis, and comparison to the Texas Commission on Environmental Quality. (Reference Texas Statutes, Transportation Code 201.618

  3. Prediction and Control of Rail Transit Noise and Vibration - A State-of-the-Art Assessment

    DOT National Transportation Integrated Search

    1974-04-01

    As systems manager for the Urban Mass Transportation Administration's Rail Supporting Technology Program, the Transportation Systems Center has undertaken research in rail transit noise abatement. As part of this effort, this report contains the resu...

  4. ITS enhanced bus rapid transit. Research and deployment program. [Draft for comment

    DOT National Transportation Integrated Search

    2000-02-01

    The purpose of this guide is to provide a resource on worldwide transportation libraries and information centers for domestic and international professionals in the highway transportation field. This guide, Volume 1, is part of a multi-volume set of ...

  5. Implementation of a localized roughness specification for use on Louisiana bridges : research project capsule : technology transfer program.

    DOT National Transportation Integrated Search

    2016-10-01

    The Louisiana Transportation Research Center has worked closely with the Bridge : Design section of the Louisiana Department of Transportation and Development : (DOTD) to develop a workable specification for standard and localized roughness : of brid...

  6. Automatic Fare Collection Equipment, Reliability and Maintainability Assessment Plan for Urban Rail Transit Properties

    DOT National Transportation Integrated Search

    1981-03-01

    This project was conducted as part of UMTA's Rail Transit Fare Collection Program developed by the Transportation Systems Center of the U.S. Department of Transportation. The report presents a generalized survey methodology for conducting assessments...

  7. Developing brokered community transportation for seniors and people with disabilities.

    PubMed

    Marx, Jerry; Davis, Christie; Miftari, Caitlin; Salamone, Anne; Weise, Wendy

    2010-01-01

    Communities are exploring ways to increase transportation coordination to improve access for seniors. One such effort is a brokered transportation system in which one agency serves as the central point of contact for ride information or actually arranging transportation for clients of multiple programs by use of a combination of transportation services. A team of social work faculty and students from the University of New Hampshire (UNH) Social Work Outreach Center, a center that provides service learning opportunities to students, collaborated with a local coalition to investigate the specific transportation needs of the region's senior citizens. A total of 641 people participated in the survey. Results indicate that the study population experiences problems reliably meeting daily living needs due to inconsistent or unavailable private and public transportation options. Study findings also indicate the promising potential of brokered transportation systems, particularly for isolated seniors in rural and suburban areas with relatively limited public and private transportation options.

  8. 14 CFR 142.37 - Approval of flight aircrew training program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Aircrew Curriculum and... the Administrator for training program approval. (b) A curriculum approved under SFAR 58 of part 121... application for training program approval must indicate— (1) Which courses are part of the core curriculum and...

  9. Automotive Energy Efficiency Program - Papers Presented at the Automobile Engine Control Symposium, July 8 and 9, 1975

    DOT National Transportation Integrated Search

    1976-07-01

    This volume contains working papers presented at the Contractors Coordination Meeting of the Automotive Energy Efficiency Program held at the DOT Transportation Systems Center, July 8 and 9, 1975. This program is the Federal Government's major effort...

  10. Synthesis and evaluation of red light running automated enforcement programs in the United States

    DOT National Transportation Integrated Search

    1994-11-01

    This report is the seventh in a series produced for the Federal Transit Administration (FTA) and the Federal Highway Administration (FHWA) by the Volpe National Transportation Systems Center (Volpe Center). This formal, comprehensive review of the pl...

  11. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Kathy Lueders, program manager of NASA's Commercial Crew Program, speaks during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  12. Assessing the results of the Strategic Highway Research Center

    DOT National Transportation Integrated Search

    1998-01-01

    In 1995, shortly after the 5-year Strategic Highway Research Program (SHRP) concluded and during the early stages of the national program to encourage the implementation of SHRP products, the Transportation Research Board (TRB) SHRP Committee suggest...

  13. Maritime Navigation/Communications Program. Volume 2. Requirements Definitions Statement.

    DOT National Transportation Integrated Search

    1987-04-01

    A Maritime Administration/Transportation Systems Center team has been conducting a program to study navigation and communication systems on the Great Lakes and St. Lawrence River with the objective of defining technologies and systems that have the p...

  14. Increased Rail Transit Vehicle Crashworthiness in Head-On Collisions. Volume III. Guidelines for Evaluation and Development of New Railcar Designs.

    DOT National Transportation Integrated Search

    1980-06-01

    As systems manager for the Urban Mass Transportation Administration (UMTA) Rail System Supporting Technology Program, the Transportation Systems Center (TSC) is conducting research and development efforts directed toward the introduction of improved ...

  15. Optimizing Wartime Materiel Delivery: An Overview of DoD containerization. Volume 1. Past Efforts and Current Issues. Revision

    DOT National Transportation Integrated Search

    1988-10-01

    This report presents the findings of a study conducted by the Transportation System Center (TSC), Research and Special Programs Administration, U.S. Department of Transportation (DOT), on containerization in the wartime Department of Defense logistic...

  16. Research and Technology 1996: Innovation in Time and Space

    NASA Technical Reports Server (NTRS)

    1996-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1996 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities.

  17. 14 CFR 142.37 - Approval of flight aircrew training program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... application for training program approval must indicate— (1) Which courses are part of the core curriculum and... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Approval of flight aircrew training program... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Aircrew Curriculum and...

  18. 77 FR 27475 - Announcement of Funding Awards; Choice Neighborhoods Grant Program for Fiscal Years (FY) 2010 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    ... community development centered on housing transformation. The program aims to transform neighborhoods of...-functioning services, effective schools and education programs, public assets, public transportation, and improved access to jobs. Choice Neighborhoods grants primarily funds the transformation of public and/or...

  19. The Small Aircraft Transportation System for America: A Case in Public Infrastructure Change

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.

    2000-01-01

    The National Aeronautics and Space Administration (NASA), U.S. Department of Transportation, Federal Aviation Administration, industry stakeholders, and academia, have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This strategic undertaking has a 25-year goal to bring next-generation technologies and improve travel between remote communities and transportation centers in urban areas by utilizing the nation's 5,400 public-use general aviation airports. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. The Nebraska NASA EPSCoR Program has proposed to deliver research support in key public infrastructure areas in coordination with the General Aviation Program Office at the NASA Langley Research Center. Ultimately, SATS may permit tripling aviation system throughput capacity by tapping the underutilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  20. Side impact test and analysis of a DOT-112 tank car.

    DOT National Transportation Integrated Search

    2016-12-01

    As part of a program to improve transportation safety for tank cars, Transportation Technology Center, Inc. (TTCI) has conducted a side impact test on a DOT-112 tank car to evaluate the performance of the DOT-112 under dynamic impact conditions and t...

  1. Standardized metrics for accessibility : establishing a federal policy-relevant knowledge base : USDOT Region V Regional University Transportation Center final report.

    DOT National Transportation Integrated Search

    2016-12-01

    This report seeks opportunities for standardization of these data and explains findings on three principal tasks. First, it assesses the current state of standardized transportation data. By studying documentation of other programs of standardized da...

  2. 78 FR 41817 - Notice of Funding Availability for the Small Business Transportation Resource Center Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ..., counseling, marketing and outreach, and the dissemination of information, to encourage and assist small..., small business counseling, and technical assistance with small businesses currently doing business with... at transportation-related conferences and other events. (C) Business Counseling 1. Collaborate with...

  3. Maritime Navigation/Communications Program. Volume 3. State of the Art Survey.

    DOT National Transportation Integrated Search

    1989-04-01

    A Maritime Administration/Transportation Systems Center team has been conducting a program to study navigation and communication systems on the Great Lakes and St. Lawrence River with the objective of defining technologies and systems that have the p...

  4. Maritime Navigation/Communications Program. Volume 1. Navigation and Communications System Study.

    DOT National Transportation Integrated Search

    1984-10-01

    A Maritime Administration/Transportation Systems Center team has been conducting a program to study navigation and communication systems on the Great Lakes and St. Lawrence River with the objective of defining technologies and systems that have the p...

  5. Evaluation of the focused approach to pedestrian safety program

    DOT National Transportation Integrated Search

    2009-02-02

    This report summarizes the results of an evaluation of the Federal Highway Administration (FHWA) Focused Approach to Pedestrian Safety Program. The study was done by the Volpe National Transportation Systems Center at the request of the FHWA Office o...

  6. Alternative Fuels Data Center

    Science.gov Websites

    also be eligible for funding if the project will reduce emissions in eligible counties. The North website. Point of Contact Rick Sapienza Clean Transportation Program Manager North Carolina Clean Energy Technology Center, North Carolina State University Phone: (919) 515-2788 cleantransportation@ncsu.edu http

  7. Mandating green: on the design of renewable fuel policies and cost containment mechanisms : a national center for sustainable transportation research report.

    DOT National Transportation Integrated Search

    2015-10-01

    Policymakers typically favor renewable fuel mandates over taxes and cap and trade programs to : reduce greenhouse gas emissions from the transportation sector. Because of delays in the development : of commercially viable renewable fuels and importan...

  8. 77 FR 60012 - University Transportation Centers Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... comment (or signing the comment if submitted on behalf of an association, a business, a labor union, etc... address critical workforce needs and educate the next generation of transportation leaders. II... applicant for a National UTC must focus its research on one of the Department's five strategic goals: 1...

  9. Argonne National Laboratory's Recycling Pilot Plant

    ScienceCinema

    Spangenberger, Jeff; Jody, Sam

    2018-05-30

    Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills. For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

  10. Assuring Safety in Bus Transportation--Update on Federal Legislation.

    ERIC Educational Resources Information Center

    Craft, Nick

    2003-01-01

    Discusses the growing use of vans for transportation by child care centers and increasing concerns about van safety. Presents information on relevant federal legislation related to motor vehicle safety and the safety standards of the National Highway Traffic Safety Administration. Recommends that child care programs replace retiring vans with…

  11. Flight Test Evaluation and Analysis of an Optical IR PWI System

    DOT National Transportation Integrated Search

    1972-06-01

    This report documents the flight test results of the optical : infrared (IR) Pilot Warning Instrument (PWI) system conducted by the : Transportation Systems Center as part of an FAA/NASA PWI development : program. The test program is described and th...

  12. Proceedings of the Fourth Conference on the Climatic Impact Assessment Program

    DOT National Transportation Integrated Search

    1976-08-01

    This volume contains the proceedings of the final, Fourth Conference on the Climatic Impact Assessment Program, held at the DOT Transportation Systems Center February 4 through 7, 1975. It includes 55 papers, a panel discussion, and edited question-a...

  13. WAMI: A Menu-Driven Computer Program for the Estimation of Weight and Moments of Inertia of Earth-to-Orbit Transports

    NASA Technical Reports Server (NTRS)

    MacConochie, Ian O.; White, Nancy H.; Mills, Janelle C.

    2004-01-01

    A program, entitled Weights, Areas, and Mass Properties (or WAMI) is centered around an array of menus that contain constants that can be used in various mass estimating relationships for the ultimate purpose of obtaining the mass properties of Earth-to-Orbit Transports. The current Shuttle mass property data was relied upon heavily for baseline equation constant values from which other options were derived.

  14. Propulsion-airframe integration for commercial and military aircraft

    NASA Technical Reports Server (NTRS)

    Henderson, William P.

    1988-01-01

    A significant level of research is ongoing at NASA's Langley Research Center on integrating the propulsion system with the aircraft. This program has included nacelle/pylon/wing integration for turbofan transports, propeller/nacelle/wing integration for turboprop transports, and nozzle/afterbody/empennage integration for high performance aircraft. The studies included in this paper focus more specifically on pylon shaping and nacelle location studies for turbofan transports, nacelle and wing contouring and propeller location effects for turboprop transports, and nozzle shaping and empennage effects for high performance aircraft. The studies were primarily conducted in NASA Langley's 16-Foot Transonic Tunnel at Mach numbers up to 1.20. Some higher Mach number data obtained at NASA's Lewis Research Center is also included.

  15. 76 FR 20994 - Center for Substance Abuse Prevention; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... (SAMHSA) Center for Substance Abuse Prevention (CSAP) Drug Testing Advisory Board (DTAB) on May 3 and 4... include the Federal drug testing updates from the Department of Transportation, the Department of Defense... Guidelines for Federal Workplace Drug Testing Programs; and updates on oral fluid as a potential alternative...

  16. Final test report for traffic management data dictionary (TMDD) and related standards as deployed by the Utah department of transportation.

    DOT National Transportation Integrated Search

    2008-05-23

    This report presents the results of the ITS Standards Testing Program for the field testing, assessment, and evaluation of the three volumes comprising the Standards for Traffic Management Center to Center Communications (TMDD) version 2.1 and the NT...

  17. Research and Technology at the John F. Kennedy Space Center 1993

    NASA Technical Reports Server (NTRS)

    1993-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1993 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. Major areas of research include material science, advanced software, industrial engineering, nondestructive evaluation, life sciences, atmospheric sciences, environmental technology, robotics, and electronics and instrumentation.

  18. Marshall Space Flight Center CFD overview

    NASA Technical Reports Server (NTRS)

    Schutzenhofer, Luke A.

    1989-01-01

    Computational Fluid Dynamics (CFD) activities at Marshall Space Flight Center (MSFC) have been focused on hardware specific and research applications with strong emphasis upon benchmark validation. The purpose here is to provide insight into the MSFC CFD related goals, objectives, current hardware related CFD activities, propulsion CFD research efforts and validation program, future near-term CFD hardware related programs, and CFD expectations. The current hardware programs where CFD has been successfully applied are the Space Shuttle Main Engines (SSME), Alternate Turbopump Development (ATD), and Aeroassist Flight Experiment (AFE). For the future near-term CFD hardware related activities, plans are being developed that address the implementation of CFD into the early design stages of the Space Transportation Main Engine (STME), Space Transportation Booster Engine (STBE), and the Environmental Control and Life Support System (ECLSS) for the Space Station. Finally, CFD expectations in the design environment will be delineated.

  19. Proceedings of the Second Conference on the Climatic Impact Assessment Program, November 14-17, 1972

    DOT National Transportation Integrated Search

    1973-04-01

    This volume contains the proceedings of the Second Conference on the Climatic Impact Assessment Program (CIAP), held at the DOT Transportation Systems Center on November 14-17, 1972. It includes 37 invited papers, four unscheduled presentations, thre...

  20. National fuel cell bus program : proterra fuel cell hybrid bus report, Columbia demonstration.

    DOT National Transportation Integrated Search

    2011-10-01

    This report summarizes the experience and early results from a fuel cell bus demonstration funded by the Federal Transit Administration (FTA) under the National Fuel Cell Bus Program. A team led by the Center for Transportation and the Environment an...

  1. Key Metrics and Goals for NASA's Advanced Air Transportation Technologies Program

    NASA Technical Reports Server (NTRS)

    Kaplan, Bruce; Lee, David

    1998-01-01

    NASA's Advanced Air Transportation Technologies (AATT) program is developing a set of decision support tools to aid air traffic service providers, pilots, and airline operations centers in improving operations of the National Airspace System (NAS). NASA needs a set of unifying metrics to tie these efforts together, which it can use to track the progress of the AATT program and communicate program objectives and status within NASA and to stakeholders in the NAS. This report documents the results of our efforts and the four unifying metrics we recommend for the AATT program. They are: airport peak capacity, on-route sector capacity, block time and fuel, and free flight-enabling.

  2. 78 FR 30828 - Rail Vehicles Access Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ..., Division of Rail Center for Inclusive Design and Environmental Access Community Transportation Association of America Disability Rights Education & Defense Fund Hearing Access Program International Centre for...

  3. 77 FR 42546 - Notice of Funding Availability for the Small Business Transportation Resource Center Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ... Secretary of Transportation (OST), Office of Small and Disadvantaged Business Utilization (OSDBU). ACTION... to allow eligible entities time to adequately submit a proposal. DATES: The submission period for the... 31, 2012, 5 p.m. Eastern Standard Time. Also, the notice of award for the competed region on or...

  4. 77 FR 51608 - Notice of Funding Availability for the Small Business Transportation Resource Center Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... Secretary of Transportation (OST), Office of Small and Disadvantaged Business Utilization (OSDBU). ACTION... extending the closing date to allow eligible entities time to adequately submit a proposal. DATES: The..., 2012 is extended until September 17, 2012, 5 p.m. Eastern Standard Time. Also, the notice of award for...

  5. NASA Lewis Research Center's Program on Icing Research

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Shaw, R. J.; Olsen, W. A., Jr.

    1982-01-01

    The helicopter and general aviation, light transport, and commercial transport aircraft share common icing requirements: highly effective, lightweight, low power consuming deicing systems, and detailed knowledge of the aeropenalties due to ice on aircraft surfaces. To meet current and future needs, NASA has a broadbased icing research program which covers both research and engineering applications, and is well coordinated with the FAA, DOD, universities, industry, and some foreign governments. Research activity in ice protection systems, icing instrumentation, experimental methods, analytical modeling, and in-flight research are described.

  6. Proceedings of the Third Conference on the Climatic Impact Assessment Program : February 26-March 1, 1974

    DOT National Transportation Integrated Search

    1974-11-01

    This volume contains the proceedings of the Third Conference on the Climatic Impact Assessment Program (CIAP), held at the DOT Transportation Systems Center from February 26 to March 1, 1972. It includes 45 invited papers, 20 unscheduled presentation...

  7. 75 FR 42181 - Notice of Funding Availability for the Small Business Transportation Resource Center Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... of 20 hours of individual or group counseling sessions to small businesses per month. (D) Planning... training programs, such as, business assessment, management training, counseling, technical assistance... business counseling, and technical assistance with small businesses currently doing business with public...

  8. 76 FR 30990 - Notice of Funding Availability for the Small Business Transportation Resource Center Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... contracts and subcontracts portfolio. 3. Provide a minimum of 20 hours of individual or group counseling... training programs, such as, business assessment, management training, counseling, technical assistance... information dissemination, small business counseling, and technical assistance with small businesses currently...

  9. 75 FR 23319 - Notice of Funding Availability for the Small Business Transportation Resource Center Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-03

    ... contracts and subcontracts portfolio. 3. Provide a minimum of 20 hours of individual or group counseling... programs, such as, business assessment, management training, counseling, technical assistance, marketing... dissemination, small business counseling, and technical assistance with small businesses currently doing...

  10. Joint University Program for Air Transportation Research, 1988-1989

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1990-01-01

    The research conducted during 1988 to 1989 under the NASA/FAA-sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.

  11. The Sharing Circle of Wisdom: A Group for Elderly Aboriginals.

    ERIC Educational Resources Information Center

    Carlson-Hoggan, Donovan; And Others

    Personal interviews with clients of the Calgary Indian Friendship Center and two other similar centers established a need for a program to enhance the social functioning of elderly aboriginals in Calgary. The needs focused on lack of transportation, inaccessible or inadequate medical care, isolation, elder abuse, and inadequate housing. The…

  12. Mobile Launcher Crew Access Arm Transport from Cocoa FL to KSC

    NASA Image and Video Library

    2017-10-17

    Two heavy-lift cranes are used to lower the Orion crew access arm onto a work stand in a storage location at NASA's Kennedy Space Center in Florida. The access arm was transported from Precision Fabricating and Cleaning in Cocoa, Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  13. Mobile Launcher Crew Access Arm Prep for Transport to Kennedy Sp

    NASA Image and Video Library

    2017-10-16

    The Orion crew access arm is being secured on a flatbed truck at Precision Fabricating and Cleaning in Cocoa, Florida. The crew access arm will be transported to a storage location near NASA's Kennedy Space Center in Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  14. Mobile Launcher Crew Access Arm Prep for Transport to Kennedy Sp

    NASA Image and Video Library

    2017-10-16

    The Orion crew access arm is being secured onto a flatbed truck at Precision Fabricating and Cleaning in Cocoa, Florida. The crew access arm will be transported to a storage location near NASA's Kennedy Space Center in Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  15. Mobile Launcher Crew Access Arm Transport from Cocoa FL to KSC

    NASA Image and Video Library

    2017-10-17

    The Orion crew access arm is secured on a flatbed truck at Precision Fabricating and Cleaning in Cocoa, Florida and ready to be transported to a storage location at NASA's Kennedy Space Center in Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  16. Mobile Launcher Crew Access Arm Prep for Transport to Kennedy Sp

    NASA Image and Video Library

    2017-10-16

    The Orion crew access arm is secured on a flatbed truck at Precision Fabricating and Cleaning in Cocoa, Florida. The crew access arm will be transported to a storage location near NASA's Kennedy Space Center in Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  17. Mobile Launcher Crew Access Arm Prep for Transport to Kennedy Sp

    NASA Image and Video Library

    2017-10-16

    The Orion crew access arm is being moved by crane onto a flatbed truck at Precision Fabricating and Cleaning in Cocoa, Florida. The crew access arm will be transported to a storage location near NASA's Kennedy Space Center in Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  18. Mobile Launcher Crew Access Arm Transport from Cocoa FL to KSC

    NASA Image and Video Library

    2017-10-17

    A flatbed truck with the Orion crew access arm secured atop travels along a road in Cocoa, Florida, after departing Precision Fabricating and Cleaning. The access arm will be transported to a storage location at NASA's Kennedy Space Center in Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  19. Mobile Launcher Crew Access Arm Transport from Cocoa FL to KSC

    NASA Image and Video Library

    2017-10-17

    The Orion crew access arm departs Precision Fabricating and Cleaning in Cocoa, Florida, atop a flatbed truck. The access arm will be transported to a storage location at NASA's Kennedy Space Center in Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  20. Mobile Launcher Crew Access Arm Transport from Cocoa FL to KSC

    NASA Image and Video Library

    2017-10-17

    Two heavy-lift cranes lower the Orion crew access arm onto a work stand in a storage location at NASA's Kennedy Space Center in Florida. The access arm was transported from Precision Fabricating and Cleaning in Cocoa, Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  1. Mobile Launcher Crew Access Arm Transport from Cocoa FL to KSC

    NASA Image and Video Library

    2017-10-17

    A flatbed truck with the Orion crew access arm secured atop arrives in a storage location at NASA's Kennedy Space Center in Florida. The access arm was transported from Precision Fabricating and Cleaning in Cocoa, Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  2. Research and technology 1995 annual report

    NASA Technical Reports Server (NTRS)

    1995-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1995 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as technology transfer activities. Major areas of research include environmental engineering, automation, robotics, advanced software, materials science, life sciences, mechanical engineering, nondestructive evaluation, and industrial engineering.

  3. Annual Report of Indian Education in Montana. Johnson-O'Malley Activities, Fiscal Year 1975.

    ERIC Educational Resources Information Center

    Montana State Office of the Superintendent of Public Instruction, Helena.

    In fiscal year 1975, Montana's Johnson-O'Malley (JOM) funds provided services for 6,869 eligible Indian students. JOM funds provided transportation, boarding homes, home-school coordinators, cultural enrichment programs, nurse coordinators, study centers, consultation service, writing projects, summer programs, special teachers, and workshops for…

  4. Engineering Tests for Energy Storage Cars at the Transportation Test Center : Volume 1. Program Description and Test Summary.

    DOT National Transportation Integrated Search

    1977-05-01

    The primary purpose of the tests documented herein was to demonstrate the principles and feasibility of an energy storage type propulsion system, and its adaptability to an existing car design. The test program comprised four phases of tests on two N...

  5. KSC-2011-7228

    NASA Image and Video Library

    2011-09-28

    CAPE CANAVERAL, Fla. -- This transporter has moved its last space shuttle payload canister. The transporter was enlisted to move payload canister #2 from the Canister Rotation Facility to the Reutilization, Recycling and Marketing Facility on Ransom Road at NASA's Kennedy Space Center in Florida. The two payload canisters used to transport space shuttle payloads to the launch pad for installation in the shuttles' cargo bays are being decommissioned following the end of the Space Shuttle Program. Each canister weighs 110,000 pounds and is 65 feet long, 22 feet wide, and 18 feet, 7 inches high. The canisters were prescreened through NASA Headquarters as possible artifacts, but their size makes them difficult to transport to locations off the center. Federal and state agencies now will be given the opportunity to screen the canisters for potential use before a final decision is made on their disposition. For more information, visit http://www.nasa.gov/centers/kennedy/pdf/167403main_CRF-06.pdf. Photo credit: NASA/Jim Grossmann

  6. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    NASA used barges for transporting full-sized stages for the Saturn I, Saturn IB, and Saturn V vehicles between the Marshall Space Flight Center (MSFC), the manufacturing plant at the Michoud Assembly Facility (MAF), the Mississippi Test Facility for testing, and the Kennedy Space Center. The barges traveled from the MSFC dock to the MAF, a total of 1,086.7 miles up the Tennessee River and down the Mississippi River. The barges also transported the assembled stages of the Saturn vehicle from the MAF to the Kennedy Space Center, a total of 932.4 miles along the Gulf of Mexico and up along the Atlantic Ocean, for the final assembly and the launch. This photograph shows the barge Orion at the MSFC dock.

  7. Research and technology of the Lyndon Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1988 are highlighted. This year, reports are grouped in sections Space System Technology, Solar System Sciences, Space Transportation Technology, and Medical Sciences. Summary sections describing the role of Johnson Space Center in each program are followed by descriptions of significant tasks. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  8. 78 FR 20372 - Notice of Funding Availability for the Small Business Transportation Resource Center Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ...), Office of the Secretary of Transportation (OST), Office of Small and Disadvantaged Business Utilization... Availability to allow eligible entities time to adequately submit a proposal. DATES: The submission period for... closing on March 25, 2013 is extended until May 15, 2013, 5:00 pm Eastern Standard Time. The announcement...

