United States Transportation Command (USTRANSCOM) 2008 Annual Report
2008-01-01
enthusiastic about the potential offered by AIT. The DOD currently has the largest active RFID ( aRFID ) system in the world. It provides the ability...to develop the satellite tracking business case for those situations where the aRFID infrastructure is less robust or nonexistent. USTRANSCOM is also
A Human-Centered Approach to Sense and Respond Logistics
2009-04-10
United States Transportation Command (USTRANSCOM), a human-centered research initiative consisting of eight distinct research efforts designed to...27 2.5 Experimental Design ...120 6.3.6 Auction design parameters
2001-01-01
Annual Command Report 13 High Speed Sealift Ship increased performance efficiencies in hull designs and innovative power plants. Promising and proven...long self-propelled, floating dock, the BLUE MARLIN was designed to haul offshore oil rigs and large, heavy cargo not unlike a ship . Whereas the COLE...the disabled ship had been returned to Mississippi for repairs. Concern about terrorism, already high , became a more concerted part of USTRANSCOM
Lessons from DoD Disaster Relief Efforts in the Asia-Pacific Region
2013-01-01
Indonesia, Malaysia , Thailand, and Bangladesh, whose militaries have shown a willingness to engage in HA/DR. • Encourage greater contributions from...Forces Command USG U.S. government USMC U.S. Marine Corps USN U.S. Navy USNS U.S. Naval Ship USTRANSCOM U.S. Transportation Command WFP World Food ...natural disaster types, including earthquakes, fires, tsunamis, floods, volcanoes, landslides, and food shortages. Such involvement is only likely
Energy for the Warfighter: Operational Energy Strategy
2011-05-01
logistics have proven vulnerable to attack in recent conflicts. Strategically, energy is important for economic stability and growth, with nations around...were wounded or killed in action from attacks on fuel and water resupply convoys.11 According to U.S. Transportation Command (USTRANSCOM), ground...convoys were attacked 1,100 times in 2010,12 and that may not count movements of fuel at the tactical level, from forward operating bases to patrol
Delivery Time Variance Reduction in the Military Supply Chain
2010-03-01
Donald Rumsfeld, designated “U.S. Transportation Command as the single Department of Defense Distribution Process Owner (DPO)” (USTRANSCOM, 2004...paragraphs explain OptQuest’s 54 functionality and capabilities as described by Laguna (1997) and Glover et al. (1999) as well as the OptQuest for ARENA...throughout the solution space ( Glover et al., 1999). Heuristics are strategies (in this case algorithms) that use different techniques and available
2016-03-16
whistleblower protection, please see the inside back cover. I N T E G R I T Y E F F I C I E N C Y A C C O U N T A B I L I T Y E X C E L L...USTRANSCOM United States Transportation Command Whistleblower Protection U.S. Department of Defense The Whistleblower Protection Enhancement Act of...2012 requires the Inspector General to designate a Whistleblower Protection Ombudsman to educate agency employees about prohibitions on retaliation
Combatant Commands Informational Series: USCENTCOM, USSOUTHCOM, USSPACECOM
1995-05-01
Command and Staff College at Maxwell AFB in Montgomery, AL. Following ACSC she is assigned to 24 J -5 (Plans and Policy directorate), USTRANSCOM at...Command and Staff College Air University Maxwell AFB, Al. 36112 jflXGQ"®^1^’ Disclaimer The views expressed in this academic research paper are...Space Directory 1989-90. Alexandria, VA: Jane’s Information Group, 1990. London, John R, Ill, LEO On The Cheap. 1992-1993. Maxwell AFB AL: Air
NASA Technical Reports Server (NTRS)
Hochstetler, Ron; Chachad, Girish; Melton, John
2016-01-01
There is an ongoing Government interest in the potential of airships for cargo transport; Conducting vertical or near-vertical airlift of heavy, outsized freight with little or no ground infrastructure is an attractive cargo transport option. USTRANSCOM wanted to understand the principal issues that are holding back commercial development of airship transports. NASA Ames Research Center was commissioned by USTRANSCOM to study the airship industry’s ability to design, develop, and operate cargo airships. Principal study objectives were to identify: (1) Current and near term state of the cargo airship industry; (2) Roadblocks hindering cargo airship development; (3) Steps needed to remove impediments to cargo airship deployment.
The Costs and Benefits of High Speed Vessels Relative to Traditional C-17 Military Airlift
2003-12-01
37 APPENDIX D SWOT Analysis...Port Action Officers Group IBCT Interim Brigade Combat Team LCS Littoral Combat Ship LST Landing ship tank LSV Logistics Support Vessel... SWOT Strength Weakness Opportunity Threat TACOM Tank and Automotive Command TSV Theater Support Vessel USS United States Ship USTRANSCOM
2007-03-22
Chief Logistics Program and Industrial Management Division, USCG 12:00pm Luncheon in Jasmine Hibiscus with Speaker: Mr. Louis Kratz, Vice President...Corporation 12:00pm Luncheon in Jasmine Hibiscus with Speaker: VADM Ann Rondeau, USN, Deputy Commander, USTRANSCOM Presentation of the Edward...outcomes Operational Level Integration • JFC integrates JFC rqmts with national systems • “THIS IS THE ESSENCE OF JOINT LOGISTICS” • Optimize component
DOT National Transportation Integrated Search
2009-07-01
Military units that move equipment and supplies to and from points around the globe rely on USTRANSCOM to provide sea, land, and air shipping services when needed. USTRANSCOM, for 95% of all tonnage moved, contracts for intermodal shipping services f...
The Joint Distribution Process Analysis Center (JDPAC): Background and Current Capability
2007-06-12
Systems Integration and Data Management JDDE Analysis/Global Distribution Performance Assessment Futures/Transformation Analysis Balancing Operational Art ... Science JDPAC “101” USTRANSCOM Future Operations Center SDDC – TEA Army SES (Dual Hat) • Transportability Engineering • Other Title 10
2007-01-01
USTRANSCOM recently completed another successful Joint Logistics Over-the-Shore (JLOTS) exercise in Puerto Quetzal , Guatemala. Planning for the exercise...to track requisitions through the system and enable effective decisions exercise in Puerto Quetzal , Guatemala. • Efficiency. Using wise
2010-10-27
provides global reach through a mix of organic 1 Mr. Craig Koontz , “USTRANSCOM,” Powerpoint...Executive Working Group 20 May 2010." Powerpoint. 20 May 2010. Koontz , Craig. “USTRANSCOM.” Powerpoint. 13 September 2010. Lude, Col Carl
DOT National Transportation Integrated Search
2013-11-01
This report describes the refreshing of the USTRANSCOM Economic Price Adjustment (EPA) factors for use in the USC-7 contract. The three EPA factors developed by Volpe in 2009 are the starting point for this update, and these are the Bunker Fuel Adjus...
Defense AT and L. Volume 38, Number 2
2009-04-01
trust of running the business or doing their job in the hands of employees, and allows a greater degree of autonomy (think Warren Buffet ). This can...Reserve Air Fleet and Voluntary Intermodal Sealift Agreement. Financial accountability for all its missions is extremely important, as the funds for...cutting-edge responsiveness. Your Dollars, Spent Responsibly Establishing Stronger Financial Accountability Alan “Keith” Bentley, USTRANSCOM
Department of Defense Dictionary of Military and Associated Terms
2000-09-01
USSPACECOM USSOCOM USSTRATCOM USTRANSCOM Additional copies should be obtained from the Military Service assigned administrative support responsibility by...and tactics. 2. Internal management of units. short that biological recovery cannot occur. administrative airlift service --The airlift service ACV...internal administration . 5 Joint Pub 1-02 (As Amended through 1 September 2000) administrative control--Direction or exercise service and maintenance areas
Improving Department of Defense Global Distribution Performance Through Network Analysis
2016-06-01
network performance increase. 14. SUBJECT TERMS supply chain metrics, distribution networks, requisition shipping time, strategic distribution database...peace and war” (p. 4). USTRANSCOM Metrics and Analysis Branch defines, develops, tracks, and maintains outcomes- based supply chain metrics to...2014a, p. 8). The Joint Staff defines a TDD standard as the maximum number of days the supply chain can take to deliver requisitioned materiel
The Potential for Additional Channel Airlift in a Low Cargo Demand Theater
2014-06-13
benefit of providing additional channel airlift in the AFRICOM Theater. Assumptions/Limitations The research problem has many variables, so the... salesman USTRANSCOM via AMC has a variety of airlift services it can offer its customers. Annex 3-17 Air Mobility Operations defines airlift as...International, 2008) Given the trouble land based travel offers the alternative for military operations is to route cargo and personnel by air. Air
Code of Federal Regulations, 2010 CFR
2010-10-01
... Business Management Directorate, MSC; or (ii) The Commander, Military Surface Deployment and Distribution... Commander, MSC, through the Contracts and Business Management Directorate, MSC; or (B) The Commander... MANAGEMENT TRANSPORTATION Ocean Transportation by U.S.-Flag Vessels 247.573-1 Ocean transportation incidental...
Container Management: A Necessary Strategy for Improved Efficiencies
2013-03-01
and carrier-owned containers under the USTRANSCOM USC or other applicable contract.21 Re-organize mobile container assessment teams ( MCAT ) with...warrant officer or field grade officers in charge. The MCATs are a great concept, but when a team shows up with a young Captain or Lieutenant and a...and a master sergeant or sergeant major on the MCAT , they will be more effective and better supported. Plenty of quality field grade Logistics Corps
49 CFR 175.33 - Shipping paper and notification of pilot-in-command.
Code of Federal Regulations, 2012 CFR
2012-10-01
...-command. 175.33 Section 175.33 Transportation Other Regulations Relating to Transportation PIPELINE AND...-in-command. (a) When a hazardous material subject to the provisions of this subchapter is carried in...-in-command with accurate and legible written information as early as practicable before departure of...
49 CFR 175.33 - Shipping paper and notification of pilot-in-command.
Code of Federal Regulations, 2014 CFR
2014-10-01
...-command. 175.33 Section 175.33 Transportation Other Regulations Relating to Transportation PIPELINE AND...-in-command. (a) When a hazardous material subject to the provisions of this subchapter is carried in...-in-command with accurate and legible written information as early as practicable before departure of...
49 CFR 175.33 - Shipping paper and notification of pilot-in-command.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-command. 175.33 Section 175.33 Transportation Other Regulations Relating to Transportation PIPELINE AND...-in-command. (a) When a hazardous material subject to the provisions of this subchapter is carried in...-in-command with accurate and legible written information as early as practicable before departure of...
49 CFR 175.33 - Shipping paper and notification of pilot-in-command.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-command. 175.33 Section 175.33 Transportation Other Regulations Relating to Transportation PIPELINE AND...-in-command. (a) When a hazardous material subject to the provisions of this subchapter is carried in...-in-command with accurate and legible written information as early as practicable before departure of...
49 CFR 175.33 - Shipping paper and notification of pilot-in-command.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-command. 175.33 Section 175.33 Transportation Other Regulations Relating to Transportation PIPELINE AND...-in-command. (a) When a hazardous material subject to the provisions of this subchapter is carried in...-in-command with accurate and legible written information as early as practicable before departure of...
32 CFR 643.126 - Transportation licenses.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 4 2010-07-01 2010-07-01 true Transportation licenses. 643.126 Section 643.126... ESTATE Additional Authority of Commanders § 643.126 Transportation licenses. Installation commanders are... free competitive proposals of all available companies or individuals. (b) DD Form 694 (Transportation...
32 CFR 643.126 - Transportation licenses.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 4 2011-07-01 2011-07-01 false Transportation licenses. 643.126 Section 643.126... ESTATE Additional Authority of Commanders § 643.126 Transportation licenses. Installation commanders are... free competitive proposals of all available companies or individuals. (b) DD Form 694 (Transportation...
32 CFR 643.126 - Transportation licenses.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 4 2012-07-01 2011-07-01 true Transportation licenses. 643.126 Section 643.126... ESTATE Additional Authority of Commanders § 643.126 Transportation licenses. Installation commanders are... free competitive proposals of all available companies or individuals. (b) DD Form 694 (Transportation...
32 CFR 643.126 - Transportation licenses.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 4 2013-07-01 2013-07-01 false Transportation licenses. 643.126 Section 643.126... ESTATE Additional Authority of Commanders § 643.126 Transportation licenses. Installation commanders are... free competitive proposals of all available companies or individuals. (b) DD Form 694 (Transportation...
32 CFR 643.126 - Transportation licenses.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 4 2014-07-01 2013-07-01 true Transportation licenses. 643.126 Section 643.126... ESTATE Additional Authority of Commanders § 643.126 Transportation licenses. Installation commanders are... free competitive proposals of all available companies or individuals. (b) DD Form 694 (Transportation...
2009-10-26
for Acquisition, Technology, and Logistics, 30 July 2007). 16 Craig Koontz , ―U.S. Transportation Command,‖ PowerPoint, 23 September 2009, Newport, RI...Support Group. To Lt Col Michael W. Pratt, Naval War College. Memorandum, 30 September 2009. Koontz , Craig. ―U.S. Transportation Command...PowerPoint. 23 September 2009. 22 Koontz , Craig. Contractor/Advisor to CDR U.S. Transportation Command. To Lt Col Michael W. Pratt, 28
Logistics Support for U.S. Perimeter and Portal Monitoring Sites in the Soviet Union
1990-09-01
Interaction of Components. .................. 40 The U.S. National Defense Transportation System.......................52 DTS Description...53 Pros and Cons of Air, Motor Transport 54 Military Airlift Command ............ 56 iii Page Cost/Service Tradeoffs ... .......... . 59 Military...Traffic Management Command . . 59 The Soviet National Transportation System . 61 Transportation and the Economy ....... .. 63 Intermodal Comparison
Targets for Marine Corps Purchasing and Supply Management Initiatives: Spend Analysis Findings
2011-01-01
TRANSPORTATION INTERNATIONAL AFFAIRS LAW AND BUSINESS NATIONAL SECURITY POPULATION AND AGING PUBLIC SAFETY SCIENCE AND TECHNOLOGY TERRORISM AND...States Transportation Command UNICOR Federal Prison Industries, Inc. USMC United States Marine Corps WHS/SIAD Washington Headquarters Services...Services Admin- istration (GSA), and the United States Transportation Command (TRANSCOM), as well as via Military Interdepartmental Purchase Requests
Analysis of Humanitarian Assistance Cargo Transportation
2012-06-01
deliver materiel to people in need in their areas of responsibility. This report analyzes the options available to these commands in seeking...Thus, United States combatant commands increasingly rely on humanitarian assistance cargo transportation programs to deliver material to people in need...United States Navy and Marine Corps personnel and people overseas. PH may also arrange for space-available transportation of NGO material to consigned
14 CFR 417.305 - Command control system testing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...
14 CFR 417.305 - Command control system testing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...
14 CFR 417.305 - Command control system testing.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...
14 CFR 417.305 - Command control system testing.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...
14 CFR 417.305 - Command control system testing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...
1971-02-06
AS14-64-9140 (6 Feb. 1971) --- Astronaut Edgar D. Mitchell, lunar module pilot, participates in the mission's second extravehicular activity (EVA). He is standing near the modularized equipment transporter (MET). While astronauts Alan B. Shepard Jr., commander, and Mitchell descended in the Apollo 14 LM to explore the moon, astronaut Stuart A. Roosa, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.
Command History 1970. Volume 3. Sanitized
1970-01-01
1970 * ~USMACV Command History in prohibited except with the permission of COMUSMACV or higher * authority. 4. This document will be transported ...were stored at the C~ambodian arm~y comnpound at Lovek, northwest of Phnoom Pernh. The munitions avid other supplies were then transported over Carn...now living along the bank of the Mekong River. This Mekong area may fit the transportation , postal- / communication, and signal communication strategy
Mobilization Base Requirements Model (MOBREM) Study. Phases I-V.
1984-08-01
Department Health Services Command Base Mobilization Plan; DARCOM; Army Communications Command (ACC); Military Transportation Manage- ment Command...Chief of Staff. c. The major commands in CONUS are represented on the next line. FORSCOM, DARCOM, TRADOC, and Health Service Commands are the larger...specialized combat support and combat service support training. Tile general support force (GSF) units are non- deployable ’inits supporting tne CONUS
Primer for the Transportable Applications Executive
NASA Technical Reports Server (NTRS)
Carlson, P. A.; Emmanuelli, C. A.; Harris, E. L.; Perkins, D. C.
1984-01-01
The Transportable Applications Executive (TAE), an interactive multipurpose executive that provides commonly required functions for scientific analysis systems, is discussed. The concept of an executive is discussed and the various components of TAE are presented. These include on-line help information, the use of menus or commands to access analysis programs, and TAE command procedures.
Command and Control. Radiological Transportation Emergencies Course. Revision Three.
ERIC Educational Resources Information Center
Westinghouse Electric Corp., Carlsbad, NM.
This 12-section course is designed to explain the responsibilities of an incident commander at the scene of a Waste Isolation Pilot Plant (WIPP) transportation incident. It was created for the U.S. Department of Energy WIPP located near Carlsbad, New Mexico, which receives radioactive shipments. The course has two purposes: (1) to provide first…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-20
...) The Commander, Military Sealift Command (MSC), through the Contracts and Business Management... Contracts and Business Management Directorate, MSC; or (B) The Commander, through the SDDC global e-mailbox... management. Therefore, DoD has not performed a final regulatory flexibility analysis. No comments were...
Military Presence: U.S. Personnel in NATO Europe.
1989-10-06
Transportation 42nd Military 18th Engineer 26th Support Command Police Brigade Group Page.s GAO (.)SIA)-94)4 Militao I’ri-eeii in NATO Eurobpe Chapter 2...575 4th Transportation Command 3 585 0 3,585 7th Army Training Command 1 942 4 772 6,714 Other 0 9 551 9,551 Total 199,398 88,408 287,806 %ote Totals...p)ersolinel in Eiurope to siiI)l)01t Air Logistica SupportFor-ce op~erat ions. ’Ihel thr-ee largest commnands-the Air For-ce Commow- nications
Director, Operational Test and Evaluation FY 2015 Annual Report
2016-01-01
review. For example, where a wind turbine project was found to have the potential to seriously degrade radar cross section testing at the Naval Air...Assessment Plan U.S. Special Operations Command Tempest Wind 2015 Assessment Plan U.S. Transportation Command Turbo Challenge 2015 Final Assessment...U.S. Air Forces Central Command 2015 May 2015 U.S. Special Operations Command-Pacific Tempest Wind 2014 May 2015 North American Aerospace Defense
ERIC Educational Resources Information Center
Bloomquist, Carroll R.
The TRANSCOM (Transportation Command) Regulating Command and Control Evacuation System (TRAC2ES), which applies state-of-the-art technology to manage global medical regulating (matching patients to clinical availability) and medical evacuation processes, will be installed at all Department of Defense medical locations globally. A combination of…
NASA Technical Reports Server (NTRS)
Campbell, Stefan F.; Kaneshige, John T.
2010-01-01
Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-24
... required without notice and comment a pilot serving as a second in command in part 135 commuter operations to have an airline transport pilot certificate and an aircraft type rating, and a pilot in command in... pilot certificate requirements for a second in command (SIC) in part 121 operations. Specifically, Sec...
Soyuz Spacecraft Transported to Launch Pad
NASA Technical Reports Server (NTRS)
2003-01-01
The Soyuz TMA-3 spacecraft and its booster rocket (front view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: 'NASA/Bill Ingalls'
Soyuz Spacecraft Transported to Launch Pad
NASA Technical Reports Server (NTRS)
2003-01-01
The Soyuz TMA-3 spacecraft and its booster rocket (rear view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: 'NASA/Bill Ingalls'
Air Force KC-X Tanker Aircraft Program: Background and Issues for Congress
2010-03-12
obtained by CRS. 16 Gopal Ratnam and Alison Fitzgerald , “Northrop Declines Tanker Bid on...1-50. 19 Statement of General Duncan J. McNabb, USAF, Commander, United States Transportation Command, Before the House Armed Services Air & Land
77 FR 66956 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-08
...://www.regulations.gov . Follow the instructions for submitting comments. Mail: Federal Docket Management... Transportation Command, Command Change Management, ATTN: Diana Roach, 508 Scott Drive, Scott Air Force Base, IL... more effective in providing global mobility solutions to support customer requirements in peace and war...
Acquisition management of the Global Transportation Network
DOT National Transportation Integrated Search
2001-08-02
This report discusses the acquisition management of the Global transportation Network by the U.S. Transportation Command. This report is one in a series of audit reports addressing DoD acquisition management of information technology systems. The Glo...
NASA Technical Reports Server (NTRS)
Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.
1993-01-01
The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.
International Space Station (ISS)
2003-10-16
The Soyuz TMA-3 spacecraft and its booster rocket (rear view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: "NASA/Bill Ingalls"
International Space Station (ISS)
2003-10-16
The Soyuz TMA-3 spacecraft and its booster rocket (front view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: "NASA/Bill Ingalls"
How the Department of Transportation Supports the DOD
2016-03-09
launch rocket system onto a railroad car in Avon Park , Florida, in prepa- ration to transport the system to Fort Stewart, Georgia, for annual...graduate of the Transportation Officer Basic Course, the Combined Logistics Captains Ca- reer Course, and the Command and General Staff Officers
Commanding the Direction of Passive Whole-Body Rotations Facilitates Egocentric Spatial Updating
ERIC Educational Resources Information Center
Fery, Yves-Andre; Magnac, Richard; Israel, Isabelle
2004-01-01
In conditions of slow passive transport without vision, even tenuous inertial signals from semi-circular canals and the haptic-kinaesthetic system should provide information about changes relative to the environment provided that it is possible to command the direction of the body's movements voluntarily. Without such control, spatial updating…
2016-02-15
25 Bibliography Bowie, Christopher, Fred Frostic, Kevin Lewis, John Lunch, David Ochmanek, and Philip Proppe. The New Calculus : Analyzing...a critical analysis. Carlisle, Pennsylvania: US Army War College, class 2012. Stewart , Rory. The Place in Between. Orlando, FL: Harcourt Books
NASA Astrophysics Data System (ADS)
Taraba, M.; Fauland, H.; Turetschek, T.; Stumptner, W.; Kudielka, V.; Scheer, D.; Sattler, B.; Fritz, A.; Stingl, B.; Fuchs, H.; Gubo, B.; Hettrich, S.; Hirtl, A.; Unger, E.; Soucek, A.; Frischauf, N.; Grömer, G.
2014-12-01
The Passepartout sounding balloon transportation system for low-mass (< 1200 g) experiments or hardware for validation to an altitude of 35 km is described. We present the general flight configuration, set-up of the flight control system, environmental and position sensors, power system, buoyancy considerations as well as the ground control infrastructure including recovery operations. In the telemetry and command module the integrated airborne computer is able to control the experiment, transmit telemetry and environmental data and allows for a duplex communication to a control centre for tele-commanding. The experiment module is mounted below the telemetry and command module and can either work as a standalone system or be controlled by the airborne computer. This spacing between experiment- and control unit allows for a high flexibility in the experiment design. After a parachute landing, the on-board satellite based recovery subsystems allow for a rapid tracking and recovery of the telemetry and command module and the experiment. We discuss flight data and lessons learned from two representative flights with research payloads.
Kaliki, Rahul R; Davoodi, Rahman; Loeb, Gerald E
2013-03-01
C5/C6 tetraplegic patients and transhumeral amputees may be able to use voluntary shoulder motion as command signals for a functional electrical stimulation system or transhumeral prosthesis. Stereotyped relationships, termed "postural synergies," among the shoulder, forearm, and wrist joints emerge during goal-oriented reaching and transport movements as performed by able-bodied subjects. Thus, the posture of the shoulder can potentially be used to infer the desired posture of the elbow and forearm joints during reaching and transporting movements. We investigated how well able-bodied subjects could learn to use a noninvasive command scheme based on inferences from these postural synergies to control a simulated transhumeral prosthesis in a virtual reality task. We compared the performance of subjects using the inferential command scheme (ICS) with subjects operating the simulated prosthesis in virtual reality according to complete motion tracking of their actual arm and hand movements. Initially, subjects performed poorly with the ICS but improved rapidly with modest amounts of practice, eventually achieving performance only slightly less than subjects using complete motion tracking. Thus, inferring the desired movement of distal joints from voluntary shoulder movements appears to be an intuitive and noninvasive approach for obtaining command signals for prostheses to restore reaching and grasping functions.
48 CFR 247.573-2 - Direct purchase of ocean transportation services.
Code of Federal Regulations, 2010 CFR
2010-10-01
... determinations— (A) For voyage and time charters, through the Contracts and Business Management Directorate, MSC... Contracts and Business Management Directorate, MSC; or (B) The Commander, SDDC, through the Principal... REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACT MANAGEMENT TRANSPORTATION Ocean Transportation by U.S.-Flag...
Multi-Modal Transportation System Simulation
DOT National Transportation Integrated Search
1971-01-01
THE PRESENT STATUS OF A LABORATORY BEING DEVELOPED FOR REAL-TIME SIMULATION OF COMMAND AND CONTROL FUNCTIONS IN TRANSPORTATION SYSTEMS IS DISCUSSED. DETAILS ARE GIVEN ON THE SIMULATION MODELS AND ON PROGRAMMING TECHNIQUES USED IN DEFINING AND EVALUAT...
Soyuz TMA-3 and booster rocket transport and raise on launch pad at Baikonur Cosmodrome
2003-10-15
JSC2003-E-59146 (16 October 2003) --- The Soyuz TMA-3 spacecraft and its booster rocket were transported on a rail car to its launch pad and raised to its vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003, in preparation for liftoff October 18 to carry astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer; cosmonaut Alexander Kaleri, Soyuz commander and flight engineer, representing Rosaviakosmos; and European Space Agency (ESA) astronaut Pedro Duque of Spain to the International Space Station (ISS). Photo Credit: "NASA/Bill Ingalls"
Soyuz TMA-3 and booster rocket transport and raise on launch pad at Baikonur Cosmodrome
2003-10-15
JSC2003-E-59150 (16 October 2003) --- The Soyuz TMA-3 spacecraft and its booster rocket were transported on a rail car to its launch pad and raised to its vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003, in preparation for liftoff October 18 to carry astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer; cosmonaut Alexander Kaleri, Soyuz commander and flight engineer, representing Rosaviakosmos; and European Space Agency (ESA) astronaut Pedro Duque of Spain to the International Space Station (ISS). Photo Credit: "NASA/Bill Ingalls"
Soyuz TMA-3 and booster rocket transport and raise on launch pad at Baikonur Cosmodrome
2003-10-15
JSC2003-E-59158 (16 October 2003) --- The Soyuz TMA-3 spacecraft and its booster rocket were transported on a rail car to its launch pad and raised to its vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003, in preparation for liftoff October 18 to carry astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer; cosmonaut Alexander Kaleri, Soyuz commander and flight engineer, representing Rosaviakosmos; and European Space Agency (ESA) astronaut Pedro Duque of Spain to the International Space Station (ISS). Photo Credit: "NASA/Bill Ingalls"
An improved lateral control wheel steering law for the Transport Systems Research Vehicle (TSRV)
NASA Technical Reports Server (NTRS)
Ragsdale, W. A.
1992-01-01
A lateral control wheel steering law with improved performance was developed for the Transport Systems Research Vehicle (TSRV) simulation and used in the Microwave Landing System research project. The control law converted rotational hand controller inputs into roll rate commands, manipulated ailerons, spoilers, and the rudder to achieve the desired roll rates. The system included automatic turn coordination, track angle hold, and autopilot/autoland modes. The resulting control law produced faster roll rates (15 degrees/sec), quicker response to command reversals, and safer bank angle limits, while using a more concise program code.
Senate Hearing on Assured Access to Space
2014-07-16
General William Sherlton, Commander of the United States Air Force Space Command, answers a question during testimony in front of the Senate Subcommittee on Strategic Forces and Senate Committee on Commerce, Science, and Transportation on Wednesday, July 16, 2014, at the Hart Senate Office Building in Washington, DC. The Senate hearing focused on assured access to space.
Senate Hearing on Assured Access to Space
2014-07-16
General William Sherlton, Commander of the United States Air Force Space Command, left; answers a question during testimony in front of the Senate Subcommittee on Strategic Forces and Senate Committee on Commerce, Science, and Transportation on Wednesday, July 16, 2014, at the Hart Senate Office Building in Washington, DC. The Senate hearing focused on assured access to space.
Senate Hearing on Assured Access to Space
2014-07-16
General William Shelton, Commander of the United States Air Force Space Command, delivers his opening statement during testimony in front of the Senate Subcommittee on Strategic Forces and Senate Committee on Commerce, Science, and Transportation on Wednesday, July 16, 2014, at the Hart Senate Office Building in Washington, DC. The Senate hearing focused on assured access to space.
Senate Hearing on Assured Access to Space
2014-07-16
General William Shelton, Commander of the United States Air Force Space Command, second from right, answers a question during testimony in front of the Senate Subcommittee on Strategic Forces and Senate Committee on Commerce, Science, and Transportation on Wednesday, July 16, 2014, at the Hart Senate Office Building in Washington, DC. The Senate hearing focused on assured access to space.
Expedition Three Commander Culbertson and STS-105 Commander Horowitz in the White Room
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, have placed the mission sign at the entrance into Space Shuttle Discovery. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
Expedition Three Commander Culbertson and STS-105 Commander Horowitz in the White Room
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, hold the sign for their mission. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
Apollo 14 crewmembers sealed inside a Mobile Quarantine Facility
1971-02-12
S71-19508 (12 Feb. 1971) --- Separated by aluminum and glass of their Mobile Quarantine Facility (MQF), the Apollo 14 crew members visit with their families and friends upon arriving at Ellington Air Force Base in the early morning hours of Feb. 12, 1971. Looking through the MQF window are astronauts Alan B. Shepard Jr. (left), commander; Stuart A. Roosa (right), command module pilot; and Edgar D. Mitchell, lunar module pilot. The crew men were brought to Houston aboard a C-141 transport plane from Pago Pago, American Samoa. The USS New Orleans had transported the crew to American Samoa from the recovery site in the South Pacific.
