Sample records for transportation network problems

  1. Transportation Network Analysis and Decomposition Methods

    DOT National Transportation Integrated Search

    1978-03-01

    The report outlines research in transportation network analysis using decomposition techniques as a basis for problem solutions. Two transportation network problems were considered in detail: a freight network flow problem and a scheduling problem fo...

  2. A biologically inspired network design model.

    PubMed

    Zhang, Xiaoge; Adamatzky, Andrew; Chan, Felix T S; Deng, Yong; Yang, Hai; Yang, Xin-She; Tsompanas, Michail-Antisthenis I; Sirakoulis, Georgios Ch; Mahadevan, Sankaran

    2015-06-04

    A network design problem is to select a subset of links in a transport network that satisfy passengers or cargo transportation demands while minimizing the overall costs of the transportation. We propose a mathematical model of the foraging behaviour of slime mould P. polycephalum to solve the network design problem and construct optimal transport networks. In our algorithm, a traffic flow between any two cities is estimated using a gravity model. The flow is imitated by the model of the slime mould. The algorithm model converges to a steady state, which represents a solution of the problem. We validate our approach on examples of major transport networks in Mexico and China. By comparing networks developed in our approach with the man-made highways, networks developed by the slime mould, and a cellular automata model inspired by slime mould, we demonstrate the flexibility and efficiency of our approach.

  3. A Biologically Inspired Network Design Model

    PubMed Central

    Zhang, Xiaoge; Adamatzky, Andrew; Chan, Felix T.S.; Deng, Yong; Yang, Hai; Yang, Xin-She; Tsompanas, Michail-Antisthenis I.; Sirakoulis, Georgios Ch.; Mahadevan, Sankaran

    2015-01-01

    A network design problem is to select a subset of links in a transport network that satisfy passengers or cargo transportation demands while minimizing the overall costs of the transportation. We propose a mathematical model of the foraging behaviour of slime mould P. polycephalum to solve the network design problem and construct optimal transport networks. In our algorithm, a traffic flow between any two cities is estimated using a gravity model. The flow is imitated by the model of the slime mould. The algorithm model converges to a steady state, which represents a solution of the problem. We validate our approach on examples of major transport networks in Mexico and China. By comparing networks developed in our approach with the man-made highways, networks developed by the slime mould, and a cellular automata model inspired by slime mould, we demonstrate the flexibility and efficiency of our approach. PMID:26041508

  4. Computer Code for Transportation Network Design and Analysis

    DOT National Transportation Integrated Search

    1977-01-01

    This document describes the results of research into the application of the mathematical programming technique of decomposition to practical transportation network problems. A computer code called Catnap (for Control Analysis Transportation Network A...

  5. Three geographic decomposition approaches in transportation network analysis

    DOT National Transportation Integrated Search

    1980-03-01

    This document describes the results of research into the application of geographic decomposition techniques to practical transportation network problems. Three approaches are described for the solution of the traffic assignment problem. One approach ...

  6. Application of Decomposition to Transportation Network Analysis

    DOT National Transportation Integrated Search

    1976-10-01

    This document reports preliminary results of five potential applications of the decomposition techniques from mathematical programming to transportation network problems. The five application areas are (1) the traffic assignment problem with fixed de...

  7. Harmony search optimization algorithm for a novel transportation problem in a consolidation network

    NASA Astrophysics Data System (ADS)

    Davod Hosseini, Seyed; Akbarpour Shirazi, Mohsen; Taghi Fatemi Ghomi, Seyed Mohammad

    2014-11-01

    This article presents a new harmony search optimization algorithm to solve a novel integer programming model developed for a consolidation network. In this network, a set of vehicles is used to transport goods from suppliers to their corresponding customers via two transportation systems: direct shipment and milk run logistics. The objective of this problem is to minimize the total shipping cost in the network, so it tries to reduce the number of required vehicles using an efficient vehicle routing strategy in the solution approach. Solving several numerical examples confirms that the proposed solution approach based on the harmony search algorithm performs much better than CPLEX in reducing both the shipping cost in the network and computational time requirement, especially for realistic size problem instances.

  8. Optimal Micropatterns in 2D Transport Networks and Their Relation to Image Inpainting

    NASA Astrophysics Data System (ADS)

    Brancolini, Alessio; Rossmanith, Carolin; Wirth, Benedikt

    2018-04-01

    We consider two different variational models of transport networks: the so-called branched transport problem and the urban planning problem. Based on a novel relation to Mumford-Shah image inpainting and techniques developed in that field, we show for a two-dimensional situation that both highly non-convex network optimization tasks can be transformed into a convex variational problem, which may be very useful from analytical and numerical perspectives. As applications of the convex formulation, we use it to perform numerical simulations (to our knowledge this is the first numerical treatment of urban planning), and we prove a lower bound for the network cost that matches a known upper bound (in terms of how the cost scales in the model parameters) which helps better understand optimal networks and their minimal costs.

  9. Solute transport with multisegment, equilibrium-controlled, classical reactions: Problem solvability and feed forward method's applicability for complex segments of at most binary participants

    USGS Publications Warehouse

    Rubin, Jacob

    1992-01-01

    The feed forward (FF) method derives efficient operational equations for simulating transport of reacting solutes. It has been shown to be applicable in the presence of networks with any number of homogeneous and/or heterogeneous, classical reaction segments that consist of three, at most binary participants. Using a sequential (network type after network type) exploration approach and, independently, theoretical explanations, it is demonstrated for networks with classical reaction segments containing more than three, at most binary participants that if any one of such networks leads to a solvable transport problem then the FF method is applicable. Ways of helping to avoid networks that produce problem insolvability are developed and demonstrated. A previously suggested algebraic, matrix rank procedure has been adapted and augmented to serve as the main, easy-to-apply solvability test for already postulated networks. Four network conditions that often generate insolvability have been identified and studied. Their early detection during network formulation may help to avoid postulation of insolvable networks.

  10. Performance verification of network function virtualization in software defined optical transport networks

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Hu, Liyazhou; Wang, Wei; Li, Yajie; Zhang, Jie

    2017-01-01

    With the continuous opening of resource acquisition and application, there are a large variety of network hardware appliances deployed as the communication infrastructure. To lunch a new network application always implies to replace the obsolete devices and needs the related space and power to accommodate it, which will increase the energy and capital investment. Network function virtualization1 (NFV) aims to address these problems by consolidating many network equipment onto industry standard elements such as servers, switches and storage. Many types of IT resources have been deployed to run Virtual Network Functions (vNFs), such as virtual switches and routers. Then how to deploy NFV in optical transport networks is a of great importance problem. This paper focuses on this problem, and gives an implementation architecture of NFV-enabled optical transport networks based on Software Defined Optical Networking (SDON) with the procedure of vNFs call and return. Especially, an implementation solution of NFV-enabled optical transport node is designed, and a parallel processing method for NFV-enabled OTN nodes is proposed. To verify the performance of NFV-enabled SDON, the protocol interaction procedures of control function virtualization and node function virtualization are demonstrated on SDON testbed. Finally, the benefits and challenges of the parallel processing method for NFV-enabled OTN nodes are simulated and analyzed.

  11. An Artificial Neural Network Controller for Intelligent Transportation Systems Applications

    DOT National Transportation Integrated Search

    1996-01-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems appli...

  12. Structural Properties of the Brazilian Air Transportation Network.

    PubMed

    Couto, Guilherme S; da Silva, Ana Paula Couto; Ruiz, Linnyer B; Benevenuto, Fabrício

    2015-09-01

    The air transportation network in a country has a great impact on the local, national and global economy. In this paper, we analyze the air transportation network in Brazil with complex network features to better understand its characteristics. In our analysis, we built networks composed either by national or by international flights. We also consider the network when both types of flights are put together. Interesting conclusions emerge from our analysis. For instance, Viracopos Airport (Campinas City) is the most central and connected airport on the national flights network. Any operational problem in this airport separates the Brazilian national network into six distinct subnetworks. Moreover, the Brazilian air transportation network exhibits small world characteristics and national connections network follows a power law distribution. Therefore, our analysis sheds light on the current Brazilian air transportation infrastructure, bringing a novel understanding that may help face the recent fast growth in the usage of the Brazilian transport network.

  13. GIS as a tool for efficient management of transport streams

    NASA Astrophysics Data System (ADS)

    Zatserkovnyi, V. I.; Kobrin, O. V.

    2015-10-01

    The transport network, which is an ideal object for the automation and the increase of efficiency using geographic information systems (GIS), is considered. The transport problems, which have a lot of mathematical models of the traffic flow for their solution, are enumerated. GIS analysis tools that allow one to build optimal routes in the real road network with its capabilities and limitations are presented. They can solve the extremely important problem of modern Ukraine - the rapid increase of the number of cars and the glut of road network vehicles. The intelligent transport systems, which are created and developed on the basis of GPS, GIS, modern communications and telecommunications facilities, are considered.

  14. Incorporating environmental justice measures into equilibrium-based transportation network design models

    DOT National Transportation Integrated Search

    2007-08-01

    This research outlines three major challenges of incorporating Environmental Justice (EJ) into metropolitan transportation planning and proposes a new variation of the user equilibrium discrete network design problem (UEDNDP) for achieving EJ amongst...

  15. Efficient dispatching in a terminal city network

    DOT National Transportation Integrated Search

    2001-01-01

    This report describes new optimization and simulation tools to address several problems in transportation, specifically driver dispatching and tour formation in full truckload trucking. In this segment of transportation industry, one of the problems ...

  16. Maximizing algebraic connectivity in air transportation networks

    NASA Astrophysics Data System (ADS)

    Wei, Peng

    In air transportation networks the robustness of a network regarding node and link failures is a key factor for its design. An experiment based on the real air transportation network is performed to show that the algebraic connectivity is a good measure for network robustness. Three optimization problems of algebraic connectivity maximization are then formulated in order to find the most robust network design under different constraints. The algebraic connectivity maximization problem with flight routes addition or deletion is first formulated. Three methods to optimize and analyze the network algebraic connectivity are proposed. The Modified Greedy Perturbation Algorithm (MGP) provides a sub-optimal solution in a fast iterative manner. The Weighted Tabu Search (WTS) is designed to offer a near optimal solution with longer running time. The relaxed semi-definite programming (SDP) is used to set a performance upper bound and three rounding techniques are discussed to find the feasible solution. The simulation results present the trade-off among the three methods. The case study on two air transportation networks of Virgin America and Southwest Airlines show that the developed methods can be applied in real world large scale networks. The algebraic connectivity maximization problem is extended by adding the leg number constraint, which considers the traveler's tolerance for the total connecting stops. The Binary Semi-Definite Programming (BSDP) with cutting plane method provides the optimal solution. The tabu search and 2-opt search heuristics can find the optimal solution in small scale networks and the near optimal solution in large scale networks. The third algebraic connectivity maximization problem with operating cost constraint is formulated. When the total operating cost budget is given, the number of the edges to be added is not fixed. Each edge weight needs to be calculated instead of being pre-determined. It is illustrated that the edge addition and the weight assignment can not be studied separately for the problem with operating cost constraint. Therefore a relaxed SDP method with golden section search is developed to solve both at the same time. The cluster decomposition is utilized to solve large scale networks.

  17. Mixed Transportation Network Design under a Sustainable Development Perspective

    PubMed Central

    Qin, Jin; Ni, Ling-lin; Shi, Feng

    2013-01-01

    A mixed transportation network design problem considering sustainable development was studied in this paper. Based on the discretization of continuous link-grade decision variables, a bilevel programming model was proposed to describe the problem, in which sustainability factors, including vehicle exhaust emissions, land-use scale, link load, and financial budget, are considered. The objective of the model is to minimize the total amount of resources exploited under the premise of meeting all the construction goals. A heuristic algorithm, which combined the simulated annealing and path-based gradient projection algorithm, was developed to solve the model. The numerical example shows that the transportation network optimized with the method above not only significantly alleviates the congestion on the link, but also reduces vehicle exhaust emissions within the network by up to 41.56%. PMID:23476142

  18. Mixed transportation network design under a sustainable development perspective.

    PubMed

    Qin, Jin; Ni, Ling-lin; Shi, Feng

    2013-01-01

    A mixed transportation network design problem considering sustainable development was studied in this paper. Based on the discretization of continuous link-grade decision variables, a bilevel programming model was proposed to describe the problem, in which sustainability factors, including vehicle exhaust emissions, land-use scale, link load, and financial budget, are considered. The objective of the model is to minimize the total amount of resources exploited under the premise of meeting all the construction goals. A heuristic algorithm, which combined the simulated annealing and path-based gradient projection algorithm, was developed to solve the model. The numerical example shows that the transportation network optimized with the method above not only significantly alleviates the congestion on the link, but also reduces vehicle exhaust emissions within the network by up to 41.56%.

  19. Reaching Rural Handicapped Children: The Transportation Situation in Rural Service Delivery. Making It Work in Rural Communities. A Rural Network Monograph.

    ERIC Educational Resources Information Center

    Tucker, Jamie; And Others

    Almost everyone who responded to three transportation surveys of rural Handicapped Children's Early Education Program (HCEEP) projects identified transportation as a critical problem in the delivery of services to handicapped children in rural areas. Transportation problems encountered were attributed to environmental/geographic factors,…

  20. Protocol Support for a New Satellite-Based Airspace Communication Network

    NASA Technical Reports Server (NTRS)

    Shang, Yadong; Hadjitheodosiou, Michael; Baras, John

    2004-01-01

    We recommend suitable transport protocols for an aeronautical network supporting Internet and data services via satellite. We study the characteristics of an aeronautical satellite hybrid network and focus on the problems that cause dramatically degraded performance of the Transport Protocol. We discuss various extensions to standard TCP that alleviate some of these performance problems. Through simulation, we identify those TCP implementations that can be expected to perform well. Based on the observation that it is difficult for an end-to-end solution to solve these problems effectively, we propose a new TCP-splitting protocol, termed Aeronautical Transport Control Protocol (AeroTCP). The main idea of this protocol is to use a fixed window for flow control and one duplicated acknowledgement (ACK) for fast recovery. Our simulation results show that AeroTCP can maintain higher utilization for the satellite link than end-to-end TCP, especially in high BER environment.

  1. Enabling congestion avoidance and reduction in the Michigan-Ohio transportation network to improve supply chain efficiency : freight ATIS.

    DOT National Transportation Integrated Search

    2010-01-01

    We consider dynamic vehicle routing under milk-run tours with time windows in congested : transportation networks for just-in-time (JIT) production. The arc travel times are considered : stochastic and time-dependent. The problem integrates TSP with ...

  2. Development of Opportunity Zones Utilizing Transportation Assets

    DOT National Transportation Integrated Search

    2012-06-01

    Transportation, traditionally, is an afterthought when dealing with company site selection. : This way of thinking results in two broad problems: the states transportation network is not : marketed as an asset and desired infrastructure improvemen...

  3. An Algorithm for the Mixed Transportation Network Design Problem

    PubMed Central

    Liu, Xinyu; Chen, Qun

    2016-01-01

    This paper proposes an optimization algorithm, the dimension-down iterative algorithm (DDIA), for solving a mixed transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraint (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of the existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) problem. The idea of the proposed solution algorithm (DDIA) is to reduce the dimensions of the problem. A group of variables (discrete/continuous) is fixed to optimize another group of variables (continuous/discrete) alternately; then, the problem is transformed into solving a series of CNDPs (continuous network design problems) and DNDPs (discrete network design problems) repeatedly until the problem converges to the optimal solution. The advantage of the proposed algorithm is that its solution process is very simple and easy to apply. Numerical examples show that for the MNDP without budget constraint, the optimal solution can be found within a few iterations with DDIA. For the MNDP with budget constraint, however, the result depends on the selection of initial values, which leads to different optimal solutions (i.e., different local optimal solutions). Some thoughts are given on how to derive meaningful initial values, such as by considering the budgets of new and reconstruction projects separately. PMID:27626803

  4. A Selfish Constraint Satisfaction Genetic Algorithms for Planning a Long-Distance Transportation Network

    NASA Astrophysics Data System (ADS)

    Onoyama, Takashi; Maekawa, Takuya; Kubota, Sen; Tsuruta, Setuso; Komoda, Norihisa

    To build a cooperative logistics network covering multiple enterprises, a planning method that can build a long-distance transportation network is required. Many strict constraints are imposed on this type of problem. To solve these strict-constraint problems, a selfish constraint satisfaction genetic algorithm (GA) is proposed. In this GA, each gene of an individual satisfies only its constraint selfishly, disregarding the constraints of other genes in the same individuals. Moreover, a constraint pre-checking method is also applied to improve the GA convergence speed. The experimental result shows the proposed method can obtain an accurate solution in a practical response time.