  9. KSC-2011-7227

    NASA Image and Video Library

    2011-09-28

    CAPE CANAVERAL, Fla. -- Cranes lift payload canister #2 from the transporter that delivered it to the Reutilization, Recycling and Marketing Facility on Ransom Road at NASA's Kennedy Space Center in Florida. The two payload canisters used to transport space shuttle payloads to the launch pad for installation in the shuttles' cargo bays are being decommissioned following the end of the Space Shuttle Program. Each canister weighs 110,000 pounds and is 65 feet long, 22 feet wide, and 18 feet, 7 inches high. The canisters were prescreened through NASA Headquarters as possible artifacts, but their size makes them difficult to transport to locations off the center. Federal and state agencies now will be given the opportunity to screen the canisters for potential use before a final decision is made on their disposition. For more information, visit http://www.nasa.gov/centers/kennedy/pdf/167403main_CRF-06.pdf. Photo credit: NASA/Jim Grossmann

  10. SOAC - State-of-the-Art Car Engineering Tests at Department of Transportation High Speed Ground Test Center : Volume 7. Post-Repair Tests.

    DOT National Transportation Integrated Search

    1976-11-01

    This document presents the test results from the State-of-the-Art Post-Repair Engineering Test Program conducted at the DOT High-Speed Ground Test Center, Pueblo, Colorado, from March 18th to 29th, 1974. The SOAC has been developed under UMTA's Urban...

  11. SOAC - State-of-the-Art Car Engineering Tests at Department of Transportation High Speed Ground Test Center : Volume 1. Program Description and Test Summary

    DOT National Transportation Integrated Search

    1975-01-01

    The six-volume report presents the technical methodology, data samples, and results of tests conducted on the SOAC on the Rail Transit Test Track at the High Speed Ground Test Center in Pueblo, Colorado during the period April to July 1973. The Test ...

  12. KSC-2013-2916

    NASA Image and Video Library

    2013-06-27

    CAPE CANAVERAL, Fla. - NASA's Commercial Crew Program Manager Ed Mango and astronaut Mike Good media on the progress of American human spaceflight development at Kennedy Space Center in Florida. At right is NASA Public Affairs Officer Gregory Harland. They also discussed the future steps the program will take to certify crew transportation systems for missions to the International Space Station. The program is working toward the next phase of certification, which will be called Commercial Crew Transportation Capability, or CCtCap. That phase will include a joint test concept in which NASA astronauts will play a role in flight testing the systems. To learn more about CCP, visit www.nasa.gov/commercialcrew. Photo credit: Jim Grossmann

  13. KSC-2013-2914

    NASA Image and Video Library

    2013-06-27

    CAPE CANAVERAL, Fla. - NASA's Commercial Crew Program Manager Ed Mango and astronaut Mike Good media on the progress of American human spaceflight development at Kennedy Space Center in Florida. At right is NASA Public Affairs Officer Gregory Harland. They also discussed the future steps the program will take to certify crew transportation systems for missions to the International Space Station. The program is working toward the next phase of certification, which will be called Commercial Crew Transportation Capability, or CCtCap. That phase will include a joint test concept in which NASA astronauts will play a role in flight testing the systems. To learn more about CCP, visit www.nasa.gov/commercialcrew. Photo credit: Jim Grossmann

  14. Facilitation of Scientific Concept Learning by Interpretation Procedures and Diagnosis.

    DTIC Science & Technology

    1986-08-01

    San Diego, CA 92152-6800 Development and Studies Educational Technology Center OP 01 B7 337 Gutman Library Director, Human Factors Washington, DC...Department of Psychology Dr. Stellan Ohlsson Bank Street College of Boulder, CO 80309 Learning R & D Center Education University of Pittsburgh 610 W. 112th...CenterScience, Education , and 1040 Cathcart Way San Diego, CA 92152-6800Transportation Program Stanford. CA 9Q05 Office of Technology Assessment Dr

  15. Selected topics in railroad tank car safety. Volume 2 : test plan for accelerated life testing of thermally shielded tank cars

    DOT National Transportation Integrated Search

    1978-08-01

    A test plan for the accelerated life testing of thermally shielded tank cars is described. The test program would be conducted at the DOT Transportation Test Center in Pueblo, Colorado. Eighteen tank cars would be included in the program. Five cars w...

  16. A model for distribution centers location-routing problem on a multimodal transportation network with a meta-heuristic solving approach

    NASA Astrophysics Data System (ADS)

    Fazayeli, Saeed; Eydi, Alireza; Kamalabadi, Isa Nakhai

    2017-07-01

    Nowadays, organizations have to compete with different competitors in regional, national and international levels, so they have to improve their competition capabilities to survive against competitors. Undertaking activities on a global scale requires a proper distribution system which could take advantages of different transportation modes. Accordingly, the present paper addresses a location-routing problem on multimodal transportation network. The introduced problem follows four objectives simultaneously which form main contribution of the paper; determining multimodal routes between supplier and distribution centers, locating mode changing facilities, locating distribution centers, and determining product delivery tours from the distribution centers to retailers. An integer linear programming is presented for the problem, and a genetic algorithm with a new chromosome structure proposed to solve the problem. Proposed chromosome structure consists of two different parts for multimodal transportation and location-routing parts of the model. Based on published data in the literature, two numerical cases with different sizes generated and solved. Also, different cost scenarios designed to better analyze model and algorithm performance. Results show that algorithm can effectively solve large-size problems within a reasonable time which GAMS software failed to reach an optimal solution even within much longer times.

  17. A model for distribution centers location-routing problem on a multimodal transportation network with a meta-heuristic solving approach

    NASA Astrophysics Data System (ADS)

    Fazayeli, Saeed; Eydi, Alireza; Kamalabadi, Isa Nakhai

    2018-07-01

    Nowadays, organizations have to compete with different competitors in regional, national and international levels, so they have to improve their competition capabilities to survive against competitors. Undertaking activities on a global scale requires a proper distribution system which could take advantages of different transportation modes. Accordingly, the present paper addresses a location-routing problem on multimodal transportation network. The introduced problem follows four objectives simultaneously which form main contribution of the paper; determining multimodal routes between supplier and distribution centers, locating mode changing facilities, locating distribution centers, and determining product delivery tours from the distribution centers to retailers. An integer linear programming is presented for the problem, and a genetic algorithm with a new chromosome structure proposed to solve the problem. Proposed chromosome structure consists of two different parts for multimodal transportation and location-routing parts of the model. Based on published data in the literature, two numerical cases with different sizes generated and solved. Also, different cost scenarios designed to better analyze model and algorithm performance. Results show that algorithm can effectively solve large-size problems within a reasonable time which GAMS software failed to reach an optimal solution even within much longer times.

  18. NASA Space Program experience in hydrogen transportation and handling

    NASA Technical Reports Server (NTRS)

    Bain, A. L.

    1976-01-01

    This paper portrays the experience gained in the transportation and handling of hydrogen in support of the Apollo launch site at Kennedy Space Center (KSC), Fla., one of NASA's prime hydrogen users in the Space Program. The objective of the paper is basically to reveal the types of systems involved in handling hydrogen, safety practices, operational techniques, other general experience information, and primarily to convey the routinism by which this potential fuel of the future has already been handled in significant quantities for a number of years.

  19. Comparative assessment of crash causal factors and IVHS countermeasures

    DOT National Transportation Integrated Search

    1994-01-01

    The National Highway Traffic Safety Administrations Office of Crash Avoidance Research, in : conjunction with the Research and Special Programs Administrations Volpe National : Transportation Systems Center, has underway a multi-disciplinary pr...

  20. LTRC : 2015-2016 | annual report.

    DOT National Transportation Integrated Search

    2016-01-01

    Inside this report, which covers the years 2015-2016, you will find featured articles on the Lousiana Transportation Research Center's (LTRC) research program, technology transfer and training, : and technology transfer activities. In addition, you w...

  1. Novel Modes Workshop Summary Report

    DOT National Transportation Integrated Search

    2015-12-01

    On December 2-3, 2014, the Federal Highway Administration's (FHWA's) Exploratory Advanced Research Program, with support from the John A. Volpe National Transportation Systems Center, convened the 2-day workshop "Novel Modes." It was held concurrentl...

  2. NASA's Advanced Space Transportation Hypersonic Program

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; McClinton, Charles; Cook, Stephen (Technical Monitor)

    2002-01-01

    NASA's has established long term goals for access-to-space. NASA's third generation launch systems are to be fully reusable and operational in approximately 25 years. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.

  3. Mobile Launcher Crew Access Arm Prep for Transport to Kennedy Sp

    NASA Image and Video Library

    2017-10-16

    Two heavy-lift cranes are used to lower the Orion crew access arm onto a flatbed truck at Precision Fabricating and Cleaning in Cocoa, Florida. The crew access arm will be transported to a storage location near NASA's Kennedy Space Center in Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  4. Mobile Launcher Crew Access Arm Prep for Transport to Kennedy Sp

    NASA Image and Video Library

    2017-10-16

    Two heavy-lift cranes are being used to move the Orion crew access arm and lower it onto a flatbed truck at Precision Fabricating and Cleaning in Cocoa, Florida. The crew access arm will be transported to a storage location near NASA's Kennedy Space Center in Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  5. Mobile Launcher Crew Access Arm Transport from Cocoa FL to KSC

    NASA Image and Video Library

    2017-10-17

    Two heavy-lift cranes are used to tilt and lower the Orion crew access arm onto a work stand in a storage location at NASA's Kennedy Space Center in Florida. The access arm was transported from Precision Fabricating and Cleaning in Cocoa, Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  6. Mobile Launcher Crew Access Arm Prep for Transport to Kennedy Sp

    NASA Image and Video Library

    2017-10-16

    Two heavy-lift cranes are being used to lower the Orion crew access arm onto a flatbed truck at Precision Fabricating and Cleaning in Cocoa, Florida. The crew access arm will be transported to a storage location near NASA's Kennedy Space Center in Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  7. Mobile Launcher Crew Access Arm Transport from Cocoa FL to KSC

    NASA Image and Video Library

    2017-10-17

    Two heavy-lift cranes are used to lift the Orion crew access arm up from a flatbed truck in a storage location at NASA's Kennedy Space Center in Florida. The access arm was transported from Precision Fabricating and Cleaning in Cocoa, Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  8. Transportation technology program: Strategic plan

    NASA Astrophysics Data System (ADS)

    1991-09-01

    The purpose of this report is to define the technology program required to meet the transportation technology needs for current and future civil space missions. It is a part of an integrated plan, prepared by NASA in part in response to the Augustine Committee recommendations, to describe and advocate expanded and more aggressive efforts in the development of advanced space technologies. This expanded program will provide a technology basis for future space missions to which the U.S. aspires, and will help to regain technology leadership for the U.S. on a broader front. The six aspects of this integrated program/plan deal with focused technologies to support space sciences, exploration, transportation, platforms, and operations as well as provide a Research and Technology Base Program. This volume describes the technologies needed to support transportation systems, e.g., technologies needed for upgrades to current transportation systems and to provide reliable and efficient transportation for future space missions. The Office of Aeronautics, Exploration, and Technology (OAET) solicited technology needs from the major agency technology users and the aerospace industry community and formed a transportation technology team (appendix A) to develop a technology program to respond to those needs related to transportation technologies. This report addresses the results of that team activity. It is a strategic plan intended for use as a planning document rather than as a project management tool. It is anticipated that this document will be primarily utilized by research & technology (R&T) management at the various NASA Centers as well as by officials at NASA Headquarters and by industry in planning their corporate Independent Research and Development (IR&D) investments.

  9. Transportation technology program: Strategic plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose of this report is to define the technology program required to meet the transportation technology needs for current and future civil space missions. It is a part of an integrated plan, prepared by NASA in part in response to the Augustine Committee recommendations, to describe and advocate expanded and more aggressive efforts in the development of advanced space technologies. This expanded program will provide a technology basis for future space missions to which the U.S. aspires, and will help to regain technology leadership for the U.S. on a broader front. The six aspects of this integrated program/plan deal with focused technologies to support space sciences, exploration, transportation, platforms, and operations as well as provide a Research and Technology Base Program. This volume describes the technologies needed to support transportation systems, e.g., technologies needed for upgrades to current transportation systems and to provide reliable and efficient transportation for future space missions. The Office of Aeronautics, Exploration, and Technology (OAET) solicited technology needs from the major agency technology users and the aerospace industry community and formed a transportation technology team (appendix A) to develop a technology program to respond to those needs related to transportation technologies. This report addresses the results of that team activity. It is a strategic plan intended for use as a planning document rather than as a project management tool. It is anticipated that this document will be primarily utilized by research & technology (R&T) management at the various NASA Centers as well as by officials at NASA Headquarters and by industry in planning their corporate Independent Research and Development (IR&D) investments.

  10. Incorporating location, routing, and inventory decisions in a bi-objective supply chain design problem with risk-pooling

    NASA Astrophysics Data System (ADS)

    Tavakkoli-Moghaddam, Reza; Forouzanfar, Fateme; Ebrahimnejad, Sadoullah

    2013-07-01

    This paper considers a single-sourcing network design problem for a three-level supply chain. For the first time, a novel mathematical model is presented considering risk-pooling, the inventory existence at distribution centers (DCs) under demand uncertainty, the existence of several alternatives to transport the product between facilities, and routing of vehicles from distribution centers to customer in a stochastic supply chain system, simultaneously. This problem is formulated as a bi-objective stochastic mixed-integer nonlinear programming model. The aim of this model is to determine the number of located distribution centers, their locations, and capacity levels, and allocating customers to distribution centers and distribution centers to suppliers. It also determines the inventory control decisions on the amount of ordered products and the amount of safety stocks at each opened DC, selecting a type of vehicle for transportation. Moreover, it determines routing decisions, such as determination of vehicles' routes starting from an opened distribution center to serve its allocated customers and returning to that distribution center. All are done in a way that the total system cost and the total transportation time are minimized. The Lingo software is used to solve the presented model. The computational results are illustrated in this paper.

  11. Thermal Transport in Diamond Films for Electronics Thermal Management

    DTIC Science & Technology

    2018-03-01

    AFRL-RY-WP-TR-2017-0219 THERMAL TRANSPORT IN DIAMOND FILMS FOR ELECTRONICS THERMAL MANAGEMENT Samuel Graham Georgia Institute of Technology MARCH...general public, including foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil...Signature// JOHN D. BLEVINS, Program Manager ROSS W. DETTMER, Chief Devices for Sensing Branch Devices for Sensing Branch Aerospace Components

  12. Transport Coefficients for the NASA Lewis Chemical Equilibrium Program

    NASA Technical Reports Server (NTRS)

    Svehla, Roger A.

    1995-01-01

    The new transport property data that will be used in the NASA Lewis Research Center's Chemical Equilibrium and Applications Program (CEA) is presented. It complements a previous publication that documented the thermodynamic and transport property data then in use. Sources of the data and a brief description of the method by which the data were obtained are given. Coefficients to calculate the viscosity, thermal conductivity, and binary interactions are given for either one, or usually, two temperature intervals, typically 300 to 1000 K and 1000 to 5000 K. The form of the transport equation is the same as used previously. The number of species was reduced from the previous database. Many species for which the data were estimated were eliminated from the database. Some ionneutral interactions were added.

  13. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    NASA used barges for transporting full-sized stages for the Saturn I, Saturn IB, and Saturn V vehicles between the Marshall Space Flight Center (MSFC), the manufacturing plant at the Michoud Assembly Facility (MAF), the Mississippi Test Facility for testing, and the Kennedy Space Center. The barges traveled from the MSFC dock to the MAF, a total of 1,086.7 miles up the Tennessee River and down the Mississippi River. The barges also transported the assembled stages of the Saturn vehicle from the MAF to the Kennedy Space Center, a total of 932.4 miles along the Gulf of Mexico and up along the Atlantic Ocean, for the final assembly and the launch. Pictured is the barge Palaemon carrying Saturn IV S-IB flight stage enroute to MSFC.

  14. KSC-2012-1265

    NASA Image and Video Library

    2012-02-07

    CAPE CANAVERAL, Fla. -- Commercial Crew Program (CCP) Manager Ed Mango, left, and Deputy Program Manager Brent Jett host a Program Strategy Forum at NASA's Kennedy Space Center in Florida. The forum was held to update industry partners about NASA's next phase of developing commercial space transportation system capabilities. CCP is helping to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of the program is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. For more information, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Kim Shiflett

  15. Human Services in Montgomery County, Ohio: Service Integration Writ Large.

    ERIC Educational Resources Information Center

    Ragan, Mark

    The most striking characteristic of the human service system in Montgomery County, Ohio, is the size and scope of its job center. The center occupies 5.5 acres of office space, has ample parking, is well served by the public transportation system, and is the locus of many human service and employment programs and service providers. The county's…

  16. Advanced parking information system evaluation report

    DOT National Transportation Integrated Search

    2001-01-01

    The Minnesota Department of Transportation, under the Minnesota Guidestar program, in partnership with the Federal Highway Administration, City of St. Paul and AGS Group, and with the participation of ten Civic Center/Rice Park area parking facilitie...

  17. Saturn Apollo Program

    NASA Image and Video Library

    1965-02-01

    This photograph shows a fuel tank lower half for the Saturn V S-IC-T stage (the S-IC stage for static testing) on a C-frame transporter inside the vertical assembly building at the Marshall Space Flight Center.

  18. FDOT transportation research peer exchange : final report.

    DOT National Transportation Integrated Search

    2013-02-01

    Each of FDOTs peer exchanges has been substantially different in composition and theme. The first focused on overall research program management; the second on opportunities for enhancing the Research Centers relationships with FDOT project man...

  19. Assessment program for Kentucky traffic records.

    DOT National Transportation Integrated Search

    2015-02-01

    During 2013, the Kentucky Transportation Center identified 117 potential performance metrics for the ten databases in : the Kentucky Traffic Records System. This report summarizes the findings of three main tasks completed in 2014: (1) : assessment o...

  20. U02 : heavy truck rollover characterization (phase-A) final report.

    DOT National Transportation Integrated Search

    2009-01-01

    This Heavy Truck Rollover Characterization Program is a major research effort conducted by the National Transportation Research Center, Inc. (NTRCI) in partnership with Oak Ridge National Laboratory (ORNL), Michelin Americas Research Company (MARC), ...

  1. Alternative Fuels Data Center: Arizona Transportation Data for Alternative

    Science.gov Websites

    Additions and Updates Plug-In Electric Vehicle (PEV) Charging Rate Incentive - Tucson Electric Power (TEP School Bus/Vehicle Incentive, and Green Jobs Outreach Program Heavy-Duty Natural Gas Drayage Truck

  2. Bibliography on Rail Technology

    DOT National Transportation Integrated Search

    1977-03-01

    This rail technology review provides assistance to a number of rail technology programs initiated by the Transportation Systems Center (TSC) for the Federal Railroad Administration (FRA). The results of a search and review in four specific areas in t...

  3. Supporting Multiple Programs and Projects at NASA's Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Stewart, Camiren L.

    2014-01-01

    With the conclusion of the shuttle program in 2011, the National Aeronautics and Space Administration (NASA) had found itself at a crossroads for finding transportation of United States astronauts and experiments to space. The agency would eventually hand off the taxiing of American astronauts to the International Space Station (ISS) that orbits in Low Earth Orbit (LEO) about 210 miles above the earth under the requirements of the Commercial Crew Program (CCP). By privatizing the round trip journey from Earth to the ISS, the space agency has been given the additional time to focus funding and resources to projects that operate beyond LEO; however, adding even more stress to the agency, the premature cancellation of the program that would succeed the Shuttle Program - The Constellation Program (CxP) -it would inevitably delay the goal to travel beyond LEO for a number of years. Enter the Space Launch System (SLS) and the Orion Multipurpose Crew Vehicle (MPCV). Currently, the SLS is under development at NASA's Marshall Spaceflight Center in Huntsville, Alabama, while the Orion Capsule, built by government contractor Lockheed Martin Corporation, has been assembled and is currently under testing at the Kennedy Space Center (KSC) in Florida. In its current vision, SLS will take Orion and its crew to an asteroid that had been captured in an earlier mission in lunar orbit. Additionally, this vehicle and its configuration is NASA's transportation to Mars. Engineers at the Kennedy Space Center are currently working to test the ground systems that will facilitate the launch of Orion and the SLS within its Ground Services Development and Operations (GSDO) Program. Firing Room 1 in the Launch Control Center (LCC) has been refurbished and outfitted to support the SLS Program. In addition, the Spaceport Command and Control System (SCCS) is the underlying control system for monitoring and launching manned launch vehicles. As NASA finds itself at a junction, so does all of its associated centers across the US. KSC has found itself at the blunt end of change as the entire center has transitioned from an operations mindset to a development mentality. The author of this paper has had the fortunate privilege and opportunity to be part of a transforming NASA during the fall months of 2014. The following is a high level account of projects that he had the chance to work on including the Spaceport Command and Control System, the Advanced Ground System and Maintenance Program Project, Customer Avionics Development & Analysis (CAIDA) Lab and Swamp Works.

  4. TESS-Transport to Pad Activities - Lift to Transport Trailer

    NASA Image and Video Library

    2018-04-11

    Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the SpaceX payload fairing containing the agency's Transiting Exoplanet Survey Satellite (TESS) is secured onto a transporter. The fairing will be moved to Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is scheduled to launch on the SpaceX Falcon 9 rocket at 6:32 p.m. EDT on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  5. KSC-2012-6176

    NASA Image and Video Library

    2012-11-05

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 is parked outside of the Vehicle Assembly Building. The Crawler-transporter has been undergoing modifications to ensure its ability to carry the space agency's Space Launch System heavy-lift rocket to the launch pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann

  6. Wheelchairmanship Project. A Program to Educate Personnel in the Transportation, Hotel and Restaurant, and Entertainment Industries in Improved Techniques for Serving Disabled People. Final Report.

    ERIC Educational Resources Information Center

    Smith, Anita P.; And Others

    In a project designed to train customer service personnel in improved methods of assisting the physically disabled, audio-visual training materials were developed and presented during 2-week courses involving 1,058 employees at transportation, hotel/restaurant, and entertainment centers in 25 cities. The participants judged the training program…

  7. FAA/NASA Joint University Program for Air Transportation Research, 1992-1993

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1994-01-01

    The research conducted during the academic year 1992-1993 under the FAA/NASA sponsored Joint University Program for Air Transportation Research is summarized. The year end review was held at Ohio University, Athens, Ohio, 17-18 June 1993. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance, and control theory and practice, aircraft performance, human factors and air traffic management. An overview of the year's activities for each university is also presented.

  8. Blunt Impact Tests of Retired Passenger Locomotive Fuel Tanks

    DOT National Transportation Integrated Search

    2017-08-01

    The Transportation Technology Center, Inc. conducted impact tests on three locomotive fuel tanks as part of the Federal Railroad Administrations locomotive fuel tank crashworthiness improvement program. Three fuel tanks, two from EMD F40PH locomot...

  9. Track buckling prevention : theory, safety concepts, and applications

    DOT National Transportation Integrated Search

    2013-03-31

    This report is a part of the John A. Volpe National Transportation Systems Centers Track Stability Research Program for the Federal Railroad Administration on thermal buckling of continuous welded rail (CWR) track and its prevention. Presented in ...

  10. Blunt impact tests of retired passenger locomotive fuel tanks

    DOT National Transportation Integrated Search

    2017-08-01

    The Transportation Technology Center, Inc. conducted impact tests on three locomotive fuel tanks as part of the Federal Railroad Administrations locomotive fuel tank crashworthiness improvement program. Three fuel tanks, two from EMD F40PH locomot...

  11. Motor Carrier Safety Fitness Determination: An Improved Process

    DOT National Transportation Integrated Search

    1996-12-01

    PREFACE This report was undertaken to define an improved process for motor carrier safety fitness determination. It was produced by the Research and Special Program Administration's (RSPA} John A. Volpe National Transportation Systems Center (the Vol...

  12. Railway project design and construction (CEE 411) course updates.

    DOT National Transportation Integrated Search

    2017-01-20

    Course CEE 411 "Railway Project Design and Construction" is a cornerstone of the railway : engineering education program developed by the Rail Transportation and Engineering Center : (RailTEC) at the University of Illinois at Urbana-Champaign (UIUC)....

  13. Information : recommendations from the program review on operations funding

    DOT National Transportation Integrated Search

    2001-11-26

    Volpe Center staff completed the first phase of a review that investigated how operations projects compete for funding in the existing transportation decision-making process. This memorandum identifies possible actions that can be implemented in the ...

  14. Outreach activities in support of the Missouri S&T national UTC.

    DOT National Transportation Integrated Search

    2010-02-01

    This report describes a comprehensive initiative providing outreach for the Missouri University of Science and Technology (Missouri S&T) National University Transportation Center (NUTC). The goal of this comprehensive outreach program was to provide ...

  15. Modernization of NASA's Johnson Space Center Chamber: A Payload Transport Rail System to Support Cryogenic Vacuum Optical Testing of the James Webb Space Telescope (JWST)

    NASA Technical Reports Server (NTRS)

    Garcia, Sam; Homan, Jonathan; Speed, John

    2016-01-01

    NASA is the mission lead for the James Webb Space Telescope (JWST), the next of the "Great Observatories", scheduled for launch in 2018. It is directly responsible for the integration and test (I&T) program that will culminate in an end-to-end cryo vacuum optical test of the flight telescope and instrument module in Chamber A at NASA Johnson Space Center. Historic Chamber A is the largest thermal vacuum chamber at Johnson Space Center and one of the largest space simulation chambers in the world. Chamber A has undergone a major modernization effort to support the deep cryogenic, vacuum and cleanliness requirements for testing the JWST. This paper describe the challenges of developing, integrating and modifying new payload rails capable of transporting payloads within the thermal vacuum chamber up to 65,000 pounds. Ambient and Cryogenic Operations required to configure for testing will be explained. Lastly review historical payload configurations stretching from the Apollo program era to current James Webb Space Telescope testing.