49 CFR 175.310 - Transportation of flammable liquid fuel; aircraft only means of transportation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ventilation. (4) Each area or compartment in which the fuel is loaded is suitably ventilated to prevent the... the ground. (6) Before each flight, the pilot-in-command: (i) Prohibits smoking, lighting matches, the...
Defense transportation : more reliable information key to managing airlift services more efficiently
DOT National Transportation Integrated Search
2000-02-01
The Department of Defense's (DOD) guidance provides that the Air Mobility Command's airlift costs associated with its peacetime mission (operations and maintenance) are to be funded through a transportation working capital fund. Under the working cap...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Department of Defense Commercial Air Transportation Quality and Safety Review Program, charges the Commander... collectively referred to as “air carriers”) providing air transportation and operational support services to... Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT DEPARTMENT OF DEFENSE COMMERCIAL AIR...
Macintosh II based space Telemetry and Command (MacTac) system
NASA Technical Reports Server (NTRS)
Dominy, Carol T.; Chesney, James R.; Collins, Aaron S.; Kay, W. K.
1991-01-01
The general architecture and the principal functions of the Macintosh II based Telemetry and Command system, presently under development, are described, with attention given to custom telemetry cards, input/output interfaces, and the icon driven user interface. The MacTac is a low-cost, transportable, easy to use, compact system designed to meet the requirements specified by the Consultative Committeee for Space Data Systems while remaining flexible enough to support a wide variety of other user specific telemetry processing requirements, such as TDM data. In addition, the MacTac can accept or generate forward data (such as spacecraft commands), calculate and append a Polynomial Check Code, and output these data to NASCOM to provide full Telemetry and Command capability.
Mature data transport and command management services for the Space Station
NASA Technical Reports Server (NTRS)
Carper, R. D.
1986-01-01
The duplex space/ground/space data services for the Space Station are described. The need to separate the uplink data service functions from the command functions is discussed. Command management is a process shared by an operation control center and a command management system and consists of four functions: (1) uplink data communications, (2) management of the on-board computer, (3) flight resource allocation and management, and (4) real command management. The new data service capabilities provided by microprocessors, ground and flight nodes, and closed loop and open loop capabilities are studied. The need for and functions of a flight resource allocation management service are examined. The system is designed so only users can access the system; the problems encountered with open loop uplink access are analyzed. The procedures for delivery of operational, verification, computer, and surveillance and monitoring data directly to users are reviewed.
Comparison of two head-up displays in simulated standard and noise abatement night visual approaches
NASA Technical Reports Server (NTRS)
Cronn, F.; Palmer, E. A., III
1975-01-01
Situation and command head-up displays were evaluated for both standard and two segment noise abatement night visual approaches in a fixed base simulation of a DC-8 transport aircraft. The situation display provided glide slope and pitch attitude information. The command display provided glide slope information and flight path commands to capture a 3 deg glide slope. Landing approaches were flown in both zero wind and wind shear conditions. For both standard and noise abatement approaches, the situation display provided greater glidepath accuracy in the initial phase of the landing approaches, whereas the command display was more effective in the final approach phase. Glidepath accuracy was greater for the standard approaches than for the noise abatement approaches in all phases of the landing approach. Most of the pilots preferred the command display and the standard approach. Substantial agreement was found between each pilot's judgment of his performance and his actual performance.
Close up view of the Commander's Seat on the Flight ...
Close up view of the Commander's Seat on the Flight Deck of the Orbiter Discovery. It appears the Orbiter is in the roll out / launch pad configuration. A protective cover is over the Rotational Hand Controller to protect it during the commander's ingress. Most notable in this view are the Speed Brake/Thrust Controller in the center right in this view and the Translational Hand Controller in the center top of the view. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Improved Ribbon Bridge (IRB) Prototype Transporter-Operational Test
1992-05-01
Department of Defense I Commander US Army Aberdeen Proving Ground I Director, Tochnical Information ATTN, STEAP.MT-U (GE Branch) Defense Advanced... Proving Ground . MD 21005-5071 Defense Nuclear Agency ATTN-. TnL IDirector Washingtm, DC 20305 US Ballistics Research Laboratory ATIN: AMXBR-OD-ST (STINFO...Technology Laboratory Aberden Proving GOfouind MD 21005 Waerown. MA 02172.0001 DLstdbutlon-1 Commmder 1 Commander US Army Electrnics Reswtl and
United States Marine Corps Motor Transport Mechanic-to-Equipment Ratio
time motor transport equipment remains in maintenance at the organizational command level. This thesis uses a discrete event simulation model of the...applied to a single experiment that allows for assessment of risk of not achieving the objective. Inter-arrival time, processing time, work schedule
NASA Technical Reports Server (NTRS)
Carek, David Andrew
2003-01-01
This presentation covers the design of a command and control architecture developed by the author for the Combustion Module-2 microgravity experiment, which flew aboard the STS-107 Shuttle mission, The design was implemented to satisfy a hybrid network that utilized TCP/IP for both the onboard segment and ground segment, with an intermediary unreliable transport for the space to ground segment. With the infusion of Internet networking technologies into Space Shuttle, Space Station, and spacecraft avionics systems, comes the need for robust methodologies for ground command and control. Considerations of high bit error links, and unreliable transport over intermittent links must be considered in such systems. Internet protocols applied to these systems, coupled with the appropriate application layer protections, can provide adequate communication architectures for command and control. However, there are inherent limitations and additional complexities added by the use of Internet protocols that must be considered during the design. This presentation will discuss the rationale for the: framework and protocol algorithms developed by the author. A summary of design considerations, implantation issues, and learned lessons will be will be presented. A summary of mission results using this communications architecture will be presented. Additionally, areas of further needed investigation will be identified.
Experimental Validation: Subscale Aircraft Ground Facilities and Integrated Test Capability
NASA Technical Reports Server (NTRS)
Bailey, Roger M.; Hostetler, Robert W., Jr.; Barnes, Kevin N.; Belcastro, Celeste M.; Belcastro, Christine M.
2005-01-01
Experimental testing is an important aspect of validating complex integrated safety critical aircraft technologies. The Airborne Subscale Transport Aircraft Research (AirSTAR) Testbed is being developed at NASA Langley to validate technologies under conditions that cannot be flight validated with full-scale vehicles. The AirSTAR capability comprises a series of flying sub-scale models, associated ground-support equipment, and a base research station at NASA Langley. The subscale model capability utilizes a generic 5.5% scaled transport class vehicle known as the Generic Transport Model (GTM). The AirSTAR Ground Facilities encompass the hardware and software infrastructure necessary to provide comprehensive support services for the GTM testbed. The ground facilities support remote piloting of the GTM aircraft, and include all subsystems required for data/video telemetry, experimental flight control algorithm implementation and evaluation, GTM simulation, data recording/archiving, and audio communications. The ground facilities include a self-contained, motorized vehicle serving as a mobile research command/operations center, capable of deployment to remote sites when conducting GTM flight experiments. The ground facilities also include a laboratory based at NASA LaRC providing near identical capabilities as the mobile command/operations center, as well as the capability to receive data/video/audio from, and send data/audio to the mobile command/operations center during GTM flight experiments.
NASA Technical Reports Server (NTRS)
Atencio, Adolph, Jr.; Banda, Carolyn
1998-01-01
Tiltrotor aircraft combine the speed and range of a turboprop performance with the ability to take off and land in a vertical mode like a helicopter. These aircraft will transport passengers from city center to city center and from satellite airports to major hub airports to make connections to long range travel. The Short Haul Civil Tiltrotor (SH(CT)) being studied by NASA is a concept 40 passenger civil tiltrotor (CTR) transport. The Man-machine Integration Design and Analysis System (MIDAS) was used to evaluate human performance in terms of crew procedures and pilot workload for a simulated 40 passenger Civil Tiltrotor Transport on a steep approach to a vertiport. The scenario for the simulation was a normal approach to the vertiport that is interrupted by a commanded go-around at the landing decision point. The simulation contrasted an automated discrete nacelle mode control with a fully manual nacelle control mode for the go-around. The MIDAS simulation showed that the pilot task loading during approach and for the commanded go-around is high and that pilot workload is near capacity throughout. The go-around in manual nacelle mode was most demanding, resulting in additional time requirements to complete necessary tasks.
U.S. Air Force Application of a U.S. Army Transportation Capability Assessment Methodology.
1987-09-01
Management Command Transportation Engineering Agency, Newport News VA, July 1986. 22. Lambert, Douglas M. and James R. Stock. Strategic Physical...Distribution Management. Homewood IL: Richard D. Irwin, Inc., 1982. 23. Mabe , Capt Richard D. and Lt Col Paul A. Reid. Syllabus and Notetaking Package LOG
Transportation Challenges in the Hampton Roads, VA, Region
2012-06-01
ORDERS ( PPO ) ...........................................................11 J. HIGHWAYS FOR NATIONAL DEFENSE (HND) ...................................12 K... PPO Port Planning Orders RND Railroads for National Defense SDDCTEA Surface Deployment and Distribution Command Transportation Engineering...important Continental United States (CONUS) port infrastructure in both peacetime and wartime. Strategic Seaports and Port Planning Orders ( PPOs ) were
A Southern Command Military Campaign against Drug Operations
1989-05-01
Peruvian and Bolivian cocaine is refined in Columbia and transported to the US. Although, some of the cocaine is also transported through Brazil and...effects of cocaine are unpredictable. There have been cases of a single use bringing death. In 1986 cocaine poisoning took the life of football star Don
Army Networks: Opportunities Exist to Better Utilize Results from Network Integration Evaluations
2013-08-01
monitor operations; a touch screen-based mission command planning tool; and an antenna mast . The Army will field only one of these systems in capability...Office JTRS Joint Tactical Radio System NIE Network Integration Evaluation OSD Office of the Secretary of Defense SUE System under Evaluation...command systems . A robust transport layer capable of delivering voice, data, imagery, and video to the tactical edge (i.e., the forward battle lines
NASA Technical Reports Server (NTRS)
Azzano, Christopher P.
1992-01-01
Control of a large jet transport aircraft without the use of conventional control surfaces was studied. Engine commands were used to attempt to recreate the forces and moments typically provided by the elevator, ailerons, and rudder. Necessary conditions for aircraft controllability were developed pertaining to aircraft configuration such as the number of engines and engine placement. An optimal linear quadratic regulator controller was developed for the Boeing 707-720, in particular, for regulation of its natural dynamic modes. The design used a method of assigning relative weights to the natural modes, i.e., phugoid and dutch roll, for a more intuitive selection of the cost function. A prototype pilot command interface was then integrated into the loop based on pseudorate command of both pitch and roll. Closed loop dynamics were evaluated first with a batch linear simulation and then with a real time high fidelity piloted simulation. The NASA research pilots assisted in evaluation of closed loop handling qualities for typical cruise and landing tasks. Recommendations for improvement on this preliminary study of optimal propulsion only flight control are provided.
Flight test experience and controlled impact of a remotely piloted jet transport aircraft
NASA Technical Reports Server (NTRS)
Horton, Timothy W.; Kempel, Robert W.
1988-01-01
The Dryden Flight Research Center Facility of NASA Ames Research Center (Ames-Dryden) and the FAA conducted the controlled impact demonstration (CID) program using a large, four-engine, remotely piloted jet transport airplane. Closed-loop primary flight was controlled through the existing onboard PB-20D autopilot which had been modified for the CID program. Uplink commands were sent from a ground-based cockpit and digital computer in conjunction with an up-down telemetry link. These uplink commands were received aboard the airplane and transferred through uplink interface systems to the modified PB-20D autopilot. Both proportional and discrete commands were produced by the ground system. Prior to flight tests, extensive simulation was conducted during the development of ground-based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems; however, piloted flight tests were the primary method and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and systems required to accomplish the remotely piloted mission are discussed.
Gulf War Air Power Survey. Volume 3. Logistics and Support
1993-01-01
miss casualty ground war would have been transported speedily to the most appropri- ate medical facilities. Command and control of airevac missions de ...maintenance of the force, and its transportation necessary for war. The second report, Sup. port, concerns itself with the air base and airbase operations... transportation , supply, maintenance, and the myriad aspects of logistics planning and coordination. Mr. Richard Gunkel was the Logistics, Support, and Space
Apollo 14 Mission image - View of the ALSEP Station
1971-02-05
AS14-67-9361 (5 Feb. 1971) --- A close-up view of two components of the Apollo lunar surface experiments package (ALSEP) which the Apollo 14 astronauts deployed on the moon during their first extravehicular activity (EVA). In the center background is the ALSEP's central station (CS); and in the foreground is the mortar package assembly of the ALSEP's active seismic experiment (ASE). The modularized equipment transporter (MET) can be seen in the right background. While astronauts Alan B. Shepard Jr., commander, and Edgar D. Mitchell, lunar module pilot, descended in the Lunar Module (LM) to explore the moon, astronaut Stuart A. Roosa, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.
Aeromedical Transport Operations Using Helicopters during the 2016 Kumamoto Earthquake in Japan.
Motomura, Tomokazu; Hirabayashi, Atsushi; Matsumoto, Hisashi; Yamauchi, Nobutaka; Nakamura, Mitsunobu; Machida, Hiroshi; Fujizuka, Kenji; Otsuka, Naomi; Satoh, Tomoko; Anan, Hideaki; Kondo, Hisayoshi; Koido, Yuichi
2018-01-01
More than 6,000 people died in the Great Hanshin (Kobe) Earthquake in 1995, and it was later reported that there were around 500 preventable trauma deaths. In response, the Japanese government developed the helicopter emergency medical service in 2001, known in Japan as the "Doctor-Heli" (DH), which had 46 DHs and 2 private medical helicopters as of April 2016. DHs transport physicians and nurses to provide pre-hospital medical care at the scene of medical emergencies. Following lessons learned in the Great East Japan Earthquake in 2011, a research group in the Ministry of Health, Labour and Welfare developed a command and control system for the DH fleet as well as the Disaster Relief Aircraft Management System Network (D-NET), which uses a satellite communications network to monitor the location of the fleet and weather in real-time during disasters. During the Kumamoto Earthquake disaster in April 2016, 75 patients were transported by 13 DHs and 1 private medical helicopter in the first 5 days. When medical demand for the DHs exceeded supply, 5 patients, 8 patients, and 1 patient were transported by Self-Defense Force, Fire Department, and Coast Guard helicopters, respectively. Of the 89 patients who were transported, 30 (34%) had trauma, 3 (3%) had pulmonary embolisms caused by sleeping in vehicles, and 17 (19%) were pregnant women or newborns. This was the first time that the command and control system for aeromedical transport and D-NET, established after the Great East Japan Earthquake in 2011, were operated in an actual large-scale disaster. Aeromedical transport by DHs and helicopters belonging to several other organizations was accomplished smoothly because the commanders of the involved organizations could communicate directly with each other in person within the Aviation Coordination Section of the prefectural government office. However, ongoing challenges in the detailed operating methods for aeromedical transport were highlighted and include improving shared knowledge and training across the organizational framework. These are particularly important issues to address given the Nankai Trough and Tokyo inland earthquakes that are predicted for the near future in Japan.
Brigade Intelligence Operations. Implications for the Nonlinear Battlefield
1990-11-21
Intellingence School of Advanced Military Studies United States Army Command and General Staff College Fort Leavenworth2 Kansas~~First Term 90-91 / Approved...has few equipment needs. The section has an M577 staff track and a wheeled vehicle for transportion and communications. It acts as the net control... vehicle for operating on the move or for monitoring the brigade command net. There is no intelligence specific equipment assigned to the S2 section
Air Force KC-X Tanker Aircraft Program: Background and Issues for Congress
2010-07-15
18 Gopal Ratnam and Alison Fitzgerald , “Northrop Declines Tanker Bid on ‘Financial Burdens’ (Update2),” Bloomberg.com, December 1, 2009...May 2009, p. 1-50. 21 Statement of General Duncan J. McNabb, USAF, Commander, United States Transportation Command, Before the House Armed Services...the Duncan Hunter National Defense Authorization Act for Fiscal Year 2009 (P.L. 110-417; 122 Stat. 4561) not later than 60 days after the date of the
Joint Force Quarterly. Issue 73, 2nd Quarter 2014
2014-04-01
hyperloop ,” a partial vacuum tube that carries passengers in General William M. Fraser III, USAF, is Commander of U.S. Transportation Command. Colonel...http://en.wikipedia.org/wiki/Shanghai_ Maglev_Train>; “Falcon 9,” available at <www. spacex.com/falcon9>. 3 See “ Hyperloop ,” available at <http...spacex.com/ hyperloop >. 4 Colin S. Gray, Modern Strategy (Oxford: Oxford University Press, 1999), 40. 5 Gray, Fighting Talk, 78, 80. Mankind does not live
NASA Technical Reports Server (NTRS)
Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.
1988-01-01
The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).
1993-01-01
liaison officers at the other’s equivalent major schools-armor, aviation, air defense, field artillery, engineer , infantry, signal, ordnance... Engineer Center and Fort Belvoir, the Infantry Center and Fort Benning, the Air Defense Center and Fort Bliss, the Transportation Center and Fort...administered by the commander of the Araor Center and Fort Knox. TRADOC had 16 Army branch schools. Eight schools--the Air Defense, Armor, Engineer , Field
Evolutionary Telemetry and Command Processor (TCP) architecture
NASA Technical Reports Server (NTRS)
Schneider, John R.
1992-01-01
A low cost, modular, high performance, and compact Telemetry and Command Processor (TCP) is being built as the foundation of command and data handling subsystems for the next generation of satellites. The TCP product line will support command and telemetry requirements for small to large spacecraft and from low to high rate data transmission. It is compatible with the latest TDRSS, STDN and SGLS transponders and provides CCSDS protocol communications in addition to standard TDM formats. Its high performance computer provides computing resources for hosted flight software. Layered and modular software provides common services using standardized interfaces to applications thereby enhancing software re-use, transportability, and interoperability. The TCP architecture is based on existing standards, distributed networking, distributed and open system computing, and packet technology. The first TCP application is planned for the 94 SDIO SPAS 3 mission. The architecture enhances rapid tailoring of functions thereby reducing costs and schedules developed for individual spacecraft missions.
Robot Task Commander with Extensible Programming Environment
NASA Technical Reports Server (NTRS)
Hart, Stephen W (Inventor); Wightman, Brian J (Inventor); Dinh, Duy Paul (Inventor); Yamokoski, John D. (Inventor); Gooding, Dustin R (Inventor)
2014-01-01
A system for developing distributed robot application-level software includes a robot having an associated control module which controls motion of the robot in response to a commanded task, and a robot task commander (RTC) in networked communication with the control module over a network transport layer (NTL). The RTC includes a script engine(s) and a GUI, with a processor and a centralized library of library blocks constructed from an interpretive computer programming code and having input and output connections. The GUI provides access to a Visual Programming Language (VPL) environment and a text editor. In executing a method, the VPL is opened, a task for the robot is built from the code library blocks, and data is assigned to input and output connections identifying input and output data for each block. A task sequence(s) is sent to the control module(s) over the NTL to command execution of the task.
2011-06-01
B. J ., & Bardi , E. J . (2011). Transportation: A Supply Chain Perspective, Seventh Edition, South-Western Cengage Learning, Mason, OH. 4...Strong Intermodal Rail Endorsement. Journal of Commerce. Retrieved March 1, 2011, from ABI/INFORM Research. 3. Coyle, J . J ., Novack, R. A ., Gibson...mode choice decisions: a content analysis. Transportation Research Part E 36. 41-53. 6. DeWitt, W., Clinger, J ., Intermodal Freight Transportation
2011-05-19
Throughout that spring , he Goldsboro, on the Wilmington and Weldon Railroad, the main north-south transportation artery between Virginia and points south... spring of 1862, but Davis did not replace Lee after he took command of the Army of Northern Virginia. Braxton Bragg served as military advisor to...and publications. When called upon in the spring of 1861, Hill brought his cadets to Raleigh to start training recruits for the First North Carolina
Ground level view of Apollo 14 space vehicle leaving VAB for launch pad
1970-11-09
S70-54121 (9 Nov. 1970) --- A ground level view at Launch Complex 39, Kennedy Space Center (KSC), showing the Apollo 14 (Spacecraft 110/Lunar Module 8/Saturn 509) space vehicle leaving the Vehicle Assembly Building (VAB). The Saturn V stack and its mobile launch tower, atop a huge crawler-transporter, were rolled out to Pad A. The Apollo 14 crewmen will be astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot.
Prelaunch - Apollo 10 (rollout)
1969-03-11
S69-27915 (11 March 1969) --- Aerial view at Launch Complex 39, Kennedy Space Center, showing a close-up of the 363-feet tall Apollo 10 (Spacecraft 106/Lunar Module 4/Saturn 505) space vehicle on its way to Pad B. The Saturn V stack and its mobile launch tower are atop a huge crawler-transporter. The Apollo 10 flight is scheduled as a lunar orbit mission. The Apollo 10 crew will be astronauts Thomas P. Stafford, commander; John W. Young, command module pilot; and Eugene A. Cernan, lunar module pilot.
Open Systems Architecture for Command, Control and Communications
1991-07-01
CONTENTS SECTION TITLE PAGE I. EXECUTIVE SUMMARY 5 II. TERMS OF REFERENCE 7 III. PANEL MEMBERSHIP 9 IV. INTRODUCTION 11 V. INDUSTRIAL REVOLUTION 19 VI...INTRODUCTION 18 19 V. INDUSTRIAL REVOLUTION 20 21 Initial manifestations of computer and communications standards emerged in the early seventies, largely...SYSTEMS INDUSTRIAL REVOLUTION Application Presentation Session Transport Internet Data Link Physical Application Presentation Session Transport
View of Apollo 15 space vehicle on way from VAB to Pad A, Launch Complex 39
1971-05-11
S71-33781 (11 May 1971) --- High angle view showing the Apollo 15 (Spacecraft 112/Lunar Module 10/Saturn 510) space vehicle on the way from the Vehicle Assembly Building (VAB) to Pad A, Launch Complex 39, Kennedy Space Center (KSC). The Saturn V stack and its mobile launch tower are atop a huge crawler-transporter. Apollo 15 is scheduled as the fourth manned lunar landing mission by the National Aeronautics and Space Administration (NASA). The crew men will be astronauts David R. Scott, commander; Alfred M. Worden, command module pilot; and James B. Irwin, lunar module pilot. While astronauts Scott and Irwin descend in the Lunar Module (LM) to explore the moon, astronaut Worden will remain with the Command and Service Modules (CSM) in lunar orbit.
High angle view of Apollo 14 space vehicle on way to Pad A
1970-11-09
S70-54127 (9 Nov. 1970) --- A high-angle view at Launch Complex 39, Kennedy Space Center (KSC), showing the Apollo 14 (Spacecraft 110/Lunar Module 8/Saturn 509) space vehicle on the way from the Vehicle Assembly Building (VAB) to Pad A. The Saturn V stack and its mobile launch tower sit atop a huge crawler-transporter. The Apollo 14 crewmen will be astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot.
High angle view of Apollo 14 space vehicle on way to Pad A
1970-11-09
S70-54119 (9 Nov. 1970) --- A high-angle view at Launch Complex 39, Kennedy Space Center (KSC), showing the Apollo 14 (Spacecraft 110/Lunar Module 8/Saturn 509) space vehicle on the way from the Vehicle Assembly Building (VAB) to Pad A. The Saturn V stack and its mobile launch tower sit atop a huge crawler-transporter. The Apollo 14 crewmen will be astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot.
APOLLO XII - LAUNCH DAY ACTIVITIES - LAUNCH COMPLEX 39A - KSC
1969-11-14
S69-58880 (14 Nov. 1969) --- Astronaut Alan L. Bean, Apollo 12 lunar module pilot, suits up in the Kennedy Space Center's (KSC) Manned Spacecraft Operations Building during the Apollo 12 prelaunch countdown. Minutes later astronauts Bean; Charles Conrad Jr., commander; and Richard F. Gordon Jr., command module pilot, rode a special transport van over to Pad A, Launch Complex 39, where their spacecraft awaited. The Apollo 12 liftoff occurred at 11:22 a.m. (EST), Nov. 14, 1969. Apollo 12 is the United States' second lunar landing mission.
NASA Goddard Space Flight Center Robotic Processing System Program Automation Systems, volume 2
NASA Technical Reports Server (NTRS)
Dobbs, M. E.
1991-01-01
Topics related to robot operated materials processing in space (RoMPS) are presented in view graph form. Some of the areas covered include: (1) mission requirements; (2) automation management system; (3) Space Transportation System (STS) Hitchhicker Payload; (4) Spacecraft Command Language (SCL) scripts; (5) SCL software components; (6) RoMPS EasyLab Command & Variable summary for rack stations and annealer module; (7) support electronics assembly; (8) SCL uplink packet definition; (9) SC-4 EasyLab System Memory Map; (10) Servo Axis Control Logic Suppliers; and (11) annealing oven control subsystem.
STS-105 Commander Horowitz tries on gas mask at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-105 Commander Scott Horowitz puts on a gas mask as part of Terminal Countdown Demonstration Test activities, which also include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch is scheduled no earlier than Aug. 9, 2001.
2006-04-01
Interagency Working Group on Environmental Justice defines adverse as “having deleterious effects on human health or the environment that is significant...Drinking water for Scott AFB is provided by the Illinois-American Water Company and no potable water wells are located on the installation. As a result...Environment Scott Air Force Base, Illinois April 2006 Illinois-American Water Company uses the Mississippi River as its source of drinking water and
Apollo 9 crew leaves Spacecraft Operations Building during countdown
1969-03-03
S69-25883 (3 March 1969) --- The Apollo 9 crew leaves the Kennedy Space Center's Manned Spacecraft Operations Building during the Apollo 9 prelaunch countdown. Leading is astronaut James A. McDivitt, commander; followed by astronaut David R. Scott, command module pilot; and Russell L. Schweickart, lunar module pilot. Moments later they entered the special transfer van which transported them to their waiting spacecraft at Pad A, Launch Complex 39. Apollo 9 was launched at 11 a.m. (EST), March 3, 1969, on a 10-day Earth-orbital mission.
78 FR 60137 - Shipping and Transportation; Technical, Organizational, and Conforming Amendments
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
... INFORMATION: Table of Contents for Preamble I. Abbreviations II. Regulatory History III. Background and... States Code VCDOA Vice Commandant Decision on Appeal II. Regulatory History We did not publish a notice...
Handbook of emergency management for state-level transportation agencies.
DOT National Transportation Integrated Search
2010-03-01
The Department of Homeland Security has mandated specific systems and techniques for the management of emergencies in the United States, including the Incident Command System, the National Incident Management System, Emergency Operations Plans, Emerg...
Rhee, Minsoung
2010-01-01
We have developed pneumatic logic circuits and microprocessors built with microfluidic channels and valves in polydimethylsiloxane (PDMS). The pneumatic logic circuits perform various combinational and sequential logic calculations with binary pneumatic signals (atmosphere and vacuum), producing cascadable outputs based on Boolean operations. A complex microprocessor is constructed from combinations of various logic circuits and receives pneumatically encoded serial commands at a single input line. The device then decodes the temporal command sequence by spatial parallelization, computes necessary logic calculations between parallelized command bits, stores command information for signal transportation and maintenance, and finally executes the command for the target devices. Thus, such pneumatic microprocessors will function as a universal on-chip control platform to perform complex parallel operations for large-scale integrated microfluidic devices. To demonstrate the working principles, we have built 2-bit, 3-bit, 4-bit, and 8-bit microprecessors to control various target devices for applications such as four color dye mixing, and multiplexed channel fluidic control. By significantly reducing the need for external controllers, the digital pneumatic microprocessor can be used as a universal on-chip platform to autonomously manipulate microfluids in a high throughput manner. PMID:19823730
Factor and Organizational Substitutions to Minimize Costs in the Navy
2013-12-01
navigation, propulsion, combat, hotel , communications, in-service support and any system corresponding to further tasks such as transport, hospital...propulsion, combat, hotel , communications, in-service support and any system corresponding to further tasks such as transport, hospital services and command...contract, a cadet may be able to increase her branch choice priority. The Officer Career Satisfaction Program (OCSP) is an incentive program with
Code of Federal Regulations, 2010 CFR
2010-07-01
... for international shipments. (c) Military Traffic Management Command (MTMC). The Department of Defense management agency for military traffic, land transportation, and common user ocean terminals. Among other... service responsibility for MTMC. (d) Regional Storage Management Office (RSMO). The MTMC office...
View of Apollo 15 space vehicle leaving VAB to Pad A, Launch Complex 39
1971-05-11
S71-33786 (11 May 1971) --- The 363-feet tall Apollo (Spacecraft 112/Lunar Module 10/Saturn 510) space vehicle which leaves the Vehicle Assembly Building (VAB) to Pad A, Launch Complex 39, Kennedy Space Center (KSC). The Saturn V stack and its mobile launch tower are atop a huge crawler-transporter. Apollo 15 is scheduled as the fourth manned lunar landing mission by the National Aeronautics and Space Administration (NASA) and is scheduled to lift off on July 26, 1971. The crew men will be astronauts David R. Scott, commander; Alfred M. Worden, command module pilot; and James B. Irwin, lunar module pilot. While astronaut Scott and Irwin will descend in the Lunar Module (LM) to explore the moon, astronaut Worden will remain with the Command and Service Modules (CSM) in lunar orbit.
The contaminant analysis automation robot implementation for the automated laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younkin, J.R.; Igou, R.E.; Urenda, T.D.