  5. Can We Control Contaminant Transport In Hydrologic Networks? Application Of Control Theory Concepts To Watershed Management

    NASA Astrophysics Data System (ADS)

    Yeghiazarian, L.; Riasi, M. S.

    2016-12-01

    Although controlling the level of contamination everywhere in the surface water network may not be feasible, it is vital to maintain safe water quality levels in specific areas, e.g. recreational waters. The question then is "what is the most efficient way to fully/partially control water quality in surface water networks?". This can be posed as a control problem where the goal is to efficiently drive the system to a desired state by manipulating few input variables. Such problems reduce to (1) finding the best control locations in the network to influence the state of the system; and (2) choosing the time-variant inputs at the control locations to achieve the desired state of the system with minimum effort. We demonstrate that the optimal solution to control the level of contamination in the network can be found through application of control theory concepts to transport in dendritic surface water networks.

  6. A model for distribution centers location-routing problem on a multimodal transportation network with a meta-heuristic solving approach

    NASA Astrophysics Data System (ADS)

    Fazayeli, Saeed; Eydi, Alireza; Kamalabadi, Isa Nakhai

    2017-07-01

    Nowadays, organizations have to compete with different competitors in regional, national and international levels, so they have to improve their competition capabilities to survive against competitors. Undertaking activities on a global scale requires a proper distribution system which could take advantages of different transportation modes. Accordingly, the present paper addresses a location-routing problem on multimodal transportation network. The introduced problem follows four objectives simultaneously which form main contribution of the paper; determining multimodal routes between supplier and distribution centers, locating mode changing facilities, locating distribution centers, and determining product delivery tours from the distribution centers to retailers. An integer linear programming is presented for the problem, and a genetic algorithm with a new chromosome structure proposed to solve the problem. Proposed chromosome structure consists of two different parts for multimodal transportation and location-routing parts of the model. Based on published data in the literature, two numerical cases with different sizes generated and solved. Also, different cost scenarios designed to better analyze model and algorithm performance. Results show that algorithm can effectively solve large-size problems within a reasonable time which GAMS software failed to reach an optimal solution even within much longer times.

  7. A model for distribution centers location-routing problem on a multimodal transportation network with a meta-heuristic solving approach

    NASA Astrophysics Data System (ADS)

    Fazayeli, Saeed; Eydi, Alireza; Kamalabadi, Isa Nakhai

    2018-07-01

    Nowadays, organizations have to compete with different competitors in regional, national and international levels, so they have to improve their competition capabilities to survive against competitors. Undertaking activities on a global scale requires a proper distribution system which could take advantages of different transportation modes. Accordingly, the present paper addresses a location-routing problem on multimodal transportation network. The introduced problem follows four objectives simultaneously which form main contribution of the paper; determining multimodal routes between supplier and distribution centers, locating mode changing facilities, locating distribution centers, and determining product delivery tours from the distribution centers to retailers. An integer linear programming is presented for the problem, and a genetic algorithm with a new chromosome structure proposed to solve the problem. Proposed chromosome structure consists of two different parts for multimodal transportation and location-routing parts of the model. Based on published data in the literature, two numerical cases with different sizes generated and solved. Also, different cost scenarios designed to better analyze model and algorithm performance. Results show that algorithm can effectively solve large-size problems within a reasonable time which GAMS software failed to reach an optimal solution even within much longer times.

  8. Capacity-constrained traffic assignment in networks with residual queues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, W.H.K.; Zhang, Y.

    2000-04-01

    This paper proposes a capacity-constrained traffic assignment model for strategic transport planning in which the steady-state user equilibrium principle is extended for road networks with residual queues. Therefore, the road-exit capacity and the queuing effects can be incorporated into the strategic transport model for traffic forecasting. The proposed model is applicable to the congested network particularly when the traffic demands exceeds the capacity of the network during the peak period. An efficient solution method is proposed for solving the steady-state traffic assignment problem with residual queues. Then a simple numerical example is employed to demonstrate the application of the proposedmore » model and solution method, while an example of a medium-sized arterial highway network in Sioux Falls, South Dakota, is used to test the applicability of the proposed solution to real problems.« less

  9. Development of Opportunity Zones Utilizing Transportation Assets : Executive Summary Report

    DOT National Transportation Integrated Search

    2012-06-01

    The challenge that spurred this project is that transportation is traditionally an afterthought when it comes : to company site selection. This yields three chief problems: : 1. Ohios expansive transportation network (ex. roads, rails, ports, and ...

  10. Development of Gis Tool for the Solution of Minimum Spanning Tree Problem using Prim's Algorithm

    NASA Astrophysics Data System (ADS)

    Dutta, S.; Patra, D.; Shankar, H.; Alok Verma, P.

    2014-11-01

    minimum spanning tree (MST) of a connected, undirected and weighted network is a tree of that network consisting of all its nodes and the sum of weights of all its edges is minimum among all such possible spanning trees of the same network. In this study, we have developed a new GIS tool using most commonly known rudimentary algorithm called Prim's algorithm to construct the minimum spanning tree of a connected, undirected and weighted road network. This algorithm is based on the weight (adjacency) matrix of a weighted network and helps to solve complex network MST problem easily, efficiently and effectively. The selection of the appropriate algorithm is very essential otherwise it will be very hard to get an optimal result. In case of Road Transportation Network, it is very essential to find the optimal results by considering all the necessary points based on cost factor (time or distance). This paper is based on solving the Minimum Spanning Tree (MST) problem of a road network by finding it's minimum span by considering all the important network junction point. GIS technology is usually used to solve the network related problems like the optimal path problem, travelling salesman problem, vehicle routing problems, location-allocation problems etc. Therefore, in this study we have developed a customized GIS tool using Python script in ArcGIS software for the solution of MST problem for a Road Transportation Network of Dehradun city by considering distance and time as the impedance (cost) factors. It has a number of advantages like the users do not need a greater knowledge of the subject as the tool is user-friendly and that allows to access information varied and adapted the needs of the users. This GIS tool for MST can be applied for a nationwide plan called Prime Minister Gram Sadak Yojana in India to provide optimal all weather road connectivity to unconnected villages (points). This tool is also useful for constructing highways or railways spanning several cities optimally or connecting all cities with minimum total road length.

  11. Betweenness centrality and its applications from modeling traffic flows to network community detection

    NASA Astrophysics Data System (ADS)

    Ren, Yihui

    As real-world complex networks are heterogeneous structures, not all their components such as nodes, edges and subgraphs carry the same role or importance in the functions performed by the networks: some elements are more critical than others. Understanding the roles of the components of a network is crucial for understanding the behavior of the network as a whole. One the most basic function of networks is transport; transport of vehicles/people, information, materials, forces, etc., and these quantities are transported along edges between source and destination nodes. For this reason, network path-based importance measures, also called centralities, play a crucial role in the understanding of the transport functions of the network and the network's structural and dynamical behavior in general. In this thesis we study the notion of betweenness centrality, which measures the fraction of lowest-cost (or shortest) paths running through a network component, in particular through a node or an edge. High betweenness centrality nodes/edges are those that will be frequently used by the entities transported through the network and thus they play a key role in the overall transport properties of the network. In the first part of the thesis we present a first-principles based method for traffic prediction using a cost-based generalization of the radiation model (emission/absorbtion model) for human mobility, coupled with a cost-minimizing algorithm for efficient distribution of the mobility fluxes through the network. Using US census and highway traffic data, we show that traffic can efficiently and accurately be computed from a range-limited, network betweenness type calculation. The model based on travel time costs captures the log-normal distribution of the traffic and attains a high Pearson correlation coefficient (0.75) when compared with real traffic. We then focus on studying the extent of changes in traffic flows in the wake of a localized damage or alteration to the network and we demonstrate that the changes can propagate globally, affecting traffic several hundreds of miles away. Because of its principled nature, this method can inform many applications related to human mobility driven flows in spatial networks, ranging from transportation, through urban planning to mitigation of the effects of catastrophic events. In the second part of the thesis we focus on network deconstruction and community detection problems, both intensely studied topics in network science, using a weighted betweenness centrality approach. We present an algorithm that solves both problems efficiently and accurately and demonstrate that on both benchmark networks and data networks.

  12. The commuter rail circulator network design problem : formulation, solution methods, and applications

    DOT National Transportation Integrated Search

    2007-08-01

    Commuter rail is increasingly popular as a means to introduce rail transportation to metropolitan transportation systems. The long-term benefits of commuter rail include the addition of capacity to the transportation system, providing a quality commu...

  13. Restoration and Humanitarian Aid Delivery on Interdependent Transportation and Communication Networks After an Extreme Event

    DTIC Science & Technology

    2015-03-26

    Transportation and Communication network Restoration and Distribution (TCRD) problem. In Chapter 4, we conduct computational tests on realistic networks using a...speed and overall demand fulfillment when deciding how many machines to dispatch. We found that there exist certain key communciation entities and...ACM symposium on Theory of Computing . ACM. 16. Holgúın-Veras, José, Jaller, Miguel, Van Wassenhove, Luk N, Pérez, Noel, & Wachtendorf, Tricia. 2012

  14. Bus network redesign for inner southeast suburbs of Melbourne, Australia

    NASA Astrophysics Data System (ADS)

    Pandangwati, S. T.; Milyanab, N. A.

    2017-06-01

    Public transport is the most effective mode of transport in the era of climate change and oil depletion. It can address climate change issues by reducing urban greenhouse gas emission and oil consumption while at the same time improving mobility. However, many public transport networks are not effective and instead create high operating costs with low frequencies and occupancy. Melbourne is one example of a metropolitan area that faces this problem. Even though the city has well-integrated train and tram networks, Melbourne’s bus network still needs to be improved. This study used network planning approach to redesign the bus network in the City of Glen Eira, a Local Government Area (LGA) in the southeastern part of Metropolitan Melbourne. The study area is the area between Gardenvale North and Oakleigh Station, as well as between Caulfield and Patterson Stations. This area needs network improvement mainly because of the meandering bus routes that run within it. This study aims to provide recommendations for improving the performance of bus services by reducing meandering routes, improving transfer point design and implementing coordinated timetables. The recommendations were formulated based on a ‘ready-made’ concept to increase bus occupancy. This approach can be implemented in other cities with similar problems and characteristics including those in Indonesia.

  15. Impacts of efficient transportation capacity utilization via multi-product consolidation on transportation network usage and congestion.

    DOT National Transportation Integrated Search

    2012-08-06

    We study multi-item inventory problems that explicitly account for realistic : transportation cost structures and constraints, including a per-truck capacity and per-truck cost. : We analyze shipment consolidation and coordination policies under thes...

  16. Quantitative Assessment of Transportation Network Vulnerability with Dynamic Traffic Simulation Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shekar, Venkateswaran; Fiondella, Lance; Chatterjee, Samrat

    Transportation networks are critical to the social and economic function of nations. Given the continuing increase in the populations of cities throughout the world, the criticality of transportation infrastructure is expected to increase. Thus, it is ever more important to mitigate congestion as well as to assess the impact disruptions would have on individuals who depend on transportation for their work and livelihood. Moreover, several government organizations are responsible for ensuring transportation networks are available despite the constant threat of natural disasters and terrorist activities. Most of the previous transportation network vulnerability research has been performed in the context ofmore » static traffic models, many of which are formulated as traditional optimization problems. However, transportation networks are dynamic because their usage varies over time. Thus, more appropriate methods to characterize the vulnerability of transportation networks should consider their dynamic properties. This paper presents a quantitative approach to assess the vulnerability of a transportation network to disruptions with methods from traffic simulation. Our approach can prioritize the critical links over time and is generalizable to the case where both link and node disruptions are of concern. We illustrate the approach through a series of examples. Our results demonstrate that the approach provides quantitative insight into the time varying criticality of links. Such an approach could be used as the objective function of less traditional optimization methods that use simulation and other techniques to evaluate the relative utility of a particular network defense to reduce vulnerability and increase resilience.« less

  17. On the Resource Efficiency of Virtual Concatenation in SDH/SONET Mesh Transport Networks Bearing Protected Scheduled Connections

    NASA Astrophysics Data System (ADS)

    Kuri, Josu�; Gagnaire, Maurice; Puech, Nicolas

    2005-10-01

    Virtual concatenation (VCAT) is a Synchronous Digital Hierarchy (SDH)/Synchronous Optical Network (SONET) network functionality recently standardized by the International Telecommunication Union Telecommunication Standardization Sector (ITU-T). VCAT provides the flexibility required to efficiently allocate network resources to Ethernet, Fiber Channel (FC), Enterprise System Connection (ESCON), and other important data traffic signals. In this article, we assess the resources' gain provided by VCAT with respect to contiguous concatenation (CCAT) in SDH/SONET mesh transport networks bearing protected scheduled connection demands (SCDs). As explained later, an SCD is a connection demand for which the set-up and tear-down dates are known in advance. We define mathematical models to quantify the add/drop and transmission resources required to instantiate a set of protected SCDs in VCAT-and CCAT-capable networks. Quantification of transmission resources requires a routing and slot assignment (RSA) problem to be solved. We formulate the RSA problem in VCAT-and CCAT-capable networks as two different combinatorial optimization problems: RSA in VCAT-capable networks (RSAv) and RSA in CCAT-capable networks (RSAc), respectively. Protection of the SCDs is considered in the formulations using a shared backup path protection (SBPP) technique. We propose a simulated annealing (SA)-based meta-heuristic algorithm to compute approximate solutions to these problems (i.e., solutions whose cost approximates the cost of the optimal ones). The gain in transmission resources and the cost structure of add/drop resources making VCAT-capable networks more economical are analyzed for different traffic scenarios.

  18. Automated Guideway Ground Transportation Network Simulation

    DOT National Transportation Integrated Search

    1975-08-01

    The report discusses some automated guideway management problems relating to ground transportation systems and provides an outline of the types of models and algorithms that could be used to develop simulation tools for evaluating system performance....

  19. On Estimating End-to-End Network Path Properties

    NASA Technical Reports Server (NTRS)

    Allman, Mark; Paxson, Vern

    1999-01-01

    The more information about current network conditions available to a transport protocol, the more efficiently it can use the network to transfer its data. In networks such as the Internet, the transport protocol must often form its own estimates of network properties based on measurements per-formed by the connection endpoints. We consider two basic transport estimation problems: determining the setting of the retransmission timer (RTO) for are reliable protocol, and estimating the bandwidth available to a connection as it begins. We look at both of these problems in the context of TCP, using a large TCP measurement set [Pax97b] for trace-driven simulations. For RTO estimation, we evaluate a number of different algorithms, finding that the performance of the estimators is dominated by their minimum values, and to a lesser extent, the timer granularity, while being virtually unaffected by how often round-trip time measurements are made or the settings of the parameters in the exponentially-weighted moving average estimators commonly used. For bandwidth estimation, we explore techniques previously sketched in the literature [Hoe96, AD98] and find that in practice they perform less well than anticipated. We then develop a receiver-side algorithm that performs significantly better.

  20. Bi-Objective Modelling for Hazardous Materials Road–Rail Multimodal Routing Problem with Railway Schedule-Based Space–Time Constraints

    PubMed Central

    Sun, Yan; Lang, Maoxiang; Wang, Danzhu

    2016-01-01

    The transportation of hazardous materials is always accompanied by considerable risk that will impact public and environment security. As an efficient and reliable transportation organization, a multimodal service should participate in the transportation of hazardous materials. In this study, we focus on transporting hazardous materials through the multimodal service network and explore the hazardous materials multimodal routing problem from the operational level of network planning. To formulate this problem more practicably, minimizing the total generalized costs of transporting the hazardous materials and the social risk along the planned routes are set as the optimization objectives. Meanwhile, the following formulation characteristics will be comprehensively modelled: (1) specific customer demands; (2) multiple hazardous material flows; (3) capacitated schedule-based rail service and uncapacitated time-flexible road service; and (4) environmental risk constraint. A bi-objective mixed integer nonlinear programming model is first built to formulate the routing problem that combines the formulation characteristics above. Then linear reformations are developed to linearize and improve the initial model so that it can be effectively solved by exact solution algorithms on standard mathematical programming software. By utilizing the normalized weighted sum method, we can generate the Pareto solutions to the bi-objective optimization problem for a specific case. Finally, a large-scale empirical case study from the Beijing–Tianjin–Hebei Region in China is presented to demonstrate the feasibility of the proposed methods in dealing with the practical problem. Various scenarios are also discussed in the case study. PMID:27483294

  1. Efficient transportation for Vermont : optimal statewide transit networks.

    DOT National Transportation Integrated Search

    2011-01-01

    "Public transit systems are receiving increased attention as viable solutions to problems with : transportation system robustness, energy-efficiency and equity. The over-reliance on a single : mode, the automobile, is a threat to system robustness. I...