  16. ML Crew Access Arm Move

    NASA Image and Video Library

    2017-10-16

    The Orion crew access arm departs Precision Fabricating and Cleaning in Cocoa, Florida, atop a flatbed truck. The access arm is transported to a storage location at NASA's Kennedy Space Center in Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  17. Orion Returns to KSC after Successful Mission

    NASA Image and Video Library

    2014-12-18

    NASA's Orion crew module, enclosed in its crew module transportation fixture and secured on a flatbed truck passes by the Space Shuttle Atlantis building at the Kennedy Space Center Visitor Complex on its way to the entrance gate to Kennedy Space Center in Florida. Orion made the overland trip from Naval Base San Diego in California. Orion was recovered from the Pacific Ocean after completing a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts.

  18. Integrating Images, Applications, and Communications Networks. Volume 5.

    DTIC Science & Technology

    1987-12-01

    AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK Massachusetts Institute of Technology AREA A WORK UNIT NUMBERS Cambridge, MA 02139 II. CONTROLLING...Systems Center (TSC) for their support and assistance, to Professor Joseph Sussman, Director, Center for Transportation Studies ( CTS ) at MIT for his...IEEE Press, New York, 1987. [15] W. J. Hawkins. Bits and Bytes. 0 Popular Science, January, 1984. [16] G. N. Hounsfield . Computerized Tranverse Axial

  19. Human-centered automation and AI - Ideas, insights, and issues from the Intelligent Cockpit Aids research effort

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy H.; Schutte, Paul C.

    1989-01-01

    A development status evaluation is presented for the NASA-Langley Intelligent Cockpit Aids research program, which encompasses AI, human/machine interfaces, and conventional automation. Attention is being given to decision-aiding concepts for human-centered automation, with emphasis on inflight subsystem fault management, inflight mission replanning, and communications management. The cockpit envisioned is for advanced commercial transport aircraft.

  20. Vehicle Design Evaluation Program (VDEP). A computer program for weight sizing, economic, performance and mission analysis of fuel-conservative aircraft, multibodied aircraft and large cargo aircraft using both JP and alternative fuels

    NASA Technical Reports Server (NTRS)

    Oman, B. H.

    1977-01-01

    The NASA Langley Research Center vehicle design evaluation program (VDEP-2) was expanded by (1) incorporating into the program a capability to conduct preliminary design studies on subsonic commercial transport type aircraft using both JP and such alternate fuels as hydrogen and methane;(2) incorporating an aircraft detailed mission and performance analysis capability; and (3) developing and incorporating an external loads analysis capability. The resulting computer program (VDEP-3) provides a preliminary design tool that enables the user to perform integrated sizing, structural analysis, and cost studies on subsonic commercial transport aircraft. Both versions of the VDEP-3 Program which are designated preliminary Analysis VDEP-3 and detailed Analysis VDEP utilize the same vehicle sizing subprogram which includes a detailed mission analysis capability, as well as a geometry and weight analysis for multibodied configurations.

  1. Expanded serial communication capability for the transport systems research vehicle laptop computers

    NASA Technical Reports Server (NTRS)

    Easley, Wesley C.

    1991-01-01

    A recent upgrade of the Transport Systems Research Vehicle (TSRV) operated by the Advanced Transport Operating Systems Program Office at the NASA Langley Research Center included installation of a number of Grid 1500 series laptop computers. Each unit is a 80386-based IBM PC clone. RS-232 data busses are needed for TSRV flight research programs, and it has been advantageous to extend the application of the Grids in this area. Use was made of the expansion features of the Grid internal bus to add a user programmable serial communication channel. Software to allow use of the Grid bus expansion has been written and placed in a Turbo C library for incorporation into applications programs in a transparent manner via function calls. Port setup; interrupt-driven, two-way data transfer; and software flow control are built into the library functions.

  2. Hydrodynamic and optical measurements in the atmosphere boundary layer

    DOT National Transportation Integrated Search

    2007-01-01

    The Volpe National Transportation Systems Center (Volpe) supports the NASA Wake Vortex program in data collection, analysis and modeling of the airplane work vortex data to improve operations at a number of airports that experience capacity constrain...

  3. National Intelligent Transportation Systems Program Plan: Five-Year Horizon

    DOT National Transportation Integrated Search

    2013-06-01

    This white paper is a follow-up to the Volpe Center report for FHWA, Ridesharing Options Analysis and Practitioners Toolkit. The white paper provides an update to current ridesharing options and further explores technology and policy develop...

  4. Electronic depiction of Instrument Approach Procedure (IAP) charts phase 1: development and evaluation

    DOT National Transportation Integrated Search

    1995-05-01

    This report describes the research program being conducted at the Volpe National Transportation Systems Center on the development of electronic aeronautical charts. The design of electronic aeronautical navigation charts raises many interrelated huma...

  5. Field Investigation of a Strengthened Timber Trestle Railroad Bridge

    DOT National Transportation Integrated Search

    2003-06-01

    A three-span, open-deck timber trestle railroad bridge had been previously field load tested. The prior testing program was done in cooperation with the Transportation Technology Center, Inc. a subsidiary of the Association of American Railroads. The...

  6. C-TIC Console Operator's User Manual

    DOT National Transportation Integrated Search

    1996-07-01

    The C-TIC Console Operator's User Manual is designed to assist the operator at : the Corridor Transportation Information Center with the navigation and use of : the application programs in the C-TIC. This document will concentrate solely on : the ext...

  7. FMCSA safety program effectiveness measurement : Roadside Intervention Effectiveness Model, fiscal year 2010.

    DOT National Transportation Integrated Search

    2014-11-01

    The Federal Motor Carrier Safety Administration (FMCSA), in cooperation with the John A. Volpe National Transportation Systems Center, has developed an analytic model to measure the effectiveness of roadside inspections and traffic enforcements in te...

  8. FMCSA safety program effectiveness measurement : Roadside Intervention Effectiveness Model, fiscal year 2012.

    DOT National Transportation Integrated Search

    2016-02-01

    The Federal Motor Carrier Safety Administration (FMCSA), in cooperation with the John A. Volpe National : Transportation Systems Center, has developed an analytic model to measure the effectiveness of roadside : inspections and traffic enforcements i...

  9. FMCSA safety program effectiveness measurement : roadside intervention effectiveness model, fiscal year 2013.

    DOT National Transportation Integrated Search

    2017-08-01

    The Federal Motor Carrier Safety Administration (FMCSA), in cooperation with the John A. Volpe National Transportation Systems Center, has developed an analytic model to measure the effectiveness of roadside inspections and traffic enforcements in te...

  10. FMCSA safety program effectiveness measurement : roadside intervention effectiveness model fiscal year 2011.

    DOT National Transportation Integrated Search

    2015-06-01

    The Federal Motor Carrier Safety Administration (FMCSA), in cooperation with the John A. Volpe National Transportation Systems Center, has developed an analytic model to measure the effectiveness of roadside inspections and traffic enforcements in te...

  11. Bridge Approach Remedies Implemented at Western Mega Site

    DOT National Transportation Integrated Search

    2017-09-01

    As part of the heavy axle load (HAL) revenue service mega site testing program, the Transportation Technology Center, Inc. (TTCI) has worked closely with the Union Pacific Railroad (UP) to address bridge approach problems under HAL operations. The te...

  12. Amarillo National Resource Center for plutonium. Work plan progress report, November 1, 1995--January 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cluff, D.

    1996-04-01

    The Center operates under a cooperative agreement between DOE and the State of Texas and is directed and administered by an education consortium. Its programs include developing peaceful uses for the materials removed from dismantled weapons, studying effects of nuclear materials on environment and public health, remedying contaminated soils and water, studying storage, disposition, and transport of Pu, HE, and other hazardous materials removed from weapons, providing research and counsel to US in carrying out weapons reductions in cooperation with Russia, and conducting a variety of education and training programs.

  13. The ACEE program and basic composites research at Langley Research Center (1975 to 1986): Summary and bibliography

    NASA Technical Reports Server (NTRS)

    Dow, Marvin B.

    1987-01-01

    Composites research conducted at the Langley Research Center during the period from 1975 to 1986 is described, and an annotated bibliography of over 600 documents (with their abstracts) is presented. The research includes Langley basic technology and the composite primary structures element of the NASA Aircraft Energy Efficiency (ACEE) Program. The basic technology documents cited in the bibliography are grouped according to the research activity such as design and analysis, fatigue and fracture, and damage tolerance. The ACEE documents cover development of composite structures for transport aircraft.

  14. Mixing and Demixing Processes in Multiphase Flows With Application to Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Decker, Rand (Editor); Schafer, Charles F. (Editor)

    1988-01-01

    A workshop on transport processes in multiphase flow was held at the Marshall Space Flight Center on February 25 and 26, 1988. The program, abstracts and text of the presentations at this workshop are presented. The objective of the workshop was to enhance our understanding of mass, momentum, and energy transport processes in laminar and turbulent multiphase shear flows in combustion and propulsion environments.

  15. Final priorities; National Institute on Disability and Rehabilitation Research--Disability and Rehabilitation Research Projects and Centers Program--Rehabilitation Engineering Research Centers. Final priorities.

    PubMed

    2013-06-11

    The Assistant Secretary for Special Education and Rehabilitative Services announces priorities under the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR). Specifically, we announce priorities for a Rehabilitation Engineering Research Center (RERC) on Rehabilitation Strategies, Techniques, and Interventions (Priority 1), Information and Communication Technologies Access (Priority 2), Individual Mobility and Manipulation (Priority 3), and Physical Access and Transportation (Priority 4). The Assistant Secretary may use one or more of these priorities for competitions in fiscal year (FY) 2013 and later years. We take this action to focus research attention on areas of national need. We intend these priorities to improve community living and participation, health and function, and employment outcomes of individuals with disabilities.

  16. NASA's Integrated Space Transportation Plan — 3 rd generation reusable launch vehicle technology update

    NASA Astrophysics Data System (ADS)

    Cook, Stephen; Hueter, Uwe

    2003-08-01

    NASA's Integrated Space Transportation Plan (ISTP) calls for investments in Space Shuttle safety upgrades, second generation Reusable Launch Vehicle (RLV) advanced development and third generation RLV and in-space research and technology. NASA's third generation launch systems are to be fully reusable and operation by 2025. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current systems. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.

  17. Transportation Energy - Sandia Energy

    Science.gov Websites

    ; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs

  18. Comprehensive social equity study for the Baltimore Urban League.

    DOT National Transportation Integrated Search

    2003-04-01

    This report was commissioned by the Greater Baltimore Urban League (GBUL) to the : Graduate Program in City and Regional Planning and the National Transportation Center : at Morgan State University. The purpose of the report is to answer two broad re...

  19. Weather responsive traffic signal timing in Utah Department of Transportation.

    DOT National Transportation Integrated Search

    1993-06-01

    The Design of Support Systems for Advanced Traffic Management Systems Project is a five-year program to define, design, and field test prototype systems to support the multitude of functions within Traffic Management Centers (TMC). Mature TMCs of the...

  20. Case studies of market research for three transportation communication products

    DOT National Transportation Integrated Search

    1994-03-01

    This report completes a two-part project in support of the Volpe Center program, Public Acceptance and Markets for Various IVHS Services. The first report, A Primer on Marketing Research, provides an overview of the research approaches an...

  1. FMCSA safety program effectiveness measurement : Carrier Intervention Effectiveness Model, Version 1.1, technical report.

    DOT National Transportation Integrated Search

    2017-04-01

    The Federal Motor Carrier Safety Administration (FMCSA), in cooperation with the John A. Volpe National Transportation Systems Center (Volpe), has developed a quantitative model to measure the effectiveness of motor carrier interventions in terms of ...

  2. Passenger rail two-car impact test. Volume 2 : summary of occupant protection program

    DOT National Transportation Integrated Search

    2002-01-01

    Two full-scale impact tests of rail cars fitted with seat/occupant experiments were conducted at the Federal Railroad Administrations Transportation Technology Center located in Pueblo, Colorado. The first test was conducted on November 16, 1999, ...

  3. 50 CFR 13.11 - Application procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Rescue Center Program 50 CFR 23 (1) (1) CITES Registration of Commercial Breeding Operations for Appendix..., POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS... Conservation Act permits (50 CFR 15); injurious wildlife permits (50 CFR 16); captive-bred wildlife...

  4. 50 CFR 13.11 - Application procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Rescue Center Program 50 CFR 23 (1) (1) CITES Registration of Commercial Breeding Operations for Appendix..., POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS... Conservation Act permits (50 CFR 15); injurious wildlife permits (50 CFR 16); captive-bred wildlife...

  5. 50 CFR 13.11 - Application procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Rescue Center Program 50 CFR 23 (1) (1) CITES Registration of Commercial Breeding Operations for Appendix..., POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS... Conservation Act permits (50 CFR 15); injurious wildlife permits (50 CFR 16); captive-bred wildlife...

  6. 50 CFR 13.11 - Application procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Rescue Center Program 50 CFR 23 (1) (1) CITES Registration of Commercial Breeding Operations for Appendix..., POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS... Conservation Act permits (50 CFR 15); injurious wildlife permits (50 CFR 16); captive-bred wildlife...

  7. Airport Surface Traffic Control Visual Ground Aids Engineering and Development Plan

    DOT National Transportation Integrated Search

    1977-01-01

    The plan described in this document supports the overall program at the Transportation Systems Center to define, design, develop, and evaluate systems that meet the requirements of airport surface traffic control. This plan is part of documentation s...

  8. A Study in Child Care (Case Study from Volume II-A): "A Rolls-Royce of Day Care." Day Care Programs Reprint Series.

    ERIC Educational Resources Information Center

    O'Farrell, Brigid

    The Amalgamated Day Care Center is an independent trust established through a collective bargaining agreement between the Amalgamated Clothing Workers of America, AFL-CIO, and the employers of the garment industry. The free center, open from 6:00 a.m. to 6:00 p.m., is located near the Chicago garment industries to minimize transportation problems…

  9. Applied analytical combustion/emissions research at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Deur, J. M.; Kundu, K. P.; Nguyen, H. L.

    1992-01-01

    Emissions of pollutants from future commercial transports are a significant concern. As a result, the Lewis Research Center (LeRC) is investigating various low emission combustor technologies. As part of this effort, a combustor analysis code development program was pursued to guide the combustor design process, to identify concepts having the greatest promise, and to optimize them at the lowest cost in the minimum time.

  10. Applied Analytical Combustion/emissions Research at the NASA Lewis Research Center - a Progress Report

    NASA Technical Reports Server (NTRS)

    Deur, J. M.; Kundu, K. P.; Nguyen, H. L.

    1992-01-01

    Emissions of pollutants from future commercial transports are a significant concern. As a result, the Lewis Research Center (LeRC) is investigating various low emission combustor technologies. As part of this effort, a combustor analysis code development program was pursued to guide the combustor design process, to identify concepts having the greatest promise, and to optimize them at the lowest cost in the minimum time.

  11. Life cycle cost optimization of biofuel supply chains under uncertainties based on interval linear programming.

    PubMed

    Ren, Jingzheng; Dong, Liang; Sun, Lu; Goodsite, Michael Evan; Tan, Shiyu; Dong, Lichun

    2015-01-01

    The aim of this work was to develop a model for optimizing the life cycle cost of biofuel supply chain under uncertainties. Multiple agriculture zones, multiple transportation modes for the transport of grain and biofuel, multiple biofuel plants, and multiple market centers were considered in this model, and the price of the resources, the yield of grain and the market demands were regarded as interval numbers instead of constants. An interval linear programming was developed, and a method for solving interval linear programming was presented. An illustrative case was studied by the proposed model, and the results showed that the proposed model is feasible for designing biofuel supply chain under uncertainties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A Youth-Leader Program in Baltimore City Recreation Centers: Lessons Learned and Applications

    PubMed Central

    Trude, Angela C. B.; Steeves, Elizabeth Anderson; Shipley, Cara; Surkan, Pamela J.; de Morais Sato, Priscila; Estep, Tracey; Clanton, Stella; Lachenmayr, Lisa; Gittelsohn, Joel

    2017-01-01

    Peer-led interventions may be an effective means of addressing the childhood obesity epidemic; however, few studies have looked at the long-term sustainability of such programs. As part of a multilevel obesity prevention intervention, B’More Healthy Communities for Kids, 16 Baltimore college students were trained as youth-leaders (YLs) to deliver a skill-based nutrition curriculum to low-income African American children (10–14 years old). In April 2015, formative research was used to inform sustainability of the YL program in recreation centers. In-depth interviews were conducted with recreation center directors (n = 4) and the YLs (n = 16). Two focus groups were conducted with YLs (n = 7) and community youth-advocates (n = 10). Barriers to this program included difficulties with transportation, time constraints, and recruiting youth. Lessons learned indicated that improving trainings and incentives to youth were identified as essential strategies to foster continuity of the youth-led program and capacity building. High school students living close to the centers were identified as potential candidates to lead the program. Based on our findings, the initial intervention will be expanded into a sustainable model for implementation, using a train-the-trainer approach to empower community youth to be change agents of the food environment and role models. PMID:28899234

  13. Orion Washdown & Arrival at LASF

    NASA Image and Video Library

    2014-12-18

    NASA's Orion spacecraft arrives inside the Launch Abort System Facility at Kennedy Space Center in Florida. The spacecraft was transported 2,700 miles overland from Naval Base San Diego in California, on a flatbed truck secured in its crew module transportation fixture for the trip. During its first flight test, Orion completed a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts.

  14. Orion Washdown & Arrival at LASF

    NASA Image and Video Library

    2014-12-18

    NASA's Orion spacecraft arrives at the Launch Abort System Facility at Kennedy Space Center in Florida. The spacecraft was transported 2,700 miles overland from Naval Base San Diego in California, on a flatbed truck secured in its crew module transportation fixture for the trip. During its first flight test, Orion completed a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts.

  15. Reference H Piloted Assessment (LaRC.1) Pilot Briefing Guide

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Raney, David L.; Hahne, David E.; Derry, Stephen D.; Glaab, Louis J.

    1999-01-01

    This document describes the purpose of and method by which an assessment of the Boeing Reference H High-Speed Civil Transport design was evaluated in the NASA Langley Research Center's Visual/Motion Simulator in January 1997. Six pilots were invited to perform approximately 60 different Mission Task Elements that represent most normal and emergency flight operations of concern to the High Speed Research program. The Reference H design represents a candidate configuration for a High-Speed Civil Transport, a second generation supersonic civilian transport aircraft. The High-Speed Civil Transport is intended to be economically sound and environmentally safe while carrying passengers and cargo at supersonic speeds with a trans-Pacific range. This simulation study was designated "LaRC. 1" for the purposes of planning, scheduling and reporting within the Guidance and Flight Controls super-element of the High-Speed Research program. The study was based upon Cycle 3 release of the Reference H simulation model.

  16. Does a Mobile ECLS Program Reduce Mortality for Patients Transported for ECLS Therapy for Severe Acute Respiratory Failure?

    PubMed

    Gutsche, Jacob T; Miano, Todd A; Vernick, William; Raiten, Jesse; Bermudez, Christian; Vallabjoysula, Prashant; Milewski, Karianna; Szeto, Wilson; Fall, Meghan Lane; Williams, Matthew L; Patel, Prakash; Mikkelsen, Mark E; Chiu, Cornel; Ramakrishna, Harish; Canon, Jeremy; Augoustides, John G

    2018-06-01

    To understand if mobile extracorporeal membrane oxygenation reduces patient mortality during and after transport of patients requiring extracorporeal membrane oxygenation for acute respiratory distress syndrome. Retrospective chart review. University affiliated tertiary care hospitals. Seventy-seven patients. Introduction of a mobile extracorporeal membrane oxygenation (ECMO) program designed to facilitate the implementation of ECMO at outside hospitals in patients too unstable for transport for ECMO. The 28-day in-hospital mortality was significantly lower in the post-mobile group (12/51 [23.5%] v 12/24 [50%], adjusted risk difference: 28.6%, [95% CI 4.7-52.5, p = 0.011]). These findings suggest that patients with severe acute respiratory failure who require transport to a referral center for extracorporeal life support may benefit from the availability of a mobile extracorporeal life support team. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Clinical case management and navigation for colonoscopy screening in an academic medical center.

    PubMed

    Cavanagh, Mary F; Lane, Dorothy S; Messina, Catherine R; Anderson, Joseph C

    2013-08-01

    One of 5 nationally funded Centers for Disease Control and Prevention Colorectal Cancer (CRC) Screening Demonstration Programs, Project SCOPE, was conducted at an academic medical center and provided colonoscopy screening at no cost to underserved minority patients from local community health centers. Established barriers to CRC screening (eg, financial, language, transportation) among the target population were addressed through clinical coordination of care by key project staff. The use of a clinician with a patient navigator allowed for the performance of precolonoscopy "telephone visits" instead of office visits to the gastroenterologist in virtually all patients. The clinician elicited information relevant to making screening decisions (eg, past medical and surgical history, focused review of systems, medication/supplement use, CRC screening history). The patient navigator reduced barriers, including, but not limited to, scheduling, transportation, and physical navigation of the medical center on the day of colonoscopy. Preprogram preparation was vital in laying groundwork for the project, yet enhancements to the program were ongoing throughout the screening period. Detailed referral forms from primary care physicians, coupled with information obtained during telephone interviews, facilitated high colonoscopy completion rates and excellent patient satisfaction. Similarly valuable was the employment of a bilingual patient navigator, who provided practical and emotional patient support. Academic medical centers can be efficient models for providing CRC screening to disadvantaged populations. Coordination of care by a preventive medicine department, directing the recruitment, scheduling, prescreening education, and the evaluation and preparation of target populations had an overall positive effect on CRC screening with colonoscopy among patients from a community health center. © 2013 American Cancer Society.

  18. Avation Safety Reporting System (ASRS) 40th Anniversary

    NASA Image and Video Library

    2016-09-28

    Avation Safety Reporting System (ASRS) 40th Anniversary lunch and open house at the Sunnyvale office. Thomas A Edwards, Deputy Center Director NASA Ames (Left), presents a plaque On the anniversary of the aviation safety reporting system, this award is in recognition of 18 years of outstanding leadership as Program Director, resulting in strong program growth, expanded partnership and a widely recognized impact on National and Global transportation safety. Presented to Linda J. Connell, ASRS Program Director (Right)

  19. KSC-2011-7229

    NASA Image and Video Library

    2011-09-28

    CAPE CANAVERAL, Fla. -- Payload canister #2 awaits decommissioning outside the Reutilization, Recycling and Marketing Facility on Ransom Road at NASA's Kennedy Space Center in Florida. The two payload canisters used to transport space shuttle payloads to the launch pad for installation in the shuttles' cargo bays are being decommissioned following the end of the Space Shuttle Program. Each canister weighs 110,000 pounds and is 65 feet long, 22 feet wide, and 18 feet, 7 inches high. The canisters were prescreened through NASA Headquarters as possible artifacts, but their size makes them difficult to transport to locations off the center. Federal and state agencies now will be given the opportunity to screen the canisters for potential use before a final decision is made on their disposition. For more information, visit http://www.nasa.gov/centers/kennedy/pdf/167403main_CRF-06.pdf. Photo credit: NASA/Jim Grossmann

  20. Aerial of the Orion EFT-1 Arrival at KSC

    NASA Image and Video Library

    2014-12-18

    An aerial view near NASA's Kennedy Space Center Visitor Complex reveals the Orion crew module, enclosed in its crew module transportation fixture and secured on a flatbed truck on the NASA Causeway that leads to the entrance gate to Kennedy Space Center in Florida. Orion made the 2,700 mile overland trip from Naval Base San Diego in California. The spacecraft was recovered from the Pacific Ocean after completing a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts.

  1. Aerial of the Orion EFT-1 Arrival at KSC

    NASA Image and Video Library

    2014-12-18

    An aerial view near NASA's Kennedy Space Center Visitor Complex reveals the Orion crew module, enclosed in its crew module transportation fixture and secured on a flatbed truck that is proceeding along the NASA Causeway to the entrance gate to Kennedy Space Center in Florida. Orion made the 2,700 mile overland trip from Naval Base San Diego in California. The spacecraft was recovered from the Pacific Ocean after completing a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts.

  2. Aerial of the Orion EFT-1 Arrival at KSC

    NASA Image and Video Library

    2014-12-18

    An aerial view near NASA's Kennedy Space Center Visitor Complex reveals the Orion crew module, enclosed in its crew module transportation fixture and secured on a flatbed truck that is proceeding onto the NASA Causeway that leads to the entrance gate to Kennedy Space Center in Florida. Orion made the 2,700 mile overland trip from Naval Base San Diego in California. The spacecraft was recovered from the Pacific Ocean after completing a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts.

  3. National Space Transportation System Reference. Volume 2: Operations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An overview of the Space Transportation System is presented in which aspects of the program operations are discussed. The various mission preparation and prelaunch operations are described including astronaut selection and training, Space Shuttle processing, Space Shuttle integration and rollout, Complex 39 launch pad facilities, and Space Shuttle cargo processing. Also, launch and flight operations and space tracking and data acquisition are described along with the mission control and payload operations control center. In addition, landing, postlanding, and solid rocket booster retrieval operations are summarized. Space Shuttle program management is described and Space Shuttle mission summaries and chronologies are presented. A glossary of acronyms and abbreviations are provided.

  4. Progress on the Ram Wing Concept with Emphasis on Lateral Dynamics

    DOT National Transportation Integrated Search

    1971-01-01

    Theoretical and experimental efforts conducted at the Transportation Systems Center in the ram wing program are described. Glide Tests were performed using a simple ram wing model operating in an open rectangular trough 50 ft long. Lift drag ratios o...

  5. Second Symposium on Water-in-Fuel Emulsions in Combustion

    DOT National Transportation Integrated Search

    1979-08-01

    This volume contains the proceedings of the second symposium on water-in-fuel emulsions held at the DOT Transportation Systems Center September 12 and 13, 1978. This symposium, sponsored by the DOT's U.S. Coast Guard and Research and Special Programs...