1995-12-31
The Contaminant Analysis Automation (CAA) project defines the automated laboratory as a series of standard laboratory modules (SLM) serviced by a robotic standard support module (SSM). These SLMs are designed to allow plug-and-play integration into automated systems that perform standard analysis methods (SAM). While the SLMs are autonomous in the execution of their particular chemical processing task, the SAM concept relies on a high-level task sequence controller (TSC) to coordinate the robotic delivery of materials requisite for SLM operations, initiate an SLM operation with the chemical method dependent operating parameters, and coordinate the robotic removal of materials from the SLMmore » when its commands and events has been established to allow ready them for transport operations as well as performing the Supervisor and Subsystems (GENISAS) software governs events from the SLMs and robot. The Intelligent System Operating Environment (ISOE) enables the inter-process communications used by GENISAS. CAA selected the Hewlett-Packard Optimized Robot for Chemical Analysis (ORCA) and its associated Windows based Methods Development Software (MDS) as the robot SSM. The MDS software is used to teach the robot each SLM position and required material port motions. To allow the TSC to command these SLM motions, a hardware and software implementation was required that allowed message passing between different operating systems. This implementation involved the use of a Virtual Memory Extended (VME) rack with a Force CPU-30 computer running VxWorks; a real-time multitasking operating system, and a Radiuses PC compatible VME computer running MDS. A GENISAS server on The Force computer accepts a transport command from the TSC, a GENISAS supervisor, over Ethernet and notifies software on the RadiSys PC of the pending command through VMEbus shared memory. The command is then delivered to the MDS robot control software using a Windows Dynamic Data Exchange conversation.« less
Determining the Appropriate Size of the Contracting Workforce: Yes We Can!
2011-04-30
visiting seminars at American University in Cairo and Instituto de Empresas in Madrid. His Air Force contracting experience includes F-22 Fighter, C...17 Cargo Transport , and serving as director of Joint Contracting Command-North, Kirkuk, Iraq. At the Pentagon, Dr. Reed was responsible for...Department of Transportation –Federal Aviation Administration. The model uses historical program data to derive recommended staffing levels for major
Design and engineering analysis of material procurement mobile operation platform
NASA Astrophysics Data System (ADS)
Ding, H.; Li, J.
2014-03-01
The material procurement mobile operation platform (MPMOP) consists of six modules, including network operation, truck transportation, remote communication, satellite positioning, power supply and environment regulation. The MPMOP is designed to have six major functions, including online procurement, command control, remote communication, satellite positioning, information management and auxiliary decision. The paper implements an engineering analysis on the MPMOP from three aspects, including transportation transfinite, centroid, and power dissipation.
42 CFR 71.1 - Scope and definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ship, aircraft, train, road vehicle, or other means of transport, including military. Commander means the aircrew member with responsibility for the aircraft's operations and navigation. Communicable... environment. Contamination means the presence of undesirable substances or material which may contain...
42 CFR 71.1 - Scope and definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ship, aircraft, train, road vehicle, or other means of transport, including military. Commander means the aircrew member with responsibility for the aircraft's operations and navigation. Communicable... environment. Contamination means the presence of undesirable substances or material which may contain...
Test Telemetry And Command System (TTACS)
NASA Technical Reports Server (NTRS)
Fogel, Alvin J.
1994-01-01
The Jet Propulsion Laboratory has developed a multimission Test Telemetry and Command System (TTACS) which provides a multimission telemetry and command data system in a spacecraft test environment. TTACS reuses, in the spacecraft test environment, components of the same data system used for flight operations; no new software is developed for the spacecraft test environment. Additionally, the TTACS is transportable to any spacecraft test site, including the launch site. The TTACS is currently operational in the Galileo spacecraft testbed; it is also being provided to support the Cassini and Mars Surveyor Program projects. Minimal personnel data system training is required in the transition from pre-launch spacecraft test to post-launch flight operations since test personnel are already familiar with the data system's operation. Additionally, data system components, e.g. data display, can be reused to support spacecraft software development; and the same data system components will again be reused during the spacecraft integration and system test phases. TTACS usage also results in early availability of spacecraft data to data system development and, as a result, early data system development feedback to spacecraft system developers. The TTACS consists of a multimission spacecraft support equipment interface and components of the multimission telemetry and command software adapted for a specific project. The TTACS interfaces to the spacecraft, e.g., Command Data System (CDS), support equipment. The TTACS telemetry interface to the CDS support equipment performs serial (RS-422)-to-ethernet conversion at rates between 1 bps and 1 mbps, telemetry data blocking and header generation, guaranteed data transmission to the telemetry data system, and graphical downlink routing summary and control. The TTACS command interface to the CDS support equipment is nominally a command file transferred in non-real-time via ethernet. The CDS support equipment is responsible for metering the commands to the CDS; additionally for Galileo, TTACS includes a real-time-interface to the CDS support equipment. The TTACS provides the basic functionality of the multimission telemetry and command data system used during flight operations. TTACS telemetry capabilities include frame synchronization, Reed-Solomon decoding, packet extraction and channelization, and data storage/query. Multimission data display capabilities are also available. TTACS command capabilities include command generation verification, and storage.
Commercial Crew Transportation Capability
2014-09-16
Astronaut Mike Fincke, a former commander of the International Space Station, speaks during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)
Code of Federal Regulations, 2011 CFR
2011-07-01
... delivery of goods. (1) Carriers issue commercial bills of lading. (2) Transportation officers issue government bills of lading (GBL). GBLs include the terms and conditions of commercial bills of lading with... for international shipments. (c) Military Traffic Management Command (MTMC). The Department of Defense...
Code of Federal Regulations, 2013 CFR
2013-07-01
... delivery of goods. (1) Carriers issue commercial bills of lading. (2) Transportation officers issue government bills of lading (GBL). GBLs include the terms and conditions of commercial bills of lading with... for international shipments. (c) Military Traffic Management Command (MTMC). The Department of Defense...
Army Contracting Command Workforce Model Analysis
2010-10-04
College), and he has taught visiting seminars at American University in Cairo, and Instituto de Empresas in Madrid. Dr. Reed retired after 21 years... Transportation –Federal Aviation Administration and will use historical program data to derive recommended staffing levels for major acquisition
Towards Human-Friendly Efficient Control of Multi-Robot Teams
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Theodoridis, Theodoros; Barrero, David F.; Hu, Huosheng; McDonald-Maiers, Klaus
2013-01-01
This paper explores means to increase efficiency in performing tasks with multi-robot teams, in the context of natural Human-Multi-Robot Interfaces (HMRI) for command and control. The motivating scenario is an emergency evacuation by a transport convoy of unmanned ground vehicles (UGVs) that have to traverse, in shortest time, an unknown terrain. In the experiments the operator commands, in minimal time, a group of rovers through a maze. The efficiency of performing such tasks depends on both, the levels of robots' autonomy, and the ability of the operator to command and control the team. The paper extends the classic framework of levels of autonomy (LOA), to levels/hierarchy of autonomy characteristic of Groups (G-LOA), and uses it to determine new strategies for control. An UGVoriented command language (UGVL) is defined, and a mapping is performed from the human-friendly gesture-based HMRI into the UGVL. The UGVL is used to control a team of 3 robots, exploring the efficiency of different G-LOA; specifically, by (a) controlling each robot individually through the maze, (b) controlling a leader and cloning its controls to followers, and (c) controlling the entire group. Not surprisingly, commands at increased G-LOA lead to a faster traverse, yet a number of aspects are worth discussing in this context.
Close up view of the Commander's Seat on the Flight ...
Close up view of the Commander's Seat on the Flight Deck of the Orbiter Discovery. Toward the right of the view and in front of te seat is the commander's Rotational Hand Controller. The pilot station has an identical controller. These control the acceleration in the roll pitch and yaw directions via the reaction control system and/or the orbiter maneuvering system while outside of Earth's atmosphere or via the orbiter's aerosurfaces wile in Earth's atmosphere when the atmospheric density permits the surfaces to be effective. There are a number of switches on the controller, most notably a trigger switch which is a push-to-talk switch for voice communication and a large button on top of the controller which is a switch to engage the backup flight system. This view was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
A Framework for Optimal Control Allocation with Structural Load Constraints
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Taylor, Brian R.; Jutte, Christine V.; Burken, John J.; Trinh, Khanh V.; Bodson, Marc
2010-01-01
Conventional aircraft generally employ mixing algorithms or lookup tables to determine control surface deflections needed to achieve moments commanded by the flight control system. Control allocation is the problem of converting desired moments into control effector commands. Next generation aircraft may have many multipurpose, redundant control surfaces, adding considerable complexity to the control allocation problem. These issues can be addressed with optimal control allocation. Most optimal control allocation algorithms have control surface position and rate constraints. However, these constraints are insufficient to ensure that the aircraft's structural load limits will not be exceeded by commanded surface deflections. In this paper, a framework is proposed to enable a flight control system with optimal control allocation to incorporate real-time structural load feedback and structural load constraints. A proof of concept simulation that demonstrates the framework in a simulation of a generic transport aircraft is presented.
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Bodson, Marc; Acosta, Diana M.
2009-01-01
The Next Generation (NextGen) transport aircraft configurations being investigated as part of the NASA Aeronautics Subsonic Fixed Wing Project have more control surfaces, or control effectors, than existing transport aircraft configurations. Conventional flight control is achieved through two symmetric elevators, two antisymmetric ailerons, and a rudder. The five effectors, reduced to three command variables, produce moments along the three main axes of the aircraft and enable the pilot to control the attitude and flight path of the aircraft. The NextGen aircraft will have additional redundant control effectors to control the three moments, creating a situation where the aircraft is over-actuated and where a simple relationship does not exist anymore between the required effector deflections and the desired moments. NextGen flight controllers will incorporate control allocation algorithms to determine the optimal effector commands and attain the desired moments, taking into account the effector limits. Approaches to solving the problem using linear programming and quadratic programming algorithms have been proposed and tested. It is of great interest to understand their relative advantages and disadvantages and how design parameters may affect their properties. In this paper, we investigate the sensitivity of the effector commands with respect to the desired moments and show on some examples that the solutions provided using the l2 norm of quadratic programming are less sensitive than those using the l1 norm of linear programming.
Downloading Deterrence: The Logic and Logistics of Coercive Deployment on U.S. Strategy
2016-06-01
Soviet air defense systems.”20 If the Arab-Israeli wars bore the first fruit of technological investment in conventional systems, the first Persian ...Bush deployed the first US troops, warplanes and ships to the Persian Gulf region.31 Termed Operation DESERT SHIELD, the deployment sparked the...Transportation Command (USTC) moved more passengers to the Persian Gulf than the United States transported to Korea during the first three months of the
New luster for space robots and automation
NASA Technical Reports Server (NTRS)
Heer, E.
1978-01-01
Consideration is given to the potential role of robotics and automation in space transportation systems. Automation development requirements are defined for projects in space exploration, global services, space utilization, and space transport. In each category the potential automation of ground operations, on-board spacecraft operations, and in-space handling is noted. The major developments of space robot technology are noted for the 1967-1978 period. Economic aspects of ground-operation, ground command, and mission operations are noted.
Training and Familiarization with the Battle Command Sustainment Support System
2010-06-11
for Task Force Bastone and SDDC” by Mitch Chandran (Translog, Fall 2005) focuses on the initial use of the BCS3 by the Surface Deployment and...the Heartbeat of ITV for Task Force Bastone and SDDC,” Journal of Military Transportation Management (Fall 2005): 13. 49Ibid. 50Ibid. 51Colonel...Mitch. “BCS3 Becomes the Heartbeat of ITV for Task Force Bastone and SDDC.” Journal of Military Transportation Management (Fall 2005). Department
32 CFR 245.6 - Abbreviations and acronyms.
Code of Federal Regulations, 2011 CFR
2011-07-01
...—Domestic Event Network DHS—Department of Homeland Security DND—Department of National Defence (Canada) DoD... (NORAD) NORAD—North American Aerospace Defense Command PACAF—Pacific Air Forces SCA—Security Control Authorization SEADS—Southeast Air Defense Sector (NORAD) SUA—Special Use Airspace TSA—Transportation Security...
32 CFR 245.6 - Abbreviations and acronyms.
Code of Federal Regulations, 2012 CFR
2012-07-01
...—Domestic Event Network DHS—Department of Homeland Security DND—Department of National Defence (Canada) DoD... (NORAD) NORAD—North American Aerospace Defense Command PACAF—Pacific Air Forces SCA—Security Control Authorization SEADS—Southeast Air Defense Sector (NORAD) SUA—Special Use Airspace TSA—Transportation Security...
32 CFR 245.6 - Abbreviations and acronyms.
Code of Federal Regulations, 2014 CFR
2014-07-01
...—Domestic Event Network DHS—Department of Homeland Security DND—Department of National Defence (Canada) DoD... (NORAD) NORAD—North American Aerospace Defense Command PACAF—Pacific Air Forces SCA—Security Control Authorization SEADS—Southeast Air Defense Sector (NORAD) SUA—Special Use Airspace TSA—Transportation Security...
32 CFR 245.6 - Abbreviations and acronyms.
Code of Federal Regulations, 2013 CFR
2013-07-01
...—Domestic Event Network DHS—Department of Homeland Security DND—Department of National Defence (Canada) DoD... (NORAD) NORAD—North American Aerospace Defense Command PACAF—Pacific Air Forces SCA—Security Control Authorization SEADS—Southeast Air Defense Sector (NORAD) SUA—Special Use Airspace TSA—Transportation Security...
Code of Federal Regulations, 2011 CFR
2011-07-01
... VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Transportation of Municipal and Commercial Waste § 151.1021 Appeals. (a) Any person directly affected by an... ruling to the Assistant Commandant for Marine Safety, Security, and Stewardship (CG-5), U.S. Coast Guard...
14 CFR 91.7 - Civil aircraft airworthiness.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Civil aircraft airworthiness. 91.7 Section 91.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... in condition for safe flight. The pilot in command shall discontinue the flight when unairworthy...
14 CFR 91.7 - Civil aircraft airworthiness.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Civil aircraft airworthiness. 91.7 Section 91.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... in condition for safe flight. The pilot in command shall discontinue the flight when unairworthy...
Code of Federal Regulations, 2010 CFR
2010-10-01
... component of DOT and includes the Under Secretary for Security, the Commandant of the Coast Guard, the Inspector General, and the Director of the Bureau of Transportation Statistics. Concurrence means that the... preserved. The term also includes any such documentary material stored by computer. Responsible DOT official...
Code of Federal Regulations, 2013 CFR
2013-10-01
... component of DOT and includes the Under Secretary for Security, the Commandant of the Coast Guard, the Inspector General, and the Director of the Bureau of Transportation Statistics. Concurrence means that the... preserved. The term also includes any such documentary material stored by computer. Responsible DOT official...
Code of Federal Regulations, 2012 CFR
2012-10-01
... component of DOT and includes the Under Secretary for Security, the Commandant of the Coast Guard, the Inspector General, and the Director of the Bureau of Transportation Statistics. Concurrence means that the... preserved. The term also includes any such documentary material stored by computer. Responsible DOT official...
14 CFR 91.103 - Preflight action.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Preflight action. 91.103 Section 91.103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC... action. Each pilot in command shall, before beginning a flight, become familiar with all available...
14 CFR 91.103 - Preflight action.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Preflight action. 91.103 Section 91.103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC... action. Each pilot in command shall, before beginning a flight, become familiar with all available...
2001-08-20
KENNEDY SPACE CENTER, Fla. -- The STS-111 crew spend time in the Space Station Processing Facility learning more about the payload they will be transporting: The Mobile Base System (MBS). Standing left to right in the back row are Expedition Five Commander Valeri Kozun, with the Russian Aviation and Space Agency; Mission Specialist Phillippe Perrin, with the French space agency CNES; Pilot Paul Lockhart; trainer Chris Hardcastle; Mission Specialist Franklin Chang-Diaz; and Commander Ken Cockrell. Flanked by trainers in the front row is (center) Peggy Whitson, another of the Expedition Five crew who will ferried to the International Space Station. The MBS will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS. The mechanical arm will then have the capability to "inchworm" from the U.S. Lab Destiny to the MSS and travel along the Truss to work sites. The Expedition Five crew will be replacing Expedition Four. Launch of Endeavour on mission STS-111 is scheduled for April 18, 2002
Investigation of Optimal Control Allocation for Gust Load Alleviation in Flight Control
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Taylor, Brian R.; Bodson, Marc
2012-01-01
Advances in sensors and avionics computation power suggest real-time structural load measurements could be used in flight control systems for improved safety and performance. A conventional transport flight control system determines the moments necessary to meet the pilot's command, while rejecting disturbances and maintaining stability of the aircraft. Control allocation is the problem of converting these desired moments into control effector commands. In this paper, a framework is proposed to incorporate real-time structural load feedback and structural load constraints in the control allocator. Constrained optimal control allocation can be used to achieve desired moments without exceeding specified limits on monitored load points. Minimization of structural loads by the control allocator is used to alleviate gust loads. The framework to incorporate structural loads in the flight control system and an optimal control allocation algorithm will be described and then demonstrated on a nonlinear simulation of a generic transport aircraft with flight dynamics and static structural loads.
NASA Technical Reports Server (NTRS)
Broussard, J. R.; Halyo, N.
1984-01-01
This report contains the development of a digital outer-loop three dimensional radio navigation (3-D RNAV) flight control system for a small commercial jet transport. The outer-loop control system is designed using optimal stochastic limited state feedback techniques. Options investigated using the optimal limited state feedback approach include integrated versus hierarchical control loop designs, 20 samples per second versus 5 samples per second outer-loop operation and alternative Type 1 integration command errors. Command generator tracking techniques used in the digital control design enable the jet transport to automatically track arbitrary curved flight paths generated by waypoints. The performance of the design is demonstrated using detailed nonlinear aircraft simulations in the terminal area, frequency domain multi-input sigma plots, frequency domain single-input Bode plots and closed-loop poles. The response of the system to a severe wind shear during a landing approach is also presented.
Interior view of the Flight Deck looking forward, the Commander's ...
Interior view of the Flight Deck looking forward, the Commander's seat and controls are on the left and the pilot's seat and controls are on the right of the view. Note that the flight deck windows have protective covers over them in this view. This images can be digitally stitched with image HAER No. TX-116-A-20 to expand the view to include the overhead control panels of the flight deck. This view was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Simulation study of two VTOL control/display systems in IMC approach and landing
NASA Technical Reports Server (NTRS)
Merrick, V. K.
1981-01-01
Both systems had full attitude command; the more complex system (Type 1) also had translational velocity command. The systems were applied to existing models of a VTOL lift-fan transport and the AV-8A Harrier. Simulated landings were made on a model of a DD963 Spruance-class destroyer. It was concluded that acceptable transitions and vertical landings can be performed, using the Type 1 system, in free-air turbulence up to 2.5 m/sec and sea state 6 and, using the Type 2 system, in free-air turbulence up to 1.5 m/sec and sea state 4.
2001-07-19
KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, hold the sign for their mission. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-19
KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, have placed the mission sign at the entrance into Space Shuttle Discovery. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
New information technology tools for a medical command system for mass decontamination.
Fuse, Akira; Okumura, Tetsu; Hagiwara, Jun; Tanabe, Tomohide; Fukuda, Reo; Masuno, Tomohiko; Mimura, Seiji; Yamamoto, Kaname; Yokota, Hiroyuki
2013-06-01
In a mass decontamination during a nuclear, biological, or chemical (NBC) response, the capability to command, control, and communicate is crucial for the proper flow of casualties at the scene and their subsequent evacuation to definitive medical facilities. Information Technology (IT) tools can be used to strengthen medical control, command, and communication during such a response. Novel IT tools comprise a vehicle-based, remote video camera and communication network systems. During an on-site verification event, an image from a remote video camera system attached to the personal protective garment of a medical responder working in the warm zone was transmitted to the on-site Medical Commander for aid in decision making. Similarly, a communication network system was used for personnel at the following points: (1) the on-site Medical Headquarters; (2) the decontamination hot zone; (3) an on-site coordination office; and (4) a remote medical headquarters of a local government office. A specially equipped, dedicated vehicle was used for the on-site medical headquarters, and facilitated the coordination with other agencies. The use of these IT tools proved effective in assisting with the medical command and control of medical resources and patient transport decisions during a mass-decontamination exercise, but improvements are required to overcome transmission delays and camera direction settings, as well as network limitations in certain areas.
Memory and Processing Limits in Decision-Making.
ERIC Educational Resources Information Center
Klapp, Stuart T.
According to the classical working memory perspective, tasks such as command and control decision-making should be performed less effectively if extraneous material must be retained in short-term memory. Only marginal support for this prediction was obtained for a simulation involving scheduling trucking and transportation missions, although…
76 FR 11308 - Notification of Pilot-in-Command; Notice of Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-01
...://spreadsheets.google.com/viewform?formkey=dExRVGF5WmtOSzZuZWxBSTdBQ2VCR1E6MQ . Specific information will be... Dangerous Goods by Air (ICAO TI). The Department of Transportation has a history and statutory mandate to...
DOT National Transportation Integrated Search
1976-03-01
The spectral characteristics of the urban center -- at the level of the family, the functional organized units of society, and the essential compartment balances of the urban center -- are spelled out in greater detail. These compartments are food, m...
The Perfect Storm: The Goldwater-Nichols Act and Its Effect on Navy Acquisition
2010-01-01
TECHNOLOGY SUBSTANCE ABUSE TERRORISM AND HOMELAND SECURITY TRANSPORTATION AND INFRASTRUCTURE WORKFORCE AND WORKPLACE The RAND Corporation is a nonprofit...the two stars’ comunications with the Systems Commanders, who were ultimately removed from the acquisition chain because the new PEOs 16 The
1998-01-22
U.S. Army missions have established a tradition that continued in flood control and the maintenance of some of the country’s major river transportation ...Sefton III, Commander of Task Force 1169, during JTX "Abriendo Rutas ", stated that "training opportunities on an exercise of this type simply...bulk of RC training activity in Latin America. However, support units such as military police, supply, maintenance, transportation , communication
Establishing a Department of Defense Program Management Body of Knowledge
1991-09-01
systems included, "...thousands of jet fighters, bombers and transport aircraft; one hundred new combat and support vessels; and thousands of tanks and...cannon-carrying troop transports and strategic and tactical missiles" (12:9). Such systems were designed to achieve goals and performance levels never...to L. A a 20-week Program Mnageme-.nt .ur., ’ DSMc b-,o : taking command of a mra or pLog-im. A Major De ?-n.5 Acquisition (Category I) Program in the
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Reporting potentially hazardous... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... knowledge of which he considers essential to the safety of other flights, the pilot in command shall notify...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Reporting potentially hazardous... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... knowledge of which he considers essential to the safety of other flights, the pilot in command shall notify...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Reporting potentially hazardous... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... or navigation aid in flight, the knowledge of which the pilot in command considers essential to the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Reporting potentially hazardous... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... or navigation aid in flight, the knowledge of which the pilot in command considers essential to the...
14 CFR 125.379 - Landing weather minimums: IFR.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Landing weather minimums: IFR. 125.379 Section 125.379 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... § 125.379 Landing weather minimums: IFR. (a) If the pilot in command of an airplane has not served 100...
14 CFR 125.379 - Landing weather minimums: IFR.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Landing weather minimums: IFR. 125.379 Section 125.379 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... § 125.379 Landing weather minimums: IFR. (a) If the pilot in command of an airplane has not served 100...
14 CFR 125.379 - Landing weather minimums: IFR.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Landing weather minimums: IFR. 125.379 Section 125.379 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... § 125.379 Landing weather minimums: IFR. (a) If the pilot in command of an airplane has not served 100...
14 CFR 125.379 - Landing weather minimums: IFR.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Landing weather minimums: IFR. 125.379 Section 125.379 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... § 125.379 Landing weather minimums: IFR. (a) If the pilot in command of an airplane has not served 100...
14 CFR 125.379 - Landing weather minimums: IFR.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Landing weather minimums: IFR. 125.379 Section 125.379 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... § 125.379 Landing weather minimums: IFR. (a) If the pilot in command of an airplane has not served 100...
78 FR 17085 - Amendment of Multiple Restricted Areas; Eglin AFB, FL
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-20
... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 73 [Docket No. FAA-2013... date: 0901 UTC, May 2, 2013. FOR FURTHER INFORMATION CONTACT: Paul Gallant, Airspace Policy and ATC... [Amended] By removing the words ``Using agency. U.S. Air Force, Commander, Air Armament Center, Eglin AFB...
32 CFR 621.4 - Issues, loans, and donations for scouting.
Code of Federal Regulations, 2011 CFR
2011-07-01
... to commodity command or military deparment property loaned to (Boy Scouts of America). Upon... of America and the Girl Scouts of America. (b) Guidance. (1) Issues are made under the provisions of... Equipment and Providing of Transportation and Other Services to the Boy Scouts of America for World and...
32 CFR 621.4 - Issues, loans, and donations for scouting.
Code of Federal Regulations, 2012 CFR
2012-07-01
... to commodity command or military deparment property loaned to (Boy Scouts of America). Upon... of America and the Girl Scouts of America. (b) Guidance. (1) Issues are made under the provisions of... Equipment and Providing of Transportation and Other Services to the Boy Scouts of America for World and...
32 CFR 621.4 - Issues, loans, and donations for scouting.
Code of Federal Regulations, 2013 CFR
2013-07-01
... to commodity command or military department property loaned to (Boy Scouts of America). Upon... of America and the Girl Scouts of America. (b) Guidance. (1) Issues are made under the provisions of... Equipment and Providing of Transportation and Other Services to the Boy Scouts of America for World and...
32 CFR 621.4 - Issues, loans, and donations for scouting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... to commodity command or military deparment property loaned to (Boy Scouts of America). Upon... of America and the Girl Scouts of America. (b) Guidance. (1) Issues are made under the provisions of... Equipment and Providing of Transportation and Other Services to the Boy Scouts of America for World and...
32 CFR 621.4 - Issues, loans, and donations for scouting.
Code of Federal Regulations, 2014 CFR
2014-07-01
... to commodity command or military department property loaned to (Boy Scouts of America). Upon... of America and the Girl Scouts of America. (b) Guidance. (1) Issues are made under the provisions of... Equipment and Providing of Transportation and Other Services to the Boy Scouts of America for World and...
14 CFR 121.437 - Pilot qualification: Certificates required.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Pilot qualification: Certificates required... Pilot qualification: Certificates required. (a) No pilot may act as pilot in command of an aircraft (or... pilots) unless he holds an airline transport pilot certificate and an appropriate type rating for that...
14 CFR 121.437 - Pilot qualification: Certificates required.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pilot qualification: Certificates required... Pilot qualification: Certificates required. (a) No pilot may act as pilot in command of an aircraft (or... pilots) unless he holds an airline transport pilot certificate and an appropriate type rating for that...
1979-05-07
S79-31775 (29 April 1979) --- These two astronauts are the prime crewmen for the first flight in the Space Transportation System (STS-1) program. Astronauts John W. Young, left, commander, and Robert L. Crippen, pilot, will man the space shuttle orbiter 102 Columbia for the first orbital flight test. Photo credit: NASA
NASA Technical Reports Server (NTRS)
Bull, John; Mah, Robert; Davis, Gloria; Conley, Joe; Hardy, Gordon; Gibson, Jim; Blake, Matthew; Bryant, Don; Williams, Diane
1995-01-01
Failures of aircraft primary flight-control systems to aircraft during flight have led to catastrophic accidents with subsequent loss of lives (e.g. , DC-1O crash, B-747 crash, C-5 crash, B-52 crash, and others). Dryden Flight Research Center (DFRC) investigated the use of engine thrust for emergency flight control of several airplanes, including the B-720, Lear 24, F-15, C-402, and B-747. A series of three piloted simulation tests have been conducted at Ames Research Center to investigate propulsion control for safely landing a medium size jet transport which has experienced a total primary flight-control failure. The first series of tests was completed in July 1992 and defined the best interface for the pilot commands to drive the engines. The second series of tests was completed in August 1994 and investigated propulsion controlled aircraft (PCA) display requirements and various command modes. The third series of tests was completed in May 1995 and investigated PCA full-flight envelope capabilities. This report describes the concept of a PCA, discusses pilot controls, displays, and procedures; and presents the results of piloted simulation evaluations of the concept by a cross-section of air transport pilots.
1973-08-02
S73-31875 (2 Aug. 1973) --- After learning of a problem in the Command/Service Module which was used to transport the Skylab 3 crew to the orbiting Skylab space station cluster, NASA officials held various meetings to discuss the problem. Here, four men monitor the current status of the problem in the Mission Operations Control Room (MOCR) of the Mission Control Center (MCC) at the Johnson Space Center (JSC). From the left are Gary E. Coen, Guidance and Navigation System flight controller; Howard W. Tindall Jr., Director of Flight Operations at JSC; Dr. Christopher C. Kraft Jr., JSC Director; and Sigurd A. Sjoberg, JSC Deputy Director. Photo credit: NASA
1969-03-03
S69-25881 (3 March 1969) --- The Apollo 9 crew leaves the Kennedy Space Center's Manned Spacecraft Operations Building during the Apollo 9 prelaunch countdown. The crewman entered the special transfer van which transported them to their waiting spacecraft at Pad A, Launch Complex 39. Astronaut James A. McDivitt (back to camera) is the commander. McDivitt appears to be inviting astronaut David R. Scott, command module pilot, to step first into van. In background is astronaut Russell L. Schweickart, lunar module pilot. Walking along almost behind Schweickart is astronaut Alan B. Shepard Jr., chief, Astronaut Office, Manned Spacecraft Center. Apollo 9 was launched at 11 a.m. (EST), March 3, 1969, on a 10-day Earth-orbital mission.