  2. Optimal one-way and roundtrip journeys design by mixed-integer programming

    NASA Astrophysics Data System (ADS)

    Ribeiro, Isabel M.; Vale, Cecília

    2017-12-01

    The introduction of multimodal/intermodal networks in transportation problems, especially when considering roundtrips, adds complexity to the models. This article presents two models for the optimization of intermodal trips as a contribution to the integration of transport modes in networks. The first model is devoted to one-way trips while the second one is dedicated to roundtrips. The original contribution of this research to transportation is mainly the consideration of roundtrips in the optimization process of intermodal transport, especially because the transport mode between two nodes on the return trip should be the same as the one on the outward trip if both nodes are visited on the return trip, which is a valuable aspect for transport companies. The mathematical formulations of both models leads to mixed binary linear programs, which is not a common approach for this type of problem. In this article, as well as the model description, computational experience is included to highlight the importance and efficiency of the proposed models, which may provide a valuable tool for transport managers.

  3. Toward Optimal Transport Networks

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia; Kincaid, Rex K.; Vargo, Erik P.

    2008-01-01

    Strictly evolutionary approaches to improving the air transport system a highly complex network of interacting systems no longer suffice in the face of demand that is projected to double or triple in the near future. Thus evolutionary approaches should be augmented with active design methods. The ability to actively design, optimize and control a system presupposes the existence of predictive modeling and reasonably well-defined functional dependences between the controllable variables of the system and objective and constraint functions for optimization. Following recent advances in the studies of the effects of network topology structure on dynamics, we investigate the performance of dynamic processes on transport networks as a function of the first nontrivial eigenvalue of the network's Laplacian, which, in turn, is a function of the network s connectivity and modularity. The last two characteristics can be controlled and tuned via optimization. We consider design optimization problem formulations. We have developed a flexible simulation of network topology coupled with flows on the network for use as a platform for computational experiments.

  4. Road screening and distribution route multi-objective robust optimization for hazardous materials based on neural network and genetic algorithm.

    PubMed

    Ma, Changxi; Hao, Wei; Pan, Fuquan; Xiang, Wang

    2018-01-01

    Route optimization of hazardous materials transportation is one of the basic steps in ensuring the safety of hazardous materials transportation. The optimization scheme may be a security risk if road screening is not completed before the distribution route is optimized. For road screening issues of hazardous materials transportation, a road screening algorithm of hazardous materials transportation is built based on genetic algorithm and Levenberg-Marquardt neural network (GA-LM-NN) by analyzing 15 attributes data of each road network section. A multi-objective robust optimization model with adjustable robustness is constructed for the hazardous materials transportation problem of single distribution center to minimize transportation risk and time. A multi-objective genetic algorithm is designed to solve the problem according to the characteristics of the model. The algorithm uses an improved strategy to complete the selection operation, applies partial matching cross shift and single ortho swap methods to complete the crossover and mutation operation, and employs an exclusive method to construct Pareto optimal solutions. Studies show that the sets of hazardous materials transportation road can be found quickly through the proposed road screening algorithm based on GA-LM-NN, whereas the distribution route Pareto solutions with different levels of robustness can be found rapidly through the proposed multi-objective robust optimization model and algorithm.

  5. Dynamics Behaviors of Scale-Free Networks with Elastic Demand

    NASA Astrophysics Data System (ADS)

    Li, Yan-Lai; Sun, Hui-Jun; Wu, Jian-Jun

    Many real-world networks, such as transportation networks and Internet, have the scale-free properties. It is important to study the bearing capacity of such networks. Considering the elastic demand condition, we analyze load distributions and bearing capacities with different parameters through artificially created scale-free networks. The simulation results show that the load distribution follows a power-law form, which means some ordered pairs, playing the dominant role in the transportation network, have higher demand than other pairs. We found that, with the decrease of perceptual error, the total and average ordered pair demand will decrease and then stay in a steady state. However, with the increase of the network size, the average demand of each ordered pair will decrease, which is particularly interesting for the network design problem.

  6. A brief historical introduction to Euler's formula for polyhedra, topology, graph theory and networks

    NASA Astrophysics Data System (ADS)

    Debnath, Lokenath

    2010-09-01

    This article is essentially devoted to a brief historical introduction to Euler's formula for polyhedra, topology, theory of graphs and networks with many examples from the real-world. Celebrated Königsberg seven-bridge problem and some of the basic properties of graphs and networks for some understanding of the macroscopic behaviour of real physical systems are included. We also mention some important and modern applications of graph theory or network problems from transportation to telecommunications. Graphs or networks are effectively used as powerful tools in industrial, electrical and civil engineering, communication networks in the planning of business and industry. Graph theory and combinatorics can be used to understand the changes that occur in many large and complex scientific, technical and medical systems. With the advent of fast large computers and the ubiquitous Internet consisting of a very large network of computers, large-scale complex optimization problems can be modelled in terms of graphs or networks and then solved by algorithms available in graph theory. Many large and more complex combinatorial problems dealing with the possible arrangements of situations of various kinds, and computing the number and properties of such arrangements can be formulated in terms of networks. The Knight's tour problem, Hamilton's tour problem, problem of magic squares, the Euler Graeco-Latin squares problem and their modern developments in the twentieth century are also included.

  7. A Space-Time Network-Based Modeling Framework for Dynamic Unmanned Aerial Vehicle Routing in Traffic Incident Monitoring Applications

    PubMed Central

    Zhang, Jisheng; Jia, Limin; Niu, Shuyun; Zhang, Fan; Tong, Lu; Zhou, Xuesong

    2015-01-01

    It is essential for transportation management centers to equip and manage a network of fixed and mobile sensors in order to quickly detect traffic incidents and further monitor the related impact areas, especially for high-impact accidents with dramatic traffic congestion propagation. As emerging small Unmanned Aerial Vehicles (UAVs) start to have a more flexible regulation environment, it is critically important to fully explore the potential for of using UAVs for monitoring recurring and non-recurring traffic conditions and special events on transportation networks. This paper presents a space-time network- based modeling framework for integrated fixed and mobile sensor networks, in order to provide a rapid and systematic road traffic monitoring mechanism. By constructing a discretized space-time network to characterize not only the speed for UAVs but also the time-sensitive impact areas of traffic congestion, we formulate the problem as a linear integer programming model to minimize the detection delay cost and operational cost, subject to feasible flying route constraints. A Lagrangian relaxation solution framework is developed to decompose the original complex problem into a series of computationally efficient time-dependent and least cost path finding sub-problems. Several examples are used to demonstrate the results of proposed models in UAVs’ route planning for small and medium-scale networks. PMID:26076404

  8. Ant colony optimization algorithm for signal coordination of oversaturated traffic networks.

    DOT National Transportation Integrated Search

    2010-05-01

    Traffic congestion is a daily and growing problem of the modern era in mostly all major cities in the world. : Increasing traffic demand strains the existing transportation system, leading to oversaturated network : conditions, especially at peak hou...

  9. Improved Results for Route Planning in Stochastic Transportation Networks

    NASA Technical Reports Server (NTRS)

    Boyan, Justin; Mitzenmacher, Michael

    2000-01-01

    In the bus network problem, the goal is to generate a plan for getting from point X to point Y within a city using buses in the smallest expected time. Because bus arrival times are not determined by a fixed schedule but instead may be random. the problem requires more than standard shortest path techniques. In recent work, Datar and Ranade provide algorithms in the case where bus arrivals are assumed to be independent and exponentially distributed. We offer solutions to two important generalizations of the problem, answering open questions posed by Datar and Ranade. First, we provide a polynomial time algorithm for a much wider class of arrival distributions, namely those with increasing failure rate. This class includes not only exponential distributions but also uniform, normal, and gamma distributions. Second, in the case where bus arrival times are independent and geometric discrete random variable,. we provide an algorithm for transportation networks of buses and trains, where trains run according to a fixed schedule.

  10. Optimal Routing and Control of Multiple Agents Moving in a Transportation Network and Subject to an Arrival Schedule and Separation Constraints

    NASA Technical Reports Server (NTRS)

    Sadovsky, A. V.; Davis, D.; Isaacson, D. R.

    2012-01-01

    We address the problem of navigating a set of moving agents, e.g. automated guided vehicles, through a transportation network so as to bring each agent to its destination at a specified time. Each pair of agents is required to be separated by a minimal distance, generally agent-dependent, at all times. The speed range, initial position, required destination, and required time of arrival at destination for each agent are assumed provided. The movement of each agent is governed by a controlled differential equation (state equation). The problem consists in choosing for each agent a path and a control strategy so as to meet the constraints and reach the destination at the required time. This problem arises in various fields of transportation, including Air Traffic Management and train coordination, and in robotics. The main contribution of the paper is a model that allows to recast this problem as a decoupled collection of problems in classical optimal control and is easily generalized to the case when inertia cannot be neglected. Some qualitative insight into solution behavior is obtained using the Pontryagin Maximum Principle. Sample numerical solutions are computed using a numerical optimal control solver.

  11. Simulation of Automatic Incidents Detection Algorithm on the Transport Network

    ERIC Educational Resources Information Center

    Nikolaev, Andrey B.; Sapego, Yuliya S.; Jakubovich, Anatolij N.; Berner, Leonid I.; Ivakhnenko, Andrey M.

    2016-01-01

    Management of traffic incident is a functional part of the whole approach to solving traffic problems in the framework of intelligent transport systems. Development of an effective process of traffic incident management is an important part of the transport system. In this research, it's suggested algorithm based on fuzzy logic to detect traffic…

  12. Freight information real-time system for transport (FIRST)

    DOT National Transportation Integrated Search

    2002-05-01

    The FIRST Demonstration Project was funded and developed, in part, to provide unique solutions to freight transportation problems. FIRST is an Internet-based, real-time network that integrates many resources into a single, easy-to-use Web site on car...

  13. Computer vision in roadway transportation systems: a survey

    NASA Astrophysics Data System (ADS)

    Loce, Robert P.; Bernal, Edgar A.; Wu, Wencheng; Bala, Raja

    2013-10-01

    There is a worldwide effort to apply 21st century intelligence to evolving our transportation networks. The goals of smart transportation networks are quite noble and manifold, including safety, efficiency, law enforcement, energy conservation, and emission reduction. Computer vision is playing a key role in this transportation evolution. Video imaging scientists are providing intelligent sensing and processing technologies for a wide variety of applications and services. There are many interesting technical challenges including imaging under a variety of environmental and illumination conditions, data overload, recognition and tracking of objects at high speed, distributed network sensing and processing, energy sources, as well as legal concerns. This paper presents a survey of computer vision techniques related to three key problems in the transportation domain: safety, efficiency, and security and law enforcement. A broad review of the literature is complemented by detailed treatment of a few selected algorithms and systems that the authors believe represent the state-of-the-art.

  14. An implementation of the SNR high speed network communication protocol (Receiver part)

    NASA Astrophysics Data System (ADS)

    Wan, Wen-Jyh

    1995-03-01

    This thesis work is to implement the receiver pan of the SNR high speed network transport protocol. The approach was to use the Systems of Communicating Machines (SCM) as the formal definition of the protocol. Programs were developed on top of the Unix system using C programming language. The Unix system features that were adopted for this implementation were multitasking, signals, shared memory, semaphores, sockets, timers and process control. The problems encountered, and solved, were signal loss, shared memory conflicts, process synchronization, scheduling, data alignment and errors in the SCM specification itself. The result was a correctly functioning program which implemented the SNR protocol. The system was tested using different connection modes, lost packets, duplicate packets and large data transfers. The contributions of this thesis are: (1) implementation of the receiver part of the SNR high speed transport protocol; (2) testing and integration with the transmitter part of the SNR transport protocol on an FDDI data link layered network; (3) demonstration of the functions of the SNR transport protocol such as connection management, sequenced delivery, flow control and error recovery using selective repeat methods of retransmission; and (4) modifications to the SNR transport protocol specification such as corrections for incorrect predicate conditions, defining of additional packet types formats, solutions for signal lost and processes contention problems etc.

  15. Improving incident management response and coordination of resources.

    DOT National Transportation Integrated Search

    2001-12-01

    Highway crashes cause a major impact to the transportation network by critically limiting the operational efficiency of the roadway. Traveler delay is the problem most often associated with highway crashes, but by far the most serious problem is the ...

  16. Bicriteria Network Optimization Problem using Priority-based Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Gen, Mitsuo; Lin, Lin; Cheng, Runwei

    Network optimization is being an increasingly important and fundamental issue in the fields such as engineering, computer science, operations research, transportation, telecommunication, decision support systems, manufacturing, and airline scheduling. In many applications, however, there are several criteria associated with traversing each edge of a network. For example, cost and flow measures are both important in the networks. As a result, there has been recent interest in solving Bicriteria Network Optimization Problem. The Bicriteria Network Optimization Problem is known a NP-hard. The efficient set of paths may be very large, possibly exponential in size. Thus the computational effort required to solve it can increase exponentially with the problem size in the worst case. In this paper, we propose a genetic algorithm (GA) approach used a priority-based chromosome for solving the bicriteria network optimization problem including maximum flow (MXF) model and minimum cost flow (MCF) model. The objective is to find the set of Pareto optimal solutions that give possible maximum flow with minimum cost. This paper also combines Adaptive Weight Approach (AWA) that utilizes some useful information from the current population to readjust weights for obtaining a search pressure toward a positive ideal point. Computer simulations show the several numerical experiments by using some difficult-to-solve network design problems, and show the effectiveness of the proposed method.

  17. A pricing approach for mitigating congestion in multimodal transportation systems.

    DOT National Transportation Integrated Search

    2010-02-19

    The problem addressed in this research is to determine usage prices for a system with : multiple modes of transportation with the objective of reducing congestion. With multiple : modes, these prices can take on several forms. On road networks, the u...

  18. Models of human problem solving - Detection, diagnosis, and compensation for system failures

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.

    1983-01-01

    The role of the human operator as a problem solver in man-machine systems such as vehicles, process plants, transportation networks, etc. is considered. Problem solving is discussed in terms of detection, diagnosis, and compensation. A wide variety of models of these phases of problem solving are reviewed and specifications for an overall model outlined.

  19. Analysis of Feeder Bus Network Design and Scheduling Problems

    PubMed Central

    Almasi, Mohammad Hadi; Karim, Mohamed Rehan

    2014-01-01

    A growing concern for public transit is its inability to shift passenger's mode from private to public transport. In order to overcome this problem, a more developed feeder bus network and matched schedules will play important roles. The present paper aims to review some of the studies performed on Feeder Bus Network Design and Scheduling Problem (FNDSP) based on three distinctive parts of the FNDSP setup, namely, problem description, problem characteristics, and solution approaches. The problems consist of different subproblems including data preparation, feeder bus network design, route generation, and feeder bus scheduling. Subsequently, descriptive analysis and classification of previous works are presented to highlight the main characteristics and solution methods. Finally, some of the issues and trends for future research are identified. This paper is targeted at dealing with the FNDSP to exhibit strategic and tactical goals and also contributes to the unification of the field which might be a useful complement to the few existing reviews. PMID:24526890

  20. A Summary of Research on Energy Saving and Emission Reduction of Transportation

    NASA Astrophysics Data System (ADS)

    Cheng, Dongxiang; Wu, Lufen

    2017-12-01

    Road transport is an important part of transportation, and road in the field of energy-saving emission reduction is a very important industry. According to the existing problems of road energy saving and emission reduction, this paper elaborates the domestic and international research on energy saving and emission reduction from three aspects: road network optimization, pavement material and pavement maintenance. Road network optimization may be overlooked, and the research content is still relatively preliminary; pavement materials mainly from the asphalt pavement temperature mixed asphalt technology research; pavement maintenance technology development is relatively comprehensive.