  6. Microgravity

    NASA Image and Video Library

    1998-01-01

    Dr. Daniel Carter, president of New Century Pharmaceuticals in Huntsville, Al, is one of three principal investigators in NASA's microgravity protein crystal growth program. Dr. Carter's experties is in albumins. Albumins are proteins in the bloodstream that transport materials, drugs, nutrients, and wastes. Photo credit: NASA/Marshall Space Flight Center

  7. Dave Bielen | NREL

    Science.gov Websites

    Dave Bielen Photo of Dave Bielen Dave Bielen Energy and Environmental Policy Analyst David.Bielen Energy Analysis Center. Areas of Expertise Environmental policy design Dynamic programming Time series energy policy GHG emissions mitigation in the electricity and transportation sectors Optimal control of

  8. Experimental Investigation of Gauge Widening and Rail Restraint Characteristics

    DOT National Transportation Integrated Search

    1984-11-01

    Gauge widening resulting from a loss of adequate rail restraint is one of the major track failure modes and the cause of a large number of derailments. A recent field and laboratory test program conducted by the Transportation Systems Center aimed at...

  9. 50 CFR 13.11 - Application procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Rescue Center Program 50 CFR 23 No fee CITES Registration of Commercial Breeding Operations for Appendix—I Wildlife 50 CFR 23 100 —Renewal of Registration of Commercial Breeding Operations for Appendix-I..., POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS...

  10. Results of AEROSAT channel simulation tests Q-M/PSK voice/data modem, TSC ranging modem

    DOT National Transportation Integrated Search

    1976-07-01

    Two modems which are candidates for the Aeronautical Satellite (AEROSAT : Test and Evaluation Program have been tested by the Transportation : Systems Center channel simulation facility. One was a hybrid modem : which can simultaneously transmit and ...

  11. KSC-2009-4134

    NASA Image and Video Library

    2009-07-15

    CAPE CANAVERAL, Fla. – A crane is attached to the Ares I-X forward center assembly in NASA Kennedy Space Center's Vehicle Assembly Building. It will be mated with the aft center assembly. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I, which is the essential core of a space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system . The Ares I-X flight test is targeted for no earlier than Aug. 30. Photo credit: NASA/Troy Cryder

  12. Quarterly technical progress report, February 1, 1996--April 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report from the Amarillo National REsource Center for PLutonium provides research highlights and provides information regarding the public dissemination of information. The center is a a scientific resource for information regarding the issues of the storage, disposition, potential utilization and transport of plutonium, high explosives, and other hazardous materials generated from nuclear weapons dismantlement. The center responds to informational needs and interpretation of technical and scientific data raised by interested parties and advisory groups. Also, research efforts are carried out on remedial action programs and biological/agricultural studies.

  13. Orion Washdown & Arrival at LASF

    NASA Image and Video Library

    2014-12-18

    NASA's Orion crew module, enclosed in its crew module transportation fixture and secured on a flatbed truck, leaves the Multi-Operation Support Building and is being transported to the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. Orion was transported 2,700 miles overland from Naval Base San Diego in California. Orion was recovered from the Pacific Ocean after completing a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts.

  14. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    2000-09-07

    The `once upon a time' science fiction concept of a space elevator has been envisioned and studied as a real mass transportation system in the latter part of the 21st century. David Smitherman of NASA's Marshall Space Flight Center's Advanced Projects Office has compiled plans for such an elevator. The space elevator concept is a structure extending from the surface of the Earth to geostationary Earth orbit (GEO) at 35,786 km in altitude. The tower would be approximately 50 km tall with a cable tethered to the top. Its center mass would be at GEO such that the entire structure orbits the Earth in sync with the Earth's rotation maintaining a stationary position over its base attachment at the equator. Electromagnetic vehicles traveling along the cable could serve as a mass transportation system for transporting people, payloads, and power between space and Earth. This illustration by artist Pat Rawling shows the concept of a space elevator as viewed from the geostationary transfer station looking down the length of the elevator towards the Earth.

  15. Considerations for expanding community exercise programs incorporating a healthcare-recreation partnership for people with balance and mobility limitations: a mixed methods evaluation.

    PubMed

    Salbach, Nancy M; Howe, Jo-Anne; Baldry, Diem; Merali, Saira; Munce, Sarah E P

    2018-04-02

    To increase access to safe and appropriate exercise for people with balance and mobility limitations, community organizations have partnered with healthcare providers to deliver an evidence-based, task-oriented group exercise program in community centers in Canada. We aimed to understand challenges and solutions to implementing this program model to inform plans for expansion. At a 1-day meeting, 53 stakeholders (healthcare/recreation personnel, program participants/caregivers, researchers) identified challenges to program implementation that were captured by seven themes: Resources to deliver the exercise class (e.g., difficulty finding instructors with the skills to work with people with mobility limitations); Program marketing (e.g., to foster healthcare referrals); Transportation (e.g., particularly from rural areas); Program access (e.g., program full); Maintaining program integrity; Sustaining partnerships (i.e., with healthcare partners); and Funding (e.g., to deliver program or register). Stakeholders prioritized solutions to form an action plan. A survey of individuals supervising 28 programs revealed that people with stroke, acquired brain injury, multiple sclerosis, and Parkinson's disease register at 95-100% of centers. The most prevalent issues with program fidelity across centers were not requiring a minimum level of walking ability (32%), class sizes exceeding 12 (21%), and instructor-to-participant ratios exceeding 1:4 (19%). Findings provide considerations for program expansion.

  16. Saturn Apollo Program

    NASA Image and Video Library

    1960-01-01

    This photograph shows the Saturn V assembled LOX (Liquid Oxygen) and fuel tanks ready for transport from the Manufacturing Engineering Laboratory at Marshall Space Flight Center in Huntsville, Alabama. The tanks were then shipped to the launch site at Kennedy Space Center for a flight. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  17. Development and status of data quality assurance program at NASA Langley research center: Toward national standards

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.

    1996-01-01

    As part of a continuing effort to re-engineer the wind tunnel testing process, a comprehensive data quality assurance program is being established at NASA Langley Research Center (LaRC). The ultimate goal of the program is routing provision of tunnel-to-tunnel reproducibility with total uncertainty levels acceptable for test and evaluation of civilian transports. The operational elements for reaching such levels of reproducibility are: (1) statistical control, which provides long term measurement uncertainty predictability and a base for continuous improvement, (2) measurement uncertainty prediction, which provides test designs that can meet data quality expectations with the system's predictable variation, and (3) national standards, which provide a means for resolving tunnel-to-tunnel differences. The paper presents the LaRC design for the program and discusses the process of implementation.

  18. Asset management for Wyoming counties : volume I, II, III.

    DOT National Transportation Integrated Search

    2011-08-01

    Vol. 1: In the fall of 2003, the Wyoming Department of Transportation (WYDOT) and the Wyoming T2/LTAP Center (T2/LTAP) began planning an asset management program to assist counties impacted by oil and gas drilling with management of their road system...

  19. Dr. Daniel Carter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Daniel Carter, president of New Century Pharmaceuticals in Huntsville, Al, is one of three principal investigators in NASA's microgravity protein crystal growth program. Dr. Carter's experties is in albumins. Albumins are proteins in the bloodstream that transport materials, drugs, nutrients, and wastes. Photo credit: NASA/Marshall Space Flight Center

  20. KSC-2014-3922

    NASA Image and Video Library

    2014-09-16

    KSC-2014-3922 - CAPE CANAVERAL, Fla. – Former astronaut Bob Cabana, center, director of NASA's Kennedy Space Center in Florida, speaks at the start of the announcement ceremony to name the providers of the next generation of crewed American spacecraft. Speaking from Kennedy’s Press Site, Cabana detailed the importance of the development effort by the agency's Commercial Crew Program for United States space exploration ambitions and the economic potential of creating new markets in human space transportation. Boeing and SpaceX were awarded contracts to complete the design of the CST-100 and Crew Dragon spacecraft, respectively, and begin manufacturing for flight tests with a goal of achieving certification to take astronauts to the International Space Station by 2017. The Commercial Crew Transportation Capability CCtCap contract also covers the beginning of operational missions for these new spacecraft and their systems. NASA spokeswoman Stephanie Schierholz, from left, Charles Bolden, NASA administrator, Kathy Lueders, manager of the agency's Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Photo credit: NASA/Jim Grossmann

  1. Research and Applications in Aeroelasticity and Structural Dynamics at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Abel, Irving

    1997-01-01

    An overview of recently completed programs in aeroelasticity and structural dynamics research at the NASA Langley Research Center is presented. Methods used to perform flutter clearance studies in the wind-tunnel on a high performance fighter are discussed. Recent advances in the use of smart structures and controls to solve aeroelastic problems, including flutter and gust response are presented. An aeroelastic models program designed to support an advanced high speed civil transport is described. An extension to transonic small disturbance theory that better predicts flows involving separation and reattachment is presented. The results of a research study to determine the effects of flexibility on the taxi and takeoff characteristics of a high speed civil transport are presented. The use of photogrammetric methods aboard Space Shuttle to measure spacecraft dynamic response is discussed. Issues associated with the jitter response of multi-payload spacecraft are discussed. Finally a Space Shuttle flight experiment that studied the control of flexible spacecraft is described.

  2. Women's experiences accessing a women-centered cardiac rehabilitation program: a qualitative study.

    PubMed

    Rolfe, Danielle E; Sutton, Erica J; Landry, Mireille; Sternberg, Len; Price, Jennifer A D

    2010-01-01

    The health benefits of cardiac rehabilitation (CR) for women living with heart disease are well documented, yet women remain underrepresented in traditionally structured CR programs. This health service delivery gap has been attributed to a number of sex-related factors experienced by women, including lower rates of physician referral, travel-related barriers, competing work and caregiving responsibilities, greater cardiovascular disease severity, and number of comorbid health conditions. Whether a program specifically designed for women is able to address these barriers and facilitate women's participation is a question that has seldom been explored in the CR literature. As part of a larger study exploring whether 6 predefined principles of women's health (empowerment of women, accessible programs, broad definition of health care, high-quality of care, collaborative planning, and innovative and creative approaches) are reflected in the practices of the Women's Cardiovascular Health Initiative (WCHI) (a comprehensive CR and primary prevention program designed for women), the objective of this analysis was to explore how the principle of "accessible programs" is experienced by women participating in the WCHI. Fourteen women previously enrolled in the WCHI program participated in a single, in-person qualitative interview. Transcripts were analyzed using a constant-comparative approach to identify relevant themes related to program accessibility. Key themes identified included participants' experiences with acquiring physician referral, negotiating transportation issues, and navigating program schedules. Women discussed how peer support and staff members' willingness to address their health-related concerns facilitated their participation. While a women-centered CR/primary prevention program may facilitate and encourage women's participation by providing flexible program schedules as well as peer and professional support, efforts are still required to address persistent barriers for women related to physician referral and transportation to programs.

  3. KSC-2012-6163

    NASA Image and Video Library

    2012-11-05

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 has been undergoing modifications inside high bay 2 of the Vehicle Assembly Building in preparation to carry the space agency's Space Launch System heavy-lift rocket to the launch pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann

  4. KSC-2012-6214

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  5. KSC-2012-6185

    NASA Image and Video Library

    2012-11-06

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 moves along the crawler way toward Launch Pad 39A following modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the launch pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann

  6. KSC-2012-6199

    NASA Image and Video Library

    2012-11-06

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Ben Smegelsky

  7. KSC-2012-6213

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  8. KSC-2012-6207

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  9. KSC-2012-6208

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  10. KSC-2012-6203

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  11. KSC-2012-6205

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  12. KSC-2012-6201

    NASA Image and Video Library

    2012-11-06

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Ben Smegelsky

  13. KSC-2012-6202

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  14. KSC-2012-6198

    NASA Image and Video Library

    2012-11-06

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Ben Smegelsky

  15. KSC-2012-6209

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  16. KSC-2012-6211

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  17. KSC-2012-6204

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  18. KSC-2012-6206

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  19. Medical Transport of Children with Complex Chronic Conditions

    PubMed Central

    Lerner, Carlos F.; Kelly, Robert B.; Hamilton, Leslie J.; Klitzner, Thomas S.

    2012-01-01

    One of the most notable trends in child health has been the increase in the number of children with special health care needs, including those with complex chronic conditions. Care of these children accounts for a growing fraction of health care resources. We examine recent developments in health care, especially with regard to medical transport and prehospital care, that have emerged to adapt to this remarkable demographic trend. One such development is the focus on care coordination, including the dissemination of the patient-centered medical home concept. In the prehospital setting, the need for greater coordination has catalyzed the development of the emergency information form. Training programs for prehospital providers now incorporate specific modules for children with complex conditions. Another notable trend is the shift to a family-centered model of care. We explore efforts toward regionalization of care, including the development of specialized pediatric transport teams, and conclude with recommendations for a research agenda. PMID:22315689

  20. Joint University Program for Air Transportation Research, 1991-1992

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1993-01-01

    This report summarizes the research conducted during the academic year 1991-1992 under the FAA/NASA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, June 18-19, 1992. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, intelligent flight control, flight dynamics, human factors, and air traffic control processes. An overview of the year's activities for each university is also presented.

  1. Report Concerning the Activities Involved in the Development of a Rural Regional Skill Center Reported to the Grantor Partnership Development Fund of the Sears-Roebuck Foundation.

    ERIC Educational Resources Information Center

    Powell, Roger B.; Kelly, Michael G.

    The Regional Skills Program at Big Bend Community College (BBCC) was developed to offer vocational skills training to high school students within BBCC's 5,000 square miles district. The objectives of the program were to identify training needs and priorities, determine the availability of transportation to BBCC, survey college and district…

  2. Affordable In-Space Transportation. Phase 2; An Advanced Concepts Project

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Affordable In-Space Transportation (AIST) program was established by the NASA Office of Space Access to improve transportation and lower the costs from Low Earth Orbit (LEO) to Geostationary Earth Orbit (GEO) and beyond (to Lunar orbit, Mars orbit, inner solar system missions, and return to LEO). A goal was established to identify and develop radically innovative concepts for new upper stages for Reusable Launch Vehicles (RLV) and Highly Reusable Space Transportation (HRST) systems. New architectures and technologies are being identified which have the potential to meet a cost goal of $1,000 to $2,000 per pound for transportation to GEO and beyond for overall mission cost (including the cost to LEO). A Technical Interchange Meeting (ITM) was held on October 16 and 17, 1996 in Huntsville, Alabama to review previous studies, present advanced concepts and review technologies that could be used to meet the stated goals. The TIM was managed by NASA-Mar-shaU Space Flight Center (MSFC) Advanced Concepts Office with Mr. Alan Adams providing TIM coordination. Mr. John C. Manidns of NASA Headquarters provided overall sponsorship. The University of Alabama in Huntsville (UAH) Propulsion Research Center hosted the TM at the UAH Research Center. Dr. Clark Hawk, Center Director, was the principal investigator. Technical support was provided by Christensen Associates. Approximately 70 attendees were present at the meeting. This Executive Summary provides a record of the key discussions and results of the TIM in a summary format. It incorporates the response to the following basic issues of the TPA, which addressed the following questions: 1. What are the cost drivers and how can they be reduced? 2. What are the operational issues and their impact on cost? What is the current Technology Readiness Level (TRL) and what will it take to reach TRL 6? 4. What are the key enabling technologies and sequence for their accomplishment? 5. What is the proposed implementation time frame? See Appendix A for the TIM Agenda and Appendix C for the AIST Program Terms of Reference.

  3. Affordable In-Space Transportation Phase 2: An Advanced Concepts Project

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Affordable In-Space Transportation (AIST) program was established by the NASA Office of Space Access to improve transportation and lower the costs from Low Earth Orbit (LEO) to Geostationary Earth Orbit (GEO) and beyond (to Lunar orbit, Mars orbit, inner solar system missions, and return to LEO). A goal was established to identify and develop radically innovative concepts for new upper stages for Reusable Launch Vehicles (RLV) and Highly Reusable Space Transportation (HRST) systems. New architectures and technologies are being identified which have the potential to meet a cost goal of $1,000 to $2,000 per pound for transportation to GEO and beyond for overall mission cost (including the cost to LEO). A Technical Interchange Meeting (TTM) was held on October 16 and 17, 1996 in Huntsville, Alabama to review previous studies, present advanced concepts and review technologies that could be used to meet the stated goals. The TIN4 was managed by NASA-Marshall Space Flight Center (MSFC) Advanced Concepts Office with Mr. Alan Adams providing TIM coordination. Mr. John C. Mankins of NASA Headquarters provided overall sponsorship. The University of Alabama in Huntsville (UAH) Propulsion Research Center hosted the TIM at the UAH Research Center. Dr. Clark Hawk, Center Director, was the principal investigator. Technical support was provided by Christensen Associates. Approximately 70 attendees were present at the meeting. This Executive Summary provides a record of the key discussions and results of the TIN4 in a summary for-mat. It incorporates the response to the following basic issues of the TDVL which addressed the following questions: 1. What are the cost drivers and how can they be reduced? 2. What are the operational issues and their impact on cost? 3. What is the current technology readiness level (TRL) and what will it take to reach TRL 6? 4. What are the key enabling technologies and sequence for their accomplishment? 5 . What is the proposed implementation time frame? See Appendix A for the TIM Agenda and Appendix C for the AIST Program Terms of Reference.

  4. Electrical Power Systems for NASA's Space Transportation Program

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.; Maus, Louis C.

    1998-01-01

    Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration's (NASA) lead center for space transportation systems development. These systems include earth to orbit launch vehicles, as well as vehicles for orbital transfer and deep space missions. The tasks for these systems include research, technology maturation, design, development, and integration of space transportation and propulsion systems. One of the key elements in any transportation system is the electrical power system (EPS). Every transportation system has to have some form of electrical power and the EPS for each of these systems tends to be as varied and unique as the missions they are supporting. The Preliminary Design Office (PD) at MSFC is tasked to perform feasibility analyses and preliminary design studies for new projects, particularly in the space transportation systems area. All major subsystems, including electrical power, are included in each of these studies. Three example systems being evaluated in PD at this time are the Liquid Fly Back Booster (LFBB) system, the Human Mission to Mars (HMM) study, and a tether based flight experiment called the Propulsive Small Expendable Deployer System (ProSEDS). These three systems are in various stages of definition in the study phase.

  5. Application of decomposition techniques to the preliminary design of a transport aircraft

    NASA Technical Reports Server (NTRS)

    Rogan, J. E.; Mcelveen, R. P.; Kolb, M. A.

    1986-01-01

    A multifaceted decomposition of a nonlinear constrained optimization problem describing the preliminary design process for a transport aircraft has been made. Flight dynamics, flexible aircraft loads and deformations, and preliminary structural design subproblems appear prominently in the decomposition. The use of design process decomposition for scheduling design projects, a new system integration approach to configuration control, and the application of object-centered programming to a new generation of design tools are discussed.

  6. Establishing special needs car seat loan program.

    PubMed

    Bull, M J; Stroup, K B; Stout, J; Doll, J P; Jones, J; Feller, N

    1990-04-01

    Car seat loan and rental programs have provided many families with low-cost access to child restraints. When an infant or child is unable to be accommodated in a standard car seat or seat belt owing to physical or medical problems, parents of these children have few, if any available resources. The establishment and operation of a loan program at the Indiana University School of Medicine for children who are medically fragile is reviewed in this article. This program was developed by the Automotive Safety for Children Program at the James Whitcomb Riley Hospital for Children, Indiana University Medical Center, to meet the special transportation needs of children with respiratory, orthopaedic, and other medical and physical difficulties. A summary table is included to highlight restraints that have performed satisfactorily during dynamic crash tests and are used to meet patient transportation needs at Riley Hospital. Guidelines for establishing and maintaining a child restraint loan program for children with special needs are outlined to encourage replication of this effort.

  7. Launch Vehicles

    NASA Image and Video Library

    2007-07-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, an Ares I x-test involves the upper stage separating from the first stage. This particular test was conducted at the NASA Langley Research Center in July 2007. (Highest resolution available)

  8. About the Transportation Secure Data Center | Transportation Secure Data

    Science.gov Websites

    Center | NREL About the Transportation Secure Data Center About the Transportation Secure Data Center The Transportation Secure Data Center (TSDC) makes vital transportation data broadly available large, colorful map of the United States. NREL data experts and engineers analyze large sets of complex

  9. Innovative Airbreathing Propulsion Concepts for High-speed Applications

    NASA Technical Reports Server (NTRS)

    Whitlow, Woodrow, Jr.

    2002-01-01

    The current cost to launch payloads to low earth orbit (LEO) is approximately loo00 U.S. dollars ($) per pound ($22000 per kilogram). This high cost limits our ability to pursue space science and hinders the development of new markets and a productive space enterprise. This enterprise includes NASA's space launch needs and those of industry, universities, the military, and other U.S. government agencies. NASA's Advanced Space Transportation Program (ASTP) proposes a vision of the future where space travel is as routine as in today's commercial air transportation systems. Dramatically lower launch costs will be required to make this vision a reality. In order to provide more affordable access to space, NASA has established new goals in its Aeronautics and Space Transportation plan. These goals target a reduction in the cost of launching payloads to LEO to $lo00 per pound ($2200 per kilogram) by 2007 and to $100' per pound by 2025 while increasing safety by orders of magnitude. Several programs within NASA are addressing innovative propulsion systems that offer potential for reducing launch costs. Various air-breathing propulsion systems currently are being investigated under these programs. The NASA Aerospace Propulsion and Power Base Research and Technology Program supports long-term fundamental research and is managed at GLenn Research Center. Currently funded areas relevant to space transportation include hybrid hyperspeed propulsion (HHP) and pulse detonation engine (PDE) research. The HHP Program currently is addressing rocket-based combined cycle and turbine-based combined cycle systems. The PDE research program has the goal of demonstrating the feasibility of PDE-based hybrid-cycle and combined cycle propulsion systems that meet NASA's aviation and access-to-space goals. The ASTP also is part of the Base Research and Technology Program and is managed at the Marshall Space Flight Center. As technologies developed under the Aerospace Propulsion and Power Base Research and Technology Program mature, they are incorporated into ASTP. One example of this is rocket-based combined cycle systems that are being considered as part of ASTP. The NASA Ultra Efficient Engine Technology (UEET) Program has the goal of developing propulsion system component technology that is relevant to a wide range of vehicle missions. In addition to subsonic and supersonic speed regimes, it includes the hypersonic speed regime. More specifically, component technologies for turbine-based combined cycle engines are being developed as part of UEET.

  10. KSC-2011-7231

    NASA Image and Video Library

    2011-09-30

    At NASA's Kennedy Space Center in Florida, NASA's payload transportation canisters are displayed end-to-end outside the Reutilization, Recycling and Marketing Facility on Ransom Road. The two payload canisters are being decommissioned following the end of the Space Shuttle Program. The canisters delivered to the launch pad all space shuttle and space station cargo that required vertical installation into the shuttles' payload bays. Each canister weighs 110,000 pounds and is 65 feet long, 22 feet wide, and 18 feet, 7 inches high. The canisters were prescreened through NASA Headquarters as possible artifacts, but their size makes them difficult to transport to locations off the center. Federal and state agencies now will be given the opportunity to screen the canisters for potential use before a final decision is made on their disposition. For more information, visit http://www.nasa.gov/centers/kennedy/pdf/167403main_CRF-06.pdf. Photo credit: NASA/Jim Grossmann

  11. KSC-2011-7230

    NASA Image and Video Library

    2011-09-30

    At NASA's Kennedy Space Center in Florida, NASA's payload transportation canisters rest end-to-end outside the Reutilization, Recycling and Marketing Facility on Ransom Road, their mission accomplished. The two payload canisters are being decommissioned following the end of the Space Shuttle Program. The canisters delivered to the launch pad all space shuttle and space station cargo that required vertical installation into the shuttles' payload bays. Each canister weighs 110,000 pounds and is 65 feet long, 22 feet wide, and 18 feet, 7 inches high. The canisters were prescreened through NASA Headquarters as possible artifacts, but their size makes them difficult to transport to locations off the center. Federal and state agencies now will be given the opportunity to screen the canisters for potential use before a final decision is made on their disposition. For more information, visit http://www.nasa.gov/centers/kennedy/pdf/167403main_CRF-06.pdf. Photo credit: NASA/Jim Grossmann

  12. InSight Atlas V ISA-ASA Transport

    NASA Image and Video Library

    2018-03-05

    At Vandenberg Air Force Base in California, the aft stub adapter (ASA) and interstage adapter (ISA) for a United Launch Alliance (ULA) Atlas V rocket are transported to Space Launch Complex 3. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.

  13. A PC-based bus monitor program for use with the transport systems research vehicle RS-232 communication interfaces

    NASA Technical Reports Server (NTRS)

    Easley, Wesley C.

    1991-01-01

    Experiment critical use of RS-232 data busses in the Transport Systems Research Vehicle (TSRV) operated by the Advanced Transport Operating Systems Program Office at the NASA Langley Research Center has recently increased. Each application utilizes a number of nonidentical computer and peripheral configurations and requires task specific software development. To aid these development tasks, an IBM PC-based RS-232 bus monitoring system was produced. It can simultaneously monitor two communication ports of a PC or clone, including the nonstandard bus expansion of the TSRV Grid laptop computers. Display occurs in a separate window for each port's input with binary display being selectable. A number of other features including binary log files, screen capture to files, and a full range of communication parameters are provided.

  14. Development of an Experimental Airborne Laser Remote Sensor for Oil Detection and Classification in Spills

    DOT National Transportation Integrated Search

    1975-02-01

    A study and measurements program to determine the feasibility of using laser-excited oil fluorescence as a means of detecting and classifying oils in spills in the marine environment was undertaken at the DOT/Transportation System Center. The study c...

  15. FMCSA safety program effectiveness measurement : carrier intervention effectiveness model (CIEM), version 1.1, report for Fiscal Year 2012 interventions.