NASA Astrophysics Data System (ADS)
Benadja, Mounir
Dans ce travail est presente un systeme de generation d'energie d'un parc eolien offshore et un systeme de transport utilisant les stations VSC-HVDC connectees au reseau principal AC onshore. Trois configurations ont ete etudiees, modelisees et validees par simulation. Dans chacune des configurations, des contributions ameliorant les cotes techniques et economiques sont decrites ci-dessous : La premiere contribution concerne un nouvel algorithme MPPT (Maximum Power Point Tracking) utilise pour l'extraction de la puissance maximale disponible dans les eoliennes des parcs offshores. Cette technique d'extraction du MPPT ameliore le rendement energetique de la chaine de conversion des energies renouvelables notamment l'energie eolienne a petite et a grande echelles (parc eolien offshore) qui constitue un probleme pour les constructeurs qui se trouvent confrontes a developper des dispositifs MPPT simples, moins couteux, robustes, fiables et capable d'obtenir un rendement energetique maximal. La deuxieme contribution concerne la reduction de la taille, du cout et de l'impact des defauts electriques (AC et DC) dans le systeme construit pour transporter l'energie d'un parc eolien offshore (OWF) vers le reseau principal AC onshore via deux stations 3L-NPC VSCHVDC. La solution developpee utilise des observateurs non-lineaires bases sur le filtre de Kalman etendu (EKF). Ce filtre permet d'estimer la vitesse de rotation et la position du rotor de chacune des generatrices du parc eolien offshore et de la tension du bus DC de l'onduleur DC-AC offshore et des deux stations 3L-NPC-VSC-HVDC (offshore et onshore). De plus, ce developpement du filtre de Kalman etendu a permis de reduire l'impact des defauts AC et DC. Deux commandes ont ete utilisees, l'une (commande indirect dans le plan abc) avec EKF integre destinee pour controler le convertisseur DC-AC offshore et l'autre (commande d-q) avec EKF integre pour controler les convertisseurs des deux stations AC-DC et DC-AC tout en tenant compte des entrees de chacune des stations. L'integration des observateurs non-lineaires (EKF) dans le controle des convertisseurs permet de resoudre le probleme des incertitudes de mesure, des incertitudes dans la modelisation, en cas du dysfonctionnement ou de panne des capteurs de mesure ainsi que le probleme de l'impact des defauts (AC et DC) sur la qualite d'energie dans les systemes de transmission. Ces estimations contribuent a rendre le cout global du systeme moins cher et sa taille moins encombrante ainsi que la reduction de l'impact des defauts (AC et DC) sur le systeme. La troisieme contribution concerne la reduction de la taille, du cout et de l'impact des defauts electriques (AC et DC) dans le systeme construit pour transporter l'energie d'un parc eolien offshore (OWF) vers le reseau principal AC onshore via deux stations VSC-HVDC. La solution developpee utilise des observateurs non-lineaires bases sur le filtre de Kalman etendu (EKF). Ce filtre permet d'estimer la vitesse de rotation et la position du rotor de chacune des generatrices du parc eolien et de la tension du bus DC de l'onduleur DC-AC offshore. La contribution porte surtout sur le developpement des deux commandes des deux stations. La premiere, la commande non-lineaire modifiee pour controler le premier convertisseur de la station VSC-HVDC offshore assurant le transfert de la puissance generee par le parc eolien vers la station VSC-HVDC onshore. La deuxieme commande non-lineaire modifiee avec integration de la regulation de la tension du bus DC et de la commande a modele de reference adaptative (MRAC) pour la compensation des surintensites et surtensions durant les defauts AC et DC. On peut constater que lors d'un defaut AC au PCC (Point of Common Coupling) du cote reseau onshore, la profondeur de l'impact du defaut AC sur l'amplitude des courants du reseau principal AC onshore qui etait reduit a 60% par les travaux de recherche (Erlich, Feltes et Shewarega, 2014), comparativement a la nouvelle commande proposee MRAC qui reduit la profondeur de l'impact a 35%. Lors de l'apparition des defauts AC et DC, une reduction de l'impact des defauts sur l'amplitude des courants de reseau AC terrestre et du temps de reponse a ete observee et la stabilite du systeme a ete renforcee par l'utilisation de la commande adaptative basee sur le modele de reference MRAC. La quatrieme contribution concerne une nouvelle commande basee sur le mode de glissement (SM) appliquee pour la station VSC-HVDC qui relie le parc eolien offshore (OWF) au reseau principal AC. Ce parc est compose de dix eoliennes basees sur des generatrices synchrones a aimant permanent (VSWT/PMSGs) connectees en parallele et chacune est controlee par son propre convertisseur DC-DC. Une comparaison des performances entre la commande SM et de la commande non-lineaire avec des controleurs PI pour les deux conditions (presence et absence de defaut DC) a ete analysee et montre la superiorite de la commande par SM. Un prototype du systeme etudie a echelle reduite a ete realise et teste au laboratoire GREPCI en utilisant la carte dSPACE-DS1104 pour la validation experimentale. L'analyse et la simulation des systemes etudies sont developpees sous l'environnement Matlab/Simulink/Simpowersystem. Les resultats obtenus a partir des configurations developpees sont valides par simulation et par experimentation. Les performances sont tres satisfaisantes du point de vue reponse dynamique, reponse en regime permanent, stabilite du systeme et qualite de l'energie.
A Multivariate Analysis of Lost Work Time Due to On-the-Job Injuries at Marine Corps Commands
2007-09-01
00893 F Chemistry 01320 F Civil Engineering 00810 F Communications Clerical 00394 F Computer Engineering 00854 F Computer Operation 00332 F...69001 H Packing 70002 H Small-Arms Repairing 66010 H Transportation Loss and Damage Claims Examining 02135 H Agronomy 00471 H Animal Caretaking
Centralized Offense, Decentralized Defense: Command and Control of Cyberspace
2012-06-01
security hazard .”13 Cyber attack, which had already begun to be accepted as highly strategic in nature, was thought best placed in the hands of...distances was broadly limited to that of the fastest existing means of transportation.”11 Historically, that meant by horse, maybe a carrier pigeon , or the
Consequence Management of a Yield-Producing Nuclear Detonation INCONUS: is NORTHCOM Ready
2009-05-04
command between Title 10 and Title 32 forces that would respond to a nuclear disaster will be a critical weakness. The CBRNE (Chemical, Biological...management response at the tactical level. The transportation requirements for the CCMRF response to a nuclear disaster will be significant and may affect the
Expeditionary Warfare Division Meeting (10th) Held in Panama City, Florida on 24-27 October 2005
2005-10-01
Seabasing a TRANSCOM Perspective, by Captain Craig Galloway, USN, US Transportation Command, J5A DLA Afloat, by Col Jeff Hill, Chief, Distribution ... Management Division, Defense Logistics Agency Sustaining the Seabase a View…, by Mr. Nicholas Linkowitz, HQMC I&L (Code LPV) Sustaining the Sea Base
1982-06-27
CAPE CANAVERAL, Fla. - STS-4 thunders away from Launch Pad 39A at 10:59:59 a.m. EDT, bound for a seven-day Earth orbital mission and the final developmental flight for the Space Transportation System. The fourth Space Shuttle mission is piloted by Commander Ken Mattingly and Pilot Henry Hartsfield Jr. Photo Credit: NASA
Baby Steps: Starting Out on the World Wide Web.
ERIC Educational Resources Information Center
Simpson, Carol; McElmeel, Sharron L.
1997-01-01
While the Internet is the physical medium used to transport data, the World Wide Web is the collection of protocols and standards used to access the information. This article provides a basic explanation of what the Web is and describes common browser commands. Discusses graphic Web browsers; universal resource locators (URLs); file, message,…
Ulloa, Antonio; Bullock, Daniel
2003-10-01
We developed a neural network model to simulate temporal coordination of human reaching and grasping under variable initial grip apertures and perturbations of object size and object location/orientation. The proposed model computes reach-grasp trajectories by continuously updating vector positioning commands. The model hypotheses are (1) hand/wrist transport, grip aperture, and hand orientation control modules are coupled by a gating signal that fosters synchronous completion of the three sub-goals. (2) Coupling from transport and orientation velocities to aperture control causes maximum grip apertures that scale with these velocities and exceed object size. (3) Part of the aperture trajectory is attributable to an aperture-reducing passive biomechanical effect that is stronger for larger apertures. (4) Discrepancies between internal representations of targets partially inhibit the gating signal, leading to movement time increases that compensate for perturbations. Simulations of the model replicate key features of human reach-grasp kinematics observed under three experimental protocols. Our results indicate that no precomputation of component movement times is necessary for online temporal coordination of the components of reaching and grasping.
Microfluidics Transport and Path Control via Programmable Electrowetting on Dielectric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theodore W. Von Bitner, Ph.D.
2002-08-22
This research was conducted in collaboration with Professor Chang-Jin Kim of the University of California, Los Angeles. In phase I, the IOS-UCLA collaboration demonstrated the transport and manipulation of insulting liquid droplets using the principles of EWOD. A postage stamp sized array of electronically addressable Teflon pads, whose surface tension characteristics could be altered on command through computer algorithms, was developed and tested using deionized water as the liquid. Going beyond the tasks originally proposed for Phase I, droplet manipulation was achieved and droplet stability in the EWOD device was examined.
Close up view of the pair of Rudder Pedals in ...
Close up view of the pair of Rudder Pedals in the Commander's Satiation on the Flight Deck of the Orbiter Discovery. The rudder pedals command orbiter acceleration in yaw by positioning the rudder during atmospheric flight. However, because the flight control software automatically performs turn coordination during banking maneuvers, the rudder pedals are not operationally used during glided flight. It is not until after touchdown that the crew uses them for nose wheel steering during rollout. Depressing the upper portion of the rudder pedals provides braking. Differential braking may also be used for directional control during rollout. This view was take at Johnson Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
2001-07-18
KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson happily sits through suit fit check as part of Terminal Countdown Demonstration Test activities. He and fellow crew members Vladimir Nikolaevich Dezhurov and Mikhail Tyurin, both with the Russian Aviation and Space Agency, are taking part in the TCDT along with the STS-105 crew: Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester. The TCDT also includes emergency egress training and a simulated launch countdown. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-08-05
KENNEDY SPACE CENTER, Fla. -- After their arrival at Kennedy Space Center’s Shuttle Landing Facility, the STS-105 crew greet the media. At the microphone is Commander Scott Horowitz. Behind him are the Expedition Three crew, Commander Frank Culbertson and cosmonauts Mikhail Tyurin and Vladimir Dezhurov. On mission STS-105, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the International Space Station. The Early Ammonia Servicer (EAS) tank, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch of Discovery on mission STS-105 is scheduled for Aug. 9
2001-07-18
KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialist Patrick Forrester waits to don his helmet during suit fit check as part of Terminal Countdown Demonstration Test activities. He and other crew members Commander Scott Horowitz, Pilot Rick Sturckow and Mission Specialist Daniel Barry are also taking part in the TCDT, which includes emergency egress training and a simulated launch countdown. Mission STS-105 will be transporting the Expedition Three crew - Commander Frank Culbertson and Vladimir Nikolaevich Dezhurov and Mikhail Tyurin, both with the Russian Aviation and Space Agency - several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
PRELAUNCH - (SUITING-UP) APOLLO 15 - KSC
1971-07-26
S71-41408 (26 July 1971) --- The three Apollo 15 astronauts go through suiting up operations in the Kennedy Space Center's (KSC) Manned Spacecraft Operations Building (MSOB) during the Apollo 15 prelaunch countdown. They are David R. Scott (foreground), commander; Alfred M. Worden (center), command module pilot; and James B. Irwin (background), lunar module pilot. Minutes later the crew rode a special transport van over to Pad A, Launch Complex 39, where their spacecraft awaited them. With the crew was Dr. Donald (Deke) K. Slayton (wearing dark blue sport shirt), director of Flight Crew Operations, Manned Spacecraft Center (MSC). The Apollo 15 space vehicle was launched at 9:34:00:79 a.m. (EDT), July 26, 1971, on a lunar landing mission.
View of Atlantis leaving the ISS
2011-07-19
ISS028-E-017501 (19 July 2011) --- This picture of the space shuttle Atlantis was photographed from the International Space Station as the orbiting complex and the shuttle performed their relative separation in the early hours of July 19, 2011. The Raffaello multi-purpose logistics module, which transported tons of supplies to the complex, can be seen in the cargo bay. It is filled with different materials from the station for return to Earth. Onboard the station were Russian cosmonauts Andrey Borisenko, commander; Sergei Volkov and Alexander Samokutyaev, both flight engineers; Japan Aerospace Exploration astronaut Satoshi Furukawa, and NASA astronauts Mike Fossum and Ron Garan, all flight engineers. Onboard the shuttle were NASA astronauts Chris Ferguson, commander; Doug Hurley, pilot; and Sandy Magnus and Rex Walheim, both mission specialists.
Astronaut Alan Shepard using MET during geological training in Mexico
NASA Technical Reports Server (NTRS)
1970-01-01
Astronaut Alan B. Shepard Jr., commander of the Apollo 14 lunar landing mission, takes a piece of equipment from the Modular Equipment Transporter (MET) during geological and lunar surface simulation training training in the Pinacate volcanic area of northwestern Sonora, Mexico. The MET has been nicknamed 'Rickshaw' after its shape and method of propulsion.
Commercial Maritime Information: A Critical Appraisal.
1981-01-01
Robert W. Mason, Chief, Information and Analysis Staff vi Liaison Representative (Cont’d) Department of Transportation James L. Duda, Acting Chief...Christensen, Program Manager, Market Analysis , Office of Market Development John M. Pisani, Alternate, Program Manager, Office of Ports and...Intermodal Development Military Traffic Management Command David Goodman, Chief, Management Analysis Division, Comptroller/Directorate John C. Kuypers, LTC
STS-111 Flight Day 5 Highlights
NASA Astrophysics Data System (ADS)
2002-06-01
On Flight Day 5 of STS-111, the crew of Endeavour (Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist) and the Expedition 5 crew (Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer) and Expedition 4 crew (Yury Onufrienko, Commander; Daniel Bursch, Flight Engineer; Carl Walz, Flight Engineer) are aboard the docked Endeavour and International Space Station (ISS). The ISS cameras show the station in orbit above the North African coast and the Mediterranean Sea, as Chang-Diaz and Perrin prepare for an EVA (extravehicular activity). The Canadarm 2 robotic arm is shown in motion in a wide-angle shot. The Quest Airlock is shown as it opens to allow the astronauts to exit the station. As orbital sunrise approaches, the astronauts are shown already engaged in their EVA activities. Chang-Diaz is shown removing the PDGF (Power and Data Grapple Fixture) from Endeavour's payload bay as Perrin prepares its installation position in the ISS's P6 truss structure; The MPLM is also visible. Following the successful detachment of the PDGF, Chang-Diaz carries it to the installation site as he is transported there by the robotic arm. The astronauts are then shown installing the PDGF, with video provided by helmet-mounted cameras. Following this task, the astronauts are shown preparing the MBS (Mobile Base System) for grappling by the robotic arm. It will be mounted to the Mobile Transporter (MT), which will traverse a railroad-like system along the truss structures of the ISS, and support astronaut activities as well as provide an eventual mobile base for the robotic arm.
NASA Technical Reports Server (NTRS)
Grantham, W. D.; Smith, P. M.; Deal, P. L.; Neely, W. R., Jr.
1984-01-01
A six-degree-of-freedom, ground based simulator study is conducted to evaluate the low-speed flight characteristics of four dissimilar cargo transport airplanes. These characteristics are compared with those of a large, present-day (reference) transport configuration similar to the Lockheed C-5A airplane. The four very large transport concepts evaluated consist of single-fuselage, twin-fuselage, triple-fuselage, and span-loader configurations. The primary piloting task is the approach and landing operation. The results of his study indicate that all four concepts evaluated have unsatisfactory longitudinal and lateral directional low speed flight characteristics and that considerable stability and control augmentation would be required to improve these characteristics (handling qualities) to a satisfactory level. Through the use of rate command/attitude hold augmentation in the pitch and roll axes, and the use of several turn-coordination features, the handling qualities of all four large transports simulated are improved appreciably.
Commercial Crew Transportation Capability
2014-09-16
From left, NASA Public Affairs Officer Stephanie Schierholz, NASA Administrator Charles Bolden, Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, Kathy Lueders, program manager of NASA's Commercial Crew Program, and Astronaut Mike Fincke, a former commander of the International Space Station, are seen during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)
Commercial Crew Transportation Capability
2014-09-16
Kathy Lueders, program manager of NASA's Commercial Crew Program, speaks, as Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, left, and Astronaut Mike Fincke, a former commander of the International Space Station look on during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)
Development of the joint munitions planning system - a planning tool for the ammunition community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hummel, J. R.; Winiecki, A. L.; Fowler, R. S.
2004-10-01
The United States Army Joint Munitions Command (JMC) is the executive agent for the Single Manager for Conventional Ammunition (SMCA). As such the JMC is responsible for the storage and transportation of all Service's SMCA as well as non-SMCA munitions. Part of the JMC mission requires that complex depot capacity studies, transportation capabilities analyses, peacetime re-allocations/ redistribution plans and time-phased deployment distribution plans be developed. Beginning in 1999 the Joint Munitions Planning System (JMPS) was developed to provide sourcing and movement solutions of ammunition for military planners.
1976-12-30
response and 70.4 percent civilian response, extend to 100 percent population, 1975; Counity Census Data, General Social =0 Economic Characteristics. 25...transportation problems exist and the alternative action is not txpected to disturb the situation in the future. 86 On-Base (AFERN 4.4.1.3) No major problema of...values could increase in specific residential areas that are perceived as meeting certain economic and social needs where current 7acancies are minimal
Expedition Three Commander Culbertson talks to media at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At the slidewire landing site, Launch Pad 39A, Expedition Three Commander Frank Culbertson responds to a question during a media interview. With him are cosmonauts Vladimir Nikolaevich Dezhurov (center) and Mikhail Tyurin (right), who are with the Russian Aviation and Space Agency. They and the STS-105 crew are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
2001-07-18
KENNEDY SPACE CENTER, Fla. -- Expedition Three crew member Mikhail Tyurin undergoes suit fit check as part of Terminal Countdown Demonstration Test activities. He and fellow crew members Commander Frank Culbertson and Vladimir Nikolaevich Dezhurov are taking part in the TCDT along with the STS-105 crew: Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester. Dezhurov and Tyurin are both with the Russian Aviation and Space Agency. The TCDT also includes emergency egress training and a simulated launch countdown. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-18
KENNEDY SPACE CENTER, Fla. -- Expedition Three crew member Vladimir Nikolaevich Dezhurov gets ready to drive the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Other crew members taking part are the STS-105 crew, Commander Scott Horowitz, Pilot Rick Sturckow, Mission Specialists Daniel Barry and Patrick Forrester; and the rest of Expedition Three, Commander Frank Culbertson and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-18
KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose in front of the M-113 armored personnel carrier that is part of emergency egress training at the pad. From left to right, they are STS-105 Commander Scott Horowitz, Mission Specialist Daniel Barry, Pilot Rick Sturckow, and Mission Specialist Patrick Forrester; Expedition Three Commander Frank Culbertson and cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-18
KENNEDY SPACE CENTER, Fla. -- Expedition Three crew Commander Frank Culbertson is behind the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. The STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester; and the other Expedition Three crew members: cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-18
KENNEDY SPACE CENTER, Fla. -- Expedition Three crew member Vladimir Nikolaevich Dezhurov undergoes suit fit check as part of Terminal Countdown Demonstration Test activities. He and fellow crew members Commander Frank Culbertson and Mikhail Tyurin are taking part in the TCDT along with the STS-105 crew: Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester. Dezhurov and Tyurin are both with the Russian Aviation and Space Agency. The TCDT also includes emergency egress training and a simulated launch countdown. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-18
KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz is ready to take the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Other STS-105 crew members taking part are Pilot Rick Sturckow and Mission Specialists Daniel Barry and Patrick Forrester; and the Expedition Three crew, Commander Frank Culbertson, and cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
Senate Hearing on Assured Access to Space
2014-07-16
From left; Hon. Alan Estevez, Principle Deputy Under Secretary of Defense for Acquisition, Technology, and Logistics; General William Shelton, Commander of the United States Air Force Space Command; Robert Lightfoot, NASA Associate Administrator; Cristina Chaplain, Director of Acquisition and Sourcing Management at the Government Accountability Office; major General Howard Mitchell (USAF Ret.), Vice President for Program Assessments at The Aerospace Corporation; Daniel Dunbacher, Professor of Practice in the Department of Aeronautics and Aerospace Engineering at Purdue University; and Dr. Yool Kim, Senior Engineer at The Rand Corporation; are seen during a hearing in front of the Senate Subcommittee on Strategic Forces and Senate Committee on Commerce, Science, and Transportation on Wednesday, July 16, 2014, at the Hart Senate Office Building in Washington, DC. The Senate hearing focused on assured access to space.
NASA Technical Reports Server (NTRS)
Hueschen, Richard M.
2011-01-01
A six degree-of-freedom, flat-earth dynamics, non-linear, and non-proprietary aircraft simulation was developed that is representative of a generic mid-sized twin-jet transport aircraft. The simulation was developed from a non-proprietary, publicly available, subscale twin-jet transport aircraft simulation using scaling relationships and a modified aerodynamic database. The simulation has an extended aerodynamics database with aero data outside the normal transport-operating envelope (large angle-of-attack and sideslip values). The simulation has representative transport aircraft surface actuator models with variable rate-limits and generally fixed position limits. The simulation contains a generic 40,000 lb sea level thrust engine model. The engine model is a first order dynamic model with a variable time constant that changes according to simulation conditions. The simulation provides a means for interfacing a flight control system to use the simulation sensor variables and to command the surface actuators and throttle position of the engine model.
2005-06-01
provisioning, maintaining and guaranteeing service levels for the shared services ? Although these shared, distributed services lie well within the... shared services that interact with a common object definition for transporting alerts. The system is built on top of a rapid SOA application
2007-03-01
workload falls upon the Army depots in Anniston and Red River in Texarkana , Texas and must rely on the DOD transportation system for air and surface...Dover Air Force Base with final destinations of Red River Army Depot (DOD Activity Address Code: W45G19 and SW3227) in Texarkana , Texas and Anniston
2013-03-01
Approved by: W. Matthew Carlyle, Professor Thesis Advisor Walter DeGrange, CDR, SC, USN Second Reader Robert F. Dell Chair...x THIS PAGE INTENTIONALLY LEFT BLANK xi LIST OF TABLES Table 1. Disaster Relief Airlift Planner results for Malaysia cyclone scenario with...Planner results for Malaysia cyclone scenario with aircraft allocation varying
Interface between hospital and fire authorities--a concept for management of incidents in hospitals.
Gretenkort, Peter; Harke, Henning; Blazejak, Jan; Pache, Bernd; Leledakis, Georgios
2002-01-01
Although every hospital needs a security plan for the support of immobile patients who do not possess autonomous escape capabilities, little information exists to assist in the development of practical patient evacuation methods. 1) In hospitals during disasters, incident leadership of the fire authorities can be supported effectively by hospital executives experienced in the management of mass casualties; and 2) As an alternative for canvas carry sheets, rescue drag sheets can be employed for emergency, elevator-independent, patient evacuation. A hospital evacuation exercise was planned and performed to obtain experiences in incident command and to permit calculation of elevator-independent patient transport times. Performance of incident leadership was observed by means of pre-defined checklists. The effectiveness and efficiency of carrying teams with five persons each were compared to those with a rescue drag sheet employed by a single person. Incident command for hospitals during a disaster is enhanced considerably by pre-defined and trained executives who are placed at the immediate disposal of the fire authorities. For elevator-independent patient transport, the rescue drag sheet was superior to conventional carrying measures because of a reduced number of transport personnel required to move each patient. With this method, patient transport times averaged 54 m/min. flat and 18 seconds for one floor descent. Experiences from a hospital during an evacuation exercise provided decision criteria for changes in the disaster preparedness plan. Hospital incident leadership was assigned to executives-in-charge in close co-operation with the fire authorities. All beds were equipped with a rescue drag sheet. Both concepts may help to cope with an emergency evacuation of a hospital.
NASA Astrophysics Data System (ADS)
Maxey, W. John
1997-02-01
The Mini-Transportable Communications Central (MTCC), developed by Rome Laboratories C3 Directorate, provides the U.S. Coast Guard (USCG) with a transportable, fast reaction communications terminal. The MTCC is capable of operating as a self-contained miniature command center supporting efforts such as the President's War on Drugs, or the rescue services necessary in the wake of man-made or natural disasters. The MTCC is capable of communicating with field elements including ships, small water-craft, aircraft, other elements of the USCG law enforcement agencies (LEAs), the FAA, and a wide range of U.S. and foreign armed forces. The MTCC terminal is contained in a trailer-mounted shelter suitable for towing by a 3/4 ton truck or for transport by C-130 aircraft. The MTCC provides simultaneous one-way and two-way communications in the HF, VHF, and UHF frequency bands, as well as the INMARSAT international satellite band. The MTCC also offers communications through subscriber and trunk telephone connectivity via ISDN compatible PABX. The MTCC's three channel operations personnel cellular telephone system provides self-contained cellular telephone operations in the vicinity of the deployed shelter. In the USCG application, an operator console inside the air-conditioned shelter serves as the source and destination for voice, data, and fax traffic, by means of secure fax telephone, operator headsets, and a powerful computer workstation that provides word processing, e-mail, and data communications capabilities. The communications operator may reconfigure the system for a specific mission by means of patchfields that enable the selection of radios, encrypted or clear-text operations, audio termination, and antennas.
1981-04-15
The Space Shuttle Columbia begins a new era of space transportation when it lifts off from NASA Kennedy Space Center (KSC). The reusable Orbiter, its two (2) fuel tanks and two (2) Solid Rocket Boosters (SRB) has just cleared the launch tower. Aboard the spacecraft are Astronauts John W. Young, Commander, and Robert L. Crippen, Pilot . 1. STS-I - LAUNCH KSC, FL KSC, FL Also available in 4x5 BW
General view of the aft Flight Deck looking at the ...
General view of the aft Flight Deck looking at the mission specialist seats directly behind and to the side of the commander and pilot's seats. These seats are removed, packed and stowed during on-orbit activities. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
2018-05-03
Col. Michael Hough, Commander 30th Space Wing, Vandenberg Air Force Base, discusses NASA's InSight mission during a prelaunch media briefing, Thursday, May 3, 2018, at Vandenberg Air Force Base in California. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is a Mars lander designed to study the "inner space" of Mars: its crust, mantle, and core. Photo Credit: (NASA/Bill Ingalls)
Rail and Motor Outloading Capability Study. Fort Devens, Massachusetts,
1980-03-01
AD-AI 765 MILITARY TRAFFIC MANAGEMENT COMMAND TRANSPORTATION EN-ETC FIO 15/5 RAIL AND MOTOR OUTLOADING CAPABILITY STUDY. FORT DEVENS . MASSAC-ETC(U...REPORT TE 79-4-54 RAIL AND MOTOR OUTLOADING CAPABILITY STUDY FORT DEVENS , MASSACHUSETTS Accession Far DTIC TAB March 1980 _stribution/ Av_alability...INTRODUCTION 6.. . .. . . II. ANALYSIS OF FORT DEVENS ’ RAIL OUTLOADING FACILITIES ... . . .. . .9 A. General .9.. B. Rail Facility Description
Rep. Courtney, Joe [D-CT-2
2010-03-25
Senate - 07/28/2010 Received in the Senate and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status Agreed to in HouseHere are the steps for Status of Legislation:
Army Contracting Command Workforce Model Analysis
2012-02-09
Empresas in Madrid. His Air Force contracting experience includes F-22 Fighter, C-17 Cargo Transport , and a contingency deployment as director of Joint...and the University of Maryland (University College). He has also conducted visiting seminars at American University in Cairo and Instituto de ...the long total process times that are sometimes involved in weapon system contracting, such an assessment may equate to a de facto future work
1971-07-01
Workmen at the Martin Marietta Corporation's Space Center in Denver, Colorado, position Skylab's Multiple Docking Adapter (MDA) flight article in the horizontal transportation fixture. Designed and manufactured by the Marshall Space Flight Center and outfitted by Martin Marietta, the MDA housed the control units for the Apollo Telescope Mount (ATM), Earth Resources Experiment Package (EREP), and Zero-Gravity Materials Processing Facility and provided a docking port for the Apollo Command Module.
STS-44 crewmembers exit people mover after landing at EAFB, California
NASA Technical Reports Server (NTRS)
1991-01-01
STS-44 crewmembers, wearing launch and entry suits (LESs), exit people mover, a crew transport vehicle, after landing at Edwards Air Force Base (EAFB), California. Commander Frederick D. Gregory follows ground crew personnel down the stairway. Gregory leads Mission Specialist (MS) Mario Runco, Jr, and Payload Specialist Thomas J. Hennen. In the background, is Atlantis, Orbiter Vehicle (OV) 104, undergoing post flight servicing.
Matsumoto, Hisashi; Motomura, Tomokazu; Hara, Yoshiaki; Masuda, Yukiko; Mashiko, Kunihiro; Yokota, Hiroyuki; Koido, Yuichi
2013-04-01
Since 2001, a Japanese national project has developed a helicopter emergency medical service (HEMS) system ("doctor-helicopter") and a central Disaster Medical Assistance Team (DMAT) composed of mobile and trained medical teams for rapid deployment during the response phase of a disaster. In Japan, the DMAT Research Group has focused on command and control of doctor-helicopters in future disasters. The objective of this study was to investigate the effectiveness of such planning, as well as the problems encountered in deploying the doctor-helicopter fleet with DMAT members following the March 11, 2011 Great East Japan Earthquake. This study was undertaken to examine the effectiveness of aeromedical disaster relief activities following the Great East Japan Earthquake and to evaluate the assembly and operations of 15 doctor-helicopter teams dispatched for patient evacuation with medical support. Fifteen DMATs from across Japan were deployed from March 11th through March 13th to work out of two doctor-helicopter base hospitals. The dispatch center at each base hospital directed its own doctor-helicopter fleet under the command of DMAT headquarters to transport seriously injured or ill patients out of hospitals located in the disaster area. Disaster Medical Assistance Teams transported 149 patients using the doctor-helicopters during the first five days after the earthquake. The experiences and problems encountered point to the need for DMATs to maintain direct control over 1) communication between DMAT headquarters and dispatch centers; 2) information management concerning patient transportation; and 3) operation of the doctor-helicopter fleet during relief activities. As there is no rule of prioritization for doctor-helicopters to refuel ahead of other rotorcraft, many doctor-helicopters had to wait in line to refuel. The "doctor-helicopter fleet" concept was vital to Japan's disaster medical assistance and rescue activities. The smooth and immediate dispatch of the doctor-helicopter fleet must occur under the direct control of the DMAT, independent from local government authority. Such a command and control system for dispatching the doctor-helicopter fleet is strongly recommended, and collaboration with local government authorities concerning refueling priority should be addressed.