  1. A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadgu, Teklu; Karra, Satish; Kalinina, Elena

    One of the major challenges of simulating flow and transport in the far field of a geologic repository in crystalline host rock is related to reproducing the properties of the fracture network over the large volume of rock with sparse fracture characterization data. Various approaches have been developed to simulate flow and transport through the fractured rock. The approaches can be broadly divided into Discrete Fracture Network (DFN) and Equivalent Continuum Model (ECM). The DFN explicitly represents individual fractures, while the ECM uses fracture properties to determine equivalent continuum parameters. In this paper, we compare DFN and ECM in termsmore » of upscaled observed transport properties through generic fracture networks. The major effort was directed on making the DFN and ECM approaches similar in their conceptual representations. This allows for separating differences related to the interpretation of the test conditions and parameters from the differences between the DFN and ECM approaches. The two models are compared using a benchmark test problem that is constructed to represent the far field (1 × 1 × 1 km 3) of a hypothetical repository in fractured crystalline rock. The test problem setting uses generic fracture properties that can be expected in crystalline rocks. The models are compared in terms of the: 1) effective permeability of the domain, and 2) nonreactive solute breakthrough curves through the domain. The principal differences between the models are mesh size, network connectivity, matrix diffusion and anisotropy. We demonstrate how these differences affect the flow and transport. Finally, we identify the factors that should be taken in consideration when selecting an approach most suitable for the site-specific conditions.« less

  2. A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock

    DOE PAGES

    Hadgu, Teklu; Karra, Satish; Kalinina, Elena; ...

    2017-07-28

    One of the major challenges of simulating flow and transport in the far field of a geologic repository in crystalline host rock is related to reproducing the properties of the fracture network over the large volume of rock with sparse fracture characterization data. Various approaches have been developed to simulate flow and transport through the fractured rock. The approaches can be broadly divided into Discrete Fracture Network (DFN) and Equivalent Continuum Model (ECM). The DFN explicitly represents individual fractures, while the ECM uses fracture properties to determine equivalent continuum parameters. In this paper, we compare DFN and ECM in termsmore » of upscaled observed transport properties through generic fracture networks. The major effort was directed on making the DFN and ECM approaches similar in their conceptual representations. This allows for separating differences related to the interpretation of the test conditions and parameters from the differences between the DFN and ECM approaches. The two models are compared using a benchmark test problem that is constructed to represent the far field (1 × 1 × 1 km 3) of a hypothetical repository in fractured crystalline rock. The test problem setting uses generic fracture properties that can be expected in crystalline rocks. The models are compared in terms of the: 1) effective permeability of the domain, and 2) nonreactive solute breakthrough curves through the domain. The principal differences between the models are mesh size, network connectivity, matrix diffusion and anisotropy. We demonstrate how these differences affect the flow and transport. Finally, we identify the factors that should be taken in consideration when selecting an approach most suitable for the site-specific conditions.« less

  3. A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock

    NASA Astrophysics Data System (ADS)

    Hadgu, Teklu; Karra, Satish; Kalinina, Elena; Makedonska, Nataliia; Hyman, Jeffrey D.; Klise, Katherine; Viswanathan, Hari S.; Wang, Yifeng

    2017-10-01

    One of the major challenges of simulating flow and transport in the far field of a geologic repository in crystalline host rock is related to reproducing the properties of the fracture network over the large volume of rock with sparse fracture characterization data. Various approaches have been developed to simulate flow and transport through the fractured rock. The approaches can be broadly divided into Discrete Fracture Network (DFN) and Equivalent Continuum Model (ECM). The DFN explicitly represents individual fractures, while the ECM uses fracture properties to determine equivalent continuum parameters. We compare DFN and ECM in terms of upscaled observed transport properties through generic fracture networks. The major effort was directed on making the DFN and ECM approaches similar in their conceptual representations. This allows for separating differences related to the interpretation of the test conditions and parameters from the differences between the DFN and ECM approaches. The two models are compared using a benchmark test problem that is constructed to represent the far field (1 × 1 × 1 km3) of a hypothetical repository in fractured crystalline rock. The test problem setting uses generic fracture properties that can be expected in crystalline rocks. The models are compared in terms of the: 1) effective permeability of the domain, and 2) nonreactive solute breakthrough curves through the domain. The principal differences between the models are mesh size, network connectivity, matrix diffusion and anisotropy. We demonstrate how these differences affect the flow and transport. We identify the factors that should be taken in consideration when selecting an approach most suitable for the site-specific conditions.

  4. The Technical Problems of Anti-theft Diagnostics in a Traction Network

    NASA Astrophysics Data System (ADS)

    Mikulski, Jerzy; Młynczak, Jakub

    2012-02-01

    The paper presents an analysis of traction lines theft in the Katowice division of the Railroad Development Company (Zakład Linii Kolejowych - ZLK) as well as the principles for the anti-theft protection system, currently in development. The problem of theft is a very important issue concerning the safety of rail transportation. It is also a significant economic problem, as the cost of recreating a stolen network is very high. Moreover, the Administrator of the infrastructure bears the cost of compensation for any delays in train schedules.

  5. Performance Evaluation of FAST TCP Traffic-Flows in Multihomed MANETs

    NASA Astrophysics Data System (ADS)

    Mudassir, Mumajjed Ul; Akram, Adeel

    In Mobile Ad hoc Networks (MANETs) an efficient communication protocol is required at the transport layer. Mobile nodes moving around will have temporary and rather short-lived connectivity with each other and the Internet, thus requiring efficient utilization of network resources. Moreover the problems arising due to high mobility, collision and congestion must also be considered. Multihoming allows higher reliability and enhancement of network throughput. FAST TCP is a new promising transport layer protocol developed for high-speed high-latency networks. In this paper, we have analyzed the performance of FAST TCP traffic flows in multihomed MANETs and compared it with standard TCP (TCP Reno) traffic flows in non-multihomed MANETs.

  6. A multi-objective optimization model for hub network design under uncertainty: An inexact rough-interval fuzzy approach

    NASA Astrophysics Data System (ADS)

    Niakan, F.; Vahdani, B.; Mohammadi, M.

    2015-12-01

    This article proposes a multi-objective mixed-integer model to optimize the location of hubs within a hub network design problem under uncertainty. The considered objectives include minimizing the maximum accumulated travel time, minimizing the total costs including transportation, fuel consumption and greenhouse emissions costs, and finally maximizing the minimum service reliability. In the proposed model, it is assumed that for connecting two nodes, there are several types of arc in which their capacity, transportation mode, travel time, and transportation and construction costs are different. Moreover, in this model, determining the capacity of the hubs is part of the decision-making procedure and balancing requirements are imposed on the network. To solve the model, a hybrid solution approach is utilized based on inexact programming, interval-valued fuzzy programming and rough interval programming. Furthermore, a hybrid multi-objective metaheuristic algorithm, namely multi-objective invasive weed optimization (MOIWO), is developed for the given problem. Finally, various computational experiments are carried out to assess the proposed model and solution approaches.

  7. Baby on the move: issues in neonatal transport.

    PubMed

    Teasdale, Debra; Hamilton, Catherine

    2008-02-01

    The 2003 review of UK neonatal services led to wide-ranging changes including the centralisation of intensive care into level 3 units, the geographical organisation of neonatal care into 'networks', and the setting up of dedicated network transport teams. Despite these changes, neonatal transport continues to be problematic. Approaches to neonatal transportation are not yet standardised and this presents logistical problems for staff. Risks need to be considered and managed effectively to ensure safety for all involved. Although algorithms are in use for general stabilisation of the neonates, more guidance is required for effective stabilisation and management of infants with complex/surgical conditions. Staff involved in transport need to understand how neonatal physiology may be altered during transportation. They should also consider the legal implications of neonatal transport which are likely to remain unclear until the law is challenged in some way.

  8. Metro Optical Networks for Homeland Security

    NASA Astrophysics Data System (ADS)

    Bechtel, James H.

    Metro optical networks provide an enticing opportunity for strengthening homeland security. Many existing and emerging fiber-optic networks can be adapted for enhanced security applications. Applications include airports, theme parks, sports venues, and border surveillance systems. Here real-time high-quality video and captured images can be collected, transported, processed, and stored for security applications. Video and data collection are important also at correctional facilities, courts, infrastructure (e.g., dams, bridges, railroads, reservoirs, power stations), and at military and other government locations. The scaling of DWDM-based networks allows vast amounts of data to be collected and transported including biometric features of individuals at security check points. Here applications will be discussed along with potential solutions and challenges. Examples of solutions to these problems are given. This includes a discussion of metropolitan aggregation platforms for voice, video, and data that are SONET compliant for use in SONET networks and the use of DWDM technology for scaling and transporting a variety of protocols. Element management software allows not only network status monitoring, but also provides optimized allocation of network resources through the use of optical switches or electrical cross connects.

  9. The impact of climate change on transportation in the gulf coast

    USGS Publications Warehouse

    Savonis, M.J.; Burkett, V.R.; Potter, J.R.; Kafalenos, R.; Hyman, R.; Leonard, K.

    2009-01-01

    Climate affects the design, construction, safety, operations, and maintenance of transportation infrastructure and systems. The prospect of a changing climate raises critical questions regarding how alterations in temperature, precipitation, storm events, and other aspects of the climate could affect the nation's transportation system. This regional assessment of climate change and its potential impacts on transportation systems addresses these questions for the central Gulf Coast between Houston and Mobile. Warming temperatures are likely to increase the costs of transportation construction, maintenance, and operations. More frequent extreme precipitation events will likely disrupt transportation networks with flooding and visibility problems. Relative sea level rise will make much of the existing infrastructure more prone to frequent or permanent inundation. Increased storm intensity may lead to increased service disruption and damage. Consideration of these factors in today's transportation decisions should lead to a more robust, resilient, and cost-effective transportation network in the coming decades. ?? 2009 ASCE.

  10. Planning Tripoli Metro Network by the Use of Remote Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Alhusain, O.; Engedy, Gy.; Milady, A.; Paulini, L.; Soos, G.

    2012-08-01

    Tripoli, the capital city of Libya is going through significant and integrated development process, this development is expected to continue in the next few decades. The Libyan authorities have put it as their goal to develop Tripoli to an important metropolis in North Africa. To achieve this goal, they identified goals for the city's future development in all human, economic, cultural, touristic, and nonetheless infrastructure levels. On the infrastructure development level, among other things, they have identified the development of public transportation as one of the important development priorities. At present, public transportation in Tripoli is carried out by a limited capacity bus network alongside of individual transportation. However, movement in the city is characterized mainly by individual transportation with all its disadvantages such as traffic jams, significant air pollution with both carbon monoxide and dust, and lack of parking space. The Libyan authorities wisely opted for an efficient, modern, and environment friendly solution for public transportation, this was to plan a complex Metro Network as the backbone of public transportation in the city, and to develop and integrate the bus network and other means of transportation to be in harmony with the planned Metro network. The Metro network is planned to provide convenient connections to Tripoli International Airport and to the planned Railway station. They plan to build a system of Park and Ride (P+R) facilities at suitable locations along the Metro lines. This paper will present in details the planned Metro Network, some of the applied technological solutions, the importance of applying remote sensing and GIS technologies in different planning phases, and problems and benefits associated with the use of multi-temporal-, multi-format spatial data in the whole network planning phase.

  11. Advances in the Theory of Complex Networks

    NASA Astrophysics Data System (ADS)

    Peruani, Fernando

    An exhaustive and comprehensive review on the theory of complex networks would imply nowadays a titanic task, and it would result in a lengthy work containing plenty of technical details of arguable relevance. Instead, this chapter addresses very briefly the ABC of complex network theory, visiting only the hallmarks of the theoretical founding, to finally focus on two of the most interesting and promising current research problems: the study of dynamical processes on transportation networks and the identification of communities in complex networks.

  12. Two problems in multiphase biological flows: Blood flow and particulate transport in microvascular network, and pseudopod-driven motility of amoeboid cells

    NASA Astrophysics Data System (ADS)

    Bagchi, Prosenjit

    2016-11-01

    In this talk, two problems in multiphase biological flows will be discussed. The first is the direct numerical simulation of whole blood and drug particulates in microvascular networks. Blood in microcirculation behaves as a dense suspension of heterogeneous cells. The erythrocytes are extremely deformable, while inactivated platelets and leukocytes are nearly rigid. A significant progress has been made in recent years in modeling blood as a dense cellular suspension. However, many of these studies considered the blood flow in simple geometry, e.g., straight tubes of uniform cross-section. In contrast, the architecture of a microvascular network is very complex with bifurcating, merging and winding vessels, posing a further challenge to numerical modeling. We have developed an immersed-boundary-based method that can consider blood cell flow in physiologically realistic and complex microvascular network. In addition to addressing many physiological issues related to network hemodynamics, this tool can be used to optimize the transport properties of drug particulates for effective organ-specific delivery. Our second problem is pseudopod-driven motility as often observed in metastatic cancer cells and other amoeboid cells. We have developed a multiscale hydrodynamic model to simulate such motility. We study the effect of cell stiffness on motility as the former has been considered as a biomarker for metastatic potential. Funded by the National Science Foundation.

  13. A Promising Practice: Using Facebook as a Communication and Social Networking Tool

    ERIC Educational Resources Information Center

    Schultz, Susan M.; Jacobs, Gloria; Schultz, Jacob

    2013-01-01

    Individuals with autism often face barriers to social interaction. Residing in a rural environment can compound these difficulties for individuals diagnosed with autism. Some of the reasons include transportation problems and small social networks, in addition to the characteristics of autism. This article discusses a promising practice for…

  14. On the boundary treatment in spectral methods for hyperbolic systems

    NASA Technical Reports Server (NTRS)

    Canuto, C.; Quarteroni, A.

    1986-01-01

    Spectral methods were successfully applied to the simulation of slow transients in gas transportation networks. Implicit time advancing techniques are naturally suggested by the nature of the problem. The correct treatment of the boundary conditions are clarified in order to avoid any stability restriction originated by the boundaries. The Beam and Warming and the Lerat schemes are unconditionally linearly stable when used with a Chebyshev pseudospectral method. Engineering accuracy for a gas transportation problem is achieved at Courant numbers up to 100.

  15. On the boundary treatment in spectral methods for hyperbolic systems

    NASA Technical Reports Server (NTRS)

    Canuto, Claudio; Quarteroni, Alfio

    1987-01-01

    Spectral methods were successfully applied to the simulation of slow transients in gas transportation networks. Implicit time advancing techniques are naturally suggested by the nature of the problem. The correct treatment of the boundary conditions is clarified in order to avoid any stability restriction originated by the boundaries. The Beam and Warming and the Lerat schemes are unconditionally linearly stable when used with a Chebyshev pseudospectral method. Engineering accuracy for a gas transportation problem is achieved at Courant numbers up to 100.

  16. Hypercube technology

    NASA Technical Reports Server (NTRS)

    Parker, Jay W.; Cwik, Tom; Ferraro, Robert D.; Liewer, Paulett C.; Patterson, Jean E.

    1991-01-01

    The JPL designed MARKIII hypercube supercomputer has been in application service since June 1988 and has had successful application to a broad problem set including electromagnetic scattering, discrete event simulation, plasma transport, matrix algorithms, neural network simulation, image processing, and graphics. Currently, problems that are not homogeneous are being attempted, and, through this involvement with real world applications, the software is evolving to handle the heterogeneous class problems efficiently.

  17. Interplay between spatially explicit sediment sourcing, hierarchical river-network structure, and in-channel bed material sediment transport and storage dynamics

    NASA Astrophysics Data System (ADS)

    Czuba, Jonathan A.; Foufoula-Georgiou, Efi; Gran, Karen B.; Belmont, Patrick; Wilcock, Peter R.

    2017-05-01

    Understanding how sediment moves along source to sink pathways through watersheds—from hillslopes to channels and in and out of floodplains—is a fundamental problem in geomorphology. We contribute to advancing this understanding by modeling the transport and in-channel storage dynamics of bed material sediment on a river network over a 600 year time period. Specifically, we present spatiotemporal changes in bed sediment thickness along an entire river network to elucidate how river networks organize and process sediment supply. We apply our model to sand transport in the agricultural Greater Blue Earth River Basin in Minnesota. By casting the arrival of sediment to links of the network as a Poisson process, we derive analytically (under supply-limited conditions) the time-averaged probability distribution function of bed sediment thickness for each link of the river network for any spatial distribution of inputs. Under transport-limited conditions, the analytical assumptions of the Poisson arrival process are violated (due to in-channel storage dynamics) where we find large fluctuations and periodicity in the time series of bed sediment thickness. The time series of bed sediment thickness is the result of dynamics on a network in propagating, altering, and amalgamating sediment inputs in sometimes unexpected ways. One key insight gleaned from the model is that there can be a small fraction of reaches with relatively low-transport capacity within a nonequilibrium river network acting as "bottlenecks" that control sediment to downstream reaches, whereby fluctuations in bed elevation can dissociate from signals in sediment supply.