    DOT National Transportation Integrated Search

    2016-11-01

    The Federal Motor Carrier Safety Administration (FMCSA), in cooperation with the John A. Volpe National Transportation Systems Center (Volpe), has developed a quantitative model to measure the effectiveness of motor carrier interventions in terms of ...

  16. FMCSA Safety Program Effectiveness Measurement: Carrier Intervention Effectiveness Model (CIEM), Version 1.1 Report for Fiscal Year 2014 Interventions

    DOT National Transportation Integrated Search

    2018-04-01

    The Federal Motor Carrier Safety Administration (FMCSA), in cooperation with the John A. Volpe National Transportation Systems Center (Volpe), has developed a quantitative model to measure the effectiveness of motor carrier interventions in terms of ...

  17. FMCSA safety program effectiveness measurement: carrier intervention effectiveness model (CIEM), version 1.1 : report for fiscal year 2013 interventions.

    DOT National Transportation Integrated Search

    2017-04-01

    The Federal Motor Carrier Safety Administration (FMCSA), in cooperation with the John A. Volpe National Transportation Systems Center (Volpe), has developed a quantitative model to measure the effectiveness of motor carrier interventions in terms of ...

  18. FMCSA safety program effectiveness measurement : carrier intervention effectiveness model, version 1.0, summary report for fiscal years 2009, 2010, 2011.

    DOT National Transportation Integrated Search

    2015-01-01

    The Federal Motor Carrier Safety Administration (FMCSA), in cooperation with the John A. Volpe National : Transportation Systems Center (Volpe), has developed a quantitative model to measure the effectiveness of motor : carrier interventions in terms...

  19. FMCSA safety program effectiveness measurement : Carrier Intervention Effectiveness Model (CIEM), Version 1.1, report for fiscal year 2013 interventions.

    DOT National Transportation Integrated Search

    2017-04-01

    The Federal Motor Carrier Safety Administration (FMCSA), in cooperation with the John A. Volpe National Transportation Systems Center (Volpe), has developed a quantitative model to measure the effectiveness of motor carrier interventions in terms of ...

  20. Early Program Development

    NASA Image and Video Library

    1962-01-01

    This artist's concept from 1962 show a three hundred-sixty ton spaceship, powered by a forty-megawatt nuclear-electric power plant, transporting a three-man crew to Mars. As envisioned by Marshall Space Flight Center engineers, a five-ship convoy would make the round trip journey in about five hundred days.

  1. Rutgers/NJDOT Pavement Resource Program (NJDOT Statewide GPR Project Network GPR Data Collection and Analysis Update of HPMA GPR Database)

    DOT National Transportation Integrated Search

    2008-05-01

    Center for Advanced Transportation Infrastructure (CAIT) of Rutgers University is mandated to conduct Ground Penetrating Radar (GPR) surveys to update the NJDOT's pavement management system with GPR measured pavement layer thicknesses. Based on the r...

  2. Potential of Spark Ignition Engine, Effect of Vehicle Design Variables on Top Speed, Performance, and Fuel Economy

    DOT National Transportation Integrated Search

    1980-03-01

    The purpose of this report is to evaluate the effect of vehicle characteristics on vehicle performance and fuel economy. The studies were performed using the VEHSIM (vehicle simulation) program at the Transportation Systems Center. The computer simul...

  3. KSC-2011-8327

    NASA Image and Video Library

    2011-12-20

    CAPE CANAVERAL, Fla. -- Commercial Crew Program (CCP) Manager Ed Mango, left, and Deputy Program Manager Brent Jett host a Program Strategy Forum at NASA's Kennedy Space Center in Florida. The forum was held to update industry partners about NASA's decision to use multiple, competitively awarded Space Act Agreements (SAAs) instead of an Integrated Design Contract for the agency's next phase of developing commercial space transportation system capabilities. Using SAAs instead of a contract will allow NASA to maintain multiple partners, with the flexibility to adjust technical direction, milestones and funding. The move was made so the program could adapt to dynamic budgetary circumstances while maintaining a high level of competition among transportation providers. CCP is helping to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of the program is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. For more information, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Jim Grossmann

  4. Interprofessional Flight Camp.

    PubMed

    Alfes, Celeste M; Rowe, Amanda S

    2016-01-01

    The Dorothy Ebersbach Academic Center for Flight Nursing in Cleveland, OH, holds an annual flight camp designed for master's degree nursing students in the acute care nurse practitioner program, subspecializing in flight nursing at the Frances Payne Bolton School of Nursing at Case Western Reserve University. The weeklong interprofessional training is also open to any health care provider working in an acute care setting and focuses on critical care updates, trauma, and emergency care within the critical care transport environment. This year, 29 graduate nursing students enrolled in a master's degree program from Puerto Rico attended. Although the emergency department in Puerto Rico sees and cares for trauma patients, there is no formal trauma training program. Furthermore, the country only has 1 rotor wing air medical transport service located at the Puerto Rico Medical Center in San Juan. Flight faculty and graduate teaching assistants spent approximately 9 months planning for their participation in our 13th annual flight camp. Students from Puerto Rico were extremely pleased with the learning experiences at camp and expressed particular interest in having more training time within the helicopter flight simulator. Copyright © 2016 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  5. Launch Vehicles

    NASA Image and Video Library

    2007-09-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry 1/2% model is undergoing pressure measurements inside the wind tunnel testing facility at MSFC. (Highest resolution available)

  6. KSC-04PD-2677

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Before a road test of the Crawler Transporter, United Space Alliance Vice President, Associate Program Manager of Florida Operations, Bill Pickavance (in front), look at the controls of the cab. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.

  7. Center Planning and Development: Multi-User Spaceport Initiatives

    NASA Technical Reports Server (NTRS)

    Kennedy, Christopher John

    2015-01-01

    The Vehicle Assembly building at NASAs Kennedy Space Center has been used since 1966 to vertically assemble every launch vehicle, since the Apollo Program, launched from Launch Complex 39 (LC-39). After the cancellation of the Constellation Program in 2010 and the retirement of the Space Shuttle Program in 2011, the VAB faced an uncertain future. As the Space Launch System (SLS) gained a foothold as the future of American spaceflight to deep space, NASA was only using a portion of the VABs initial potential. With three high bays connected to the Crawler Way transportation system, the potential exists for up to three rockets to be simultaneously processed for launch. The Kennedy Space Center (KSC) Master plan, supported by the Center Planning and Development (CPD) Directorate, is guiding Kennedy toward a 21st century multi-user spaceport. This concept will maintain Kennedy as the United States premier gateway to space and provide multi-user operations through partnerships with the commercial aerospace industry. Commercial aerospace companies, now tasked with transporting cargo and, in the future, astronauts to the International Space Station (ISS) via the Commercial Resupply Service (CRS) and Commercial Crew Program (CCP), are a rapidly growing industry with increasing capabilities to make launch operations more economical for both private companies and the government. Commercial operations to Low Earth Orbit allow the government to focus on travel to farther destinations through the SLS Program. With LC-39B designated as a multi-use launch pad, companies seeking to use it will require an integration facility to assemble, integrate, and test their launch vehicle. An Announcement for Proposals (AFP) was released in June, beginning the process of finding a non-NASA user for High Bay 2 (HB2) and the Mobile Launcher Platforms (MLPs). An Industry Day, a business meeting and tour for interested companies and organizations, was also arranged to identify and answer any additional questions posed by potential proposers. After amending the AFP and posting additional material for potential users to consider, proposals are being accepted until July 31, at which point they will be evaluated to determine the proposer which best meets the objectives of the government. By identifying VAB HB2 as available and seeking proposals from the commercial sector for VAB HB2 and MLP use, Center Planning and Development is ensuring Kennedy Space Centers relevance in the evolving launch industry of the 21st century.

  8. KSC-2014-4853

    NASA Image and Video Library

    2014-12-18

    CAPE CANAVERAL, Fla. -- NASA's Orion crew module, enclosed in its crew module transportation fixture and secured on a flatbed truck, leaves the Multi-Operation Support Building and is being transported to the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. Orion was transported 2,700 miles overland from Naval Base San Diego in California. Orion was recovered from the Pacific Ocean after completing a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  9. The Palm Desert renewable [hydrogen] transportation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamberlin, C.E.; Lehman, P.

    1998-08-01

    This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehiclemore » diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.« less

  10. Advanced powder metallurgy aluminum alloys and composites

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  11. Some contributions to energetics by the Lewis Research Center and a review of their potential non-aerospace applications

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Gutstein, M. U.

    1972-01-01

    The primary technology areas are aerospace propulsion, power and materials. As examples in these technologies, the programs in the fields of cryogenics and liquid metals are reviewed and potential non-aerospace applications for the results of these programs are discussed. These include such possibilities as: hydrogen as a non-polluting industrial fuel; more efficient central power stations; and powerplants for advanced ground transportation.

  12. Engineering Tests for Energy Storage Cars at the Transportation Test Center : Volume 3. Noise Tests.

    DOT National Transportation Integrated Search

    1977-05-01

    The primary purpose of the tests documented herein was to demonstrate the principles and feasibility of an energy storage type propulsion system, and its adaptability to an existing car design. The test program comprised four phases of tests on two N...

  13. Intelligent vehicle highway systems (IVHS). Volume 1, inventory of models for predicting the emission and energy benefits of IVHS alternatives

    DOT National Transportation Integrated Search

    1992-10-30

    THIS REPORT HAS BEEN PREPARED BY THE VOLPE NATIONAL TRANSPORTATION SYSTEMS CENTER (VNTSC) TO PROVIDE THE FEDERAL HIGHWAY ADMINISTRATION (FHWA) WITH AN EARLY LOOK AT THE INVENTORY OF FORECASTING MODELS VNTSC IS EXAMINING UNDER TASK ONE OF ITS PROGRAM ...

  14. FWD calibration centers ensure states get quality data : states use falling-weight deflectometer (FWD) data to develop more cost-effective rehabilitation strategies

    DOT National Transportation Integrated Search

    1998-01-01

    The Office of International Programs promotes U.S. technology and highway transportation expertise abroad to assist the U.S. private sector in competing globally through the export of goods and services. By supporting government-to-government relatio...

  15. Transportation Systems Center/U.S. Coast Guard L-Band Maritime Satellite Test Program : Test Summary: September - November 1974

    DOT National Transportation Integrated Search

    1975-06-01

    Several L-band satellite communications tests with the NASA ATS-6 spacecraft and the U.S. Coast Guard Cutter SHERMAN are described. The tests included 1200 bit per second digital data, voice, simultaneous data and voice, ranging, multipath and antenn...

  16. 75 FR 14438 - Agency Information Collection Activities; Proposed Collection; Comment Request; NOX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    .... NO X is a prime ingredient in the formation of ground-level ozone (smog), a pervasive air pollution... X Budget Trading Program To Reduce the Regional Transport of Ozone AGENCY: Environmental Protection...) 566-1741. Mail: Air and Radiation Docket and Information Center, Environmental Protection Agency...

  17. 78 FR 13143 - Notice of Funding Availability for the Small Business Transportation Resource Center Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ... individual or group counseling sessions to small businesses per month. (D) Planning Committee 1. Establish a..., counseling, marketing and outreach, and the dissemination of information, to encourage and assist small..., small business counseling, and technical assistance with small businesses currently doing business with...

  18. 75 FR 79072 - Notice of Funding Availability for the Small Business Transportation Resource Center Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... hours of individual or group counseling sessions to small businesses per month. (D) Planning Committee 1..., such as, business assessment, management training, counseling, technical assistance, marketing and... counseling, and technical assistance with small businesses currently doing business with public and private...

  19. 78 FR 13148 - Notice of Funding Availability for the Small Business Transportation Resource Center Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ... individual or group counseling sessions to small businesses per month. (D) Planning Committee 1. Establish a..., counseling, marketing and outreach, and the dissemination of information, to encourage and assist small... activities such as information dissemination, small business counseling, and technical assistance with small...

  20. 42 CFR 424.102 - Situations that do not constitute an emergency.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... themselves indicate a need for emergency services: (a) Lack of care at home. (b) Lack of transportation to a....102 Section 424.102 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM CONDITIONS FOR MEDICARE PAYMENT Special Conditions...

  1. Application of decomposition techniques to the preliminary design of a transport aircraft

    NASA Technical Reports Server (NTRS)

    Rogan, J. E.; Kolb, M. A.

    1987-01-01

    A nonlinear constrained optimization problem describing the preliminary design process for a transport aircraft has been formulated. A multifaceted decomposition of the optimization problem has been made. Flight dynamics, flexible aircraft loads and deformations, and preliminary structural design subproblems appear prominently in the decomposition. The use of design process decomposition for scheduling design projects, a new system integration approach to configuration control, and the application of object-centered programming to a new generation of design tools are discussed.

  2. Crawler Transporter 2 Trek

    NASA Image and Video Library

    2016-03-23

    NASA’s upgraded crawler-transporter 2 (CT-2) begins its trek from the Vehicle Assembly Building (VAB) at the agency’s Kennedy Space Center in Florida to Launch Pad 39B to test recently completed upgrades and modifications for NASA’s journey to Mars. The Ground Systems Development and Operations Program at Kennedy oversaw upgrades to the crawler in the VAB. The crawler will carry the mobile launcher with Orion atop the Space Launch System rocket to Pad 39B for Exploration Mission-1, scheduled for 2018.

  3. Crawler Transporter 2 Trek

    NASA Image and Video Library

    2016-03-23

    NASA’s upgraded crawler-transporter 2 (CT-2) has exited the Vehicle Assembly Building (VAB) at the agency’s Kennedy Space Center in Florida for its trek along the crawlerway to Launch Pad 39B to test recently completed upgrades and modifications for NASA’s journey to Mars. The Ground Systems Development and Operations Program at Kennedy oversaw upgrades to the crawler in the VAB. The crawler will carry the mobile launcher with Orion atop the Space Launch System rocket to Pad 39B for Exploration Mission-1, scheduled for 2018.

  4. Crawler Transporter 2 Trek

    NASA Image and Video Library

    2016-03-23

    NASA’s upgraded crawler-transporter 2 (CT-2) travels along the crawlerway from the Vehicle Assembly Building (VAB) at the agency’s Kennedy Space Center in Florida on its trek to Launch Pad 39B to test recently completed upgrades and modifications for NASA’s journey to Mars. The Ground Systems Development and Operations Program at Kennedy oversaw upgrades to the crawler in the VAB. The crawler will carry the mobile launcher with Orion atop the Space Launch System rocket to Pad 39B for Exploration Mission-1, scheduled for 2018.

  5. Crawler Transporter 2 Trek

    NASA Image and Video Library

    2016-03-23

    NASA’s upgraded crawler-transporter 2 (CT-2) travels along the crawlerway during its trek to Launch Pad 39B at the agency’s Kennedy Space Center in Florida, to test recently completed upgrades and modifications for NASA’s journey to Mars. The Ground Systems Development and Operations Program at Kennedy oversaw upgrades to the crawler in the Vehicle Assembly Building. The crawler will carry the mobile launcher with Orion atop the Space Launch System rocket to Pad 39B for Exploration Mission-1, scheduled for 2018.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1964-12-01

    The fuel tank assembly of the Saturn V S-IC (first) stage supported with the aid of a C frame on the transporter was readied to be transported to the Marshall Space Flight Center, building 4705. The fuel tank carried kerosene (RP-1) as its fuel. The S-IC stage utilized five F-1 engines that used kerosene and liquid oxygen as propellant and each engine provided 1,500,000 pounds of thrust. This stage lifted the entire vehicle and Apollo spacecraft from the launch pad.

  7. Overview of NASA Glenn Research Center Programs in Aero-Heat Transfer and Future Needs

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.

    2002-01-01

    This presentation concentrates on an overview of the NASA Glenn Research Center and the projects that are supporting Turbine Aero-Heat Transfer Research. The principal areas include the Ultra Efficient Engine Technology (UEET) Project, the Advanced Space Transportation Program (ASTP) Revolutionary Turbine Accelerator (RTA) Turbine Based Combined Cycle (TBCC) project, and the Propulsion & Power Base R&T - Smart Efficient Components (SEC), and Revolutionary Aeropropulsion Concepts (RAC) Projects. In addition, highlights are presented of the turbine aero-heat transfer work currently underway at NASA Glenn, focusing on the use of the Glenn-HT Navier- Stokes code as the vehicle for research in turbulence & transition modeling, grid topology generation, unsteady effects, and conjugate heat transfer.

  8. FAA/NASA Joint University Program for Air Transportation Research: 1993-1994

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M. (Compiler)

    1995-01-01

    This report summarizes the research conducted during the academic year 1993-1994 under the NASA/FAA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, July 14-15, 1994. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to aircraft and airport operations. An overview of the year's activities for each university is also presented.

  9. Space Operations Center system analysis. Volume 3, book 2: SOC system definition report, revision A

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Operations Center (SOC) orbital space station program operations are described. A work breakdown structure for the general purpose support equipment, construction and transportation support, and resupply and logistics support systems is given. The basis for the design of each element is presented, and a mass estimate for each element supplied. The SOC build-up operation, construction, flight support, and satellite servicing operations are described. Detailed programmatics and cost analysis are presented.

  10. Launch Vehicles

    NASA Image and Video Library

    2007-09-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. The launch vehicle's first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor that burns a specially formulated and shaped solid propellant called polybutadiene acrylonitrile (PBAN). The second or upper stage will be propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This HD video image depicts a test firing of a 40k subscale J2X injector at MSFC's test stand 115. (Highest resolution available)

  11. MARS Mission research center

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Mars Mission Research Center (M2RC) is one of nine University Space Engineering Research Centers established by NASA in June 1988. It is a cooperative effort between NCSU and A&T in Greensboro. The goal of the Center is to focus on research and educational technologies for planetary exploration with particular emphasis on Mars. The research combines Mission Analysis and Design, Hypersonic Aerodynamics and Propulsion, Structures and Controls, Composite Materials, and Fabrication Methods in a cross-disciplined program directed towards the development of space transportation systems for lunar and planetary travel. The activities of the students and faculty in the M2RC for the period 1 Jul. 1990 to 30 Jun. 1991 are described.

  12. KSC-2014-1955

    NASA Image and Video Library

    2014-04-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, ground support technicians install new roller bearings on the C truck of crawler-transporter 2, or CT-2. Work continues in high bay 2 to upgrade CT-2. The modifications are designed to ensure CT-2’s ability to transport launch vehicles currently in development, such as the agency’s Space Launch System, to the launch pad. The Ground Systems Development and Operations Program office at Kennedy is overseeing the upgrades. For more than 45 years the crawler-transporters were used to transport the mobile launcher platform and the Apollo-Saturn V rockets and, later, space shuttles to Launch Pads 39A and B. For more information, visit: http://www.nasa.gov/exploration/systems/ground/crawler-transporter. Photo credit: NASA/Cory Huston

  13. Ares Launch Vehicles Development Awakens Historic Test Stands at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.; Burt, Richard K.

    2008-01-01

    This paper chronicles the rebirth of two national rocket testing assets located at NASA's Marshall Space Flight Center: the Dynamic Test Stand (also known as the Ground Vibration Test Stand) and the Static Test Stand (also known as the Main Propulsion Test Stand). It will touch on the historical significance of these special facilities, while introducing the requirements driving modifications for testing a new generation space transportation system, which is set to come on line after the Space Shuttle is retired in 2010. In many ways, America's journey to explore the Moon begins at the Marshall Center, which is developing the Ares I crew launch vehicle and the Ares V cargo launch vehicle, along with managing the Lunar Precursor Robotic Program and leading the Lunar Lander descent stage work, among other Constellation Program assignments. An important component of this work is housed in Marshall's Engineering Directorate, which manages more than 40 facilities capable of a full spectrum of rocket and space transportation technology testing - from small components to full-up engine systems. The engineers and technicians who operate these test facilities have more than a thousand years of combined experience in this highly specialized field. Marshall has one of the few government test groups in the United States with responsibility for the overall performance of a test program from conception to completion. The Test Laboratory has facilities dating back to the early 1960s, when the test stands needed for the Apollo Program and other scientific endeavors were commissioned and built along the Marshall Center's southern boundary, with logistics access by air, railroad, and barge or boat on the Tennessee River. NASA and its industry partners are designing and developing a new human-rated system based on the requirements for safe, reliable, and cost-effective transportation solutions. Given below are summaries of the Dynamic Test Stand and the Static Test Stand capabilities, along with an introduction to the new missions that these sleeping giants will be fulfilling as NASA readies the Ares I for service in the 2015 timeframe, and plans the development work for fielding the Ares V late next decade (fig. 1). Validating modern computer design models and techniques requires the sorts of data that can only be generated by these one-of-a-kind facilities.

  14. A mobile transporter concept for EVA assembly of future spacecraft

    NASA Technical Reports Server (NTRS)

    Watson, Judith J.; Bush, Harold G.; Heard, Walter L., Jr.; Lake, Mark S.; Jensen, J. Kermit

    1990-01-01

    This paper details the ground test program for the NASA Langley Research Center Mobile Transporter concept. The Mobile Transporter would assist EVA astronauts in the assembly of the Space Station Freedom. 1-g and simulated O-g (neutral buoyancy) tests were conducted to evaluate the use of the Mobile Transporter. A three-bay (44 struts) orthogonal tetrahedral truss configuration with a 15-foot-square cross section was repeatedly assembled by a single pair of pressure suited test subjects working from the Mobile Transporter astronaut positioning devices. The average unit assembly time was 28 seconds/strut. The results of these tests indicate that the use of a Mobile Transporter for EVA assembly of Space Station size structure is viable and practical. Additionally, the Mobile Transporter could be used to construct other spacecraft such as the submillimeter astronomical laboratory, space crane, and interplanetary (i.e., Mars and lunar) spacecraft.

  15. Animation of Heliopause Electrostatic Rapid Transport System (HERTS)

    NASA Image and Video Library

    2016-04-20

    Animation of Heliopause Electrostatic Rapid Transport System (HERTS) concept. NASA engineers are conducting tests to develop models for the Heliopause Electrostatic Rapid Transport System. HERTS builds upon the electric sail invention of Dr. Pekka Janhunen of the Finnish Meteorological Institute. An electric sail could potentially send scientific payloads to the edge of our solar system, the heliopause, in less than 10 years. The research is led by Bruce M. Wiegmann, an engineer in the Advanced Concepts Office at NASA's Marshall Space Flight Center. The HERTS E-Sail development and testing is funded by NASA’s Space Technology Mission Directorate through the NASA Innovative Advanced Concepts Program.

  16. Automatic braking system modification for the Advanced Transport Operating Systems (ATOPS) Transportation Systems Research Vehicle (TSRV)

    NASA Technical Reports Server (NTRS)

    Coogan, J. J.

    1986-01-01

    Modifications were designed for the B-737-100 Research Aircraft autobrake system hardware of the Advanced Transport Operating Systems (ATOPS) Program at Langley Research Center. These modifications will allow the on-board flight control computer to control the aircraft deceleration after landing to a continuously variable level for the purpose of executing automatic high speed turn-offs from the runway. A bread board version of the proposed modifications was built and tested in simulated stopping conditions. Test results, for various aircraft weights, turnoff speed, winds, and runway conditions show that the turnoff speeds are achieved generally with errors less than 1 ft/sec.

  17. KSC-2014-4854

    NASA Image and Video Library

    2014-12-18

    CAPE CANAVERAL, Fla. -- NASA's Orion spacecraft arrives at the Launch Abort System Facility at Kennedy Space Center in Florida. The spacecraft was transported 2,700 miles overland from Naval Base San Diego in California, on a flatbed truck secured in its crew module transportation fixture for the trip. During its first flight test, Orion completed a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  18. KSC-2014-4856

    NASA Image and Video Library

    2014-12-18

    CAPE CANAVERAL, Fla. -- NASA's Orion spacecraft arrives inside the Launch Abort System Facility at Kennedy Space Center in Florida. The spacecraft was transported 2,700 miles overland from Naval Base San Diego in California, on a flatbed truck secured in its crew module transportation fixture for the trip. During its first flight test, Orion completed a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  19. KSC-2014-4855

    NASA Image and Video Library

    2014-12-18

    CAPE CANAVERAL, Fla. -- NASA's Orion spacecraft arrives at the Launch Abort System Facility at Kennedy Space Center in Florida. The spacecraft was transported 2,700 miles overland from Naval Base San Diego in California, on a flatbed truck secured in its crew module transportation fixture for the trip. During its first flight test, Orion completed a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  20. Early Program Development

    NASA Image and Video Library

    1971-01-01

    Managed by Marshall Space Flight Center, the Space Tug concept was intended to be a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug would have been capable of numerous space applications. This 1971 image shows the basic Propulsion Module and attached elements in their functional configurations. The Space Tug program was cancelled and did not become a reality.

  1. Early Program Development

    NASA Image and Video Library

    1970-01-01

    Managed by Marshall Space Flight Center, the Space Tug concept was intended to be a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug was capable of numerous space applications. This 1970 artist's concept represents a typical configuration required to conduct operations and tasks in Earth orbit. The Space Tug program was cancelled and did not become a reality.

  2. Lower Granite Dam Smolt Monitoring Program, 1998 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verhey, Peter; Ross, Doug; Morrill, Charles

    1998-12-01

    The 1998 fish collection season at Lower Granite was characterized by relatively moderate spring flows and spill, moderate levels of debris, cool spring, warm summer and fall water temperatures, and increased chinook numbers, particularly wild subyearling chinook collected and transported. The Fish Passage Center's Smolt Monitoring Program is designed to provide a consistent, real-time database on fish passage and document the migrational characteristics of the many stocks of salmon and steelhead in the Columbia Basin.

  3. SLS Pathfinder Segments Car Train Departure

    NASA Image and Video Library

    2016-03-02

    An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, travels along the NASA railroad bridge over the Indian River north of Kennedy Space Center, carrying one of two containers on a railcar for transport to the NASA Jay Jay railroad yard near the center. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.