ASSTC and field sensors: new technology for emergency care
NASA Astrophysics Data System (ADS)
Morrison, G. Wayne; Vo-Dinh, Tuan
2000-05-01
The US Army Medical Research and Material Command together with the US Marine Corps Combat Development Command sponsored the design and production of a far-forward, lightweight, small footprint, reconfigurable, highly mobile Advanced Surgical Suite for Trauma Casualties (ASSTC) to reduce combat casualties and morbidity. The KIA fraction has remained relatively constant over major wars and conflicts since the early 1900s. One third of the KIA perish after 10 minutes. ASSTC has the potential to dramatically lower this fraction by providing resuscitative care within a short period of wound infliction and not requiring long transport times to the caregivers. ASSTC is also unique in its capability to serve in multiple missions including humanitarian aid, infectious disease control, and disaster relief. Adding field sensor to ASSTC greatly enhances the capability of this highly mobile system to operate in many areas.
Close up view of the center console on the flight ...
Close up view of the center console on the flight deck of the Orbiter Discovery showing the console's instrumentation and controls. The commanders station is located to the left in this view and the pilot's station is to the right in the view. The handle and lever located on the right side of the center console and towards its front is one of a pair, the commander has one on the left of his seat in his station, of Speed Brake/Thrust Controllers. These are dual purpose controllers. During ascent the controller can be use to throttle the main engines and during entry the controllers can be used to control aerodynamic drag by opening or closing the orbiter's speed brake. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
2001-07-18
KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialist Daniel T. Barry is ready to take the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Other STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialist Patrick Forrester; and the Expedition Three crew, Commander Frank Culbertson, and cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-19
KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose in the White Room on Launch Pad 39A. Standing are (left to right) Pilot Rick Sturckow, Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Kneeling are cosmonaut Mikhail Tyurin, Commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov. Tyurin and Dezhurov are with the Russian Aviation and Space Agency. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-18
KENNEDY SPACE CENTER, Fla. -- Expedition Three crew Commander Frank Culbertson gives a thumbs up before taking the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. The STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester; and the other Expedition Three crew members: cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-18
KENNEDY SPACE CENTER, Fla. -- Expedition Three crew member Mikhail Tyurin is ready to take the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. The STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester; and the other Expedition Three crew members: Commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov . Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-08-05
KENNEDY SPACE CENTER, Fla. -- After their arrival at Kennedy Space Center’s Shuttle Landing Facility, the STS-105 and Expedition Three crews greet the media. At the microphone is Commander Scott Horowitz. Behind him are (left to right) Pilot Rick Sturckow, Mission Specialists Daniel Barry and Patrick Forrester, and the Expedition Three Commander Frank Culbertson and cosmonauts Mikhail Tyurin and Vladimir Dezhurov. On mission STS-105, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the International Space Station. The Early Ammonia Servicer (EAS) tank, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch of Discovery on mission STS-105 is scheduled for Aug. 9
The Transportable Applications Environment - An interactive design-to-production development system
NASA Technical Reports Server (NTRS)
Perkins, Dorothy C.; Howell, David R.; Szczur, Martha R.
1988-01-01
An account is given of the design philosophy and architecture of the Transportable Applications Environment (TAE), an executive program binding a system of applications programs into a single, easily operable whole. TAE simplifies the job of a system developer by furnishing a stable framework for system-building; it also integrates system activities, and cooperates with the host operating system in order to perform such functions as task-scheduling and I/O. The initial TAE human/computer interface supported command and menu interfaces, data displays, parameter-prompting, error-reporting, and online help. Recent extensions support graphics workstations with a window-based, modeless user interface.
Major General Robert A. Rushworth
NASA Technical Reports Server (NTRS)
1982-01-01
Air Force test pilot Robert A. Rushworth is shown in an X-15. He was selected for the X-15 program in 1958, and made his first flight on November 4, 1960. Over the next six years, he made 34 flights in the X-15, the most of any pilot. This included a flight to an altitude of 285,000 feet, made on June 27, 1963. This flight above 50 miles qualified Rushworth for astronaut wings. On a later X-15 flight, he was awarded a Distinguished Flying Cross for successfully landing an X-15 after its nose wheel extended while flying at nearly Mach 5. He made his final X-15 flight on July 1, 1966, then returned to regular Air Force duties. These included a tour in Vietnam as an F-4 pilot, flying 189 combat missions. He also served as the Commander of the Air Force Flight Test Center at Edwards AFB, and as the Commander of the Air Force Test and Evaluation Center at Kirtland AFB. At the time of his retirement as a major general, he was Vice Commander, Aeronautical Systems Division, Air Force Systems Command, at Wright-Patterson AFB. Rushworth flew C-47s and C-46s as a transport pilot in World War II, as well as F-80Cs, F-101s, TF-102s, F-104s, F-105s, F-106s, and F-4s. He died on March 17, 1993.
Consolidating AMC’s Contingency Response Capabilities: A Delphi Study
2015-06-19
Africa in support of Operation UNITED ASSISTANCE, the international response to contain the Ebola epidemic (US Transportation Command, 2014). Though JTF...DO, 2015). The deployment of the 817 CRG to Liberia also underutilized its full capacity as only 79 Airmen and 10 Soldiers of the 140-member JTF-PO...pdf 89 Gonzalez, G. S. (2014, November 13). JTF-PO Leaves Liberia . Retrieved from US Air Force Expeditionary Center: http
Marine Corps Systems Command (MCSC) Advanced Planning Briefing To Industry (APBI)
2008-05-14
High force protection bill associated with establishing and maintaining a secure lodgment – Ships densely packed, assemble ashore • MPF(F) – Operates...14 May 08 EXPEDITIONARY FIGHTING VEHICLE (EFV) Provide High Speed Transport of Embarked Marine Infantry From Ships Located Beyond the Horizon to...Business Size Crafting your RFI Response DO - Focus exclusively on Past Performance Provide a “Team” Brief Focus on “non-Priorities” Include
Transforming The Munitions And Missile Maintenance Officer Career Field
2016-04-01
is a United States Air Force Officer currently attending Air and Space Command College at Maxwell Air Force Base , AL. Maj Edington was previously...INTRODUCTION Since the unauthorized transportation of nuclear warheads from Minot Air Force Base (MAFB) to Barksdale Air Force Base (BAFB) and the mistaken... base .66 These factors coupled with risk-aversion for anything but perfect results during inspections (i.e. zero defects), and the well-established
Advanced Launch System (ALS) Space Transportation Expert System Study
1991-03-01
goal (i.e. it develops a plan). The expert system checks the configuration, issues control commands, and reads sensor inputs to determine facts. The...than a conceptual design issue - a statement does not imply consequences, and only invokes database slot-filler actions such as inheriting an ancestor’s...Subclasses all other classes Private Components Public Components Functions Flatten -> storableForm Action : Creates a flat storable form of the object
1988-08-03
Air Transport Command Plans To Incorporate Reserve Pilots 21 NORWAY Former Defense Ministers Issue Warnings on Defense Cutting 23 Past Growth...other camp, because the 37 percent attained by the SPD in the last parliamentary election is not sufficient to create what we have planned jointly...he was planning or what made him do what he did. Is this the end of no-nonsense Lubbers? Why is the premier suddenly threatening the unity of his
2018 Ground Robotics Capabilities Conference and Exhibiton
2018-04-11
Transportable Robot System (MTRS) Inc 1 Non -standard Equipment (approved) Explosive Ordnance Disposal Common Robotic System-Heavy (CRS-H) Inc 1 AROC: 3-Star...and engineering • AI risk mitigation methodologies and techniques are at best immature – E.g., V&V; Probabilistic software analytics; code level...controller to minimize potential UxS mishaps and unauthorized Command and Control (C2). • PSP-10 – Ensure that software systems which exhibit non
Lincoln Laboratory Journal. Volume 22, Number 1, 2016
2016-06-09
needs cyber ranges and other infrastructure to conduct scal- able, repeatable, scientific, realistic and inexpensive testing, training, and mission...support this mission, infrastructure is being upgraded to make it more efficient and secure. In “Secur- ing the U.S. Transportation Command,” Jeff...using the Electronic Key Management System (EKMS) or over a digital network by using the Key Manage- ment Infrastructure (KMI). The units must then
General view of the flight deck of the Orbiter Discovery ...
General view of the flight deck of the Orbiter Discovery looking forward from behind the commander's seat looking towards the pilot's station. Note the numerous Velcro pads located throughout the crew compartment, used to secure frequently used items when in zero gravity. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
2015-06-01
GEOINT geospatial intelligence GFC ground force commander GPS global positioning system GUI graphical user interface HA/DR humanitarian...transport stream UAS unmanned aerial system . See UAV. UAV unmanned aerial vehicle. See UAS. VM virtual machine VMU Marine Unmanned Aerial Vehicle... Unmanned Air Systems (UASs). Current programs promise to dramatically increase the number of FMV feeds in the near future. However, there are too
PRELAUNCH - GEMINI-TITAN (GT)-12 - LEAVE TRAILER - CAPE
1966-11-11
S66-59916 (11 Nov. 1966) --- Prime crew for the Gemini-12 spaceflight, astronauts James A. Lovell Jr. (leading), command pilot, and Edwin E. Aldrin Jr., pilot, leave the suiting trailer at Launch Complex 16 during prelaunch countdown. Moments later they entered a transport van which carried them to Pad 19 and their waiting spacecraft. The liftoff was at 3:46 p.m. (EST), Nov. 11, 1966. Photo credit: NASA
Securing the U.S. Transportation Command
2016-03-11
sink as many of the cargo ships as possible [2]. As the battle raged in the Atlantic Ocean, Allied bombers were destroying German access to oil ...refineries and synthetic fuel factories. By 1944, the Germans did not have enough fuel for aircraft to protect the oil facilities that remained or for...electrical engineering, all from the University of Michigan. Kajal T. Claypool is currently the assistant leader for the Informatics and Decision
Mathematical Model of HIF-1 alpha Pathway, Oxygen Transport and Hypoxia
2017-09-01
interpret experimental data in terms of underlying mechanisms. Such experiments, if quantitative , can also be used to calibrate and further parameterize...Wing Air Force Research Laboratory Wright-Patterson AFB OH 45433-5707 STINFO COPY Work Unit Manager MATTIE.DAV ID.R.123010 1880 Digitally signed by...MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Materiel Command* Air Force Research Laboratory 711th Human Performance Wing Human Effectiveness
1982-03-05
S82-27835 (26 Feb. 1982) --- The astronaut crew members for NASA?s third space transportation system (STS-3) flight meet with Todd E. Nelson, who devised a scientific experiment to fly on their mission. Astronauts Jack R. Lousma, left, commander, and C. Gordon Fullerton, pilot, along with the 18-year-old high school senior, discussed the experiment, entitled ?Insects in Flight Motion Study,? during a press briefing in JSC?s public affairs facility. Photo credit: NASA
1982-03-01
S82-27604 (26 Feb. 1982) --- The astronaut crew members for NASA?s third space transportation system (STS-3) flight meet with Todd E. Nelson, who devised a scientific experiment to fly on their mission. Astronauts Jack R. Lousma, left, commander, and C. Gordon Fullerton, pilot, along with the 18-year-old high school senior, discussed the experiment, entitled ?Insects in Flight Motion Study,? during a press briefing in JSC?s public affairs facility. Photo credit: NASA
STS-105 and Expedition Three crews talk to media at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At the slidewire landing site, Launch Pad 39A, STS-105 Mission Specialist Daniel Barry responds to a question during a media interview. With him are (left to right) Mission Specialist Patrick Forrester, Pilot Rick Sturckow and Commander Scott Horowitz; with the Expedition Three crew Commander Frank Culbertson and cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin, who are with the Russian Aviation and Space Agency. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
STS-105 and Expedition Three crews pose for photo at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose at Launch Pad 39A after training exercises. Pictured (left to right) are STS-105 Mission Specialists Patrick Forrester and Daniel Barry and Commander Scott Horowitz; Expedition Three Commander Frank Culbertson and cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; and STS-105 Pilot Rick Sturckow. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities. The training includes emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery, which is seen in the background. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
General view of the flight deck of the Orbiter Discovery ...
General view of the flight deck of the Orbiter Discovery looking forward along the approximate center line of the orbiter at the center console. The Multifunction Electronic Display System (MEDS) is evident in the mid-ground center of this image, this system was a major upgrade from the previous analog display system. The commander's station is on the port side or left in this view and the pilot's station is on the starboard side or right tin this view. Not the grab bar in the upper center of the image which was primarily used for commander and pilot ingress with the orbiter in a vertical position on the launch pad. Also note that the forward observation windows have protective covers over them. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Wind models for the NSTS ascent trajectory biasing for wind load alleviation
NASA Technical Reports Server (NTRS)
Smith, O. E.; Adelfang, S. I.; Batts, G. W.; Hill, C. K.
1989-01-01
New concepts are presented for aerospace vehicle ascent wind profile biasing. The purpose for wind biasing the ascent trajectory is to provide ascent wind loads relief and thus decrease the probability for launch delays due to wind loads exceeding critical limits. Wind biasing trajectories to the profile of monthly mean winds have been widely used for this purpose. The wind profile models presented give additional alternatives for wind biased trajectories. They are derived from the properties of the bivariate normal probability function using the available wind statistical parameters for the launch site. The analytical expressions are presented to permit generalizations. Specific examples are given to illustrate the procedures. The wind profile models can be used to establish the ascent trajectory steering commands to guide the vehicle through the first stage. For the National Space Transportation System (NSTS) program these steering commands are called I-loads.
2001-07-18
KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialist Patrick Forrester is ready to take the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. Behind him on the left is George Hoggard, of the KSC/CCAS Fire Department, who supervises the driving. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Other STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialist Daniel Barry; and the Expedition Three crew, Commander Frank Culbertson, and cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
STS-105 and Expedition Three crews in White Room at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose in the White Room on Launch Pad 39A. Standing are (left to right) Pilot Rick Sturckow, Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Kneeling are cosmonaut Mikhail Tyurin, Commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov. Tyurin and Dezhurov are with the Russian Aviation and Space Agency. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
2001-07-19
KENNEDY SPACE CENTER, Fla. -- On the 195-foot level of the Fixed Service Structure, Launch Pad 39A, the STS-105 and Expedition Three crews listen to instructions about use of the slidewire basket, part of emergency egress training at the pad. From left are Expedition Three Commander Frank Culbertson, STS-105 Pilot Rick Sturckow; cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include the emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-08-05
KENNEDY SPACE CENTER, Fla. -- Two members of the Expedition Three crew arrive at Kennedy Space Center’s Shuttle Landing Facility to make final preparations before launch of STS-105. At left is Commander Frank Culbertson, who piloted the T-38 in the background with his passenger cosmonaut Mikhail Tyurin (right). The Shuttle crew comprises commander Scott Horowitz, Pilot Rick Sturckow and Mission Specialists Daniel Barry and Patrick Forrester. On mission STS-105, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the International Space Station. The Early Ammonia Servicer (EAS) tank, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch of Discovery on mission STS-105 is scheduled for Aug. 9, 2001
STS-105 and Expedition Three crews get slidewire training at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- On the 195-foot level of the Fixed Service Structure, Launch Pad 39A, the STS-105 and Expedition Three crews listen to instructions about use of the slidewire basket, part of emergency egress training at the pad. From left are Expedition Three Commander Frank Culbertson, STS-105 Pilot Rick Sturckow; cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include the emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
Crew/Automation Interaction in Space Transportation Systems: Lessons Learned from the Glass Cockpit
NASA Technical Reports Server (NTRS)
Rudisill, Marianne
2000-01-01
The progressive integration of automation technologies in commercial transport aircraft flight decks - the 'glass cockpit' - has had a major, and generally positive, impact on flight crew operations. Flight deck automation has provided significant benefits, such as economic efficiency, increased precision and safety, and enhanced functionality within the crew interface. These enhancements, however, may have been accrued at a price, such as complexity added to crew/automation interaction that has been implicated in a number of aircraft incidents and accidents. This report briefly describes 'glass cockpit' evolution. Some relevant aircraft accidents and incidents are described, followed by a more detailed description of human/automation issues and problems (e.g., crew error, monitoring, modes, command authority, crew coordination, workload, and training). This paper concludes with example principles and guidelines for considering 'glass cockpit' human/automation integration within space transportation systems.
2017-10-01
Medical Awareness Enhancements PRINCIPAL INVESTIGATOR: Rachel Kinsler CONTRACTING ORGANIZATION: U.S. Army Aeromedical Research Laboratory Forth...Rucker, AL 36362 REPORT DATE: October 2017 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick...ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Aeromedical Research Laboratory Building 6901 Fort Rucker, AL 36362 8. PERFORMING ORGANIZATION REPORT NUMBER 9
Organophosphate Related Alterations in Myelin and Axonal Transport in the Living Mammalian Brain
2015-10-01
examine post hoc differences when indicated. Statistical significance was assessed using an alpha level of 0.05. 3. Results 3.1. Body weights Test subjects...REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved...not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation. 2 REPORT
2013-01-01
what truly had to be protected and where we would establish trust. The results of that exercise materially changed our defense-in-depth strategy...vice president for Global Transportation and Industrial Markets at KPMG Consulting (later BearingPoint), leading the company’s strat- egy and
JPRS Report, Soviet Union, Foreign Military Review, No. 4, April 1987
1987-09-17
Franch troops participated in military actions in Lebanon and Chad (1983)» and in Chad and Togo (1986). Today France is again using her armed forces...and 3 sections—transport, refueling and food supply); repair and maintenance platoon (86 men, command section, 8 functional sections—administrative...6 percent are major enterprises. Light industry and the food industry are of key importance in Pakistan. They account for more than half the
V-22 Osprey Tilt-Rotor Aircraft: Background and Issues for Congress
2009-12-22
perpendicular to spindle shaft ) by not producing the commands requested by the pilot’s controls positions. This tends to significantly reduce the severity of... designed to transport 24 fully equipped Marines at a cruising speed of about 250 knots (about 288 mph), exceeding the performance of the Marine Corps CH...Background and Issues for Congress Congressional Research Service 2 22 is designed to carry 18 troops, with auxiliary fuel tanks increasing the
2014-06-30
Directorate 3550 Aberdeen Ave SE AIR FORCE MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM 87117-5776 DTIC COPY NOTICE AND SIGNATURE PAGE Using ...any other person or corporation; or convey any rights or permission to manufacture, use , or sell any patented invention that may relate to them...stations in Eurasia. This is accomplished by synthesizing seismograms using a radiative transport technique to predict the high frequency coda (>5 Hz
ASTRONAUT JAMES A. LOVELL, JR. - PRELAUNCH - GT-12 - LEAVE TRAILER - CAPE
1966-11-11
S66-59974 (11 Nov. 1966) --- Prime crew for the Gemini-12 spaceflight, astronauts James A. Lovell Jr., (leading), command pilot, and Edwin E. Aldrin Jr., pilot, leave the suiting trailer at Launch Complex 16 during prelaunch countdown. Moments later they entered a transport van which carried them to Pad 19 and their waiting spacecraft. The liftoff was at 3:46 p.m. (EST), Nov. 11, 1966. Photo credit: NASA
2016-02-03
required vehicles be covered, locked , and stored in accordance with standard commercial practices. Specifically, numerous leaks were present...Vehicle Processing Center and storage facility, Dallas , Texas; • Vehicle Processing Center, St. Louis, Missouri; • Vehicle Processing Center, Charleston...vehicles did not require covers and were not required to be locked based on authorized directives from the contracting officer. He also stated that
Honeywell optical investigations on FLASH program
NASA Astrophysics Data System (ADS)
O'Rourke, Ken; Peterson, Eric; Yount, Larry
1995-05-01
The increasing performance and reduction of life cycle cost requirements placed on commercial and military transport aircraft are resulting in more complex, highly integrated aircraft control and management systems. The use of fiber optic data transmission media can make significant contributions in achieving these performance and cost goals. The Honeywell portion of Task 2A on the Fly-by-Light Advanced System Hardware (FLASH) program is evaluating a Primary Flight Control System (PFCS) using pilot and copilot inputs from Active Hand Controllers (AHC) which are optically linked to the primary flight Control Computers (PFCC). Customer involvement is an important element of the Task 2A activity. Establishing customer requirements and perspectives on productization of systems developed under FLASH are key to future product success. The Honeywell elements of the PFCS demonstrator provide a command path that is optically interfaced from crew inputs to commands of distributed, smart actuation subsystems commands. Optical communication architectures are implemented using several protocols including the new AS-1773A 20 Mbps data bus standard. The interconnecting fiber optic cable plant is provided by our Task 1A teammate McDonnell Douglas Aerospace (West). Fiber optic cable plant fabrication uses processed, tools and materials reflecting necessary advances in manufacturing required to make fly-by-light avionics systems marketable.
Crew systems and flight station concepts for a 1995 transport aircraft
NASA Technical Reports Server (NTRS)
Sexton, G. A.
1983-01-01
Aircraft functional systems and crew systems were defined for a 1995 transport aircraft through a process of mission analysis, preliminary design, and evaluation in a soft mockup. This resulted in a revolutionary pilot's desk flight station design featuring an all-electric aircraft, fly-by-wire/light flight and thrust control systems, large electronic color head-down displays, head-up displays, touch panel controls for aircraft functional systems, voice command and response systems, and air traffic control systems projected for the 1990s. The conceptual aircraft, for which crew systems were designed, is a generic twin-engine wide-body, low-wing transport, capable of worldwide operation. The flight control system consists of conventional surfaces (some employed in unique ways) and new surfaces not used on current transports. The design will be incorporated into flight simulation facilities at NASA-Langley, NASA-Ames, and the Lockheed-Georgia Company. When interfaced with advanced air traffic control system models, the facilities will provide full-mission capability for researching issues affecting transport aircraft flight stations and crews of the 1990s.
Training on Transport Security of Nuclear/Radioactive Materials for Key Audiences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, Ronald; Liu, Yung; Shuler, J.M.
Beginning in 2013, the U.S. Department of Energy (DOE) Packaging Certification Program (PCP), Office of Packaging and Transportation, Office of Environmental Management has sponsored a series of three training courses on Security of Nuclear and Other Radioactive Materials during Transport. These courses were developed and hosted by Argonne National Laboratory staff with guest lecturers from both the U.S. and international organizations and agencies including the U.S. Nuclear Regulatory Commission (NRC), Federal Bureau of Investigation (FBI), the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), DOE national laboratories, the International Atomic Energy Agency (IAEA), the World Nuclear Transport Institutemore » (WNTI), and the World Institute for Nuclear Security (WINS). Each of the three courses held to date were one-week in length. The courses delved in detail into the regulatory requirements for transport security, focusing on international and U.S.-domestic requirements and guidance documents. Lectures, in-class discussions and small group exercises, including tabletop (TTX) and field exercises were designed to enhance the learning objectives for the participants. For example, the field exercise used the ARG-US radio frequency identification (RFID) remote surveillance system developed by Argonne for DOE/PCP to track and monitor packages in a mock shipment, following in-class exercises of developing a transport security plan (TSP) for the mock shipment, performing a readiness review and identifying needed corrective actions. Participants were able to follow the mock shipment on the webpage in real time in the ARG-US Command Center at Argonne including “staged” incidents that were designed to illustrate the importance of control, command, communication and coordination in ensuring transport security. Great lessons were learned based on feedback from the participant’s course evaluations with the series of the courses. Since the development of the relevant teaching materials for the course have largely been completed, tailoring the course for targeted audiences becomes a relatively easy task, requiring less effort and providing more flexibility for both the lecturers and future participants. One-day or two-day courses with focus specifically on the U.S. transport security requirements can be delivered, at locations away from Argonne, by one or two principal lecturers to targeted audiences such as regulators, shippers, carriers, state and local law enforcement personnel, and emergency responders. This paper will highlight the lessons learned in hosting previous one-week courses and discuss the development of options for detailed and/or customized courses/workshops for targeted key audiences.« less
Pathfinder, Volume 7, Number 5, September/October 2009. Charting the Sea and Sky
2009-10-01
During the six-month season, ski-equipped LC-130s, the polar version of the C-130 Hercules transport plane, flew more than 8.7 million pounds of...collaborate closely with the Space and Naval Warfare Systems Command (SPAWAR), Office of Polar Programs; the Federal Avia- tion Administration (FAA...only worldwide vector chart coverage. Recently, the Navy implemented polar navigation using NGA charts and is now capable of true worldwide digital
2009-12-01
Police xii SBI Secure Border Initiative SES Senior Executive Service SSP Secretaria de Seguridad Publica TSA Transportation Security...also been involvement from the Mexican law enforcement agency, Secretaria de Seguridad Publica (SSP) on the southwest border (CBP, 2009; ICE, 2009, p. 5...The U.S. border is comprised of nearly 20,000 miles of a mix of coastline and rugged land borders with Mexico and Canada; this includes parts of
2015-06-30
Aberdeen Ave SE AIR FORCE MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM 87117-5776 DTIC COPY NOTICE AND SIGNATURE PAGE Using Government drawings...or corporation; or convey any rights or permission to manufacture, use , or sell any patented invention that may relate to them. This report was...synthesizing seismograms using a radiative transport technique to predict the high frequency coda (2 to 4 Hz) of regional seismic phases at stations
AEROMEDICAL EVACUATION: CLINICALLY PREPARING AIR FORCE FLIGHT NURSES
2016-10-10
AU/ACSC/2016 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY AEROMEDICAL EVACUATION: CLINICALLY PREPARING AIR FORCE FLIGHT NURSES by Michael...15 Figure 6: Patient Movement Visibility……………………………………………………..……16 Figure 7: Clinical Flight Nursing Qualification Criteria...treating each patient’s malady. Flight nurses ensure patients receive safe transport and are treated with dignity. For military members required
The Use of Special Operations Forces in Support of American Strategic Security Strategies
2013-01-28
Operations Command (USSOCOM) global threats have morphed. The world has evolved from a bi-polar conflict characterized by the Cold War through what may be...the community of nations and create a more stable and thus, prosperous, world . This paper sets the strategic context for future operations, defines...transported gamers into the world of SOF on daring missions to save humanity from rogue states and international terrorists. While each is entertaining
Apollo 11 Quarantine Facility Prepared for Loading Onto Jet Transport
NASA Technical Reports Server (NTRS)
1969-01-01
The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home until they reached the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. In this photo taken at Pearl Harbor, Hawaii, the inhabited MQF is prepared for loading into an Air Force C-141 jet transport for the flight back to Ellington Air Force Base Texas and then on to the MSC.
Optical Navigation for the Orion Vehicle
NASA Technical Reports Server (NTRS)
Crain, Timothy; Getchius, Joel; D'Souza, Christopher
2008-01-01
The Orion vehicle is being designed to provide nominal crew transport to the lunar transportation stack in low Earth orbit, crew abort prior during transit to the moon, and crew return to Earth once lunar orbit is achieved. One of the design requirements levied on the Orion vehicle is the ability to return to the vehicle and crew to Earth in the case of loss of communications and command with the Mission Control Center. Central to fulfilling this requirement, is the ability of Orion to navigate autonomously. In low-Earth orbit, this may be solved with the use of GPS, but in cis-lunar and lunar orbit this requires optical navigation. This paper documents the preliminary analyses performed by members of the Orion Orbit GN&C System team.
Corporate crisis management managing a major crisis in a chemical facility.
Marwitz, Steve; Maxson, Neil; Koch, Bill; Aukerman, Todd; Cassidy, Jim; Belonger, David
2008-11-15
Chemical sites should have well trained and organized emergency response plans to manage an incident within the plant or during transport. The implementation of an incident command system utilizing either internal resources or external response through mutual aid agreements is generally sufficient to address the direct impact of an event on the site. When the site resources become overwhelmed in addressing resulting issues such as press releases, medical advice/support, employees and family support, Agency notifications, etc, Corporate should be ready and able to respond. This paper, taken from an in-depth CCPS workshop led by the author, describes an outline for corporate assistance in the event of a major incident at a site or during transportation.
Flight evaluation of two segment approaches for jet transport noise abatement
NASA Technical Reports Server (NTRS)
Rogers, R. A.; Wohl, B.; Gale, C. M.
1973-01-01
A 75 flight-hour operational evaluation was conducted with a representative four-engine fan-jet transport in a representative airport environment. The flight instrument systems were modified to automatically provide pilots with smooth and continuous pitch steering command information during two-segment approaches. Considering adverse weather, minimum ceiling and flight crew experience criteria, a transition initiation altitude of approximately 800 feet AFL would have broadest acceptance for initiating two-segment approach procedures in scheduled service. The profile defined by the system gave an upper glidepath of approximately 6 1/2 degrees. This was 1/2 degree greater than inserted into the area navigation system. The glidepath error is apparently due to an erroneous along-track, distance-to-altitude profile.
NASA Technical Reports Server (NTRS)
Grantham, W. D.; Smith, P. M.; Neely, W. R., Jr.; Deal, P. L.; Yenni, K. R.
1985-01-01
Six-degree-of-freedom ground-based and in-flight simulator studies were conducted to evaluate the low-speed flight characteristics of a twin-fuselage passenger transport airplane and to compare these characteristics with those of a large, single-fuselage (reference) transport configuration similar to the Lockheed C-5A airplane. The primary piloting task was the approach and landing task. The results of this study indicated that the twin-fuselage transport concept had acceptable but unsatisfactory longitudinal and lateral-directional low-speed flight characteristics, and that stability and control augmentation would be required in order to improve the handling qualities. Through the use of rate-command/attitude-hold augmentation in the pitch and roll axes, and the use of several turn coordination features, the handling qualities of the simulated transport were improved appreciably. The in-flight test results showed excellent agreement with those of the six-degree-of-freedom ground-based simulator handling qualities tests. As a result of the in-flight simulation study, a roll-control-induced normal-acceleration criterion was developed. The handling qualities of the augmented twin-fuselage passenger transport airplane exhibited an improvement over the handling characteristics of the reference (single-fuselage) transport.