  18. Visualization and Hierarchical Analysis of Flow in Discrete Fracture Network Models

    NASA Astrophysics Data System (ADS)

    Aldrich, G. A.; Gable, C. W.; Painter, S. L.; Makedonska, N.; Hamann, B.; Woodring, J.

    2013-12-01

    Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of flow and transport in fractured rock has important implications in underground repositories for hazardous materials (eg. nuclear and chemical waste), contaminant migration and remediation, groundwater resource management, and hydrocarbon extraction. We have developed methods to explicitly model flow in discrete fracture networks and track flow paths using passive particle tracking algorithms. Visualization and analysis of particle trajectory through the fracture network is important to understanding fracture connectivity, flow patterns, potential contaminant pathways and fast paths through the network. However, occlusion due to the large number of highly tessellated and intersecting fracture polygons preclude the effective use of traditional visualization methods. We would also like quantitative analysis methods to characterize the trajectory of a large number of particle paths. We have solved these problems by defining a hierarchal flow network representing the topology of particle flow through the fracture network. This approach allows us to analyses the flow and the dynamics of the system as a whole. We are able to easily query the flow network, and use paint-and-link style framework to filter the fracture geometry and particle traces based on the flow analytics. This allows us to greatly reduce occlusion while emphasizing salient features such as the principal transport pathways. Examples are shown that demonstrate the methodology and highlight how use of this new method allows quantitative analysis and characterization of flow and transport in a number of representative fracture networks.

  19. Optimal routing of hazardous substances in time-varying, stochastic transportation networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, A.L.; Miller-Hooks, E.; Mahmassani, H.S.

    This report is concerned with the selection of routes in a network along which to transport hazardous substances, taking into consideration several key factors pertaining to the cost of transport and the risk of population exposure in the event of an accident. Furthermore, the fact that travel time and the risk measures are not constant over time is explicitly recognized in the routing decisions. Existing approaches typically assume static conditions, possibly resulting in inefficient route selection and unnecessary risk exposure. The report described the application of recent advances in network analysis methodologies to the problem of routing hazardous substances. Severalmore » specific problem formulations are presented, reflecting different degrees of risk aversion on the part of the decision-maker, as well as different possible operational scenarios. All procedures explicitly consider travel times and travel costs (including risk measures) to be stochastic time-varying quantities. The procedures include both exact algorithms, which may require extensive computational effort in some situations, as well as more efficient heuristics that may not guarantee a Pareto-optimal solution. All procedures are systematically illustrated for an example application using the Texas highway network, for both normal and incident condition scenarios. The application illustrates the trade-offs between the information obtained in the solution and computational efficiency, and highlights the benefits of incorporating these procedures in a decision-support system for hazardous substance shipment routing decisions.« less

  20. High-resolution method for evolving complex interface networks

    NASA Astrophysics Data System (ADS)

    Pan, Shucheng; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2018-04-01

    In this paper we describe a high-resolution transport formulation of the regional level-set approach for an improved prediction of the evolution of complex interface networks. The novelty of this method is twofold: (i) construction of local level sets and reconstruction of a global level set, (ii) local transport of the interface network by employing high-order spatial discretization schemes for improved representation of complex topologies. Various numerical test cases of multi-region flow problems, including triple-point advection, single vortex flow, mean curvature flow, normal driven flow, dry foam dynamics and shock-bubble interaction show that the method is accurate and suitable for a wide range of complex interface-network evolutions. Its overall computational cost is comparable to the Semi-Lagrangian regional level-set method while the prediction accuracy is significantly improved. The approach thus offers a viable alternative to previous interface-network level-set method.

  1. Enhanced metro MSTP and its applications

    NASA Astrophysics Data System (ADS)

    Li, Guangcheng; Qiao, Yang

    2005-02-01

    With the large-scale application of metro MSTP in recent two years, a lot of problems have emerged inevitably. Some more advanced technologies or mechanisms are needed to deal with the application problems of current version MSTP. RPR and MPLS become new focus of enhanced MSTP"s features and the combination of them will boost maturity and further development of enhanced metro MSTP. The MSTP embedded with RPR and MPLS not only find a solution for perfect transport of TDM service, but also improve the support ability for data traffic and bandwidth utilization. With the help of enhanced MSTP, it"s easy for network carriers to provide a reliable, cost-effective, flexible and competitive transport infrastructure delivering various advanced services. RPR firstly solves the conflict between the transport efficiency and QoS of packet service via some mechanisms such as dual counter-rotating ringlet, statistical multiplexing, bandwidth sharing, topology discovery, fairness control etc. Secondly, RPR guarantees the QoS of subscriber by strict service classification and priority. Thirdly, RPR can provide the carrier-class protection within 50ms. On the other hand, MPLS can solve the lack of VLAN ID by LSP labeling and in addition it offers VPN service for different customers then enhances the SLA. Most of all, MPLS provide cross-networking ability, end-to-end service configuration and QoS guarantee, traffic engineering and network optimization. Enhanced MSTP will be applied in convergence or access layer of metro network first. It could have the function of RPR and MPLS at the same time, the reconciliation sub-layer should adopts GFP or LAPS encapsulation, the mapping granularity can be based on VC-12/VC3/VC4-Xc/v and the LCAS should be supported when the transmission channels are configured by virtual concatenation. Enhanced MSTP can be used to build either a single ring network or multi-ring network for improving the ability and quality of Ethernet transportation and providing new services such as MPLS L2 VPN.

  2. Transport and percolation in complex networks

    NASA Astrophysics Data System (ADS)

    Li, Guanliang

    To design complex networks with optimal transport properties such as flow efficiency, we consider three approaches to understanding transport and percolation in complex networks. We analyze the effects of randomizing the strengths of connections, randomly adding long-range connections to regular lattices, and percolation of spatially constrained networks. Various real-world networks often have links that are differentiated in terms of their strength, intensity, or capacity. We study the distribution P(σ) of the equivalent conductance for Erdoḧs-Rényi (ER) and scale-free (SF) weighted resistor networks with N nodes, for which links are assigned with conductance σ i ≡ e-axi, where xi is a random variable with 0 < xi < 1. We find, both analytically and numerically, that P(σ) for ER networks exhibits two regimes: (i) For σ < e-apc, P(σ) is independent of N and scales as a power law P(σ) ˜ sk/a-1 . Here pc = 1/ is the critical percolation threshold of the network and is the average degree of the network. (ii) For σ > e -apc, P(σ) has strong N dependence and scales as P(σ) ˜ f(σ, apc/N1/3). Transport properties are greatly affected by the topology of networks. We investigate the transport problem in lattices with long-range connections and subject to a cost constraint, seeking design principles for optimal transport networks. Our network is built from a regular d-dimensional lattice to be improved by adding long-range connections with probability Pij ˜ r-aij , where rij is the lattice distance between site i and j. We introduce a cost constraint on the total length of the additional links and find optimal transport in the system for α = d + 1, established here for d = 1, 2 and 3 for regular lattices and df for fractals. Remarkably, this cost constraint approach remains optimal, regardless of the strategy used for transport, whether based on local or global knowledge of the network structure. To further understand the role that long-range connections play in optimizing the transport of complex systems, we study the percolation of spatially constrained networks. We now consider originally empty lattices embedded in d dimensions by adding long-range connections with the same power law probability p(r) ˜ r -α. We find that, for α ≤ d, the percolation transition belongs to the universality class of percolation in ER networks, while for α > 2d it belongs to the universality class of percolation in regular lattices (for one-dimensional linear chain, there is no percolation transition). However for d < α < 2d, the percolation properties show new intermediate behavior different from ER networks, with critical exponents that depend on α.

  3. Fault gouge evolution during rupture and healing: Continual active-seismic observations across laboratory-scale fault zones

    NASA Astrophysics Data System (ADS)

    Krysta, M.; Kusmierczyk-Michulec, J.; Nikkinen, M.; Carter, J. A.

    2011-12-01

    In order to support its mission of monitoring compliance with the treaty banning nuclear explosions, the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) operates four global networks of, respectively, seismic, infrasound, hydroacoustic sensors and air samplers accompanied with radionuclide detectors. The role of the International Data Centre (IDC) of CTBTO is to associate the signals detected in the monitoring networks with the physical phenomena which emitted these signals, by forming events. One of the aspects of associating detections with emitters is the problem of inferring the sources of radionuclides from the detections made at CTBTO radionuclide network stations. This task is particularly challenging because the average transport distance between a release point and detectors is large. Complex processes of turbulent diffusion are responsible for efficient mixing and consequently for decreasing the information content of detections with an increasing distance from the source. The problem is generally addressed in a two-step process. In the first step, an atmospheric transport model establishes a link between the detections and the regions of possible source location. In the second step this link is inverted to infer source information from the detections. In this presentation, we will discuss enhancements of the presently used regression-based inversion algorithm to reconstruct a source of radionuclides. To this aim, modern inversion algorithms accounting for prior information and appropriately regularizing an under-determined reconstruction problem will be briefly introduced. Emphasis will be on the CTBTO context and the choice of inversion methods. An illustration of the first tests will be provided using a framework of twin experiments, i.e. fictitious detections in the CTBTO radionuclide network generated with an atmospheric transport model.

  4. Definition of perspective scheme of organization of traffic using methods of forecasting and modeling

    NASA Astrophysics Data System (ADS)

    Vlasov, V. M.; Novikov, A. N.; Novikov, I. A.; Shevtsova, A. G.

    2018-03-01

    In the environment of highly developed urban agglomerations, one of the main problems arises - inability of the road network to reach a high level of motorization. The introduction of intelligent transport systems allows solving this problem, but the main issue in their implementation remains open: to what extent this or that method of improving the transport network will be effective and whether it is able to solve the problem of vehicle growth especially for the long-term period. The main goal of this work was the development of an approach to forecasting the increase in the intensity of traffic flow for a long-term period using the population and the level of motorization. The developed approach made it possible to determine the projected population and, taking into account the level of motorization, to determine the growth factor of the traffic flow intensity, which allows calculating the intensity value for a long-term period with high accuracy. The analysis of the main methods for predicting the characteristics of the transport stream is performed. The basic values and parameters necessary for their use are established. The analysis of the urban settlement is carried out and the level of motorization characteristic for the given locality is determined. A new approach to predicting the intensity of the traffic flow has been developed, which makes it possible to predict the change in the transport situation in the long term in high accuracy. Calculations of the magnitude of the intensity increase on the basis of the developed forecasting method are made and the errors in the data obtained are determined. The main recommendations on the use of the developed forecasting approach for the long-term functioning of the road network are formulated.

  5. [Research and implementation of the TLS network transport security technology based on DICOM standard].

    PubMed

    Lu, Xiaoqi; Wang, Lei; Zhao, Jianfeng

    2012-02-01

    With the development of medical information, Picture Archiving and Communications System (PACS), Hospital Information System/Radiology Information System(HIS/RIS) and other medical information management system become popular and developed, and interoperability between these systems becomes more frequent. So, these enclosed systems will be open and regionalized by means of network, and this is inevitable. If the trend becomes true, the security of information transmission may be the first problem to be solved. Based on the need for network security, we investigated the Digital Imaging and Communications in Medicine (DICOM) Standard and Transport Layer Security (TLS) Protocol, and implemented the TLS transmission of the DICOM medical information with OpenSSL toolkit and DCMTK toolkit.

  6. L2-LBMT: A Layered Load Balance Routing Protocol for underwater multimedia data transmission

    NASA Astrophysics Data System (ADS)

    Lv, Ze; Tang, Ruichun; Tao, Ye; Sun, Xin; Xu, Xiaowei

    2017-12-01

    Providing highly efficient underwater transmission of mass multimedia data is challenging due to the particularities of the underwater environment. Although there are many schemes proposed to optimize the underwater acoustic network communication protocols, from physical layer, data link layer, network layer to transport layer, the existing routing protocols for underwater wireless sensor network (UWSN) still cannot well deal with the problems in transmitting multimedia data because of the difficulties involved in high energy consumption, low transmission reliability or high transmission delay. It prevents us from applying underwater multimedia data to real-time monitoring of marine environment in practical application, especially in emergency search, rescue operation and military field. Therefore, the inefficient transmission of marine multimedia data has become a serious problem that needs to be solved urgently. In this paper, A Layered Load Balance Routing Protocol (L2-LBMT) is proposed for underwater multimedia data transmission. In L2-LBMT, we use layered and load-balance Ad Hoc Network to transmit data, and adopt segmented data reliable transfer (SDRT) protocol to improve the data transport reliability. And a 3-node variant of tornado (3-VT) code is also combined with the Ad Hoc Network to transmit little emergency data more quickly. The simulation results show that the proposed protocol can balance energy consumption of each node, effectively prolong the network lifetime and reduce transmission delay of marine multimedia data.

  7. Automated Guideway Network Traffic Modeling

    DOT National Transportation Integrated Search

    1972-02-01

    In the literature concerning automated guideway transportation systems, such as dual mode, a great deal of effort has been expended on the use of deterministic reservation schemes and the problem of merging streams of vehicles. However, little attent...

  8. Traffic data collection and anonymous vehicle detection using wireless sensor networks : research summary.

    DOT National Transportation Integrated Search

    2012-05-01

    Problem: : Most Intelligent Transportation System (ITS) applications require distributed : acquisition of various traffic metrics such as traffic speed, volume, and density. : The existing measurement technologies, such as inductive loops, infrared, ...

  9. Spatial price dynamics: From complex network perspective

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Bi, J. T.; Sun, H. J.

    2008-10-01

    The spatial price problem means that if the supply price plus the transportation cost is less than the demand price, there exists a trade. Thus, after an amount of exchange, the demand price will decrease. This process is continuous until an equilibrium state is obtained. However, how the trade network structure affects this process has received little attention. In this paper, we give a evolving model to describe the levels of spatial price on different complex network structures. The simulation results show that the network with shorter path length is sensitive to the variation of prices.

  10. Metaheuristics for the dynamic stochastic dial-a-ride problem with expected return transports.

    PubMed

    Schilde, M; Doerner, K F; Hartl, R F

    2011-12-01

    The problem of transporting patients or elderly people has been widely studied in literature and is usually modeled as a dial-a-ride problem (DARP). In this paper we analyze the corresponding problem arising in the daily operation of the Austrian Red Cross. This nongovernmental organization is the largest organization performing patient transportation in Austria. The aim is to design vehicle routes to serve partially dynamic transportation requests using a fixed vehicle fleet. Each request requires transportation from a patient's home location to a hospital (outbound request) or back home from the hospital (inbound request). Some of these requests are known in advance. Some requests are dynamic in the sense that they appear during the day without any prior information. Finally, some inbound requests are stochastic. More precisely, with a certain probability each outbound request causes a corresponding inbound request on the same day. Some stochastic information about these return transports is available from historical data. The purpose of this study is to investigate, whether using this information in designing the routes has a significant positive effect on the solution quality. The problem is modeled as a dynamic stochastic dial-a-ride problem with expected return transports. We propose four different modifications of metaheuristic solution approaches for this problem. In detail, we test dynamic versions of variable neighborhood search (VNS) and stochastic VNS (S-VNS) as well as modified versions of the multiple plan approach (MPA) and the multiple scenario approach (MSA). Tests are performed using 12 sets of test instances based on a real road network. Various demand scenarios are generated based on the available real data. Results show that using the stochastic information on return transports leads to average improvements of around 15%. Moreover, improvements of up to 41% can be achieved for some test instances.