  4. InSight Atlas V ISA-ASA Transport

    NASA Image and Video Library

    2018-03-05

    At Vandenberg Air Force Base in California, the aft stub adapter (ASA) and interstage adapter (ISA) for a United Launch Alliance (ULA) Atlas V rocket is prepared for transport from Building 7525 to Space Launch Complex 3. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.

  5. SpaceX TESS Payload Lift to Trailer; Prep for Transport to LC 40

    NASA Image and Video Library

    2018-04-11

    Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the SpaceX payload fairing containing the agency's Transiting Exoplanet Survey Satellite (TESS) is secured onto a transporter. The fairing will be moved to Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is scheduled to launch on the SpaceX Falcon 9 rocket at 6:32 p.m. EDT on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  6. SpaceX TESS Payload Lift to Trailer; Prep for Transport to LC 40

    NASA Image and Video Library

    2018-04-11

    Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians assist as the SpaceX payload fairing containing the agency's Transiting Exoplanet Survey Satellite (TESS) is lifted for the move to a transporter. The fairing will be moved to Space Launch Complex 40 at Cape Canaveral Air Force Station. The satellite is scheduled to launch atop the SpaceX Falcon 9 rocket at 6:32 p.m. EDT on April 16. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  7. SpaceX TESS Payload Lift to Trailer; Prep for Transport to LC 40

    NASA Image and Video Library

    2018-04-11

    Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians assist as the SpaceX payload fairing containing the agency's Transiting Exoplanet Survey Satellite (TESS) is lowered by crane onto a transporter. The fairing will be moved to Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is scheduled to launch on the SpaceX Falcon 9 rocket at 6:32 p.m. EDT on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  8. SpaceX TESS Payload Lift to Trailer; Prep for Transport to LC 40

    NASA Image and Video Library

    2018-04-11

    Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians assist as the SpaceX payload fairing containing the agency's Transiting Exoplanet Survey Satellite (TESS) is moved by crane to a transporter. The fairing will be moved to Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is scheduled to launch on the SpaceX Falcon 9 rocket at 6:32 p.m. EDT on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  9. KSC-04PD-2676

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Bill Pickavance (in front), vice president, associate program manager of Florida Operations, United Space Alliance, joins workers Sam Dove, left, and Dan Drake in the cab of the Crawler Transporter before a road test. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.

  10. KSC-04pd2134

    NASA Image and Video Library

    2004-10-15

    KENNEDY SPACE CENTER, FLA. - A tractor-trailer arrives at the Crawler Transporter (CT) area with a new shipment of crawler shoes. The new shoes were manufactured by ME Global in Duluth, Minn. The CT transports the Mobile Launcher Platform, with the assembled Space Shuttle aboard, between the refurbishment area, the VAB and Launch Complex Pads 39A and 39B. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. The original shoes were manufactured for the Apollo Program. Cracks appeared in the shoes in recent years spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for Return to Flight and use through the balance of the Space Shuttle Program.

  11. KSC-04pd2137

    NASA Image and Video Library

    2004-10-15

    KENNEDY SPACE CENTER, FLA. - In the Crawler Transporter (CT) area, a worker places another load of new crawler shoes on the ground. The new shoes were manufactured by ME Global in Duluth, Minn. The CT transports the Mobile Launcher Platform, with the assembled Space Shuttle aboard, between the refurbishment area, the VAB and Launch Complex Pads 39A and 39B. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. The original shoes were manufactured for the Apollo Program. Cracks appeared in the shoes in recent years spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for Return to Flight and use through the balance of the Space Shuttle Program.

  12. Final report for the National Center for Intermodal Transportation for Economic Competitiveness : project title: student technology exchange program (STEP) for engineering/robotics in middle school students.

    DOT National Transportation Integrated Search

    2015-05-05

    Key outcomes or other achievements - This project highlighted the importance of math and science concepts within three of the six STEM-related career clusters as defined by the Mississippi Department of Education: Agriculture, Food and Natural Resour...

  13. Alternative Fuels Data Center

    Science.gov Websites

    AFV special license plate, which are available from the Arizona Department of Transportation (ADOT license plate. ADOT has reached its maximum limit of 10,000 vehicles and the issuance of Energy Efficient Alternative Fuel Vehicle (AFV) and Energy Efficient Plate Programs Dedicated AFVs qualify for an

  14. A Functional Specification for a Programming Language for Computer Aided Learning Applications.

    ERIC Educational Resources Information Center

    National Research Council of Canada, Ottawa (Ontario).

    In 1972 there were at least six different course authoring languages in use in Canada with little exchange of course materials between Computer Assisted Learning (CAL) centers. In order to improve facilities for producing "transportable" computer based course materials, a working panel undertook the definition of functional requirements of a user…

  15. An Origin and Destination Traffic Survey and Analysis for HECUS (Higher Education Center for Urban Studies) Universities. College of Engineering Report No. 73-1.

    ERIC Educational Resources Information Center

    Palazotto, Anthony N.; And Others

    This report is the result of a pilot program to seek out ways for developing an educational institution's transportation flow. Techniques and resulting statistics are discussed. Suggestions for additional uses of the information obtained are indicated. (Author)

  16. Engineering Tests for Energy Storage Cars at the Transportation Test Center : Volume 2. Performance, Power Consumption and Radio Frequency Interference Tests

    DOT National Transportation Integrated Search

    1977-05-01

    The primary purpose of the tests documented herein was to demonstrate the principles and feasibility of an energy-storage-type propulsion system, and its adaptability to an existing car design. The test program comprised four phases of tests on two N...

  17. Alternative Fuels Data Center: Pennsylvania Transportation Data for

    Science.gov Websites

    /TTIwZrpNGf4 Video thumbnail for Pennsylvania School Buses Run on Natural Gas Pennsylvania School Buses Run on Network, Clean School Bus/Vehicle Incentive, and Green Jobs Outreach Program Independence National Partnership for Promoting Natural Gas Vehicles Ready to Roll! - Southeastern Pennsylvania's Regional Electric

  18. 78 FR 78493 - National Rural Transportation Assistance Program: Solicitation for Proposals

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... 5. Task 5: RTAP Rural Resource Center 6. Task 6: Peer-to-Peer Networking 7. Task 7: Research and... for networking with State RTAP managers while establishing communication for information dissemination... Community Edition (DNN) version 05.06.02 (144). 6. Task 6: Peer-to-Peer Networking The recipient will...

  19. Research and technology 1989

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Marshall Space Flight Center annual report summarizes their advanced studies, research programs, and technological developments. Areas covered include: transportation systems; space systems such as Gravity Probe-B and Gamma Ray Imaging Telescope; data systems; microgravity science; astronomy and astrophysics; solar, magnetospheric, and atomic physics; aeronomy; propulsion; materials and processes; structures and dynamics; automated systems; space systems; and avionics.

  20. Alternative Fuels Data Center

    Science.gov Websites

    Express Permit website. Heavy-Duty Truck and Alternative Fueling Station Incentives - Chicago, IL The Chicago Department of Transportation's (CDOT) Drive Clean Chicago program provides vouchers and grants to operate in the Chicago six-county area at least 75% of the time and fueling stations must be proposed in

  1. Final report : federal earmark ITS-9851(003) : Virginia Department of Transportation : Northern Virginia smart traffic center video quality improvement program

    DOT National Transportation Integrated Search

    2005-08-01

    Like many freeway traffic management systems around the country, the NOVA STC system was implemented in phases over a period of years. As a result, some field components had reached their maximum life cycle, including a portion of the CCTV subsystem....

  2. Single passenger rail car impact test. Volume 2 : summary of occupant protection program : rail passenger equipment collision tests

    DOT National Transportation Integrated Search

    2000-03-01

    A test in which a single rail passenger car was crashed into a fixed wall at 35 mph was conducted at the Transportation Technology Center on November 16, 1999. The car was instrumented to measure (1) the deformations of critical structural elements, ...

  3. Quantum oscillations and nontrivial transport in (Bi0.92In0.08)2Se3

    NASA Astrophysics Data System (ADS)

    Zhang, Minhao; Li, Yan; Song, Fengqi; Wang, Xuefeng; Zhang, Rong

    2017-12-01

    Not Available Project supported by the National Key Basic Research Program of China (Grant Nos. 2014CB921103 and 2017YFA0206304), the National Natural Science Foundation of China (Grant Nos. U1732159 and 11274003), and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, China.

  4. Flight test experience and controlled impact of a remotely piloted jet transport aircraft

    NASA Technical Reports Server (NTRS)

    Horton, Timothy W.; Kempel, Robert W.

    1988-01-01

    The Dryden Flight Research Center Facility of NASA Ames Research Center (Ames-Dryden) and the FAA conducted the controlled impact demonstration (CID) program using a large, four-engine, remotely piloted jet transport airplane. Closed-loop primary flight was controlled through the existing onboard PB-20D autopilot which had been modified for the CID program. Uplink commands were sent from a ground-based cockpit and digital computer in conjunction with an up-down telemetry link. These uplink commands were received aboard the airplane and transferred through uplink interface systems to the modified PB-20D autopilot. Both proportional and discrete commands were produced by the ground system. Prior to flight tests, extensive simulation was conducted during the development of ground-based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems; however, piloted flight tests were the primary method and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and systems required to accomplish the remotely piloted mission are discussed.

  5. Electric Vehicles near the Hangar at the Lewis Research Center

    NASA Image and Video Library

    1977-06-21

    The National Aeronautics and Space Administration (NASA) Lewis Research Center tested 16 commercially-manufactured electric vehicles, including these, during the mid-1970s. Lewis and the Energy Research and Development Administration (ERDA) engaged in several energy-related programs in the mid-1970s, including the Electric Vehicle Project. NASA and ERDA undertook the program in 1976 to determine the state of the current electric vehicle technology. The tests were primarily conducted on a 7.5-mile track at the Transportation Research Center located approximately 160 miles southwest of Cleveland, Ohio. Some of the vehicles had analog data recording systems to measure the battery during operation and sensors to determine speed and distance. The tests analyzed the vehicle’s range, acceleration, coast-down, braking, and energy consumption. From left to right: RIPP-Electric, EVA Contactor, Otis P-500, C.H. Waterman DAF, Zagato Elcar, unknown, Sebring-Vanguard Citicar, and Hattronic Minivan

  6. Partnership of Environmental Education and Research-A compilation of student research, 1999-2008

    USGS Publications Warehouse

    Bradley, Michael W.; Armstrong, Patrice; Byl, Thomas D.

    2011-01-01

    The U.S. Geological Survey (USGS) Tennessee Water Science Center and the College of Engineering and Technology at Tennessee State University developed a Partnership in Environmental Education and Research (PEER) to support environmental research at TSU and to expand the environmental research capabilities of the USGS in Tennessee. The PEER program is driven by the research needs to better define the occurrence, fate, and transport of contaminants in groundwater and surface water. Research in the PEER program has primarily focused on the transport and remediation of organic contamination in karst settings. Research conducted through the program has also expanded to a variety of media and settings. Research areas include contaminant occurrence and transport, natural and enhanced bioremediation, geochemical conditions in karst aquifers, mathematical modeling for contaminant transport and degradation, new methods to evaluate groundwater contamination, the resuspension of bacteria from sediment in streams, the use of bioluminescence and chemiluminescence to identify the presence of contaminants, and contaminant remediation in wetlands. The PEER program has increased research and education opportunities for students in the College of Engineering, Technology, and Computer Science and has provided students with experience in presenting the results of their research. Students in the program have participated in state, regional, national and international conferences with more than 140 presentations since 1998 and more than 40 student awards. The PEER program also supports TSU outreach activities and efforts to increase minority participation in environmental and earth science programs at the undergraduate and graduate levels. TSU students and USGS staff participate in the TSU summer programs for elementary and high school students to promote earth sciences. The 2007 summer camps included more than 130 students from 20 different States and Washington DC.

  7. Ares I Upper Stage Pressure Tests in Wind Tunnel

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry 1/2% model is undergoing pressure measurements inside the wind tunnel testing facility at MSFC. (Highest resolution available)

  8. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts confidence testing of a manufactured aluminum panel that will fabricate the Ares I upper stage barrel. In this test, bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  9. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, processes for upper stage barrel fabrication are talking place. Aluminum panels are manufacturing process demonstration articles that will undergo testing until perfected. The panels are built by AMRO Manufacturing located in El Monte, California. (Largest resolution available)

  10. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts the manufacturing of aluminum panels that will be used to form the Ares I barrel. The panels are manufacturing process demonstration articles that will undergo testing until perfected. The panels are built by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  11. n/a

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured panel that will be used for the Ares I upper stage barrel fabrication. The aluminum panels are manufacturing process demonstration articles that will undergo testing until perfected. The panels are built by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  12. Advanced Air Transportation Technologies Project, Final Document Collection

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.; Wold, Sheryl (Editor)

    2008-01-01

    This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.

  13. KSC-2012-4585

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. -- Inside the Space Exploration Technologies, or SpaceX, processing facility near NASA’s Kennedy Space Center in Florida, NASA Administrator Charlie Bolden announced new milestones in the nation’s commercial space initiatives. Bolden announced that SpaceX has completed its Space Act Agreement with NASA for Commercial Orbital Transportation Services. SpaceX is scheduled to launch the first of its 12 contracted cargo flights to the space station from Cape Canaveral this October, under NASA’s Commercial Resupply Services Program. Bolden also announced NASA partner Sierra Nevada Corp. has conducted its first milestone under the agency’s recently announced Commercial Crew Integrated Capability initiative. The milestone, a program implementation plan review, marks an important first step in Sierra Nevada’s efforts to develop a crew transportation system with its Dream Chaser spacecraft. Through NASA’s commercial space initiatives and programs, the agency is providing investments to stimulate the American commercial space industry. Photo credit: NASA/Kim Shiflett

  14. KSC-2012-4584

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. -- Inside the Space Exploration Technologies, or SpaceX, processing facility near NASA’s Kennedy Space Center in Florida, NASA Administrator Charlie Bolden announced new milestones in the nation’s commercial space initiatives. Bolden announced that SpaceX has completed its Space Act Agreement with NASA for Commercial Orbital Transportation Services. SpaceX is scheduled to launch the first of its 12 contracted cargo flights to the space station from Cape Canaveral this October, under NASA’s Commercial Resupply Services Program. Bolden also announced NASA partner Sierra Nevada Corp. has conducted its first milestone under the agency’s recently announced Commercial Crew Integrated Capability initiative. The milestone, a program implementation plan review, marks an important first step in Sierra Nevada’s efforts to develop a crew transportation system with its Dream Chaser spacecraft. Through NASA’s commercial space initiatives and programs, the agency is providing investments to stimulate the American commercial space industry. Photo credit: NASA/Kim Shiflett

  15. KSC-2012-4586

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. -- Inside the Space Exploration Technologies, or SpaceX, processing facility near NASA’s Kennedy Space Center in Florida, NASA Administrator Charlie Bolden announced new milestones in the nation’s commercial space initiatives. Bolden announced that SpaceX has completed its Space Act Agreement with NASA for Commercial Orbital Transportation Services. SpaceX is scheduled to launch the first of its 12 contracted cargo flights to the space station from Cape Canaveral this October, under NASA’s Commercial Resupply Services Program. Bolden also announced NASA partner Sierra Nevada Corp. has conducted its first milestone under the agency’s recently announced Commercial Crew Integrated Capability initiative. The milestone, a program implementation plan review, marks an important first step in Sierra Nevada’s efforts to develop a crew transportation system with its Dream Chaser spacecraft. Through NASA’s commercial space initiatives and programs, the agency is providing investments to stimulate the American commercial space industry. Photo credit: NASA/Kim Shiflett

  16. Transport composite fuselage technology: Impact dynamics and acoustic transmission

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.; Balena, F. J.; Labarge, W. L.; Pei, G.; Pitman, W. A.; Wittlin, G.

    1986-01-01

    A program was performed to develop and demonstrate the impact dynamics and acoustic transmission technology for a composite fuselage which meets the design requirements of a 1990 large transport aircraft without substantial weight and cost penalties. The program developed the analytical methodology for the prediction of acoustic transmission behavior of advanced composite stiffened shell structures. The methodology predicted that the interior noise level in a composite fuselage due to turbulent boundary layer will be less than in a comparable aluminum fuselage. The verification of these analyses will be performed by NASA Langley Research Center using a composite fuselage shell fabricated by filament winding. The program also developed analytical methodology for the prediction of the impact dynamics behavior of lower fuselage structure constructed with composite materials. Development tests were performed to demonstrate that the composite structure designed to the same operating load requirement can have at least the same energy absorption capability as aluminum structure.

  17. CET89 - CHEMICAL EQUILIBRIUM WITH TRANSPORT PROPERTIES, 1989

    NASA Technical Reports Server (NTRS)

    Mcbride, B.

    1994-01-01

    Scientists and engineers need chemical equilibrium composition data to calculate the theoretical thermodynamic properties of a chemical system. This information is essential in the design and analysis of equipment such as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical processing equipment. The substantial amount of numerical computation required to obtain equilibrium compositions and transport properties for complex chemical systems led scientists at NASA's Lewis Research Center to develop CET89, a program designed to calculate the thermodynamic and transport properties of these systems. CET89 is a general program which will calculate chemical equilibrium compositions and mixture properties for any chemical system with available thermodynamic data. Generally, mixtures may include condensed and gaseous products. CET89 performs the following operations: it 1) obtains chemical equilibrium compositions for assigned thermodynamic states, 2) calculates dilute-gas transport properties of complex chemical mixtures, 3) obtains Chapman-Jouguet detonation properties for gaseous species, 4) calculates incident and reflected shock properties in terms of assigned velocities, and 5) calculates theoretical rocket performance for both equilibrium and frozen compositions during expansion. The rocket performance function allows the option of assuming either a finite area or an infinite area combustor. CET89 accommodates problems involving up to 24 reactants, 20 elements, and 600 products (400 of which may be condensed). The program includes a library of thermodynamic and transport properties in the form of least squares coefficients for possible reaction products. It includes thermodynamic data for over 1300 gaseous and condensed species and transport data for 151 gases. The subroutines UTHERM and UTRAN convert thermodynamic and transport data to unformatted form for faster processing. The program conforms to the FORTRAN 77 standard, except for some input in NAMELIST format. It requires about 423 KB memory, and is designed to be used on mainframe, workstation, and mini computers. Due to its memory requirements, this program does not readily lend itself to implementation on MS-DOS based machines.

  18. Overview: Small Aircraft Transportation System Airborne Remote Sensing Fuel Droplet Evaporation

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Holmes, Bruce; Gogos, George; Narayanan, Ram; Smith, Russell; Woods, Sara

    2004-01-01

    The NASA Nebraska Preparation Grant was designed to solidify relationships, intensify communication, and launch collaborative initiatives among Nebraska researchers and key contacts at NASA research centers and enterprises. In doing so, Nebraska was successful in laying the groundwork for the foundation for numerous long-term, mutually beneficial collaborations that were subsequently proposed and awarded in the NASA EPSCoR 2000 competition. The NASA Nebraska EPSCoR Preparation Grant was managed by the same administrative team that oversees Nebraska's NASA Space Grant and EPSCoR programs. An advisory board (later Technical Advisory Committee) made up of voting representatives from all affiliate and partner organizations regularly reviewed grant progress and direction. The University of Nebraska at Omaha's Aviation Institute, the host institution for all three programs, provided additional administrative oversight and program evaluation through established review mechanisms. This structure has served NASA well and has been cited as a model program. The second year of preparation grant funding served as a significant opportunity for Nebraska to lay the groundwork for the continued elevation and success of its NASA EPSCoR program. In anticipation of the NASA EPSCoR 2000 grant competition, Year 2 funding enabled funded researchers to further broaden and enhance the quality and quantity of collaborations with NASA Field Centers, Codes, and Enterprises. The plan set the stage for long-term research and outreach endeavors that have contributed significantly to the achievement of NASA's strategic objectives; the state of Nebraska's economic and aerospace development efforts; and have advanced Nebraska s aeronautics research efforts to a national leadership level. The overarching goal of the NASA Nebraska EPSCoR Preparation grant was met by facilitating research endeavors among Nebraska faculty that addressed research and technology priorities of the NASA Field Centers, Codes, and Strategic Enterprises. During the first year of funding, Nebraska established open and frequent lines of communication with university affairs officers and other key personnel at all NASA Centers and Enterprises, and facilitated the development of collaborations between and among junior faculty in the state and NASA researchers. As a result, Nebraska initiated a major research cluster, the Small Aircraft Transportation System Nebraska Implementation Template.

  19. Proceedings of the Ninth Annual Summer Conference: NASA/USRA University Advanced Aeronautics Design Program and Advanced Space Design Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The NASA/USRA University Advanced Design Program was established in 1984 as an attempt to add more and better design education to primarily undergraduate engineering programs. The original focus of the pilot program encompassing nine universities and five NASA centers was on space design. Two years later, the program was expanded to include aeronautics design with six universities and three NASA centers participating. This year marks the last of a three-year cycle of participation by forty-one universities, eight NASA centers, and one industry participant. The Advanced Space Design Program offers universities an opportunity to plan and design missions and hardware that would be of usc in the future as NASA enters a new era of exploration and discovery, while the Advanced Aeronautics Design Program generally offers opportunities for study of design problems closer to the present time, ranging from small, slow-speed vehicles to large, supersonic and hypersonic passenger transports. The systems approach to the design problem is emphasized in both the space and aeronautics projects. The student teams pursue the chosen problem during their senior year in a one- or two-semester capstone design course and submit a comprehensive written report at the conclusion of the project. Finally, student representatives from each of the universities summarize their work in oral presentations at the Annual Summer Conference, sponsored by one of the NASA centers and attended by the university faculty, NASA and USRA personnel and aerospace industry representatives. As the Advanced Design Program has grown in size, it has also matured in terms of the quality of the student projects. The present volume represents the student work accomplished during the 1992-1993 academic year reported at the Ninth Annual Summer Conference hosted by NASA Lyndon B. Johnson Space Center, June 14-18, 1993.

  20. Interagency coordination meeting on energy storage. [15 papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-01-01

    This report contains summaries of 15 presentations and 4 extemporaneous remarks of the Interagency Meeting on energy storage technology. The 15 presentations are: Energy Storage--Strategy for the Future, George F. Pezdirtz; Physical Energy Storage Program in ERDA's Division of Energy Storage Systems, Robert R. Reeves; Thermal Energy Storage R and D Program for Solar Heating and Cooling, Allan I. Michaels and Stephen L. Sargent; Summary of Energy Storage Activities Within ERDA's Division of Solar Energy Central Receiver Program, T.D. Brumleve; Transport of Water and Heat in an Aquifer Used for Hot Water Storage--Digital Simulation of Field Results, S.P. Larson; Energymore » Storage Boiler Tank Progress Report, T.A. Chubb, J.J. Nemecek, and D.E. Simmons; Summary of Energy Storage Projects at the NASA Lewis Research Center, William J. Masica; Review of a Study Concerning Institutional Factors Affecting Vehicle Choice, William J. Devereaux; Flywheel Projects in the Department of Transportation, Part 2--Research at the University of Wisconsin (discussion only), Robert Husted; UMTA Flywheel Energy Storage Program, James F. Campbell; Flywheel Projects in the Department of Transportation, Part 4--Flywheels for Railroad Propulsion (discussion only), John Koper; NASA's Support of ERDA's Hydrogen Energy Storage Program, E.A. Laumann; EPRI's Energy Storage Program; Thomas R. Schneider, Electric Power Research Institute; Battery Storage Program, Kurt W. Klunder; Utility Applications Energy Storage Programs, J. Charles Smith. Extemporaneous remarks by James D. Busi, Donald K. Stevens, F. Dee Stevenson, and Harold A. Spuhler are included. (MCW)« less

  1. Flight test evaluation of drag effects on surface coatings on the NASA Boeing 737 TCV airplane

    NASA Technical Reports Server (NTRS)

    George-Falvy, D.; Sikavi, D. A.

    1981-01-01

    A flight test program was conducted in which the effects of various surface coatings on aerodynamic drag were investigated; results of this program are described in this report. The tests were conducted at NASA-Langley Research Center on the terminal configured vehicle (TCV) Boeing 737 research airplane. The Boeing Company, as contractor with NASA under the Energy Efficient Transport (EET) program, planned and evaluated the experiment. The NASA-TCV Program Office coordinated the experiment and performed the flight tests. The principal objective of the test was to evaluate the drag reduction potential of an elastomeric polyurethane surface coating, CAAPCO B-274, which also has been considered for application on transport airplanes to protect leading edges from erosion. The smooth surface achievable with this type of coating held some promise of reducing the skin friction drag as compared to conventional production type aircraft surfaces, which are usually anodized bare metal or coated with corrosion protective paint. Requirements for high precision measurements were the principal considerations in the experiment.

  2. KSC-2012-4583

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. -- Inside the Space Exploration Technologies, or SpaceX, processing facility near NASA’s Kennedy Space Center in Florida, Scott Thurston, partner integration office manager with the Commercial Crew Program, talks to the media prior to an announcement from NASA Administrator Charles Bolden about new milestones in the nation’s commercial space initiatives. Bolden announced that SpaceX has completed its Space Act Agreement with NASA for Commercial Orbital Transportation Services. SpaceX is scheduled to launch the first of its 12 contracted cargo flights to the space station from Cape Canaveral this October, under NASA’s Commercial Resupply Services Program. Bolden also announced NASA partner Sierra Nevada Corp. has conducted its first milestone under the agency’s recently announced Commercial Crew Integrated Capability initiative. The milestone, a program implementation plan review, marks an important first step in Sierra Nevada’s efforts to develop a crew transportation system with its Dream Chaser spacecraft. Through NASA’s commercial space initiatives and programs, the agency is providing investments to stimulate the American commercial space industry. Photo credit: NASA/Kim Shiflett

  3. Crawler Transporter 2 Trek

    NASA Image and Video Library

    2016-03-23

    An American flag flutters in the breeze as NASA’s upgraded crawler-transporter 2 (CT-2) travels along the crawlerway during its trek to Launch Pad 39B at the agency’s Kennedy Space Center in Florida, to test recently completed upgrades and modifications for NASA’s journey to Mars. The Ground Systems Development and Operations Program at Kennedy oversaw upgrades to the crawler in the Vehicle Assembly Building. The crawler will carry the mobile launcher with Orion atop the Space Launch System rocket to Pad 39B for Exploration Mission-1, scheduled for 2018.