1990-09-01
without the help from the DSXR staff. William Lyons, Charles Ramsey , and Martin Meeks went above and beyond to help complete this research. Special...develop a valid forecasting model that is significantly more accurate than the one presently used by DSXR and suggested the development and testing of a...method, Strom tested DSXR’s iterative linear regression forecasting technique by examining P1 in the simple regression equation to determine whether
The United States Air Force and the Culture of Innovation, 1945-1965
2002-01-01
US Dept of Transportation; typically they hover between 85 and 95 percent. 16. Kent C. Redmond and Thomas M. Smith, Project Whirlwind: A Case Histo...Washing- ton, D.C.: AF Hist and Museums Prog, 1994). 14. Thomas A . Sturm, The USAF SAB: Its First Twenty Years 1944–1964 (Washington, D.C.: USAF...allegations at Ramo-Wooldridge and the Air Force’s approach. Schriever answered them in a letter to Lt. Gen. Thomas Power, the commander of ARDC, in
1988-03-14
HAEMP. This issue will be resolved during the Technical Test. (8) Will the 10kW SLEEP handle brief overload conditions? Air conditioners and other...signal units; air defense units; combat arms command, control, and commnunications units; and logistics functions in the brigade area. Priority...Skid mounting o Lifting attachments and tiedowns o Transportable by USAF C-130, C-141 and all US Army aircraft o Capability for low velocity air drop
1976-12-17
includes $17,800 to Scaco Airlines, Alpena , Michigan and Welch Airlines, which maintains planes and provides pilots for Seaco Airlines. 18 \\ Currently...flight originating at Alpena , stopping at the base, and continuing to Chicago, and a return flight in the evening. This service is used by- base...Frost Moving and Storage "" Company, 2219 South U.S. 23, Alpena , Michigan (telepnone conoumcation, December 3, 1976). 41
A Transportable VLF/LF Repeater Terminal - A Design Study,
1986-07-01
Corporation and marketed commercially as the ROLM 1602B, is expected to be used on the Airborne Command Post (ABNCP) fleet for MMPM processing. The basic...A suitable keyboard/printer for this application is a solid state teletype, the AN/ UGC -120. This device can also function as an AFSATCOM terminal...and as the VLF output device in the event of CPU failure. The AN/ UGC -120 is an Air Force inventory item. 20 INTERSITE COW4UNICATIONS SUBSYSTEM A single
U.S. Reserve Component Training in U.S. Southern Command - An Example of Total Army Concept.
1988-03-22
contention from the very 6eginning is what happens in Central aria South America is that it prov± des art opportunity to test all the elements of...of tne best examples of our commitnment to the region is the recently completed exercise in Ecuador-Abriendo Rutas (Opening Roads). This exercise...to recovery is to restore Ecuador’s transportation network, roaas and bridges are absolutely essential as the first stepo.6 So under guidance from JCS
Early MPT Estimation Methods: An Evaluation of the LHX Test-Bed Research Program. Volumes 1 and 2
1990-02-01
with parts from the Headquarters and Supply Company ( HSC ) prescribed load list (3) with parts from the Division authorized stockage list (4) with parts...located by an in theater lateral search (5) with parts from CONUS b. Repairs performed at the HSC : (1) without parts (2) with parts from the HSC ... HSC of the Supply and Transportation Battalion (S&T BN) in the Division Support Command (DISCOM). FM 1-104 (Headquarters, Department of the Army [HQS
RIPS: a UNIX-based reference information program for scientists.
Klyce, S D; Rózsa, A J
1983-09-01
A set of programs is described which implement a personal reference management and information retrieval system on a UNIX-based minicomputer. The system operates in a multiuser configuration with a host of user-friendly utilities that assist entry of reference material, its retrieval, and formatted printing for associated tasks. A search command language was developed without restriction in keyword vocabulary, number of keywords, or level of parenthetical expression nesting. The system is readily transported, and by design is applicable to any academic specialty.
2010-11-26
A Russian Search and Rescue all terrain vehicles wait to transport Expedition 25 Commander Doug Wheelock, Flight Engineers Shannon Walker and Fyodor Yurchikhin from the medical tent to awaiting helicopters shortly after the three crew members landed in the Soyuz TMA-19 spacecraft near Arkalyk, Kazakhstan on Friday, Nov. 26, 2010. Russian Cosmonaut Yurchikhin and NASA Astronauts Wheelock and Walker, are returning from nearly six months onboard the International Space Station where they served as members of the Expedition 24 and 25 crews. Photo Credit: (NASA/Bill Ingalls)
2000-01-14
Participants in the First Florida Space Summit take part in a discussion on the future of space as it relates to the State of Florida. The discussion, held at the Kennedy Space Center Visitor Complex, was moderated by Center Director Roy Bridges. Seated (left to right) are Representative Jim Davis, Secretary of Transportation Tom Barry and Rick Stephens, who represented The Boeing Company. The event also included Senator Bob Graham, Senator Connie Mack, Representative Dave Weldon, 45th Space Wing Commander Brig. Gen. Donald Pettit and heads of aerospace companies
2000-01-14
Participants in the First Florida Space Summit take part in a discussion on the future of space as it relates to the State of Florida. The discussion, held at the Kennedy Space Center Visitor Complex, was moderated by Center Director Roy Bridges. Seated (left to right) are Representative Jim Davis, Secretary of Transportation Tom Barry and Rick Stephens, who represented The Boeing Company. The event also included Senator Bob Graham, Senator Connie Mack, Representative Dave Weldon, 45th Space Wing Commander Brig. Gen. Donald Pettit and heads of aerospace companies
General view of the flight deck of the Orbiter Discovery ...
General view of the flight deck of the Orbiter Discovery looking from a low angle up and aft from approximately behind the commander's station. In the view you can see the overhead aft observation windows, the payload operations work area and in this view the payload bay observation windows have protective covers on them. This view was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
1993-06-30
of Scientific Research, Air Force Systems Command, USAF, under grant number AFOSR 91-0298. The views and conclusions contained in this document are...investigations of pulse-test methods were carried out during this year. The first involved the application of the principles of tomography, which has proven to be...a multilayered reservoir: SPE Formation Eval., v. 2, no. 3, pp. 261-283. Ellis, V.D., 1987, Well Logging for Earth Scientists : Elsevier Science
2001-07-19
KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-105 Commander Scott Horowitz puts on a gas mask as part of Terminal Countdown Demonstration Test activities, which also include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch is scheduled no earlier than Aug. 9, 2001
2018-05-03
Col. Michael Hough, Commander 30th Space Wing, Vandenberg Air Force Base, left, and 1st Lieutenant Kristina Williams, weather officer, 30th Space Wing, Vandenberg Air Force Base, discuss NASA's InSight mission during a prelaunch media briefing, Thursday, May 3, 2018, at Vandenberg Air Force Base in California. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is a Mars lander designed to study the "inner space" of Mars: its crust, mantle, and core. Photo Credit: (NASA/Bill Ingalls)
Artist's concept of Apollo 14 crewmen on their firs traverse of lunar surface
1971-01-11
S71-16101 (January 1971) --- A Grumman Aerospace Corporation artist's concept of Apollo 14 crewmen, astronauts Alan B. Shepard Jr., commander, and Edgar D. Mitchell, lunar module pilot, as they set out on their first traverse. Shepard is pulling the Modularized Equipment Transporter (MET) which contains cameras, lunar sample bags, tools and other paraphernalia. Shepard has the Laser Ranging Retro-Reflector (LR-3) in his other hand. Mitchell is carrying the Apollo Lunar Surface Experiments Package (ALSEP) barbell mode.
1995-06-28
Secondary Reports Dilution Unit, Audit Planning and Technical Support Directorate, at (703) 604-8937 (DSN 664-8937) or FAX (703) 604-8932. Suggestions...for Future Audits To suggest ideas for or to request future audits , contact the Planning and Coordination Branch, Audit Planning and Technical...Defense OAIG-AUD (ATTN: APTS Audit Suggestions) 400 Army Navy Drive (Room 801) Arlington, Virginia 22202-2884 DoD Hotline To report fraud, waste
1993-09-01
against Japanese competitors (Camp, 1989:6; Geber , 1990:38). Due to their incredible success in controlling costs, Xerox adopted the technique company...important first step to benchmarking outside the organization ( Geber , 1990:40). Due to availability of information and cooperation of partners, this is...science ( Geber , 1990:42). Several avenues can be pursued to find best-in-class companies. Search business publications for companies frequently
1994-04-01
TSW-7A, AIR TRAFFIC CONTROL CENTRAL (ATCC) 32- 8 AN/TTC-41(V), CENTRAL OFFICE, TELEPHONE, AUTOMATIC 32- 9 MISSILE COUNTERMEASURE DEVICE (MCD) .- 0 MK...a Handheld Terminal Unit (HTU), Portable Computer Unit (PCU), Transportable Computer Unit (TCU), and compatible NOI peripheral devices . All but the...CLASSIFICATION: ASARC-III, Jun 80, Standard. I I I AN/TIC-39 IS A MOBILE , AUTOMATIC , MODULAR ELECTRONIC CIRCUIT SWITCH UNDER PROCESSOR CONTROL WITH INTEGRAL
V-22 Osprey Tilt-Rotor Aircraft: Background and Issues for Congress
2009-11-25
the rotors (rotor disk not perpendicular to spindle shaft ) by not producing the commands requested by the pilot’s controls positions. This tends to...the long-range cruise abilities of a twin turboprop aircraft.”1 The MV-22 is designed to transport 24 fully equipped Marines at a cruising speed of...Service 2 22 is designed to carry 18 troops, with auxiliary fuel tanks increasing the aircraft’s combat radius to about 500 miles. Figure 1 shows a
V-22 Osprey Tilt-Rotor Aircraft: Background and Issues for Congress
2009-07-14
of the rotors (rotor disk not perpendicular to spindle shaft ) by not producing the commands requested by the pilot’s controls positions. This tends...conventional helicopter while also having the long-range cruise abilities of a twin turboprop aircraft.”1 The MV-22 is designed to transport 24 fully...are in their avionics. The CV- 22 is designed to carry 18 troops, with auxiliary fuel tanks increasing the aircraft’s combat radius to about 500 miles
V-22 Osprey Tilt-Rotor Aircraft: Background and Issues for Congress
2009-10-20
of the rotors (rotor disk not perpendicular to spindle shaft ) by not producing the commands requested by the pilot’s controls positions. This tends...a conventional helicopter while also having the long-range cruise abilities of a twin turboprop aircraft.”1 The MV-22 is designed to transport 24...variants are in their avionics. The CV- 22 is designed to carry 18 troops, with auxiliary fuel tanks increasing the aircraft’s combat radius to about 500
V-22 Osprey Tilt-Rotor Aircraft: Background and Issues for Congress
2009-09-16
limits such as the flapping of the rotors (rotor disk not perpendicular to spindle shaft ) by not producing the commands requested by the pilot’s...abilities of a twin turboprop aircraft.”1 The MV-22 is designed to transport 24 fully equipped Marines at a cruising speed of about 250 knots (about...airframe commonality with the MV-22; the primary differences between the two variants are in their avionics. The CV- 22 is designed to carry 18 troops
Operation CHROMITE (INCHON), Offensive, Amphibious Assault, Joint, 15 September 1950
1984-05-23
veterans and supported by over 210 [103 pI combat aircraft. (O’Ballance, p. 25) So this was the military system that procured the North Korean military...one; and, the commander then decides which course to adopt. INCHON was a product of MacArthur’s strategic vision. To K make that vision a reality he... systems radiate from Seoul to the east, north, and south. A force which controls Seoul controls the transportation arteries. (X Corps, p. 5) Seoul
NASA Technical Reports Server (NTRS)
1994-01-01
A software management system, originally developed for Goddard Space Flight Center (GSFC) by Century Computing, Inc. has evolved from a menu and command oriented system to a state-of-the art user interface development system supporting high resolution graphics workstations. Transportable Applications Environment (TAE) was initially distributed through COSMIC and backed by a TAE support office at GSFC. In 1993, Century Computing assumed the support and distribution functions and began marketing TAE Plus, the system's latest version. The software is easy to use and does not require programming experience.
Expedition 52-53 Soyuz Mating and Rocket Rollout Video File
2017-07-26
At the Baikonur Cosmodrome in Kazakhstan, the Soyuz MS-05 spacecraft and its Soyuz booster are transported from the Integration Facility to the launch pad on a railcar July 26 for final preparations before launch July 28 to the International Space Station. The Soyuz MS-05 will carry Expedition 52-53 Soyuz Commander Sergey Ryazanskiy of Roscosmos and Flight Engineers Randy Bresnik of NASA and Paolo Nespoli of ESA (European Space Agency) to the orbital complex for a four-and-a-half month mission.
GT-6 PREFLIGHT ACTIVITY (LEAVE SUITING TRAILER) - ASTRONAUT WALTER M. SCHIRRA, JR. - SUIT
1965-12-15
S65-59974 (15 Dec. 1965) --- Astronauts Walter M. Schirra Jr. (leading), command pilot; and Thomas P. Stafford, pilot, leave the suiting trailer at Launch Complex 16 during the Gemini-6 prelaunch countdown at Cape Kennedy, Florida. They entered a special transport van which carried them to Pad 19 and their spacecraft. Gemini-6 lifted off at 8:37 a.m. (EST) on Dec. 15, 1965. Photo credit: NASA or National Aeronautics and Space Administration
2016-08-01
a series on SPY-1 radar spare parts. The SPY-1 radar is an advanced , automatic detect and track radar system . The SPY-1 radar is one of 13 major...the AEGIS Weapon System could be adversely impacted if parts needed to maintain the SPY-1 radars are not transported to the warfighters when...for SPY-1 Radar Sustainment (Report No. DODIG-2016-116) We are providing this report for review and comment. Naval Supply Systems Command Weapon
Stochastic Feedforward Control Technique
NASA Technical Reports Server (NTRS)
Halyo, Nesim
1990-01-01
Class of commanded trajectories modeled as stochastic process. Advanced Transport Operating Systems (ATOPS) research and development program conducted by NASA Langley Research Center aimed at developing capabilities for increases in capacities of airports, safe and accurate flight in adverse weather conditions including shear, winds, avoidance of wake vortexes, and reduced consumption of fuel. Advances in techniques for design of modern controls and increased capabilities of digital flight computers coupled with accurate guidance information from Microwave Landing System (MLS). Stochastic feedforward control technique developed within context of ATOPS program.
Expedition 18 Soyuz TMA-13 Rollout
2008-10-09
The Soyuz TMA-13 spacecraft is transported by railcar to its launch pad at the Baikonur Cosmodrome in Kazakhstan, Friday, Oct. 10, 2008. Expedition 18 Commander Michael Fincke, Flight Engineer Yuri V. Lonchakov and American spaceflight participant Richard Garriott will launch October 12 and dock with the International Space Station October 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth after 10 days with the Expedition 17 crew members currently on the ISS. Photo Credit: (NASA/Bill Ingalls)
2012-03-06
Logistics Support. There were no set agreements in place to use military assets to transport donated goods from NGOs and the private sector . This led to... private sector in the future.25 Lessons Learned: Command and Control. The JTF staff had not been exercised in the lead up to the operation...these islands would have been able to survive on their internal produce and subsistence culture, however in a globalised world, some of them are
2010-09-01
NNWC) was used to calculate major cost components—labor, hardware, software , and transport, while a VMware tool was used to calculate power and...cooling costs for both solutions. In addition, VMware provided a cost estimate for the upfront hardware and software licensing costs needed to support...cost per seat (CPS) model developed by Naval Network Warfare Command (NNWC) was used to calculate major cost components—labor, hardware, software , and
2001-08-09
KENNEDY SPACE CENTER, Fla. -- The STS-105 crew exits the Operations and Checkout Building, followed by the Expedition Three (E3) crew. Leading the way are (left to right) Pilot Rick Sturckow and Commander Scott Horowitz; in the second row, Mission Specialists Patrick Forrester and Daniel Barry; in the third row, E3 cosmonaut Mikhail Tyurin, Commander Frank Culbertson, and cosmonaut Vladimir Dezhurov. Forrester and Tyurin are both making their first space flights. On the mission, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the ISS, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9. [Photo by Scott Andrews; Nikon D1 camera
2001-08-09
KENNEDY SPACE CENTER, Fla. -- The STS-105 crew exits the Operations and Checkout Building, followed by the Expedition Three (E3) crew, to head for Launch Pad 39A and liftoff. Leading the way are (left to right) Pilot Rick Sturckow and Commander Scott Horowitz; in the second row, Mission Specialists Patrick Forrester and Daniel Barry; in the third row, E3 cosmonaut Mikhail Tyurin, Commander Frank Culbertson, and cosmonaut Vladimir Dezhurov. Forrester and Tyurin are both making their first space flights. On the mission, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the ISS, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9
Flight test experience and controlled impact of a large, four-engine, remotely piloted airplane
NASA Technical Reports Server (NTRS)
Kempel, R. W.; Horton, T. W.
1985-01-01
A controlled impact demonstration (CID) program using a large, four engine, remotely piloted transport airplane was conducted. Closed loop primary flight control was performed from a ground based cockpit and digital computer in conjunction with an up/down telemetry link. Uplink commands were received aboard the airplane and transferred through uplink interface systems to a highly modified Bendix PB-20D autopilot. Both proportional and discrete commands were generated by the ground pilot. Prior to flight tests, extensive simulation was conducted during the development of ground based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems. However, manned flight tests were the primary method of verification and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and the systems required to accomplish the remotely piloted mission are discussed.
STS-113 and Expedition 6 crews leave the O&C building for launch
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- The STS-113 and Expedition 6 crews head for the Astrovan to transport them to Launch Pad 39A and Space Shuttle Endeavour. In the foreground, from left, are Mission Specialist Michael Lopez-Alegria and John Herrington, and Expedition 6 Commander Ken Bowersox. In the background, from left, are Expedition 6 flight engineers Donald Pettit and Nikolai Budarin, Pilot Paul Lockhart and Commander James Wetherbee. The primary mission for the crew is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 22, 2002, at 8:15 p.m. EST.
Grip Forces During Object Manipulation: Experiment, Mathematical Model & Validation
Slota, Gregory P.; Latash, Mark L.; Zatsiorsky, Vladimir M.
2011-01-01
When people transport handheld objects, they change the grip force with the object movement. Circular movement patterns were tested within three planes at two different rates (1.0, 1.5 Hz), and two diameters (20, 40 cm). Subjects performed the task reasonably well, matching frequencies and dynamic ranges of accelerations within expectations. A mathematical model was designed to predict the applied normal forces from kinematic data. The model is based on two hypotheses: (a) the grip force changes during movements along complex trajectories can be represented as the sum of effects of two basic commands associated with the parallel and orthogonal manipulation, respectively; (b) different central commands are sent to the thumb and virtual finger (Vf- four fingers combined). The model predicted the actual normal forces with a total variance accounted for of better than 98%. The effects of the two components of acceleration—along the normal axis and the resultant acceleration within the shear plane—on the digit normal forces are additive. PMID:21735245
Prehospital care in Hong Kong.
Lo, C B; Lai, K K; Mak, K P
2000-09-01
A quick and efficient prehospital emergency response depends on immediate ambulance dispatch, patient assessment, triage, and transport to hospital. During 1999, the Ambulance Command of the Hong Kong Fire Services Department responded to 484,923 calls, which corresponds to 1329 calls each day. Cooperation between the Fire Services Department and the Hospital Authority exists at the levels of professional training of emergency medical personnel, quality assurance, and a coordinated disaster response. In response to the incident at the Hong Kong International Airport in the summer of 1999, when an aircraft overturned during landing, the pre-set quota system was implemented to send patients to designated accident and emergency departments. Furthermore, the 'first crew at the scene' model has been adopted, whereby the command is established and triage process started by the first ambulance crew members to reach the scene. The development of emergency protocols should be accompanied by good field-to-hospital and interhospital communication, the upgrading of decision-making skills, a good monitoring and auditing structure, and commitment to training and skills maintenance.
STS-111 Flight Day 8 Highlights
NASA Technical Reports Server (NTRS)
2002-01-01
On Flight Day 8 of STS-111 (Space Shuttle Endeavour crew includes: Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist; International Space Station (ISS) Expedition 5 crew includes Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer; ISS Expedition 4 crew includes: Yury Onufrienko, Commander; Daniel Bursch, Flight Engineer; Carl Walz, Flight Engineer), the Leonardo Multi Purpose Logistics Module (MPLM) is shown from the outside of the ISS. The MPLM, used to transport goods to the station for the Expedition 5 crew, and to return goods used by the Expedition 4 crew, is being loaded and unloaded by crewmembers. Live video from within the Destiny Laboratory Module shows Whitson and Chang-Diaz. They have just completed the second of three reboosts planned for this mission, in each of which the station will gain an additional statutory mile in altitude. Following this there is an interview conducted by ground-based reporters with some members from each of the three crews, answering various questions on their respective missions including sleeping in space and conducting experiments. Video of Earth and space tools precedes a second interview much like the first, but with the crews in their entirety. Topics discussed include the feelings of Bursch and Walz on their breaking the US record for continual days spent in space. The video ends with footage of the Southern California coastline.
Express railway disaster in Amagasaki: a review of urban disaster response capacity in Japan.
Nagata, Takashi; Rosborough, Stephanie N; Rosborogh, Stephanie N; VanRooyen, Michael J; Kozawa, Shuichi; Ukai, Takashi; Nakayama, Shinichi
2006-01-01
On the morning of 25 April 2005, a Japan Railway express train derailed in an urban area of Amagasaki, Japan. The crash was Japan's worst rail disaster in 40 years. This study chronicles the rescue efforts and highlights the capacity of Japan's urban disaster response. Public reports were gathered from the media, Internet, government, fire department, and railway company. Four key informants, who were close to the disaster response, were interviewed to corroborate public data and highlight challenges facing the response. The crash left 107 passengers dead and 549 injured. First responders, most of whom were volunteers, were helpful in the rescue effort, and no lives were lost due to transport delays or faulty triage. Responders criticized an early decision to withdraw rescue efforts, a delay in heliport set-up, the inefficiency of the information and instruction center, and emphasized the need for training in confined space medicine. Communication and chain-of-command problems created confusion at the scene. The urban disaster response to the train crash in Amagasaki was rapid and effective. The Kobe Earthquake and other incidents sparked changes that improved disaster preparedness in Amagasaki. However, communication and cooperation among responders were hampered, as in previous disasters, by the lack of a structured command system. Application of an incident command system may improve disaster coordination in Japan.
STS-111 Flight Day 8 Highlights
NASA Astrophysics Data System (ADS)
2002-06-01
On Flight Day 8 of STS-111 (Space Shuttle Endeavour crew includes: Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist; International Space Station (ISS) Expedition 5 crew includes Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer; ISS Expedition 4 crew includes: Yury Onufrienko, Commander; Daniel Bursch, Flight Engineer; Carl Walz, Flight Engineer), the Leonardo Multi Purpose Logistics Module (MPLM) is shown from the outside of the ISS. The MPLM, used to transport goods to the station for the Expedition 5 crew, and to return goods used by the Expedition 4 crew, is being loaded and unloaded by crewmembers. Live video from within the Destiny Laboratory Module shows Whitson and Chang-Diaz. They have just completed the second of three reboosts planned for this mission, in each of which the station will gain an additional statutory mile in altitude. Following this there is an interview conducted by ground-based reporters with some members from each of the three crews, answering various questions on their respective missions including sleeping in space and conducting experiments. Video of Earth and space tools precedes a second interview much like the first, but with the crews in their entirety. Topics discussed include the feelings of Bursch and Walz on their breaking the US record for continual days spent in space. The video ends with footage of the Southern California coastline.
Interagency Evaluation of the Section 1206 Global Train and Equip Program
2009-08-31
Capabilities, Joint Staff, U.S. Africa Command, U.S. Central Command, U.S Joint Forces Command, U.S. Pacific Command, U.S. Southern Command, U.S. Special...Intensity Conflict & Interdependent Capabilities; Commanders of U.S. Africa Command, U.S. Central Command, U.S. Joint Forces Command, U.S. Pacific... Central Command, commented that coordinating the Section 1206 project proposal with the partner nation prior to submission would inflate the
5. Command center doors at command center entry, building 501, ...
5. Command center doors at command center entry, building 501, looking north - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
NASA Technical Reports Server (NTRS)
Mckee, James W.
1990-01-01
This volume (3 of 4) contains the specification for the command language for the AMPS system. The volume contains a requirements specification for the operating system and commands and a design specification for the operating system and command. The operating system and commands sits on top of the protocol. The commands are an extension of the present set of AMPS commands in that the commands are more compact, allow multiple sub-commands to be bundled into one command, and have provisions for identifying the sender and the intended receiver. The commands make no change to the actual software that implement the commands.
Joint Chiefs of Staff > Media > Photos
U.S. Army Gen. Curtis M. Scaparrotti, left, Commander of U.S. European Command and Supreme Allied , Commander of U.S. European Command and Supreme Allied Commander, Europe; speaks after receiving the . U.S. Army Gen. Curtis M. Scaparrotti, Commander of U.S. European Command and Supreme Allied Commander
Earth Observing System (EOS) Communication (Ecom) Modeling, Analysis, and Testbed (EMAT) activiy
NASA Technical Reports Server (NTRS)
Desai, Vishal
1994-01-01
This paper describes the Earth Observing System (EOS) Communication (Ecom) Modeling, Analysis, and Testbed (EMAT) activity performed by Code 540 in support of the Ecom project. Ecom is the ground-to-ground data transport system for operational EOS traffic. The National Aeronautic and Space Administration (NASA) Communications (Nascom) Division, Code 540, is responsible for implementing Ecom. Ecom interfaces with various systems to transport EOS forward link commands, return link telemetry, and science payload data. To understand the complexities surrounding the design and implementation of Ecom, it is necessary that sufficient testbedding, modeling, and analysis be conducted prior to the design phase. These activities, when grouped, are referred to as the EMAT activity. This paper describes work accomplished to date in each of the three major EMAT activities: modeling, analysis, and testbedding.
Adaptive Control of a Transport Aircraft Using Differential Thrust
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan
2009-01-01
The paper presents an adaptive control technique for a damaged large transport aircraft subject to unknown atmospheric disturbances such as wind gust or turbulence. It is assumed that the damage results in vertical tail loss with no rudder authority, which is replaced with a differential thrust input. The proposed technique uses the adaptive prediction based control design in conjunction with the time scale separation principle, based on the singular perturbation theory. The application of later is necessitated by the fact that the engine response to a throttle command is substantially slow that the angular rate dynamics of the aircraft. It is shown that this control technique guarantees the stability of the closed-loop system and the tracking of a given reference model. The simulation example shows the benefits of the approach.
2014-09-16
CAPE CANAVERAL, Fla. – Astronaut Mike Fincke, a former commander of the International Space Station, speaks during the Commercial Crew Transportation Capability CCtCap contract announcement ceremony. Speaking from Kennedy Space Center’s Press Site, Fincke detailed the importance of the development effort by the agency's Commercial Crew Program for station crew members, United States space exploration ambitions and the economic potential of creating new markets in space transportation for people. Boeing and SpaceX were awarded contracts to complete the design of the CST-100 and Crew Dragon spacecraft, respectively, and begin manufacturing for flight tests with a goal of achieving certification to take astronauts to the International Space Station by 2017. CCtCap also covers the beginning of operational missions for these new spacecraft and their systems. Photo credit: NASA/Jim Grossmann
2001-08-20
KENNEDY SPACE CENTER, Fla. -- The STS-111 crew pause before departing KSC for Houston. The crew spent time in the Space Station Processing Facility for training on the payload they will be transporting: The Mobile Base System (MBS). Standing left to right are Pilot Paul Lockhart, Commander Ken Cockrell and Mission Specialists Phillippe Perrin, with the French space agency CNES, and Franklin Chang-Diaz. During the mission, the MBS will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS. The mechanical arm will then have the capability to "inchworm" from the U.S. Lab Destiny to the MSS and travel along the Truss to work sites. The Expedition Five crew will be replacing Expedition Four. Launch of Endeavour on mission STS-111 is scheduled for April 18, 2002
POWER SUPPLY CONTROL AND MONITORING FOR THE SNS RING AND TRANSPORT SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
LAMBIASE,R.; OERTER,B.; PENG,S.
2001-06-28
There are approximately 300 magnet power supplies in the SNS accumulator ring and transport lines. Control and monitoring of the these converters will be primarily accomplished with a new Power Supply Interface and Controller (PSI/PSC) system developed for the SNS project. This PSI/PSC system provides all analog and digital commands and status readbacks in one fiber isolated module. With a maximum rate of 10KHz, the PSI/PSC must be supplemented with higher speed systems for the wide bandwidth pulsed injection supplies, and the even wider bandwidth extraction kickers. This paper describes the implementation of this PSI/PSC system, which was developed throughmore » an industry/laboratory collaboration, and the supplementary equipment used to support the wider bandwidth pulsed supplies.« less
NASA Technical Reports Server (NTRS)
Ambrose, Robert O.