  11. Bus-based park-and-ride system: a stochastic model on multimodal network with congestion pricing schemes

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyuan; Meng, Qiang

    2014-05-01

    This paper focuses on modelling the network flow equilibrium problem on a multimodal transport network with bus-based park-and-ride (P&R) system and congestion pricing charges. The multimodal network has three travel modes: auto mode, transit mode and P&R mode. A continuously distributed value-of-time is assumed to convert toll charges and transit fares to time unit, and the users' route choice behaviour is assumed to follow the probit-based stochastic user equilibrium principle with elastic demand. These two assumptions have caused randomness to the users' generalised travel times on the multimodal network. A comprehensive network framework is first defined for the flow equilibrium problem with consideration of interactions between auto flows and transit (bus) flows. Then, a fixed-point model with unique solution is proposed for the equilibrium flows, which can be solved by a convergent cost averaging method. Finally, the proposed methodology is tested by a network example.

  12. Intelligent Transport Systems in the Management of Road Transportation

    NASA Astrophysics Data System (ADS)

    Kalupová, Blanka; Hlavoň, Ivan

    2016-11-01

    Extension of European Union causes increase of free transfer of people and goods. At the same time they raised the problems associated with the transport, e.g. congestion and related accidents on roads, air traffic delays and more. To increase the efficiency and safety of transport, the European Commission supports the introduction of intelligent transport systems and services in all transport sectors. Implementation of intelligent transport systems and services in the road transport reduces accident frequency, increases the capacity of existing infrastructure and reduces congestions. Use of toll systems provides resources needed for the construction and operation of a new road network, improves public transport, cycling transport and walking transport, and also their multimodal integration with individual car transport.

  13. Game theory and traffic assignment.

    DOT National Transportation Integrated Search

    2013-09-01

    Traffic assignment is used to determine the number of users on roadway links in a network. While this problem has : been widely studied in transportation literature, its use of the concept of equilibrium has attracted considerable interest : in the f...

  14. Regulating Hazardous-materials Transportation with Behavioral Modeling of Drivers

    DOT National Transportation Integrated Search

    2018-01-29

    Changhyun Kwon (ORCID ID 0000-0001-8455-6396) This project considers network regulation problems to minimize the risk of hazmat accidents and potential damages to the environment, while considering bounded rationality of drivers. We consider governme...

  15. Case Study on Optimal Routing in Logistics Network by Priority-based Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoguang; Lin, Lin; Gen, Mitsuo; Shiota, Mitsushige

    Recently, research on logistics caught more and more attention. One of the important issues on logistics system is to find optimal delivery routes with the least cost for products delivery. Numerous models have been developed for that reason. However, due to the diversity and complexity of practical problem, the existing models are usually not very satisfying to find the solution efficiently and convinently. In this paper, we treat a real-world logistics case with a company named ABC Co. ltd., in Kitakyusyu Japan. Firstly, based on the natures of this conveyance routing problem, as an extension of transportation problem (TP) and fixed charge transportation problem (fcTP) we formulate the problem as a minimum cost flow (MCF) model. Due to the complexity of fcTP, we proposed a priority-based genetic algorithm (pGA) approach to find the most acceptable solution to this problem. In this pGA approach, a two-stage path decoding method is adopted to develop delivery paths from a chromosome. We also apply the pGA approach to this problem, and compare our results with the current logistics network situation, and calculate the improvement of logistics cost to help the management to make decisions. Finally, in order to check the effectiveness of the proposed method, the results acquired are compared with those come from the two methods/ software, such as LINDO and CPLEX.

  16. Physics Applied to Oil and Gas Exploration

    NASA Astrophysics Data System (ADS)

    Schwartz, Larry

    2002-03-01

    Problems involving transport in porous media are of interest throughout the fields of petroleum exploration and environmental monitoring and remediation. The systems being studied can vary in size from centimeter scale rock or soil samples to kilometer scale reservoirs and aquifers. Clearly, the smaller the sample the more easily can the medium's structure and composition be characterized, and the better defined are the associated experimental and theoretical modeling problems. The study of transport in such geological systems is then similar to corresponding problems in the study of other heterogeneous systems such as polymer gels, catalytic beds and cementitious materials. The defining characteristic of porous media is that they are comprised of two percolating interconnected channels, the solid and pore networks. Transport processes of interest in such systems typically involve the flow of electrical current, viscous fluids or fine grained particles. A closely related phenomena, nuclear magnetic resonance (NMR), is controlled by diffusion in the pore network. Also of interest is the highly non-linear character of the stress-strain response of granular porous media. We will review the development of two and three dimensional model porous media, and will outline the calculation of their physical properties. We will also discuss the direct measurement of the pore structure by synchrotron X-ray microtomography.

  17. Geometric and topological characterization of porous media: insights from eigenvector centrality

    NASA Astrophysics Data System (ADS)

    Jimenez-Martinez, J.; Negre, C.

    2017-12-01

    Solving flow and transport through complex geometries such as porous media involves an extreme computational cost. Simplifications such as pore networks, where the pores are represented by nodes and the pore throats by edges connecting pores, have been proposed. These models have the ability to preserve the connectivity of the medium. However, they have difficulties capturing preferential paths (high velocity) and stagnation zones (low velocity), as they do not consider the specific relations between nodes. Network theory approaches, where the complex network is conceptualized like a graph, can help to simplify and better understand fluid dynamics and transport in porous media. To address this issue, we propose a method based on eigenvector centrality. It has been corrected to overcome the centralization problem and modified to introduce a bias in the centrality distribution along a particular direction which allows considering the flow and transport anisotropy in porous media. The model predictions are compared with millifluidic transport experiments, showing that this technique is computationally efficient and has potential for predicting preferential paths and stagnation zones for flow and transport in porous media. Entropy computed from the eigenvector centrality probability distribution is proposed as an indicator of the "mixing capacity" of the system.

  18. Backstepping fuzzy-neural-network control design for hybrid maglev transportation system.

    PubMed

    Wai, Rong-Jong; Yao, Jing-Xiang; Lee, Jeng-Dao

    2015-02-01

    This paper focuses on the design of a backstepping fuzzy-neural-network control (BFNNC) for the online levitated balancing and propulsive positioning of a hybrid magnetic levitation (maglev) transportation system. The dynamic model of the hybrid maglev transportation system including levitated hybrid electromagnets to reduce the suspension power loss and the friction force during linear movement and a propulsive linear induction motor based on the concepts of mechanical geometry and motion dynamics is first constructed. The ultimate goal is to design an online fuzzy neural network (FNN) control methodology to cope with the problem of the complicated control transformation and the chattering control effort in backstepping control (BSC) design, and to directly ensure the stability of the controlled system without the requirement of strict constraints, detailed system information, and auxiliary compensated controllers despite the existence of uncertainties. In the proposed BFNNC scheme, an FNN control is utilized to be the major control role by imitating the BSC strategy, and adaptation laws for network parameters are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the network convergence as well as stable control performance. The effectiveness of the proposed control strategy for the hybrid maglev transportation system is verified by experimental results, and the superiority of the BFNNC scheme is indicated in comparison with the BSC strategy and the backstepping particle-swarm-optimization control system in previous research.

  19. Energy optimization in mobile sensor networks

    NASA Astrophysics Data System (ADS)

    Yu, Shengwei

    Mobile sensor networks are considered to consist of a network of mobile robots, each of which has computation, communication and sensing capabilities. Energy efficiency is a critical issue in mobile sensor networks, especially when mobility (i.e., locomotion control), routing (i.e., communications) and sensing are unique characteristics of mobile robots for energy optimization. This thesis focuses on the problem of energy optimization of mobile robotic sensor networks, and the research results can be extended to energy optimization of a network of mobile robots that monitors the environment, or a team of mobile robots that transports materials from stations to stations in a manufacturing environment. On the energy optimization of mobile robotic sensor networks, our research focuses on the investigation and development of distributed optimization algorithms to exploit the mobility of robotic sensor nodes for network lifetime maximization. In particular, the thesis studies these five problems: 1. Network-lifetime maximization by controlling positions of networked mobile sensor robots based on local information with distributed optimization algorithms; 2. Lifetime maximization of mobile sensor networks with energy harvesting modules; 3. Lifetime maximization using joint design of mobility and routing; 4. Optimal control for network energy minimization; 5. Network lifetime maximization in mobile visual sensor networks. In addressing the first problem, we consider only the mobility strategies of the robotic relay nodes in a mobile sensor network in order to maximize its network lifetime. By using variable substitutions, the original problem is converted into a convex problem, and a variant of the sub-gradient method for saddle-point computation is developed for solving this problem. An optimal solution is obtained by the method. Computer simulations show that mobility of robotic sensors can significantly prolong the lifetime of the whole robotic sensor network while consuming negligible amount of energy for mobility cost. For the second problem, the problem is extended to accommodate mobile robotic nodes with energy harvesting capability, which makes it a non-convex optimization problem. The non-convexity issue is tackled by using the existing sequential convex approximation method, based on which we propose a novel procedure of modified sequential convex approximation that has fast convergence speed. For the third problem, the proposed procedure is used to solve another challenging non-convex problem, which results in utilizing mobility and routing simultaneously in mobile robotic sensor networks to prolong the network lifetime. The results indicate that joint design of mobility and routing has an edge over other methods in prolonging network lifetime, which is also the justification for the use of mobility in mobile sensor networks for energy efficiency purpose. For the fourth problem, we include the dynamics of the robotic nodes in the problem by modeling the networked robotic system using hybrid systems theory. A novel distributed method for the networked hybrid system is used to solve the optimal moving trajectories for robotic nodes and optimal network links, which are not answered by previous approaches. Finally, the fact that mobility is more effective in prolonging network lifetime for a data-intensive network leads us to apply our methods to study mobile visual sensor networks, which are useful in many applications. We investigate the joint design of mobility, data routing, and encoding power to help improving the video quality while maximizing the network lifetime. This study leads to a better understanding of the role mobility can play in data-intensive surveillance sensor networks.

  20. Developing infrastructure for interconnecting transportation network and electric grid.

    DOT National Transportation Integrated Search

    2011-09-01

    This report is primarily focused on the development of mathematical models that can be used to : support decisions regarding a charging station location and installation problem. The major parts : of developing the models included identification of t...

  1. Global Transportation Network : the heart of in-transit visibility

    DOT National Transportation Integrated Search

    1999-03-01

    The Persian Gulf War highlighted problems concerning in-transit visibility (ITV). The lack of in-transit visibility resulted in over 20,000 of 40,000 containers entering the theater of operations being opened, inventoried, resealed, and shipped back ...

  2. Developing Gis-Based Demand-Responsive Transit System in Tehran City

    NASA Astrophysics Data System (ADS)

    Faroqi, H.; Sadeghi-Niaraki, A.

    2015-12-01

    Create, maintain and development of public transport network in metropolitan are important problems in the field of urban transport management. In public transport, maximize the efficient use of public fleet capacity has been considered. Concepts and technologies of GIS have provided suitable way for management and optimization of the public transports systems. In demand-responsive public transportation system, firstly fellow traveller groups have been established for applicants based on spatial concepts and tools of GIS, second for each group according to its' members and their paths, a public vehicle has been allocated to them then based on dynamic routing, the fellow passenger group has been gathered from their origins and has been moved to their destinations through optimal route. The suggested system has been implemented based on network data and commuting trips statistics of 1 to 6 districts in Tehran city. Evaluation performed on the results show the 34% increase using of Taxi capacity, 13% increase using of Van capacity and 10% increase using of Bus capacity in comparison between current public transport system and suggested public transportation system has been improved.

  3. Inverse modelling of fluvial sediment connectivity identifies characteristics and spatial distribution of sediment sources in a large river network.

    NASA Astrophysics Data System (ADS)

    Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.; Rubin, Z.; Castelletti, A.

    2016-12-01

    Field and laboratory evidence indicates that the spatial distribution of transport in both alluvial and bedrock rivers is an adaptation to sediment supply. Sediment supply, in turn, depends on spatial distribution and properties (e.g., grain sizes and supply rates) of individual sediment sources. Analyzing the distribution of transport capacity in a river network could hence clarify the spatial distribution and properties of sediment sources. Yet, challenges include a) identifying magnitude and spatial distribution of transport capacity for each of multiple grain sizes being simultaneously transported, and b) estimating source grain sizes and supply rates, both at network scales. Herein, we approach the problem of identifying the spatial distribution of sediment sources and the resulting network sediment fluxes in a major, poorly monitored tributary (80,000 km2) of the Mekong. Therefore, we apply the CASCADE modeling framework (Schmitt et al. (2016)). CASCADE calculates transport capacities and sediment fluxes for multiple grainsizes on the network scale based on remotely-sensed morphology and modelled hydrology. CASCADE is run in an inverse Monte Carlo approach for 7500 random initializations of source grain sizes. In all runs, supply of each source is inferred from the minimum downstream transport capacity for the source grain size. Results for each realization are compared to sparse available sedimentary records. Only 1 % of initializations reproduced the sedimentary record. Results for these realizations revealed a spatial pattern in source supply rates, grain sizes, and network sediment fluxes that correlated well with map-derived patterns in lithology and river-morphology. Hence, we propose that observable river hydro-morphology contains information on upstream source properties that can be back-calculated using an inverse modeling approach. Such an approach could be coupled to more detailed models of hillslope processes in future to derive integrated models of hillslope production and fluvial transport processes, which is particularly useful to identify sediment provenance in poorly monitored river basins.

  4. Diffusion in random networks

    DOE PAGES

    Zhang, Duan Z.; Padrino, Juan C.

    2017-06-01

    The ensemble averaging technique is applied to model mass transport by diffusion in random networks. The system consists of an ensemble of random networks, where each network is made of pockets connected by tortuous channels. Inside a channel, fluid transport is assumed to be governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pocket mass density. The so-called dual-porosity model is found to be equivalent to the leading order approximation of the integration kernel when the diffusion time scale inside the channels is small compared to the macroscopic time scale. As a test problem,more » we consider the one-dimensional mass diffusion in a semi-infinite domain. Because of the required time to establish the linear concentration profile inside a channel, for early times the similarity variable is xt $-$1/4 rather than xt $-$1/2 as in the traditional theory. We found this early time similarity can be explained by random walk theory through the network.« less

  5. Algorithms for constructing optimal paths and statistical analysis of passenger traffic

    NASA Astrophysics Data System (ADS)

    Trofimov, S. P.; Druzhinina, N. G.; Trofimova, O. G.

    2018-01-01

    Several existing information systems of urban passenger transport (UPT) are considered. Author’s UPT network model is presented. To a passenger a new service is offered that is the best path from one stop to another stop at a specified time. The algorithm and software implementation for finding the optimal path are presented. The algorithm uses the current UPT schedule. The article also describes the algorithm of statistical analysis of trip payments by the electronic E-cards. The algorithm allows obtaining the density of passenger traffic during the day. This density is independent of the network topology and UPT schedules. The resulting density of the traffic flow can solve a number of practical problems. In particular, the forecast for the overflow of passenger transport in the «rush» hours, the quantitative comparison of different topologies transport networks, constructing of the best UPT timetable. The efficiency of the proposed integrated approach is demonstrated by the example of the model town with arbitrary dimensions.

  6. The mobility and safety of walk-and-ride systems.

    DOT National Transportation Integrated Search

    2015-03-01

    In this project we investigate the effect of traffic calming measures, such as crosswalks and sidewalks on the overall cost and safety of a multimodal transportation network system design. Our design problem includes auto, transit, and walking as mod...