  4. Crawler Transporter 2 Trek

    NASA Image and Video Library

    2016-03-23

    Technicians walk alongside NASA’s upgraded crawler-transporter 2 (CT-2) as it continues the trek on the crawlerway from the Vehicle Assembly Building (VAB) at the agency’s Kennedy Space Center in Florida to Launch Pad 39B to test recently completed upgrades and modifications for NASA’s journey to Mars. The Ground Systems Development and Operations Program at Kennedy oversaw upgrades to the crawler in the VAB. The crawler will carry the mobile launcher with Orion atop the Space Launch System rocket to Pad 39B for Exploration Mission-1, scheduled for 2018.

  5. Crawler Transporter 2 Trek

    NASA Image and Video Library

    2016-03-23

    Technicians walk alongside NASA’s upgraded crawler-transporter 2 (CT-2) as it continues the trek along the crawlerway from the Vehicle Assembly Building (VAB) at the agency’s Kennedy Space Center in Florida to Launch Pad 39B to test recently completed upgrades and modifications for NASA’s journey to Mars. The Ground Systems Development and Operations Program at Kennedy oversaw upgrades to the crawler in the VAB. The crawler will carry the mobile launcher with Orion atop the Space Launch System rocket to Pad 39B for Exploration Mission-1, scheduled for 2018.

  6. Crawler Transporter 2 Trek

    NASA Image and Video Library

    2016-03-23

    A truck sprays water in front of NASA’s upgraded crawler-transporter 2 (CT-2) to control dust as it begins the trek from the Vehicle Assembly Building (VAB) at the agency’s Kennedy Space Center in Florida to Launch Pad 39B to test recently completed upgrades and modifications for NASA’s journey to Mars. The Ground Systems Development and Operations Program at Kennedy oversaw upgrades to the crawler in the VAB. The crawler will carry the mobile launcher with Orion atop the Space Launch System rocket to Pad 39B for Exploration Mission-1, scheduled for 2018.

  7. Orion Returns to KSC after Successful Mission

    NASA Image and Video Library

    2014-12-18

    NASA's Orion crew module, enclosed in its crew module transportation fixture and secured on a flatbed truck nears the entrance gate to Kennedy Space Center in Florida. Orion made the overland trip from Naval Base San Diego in California. Orion was recovered from the Pacific Ocean after completing a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts.

  8. Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna

    NASA Image and Video Library

    2017-04-27

    Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, a crane is attached to the Orion heat shield from Exploration Flight Test-1 for unloading off its transporter. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  9. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    The Orion heat shield from Exploration Flight Test-1, secured on a transporter, arrives at the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  10. Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna

    NASA Image and Video Library

    2017-04-27

    Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers help prepare the Orion heat shield from Exploration Flight Test-1 for unloading off its transporter. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  11. Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna

    NASA Image and Video Library

    2017-04-27

    Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, a worker helps prepare the Orion heat shield from Exploration Flight Test-1 for unloading off its transporter. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  12. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is secured on a transporter and ready for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  13. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is being loaded onto a transporter for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  14. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, a crane lowers the Orion heat shield from Exploration Flight Test-1 onto a transporter for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  15. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    The Orion heat shield from Exploration Flight Test-1, secured on a transporter, departs the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  16. Early Program Development

    NASA Image and Video Library

    1970-01-01

    Managed by Marshall Space Flight Center, the Space Tug concept was intended to be a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug would have been capable of numerous space applications. The Tug could dock with the Space Shuttle to receive propellants and cargo, as visualized in this 1970 artist's concept. The Space Tug program was cancelled and did not become a reality.

  17. Early Program Development

    NASA Image and Video Library

    1970-01-01

    Managed by Marshall Space Flight Center, the Space Tug concept was intended to be a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug was capable of numerous space applications. This 1970 artist's concept illustrates a Space Tug with an attached landing configuration kit as it prepares for a lunar application. The Space Tug program was cancelled and did not become a reality.

  18. Early Program Development

    NASA Image and Video Library

    1970-01-01

    Managed by Marshall Space Flight Center, the Space Tug was intended to be a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug would have been capable of numerous space applications. This 1970 artist's concept illustrates a Space Tug Concept, crew module attached, in conjunction with other space vehicles. The Space Tug program was cancelled and did not become a reality.

  19. Stochastic Feedforward Control Technique

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1990-01-01

    Class of commanded trajectories modeled as stochastic process. Advanced Transport Operating Systems (ATOPS) research and development program conducted by NASA Langley Research Center aimed at developing capabilities for increases in capacities of airports, safe and accurate flight in adverse weather conditions including shear, winds, avoidance of wake vortexes, and reduced consumption of fuel. Advances in techniques for design of modern controls and increased capabilities of digital flight computers coupled with accurate guidance information from Microwave Landing System (MLS). Stochastic feedforward control technique developed within context of ATOPS program.

  20. KSC-2015-1004

    NASA Image and Video Library

    2015-01-05

    CAPE CANAVERAL, Fla. –In the Kennedy Space Center’s Press Site auditorium, agency leaders spoke to members of the news media on the Cloud-Aerosol Transport System. CATS will monitor cloud and aerosol coverage that directly impacts global climate. From left are: Mike Curie of NASA Public Affairs, Julie Robinson, ISS Program chief scientist at NASA’s Johnson Space Center, Robert Swap, program scientist at NASA Headquarters' Earth Science Division, and Matthew McGill, CATS principal investigator at Goddard. Photo credit: NASA/Kim Shiflett

  1. KSC-2013-2892

    NASA Image and Video Library

    2013-06-25

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians position equipment and forklifts as work continues to install new roller shaft bearings in crawler-transporter 2, or CT-2. Work continues in high bay 2 to upgrade CT-2. The modifications are designed to ensure CT-2’s ability to transport launch vehicles currently in development, such as the agency’s Space Launch System, to the launch pad. The Ground Systems Development and Operations Program office at Kennedy is overseeing the upgrades. For more than 45 years the crawler-transporters were used to transport the mobile launcher platform and the Apollo-Saturn V rockets and, later, space shuttles to Launch Pads 39A and B. For more information, visit: http://www.nasa.gov/exploration/systems/ground/crawler-transporter_bearings.html. Photo credit: NASA/Jim Grossmann

  2. KSC-2013-3550

    NASA Image and Video Library

    2013-09-10

    CAPE CANAVERAL, Fla. -- A technician installs a new bearing on crawler-transporter 2 in Vehicle Assembly Building High Bay 2 at NASA's Kennedy Space Center in Florida. Modifications underway on the crawler are designed to ensure its ability to transport launch vehicles currently under development, such as the agency’s Space Launch System, to the launch pad. Present modifications represent a redesign and upgrade to the roller bearings and assemblies originally installed on the crawler. The Ground Systems Development and Operations Program office at Kennedy is overseeing the upgrades. For more than 45 years the crawler-transporters were used to transport the mobile launcher platform carrying the Apollo-Saturn V rockets and space shuttles to Launch Pads 39A and 39B. For more information, visit http://www.nasa.gov/exploration/systems/ground/crawler-transporter_bearings_prt.htm. Photo credit: NASA/Kim Shiflett

  3. KSC-2013-3556

    NASA Image and Video Library

    2013-09-10

    CAPE CANAVERAL, Fla. -- A technician completes the installation of a new bearing on crawler-transporter 2 in Vehicle Assembly Building High Bay 2 at NASA's Kennedy Space Center in Florida. Modifications underway on the crawler are designed to ensure its ability to transport launch vehicles currently under development, such as the agency’s Space Launch System, to the launch pad. Present modifications represent a redesign and upgrade to the roller bearings and assemblies originally installed on the crawler. The Ground Systems Development and Operations Program office at Kennedy is overseeing the upgrades. For more than 45 years the crawler-transporters were used to transport the mobile launcher platform carrying the Apollo-Saturn V rockets and space shuttles to Launch Pads 39A and 39B. For more information, visit http://www.nasa.gov/exploration/systems/ground/crawler-transporter_bearings_prt.htm. Photo credit: NASA/Kim Shiflett

  4. KSC-2013-3552

    NASA Image and Video Library

    2013-09-10

    CAPE CANAVERAL, Fla. -- A technician installs a new bearing on crawler-transporter 2 in Vehicle Assembly Building High Bay 2 at NASA's Kennedy Space Center in Florida. Modifications underway on the crawler are designed to ensure its ability to transport launch vehicles currently under development, such as the agency’s Space Launch System, to the launch pad. Present modifications represent a redesign and upgrade to the roller bearings and assemblies originally installed on the crawler. The Ground Systems Development and Operations Program office at Kennedy is overseeing the upgrades. For more than 45 years the crawler-transporters were used to transport the mobile launcher platform carrying the Apollo-Saturn V rockets and space shuttles to Launch Pads 39A and 39B. For more information, visit http://www.nasa.gov/exploration/systems/ground/crawler-transporter_bearings_prt.htm. Photo credit: NASA/Kim Shiflett

  5. KSC-2013-3553

    NASA Image and Video Library

    2013-09-10

    CAPE CANAVERAL, Fla. -- Technicians install a new bearing on crawler-transporter 2 in the Vehicle Assembly Building High Bay 2 at NASA's Kennedy Space Center in Florida. Modifications underway on the crawler are designed to ensure its ability to transport launch vehicles currently under development, such as the agency’s Space Launch System, to the launch pad. Present modifications represent a redesign and upgrade to the roller bearings and assemblies originally installed on the crawler. The Ground Systems Development and Operations Program office at Kennedy is overseeing the upgrades. For more than 45 years the crawler-transporters were used to transport the mobile launcher platform carrying the Apollo-Saturn V rockets and space shuttles to Launch Pads 39A and 39B. For more information, visit http://www.nasa.gov/exploration/systems/ground/crawler-transporter_bearings_prt.htm. Photo credit: NASA/Kim Shiflett

  6. KSC-2013-3555

    NASA Image and Video Library

    2013-09-10

    CAPE CANAVERAL, Fla. -- The installation of new bearings on crawler-transporter 2 is underway in Vehicle Assembly Building High Bay 2 at NASA's Kennedy Space Center in Florida. Modifications underway on the crawler are designed to ensure its ability to transport launch vehicles currently under development, such as the agency’s Space Launch System, to the launch pad. Present modifications represent a redesign and upgrade to the roller bearings and assemblies originally installed on the crawler. The Ground Systems Development and Operations Program office at Kennedy is overseeing the upgrades. For more than 45 years the crawler-transporters were used to transport the mobile launcher platform carrying the Apollo-Saturn V rockets and space shuttles to Launch Pads 39A and 39B. For more information, visit http://www.nasa.gov/exploration/systems/ground/crawler-transporter_bearings_prt.htm. Photo credit: NASA/Kim Shiflett

  7. KSC-2013-3549

    NASA Image and Video Library

    2013-09-10

    CAPE CANAVERAL, Fla. -- Technicians install a new bearing on crawler-transporter 2 in Vehicle Assembly Building High Bay 2 at NASA's Kennedy Space Center in Florida. Modifications underway on the crawler are designed to ensure its ability to transport launch vehicles currently under development, such as the agency’s Space Launch System, to the launch pad. Present modifications represent a redesign and upgrade to the roller bearings and assemblies originally installed on the crawler. The Ground Systems Development and Operations Program office at Kennedy is overseeing the upgrades. For more than 45 years the crawler-transporters were used to transport the mobile launcher platform carrying the Apollo-Saturn V rockets and space shuttles to Launch Pads 39A and 39B. For more information, visit http://www.nasa.gov/exploration/systems/ground/crawler-transporter_bearings_prt.htm. Photo credit: NASA/Kim Shiflett

  8. KSC-2013-3554

    NASA Image and Video Library

    2013-09-10

    CAPE CANAVERAL, Fla. -- The installation of new bearings on crawler-transporter 2 is underway in Vehicle Assembly Building High Bay 2 at NASA's Kennedy Space Center in Florida. Modifications underway on the crawler are designed to ensure its ability to transport launch vehicles currently under development, such as the agency’s Space Launch System, to the launch pad. Present modifications represent a redesign and upgrade to the roller bearings and assemblies originally installed on the crawler. The Ground Systems Development and Operations Program office at Kennedy is overseeing the upgrades. For more than 45 years the crawler-transporters were used to transport the mobile launcher platform carrying the Apollo-Saturn V rockets and space shuttles to Launch Pads 39A and 39B. For more information, visit http://www.nasa.gov/exploration/systems/ground/crawler-transporter_bearings_prt.htm. Photo credit: NASA/Kim Shiflett

  9. KSC-2013-3559

    NASA Image and Video Library

    2013-09-10

    CAPE CANAVERAL, Fla. -- Steady progress is made on the installation of new bearings on crawler-transporter 2 in Vehicle Assembly Building High Bay 2 at NASA's Kennedy Space Center in Florida. Modifications underway on the crawler are designed to ensure its ability to transport launch vehicles currently under development, such as the agency’s Space Launch System, to the launch pad. Present modifications represent a redesign and upgrade to the roller bearings and assemblies originally installed on the crawler. The Ground Systems Development and Operations Program office at Kennedy is overseeing the upgrades. For more than 45 years the crawler-transporters were used to transport the mobile launcher platform carrying the Apollo-Saturn V rockets and space shuttles to Launch Pads 39A and 39B. For more information, visit http://www.nasa.gov/exploration/systems/ground/crawler-transporter_bearings_prt.htm. Photo credit: NASA/Kim Shiflett

  10. KSC-2013-3558

    NASA Image and Video Library

    2013-09-10

    CAPE CANAVERAL, Fla. -- A technician completes the installation of a new bearing on crawler-transporter 2 in Vehicle Assembly Building High Bay 2 at NASA's Kennedy Space Center in Florida. Modifications underway on the crawler are designed to ensure its ability to transport launch vehicles currently under development, such as the agency’s Space Launch System, to the launch pad. Present modifications represent a redesign and upgrade to the roller bearings and assemblies originally installed on the crawler. The Ground Systems Development and Operations Program office at Kennedy is overseeing the upgrades. For more than 45 years the crawler-transporters were used to transport the mobile launcher platform carrying the Apollo-Saturn V rockets and space shuttles to Launch Pads 39A and 39B. For more information, visit http://www.nasa.gov/exploration/systems/ground/crawler-transporter_bearings_prt.htm. Photo credit: NASA/Kim Shiflett

  11. KSC-2013-3557

    NASA Image and Video Library

    2013-09-10

    CAPE CANAVERAL, Fla. -- Technicians complete the installation of a new bearing on crawler-transporter 2 in Vehicle Assembly Building High Bay 2 at NASA's Kennedy Space Center in Florida. Modifications underway on the crawler are designed to ensure its ability to transport launch vehicles currently under development, such as the agency’s Space Launch System, to the launch pad. Present modifications represent a redesign and upgrade to the roller bearings and assemblies originally installed on the crawler. The Ground Systems Development and Operations Program office at Kennedy is overseeing the upgrades. For more than 45 years the crawler-transporters were used to transport the mobile launcher platform carrying the Apollo-Saturn V rockets and space shuttles to Launch Pads 39A and 39B. For more information, visit http://www.nasa.gov/exploration/systems/ground/crawler-transporter_bearings_prt.htm. Photo credit: NASA/Kim Shiflett

  12. KSC-2013-3551

    NASA Image and Video Library

    2013-09-10

    CAPE CANAVERAL, Fla. -- Technicians install a new bearing on crawler-transporter 2 in Vehicle Assembly Building High Bay 2 at NASA's Kennedy Space Center in Florida. Modifications underway on the crawler are designed to ensure its ability to transport launch vehicles currently under development, such as the agency’s Space Launch System, to the launch pad. Present modifications represent a redesign and upgrade to the roller bearings and assemblies originally installed on the crawler. The Ground Systems Development and Operations Program office at Kennedy is overseeing the upgrades. For more than 45 years the crawler-transporters were used to transport the mobile launcher platform carrying the Apollo-Saturn V rockets and space shuttles to Launch Pads 39A and 39B. For more information, visit http://www.nasa.gov/exploration/systems/ground/crawler-transporter_bearings_prt.htm. Photo credit: NASA/Kim Shiflett

  13. KSC-2013-3548

    NASA Image and Video Library

    2013-09-10

    CAPE CANAVERAL, Fla. -- Preparations are underway to install new bearings on crawler-transporter 2 in the Vehicle Assembly Building High Bay 2 at NASA's Kennedy Space Center in Florida. Modifications underway on the crawler are designed to ensure its ability to transport launch vehicles currently under development, such as the agency’s Space Launch System, to the launch pad. Present modifications represent a redesign and upgrade to the roller bearings and assemblies originally installed on the crawler. The Ground Systems Development and Operations Program office at Kennedy is overseeing the upgrades. For more than 45 years the crawler-transporters were used to transport the mobile launcher platform carrying the Apollo-Saturn V rockets and space shuttles to Launch Pads 39A and 39B. For more information, visit http://www.nasa.gov/exploration/systems/ground/crawler-transporter_bearings_prt.htm. Photo credit: NASA/Kim Shiflett

  14. Research and technology

    NASA Technical Reports Server (NTRS)

    1990-01-01

    As the NASA center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center (KSC) is placing increasing emphasis on KSC's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of the current mission, the technological tools needed to execute KSC's mission relative to future programs are being developed. The Engineering Development Directorate encompasses most of the laboratories and other KSC resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this KSC 1990 annual report. Projects under the following topics are covered: (1) materials science; (2) hazardous emissions and contamination monitoring; (3) biosciences; (4) autonomous systems; (5) communications and control; (6) meteorology; (7) technology utilization; and (8) mechanics, structures, and cryogenics.

  15. Metropolitan transportation management center : a case study : Michigan intelligent transportation system : improving safety and air quality while reducing stress for motorists

    DOT National Transportation Integrated Search

    1999-10-01

    The following case study provides a snapshot of Michigan's Intelligent Transportation Systems transportation management center (MITSC). It follows the outline provided in the companion document, Metropolitan Transportation Management Center Concepts ...

  16. TERRA: Building New Communities for Advanced Biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornelius, Joe; Mockler, Todd; Tuinstra, Mitch

    ARPA-E’s Transportation Energy Resources from Renewable Agriculture (TERRA) program is bringing together top experts from different disciplines – agriculture, robotics and data analytics – to rethink the production of advanced biofuel crops. ARPA-E Program Director Dr. Joe Cornelius discusses the TERRA program and explains how ARPA-E’s model enables multidisciplinary collaboration among diverse communities. The video focuses on two TERRA projects—Donald Danforth Center and Purdue University—that are developing and integrating cutting-edge remote sensing platforms, complex data analytics tools and plant breeding technologies to tackle the challenge of sustainably increasing biofuel stocks.

  17. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  18. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    1997-08-07

    This double exposure depicts Marshall Space Flight Center's (MSFC) Test Stand 116 hosting a 60K Bantam Fastrac thrust chamber assembly test. The lower right exposure shows the engine firing in the test stand while the center exposure reveals workers monitoring the test in the interior block house of the test facility. The thrust chamber assembly is only part of the Fastrac engine project to build a low-cost engine for the X-34, an alternate light-weight unmarned launch vehicle. Both the nozzle and the engine for Fastrac are being manufactured at MSFC.

  19. General view of a Solid Rocket Motor Nozzle in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a Solid Rocket Motor Nozzle in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility at Kennedy Space Center, being prepared to be mated with the Aft Skirt. In this view you can see the attach brackets where the Thrust Vector Control System actuators connect to the nozzle which can swivel the nozzle up to 3.5 degrees to redirect the thrust to steer and maintain the Shuttle's programmed trajectory. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  20. 77 FR 46555 - Notice of Funding Availability for the Small Business Transportation Resource Center Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... Utilization (OSDBU). ACTION: Notice of Funding Availability; Extension of closing and award dates SUMMARY... extending the closing date to allow eligible entities time to adequately submit a proposal. DATES: The... is extended until August 13, 2012, 5:00pm Eastern Standard Time. Also, the notice of award for the...

  1. Student-Designed Flume Arrives at NWTC | News | NREL

    Science.gov Websites

    opportunity to plan, design, and construct a flume for testing and characterizing hydrokinetic power devices . The project was one of several open to CSM students as part of the Capstone Design@Mines program transported to the National Wind Technology Center (NWTC) on Dec. 7. "The design and construction of the

  2. CHARACTERISTICS OF SPILLED OILS, FUELS, AND PETROLEUM PRODUCTS: 3A. SIMULATION OF OIL SPILLS AND DISPERSANTS UNDER CONDITIONS OF UNCERTAINTY

    EPA Science Inventory

    At the request of the US EPA Oil Program Center, ERD is developing an oil spill model that focuses on fate and transport of oil components under various response scenarios. This model includes various simulation options, including the use of chemical dispersing agents on oil sli...

  3. A framework for projecting the potential statewide vehicle miles traveled (VMT) reduction from state-level strategies in California : a National Center for Sustainable Transportation white paper.

    DOT National Transportation Integrated Search

    2017-03-01

    The California Global Warming Solutions Act of 2006 (Assembly Bill 32) created a : comprehensive, multi-year program to reduce greenhouse gas (GHG) emissions in the state to : 80% below 1990 levels by 2050. With the recent passage of Senate Bill 32, ...

  4. KSC-2012-4404

    NASA Image and Video Library

    2012-08-14

    CAPE CANAVERAL, Fla. -- Florida's Lt. Gov. Jennifer Carroll, left, and NASA Commercial Crew Program Manager Ed Mango shake hands at the National Space Club Florida Committee's August luncheon at the Radisson Resort at the Port in Cape Canaveral, Fla. Mango was the event's guest speaker, discussing the innovative steps the agency is taking with industry partners to develop the next U.S. space transportation capability to and from low Earth orbit, which will eventually be available for use by the U.S. government and other commercial customers. To learn more about the Commercial Crew Program, visit www.nasa.gov/commercialcrew. Photo credit: Kim Shiflett NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each weighing six and a half million pounds and larger in size than a professional baseball infield, the crawler-transporters are powered by locomotive and large electrical power generator engines. The crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann

  5. KSC-2013-2359

    NASA Image and Video Library

    2013-05-15

    EDWARDS, Calif. – ED13-0142-08: The flatbed truck and trailer that transported Sierra Nevada Corporation, or SNC, Space Systems' Dream Chaser engineering test article pauses behind Hangar 4802 on the aircraft ramp at NASA's Dryden Flight Research Center on Edwards Air Force Base, Calif., upon arrival at the center. The vehicle was shrouded in protective plastic wrap with its wings and tail structure removed for its four-day overland transport from Sierra Nevada's facility in Louisville, Colo., to NASA Dryden. SNC is one of three companies working with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative, which is intended to lead to the availability of commercial human spaceflight services for government and commercial customers. To learn more about CCP and its industry partners, visit www.nasa.gov/commercialcrew. Image credit: NASA/Tom Tschida

  6. KSC-2012-6177

    NASA Image and Video Library

    2012-11-05

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the mobile launcher is being prepared to support the space agency's Space Launch System heavy-lift rocket and Orion spacecraft. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann

  7. KSC-2012-6179

    NASA Image and Video Library

    2012-11-05

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida the mobile launcher is being prepared to support the space agency's Space Launch System heavy-lift rocket and Orion spacecraft. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann

  8. National Ice Center Visiting Scientist Program

    NASA Technical Reports Server (NTRS)

    Austin, Meg

    2001-01-01

    The objectives of the work done by Dr. Kim Partington were to manage NASA's polar research program, including its strategic direction, research funding and interagency and international collaborations. The objectives of the UCAR Visiting Scientist Program at the National Ice Center (NIC) are to: (1) Manage a visiting scientist program for the NIC Science Center in support of the mission of the NIC; (2) Provide a pool of researchers who will share expertise with the NIC and the science community; (3) Facilitate communications between the research and operational communities for the purpose of identifying work ready for validation and transition to an operational environment; and (4) Act as a focus for interagency cooperation. The NIC mission is to provide worldwide operational sea ice analyses and forecasts for the armed forces of the US and allied nations, the Departments of Commerce and Transportation, and other US Government and international agencies, and the civil sector. The NIC produces these analyses and forecasts of Arctic, Antarctic, Great Lakes, and Chesapeake Bay ice conditions to support customers with global, regional, and tactical scale interests. The NIC regularly deploys Naval Ice Center NAVICECEN Ice Reconnaissance personnel to the Arctic and Antarctica in order to perform aerial ice observation and analysis in support of NIC customers. NIC ice data are a key part of the US contribution to international global climate and ocean observing systems.

  9. NASA's Spaceliner 100 Investment Area Technology Activities

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Lyles, Garry M. (Technical Monitor)

    2001-01-01

    NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Spaceliner100 Investment Area, third generation technologies are being pursued in the areas of propulsion, airframes, integrated vehicle health management (IVHM), launch systems, and operations and range. The ASTP program will mature these technologies through ground system testing. Flight testing where required, will be advocated on a case by case basis.

  10. The design and application of a Transportable Inference Engine (TIE1)

    NASA Technical Reports Server (NTRS)

    Mclean, David R.