2007-01-01
Lunar robotic functions include: 1. Transport of crew and payloads on the surface of the moon; 2. Offloading payloads from a lunar lander; 3. Handling the deployment of surface systems; with 4. Human commanding of these functions from inside a lunar vehicle, habitat, or extravehicular (space walk), with Earth-based supervision. The systems that will perform these functions may not look like robots from science fiction. In fact, robotic functions may be automated trucks, cranes and winches. Use of this equipment prior to the crew s arrival or in the potentially long periods without crews on the surface, will require that these systems be computer controlled machines. The public release of NASA's Exploration plans at the 2nd Space Exploration Conference (Houston, December 2006) included a lunar outpost with as many as four unique mobility chassis designs. The sequence of lander offloading tasks involved as many as ten payloads, each with a unique set of geometry, mass and interface requirements. This plan was refined during a second phase study concluded in August 2007. Among the many improvements to the exploration plan were a reduction in the number of unique mobility chassis designs and a reduction in unique payload specifications. As the lunar surface system payloads have matured, so have the mobility and offloading functional requirements. While the architecture work continues, the community can expect to see functional requirements in the areas of surface mobility, surface handling, and human-systems interaction as follows: Surface Mobility 1. Transport crew on the lunar surface, accelerating construction tasks, expanding the crew s sphere of influence for scientific exploration, and providing a rapid return to an ascent module in an emergency. The crew transport can be with an un-pressurized rover, a small pressurized rover, or a larger mobile habitat. 2. Transport Extra-Vehicular Activity (EVA) equipment and construction payloads. 3. Transport habitats and power modules over long distances, pre-positioning them for the arrival of crew on a subsequent lander. Surface Handling 1. Offload surface system payloads from the lander, breaking launch restraints and power/data connections. Payloads may be offloaded to a wheeled vehicle for transport. 2. Deploy payloads from a wheeled vehicle at a field site, placing the payloads in their final use site on the ground or mating them with existing surface systems. 3. Support regolith collection, site preparation, berm construction, or other civil engineering tasks using tools and implements attached to rovers. Human-Systems Interaction 1. Provide a safe command and control interface for suited EVA to ride on and drive the vehicles, making sure that the systems are also safe for working near dismounted crew. 2. Provide an effective control system for IV crew to tele-operate vehicles, cranes and other equipment from inside the surface habitats with evolving independence from Earth. .. Provide a supervisory system that allows machines to be commanded from the ground, working across the Earth-Lunar time delays on the order of 5-10 seconds (round trip) to support operations when crew are not resident on the surface. Technology Development Needs 1. Surface vehicles that can dock, align and mate with outpost equipment such as landers, habitats and fluid/power interfaces. 2. Long life motors, drive trains, seals, motor electronics, sensors, processors, cable harnesses, and dash board displays. 3. Active suspension control, localization, high speed obstacle avoidance, and safety systems for operating near dismounted crew. 4. High specific energy and specific power batteries that are safe, rechargeable, and long lived.
32 CFR 700.1053 - Commander of a task force.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false Commander of a task force. 700.1053 Section 700... Command Detail to Duty § 700.1053 Commander of a task force. (a) A geographic fleet commander, and any other naval commander, may detail in command of a task force, or other task command, any eligible...
Quarantined Apollo 11 Astronauts Loaded Onto Trailer For Transport
NASA Technical Reports Server (NTRS)
1969-01-01
The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet recovery ship, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home for 21 days. In this photo taken at Pearl Harbor, Hawaii, the quarantined housing facility is being lowered from the U.S.S. Hornet, onto a trailer for transport to Hickam Field. From there, it was loaded aboard an Air Force C-141 jet and flown back to Ellington Air Force Base Texas, and then on to the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas.
Apollo 11 Occupied Mobile Quarantine Facility (MQF) Moved For Transport
NASA Technical Reports Server (NTRS)
1969-01-01
The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet recovery ship, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home until they reached the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. The occupied MQF was unloaded from the U.S.S. Hornet in Pearl Harbor, Hawaii. In this photo, the facility is moved from the Hornet's dock enroute to Hickam Field where it was loaded aboard an Air Force C-141 jet transport for the flight back to Ellington Air Force Base Texas, and then on to the MSC.
Dempsey, Jerome A
2012-09-01
The cardioaccelerator and ventilatory responses to rhythmic exercise in the human are commonly viewed as being mediated predominantly via feedforward 'central command' mechanisms, with contributions from locomotor muscle afferents to the sympathetically mediated pressor response. We have assessed the relative contributions of three types of feedback afferents on the cardiorespiratory response to voluntary, rhythmic exercise by inhibiting their normal 'tonic' activity in healthy animals and humans and in chronic heart failure. Transient inhibition of the carotid chemoreceptors during moderate intensity exercise reduced muscle sympathetic nerve activity (MSNA) and increased limb vascular conductance and blood flow; and reducing the normal level of respiratory muscle work during heavier intensity exercise increased limb vascular conductance and blood flow. These cardiorespiratory effects were prevented via ganglionic blockade and were enhanced in chronic heart failure and in hypoxia. Blockade of μ opioid sensitive locomotor muscle afferents, with preservation of central motor output via intrathecal fentanyl: (a) reduced the mean arterial blood pressure (MAP), heart rate and ventilatory responses to all steady state exercise intensities; and (b) during sustained high intensity exercise, reduced O(2) transport, increased central motor output and end-exercise muscle fatigue and reduced endurance performance. We propose that these three afferent reflexes - probably acting in concert with feedforward central command - contribute significantly to preserving O(2) transport to locomotor and to respiratory muscles during exercise. Locomotor muscle afferents also appear to provide feedback concerning the metabolic state of the muscle to influence central motor output, thereby limiting peripheral fatigue development.
Emerging Roles for the Lysosome in Lipid Metabolism.
Thelen, Ashley M; Zoncu, Roberto
2017-11-01
Precise regulation of lipid biosynthesis, transport, and storage is key to the homeostasis of cells and organisms. Cells rely on a sophisticated but poorly understood network of vesicular and nonvesicular transport mechanisms to ensure efficient delivery of lipids to target organelles. The lysosome stands at the crossroads of this network due to its ability to process and sort exogenous and endogenous lipids. The lipid-sorting function of the lysosome is intimately connected to its recently discovered role as a metabolic command-and-control center, which relays multiple nutrient cues to the master growth regulator, mechanistic target of rapamycin complex (mTORC)1 kinase. In turn, mTORC1 potently drives anabolic processes, including de novo lipid synthesis, while inhibiting lipid catabolism. Here, we describe the dual role of the lysosome in lipid transport and biogenesis, and we discuss how integration of these two processes may play important roles both in normal physiology and in disease. Copyright © 2017 Elsevier Ltd. All rights reserved.
The C3-System User. Volume II. Workshop Notes
1977-02-01
system that provides the means for operational direction and technical administrative support involved in the function of command and control of U.S...information systems of the Headquarters of the Military Depart- ments; the command and control systems of the Headquarters of the Service Component Commands...the Service Component Commands - Military Airlift Command - Military Sealift Command - Military Traffic Management Command - 3.2.5 Command and
32 CFR 700.703 - To announce assumption of command.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false To announce assumption of command. 700.703... Chief and Other Commanders Titles and Duties of Commanders § 700.703 To announce assumption of command. (a) Upon assuming command, commanders shall so advise appropriate superiors, and the units of their...
32 CFR 700.703 - To announce assumption of command.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 5 2012-07-01 2012-07-01 false To announce assumption of command. 700.703... Chief and Other Commanders Titles and Duties of Commanders § 700.703 To announce assumption of command. (a) Upon assuming command, commanders shall so advise appropriate superiors, and the units of their...
32 CFR 536.8 - Responsibilities and operations of command claims services.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 3 2010-07-01 2010-07-01 true Responsibilities and operations of command claims... operations of command claims services. (a) Chiefs of command claims services. Chiefs of command claims... Commander USARCS, and assigned an office code. However, the chief of a command claims service may...
32 CFR 700.703 - To announce assumption of command.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 5 2014-07-01 2014-07-01 false To announce assumption of command. 700.703... Chief and Other Commanders Titles and Duties of Commanders § 700.703 To announce assumption of command. (a) Upon assuming command, commanders shall so advise appropriate superiors, and the units of their...
32 CFR 700.703 - To announce assumption of command.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 5 2013-07-01 2013-07-01 false To announce assumption of command. 700.703... Chief and Other Commanders Titles and Duties of Commanders § 700.703 To announce assumption of command. (a) Upon assuming command, commanders shall so advise appropriate superiors, and the units of their...
32 CFR 700.703 - To announce assumption of command.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 5 2011-07-01 2011-07-01 false To announce assumption of command. 700.703... Chief and Other Commanders Titles and Duties of Commanders § 700.703 To announce assumption of command. (a) Upon assuming command, commanders shall so advise appropriate superiors, and the units of their...
32 CFR 536.8 - Responsibilities and operations of command claims services.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 3 2011-07-01 2009-07-01 true Responsibilities and operations of command claims... operations of command claims services. (a) Chiefs of command claims services. Chiefs of command claims... Commander USARCS, and assigned an office code. However, the chief of a command claims service may...
32 CFR 536.8 - Responsibilities and operations of command claims services.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 3 2012-07-01 2009-07-01 true Responsibilities and operations of command claims... operations of command claims services. (a) Chiefs of command claims services. Chiefs of command claims... Commander USARCS, and assigned an office code. However, the chief of a command claims service may...
The United States Navy Arctic Roadmap for 2014 to 2030
2014-02-01
of the Oceanographer of the Navy; the Chief of Naval Research; Commander, Naval Meteorology and Oceanography Command; Commander, Office of Naval...Q3, FY14 Q3, FY15 FY15-18 FY18 2.3.4: Improve traditional meteorological forecast capability in the polar regions through the...CNE Commander Naval Forces Europe CNIC Commander Navy Installations Command CNMOC Commander Naval Meteorology and Oceanography Command CNO Chief
32 CFR 536.12 - Commanding General, U.S. Army Medical Command.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 3 2011-07-01 2009-07-01 true Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...
32 CFR 536.14 - Commanders of major Army commands.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 3 2012-07-01 2009-07-01 true Commanders of major Army commands. 536.14 Section... CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...
32 CFR 536.12 - Commanding General, U.S. Army Medical Command.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 3 2012-07-01 2009-07-01 true Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...
32 CFR 536.14 - Commanders of major Army commands.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 3 2010-07-01 2010-07-01 true Commanders of major Army commands. 536.14 Section... CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...
32 CFR 536.14 - Commanders of major Army commands.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 3 2013-07-01 2013-07-01 false Commanders of major Army commands. 536.14... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...
32 CFR 536.14 - Commanders of major Army commands.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 3 2011-07-01 2009-07-01 true Commanders of major Army commands. 536.14 Section... CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...
32 CFR 536.12 - Commanding General, U.S. Army Medical Command.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 3 2014-07-01 2014-07-01 false Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...
32 CFR 536.12 - Commanding General, U.S. Army Medical Command.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 3 2010-07-01 2010-07-01 true Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...
32 CFR 536.14 - Commanders of major Army commands.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 3 2014-07-01 2014-07-01 false Commanders of major Army commands. 536.14... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...
32 CFR 536.12 - Commanding General, U.S. Army Medical Command.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 3 2013-07-01 2013-07-01 false Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...
The SAS-3 delayed command system
NASA Technical Reports Server (NTRS)
Hoffman, E. J.
1975-01-01
To meet the requirements arising from the increased complexity of the power, attitude control and telemetry systems, a full redundant high-performance control section with delayed command capability was designed for the Small Astronomy Satellite-3 (SAS-3). The relay command system of SAS-3 is characterized by 56 bystate relay commands, with capability for handling up to 64 commands in future versions. The 'short' data command service of SAS-1 and SAS-2 consisting of shifting 24-bit words to two users was expanded to five users and augmented with a 'long load' data command service (up to 4080 bits) used to program the telemetry system and the delayed command subsystem. The inclusion of a delayed command service ensures a program of up to 30 relay or short data commands to be loaded for execution at designated times. The design and system operation of the SAS-3 command section are analyzed, with special attention given to the delayed command subsystem.
14 CFR 91.1031 - Pilot in command or second in command: Designation required.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Pilot in command or second in command... RULES Fractional Ownership Operations Program Management § 91.1031 Pilot in command or second in command: Designation required. (a) Each program manager must designate a— (1) Pilot in command for each program flight...
32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 5 2014-07-01 2014-07-01 false Commandant of the Marine Corps or the Commander, Naval Military Personnel Command. 724.405 Section 724.405 National Defense Department of Defense... Personnel Command. Personnel managers of the Marine Corps and the Navy; responsible for providing limited...
32 CFR 700.1058 - Command of a submarine.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 5 2011-07-01 2011-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine shall be an officer of the line in the Navy, eligible for command at sea and qualified for command of...
14 CFR 135.109 - Pilot in command or second in command: Designation required.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Pilot in command or second in command... ON BOARD SUCH AIRCRAFT Flight Operations § 135.109 Pilot in command or second in command: Designation required. (a) Each certificate holder shall designate a— (1) Pilot in command for each flight; and (2...
32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false Commandant of the Marine Corps or the Commander, Naval Military Personnel Command. 724.405 Section 724.405 National Defense Department of Defense... Personnel Command. Personnel managers of the Marine Corps and the Navy; responsible for providing limited...
14 CFR 1214.703 - Chain of command.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Chain of command. 1214.703 Section 1214.703... Shuttle Commander § 1214.703 Chain of command. (a) The Commander is a career NASA astronaut who has been... particular flight and is second in command of the flight. If the commander is unable to carry out the...
14 CFR 135.109 - Pilot in command or second in command: Designation required.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Pilot in command or second in command... ON BOARD SUCH AIRCRAFT Flight Operations § 135.109 Pilot in command or second in command: Designation required. (a) Each certificate holder shall designate a— (1) Pilot in command for each flight; and (2...
32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 5 2011-07-01 2011-07-01 false Commandant of the Marine Corps or the Commander, Naval Military Personnel Command. 724.405 Section 724.405 National Defense Department of Defense... Personnel Command. Personnel managers of the Marine Corps and the Navy; responsible for providing limited...
32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 5 2013-07-01 2013-07-01 false Commandant of the Marine Corps or the Commander, Naval Military Personnel Command. 724.405 Section 724.405 National Defense Department of Defense... Personnel Command. Personnel managers of the Marine Corps and the Navy; responsible for providing limited...
14 CFR 91.1031 - Pilot in command or second in command: Designation required.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Pilot in command or second in command... RULES Fractional Ownership Operations Program Management § 91.1031 Pilot in command or second in command: Designation required. (a) Each program manager must designate a— (1) Pilot in command for each program flight...
32 CFR 700.1058 - Command of a submarine.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine shall be an officer of the line in the Navy, eligible for command at sea and qualified for command of...
14 CFR 1214.703 - Chain of command.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Chain of command. 1214.703 Section 1214.703... Shuttle Commander § 1214.703 Chain of command. (a) The Commander is a career NASA astronaut who has been... particular flight and is second in command of the flight. If the commander is unable to carry out the...
14 CFR 91.1031 - Pilot in command or second in command: Designation required.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Pilot in command or second in command... RULES Fractional Ownership Operations Program Management § 91.1031 Pilot in command or second in command: Designation required. (a) Each program manager must designate a— (1) Pilot in command for each program flight...
32 CFR 700.1058 - Command of a submarine.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 5 2012-07-01 2012-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine shall be an officer of the line in the Navy, eligible for command at sea and qualified for command of...
32 CFR 700.1058 - Command of a submarine.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 5 2014-07-01 2014-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine shall be an officer of the line in the Navy, eligible for command at sea and qualified for command of...
14 CFR 135.109 - Pilot in command or second in command: Designation required.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Pilot in command or second in command... ON BOARD SUCH AIRCRAFT Flight Operations § 135.109 Pilot in command or second in command: Designation required. (a) Each certificate holder shall designate a— (1) Pilot in command for each flight; and (2...
14 CFR 135.109 - Pilot in command or second in command: Designation required.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Pilot in command or second in command... ON BOARD SUCH AIRCRAFT Flight Operations § 135.109 Pilot in command or second in command: Designation required. (a) Each certificate holder shall designate a— (1) Pilot in command for each flight; and (2...
32 CFR 700.1058 - Command of a submarine.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 5 2013-07-01 2013-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine shall be an officer of the line in the Navy, eligible for command at sea and qualified for command of...
32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 5 2012-07-01 2012-07-01 false Commandant of the Marine Corps or the Commander, Naval Military Personnel Command. 724.405 Section 724.405 National Defense Department of Defense... Personnel Command. Personnel managers of the Marine Corps and the Navy; responsible for providing limited...
14 CFR 1214.703 - Chain of command.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Chain of command. 1214.703 Section 1214.703... Shuttle Commander § 1214.703 Chain of command. (a) The Commander is a career NASA astronaut who has been... particular flight and is second in command of the flight. If the commander is unable to carry out the...
14 CFR 1214.703 - Chain of command.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Chain of command. 1214.703 Section 1214.703... Shuttle Commander § 1214.703 Chain of command. (a) The Commander is a career NASA astronaut who has been... particular flight and is second in command of the flight. If the commander is unable to carry out the...
14 CFR 135.109 - Pilot in command or second in command: Designation required.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pilot in command or second in command... ON BOARD SUCH AIRCRAFT Flight Operations § 135.109 Pilot in command or second in command: Designation required. (a) Each certificate holder shall designate a— (1) Pilot in command for each flight; and (2...
14 CFR 91.1031 - Pilot in command or second in command: Designation required.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Pilot in command or second in command... RULES Fractional Ownership Operations Program Management § 91.1031 Pilot in command or second in command: Designation required. (a) Each program manager must designate a— (1) Pilot in command for each program flight...
14 CFR 91.1031 - Pilot in command or second in command: Designation required.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Pilot in command or second in command... RULES Fractional Ownership Operations Program Management § 91.1031 Pilot in command or second in command: Designation required. (a) Each program manager must designate a— (1) Pilot in command for each program flight...
2000-11-18
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility bay 3, STS-98 Commander Ken Cockrell conducts window inspection, checking for leaks, in the cockpit of Atlantis. He and the rest of the crew are at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
2000-11-18
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility bay 3, STS-98 Commander Ken Cockrell conducts window inspection, checking for leaks, in the cockpit of Atlantis. He and the rest of the crew are at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
Army Transportation Systems in a Twenty-First Century Joint Operational Environment
2013-03-01
182, C-20B, 0-2A, T-34, TG-14, U-21, UV-18, UV-20, UC -35, and T-6 fixed-wing aircraft. This fleet totals 2,799 airframes, distributed to all of the...Sealift Command ( MSC ) fielded the first of ten projected Joint High Speed Vessels (JHSV) in February 2013. The JHSV can move 600 tons over 1,200...110 14 Merchant Marine crewed ships under MSC control.36 This initiative prompted the Army to cancel its plan to procure seven JSHV on its own
1978-01-01
required for the trans- portation industry and particularly as required by our mobile defense systems. For the production of transportation fuels...nature of the refinery feedstock and the requirements of the market place which is being targeted for product distribution. As with refining, the end...arsenic levels. The nitrogen and oxygen levels dictate a higher hydro- processing severity to make stable products . Due to the small yield of 6500F
View of javelin and golf ball on lunar surface during Apollo 14 EVA
NASA Technical Reports Server (NTRS)
1971-01-01
View shows the javelin and golf ball used by Astronaut Alan B. Shepard Jr., Apollo 14 commander, during the mission's second extravehicular activity (EVA-2) on Feb. 6, 1971. Just to the left of center lies the javelin, with the golf ball just below it, almost perpendicular to it. Dark colored trails are the results of tracks made by the lunar overshoes of the astronauts and the wheels of the Modularized Equipment Transporter (MET). This photograph was made through the right window of the Lunar Module, looking northwest.
Apollo 13 spacecraft splashdown in the South Pacific Ocean
1970-04-17
S70-35638 (17 April 1970) --- A perilous space mission comes to a smooth ending with the safe splashdown of the Apollo 13 Command Module (CM) in the South Pacific, only four miles from the prime recovery ship. The spacecraft with astronauts James A. Lovell Jr., John L. Swigert Jr., and Fred W. Haise Jr. aboard, splashed down at 12:07:44 p.m. (CST) April 17, 1970, to conclude safely the problem-plagued flight. The crewmen were transported by helicopter from the immediate recovery area to the USS Iwo Jima, prime recovery vessel.
The 5000 GPM firefighting module evaluation test
NASA Technical Reports Server (NTRS)
Burns, Ralph A.
1986-01-01
The 5000 GPM Firefighting Module development was sponsored and shared by the Navy Facilities Engineering Command. It is a lightweight, compact, self-contained, helicopter-transportable unit for fighting harbor and other specialty fires as well as for use in emergency and shipboard water pumping applications. This unit is a more advanced model of the original 1500 GPM module developed for the U.S. Coast Guard. The module and an evaluation test program conducted at the North Island Naval Air Station, San Diego, California, by NASA and the U.S. Navy, are described.
Expedition 11 Soyuz Preparation
2005-04-11
A detail of rail car wheels is seen, Tuesday, April 12, 2005, prior to transportation of the Soyuz TMA-6 spacecraft inside the integration facility at the Baikonur Cosmodrome in Kazakhstan as preparations continued for the April 15 launch of Expedition 11 with Commander Sergei Krikalev, Flight Engineer John Phillips and European Space Agency Astronaut Roberto Vittori, of Italy, to the International Space Station. The rocket mating operation occurred on the 44th anniversary of the launch of Yuri Gagarin from the same complex to become the first human in space. Photo Credit: (NASA/Bill Ingalls)
1968-01-01
This is a cutaway illustration of the Saturn V service module configuration. Packed with plumbing and tanks, the service module was the command module's constant companion until just before reentry. All components not needed during the last few minutes of flight, and therefore requiring no protection against reentry heat, were transported in this module. It carried oxygen for most of the trip, fuel cells to generate electricity (along with the oxygen and hydrogen to run them); small engines to control pitch, roll, and yaw; and a large engine to propel the spacecraft into, and out of, lunar orbit.
Failure detection and identification for a reconfigurable flight control system
NASA Technical Reports Server (NTRS)
Dallery, Francois
1987-01-01
Failure detection and identification logic for a fault-tolerant longitudinal control system were investigated. Aircraft dynamics were based upon the cruise condition for a hypothetical transonic business jet transport configuration. The fault-tolerant control system consists of conventional control and estimation plus a new outer loop containing failure detection, identification, and reconfiguration (FDIR) logic. It is assumed that the additional logic has access to all measurements, as well as to the outputs of the control and estimation logic. The pilot may also command the FDIR logic to perform special tests.
STS-112 crew in front of S0 Truss Structure
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the STS-112 crew stands under the S0 Integrated Truss Structure, waiting to be transported to the launch pad for mission STS-110. From left are Mission Specialist David Wolf, Pilot Pam ela Melroy; Commander Jeffrey Ashby; and Mission Specialist Piers Sellers. Mission STS-112 will be ferrying the S1 ITS to the International Space Station on its scheduled Aug. 15 flight. The S1 truss will be attached to the S0 truss
2012-12-19
TITUSVILLE, Fla. - A truck transporting the Tracking and Data Relay Satellite, TDRS-K, arrives at the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett
Participants in the First Florida Summit at the KSC Visitor Complex.
NASA Technical Reports Server (NTRS)
2000-01-01
Participants in the First Florida Space Summit take part in a discussion on the future of space as it relates to the State of Florida. The discussion, held at the Kennedy Space Center Visitor Complex, was moderated by Center Director Roy Bridges. Seated (left to right) are Representative Jim Davis, Secretary of Transportation Tom Barry and Rick Stephens, who represented The Boeing Company. The event also included Senator Bob Graham, Senator Connie Mack, Representative Dave Weldon, 45th Space Wing Commander Brig. Gen. Donald Pettit and heads of aerospace companies.
A Class of Selenocentric Retrograde Orbits With Innovative Applications to Human Lunar Operations
NASA Technical Reports Server (NTRS)
Adamo, Daniel R.; Lester, Daniel F.; Thronson, Harley A.; Barbee, Brent
2014-01-01
Selenocentric distant retrograde orbits with radii from approx. 12,500 km to approx. 25,000 km are assessed for stability and for suitability as crewed command and control infrastructure locations in support of telerobotic lunar surface operations and interplanetary human transport. Such orbits enable consistent transits to and from Earth at virtually any time if they are coplanar with the Moon's geocentric orbit. They possess multiple attributes and applications distinct from NASA's proposed destination orbit for a redirected asteroid about 70,000 km from the Moon.
1957-01-01
orderx 680 This information very important for it, affected air ope’ations his command 68o-681 Receives report eighty transports in Leyte Gui! 61...C""WID IS ENG APPRECIABLY AFFECTED BY MORALE DETERIORATION SHOULD TAKE INMEIATE AND POSITIV3 ACTION TO REMOVE THE CAUSES OF SUCH MORALE DETERIORATION...IF THE ACTION TAKEN IS NOT EFFECTIVE HE SHOULD nHEN (1) TRANSFER THOSE PERSONNEL ADVERSELY AFFECTED , AND (2) ADVISE HIS IMMEDIATE SUPERIOR OF THE
1994-09-30
The Commander-in-Chief of the British troops, General Sir Peter de la Billiere, reported that each vehicle of the Tenth Transport Regiment covered 400...Simulation des Reifenprofileinflusses fuir die Gelaindebeweglichkeit von Fahrzeugen C. W. FERVERS IKK-University of German Armed Forces Hamburg, Germany...of the Process) 731 Experimentelle und theoretische Analyse kohaisiven Erdreichs beim Verschiebevorgang (Optimierung des Vorganges) A. JARZEBOWSKI, J
STS-111 Flight Day 7 Highlights
NASA Technical Reports Server (NTRS)
2002-01-01
On Flight Day 7 of STS-111 (Space Shuttle Endeavour crew includes: Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist; International Space Station (ISS) Expedition 5 crew includes Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer; ISS Expedition 4 crew includes: Yury Onufrienko, Commander; Daniel Bursch, Flight Engineer; Carl Walz, Flight Engineer), this video opens with answers to questions asked by the public via e-mail about the altitude of the space station, the length of its orbit, how astronauts differentiate between up and down in the microgravity environment, and whether they hear wind noise during the shuttle's reentry. In video footage shot from inside the Quest airlock, Perrin is shown exiting the station to perform an extravehicular activity (EVA) with Chang-Diaz. Chang-Diaz is shown, in helmet mounted camera footage, attaching cable protection booties to a fish-stringer device with multiple hooks, and Perrin is seen loosening bolts that hold the replacement unit accomodation in launch position atop the Mobile Base System (MBS). Perrin then mounts a camera atop the mast of the MBS. During this EVA, the astronauts installed the MBS on the Mobile Transporter (MT) to support the Canadarm 2 robotic arm. A camera in the Endeavour's payload bay provides footage of the Pacific Ocean, the Baja Peninsula, and Midwestern United States. Plumes from wildfires in Nevada, Idaho, Yellowstone National Park, Wyoming, and Montana are visible. The station continues over the Great Lakes and the Eastern Provinces of Canada.
STS-111 Flight Day 7 Highlights
NASA Astrophysics Data System (ADS)
2002-06-01
On Flight Day 7 of STS-111 (Space Shuttle Endeavour crew includes: Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist; International Space Station (ISS) Expedition 5 crew includes Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer; ISS Expedition 4 crew includes: Yury Onufrienko, Commander; Daniel Bursch, Flight Engineer; Carl Walz, Flight Engineer), this video opens with answers to questions asked by the public via e-mail about the altitude of the space station, the length of its orbit, how astronauts differentiate between up and down in the microgravity environment, and whether they hear wind noise during the shuttle's reentry. In video footage shot from inside the Quest airlock, Perrin is shown exiting the station to perform an extravehicular activity (EVA) with Chang-Diaz. Chang-Diaz is shown, in helmet mounted camera footage, attaching cable protection booties to a fish-stringer device with multiple hooks, and Perrin is seen loosening bolts that hold the replacement unit accomodation in launch position atop the Mobile Base System (MBS). Perrin then mounts a camera atop the mast of the MBS. During this EVA, the astronauts installed the MBS on the Mobile Transporter (MT) to support the Canadarm 2 robotic arm. A camera in the Endeavour's payload bay provides footage of the Pacific Ocean, the Baja Peninsula, and Midwestern United States. Plumes from wildfires in Nevada, Idaho, Yellowstone National Park, Wyoming, and Montana are visible. The station continues over the Great Lakes and the Eastern Provinces of Canada.
Re-engineering the Multimission Command System at the Jet Propulsion Laboratory
NASA Technical Reports Server (NTRS)
Alexander, Scott; Biesiadecki, Jeff; Cox, Nagin; Murphy, Susan C.; Reeve, Tim
1994-01-01
The Operations Engineering Lab (OEL) at JPL has developed the multimission command system as part of JPL's Advanced Multimission Operations System. The command system provides an advanced multimission environment for secure, concurrent commanding of multiple spacecraft. The command functions include real-time command generation, command translation and radiation, status reporting, some remote control of Deep Space Network antenna functions, and command file management. The mission-independent architecture has allowed easy adaptation to new flight projects and the system currently supports all JPL planetary missions (Voyager, Galileo, Magellan, Ulysses, Mars Pathfinder, and CASSINI). This paper will discuss the design and implementation of the command software, especially trade-offs and lessons learned from practical operational use. The lessons learned have resulted in a re-engineering of the command system, especially in its user interface and new automation capabilities. The redesign has allowed streamlining of command operations with significant improvements in productivity and ease of use. In addition, the new system has provided a command capability that works equally well for real-time operations and within a spacecraft testbed. This paper will also discuss new development work including a multimission command database toolkit, a universal command translator for sequencing and real-time commands, and incorporation of telecommand capabilities for new missions.
14 CFR § 1214.703 - Chain of command.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Chain of command. § 1214.703 Section Â... of the Space Shuttle Commander § 1214.703 Chain of command. (a) The Commander is a career NASA... the pilot on a particular flight and is second in command of the flight. If the commander is unable to...
Evaluation of Organisational Interoperabiity in a Network Centric Warfare Environment
2004-09-01
understanding developed. Command and Coordination examines issues related to command structure, command and leadership styles . Ethos covers socio...harmonisation of command arrangements and the accommodation of differences in command and leadership styles . 3.2.4 Ethos Future warfare will... leadership styles . • changes to give less emphasis to hierarchy and command and more to coordination. Any reference to a single chain of command has been
2014-09-16
CAPE CANAVERAL, Fla. – Kathy Lueders, program manager of NASA's Commercial Crew Program, speaks during the Commercial Crew Transportation Capability CCtCap contract announcement ceremony. Speaking from Kennedy Space Center’s Press Site, Lueders detailed the importance of the development effort for United States space exploration ambitions and the economic potential of creating new markets in space transportation for people. Boeing and SpaceX were awarded contracts to complete the design of the CST-100 and Crew Dragon spacecraft, respectively, and begin manufacturing for flight tests with a goal of achieving certification to take astronauts to the International Space Station by 2017. CCtCap also covers the beginning of operational missions for these new spacecraft and their systems. Former astronaut Bob Cabana, left, director of Kennedy Space Center, and former International Space Station Commander Mike Fincke also took part in the announcement. Photo credit: NASA/Jim Grossmann
Fuel cell system logic for differentiating between rapid and normal shutdown commands
Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.