  7. An outer approximation method for the road network design problem

    PubMed Central

    2018-01-01

    Best investment in the road infrastructure or the network design is perceived as a fundamental and benchmark problem in transportation. Given a set of candidate road projects with associated costs, finding the best subset with respect to a limited budget is known as a bilevel Discrete Network Design Problem (DNDP) of NP-hard computationally complexity. We engage with the complexity with a hybrid exact-heuristic methodology based on a two-stage relaxation as follows: (i) the bilevel feature is relaxed to a single-level problem by taking the network performance function of the upper level into the user equilibrium traffic assignment problem (UE-TAP) in the lower level as a constraint. It results in a mixed-integer nonlinear programming (MINLP) problem which is then solved using the Outer Approximation (OA) algorithm (ii) we further relax the multi-commodity UE-TAP to a single-commodity MILP problem, that is, the multiple OD pairs are aggregated to a single OD pair. This methodology has two main advantages: (i) the method is proven to be highly efficient to solve the DNDP for a large-sized network of Winnipeg, Canada. The results suggest that within a limited number of iterations (as termination criterion), global optimum solutions are quickly reached in most of the cases; otherwise, good solutions (close to global optimum solutions) are found in early iterations. Comparative analysis of the networks of Gao and Sioux-Falls shows that for such a non-exact method the global optimum solutions are found in fewer iterations than those found in some analytically exact algorithms in the literature. (ii) Integration of the objective function among the constraints provides a commensurate capability to tackle the multi-objective (or multi-criteria) DNDP as well. PMID:29590111

  8. An outer approximation method for the road network design problem.

    PubMed

    Asadi Bagloee, Saeed; Sarvi, Majid

    2018-01-01

    Best investment in the road infrastructure or the network design is perceived as a fundamental and benchmark problem in transportation. Given a set of candidate road projects with associated costs, finding the best subset with respect to a limited budget is known as a bilevel Discrete Network Design Problem (DNDP) of NP-hard computationally complexity. We engage with the complexity with a hybrid exact-heuristic methodology based on a two-stage relaxation as follows: (i) the bilevel feature is relaxed to a single-level problem by taking the network performance function of the upper level into the user equilibrium traffic assignment problem (UE-TAP) in the lower level as a constraint. It results in a mixed-integer nonlinear programming (MINLP) problem which is then solved using the Outer Approximation (OA) algorithm (ii) we further relax the multi-commodity UE-TAP to a single-commodity MILP problem, that is, the multiple OD pairs are aggregated to a single OD pair. This methodology has two main advantages: (i) the method is proven to be highly efficient to solve the DNDP for a large-sized network of Winnipeg, Canada. The results suggest that within a limited number of iterations (as termination criterion), global optimum solutions are quickly reached in most of the cases; otherwise, good solutions (close to global optimum solutions) are found in early iterations. Comparative analysis of the networks of Gao and Sioux-Falls shows that for such a non-exact method the global optimum solutions are found in fewer iterations than those found in some analytically exact algorithms in the literature. (ii) Integration of the objective function among the constraints provides a commensurate capability to tackle the multi-objective (or multi-criteria) DNDP as well.

  9. Networking—a statistical physics perspective

    NASA Astrophysics Data System (ADS)

    Yeung, Chi Ho; Saad, David

    2013-03-01

    Networking encompasses a variety of tasks related to the communication of information on networks; it has a substantial economic and societal impact on a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption requires new tools and methods to meet these conflicting requirements. The new methodology should serve for gaining better understanding of the properties of networking systems at the macroscopic level, as well as for the development of new principled optimization and management algorithms at the microscopic level. Methods of statistical physics seem best placed to provide new approaches as they have been developed specifically to deal with nonlinear large-scale systems. This review aims at presenting an overview of tools and methods that have been developed within the statistical physics community and that can be readily applied to address the emerging problems in networking. These include diffusion processes, methods from disordered systems and polymer physics, probabilistic inference, which have direct relevance to network routing, file and frequency distribution, the exploration of network structures and vulnerability, and various other practical networking applications.

  10. Application studies of RFID technology in the process of coal logistics transport

    NASA Astrophysics Data System (ADS)

    Qiao, Bingqin; Chang, Xiaoming; Hao, Meiyan; Kong, Dejin

    2012-04-01

    For quality control problems in coal transport, RFID technology has been proposed to be applied to coal transportation process. The whole process RFID traceability system from coal production to consumption has been designed and coal supply chain logistics tracking system integration platform has been built, to form the coal supply chain traceability and transport tracking system and providing more and more transparent tracking and monitoring of coal quality information for consumers of coal. Currently direct transport and combined transport are the main forms of coal transportation in China. The means of transport are cars, trains and ships. In the booming networking environment of RFID technology, the RFID technology will be applied to coal logistics and provide opportunity for the coal transportation tracking in the process transportation.

  11. Attacks and intrusion detection in wireless sensor networks of industrial SCADA systems

    NASA Astrophysics Data System (ADS)

    Kamaev, V. A.; Finogeev, A. G.; Finogeev, A. A.; Parygin, D. S.

    2017-01-01

    The effectiveness of automated process control systems (APCS) and supervisory control and data acquisition systems (SCADA) information security depends on the applied protection technologies of transport environment data transmission components. This article investigates the problems of detecting attacks in wireless sensor networks (WSN) of SCADA systems. As a result of analytical studies, the authors developed the detailed classification of external attacks and intrusion detection in sensor networks and brought a detailed description of attacking impacts on components of SCADA systems in accordance with the selected directions of attacks.

  12. Transportation Network Topologies

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Scott, John M.

    2004-01-01

    A discomforting reality has materialized on the transportation scene: our existing air and ground infrastructures will not scale to meet our nation's 21st century demands and expectations for mobility, commerce, safety, and security. The consequence of inaction is diminished quality of life and economic opportunity in the 21st century. Clearly, new thinking is required for transportation that can scale to meet to the realities of a networked, knowledge-based economy in which the value of time is a new coin of the realm. This paper proposes a framework, or topology, for thinking about the problem of scalability of the system of networks that comprise the aviation system. This framework highlights the role of integrated communication-navigation-surveillance systems in enabling scalability of future air transportation networks. Scalability, in this vein, is a goal of the recently formed Joint Planning and Development Office for the Next Generation Air Transportation System. New foundations for 21PstP thinking about air transportation are underpinned by several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems. Complexity science and modern network theory give rise to one of the technological developments of importance. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of scalability, efficiency, robustness, resilience, and other metrics. The paper offers an air transportation system topology as framework for transportation system innovation. Successful outcomes of innovation in air transportation could lay the foundations for new paradigms for aircraft and their operating capabilities, air transportation system architectures, and airspace architectures and procedural concepts. The topology proposed considers air transportation as a system of networks, within which strategies for scalability of the topology may be enabled by technologies and policies. In particular, the effects of scalable ICNS concepts are evaluated within this proposed topology. Alternative business models are appearing on the scene as the old centralized hub-and-spoke model reaches the limits of its scalability. These models include growth of point-to-point scheduled air transportation service (e.g., the RJ phenomenon and the 'Southwest Effect'). Another is a new business model for on-demand, widely distributed, air mobility in jet taxi services. The new businesses forming around this vision are targeting personal air mobility to virtually any of the thousands of origins and destinations throughout suburban, rural, and remote communities and regions. Such advancement in air mobility has many implications for requirements for airports, airspace, and consumers. These new paradigms could support scalable alternatives for the expansion of future air mobility to more consumers in more places.

  13. Transportation Network Topologies

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Scott, John

    2004-01-01

    A discomforting reality has materialized on the transportation scene: our existing air and ground infrastructures will not scale to meet our nation's 21st century demands and expectations for mobility, commerce, safety, and security. The consequence of inaction is diminished quality of life and economic opportunity in the 21st century. Clearly, new thinking is required for transportation that can scale to meet to the realities of a networked, knowledge-based economy in which the value of time is a new coin of the realm. This paper proposes a framework, or topology, for thinking about the problem of scalability of the system of networks that comprise the aviation system. This framework highlights the role of integrated communication-navigation-surveillance systems in enabling scalability of future air transportation networks. Scalability, in this vein, is a goal of the recently formed Joint Planning and Development Office for the Next Generation Air Transportation System. New foundations for 21st thinking about air transportation are underpinned by several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems. Complexity science and modern network theory give rise to one of the technological developments of importance. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of scalability, efficiency, robustness, resilience, and other metrics. The paper offers an air transportation system topology as framework for transportation system innovation. Successful outcomes of innovation in air transportation could lay the foundations for new paradigms for aircraft and their operating capabilities, air transportation system architectures, and airspace architectures and procedural concepts. The topology proposed considers air transportation as a system of networks, within which strategies for scalability of the topology may be enabled by technologies and policies. In particular, the effects of scalable ICNS concepts are evaluated within this proposed topology. Alternative business models are appearing on the scene as the old centralized hub-and-spoke model reaches the limits of its scalability. These models include growth of point-to-point scheduled air transportation service (e.g., the RJ phenomenon and the Southwest Effect). Another is a new business model for on-demand, widely distributed, air mobility in jet taxi services. The new businesses forming around this vision are targeting personal air mobility to virtually any of the thousands of origins and destinations throughout suburban, rural, and remote communities and regions. Such advancement in air mobility has many implications for requirements for airports, airspace, and consumers. These new paradigms could support scalable alternatives for the expansion of future air mobility to more consumers in more places.

  14. Metaheuristics for the dynamic stochastic dial-a-ride problem with expected return transports

    PubMed Central

    Schilde, M.; Doerner, K.F.; Hartl, R.F.

    2011-01-01

    The problem of transporting patients or elderly people has been widely studied in literature and is usually modeled as a dial-a-ride problem (DARP). In this paper we analyze the corresponding problem arising in the daily operation of the Austrian Red Cross. This nongovernmental organization is the largest organization performing patient transportation in Austria. The aim is to design vehicle routes to serve partially dynamic transportation requests using a fixed vehicle fleet. Each request requires transportation from a patient's home location to a hospital (outbound request) or back home from the hospital (inbound request). Some of these requests are known in advance. Some requests are dynamic in the sense that they appear during the day without any prior information. Finally, some inbound requests are stochastic. More precisely, with a certain probability each outbound request causes a corresponding inbound request on the same day. Some stochastic information about these return transports is available from historical data. The purpose of this study is to investigate, whether using this information in designing the routes has a significant positive effect on the solution quality. The problem is modeled as a dynamic stochastic dial-a-ride problem with expected return transports. We propose four different modifications of metaheuristic solution approaches for this problem. In detail, we test dynamic versions of variable neighborhood search (VNS) and stochastic VNS (S-VNS) as well as modified versions of the multiple plan approach (MPA) and the multiple scenario approach (MSA). Tests are performed using 12 sets of test instances based on a real road network. Various demand scenarios are generated based on the available real data. Results show that using the stochastic information on return transports leads to average improvements of around 15%. Moreover, improvements of up to 41% can be achieved for some test instances. PMID:23543641

  15. Self-Learning Intelligent Agents for Dynamic Traffic Routing on Transportation Networks

    NASA Astrophysics Data System (ADS)

    Sadek, Add; Basha, Nagi

    Intelligent Transportation Systems (ITS) are designed to take advantage of recent advances in communications, electronics, and Information Technology in improving the efficiency and safety of transportation systems. Among the several ITS applications is the notion of Dynamic Traffic Routing (DTR), which involves generating "optimal" routing recommendations to drivers with the aim of maximizing network utilizing. In this paper, we demonstrate the feasibility of using a self-learning intelligent agent to solve the DTR problem to achieve traffic user equilibrium in a transportation network. The core idea is to deploy an agent to a simulation model of a highway. The agent then learns by itself by interacting with the simulation model. Once the agent reaches a satisfactory level of performance, it can then be deployed to the real-world, where it would continue to learn how to refine its control policies over time. To test this concept in this paper, the Cell Transmission Model (CTM) developed by Carlos Daganzo of the University of California at Berkeley is used to simulate a simple highway with two main alternative routes. With the model developed, a Reinforcement Learning Agent (RLA) is developed to learn how to best dynamically route traffic, so as to maximize the utilization of existing capacity. Preliminary results obtained from our experiments are promising. RL, being an adaptive online learning technique, appears to have a great potential for controlling a stochastic dynamic systems such as a transportation system. Furthermore, the approach is highly scalable and applicable to a variety of networks and roadways.

  16. Fair sharing of resources in a supply network with constraints.

    PubMed

    Carvalho, Rui; Buzna, Lubos; Just, Wolfram; Helbing, Dirk; Arrowsmith, David K

    2012-04-01

    This paper investigates the effect of network topology on the fair allocation of network resources among a set of agents, an all-important issue for the efficiency of transportation networks all around us. We analyze a generic mechanism that distributes network capacity fairly among existing flow demands. The problem can be solved by semianalytical methods on a nearest-neighbor graph with one source and sink pair, when transport occurs over shortest paths. For this setup, we uncover a broad range of patterns of intersecting shortest paths as a function of the distance between the source and the sink. When the number of intersections is the maximum and the distance between the source and the sink is large, we find that a fair allocation implies a decrease of at least 50% from the maximum throughput. We also find that the histogram of the flow allocations assigned to the agents decays as a power law with exponent -1. Our semianalytical framework suggests possible explanations for the well-known reduction of the throughput in fair allocations. It also suggests that the combination of network topology and routing rules can lead to highly uneven (but fair) distributions of resources, a remark of caution to network designers.

  17. Fair sharing of resources in a supply network with constraints

    NASA Astrophysics Data System (ADS)

    Carvalho, Rui; Buzna, Lubos; Just, Wolfram; Helbing, Dirk; Arrowsmith, David K.

    2012-04-01

    This paper investigates the effect of network topology on the fair allocation of network resources among a set of agents, an all-important issue for the efficiency of transportation networks all around us. We analyze a generic mechanism that distributes network capacity fairly among existing flow demands. The problem can be solved by semianalytical methods on a nearest-neighbor graph with one source and sink pair, when transport occurs over shortest paths. For this setup, we uncover a broad range of patterns of intersecting shortest paths as a function of the distance between the source and the sink. When the number of intersections is the maximum and the distance between the source and the sink is large, we find that a fair allocation implies a decrease of at least 50% from the maximum throughput. We also find that the histogram of the flow allocations assigned to the agents decays as a power law with exponent -1. Our semianalytical framework suggests possible explanations for the well-known reduction of the throughput in fair allocations. It also suggests that the combination of network topology and routing rules can lead to highly uneven (but fair) distributions of resources, a remark of caution to network designers.

  18. Dynamic Network Formation Using Ant Colony Optimization

    DTIC Science & Technology

    2009-03-01

    backhauls, VRP with pick-up and delivery, VRP with satellite facilities, and VRP with time windows (Murata & Itai , 2005). The general vehicle...given route is only visited once. The objective of the basic problem is to minimize a total cost as follows (Murata & Itai , 2005): M m mc 1 min...Problem based on Ant Colony System. Second Internation Workshop on Freight Transportation and Logistics. Palermo, Italy. Murata, T., & Itai , R. (2005

  19. Appraisal on Rail Transit Development: A Review on Train Services and Safety

    NASA Astrophysics Data System (ADS)

    Nordin, Noor Hafiza binti; Masirin, Mohd Idrus Haji Mohd; Ghazali, Mohd Imran bin; Azis, Mohd Isom bin

    2017-08-01

    The ever increasing problems faced by population around the world have made demands that transportation need to be improved as an effective and efficient communication means. It is considered as a necessity especially when rapid development and economic growth of a country is the agenda. Among the transportation modes being focused as critical facilities are the bus system, rail system, road network, shipping system and air transportation system. Rail transport is a means of conveyance of passengers and goods by way of wheeled vehicles running on rail tracks. In Malaysia, the railway network has evolved tremendously since its inception in the early 19th century. It has grown proportionally with the national development. Railway network does not only mean for rural transportation, but it also considered as a solution to urban congestion challenges. Currently, urban rail transit is the most popular means of urban transportation system especially as big cities such as Kuala Lumpur. This paper presents the definition of rail transportation system and its role in urban or sub-urban operation. It also describes the brief history of world railway transportation including a discussion on Malaysian rail history perspective. As policy and standard are important in operating a railway system, this paper also illustrates and discusses some elements which have an impact on the effectiveness and efficiency of train operation. Towards the end, this paper also shares the importance of railway safety based on real case studies around the world. Thus, it is hoped that this paper will enable the public to understand the rail transit development and appreciate its existence as a public transportation system.

  20. Feasibility study of transportation management strategies in the Poplar Corridor, Memphis, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siniard, D.

    1990-02-01

    This report documents the development and implementation of various transportation management strategies aimed at alleviating traffic congestion problems in the Poplar Corridor, a major transportation corridor located in a rapidly growing suburban area of Memphis, Tennessee. The project provided the opportunity for local governments to work with the private sector in a joint venture to address traffic congestion problems and to promote more efficient use of the area's transportation network. The project was carried out by the staff of Memphis Area Rideshare, a joint city/county agency which provides transit information and free carpool/vanpool computer matching services to area commuters. Publicmore » sector participants in the planning process included transportation and land use planners from the Office of Planning and Development, city traffic engineers, and representatives from the Memphis Area Transit Authority (MATA). Private sector input came from major developers and employers in the Poplar Corridor and from officials of schools located in the area.« less

  1. Design Process for High Speed Civil Transport Aircraft Improved by Neural Network and Regression Methods

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.