    1986-01-01

    A Transportable Inference Engine (TIE1) system has been developed by the author as part of the Interactive Experimenter Planning System (IEPS) task which is involved with developing expert systems in support of the Spacecraft Control Programs Branch at Goddard Space Flight Center in Greenbelt, Maryland. Unlike traditional inference engines, TIE1 is written in the C programming language. In the TIE1 system, knowledge is represented by a hierarchical network of objects which have rule frames. The TIE1 search algorithm uses a set of strategies, including backward chaining, to obtain the values of goals. The application of TIE1 to a spacecraft scheduling problem is described. This application involves the development of a strategies interpreter which uses TIE1 to do constraint checking.

  11. KSC-04pd2136

    NASA Image and Video Library

    2004-10-15

    KENNEDY SPACE CENTER, FLA. - In the Crawler Transporter (CT) area, a worker offloads some of the new crawler shoes that arrived. In the background is one of the two CTs. The new shoes were manufactured by ME Global in Duluth, Minn. The CT transports the Mobile Launcher Platform, with the assembled Space Shuttle aboard, between the refurbishment area, the VAB and Launch Complex Pads 39A and 39B. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. The original shoes were manufactured for the Apollo Program. Cracks appeared in the shoes in recent years spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for Return to Flight and use through the balance of the Space Shuttle Program.

  12. Commercial Crew Astronauts Visit Kennedy on This Week @NASA – August 12, 2016

    NASA Image and Video Library

    2016-08-12

    Two of the NASA astronauts training for the first flight tests for the agency’s Commercial Crew Program visited with employees during an Aug. 11 event at Kennedy Space Center. Astronauts Eric Boe and Suni Williams, alongside Commercial Crew Program Manager Kathy Lueders, responded to questions during a panel discussion, moderated by Kennedy Director Robert Cabana. NASA has contracted with Boeing and SpaceX to develop crew transportation systems and provide crew transportation services to and from the International Space Station. The agency will select the commercial crew astronauts from the group that includes Boe, Williams, Bob Behnken and Doug Hurley The first flight tests are targeted for next year. Also, Air Quality Flight over California Wildfire, CYGNSS Media Day, Putting NASA Earth Science to Work, and more!

  13. Computational Aeroelastic Analysis of the Semi-Span Super-Sonic Transport (S4T) Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Sanetrik, Mark D.; Silva, Walter A.; Hur, Jiyoung

    2012-01-01

    A summary of the computational aeroelastic analysis for the Semi-Span Super-Sonic Transport (S4T) wind-tunnel model is presented. A broad range of analysis techniques, including linear, nonlinear and Reduced Order Models (ROMs) were employed in support of a series of aeroelastic (AE) and aeroservoelastic (ASE) wind-tunnel tests conducted in the Transonic Dynamics Tunnel (TDT) at NASA Langley Research Center. This research was performed in support of the ASE element in the Supersonics Program, part of NASA's Fundamental Aeronautics Program. The analysis concentrated on open-loop flutter predictions, which were in good agreement with experimental results. This paper is one in a series that comprise a special S4T technical session, which summarizes the S4T project.

  14. KSC-04pd2135

    NASA Image and Video Library

    2004-10-15

    KENNEDY SPACE CENTER, FLA. - A tractor-trailer arrives at the Crawler Transporter (CT) area with a new shipment of crawler shoes. In the background is the Vehicle Assembly Building. The new shoes were manufactured by ME Global in Duluth, Minn. The CT transports the Mobile Launcher Platform, with the assembled Space Shuttle aboard, between the refurbishment area, the VAB and Launch Complex Pads 39A and 39B. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. The original shoes were manufactured for the Apollo Program. Cracks appeared in the shoes in recent years spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for Return to Flight and use through the balance of the Space Shuttle Program.

  15. The Current State of Rural Neurosurgical Practice: An International Perspective

    PubMed Central

    Upadhyayula, Pavan S.; Yue, John K.; Yang, Jason; Birk, Harjus S.; Ciacci, Joseph D.

    2018-01-01

    Introduction: Rural and low-resource areas have diminished capacity to care for neurosurgical patients due to lack of infrastructure, healthcare investment, and training programs. This review summarizes the range of rural neurosurgical procedures, novel mechanisms for delivering care, rapid training programs, and outcome differences across international rural neurosurgical practice. Methods: A comprehensive literature search was performed for English language manuscripts with keywords “rural” and “neurosurgery” using the National Library of Medicine PubMed database (01/1971–06/2017). Twenty-four articles focusing on rural non-neurosurgical practice were included. Results: Time to care and/or surgery and shortage of trained personnel remain the strongest risk factors for mortality and poor outcome. Telemedicine consults to regional centers with neurosurgery housestaff have potential for increased timeliness of diagnosis/triage, improved time to surgery, and reductions in unnecessary transfers in remote areas. Mobile neurosurgery teams have been deployed with success in nations with large transport distances precluding initial transfers. Common neurosurgical procedures involve trauma mechanisms; accordingly, training programs for nonneurosurgery medical personnel on basic assessment and operative techniques have been successful in resource-deficient settings where neurosurgeons are unavailable. Conclusions: Protracted transport times, lack of resources/training, and difficulty retaining specialists are barriers to successful outcomes. Advances in telemedicine, mobile neurosurgery, and training programs for urgent operative techniques have been implemented efficaciously. Development of guidelines for paired partnerships between rural centers and academic hospitals, supplying surplus technology to rural areas, and rapid training of qualified local surgical personnel can create sustainable feed-forward programs for trainees and infrastructural solutions to address challenges in rural neurosurgery. PMID:29456356

  16. KSC-2012-4601

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. – Space Florida President Frank DiBello, NASA Administrator Charlie Bolden, and Boeing's Vice President and General Manager of Space Exploration John Elbon address the media inside Orbiter Processing Facility-3, or OPF-3, at NASA's Kennedy Space Center in Florida. Bolden took a few dozen media on a road show tour of the center and adjacent Cape Canaveral Air Force Station to show the progress being made for future government and commercial space endeavors that will begin from Florida's Space Coast. Boeing is leasing OPF-3 through an agreement with Space Florida for the manufacturing and assembly of its CST-100 spacecraft, which is under development in collaboration with NASA's Commercial Crew Program. During his tour, Bolden announced that Space Exploration Technologies, or SpaceX, has completed its Space Act Agreement with NASA for Commercial Orbital Transportation Services. SpaceX is scheduled to launch the first of its 12 contracted cargo flights to the space station from Cape Canaveral this October, under NASA’s Commercial Resupply Services Program. Bolden also announced NASA partner Sierra Nevada Corp. has conducted its first milestone under the agency’s recently announced Commercial Crew Integrated Capability CCiCap initiative. The milestone, a program implementation plan review, marks an important first step in Sierra Nevada’s efforts to develop a crew transportation system with its Dream Chaser spacecraft. Through NASA’s commercial space initiatives and programs, the agency is providing investments to stimulate the American commercial space industry. Photo credit: NASA/Kim Shiflett

  17. KSC-2012-4606

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. – Space Florida President Frank DiBello, NASA Administrator Charlie Bolden, and Boeing's Vice President and General Manager of Space Exploration John Elbon address the media inside Orbiter Processing Facility-3, or OPF-3, at NASA's Kennedy Space Center in Florida. Bolden took a few dozen media on a road show tour of the center and adjacent Cape Canaveral Air Force Station to show the progress being made for future government and commercial space endeavors that will begin from Florida's Space Coast. Boeing is leasing OPF-3 through an agreement with Space Florida for the manufacturing and assembly of its CST-100 spacecraft, which is under development in collaboration with NASA's Commercial Crew Program. During his tour, Bolden announced that Space Exploration Technologies, or SpaceX, has completed its Space Act Agreement with NASA for Commercial Orbital Transportation Services. SpaceX is scheduled to launch the first of its 12 contracted cargo flights to the space station from Cape Canaveral this October, under NASA’s Commercial Resupply Services Program. Bolden also announced NASA partner Sierra Nevada Corp. has conducted its first milestone under the agency’s recently announced Commercial Crew Integrated Capability CCiCap initiative. The milestone, a program implementation plan review, marks an important first step in Sierra Nevada’s efforts to develop a crew transportation system with its Dream Chaser spacecraft. Through NASA’s commercial space initiatives and programs, the agency is providing investments to stimulate the American commercial space industry. Photo credit: NASA/Kim Shiflett

  18. KSC-2012-4600

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. – NASA Administrator Charlie Bolden, right, and Boeing's Vice President and General Manager of Space Exploration John Elbon address the media inside Orbiter Processing Facility-3, or OPF-3, at NASA's Kennedy Space Center in Florida. Bolden took a few dozen media on a road show tour of the center and adjacent Cape Canaveral Air Force Station to show the progress being made for future government and commercial space endeavors that will begin from Florida's Space Coast. Boeing is leasing OPF-3 through an agreement with Space Florida for the manufacturing and assembly of its CST-100 spacecraft, which is under development in collaboration with NASA's Commercial Crew Program. During his tour, Bolden announced that Space Exploration Technologies, or SpaceX, has completed its Space Act Agreement with NASA for Commercial Orbital Transportation Services. SpaceX is scheduled to launch the first of its 12 contracted cargo flights to the space station from Cape Canaveral this October, under NASA’s Commercial Resupply Services Program. Bolden also announced NASA partner Sierra Nevada Corp. has conducted its first milestone under the agency’s recently announced Commercial Crew Integrated Capability CCiCap initiative. The milestone, a program implementation plan review, marks an important first step in Sierra Nevada’s efforts to develop a crew transportation system with its Dream Chaser spacecraft. Through NASA’s commercial space initiatives and programs, the agency is providing investments to stimulate the American commercial space industry. Photo credit: NASA/Kim Shiflett

  19. KSC-2012-4607

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. – Space Florida President Frank DiBello, NASA Administrator Charlie Bolden, and Boeing's Vice President and General Manager of Space Exploration John Elbon address the media inside Orbiter Processing Facility-3, or OPF-3, at NASA's Kennedy Space Center in Florida. Bolden took a few dozen media on a road show tour of the center and adjacent Cape Canaveral Air Force Station to show the progress being made for future government and commercial space endeavors that will begin from Florida's Space Coast. Boeing is leasing OPF-3 through an agreement with Space Florida for the manufacturing and assembly of its CST-100 spacecraft, which is under development in collaboration with NASA's Commercial Crew Program. During his tour, Bolden announced that Space Exploration Technologies, or SpaceX, has completed its Space Act Agreement with NASA for Commercial Orbital Transportation Services. SpaceX is scheduled to launch the first of its 12 contracted cargo flights to the space station from Cape Canaveral this October, under NASA’s Commercial Resupply Services Program. Bolden also announced NASA partner Sierra Nevada Corp. has conducted its first milestone under the agency’s recently announced Commercial Crew Integrated Capability CCiCap initiative. The milestone, a program implementation plan review, marks an important first step in Sierra Nevada’s efforts to develop a crew transportation system with its Dream Chaser spacecraft. Through NASA’s commercial space initiatives and programs, the agency is providing investments to stimulate the American commercial space industry. Photo credit: NASA/Kim Shiflett

  20. KSC-2012-4602

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. – Space Florida President Frank DiBello, NASA Administrator Charlie Bolden, and Boeing's Vice President and General Manager of Space Exploration John Elbon address the media inside Orbiter Processing Facility-3, or OPF-3, at NASA's Kennedy Space Center in Florida. Bolden took a few dozen media on a road show tour of the center and adjacent Cape Canaveral Air Force Station to show the progress being made for future government and commercial space endeavors that will begin from Florida's Space Coast. Boeing is leasing OPF-3 through an agreement with Space Florida for the manufacturing and assembly of its CST-100 spacecraft, which is under development in collaboration with NASA's Commercial Crew Program. During his tour, Bolden announced that Space Exploration Technologies, or SpaceX, has completed its Space Act Agreement with NASA for Commercial Orbital Transportation Services. SpaceX is scheduled to launch the first of its 12 contracted cargo flights to the space station from Cape Canaveral this October, under NASA’s Commercial Resupply Services Program. Bolden also announced NASA partner Sierra Nevada Corp. has conducted its first milestone under the agency’s recently announced Commercial Crew Integrated Capability CCiCap initiative. The milestone, a program implementation plan review, marks an important first step in Sierra Nevada’s efforts to develop a crew transportation system with its Dream Chaser spacecraft. Through NASA’s commercial space initiatives and programs, the agency is providing investments to stimulate the American commercial space industry. Photo credit: NASA/Kim Shiflett

  1. KSC-2012-4605

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. – Space Florida President Frank DiBello, NASA Administrator Charlie Bolden, and Boeing's Vice President and General Manager of Space Exploration John Elbon address the media inside Orbiter Processing Facility-3, or OPF-3, at NASA's Kennedy Space Center in Florida. Bolden took a few dozen media on a road show tour of the center and adjacent Cape Canaveral Air Force Station to show the progress being made for future government and commercial space endeavors that will begin from Florida's Space Coast. Boeing is leasing OPF-3 through an agreement with Space Florida for the manufacturing and assembly of its CST-100 spacecraft, which is under development in collaboration with NASA's Commercial Crew Program. During his tour, Bolden announced that Space Exploration Technologies, or SpaceX, has completed its Space Act Agreement with NASA for Commercial Orbital Transportation Services. SpaceX is scheduled to launch the first of its 12 contracted cargo flights to the space station from Cape Canaveral this October, under NASA’s Commercial Resupply Services Program. Bolden also announced NASA partner Sierra Nevada Corp. has conducted its first milestone under the agency’s recently announced Commercial Crew Integrated Capability CCiCap initiative. The milestone, a program implementation plan review, marks an important first step in Sierra Nevada’s efforts to develop a crew transportation system with its Dream Chaser spacecraft. Through NASA’s commercial space initiatives and programs, the agency is providing investments to stimulate the American commercial space industry. Photo credit: NASA/Kim Shiflett

  2. KSC-2012-4604

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. – Space Florida President Frank DiBello, NASA Administrator Charlie Bolden, and Boeing's Vice President and General Manager of Space Exploration John Elbon address the media inside Orbiter Processing Facility-3, or OPF-3, at NASA's Kennedy Space Center in Florida. Bolden took a few dozen media on a road show tour of the center and adjacent Cape Canaveral Air Force Station to show the progress being made for future government and commercial space endeavors that will begin from Florida's Space Coast. Boeing is leasing OPF-3 through an agreement with Space Florida for the manufacturing and assembly of its CST-100 spacecraft, which is under development in collaboration with NASA's Commercial Crew Program. During his tour, Bolden announced that Space Exploration Technologies, or SpaceX, has completed its Space Act Agreement with NASA for Commercial Orbital Transportation Services. SpaceX is scheduled to launch the first of its 12 contracted cargo flights to the space station from Cape Canaveral this October, under NASA’s Commercial Resupply Services Program. Bolden also announced NASA partner Sierra Nevada Corp. has conducted its first milestone under the agency’s recently announced Commercial Crew Integrated Capability CCiCap initiative. The milestone, a program implementation plan review, marks an important first step in Sierra Nevada’s efforts to develop a crew transportation system with its Dream Chaser spacecraft. Through NASA’s commercial space initiatives and programs, the agency is providing investments to stimulate the American commercial space industry. Photo credit: NASA/Kim Shiflett

  3. KSC-2012-4603

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. – Space Florida President Frank DiBello, NASA Administrator Charlie Bolden, and Boeing's Vice President and General Manager of Space Exploration John Elbon address the media inside Orbiter Processing Facility-3, or OPF-3, at NASA's Kennedy Space Center in Florida. Bolden took a few dozen media on a road show tour of the center and adjacent Cape Canaveral Air Force Station to show the progress being made for future government and commercial space endeavors that will begin from Florida's Space Coast. Boeing is leasing OPF-3 through an agreement with Space Florida for the manufacturing and assembly of its CST-100 spacecraft, which is under development in collaboration with NASA's Commercial Crew Program. During his tour, Bolden announced that Space Exploration Technologies, or SpaceX, has completed its Space Act Agreement with NASA for Commercial Orbital Transportation Services. SpaceX is scheduled to launch the first of its 12 contracted cargo flights to the space station from Cape Canaveral this October, under NASA’s Commercial Resupply Services Program. Bolden also announced NASA partner Sierra Nevada Corp. has conducted its first milestone under the agency’s recently announced Commercial Crew Integrated Capability CCiCap initiative. The milestone, a program implementation plan review, marks an important first step in Sierra Nevada’s efforts to develop a crew transportation system with its Dream Chaser spacecraft. Through NASA’s commercial space initiatives and programs, the agency is providing investments to stimulate the American commercial space industry. Photo credit: NASA/Kim Shiflett

  4. A Survey of Research Performed at NASA Langley Research Center's Impact Dynamics Research Facility

    NASA Technical Reports Server (NTRS)

    Jackson, K. E.; Fasanella, E. L.

    2003-01-01

    The Impact Dynamics Research Facility (IDRF) is a 240-ft-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The facility was originally built in 1963 as a lunar landing simulator, allowing the Apollo astronauts to practice lunar landings under realistic conditions. The IDRF was designated a National Historic Landmark in 1985 based on its significant contributions to the Apollo Program. In 1972, the facility was converted to a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft and structural components in support of the General Aviation (GA) aircraft industry, the US Department of Defense, the rotorcraft industry, and NASA in-house aeronautics and space research programs. The objective of this paper is to describe most of the major full-scale crash test programs that were performed at this unique, world-class facility since 1974. The past research is divided into six sub-topics: the civil GA aircraft test program, transport aircraft test program, military test programs, space test programs, basic research, and crash modeling and simulation.

  5. NASA's commercial research plans and opportunities

    NASA Technical Reports Server (NTRS)

    Arnold, Ray J.

    1992-01-01

    One of the primary goals of the National Aeronautics and Space Administration's (NASA) commercial space development plan is to encourage the development of space-based products and markets, along with the infrastructure and transportation that will support those products and markets. A three phased program has been instituted to carry out this program. The first phase utilizes government grants through the Centers for the Commercial Development of Space (CCDS) for space-related, industry driven research; the development of a technology data base; and the development of commercial space transportation and infrastructure. The second phase includes the development of these technologies by industry for new commercial markets, and features unique industry/government collaborations such as Joint Endeavor Agreements. The final phase will feature technical applications actually brought to the marketplace. The government's role will be to support industry required infrastructure to encourage start-up markets and industries through follow-on development agreements such as the Space Systems Development Agreement. The Office of Commercial Programs has an aggressive flight program underway on the Space Shuttle, suborbital rockets, orbital expendable launch vehicles, and the Commercial Middeck Accommodation Module with SPACEHAB Inc. The Office of Commercial Program's has been allocated 35 percent of the U.S. share of the Space Station Freedom resources for 1997 utilization. A utilization plan has been developed with the Centers for the Commercial Development of Space and has identified eleven materials processing and biotechnology payloads occupying 5 double racks in the pressurized module as well as two payloads external to the module in materials exposure and environment monitoring. The Office of Commercial Programs will rely on the Space Station Freedom to provide the long duration laboratory component for space-based commercial research.

  6. NASA's commercial research plans and opportunities

    NASA Astrophysics Data System (ADS)

    Arnold, Ray J.

    One of the primary goals of the National Aeronautics and Space Administration's (NASA) commercial space development plan is to encourage the development of space-based products and markets, along with the infrastructure and transportation that will support those products and markets. A three phased program has been instituted to carry out this program. The first phase utilizes government grants through the Centers for the Commercial Development of Space (CCDS) for space-related, industry driven research; the development of a technology data base; and the development of commercial space transportation and infrastructure. The second phase includes the development of these technologies by industry for new commercial markets, and features unique industry/government collaborations such as Joint Endeavor Agreements. The final phase will feature technical applications actually brought to the marketplace. The government's role will be to support industry required infrastructure to encourage start-up markets and industries through follow-on development agreements such as the Space Systems Development Agreement. The Office of Commercial Programs has an aggressive flight program underway on the Space Shuttle, suborbital rockets, orbital expendable launch vehicles, and the Commercial Middeck Accommodation Module with SPACEHAB Inc. The Office of Commercial Program's has been allocated 35 percent of the U.S. share of the Space Station Freedom resources for 1997 utilization. A utilization plan has been developed with the Centers for the Commercial Development of Space and has identified eleven materials processing and biotechnology payloads occupying 5 double racks in the pressurized module as well as two payloads external to the module in materials exposure and environment monitoring. The Office of Commercial Programs will rely on the Space Station Freedom to provide the long duration laboratory component for space-based commercial research.

  7. Rocket-Based Combined Cycle Activities in the Advanced Space Transportation Program Office

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Turner, James

    1999-01-01

    NASA's Office of Aero-Space Technology (OAST) has established three major goals, referred to as, "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala. focuses on future space transportation technologies Under the "Access to Space" pillar. The Core Technologies Project, part of ASTP, focuses on the reusable technologies beyond those being pursued by X-33. One of the main activities over the past two and a half years has been on advancing the rocket-based combined cycle (RBCC) technologies. In June of last year, activities for reusable launch vehicle (RLV) airframe and propulsion technologies were initiated. These activities focus primarily on those technologies that support the decision to determine the path this country will take for Space Shuttle and RLV. This year, additional technology efforts in the reusable technologies will be awarded. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion.

  8. KSC-2009-2657

    NASA Image and Video Library

    2009-04-14

    CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the Ares I-X simulated launch abort system, or LAS, (left of center) is being moved to the crew module simulator (center) for assembly. Ares I-X is the flight test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller

  9. Power-by-Wire Development and Demonstration for Subsonic Civil Transport

    NASA Technical Reports Server (NTRS)

    1996-01-01

    During the last decade, three significant studies by the Lockheed Martin Corporation, the NASA Lewis Research Center, and McDonnell Douglas Corporation have clearly shown operational, weight, and cost advantages for commercial subsonic transport aircraft that use all-electric or more-electric technologies in the secondary electric power systems. Even though these studies were completed on different aircraft, used different criteria, and applied a variety of technologies, all three have shown large benefits to the aircraft industry and to the nation's competitive position. The Power-by-Wire (PBW) program is part of the highly reliable Fly-By-Light/Power-By-Wire (FBL/PBW) Technology Program, whose goal is to develop the technology base for confident application of integrated FBL/PBW systems for transport aircraft. This program is part of the NASA aeronautics strategic thrust in subsonic aircraft/national airspace (Thrust 1) to "develop selected high-leverage technologies and explore new means to ensure the competitiveness of U.S. subsonic aircraft and to enhance the safety and productivity of the national aviation system" (The Aeronautics Strategic Plan). Specifically, this program is an initiative under Thrust 1, Key Objective 2, to "develop, in cooperation with U.S. industry, selected high-payoff technologies that can enable significant improvements in aircraft efficiency and cost."

  10. n/a

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The aluminum panels are subjected to confidence panel tests during which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  11. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The panels are subjected to confidence tests in which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  12. n/a

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel that will be used to fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California.

  13. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image, depicts a manufactured aluminum panel, that will be used to fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  14. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel, that will fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  15. Launch Vehicles

    NASA Image and Video Library

    2006-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel, that will fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  16. Launch Vehicles

    NASA Image and Video Library

    2006-08-08

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel that will be used to fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  17. Stir Friction Welding Used in Ares I Upper Stage Fabrication

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The panels are subjected to confidence tests in which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  18. Multi-species ion transport in ICF relevant conditions

    NASA Astrophysics Data System (ADS)

    Vold, Erik; Kagan, Grigory; Simakov, Andrei; Molvig, Kim; Yin, Lin; Albright, Brian

    2017-10-01

    Classical transport theory based on Chapman-Enskog methods provides self consistent approximations for kinetic fluxes of mass, heat and momentum for each ion species in a multi-ion plasma characterized with a small Knudsen number. A numerical method for solving the classic forms of multi-ion transport, self-consistently including heat and species mass fluxes relative to the center of mass, is given in [Kagan-Baalrud, arXiv '16] and similar transport coefficients result from recent derivations [Simakov-Molvig, PoP, '16]. We have implemented a combination of these methods in a standalone test code and in xRage, an adaptive-mesh radiation hydrodynamics code, at LANL. Transport mixing is examined between a DT fuel and a CH capsule shell in ICF conditions. The four ion species develop individual self-similar density profiles under the assumption of P-T equilibrium in 1D and show interesting early time transient pressure and center of mass velocity behavior when P-T equilibrium is not enforced. Some 2D results are explored to better understand the transport mix in combination with convective flow driven by macroscopic fluid instabilities at the fuel-capsule interface. Early transient and some 2D behaviors from the fluid transport are compared to kinetic code results. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Advanced Simulation and Computing (ASC) Program.

  19. Use of MODIS Satellite Images and an Atmospheric Dust Transport Model to Evaluate Juniperus spp. Pollen Phenology and Dispersal

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W. A.; Levetin, E.; Huete, A.; Nickovic, S.; Pejanovic, G. A.; Vukovic, A.; VandeWater, P. K.; Myers, O. B.; Budge, A. M.; hide

    2011-01-01

    Pollen can be transported great distances. Van de Water et. al. reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust. We are modifying the DREAM model to incorporate pollen transport. Pollen release will be estimated based on MODIS derived phenology of Juniperus spp. communities. Ground based observational records of pollen release timing and quantities will be used as verification. This information will be used to support the Centers for Disease Control and Prevention's National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts.

  20. KSC-2014-1951

    NASA Image and Video Library

    2014-04-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, preparations are underway to remove the gear boxes on the C truck of crawler-transporter 2, or CT-2. A section of the treads were removed to allow access to the gear boxes. Work continues in high bay 2 to upgrade CT-2. The modifications are designed to ensure CT-2’s ability to transport launch vehicles currently in development, such as the agency’s Space Launch System, to the launch pad. The Ground Systems Development and Operations Program office at Kennedy is overseeing the upgrades. For more than 45 years the crawler-transporters were used to transport the mobile launcher platform and the Apollo-Saturn V rockets and, later, space shuttles to Launch Pads 39A and B. For more information, visit: http://www.nasa.gov/exploration/systems/ground/crawler-transporter. Photo credit: NASA/Cory Huston

Top