2000-01-01
A method of controlling the operation of a fuel cell system wherein each shutdown command for the system is subjected to decision logic which determines whether the command should be a normal shutdown command or rapid shutdown command. If the logic determines that the shutdown command should be a normal shutdown command, then the system is shutdown in a normal step-by-step process in which the hydrogen stream is consumed within the system. If the logic determines that the shutdown command should be a rapid shutdown command, the hydrogen stream is removed from the system either by dumping to atmosphere or routing to storage.
75 FR 19627 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-15
... address: Delete entry and replace with ``Commander, Navy Personnel Command (PERS-31), 5720 Integrity Drive... to the Commander, Navy Personnel Command (PERS-312), 5720 Integrity Drive, Millington, TN 38055-3120... should address written inquiries to Commander, Navy Personnel Command (PERS- 312), 5720 Integrity Drive...
32 CFR 700.860 - Customs and immigration inspections.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Commanding Officer Commanding Officers Afloat § 700.860 Customs and immigration inspections. (a) The commanding officer or aircraft commander shall facilitate any proper examination which it may be the duty of.... The commanding officer or air craft commander shall not permit a foreign customs officer or an...
32 CFR 700.860 - Customs and immigration inspections.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Commanding Officer Commanding Officers Afloat § 700.860 Customs and immigration inspections. (a) The commanding officer or aircraft commander shall facilitate any proper examination which it may be the duty of.... The commanding officer or air craft commander shall not permit a foreign customs officer or an...
32 CFR 700.860 - Customs and immigration inspections.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Commanding Officer Commanding Officers Afloat § 700.860 Customs and immigration inspections. (a) The commanding officer or aircraft commander shall facilitate any proper examination which it may be the duty of.... The commanding officer or air craft commander shall not permit a foreign customs officer or an...
32 CFR 700.860 - Customs and immigration inspections.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Commanding Officer Commanding Officers Afloat § 700.860 Customs and immigration inspections. (a) The commanding officer or aircraft commander shall facilitate any proper examination which it may be the duty of.... The commanding officer or air craft commander shall not permit a foreign customs officer or an...
32 CFR 700.860 - Customs and immigration inspections.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Commanding Officer Commanding Officers Afloat § 700.860 Customs and immigration inspections. (a) The commanding officer or aircraft commander shall facilitate any proper examination which it may be the duty of.... The commanding officer or air craft commander shall not permit a foreign customs officer or an...
Utilities for master source code distribution: MAX and Friends
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.
1988-01-01
MAX is a program for the manipulation of FORTRAN master source code (MSC). This is a technique by which one maintains one and only one master copy of a FORTRAN program under a program developing system, which for MAX is assumed to be VAX/VMS. The master copy is not intended to be directly compiled. Instead it must be pre-processed by MAX to produce compilable instances. These instances may correspond to different code versions (for example, double precision versus single precision), different machines (for example, IBM, CDC, Cray) or different operating systems (i.e., VAX/VMS versus VAX/UNIX). The advantage os using a master source is more pronounced in complex application programs that are developed and maintained over many years and are to be transported and executed on several computer environments. The version lag problem that plagues many such programs is avoided by this approach. MAX is complemented by several auxiliary programs that perform nonessential functions. The ensemble is collectively known as MAX and Friends. All of these programs, including MAX, are executed as foreign VAX/VMS commands and can easily be hidden in customized VMS command procedures.
1999-07-19
The STS-93 crew wave to onlookers as they walk to the "Astrovan," which will transport them to Launch Pad 39-B and liftoff of Space Shuttle Columbia. In their orange launch and entry suits, they are (starting at rear, left to right) Mission Specialists Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES), Catherine G. Coleman (Ph.D.), and Mission Specialist Stephen A. Hawley (Ph.D.); Pilot Jeffrey S. Ashby; and Commander Eileen M. Collins. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected unlock the secrets of supernovae, quasars and black holes. Collins is the first woman to serve as commander of a Shuttle mission. STS-93 is scheduled to lift off at 12:36 a.m. EDT July 20. The target landing date is July 24 at 11:31 p.m. EDT
STS-93 crew head for bus to carry them to Launch Complex 39
NASA Technical Reports Server (NTRS)
1999-01-01
The STS-93 crew wave to onlookers as they walk to the 'Astrovan,' which will transport them to Launch Pad 39-B and liftoff of Space Shuttle Columbia. In their orange launch and entry suits, they are (starting at rear, left to right) Mission Specialists Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES), Catherine G. Coleman (Ph.D.), and Mission Specialist Stephen A. Hawley (Ph.D.); Pilot Jeffrey S. Ashby; and Commander Eileen M. Collins. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X- ray telescope and is expected unlock the secrets of supernovae, quasars and black holes. Collins is the first woman to serve as commander of a Shuttle mission. STS-93 is scheduled to lift off at 12:36 a.m. EDT July 20. The target landing date is July 24 at 11:31 p.m. EDT.
NASA Technical Reports Server (NTRS)
Neal, Bradford; Sengupta, Upal
1989-01-01
During some flight programs, researchers have encountered problems in the throttle response characteristics of high-performance aircraft. To study and to help solve these problems, the National Aeronautics and Space Administration Ames Research Center's Dryden Flight Research Facility (Ames-Dryden) conducted a study using a TF-104G airplane modified with a variable-response electronic throttle control system. Ames-Dryden investigated the effects of different variables on engine response and handling qualities. The system provided transport delay, lead and lag filters, second-order lags, command rate and position limits, and variable gain between the pilot's throttle command and the engine fuel controller. These variables could be tested individually or in combination. Ten research flights were flown to gather data on engine response and to obtain pilot ratings of the various system configurations. The results should provide design criteria for engine-response characteristics. The variable-response throttle components and how they were installed in the TF-104G aircraft are described. How the variable-response throttle was used in flight and some of the results of using this system are discussed.
STS-113 and Expedition 6 crews leave the O&C Building for second launch attempt
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- The STS-113 and Expedition 6 crews head for the Astrovan that will transport them to Launch Pad 39A and Space Shuttle Endeavour for a second launch attempt. The launch on Nov. 22 was scrubbed due to poor weather conditions at the Transoceanic Abort Landing sites. From left are Expedition 6 flight engineer Donald Pettit; a security guard; Expedition 6 flight engineer Nikolai Budarin; Mission Specialists John Herrington and Michael Lopez-Alegria, Pilot Paul Lockhart and Commander James Wetherbee (background); and Expedition 6 Commander Ken Bowersox. The launch will carry the Expedition 6 crew to the Station and return the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is now scheduled for Nov. 23 at 7:50 p.m. EST. [Photo by Scott Andrews
STS-113 and Expedition 6 crews leave the O&C Building for second launch attempt
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - Waving at spectators, the STS-113 and Expedition 6 crews head for the Astrovan that will transport them to Launch Pad 39A and Space Shuttle Endeavour for a second launch attempt. The launch on Nov. 22 was scrubbed due to poor weather conditions at the Transoceanic Abort Landing sites. In the foreground, from left, are Mission Specialists John Herrington and Michael Lopez-Alegria, and Expedition 6 Commander Ken Bowersox; in the background, from left, are Expedition 6 flight engineers Donald Pettit and Nikolai Budarin, Mission Pilot Paul Lockhart and Commander James Wetherbee. The launch will carry the Expedition 6 crew to the Station and return the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is now scheduled for Nov. 23 at 7:50 p.m. EST.
A case of the birth and death of a high reliability healthcare organisation.
Roberts, K H; Madsen, P; Desai, V; Van Stralen, D
2005-06-01
High reliability organisations (HROs) are those in which errors rarely occur. To accomplish this they conduct relatively error free operations over long periods of time and make consistently good decisions resulting in high quality and reliability. Some organisational processes that characterise HROs are process auditing, implementing appropriate reward systems, avoiding quality degradation, appropriately perceiving that risk exists and developing strategies to deal with it, and command and control. Command and control processes include migrating decision making, redundancy in people or hardware, developing situational awareness, formal rules and procedures, and training. These processes must be tailored to the specific organisation implementing them. These processes were applied to a paediatric intensive care unit (PICU) where care was derived from problem solving methodology rather than protocol. After a leadership change, the unit returned to the hierarchical medical model of care. Important outcome variables such as infant mortality, patient return to the PICU after discharge, days on the PICU, air transports, degraded. Implications for clinical practice include providing caregivers with sufficient flexibility to meet changing situations, encouraging teamwork, and avoiding shaming, naming, and blaming.
2002-05-27
KENNEDY SPACE CENTER, FLA. -- After their arrival at the Shuttle Landing Facility, the STS-111 and Expedition 5 crews wave to spectators. From left are Mission Commander Kenneth Cockrell, Pilot Paul Lockhart and Mission Specialists Philippe Perrin and Franklin Chang-Diaz; Expedition 5 Commander Valeri Korzun, astronaut Peggy Whitson and cosmonaut Sergei Treschev. Perrin is with the French Space Agency; Korzun and Treschev are with the Russian Space Agency. The crews have arrived to prepare for launch. Expedition 5 is traveling to the International Space Station on Space Shuttle Endeavour as the replacement crew for Expedition 4, who will return to Earth aboard the orbiter. Known as Utilization Flight 2, STS-111 is carrying supplies and equipment to the Station. The payload includes the Multi-Purpose Logistics Module Leonardo, the Mobile Base System, which will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS, and a replacement wrist/roll joint for Canadarm 2. The mechanical arm will then have the capability to "inchworm" from the U.S. Lab Destiny to the MSS and travel along the truss to work sites. Launch is scheduled for May 30, 2002
International Space Station (ISS)
2002-06-11
The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot; and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander; Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks. In this photograph, Astronaut Philippe Perrin, representing CNES, the French Space Agency, participates in the second scheduled EVA. During the space walk, Perrin and Chang-Diaz attached power, data, and video cables from the ISS to the MBS, and used a power wrench to complete the attachment of the MBS onto the Mobile Transporter (MT).
32 CFR 700.804 - Organization of commands.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 5 2011-07-01 2011-07-01 false Organization of commands. 700.804 Section 700... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.804 Organization of commands. All commands and other activities of the...
32 CFR 700.804 - Organization of commands.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false Organization of commands. 700.804 Section 700... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.804 Organization of commands. All commands and other activities of the...
32 CFR 700.804 - Organization of commands.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 5 2014-07-01 2014-07-01 false Organization of commands. 700.804 Section 700... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.804 Organization of commands. All commands and other activities of the...
32 CFR 700.804 - Organization of commands.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 5 2012-07-01 2012-07-01 false Organization of commands. 700.804 Section 700... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.804 Organization of commands. All commands and other activities of the...
32 CFR 700.804 - Organization of commands.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 5 2013-07-01 2013-07-01 false Organization of commands. 700.804 Section 700... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.804 Organization of commands. All commands and other activities of the...
7. General view of command center, building 501, looking west ...
7. General view of command center, building 501, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
6. General view of command center, building 501, looking east ...
6. General view of command center, building 501, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
32 CFR 724.306 - Functions of the Commander, Naval Medical Command.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 5 2013-07-01 2013-07-01 false Functions of the Commander, Naval Medical Command. 724.306 Section 724.306 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... § 724.306 Functions of the Commander, Naval Medical Command. Under the CNO the COMNAVMEDCOM shall...
32 CFR 755.6 - Action where offenders are members of one command.
Code of Federal Regulations, 2011 CFR
2011-07-01
... command. 755.6 Section 755.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... Action where offenders are members of one command. (a) Action by commanding officer. The commanding... declines to submit information, he shall so state in writing within the 20 day period. The commanding...
32 CFR 724.306 - Functions of the Commander, Naval Medical Command.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 5 2014-07-01 2014-07-01 false Functions of the Commander, Naval Medical Command. 724.306 Section 724.306 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... § 724.306 Functions of the Commander, Naval Medical Command. Under the CNO the COMNAVMEDCOM shall...
14 CFR 1215.106 - User command and tracking data.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false User command and tracking data. 1215.106... User command and tracking data. (a) User command data may enter the TDRSS via the NASCOM interface at one of three locations: (1) For Shuttle payloads which utilize the Shuttle commanding system, command...
32 CFR 755.6 - Action where offenders are members of one command.
Code of Federal Regulations, 2013 CFR
2013-07-01
... command. 755.6 Section 755.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... Action where offenders are members of one command. (a) Action by commanding officer. The commanding... declines to submit information, he shall so state in writing within the 20 day period. The commanding...
32 CFR 755.6 - Action where offenders are members of one command.
Code of Federal Regulations, 2014 CFR
2014-07-01
... command. 755.6 Section 755.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... Action where offenders are members of one command. (a) Action by commanding officer. The commanding... declines to submit information, he shall so state in writing within the 20 day period. The commanding...
32 CFR 755.6 - Action where offenders are members of one command.
Code of Federal Regulations, 2012 CFR
2012-07-01
... command. 755.6 Section 755.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... Action where offenders are members of one command. (a) Action by commanding officer. The commanding... declines to submit information, he shall so state in writing within the 20 day period. The commanding...
32 CFR 724.306 - Functions of the Commander, Naval Medical Command.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 5 2012-07-01 2012-07-01 false Functions of the Commander, Naval Medical Command. 724.306 Section 724.306 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... § 724.306 Functions of the Commander, Naval Medical Command. Under the CNO the COMNAVMEDCOM shall...
32 CFR 724.306 - Functions of the Commander, Naval Medical Command.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false Functions of the Commander, Naval Medical Command. 724.306 Section 724.306 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... § 724.306 Functions of the Commander, Naval Medical Command. Under the CNO the COMNAVMEDCOM shall...
14 CFR 1215.106 - User command and tracking data.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false User command and tracking data. 1215.106... User command and tracking data. (a) User command data may enter the TDRSS via the NASCOM interface at one of three locations: (1) For Shuttle payloads which utilize the Shuttle commanding system, command...
14 CFR 1215.106 - User command and tracking data.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true User command and tracking data. 1215.106... User command and tracking data. (a) User command data may enter the TDRSS via the NASCOM interface at one of three locations: (1) For Shuttle payloads which utilize the Shuttle commanding system, command...
32 CFR 755.6 - Action where offenders are members of one command.
Code of Federal Regulations, 2010 CFR
2010-07-01
... command. 755.6 Section 755.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... Action where offenders are members of one command. (a) Action by commanding officer. The commanding... declines to submit information, he shall so state in writing within the 20 day period. The commanding...
32 CFR 724.306 - Functions of the Commander, Naval Medical Command.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 5 2011-07-01 2011-07-01 false Functions of the Commander, Naval Medical Command. 724.306 Section 724.306 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... § 724.306 Functions of the Commander, Naval Medical Command. Under the CNO the COMNAVMEDCOM shall...
11. SAC command center, main operations area, underground structure, building ...
11. SAC command center, main operations area, underground structure, building 501, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
4. Sac shield at entry of command center, building 501, ...
4. Sac shield at entry of command center, building 501, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
9. SAC command center, main operations area, underground structure, building ...
9. SAC command center, main operations area, underground structure, building 501, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
13. SAC command center, weather center, underground structure, building 501, ...
13. SAC command center, weather center, underground structure, building 501, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
2015-03-01
wine warfare NCC naval component commander NFC numbered fleet commander NM nautical mile NMP Navy mission planner NOP Navy...principles for naval component commanders ( NCCs ), numbered fleet commanders (NFCs) or joint force maritime component commanders (JFMCCs) and their
Medical events during the 2009 Los Angeles County Station Fire: lessons for wildfire EMS planning.
Squire, Benjamin; Chidester, Cathy; Raby, Stephanie
2011-01-01
Little is known about the types of injuries and medical problems encountered by fire department personnel during suppression of large campaign-type wildland fires. Such information could help to plan for response to medical incidents during future wildfires. To describe the injuries and medical problems experienced by firefighters during the 2009 Los Angeles County Station Fire. This was a retrospective analysis of case records of patients treated during the Los Angeles County Station Fire. Data were abstracted from two sources: the incident command medical tracking sheet and prehospital patient care reports (PCRs). The sample included 183 patient contacts, of which PCRs were available for 65. For the remaining 118 patients, data were abstracted from the incident command medical tracking sheet. The most common chief complaint was extremity injury, accounting for 44 patient contacts (24% of all patients), with smoke inhalation second, at 32 patient contacts (17%). Of the 65 patients with PCRs, 31 (52%) were treated with oxygen, 26 (40%) had intravenous (IV) lines started, and 15 (23%) received an IV fluid bolus. Half of the patients were transported to an emergency department (ED); the remainder were treated on scene or self-transported to a non-acute care facility. Most firefighter injuries and illnesses encountered during the Los Angeles Station Fire were minor. The prevalence of injuries observed should be taken into consideration in creation of protocols and mandatory equipment lists for fireline paramedics. Furthermore, advanced training for paramedics in the diagnosis and treatment of minor medical conditions may be useful.
Torque shudder protection device and method
King, Robert D.; De Doncker, Rik W. A. A.; Szczesny, Paul M.
1997-01-01
A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency.
Torque shudder protection device and method
King, R.D.; Doncker, R.W.A.A. De.; Szczesny, P.M.
1997-03-11
A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency. 5 figs.
10. SAC command center, main operations area, underground structure, building ...
10. SAC command center, main operations area, underground structure, building 501, circa 1980 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
12. SAC command center, main operations area, underground structure, building ...
12. SAC command center, main operations area, underground structure, building 501, circa 1960 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
32 CFR 700.1054 - Command of a naval base.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 5 2012-07-01 2012-07-01 false Command of a naval base. 700.1054 Section 700... Command Detail to Duty § 700.1054 Command of a naval base. The officer detailed to command a naval base shall be an officer of the line in the Navy, eligible for command at sea. ...
32 CFR 700.1054 - Command of a naval base.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 5 2014-07-01 2014-07-01 false Command of a naval base. 700.1054 Section 700... Command Detail to Duty § 700.1054 Command of a naval base. The officer detailed to command a naval base shall be an officer of the line in the Navy, eligible for command at sea. ...
32 CFR 700.1056 - Command of a ship.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 5 2013-07-01 2013-07-01 false Command of a ship. 700.1056 Section 700.1056... Command Detail to Duty § 700.1056 Command of a ship. (a) The officer detailed to command a commissioned ship shall be an officer of the line in the Navy eligible for command at sea. (b) The officer detailed...
32 CFR 700.1054 - Command of a naval base.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 5 2011-07-01 2011-07-01 false Command of a naval base. 700.1054 Section 700... Command Detail to Duty § 700.1054 Command of a naval base. The officer detailed to command a naval base shall be an officer of the line in the Navy, eligible for command at sea. ...
32 CFR 700.1054 - Command of a naval base.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 5 2013-07-01 2013-07-01 false Command of a naval base. 700.1054 Section 700... Command Detail to Duty § 700.1054 Command of a naval base. The officer detailed to command a naval base shall be an officer of the line in the Navy, eligible for command at sea. ...
32 CFR 700.1054 - Command of a naval base.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false Command of a naval base. 700.1054 Section 700... Command Detail to Duty § 700.1054 Command of a naval base. The officer detailed to command a naval base shall be an officer of the line in the Navy, eligible for command at sea. ...
32 CFR 700.1056 - Command of a ship.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 5 2014-07-01 2014-07-01 false Command of a ship. 700.1056 Section 700.1056... Command Detail to Duty § 700.1056 Command of a ship. (a) The officer detailed to command a commissioned ship shall be an officer of the line in the Navy eligible for command at sea. (b) The officer detailed...
32 CFR 700.1056 - Command of a ship.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false Command of a ship. 700.1056 Section 700.1056... Command Detail to Duty § 700.1056 Command of a ship. (a) The officer detailed to command a commissioned ship shall be an officer of the line in the Navy eligible for command at sea. (b) The officer detailed...
32 CFR 700.1056 - Command of a ship.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 5 2011-07-01 2011-07-01 false Command of a ship. 700.1056 Section 700.1056... Command Detail to Duty § 700.1056 Command of a ship. (a) The officer detailed to command a commissioned ship shall be an officer of the line in the Navy eligible for command at sea. (b) The officer detailed...
32 CFR 700.1056 - Command of a ship.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 5 2012-07-01 2012-07-01 false Command of a ship. 700.1056 Section 700.1056... Command Detail to Duty § 700.1056 Command of a ship. (a) The officer detailed to command a commissioned ship shall be an officer of the line in the Navy eligible for command at sea. (b) The officer detailed...
NASA Technical Reports Server (NTRS)
1973-01-01
The retrieval command subsystem reference manual for the NASA Aerospace Safety Information System (NASIS) is presented. The command subsystem may be operated conversationally or in the batch mode. Retrieval commands are categorized into search-oriented and output-oriented commands. The characteristics of ancillary commands and their application are reported.
8. SAC command center underground structure, building 501, basement entry, ...
8. SAC command center underground structure, building 501, basement entry, machine room, April 11, 1955 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
2015-02-01
unanimous for the run and duck commands as other commands commonly used. The verbal commands surveyed, as well as other suggested verbal commands that...stop, and duck . Additional verbal commands suggested were shut down, follow, destroy, status, and move out. The verbal commands surveyed and the...identify the verbal commands you would use to control the squad and the ASM: Phrase Yes No Halt 9 3 Stop 9 3 Move 11 1 Run 7 5 Duck 6 6 Other
Defense.gov - Special Report - Travels With Mullen
European CommandÂs change of command ceremony. Top Stories Stavridis Assumes Top European Command Post the top post at U.S. European Command. He will also serve as NATO's supreme allied commander for
32 CFR 700.1057 - Command of an air activity.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 5 2012-07-01 2012-07-01 false Command of an air activity. 700.1057 Section 700... Command Detail to Duty § 700.1057 Command of an air activity. (a) The officer detailed to command a naval... for command at sea. (b) For the purposes of Title 10 U.S.C. § 5942, a naval air training squadron is...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-02
...-AA87 Security Zones; Naval Base Point Loma; Naval Mine Anti Submarine Warfare Command; San Diego Bay... establishing a new security zone at the Naval Mine and Anti-Submarine Warfare Command to protect the relocated... Commander of Naval Base Point Loma, the Commander of the Naval Mine Anti Submarine Warfare Command, and the...
32 CFR 700.1057 - Command of an air activity.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 5 2013-07-01 2013-07-01 false Command of an air activity. 700.1057 Section 700... Command Detail to Duty § 700.1057 Command of an air activity. (a) The officer detailed to command a naval... for command at sea. (b) For the purposes of Title 10 U.S.C. § 5942, a naval air training squadron is...
32 CFR 700.1057 - Command of an air activity.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 5 2011-07-01 2011-07-01 false Command of an air activity. 700.1057 Section 700... Command Detail to Duty § 700.1057 Command of an air activity. (a) The officer detailed to command a naval... for command at sea. (b) For the purposes of Title 10 U.S.C. § 5942, a naval air training squadron is...
32 CFR 700.1057 - Command of an air activity.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 5 2014-07-01 2014-07-01 false Command of an air activity. 700.1057 Section 700... Command Detail to Duty § 700.1057 Command of an air activity. (a) The officer detailed to command a naval... for command at sea. (b) For the purposes of Title 10 U.S.C. § 5942, a naval air training squadron is...
32 CFR 700.1057 - Command of an air activity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false Command of an air activity. 700.1057 Section 700... Command Detail to Duty § 700.1057 Command of an air activity. (a) The officer detailed to command a naval... for command at sea. (b) For the purposes of Title 10 U.S.C. § 5942, a naval air training squadron is...
14 CFR 417.303 - Command control system requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...
14 CFR 417.303 - Command control system requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...
14 CFR 417.303 - Command control system requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...
14 CFR 417.303 - Command control system requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...
14 CFR 417.303 - Command control system requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...
2016-06-30
These figures do not include personnel performing contract services. The service component commands , subordinate unified commands , and joint task forces...GAO has previously found that the combatant commands do not have oversight or visibility over authorized manpower or assigned personnel at the...Jack Reed Ranking Member Committee on Armed Services United States Senate Defense Headquarters: Geographic Combatant Commands Rely on Subordinate
United States Forces Korea > Home
commander; Gen. Leem Ho Young, Combined Forces Command deputy commander; and Gen. Lee Sun-jin, Gen. Lee, Sun Forces Command deputy commander; and Gen. Lee Sun-jin, Gen. Lee, Sun-Jin, Chairman of the Republic of deputy commander; and Gen. Lee Sun-jin, Gen. Lee, Sun-Jin, Chairman of the Republic of Korea Joint Chiefs
Incomplete Victory: General Allenby and Mission Command in Palestine, 1917-1918
2012-12-14
challenges in mission command. While General Allenby, commanding the Allied Egyptian Expeditionary Force (EEF), gained several victories in the...challenges in mission command. While General Allenby, commanding the Allied Egyptian Expeditionary Force (EEF), gained several victories in the early stages...
1991-04-01
African Air Forces, Middle East Air Command, based in Cairo, and RAP Malta Air Command. This, in effect, was a �theater� command in a larger sense, for...Force, under the command of AVM Sir Hugh Lloyd, and absorbed Malta Air Command and US XII Fighter Command, then under Pete Quesada, later commander...trained pilots, that exchange ratio steadily worsened for the enemy. In fact, the 5th Air Force could boast the two highest scoring American aces early
Numerical Electromagnetic Code (NEC)-Basic Scattering Code. Part I. User’s Manual.
1979-09-01
Command RT : 29 I. Command PG: 32 J. Command GP: 35 K. Command CG: 36 L. Command SG: 39 M. Command AM: 44 N. Conumand PR: 48 0. Command NP: 49 P...these points and con- firm the validity of the solution. 1 0 1 -.- ’----.- ... The source presently considered in the computer code is an Plec - tric...Range Input 28 * RT : Translate and/or Rotate Coordinates 29 SG: Source Geometry Input IQ TO: Test Data Generation Options 17 [IN: Units of Input U)S
Airborne Subscale Transport Aircraft Research Testbed: Aircraft Model Development
NASA Technical Reports Server (NTRS)
Jordan, Thomas L.; Langford, William M.; Hill, Jeffrey S.
2005-01-01
The Airborne Subscale Transport Aircraft Research (AirSTAR) testbed being developed at NASA Langley Research Center is an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. An integral part of that testbed is a 5.5% dynamically scaled, generic transport aircraft. This remotely piloted vehicle (RPV) is powered by twin turbine engines and includes a collection of sensors, actuators, navigation, and telemetry systems. The downlink for the plane includes over 70 data channels, plus video, at rates up to 250 Hz. Uplink commands for aircraft control include over 30 data channels. The dynamic scaling requirement, which includes dimensional, weight, inertial, actuator, and data rate scaling, presents distinctive challenges in both the mechanical and electrical design of the aircraft. Discussion of these requirements and their implications on the development of the aircraft along with risk mitigation strategies and training exercises are included here. Also described are the first training (non-research) flights of the airframe. Additional papers address the development of a mobile operations station and an emulation and integration laboratory.
TERRENCE J. O'SHAUGHNESSY, USAF Command, United States Northern Command VIEW BIO LIEUTENANT GENERAL REYNOLD N. HOOVER, USA Deputy Commander, United States Northern Command VIEW BIO MAJOR GENERAL PEGGY C . COMBS, USA Chief of Staff, United States Northern Command VIEW BIO SERGEANT MAJOR PAUL MCKENNA, USMC
Code of Federal Regulations, 2012 CFR
2012-07-01
... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.856 Pilotage. (a) The commanding officer shall: (1) Pilot the ship under all ordinary... to the commanding officer. The presence on board of a pilot shall not relieve the commanding officer...
Code of Federal Regulations, 2014 CFR
2014-07-01
... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.856 Pilotage. (a) The commanding officer shall: (1) Pilot the ship under all ordinary... to the commanding officer. The presence on board of a pilot shall not relieve the commanding officer...
Code of Federal Regulations, 2013 CFR
2013-07-01
... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.859 Quarantine. (a) The commanding officer or aircraft commander of a ship or... port or area within which the ship or aircraft is located. (b) The commanding officer shall give all...
Code of Federal Regulations, 2010 CFR
2010-07-01
... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.856 Pilotage. (a) The commanding officer shall: (1) Pilot the ship under all ordinary... to the commanding officer. The presence on board of a pilot shall not relieve the commanding officer...
Code of Federal Regulations, 2010 CFR
2010-07-01
... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.859 Quarantine. (a) The commanding officer or aircraft commander of a ship or... port or area within which the ship or aircraft is located. (b) The commanding officer shall give all...
Code of Federal Regulations, 2011 CFR
2011-07-01
... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.859 Quarantine. (a) The commanding officer or aircraft commander of a ship or... port or area within which the ship or aircraft is located. (b) The commanding officer shall give all...
Code of Federal Regulations, 2012 CFR
2012-07-01
... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.859 Quarantine. (a) The commanding officer or aircraft commander of a ship or... port or area within which the ship or aircraft is located. (b) The commanding officer shall give all...
Code of Federal Regulations, 2013 CFR
2013-07-01
... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.856 Pilotage. (a) The commanding officer shall: (1) Pilot the ship under all ordinary... to the commanding officer. The presence on board of a pilot shall not relieve the commanding officer...
Code of Federal Regulations, 2011 CFR
2011-07-01
... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.856 Pilotage. (a) The commanding officer shall: (1) Pilot the ship under all ordinary... to the commanding officer. The presence on board of a pilot shall not relieve the commanding officer...
Code of Federal Regulations, 2014 CFR
2014-07-01
... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.859 Quarantine. (a) The commanding officer or aircraft commander of a ship or... port or area within which the ship or aircraft is located. (b) The commanding officer shall give all...