    1998-01-01

    A key challenge in designing the new High Speed Civil Transport (HSCT) aircraft is determining a good match between the airframe and engine. Multidisciplinary design optimization can be used to solve the problem by adjusting parameters of both the engine and the airframe. Earlier, an example problem was presented of an HSCT aircraft with four mixed-flow turbofan engines and a baseline mission to carry 305 passengers 5000 nautical miles at a cruise speed of Mach 2.4. The problem was solved by coupling NASA Lewis Research Center's design optimization testbed (COMETBOARDS) with NASA Langley Research Center's Flight Optimization System (FLOPS). The computing time expended in solving the problem was substantial, and the instability of the FLOPS analyzer at certain design points caused difficulties. In an attempt to alleviate both of these limitations, we explored the use of two approximation concepts in the design optimization process. The two concepts, which are based on neural network and linear regression approximation, provide the reanalysis capability and design sensitivity analysis information required for the optimization process. The HSCT aircraft optimization problem was solved by using three alternate approaches; that is, the original FLOPS analyzer and two approximate (derived) analyzers. The approximate analyzers were calibrated and used in three different ranges of the design variables; narrow (interpolated), standard, and wide (extrapolated).

  2. Predicting the distribution of bed material accumulation using river network sediment budgets

    NASA Astrophysics Data System (ADS)

    Wilkinson, Scott N.; Prosser, Ian P.; Hughes, Andrew O.

    2006-10-01

    Assessing the spatial distribution of bed material accumulation in river networks is important for determining the impacts of erosion on downstream channel form and habitat and for planning erosion and sediment management. A model that constructs spatially distributed budgets of bed material sediment is developed to predict the locations of accumulation following land use change. For each link in the river network, GIS algorithms are used to predict bed material supply from gullies, river banks, and upstream tributaries and to compare total supply with transport capacity. The model is tested in the 29,000 km2 Murrumbidgee River catchment in southeast Australia. It correctly predicts the presence or absence of accumulation in 71% of river links, which is significantly better performance than previous models, which do not account for spatial variability in sediment supply and transport capacity. Representing transient sediment storage is important for predicting smaller accumulations. Bed material accumulation is predicted in 25% of the river network, indicating its importance as an environmental problem in Australia.

  3. Combined Simulated Annealing and Genetic Algorithm Approach to Bus Network Design

    NASA Astrophysics Data System (ADS)

    Liu, Li; Olszewski, Piotr; Goh, Pong-Chai

    A new method - combined simulated annealing (SA) and genetic algorithm (GA) approach is proposed to solve the problem of bus route design and frequency setting for a given road network with fixed bus stop locations and fixed travel demand. The method involves two steps: a set of candidate routes is generated first and then the best subset of these routes is selected by the combined SA and GA procedure. SA is the main process to search for a better solution to minimize the total system cost, comprising user and operator costs. GA is used as a sub-process to generate new solutions. Bus demand assignment on two alternative paths is performed at the solution evaluation stage. The method was implemented on four theoretical grid networks of different size and a benchmark network. Several GA operators (crossover and mutation) were utilized and tested for their effectiveness. The results show that the proposed method can efficiently converge to the optimal solution on a small network but computation time increases significantly with network size. The method can also be used for other transport operation management problems.

  4. Localisation of an Unknown Number of Land Mines Using a Network of Vapour Detectors

    PubMed Central

    Chhadé, Hiba Haj; Abdallah, Fahed; Mougharbel, Imad; Gning, Amadou; Julier, Simon; Mihaylova, Lyudmila

    2014-01-01

    We consider the problem of localising an unknown number of land mines using concentration information provided by a wireless sensor network. A number of vapour sensors/detectors, deployed in the region of interest, are able to detect the concentration of the explosive vapours, emanating from buried land mines. The collected data is communicated to a fusion centre. Using a model for the transport of the explosive chemicals in the air, we determine the unknown number of sources using a Principal Component Analysis (PCA)-based technique. We also formulate the inverse problem of determining the positions and emission rates of the land mines using concentration measurements provided by the wireless sensor network. We present a solution for this problem based on a probabilistic Bayesian technique using a Markov chain Monte Carlo sampling scheme, and we compare it to the least squares optimisation approach. Experiments conducted on simulated data show the effectiveness of the proposed approach. PMID:25384008

  5. Sensitivity Analysis of Genetic Algorithm Parameters for Optimal Groundwater Monitoring Network Design

    NASA Astrophysics Data System (ADS)

    Abdeh-Kolahchi, A.; Satish, M.; Datta, B.

    2004-05-01

    A state art groundwater monitoring network design is introduced. The method combines groundwater flow and transport results with optimization Genetic Algorithm (GA) to identify optimal monitoring well locations. Optimization theory uses different techniques to find a set of parameter values that minimize or maximize objective functions. The suggested groundwater optimal monitoring network design is based on the objective of maximizing the probability of tracking a transient contamination plume by determining sequential monitoring locations. The MODFLOW and MT3DMS models included as separate modules within the Groundwater Modeling System (GMS) are used to develop three dimensional groundwater flow and contamination transport simulation. The groundwater flow and contamination simulation results are introduced as input to the optimization model, using Genetic Algorithm (GA) to identify the groundwater optimal monitoring network design, based on several candidate monitoring locations. The groundwater monitoring network design model is used Genetic Algorithms with binary variables representing potential monitoring location. As the number of decision variables and constraints increase, the non-linearity of the objective function also increases which make difficulty to obtain optimal solutions. The genetic algorithm is an evolutionary global optimization technique, which is capable of finding the optimal solution for many complex problems. In this study, the GA approach capable of finding the global optimal solution to a groundwater monitoring network design problem involving 18.4X 1018 feasible solutions will be discussed. However, to ensure the efficiency of the solution process and global optimality of the solution obtained using GA, it is necessary that appropriate GA parameter values be specified. The sensitivity analysis of genetic algorithms parameters such as random number, crossover probability, mutation probability, and elitism are discussed for solution of monitoring network design.

  6. Integration of geospatial multi-mode transportation Systems in Kuala Lumpur

    NASA Astrophysics Data System (ADS)

    Ismail, M. A.; Said, M. N.

    2014-06-01

    Public transportation serves people with mobility and accessibility to workplaces, health facilities, community resources, and recreational areas across the country. Development in the application of Geographical Information Systems (GIS) to transportation problems represents one of the most important areas of GIS-technology today. To show the importance of GIS network analysis, this paper highlights the determination of the optimal path between two or more destinations based on multi-mode concepts. The abstract connector is introduced in this research as an approach to integrate urban public transportation in Kuala Lumpur, Malaysia including facilities such as Light Rapid Transit (LRT), Keretapi Tanah Melayu (KTM) Komuter, Express Rail Link (ERL), KL Monorail, road driving as well as pedestrian modes into a single intelligent data model. To assist such analysis, ArcGIS's Network Analyst functions are used whereby the final output includes the total distance, total travelled time, directional maps produced to find the quickest, shortest paths, and closest facilities based on either time or distance impedance for multi-mode route analysis.

  7. Graph Representations of Flow and Transport in Fracture Networks using Machine Learning

    NASA Astrophysics Data System (ADS)

    Srinivasan, G.; Viswanathan, H. S.; Karra, S.; O'Malley, D.; Godinez, H. C.; Hagberg, A.; Osthus, D.; Mohd-Yusof, J.

    2017-12-01

    Flow and transport of fluids through fractured systems is governed by the properties and interactions at the micro-scale. Retaining information about the micro-structure such as fracture length, orientation, aperture and connectivity in mesh-based computational models results in solving for millions to billions of degrees of freedom and quickly renders the problem computationally intractable. Our approach depicts fracture networks graphically, by mapping fractures to nodes and intersections to edges, thereby greatly reducing computational burden. Additionally, we use machine learning techniques to build simulators on the graph representation, trained on data from the mesh-based high fidelity simulations to speed up computation by orders of magnitude. We demonstrate our methodology on ensembles of discrete fracture networks, dividing up the data into training and validation sets. Our machine learned graph-based solvers result in over 3 orders of magnitude speedup without any significant sacrifice in accuracy.

  8. Feasibility study on intersection in North Sumatera

    NASA Astrophysics Data System (ADS)

    Hastuty, I. P.; Sembiring, I. S.; Anas, R.; Lubis, A. S.

    2018-02-01

    Traffic congestion is one of the problems faced by big cities, One of them is Binjai city and Medan city in North Sumatera. One of the causes of congestion is intersection of roads with highway and roads with railroads. To ensure the smooth movement of vehicles, technical handling at the intersection is needed. Therefore, it is necessary to pre-study the feasibility of level crossing in Binjai and Medan to be able to assess the investment needs and the level of importance of road development in the region. The development of transportation infrastructure and facilities is based on the thought of improving the transportation network system. The necessity of systemical integrated transportation system handling is needed in creating a transportation efficiency. The purpose of this study is to identify and prioritize the needs of the railway crossings. The objective which we want to be achieved is to obtain a document that contains technical, economic and environmental ability indicators as a reference in the feasibility and planning studies. The methodology used is collecting the primary data, secondary data, introduction of study area as the initial analysis of the problem. From the study it can be concluded that the existence of railway interchange will move the movement through traffic so it will not interfere the movement of traffic within urban areas and it keeps the national road network performance is still good.

  9. Optimization of waste transportation route at waste transfers point in Lowokwaru District, Malang City

    NASA Astrophysics Data System (ADS)

    Hariyani, S.; Meidiana, C.

    2018-04-01

    Increasing population led to the emergence of the urban infrastructure services issue including waste problems especially waste transportation system. Data in 2016 shows that the amount of waste in Malang was 659.21 tons / day. The amount of waste transported to landfill only reached 464.74 tons / day. This indicates that not all waste can be transported to the landfill Supiturang because Level of Service (LoS) reached 70.49%. This study aims to determine the effectiveness of waste transportation system and determine the fastest route from waste transfers point in Lowokwaru district to the landfill Supiturang. The data collection method in this research were 1) primary survey by interview officials from the Sanitation and Gardening Agency which questions related to the condition of the waste transportation system in waste transfer point, 2) Secondary survey related to data of waste transportation system in Malang City i.e the amount of waste generation in waste transfer point, number of garbage trucks and other data related to the garbage transportation system. To determine the fastest route analyzed by network analyst using ArcGIS software. The results of network analyst show that not all routes are already using the fastest route to the landfill Supiturang.

  10. Prioritizing recovery of urban lifelines in the aftermath of hazards: Transportation in post-Harvey Houston

    NASA Astrophysics Data System (ADS)

    Warner, M. E.; Bhatia, U.; Sela, L.; Wang, R.; Kodra, E.; Ganguly, A. R.

    2017-12-01

    A well-designed recovery strategy for lifeline infrastructure networks can lead to faster and more reliable restoration of essential services in the aftermath of natural catastrophes such as hurricanes or earthquakes. Urban and regional lifelines impact one another, while the recovery of urban lifelines in turn impacts regional infrastructural resilience, owing to the interdependence of lifelines across scales. Prior work by our team, often in collaboration, has led to the development of new recovery approaches based on network science and engineering, including centrality measures from network science, information theoretic metrics, and network optimization approaches. We have developed proof-of-concept demonstrations at both regional scales, such as for the Indian Railways Network and the US National Airspace System both subjected to multiple hazards, and to urban settings, such as the post-Hurricane recovery of combined power-subway system-of-systems in Boston and the New York City MTA after Hurricane Sandy. Here we make an attempt to understand how such methods may have been, or continue to be, applicable to the transportation network in Houston post-Harvey, and more broadly, how and to what extent lessons learned in urban and regional resilience may generalize across cases. We make an assessment of the state of the literature, process understanding, simulation models, data science methods, and best practices, necessary to address problems of this nature, with a particular focus on post-Harvey recovery of transportation services in Houston.

  11. Eigenvector centrality for geometric and topological characterization of porous media

    NASA Astrophysics Data System (ADS)

    Jimenez-Martinez, Joaquin; Negre, Christian F. A.

    2017-07-01

    Solving flow and transport through complex geometries such as porous media is computationally difficult. Such calculations usually involve the solution of a system of discretized differential equations, which could lead to extreme computational cost depending on the size of the domain and the accuracy of the model. Geometric simplifications like pore networks, where the pores are represented by nodes and the pore throats by edges connecting pores, have been proposed. These models, despite their ability to preserve the connectivity of the medium, have difficulties capturing preferential paths (high velocity) and stagnation zones (low velocity), as they do not consider the specific relations between nodes. Nonetheless, network theory approaches, where a complex network is a graph, can help to simplify and better understand fluid dynamics and transport in porous media. Here we present an alternative method to address these issues based on eigenvector centrality, which has been corrected to overcome the centralization problem and modified to introduce a bias in the centrality distribution along a particular direction to address the flow and transport anisotropy in porous media. We compare the model predictions with millifluidic transport experiments, which shows that, albeit simple, this technique is computationally efficient and has potential for predicting preferential paths and stagnation zones for flow and transport in porous media. We propose to use the eigenvector centrality probability distribution to compute the entropy as an indicator of the "mixing capacity" of the system.

  12. Routing Algorithm based on Minimum Spanning Tree and Minimum Cost Flow for Hybrid Wireless-optical Broadband Access Network

    NASA Astrophysics Data System (ADS)

    Le, Zichun; Suo, Kaihua; Fu, Minglei; Jiang, Ling; Dong, Wen

    2012-03-01

    In order to minimize the average end to end delay for data transporting in hybrid wireless optical broadband access network, a novel routing algorithm named MSTMCF (minimum spanning tree and minimum cost flow) is devised. The routing problem is described as a minimum spanning tree and minimum cost flow model and corresponding algorithm procedures are given. To verify the effectiveness of MSTMCF algorithm, extensively simulations based on OWNS have been done under different types of traffic source.

  13. Physics, stability, and dynamics of supply networks

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk; Lämmer, Stefan; Seidel, Thomas; Šeba, Pétr; Płatkowski, Tadeusz

    2004-12-01

    We show how to treat supply networks as physical transport problems governed by balance equations and equations for the adaptation of production speeds. Although the nonlinear behavior is different, the linearized set of coupled differential equations is formally related to those of mechanical or electrical oscillator networks. Supply networks possess interesting features due to their complex topology and directed links. We derive analytical conditions for absolute and convective instabilities. The empirically observed “bullwhip effect” in supply chains is explained as a form of convective instability based on resonance effects. Moreover, it is generalized to arbitrary supply networks. Their related eigenvalues are usually complex, depending on the network structure (even without loops). Therefore, their generic behavior is characterized by damped or growing oscillations. We also show that regular distribution networks possess two negative eigenvalues only, but perturbations generate a spectrum of complex eigenvalues.

  14. Rough-Cut Capacity Planning in Multimodal Freight Transportation Networks

    DTIC Science & Technology

    2012-09-30

    transportation system to losses in es - tablished routes or assets? That is, what is the nature and length of system capability degradation due to these...Multimodal Rough-Cut Capacity Planning is mod- eled using the Resource Constrained Shortest Path Problem. We demonstrate how this approach supports...of non-zero ele - ments and the 0 entries depict appropriately dimensioned blocks of 0 entries.∣∣∣∣∑ k Ck ∣∣∣∣ Σ 0 0 0 0 Σ 0 0

  15. Graph Design via Convex Optimization: Online and Distributed Perspectives

    NASA Astrophysics Data System (ADS)

    Meng, De

    Network and graph have long been natural abstraction of relations in a variety of applications, e.g. transportation, power system, social network, communication, electrical circuit, etc. As a large number of computation and optimization problems are naturally defined on graphs, graph structures not only enable important properties of these problems, but also leads to highly efficient distributed and online algorithms. For example, graph separability enables the parallelism for computation and operation as well as limits the size of local problems. More interestingly, graphs can be defined and constructed in order to take best advantage of those problem properties. This dissertation focuses on graph structure and design in newly proposed optimization problems, which establish a bridge between graph properties and optimization problem properties. We first study a new optimization problem called Geodesic Distance Maximization Problem (GDMP). Given a graph with fixed edge weights, finding the shortest path, also known as the geodesic, between two nodes is a well-studied network flow problem. We introduce the Geodesic Distance Maximization Problem (GDMP): the problem of finding the edge weights that maximize the length of the geodesic subject to convex constraints on the weights. We show that GDMP is a convex optimization problem for a wide class of flow costs, and provide a physical interpretation using the dual. We present applications of the GDMP in various fields, including optical lens design, network interdiction, and resource allocation in the control of forest fires. We develop an Alternating Direction Method of Multipliers (ADMM) by exploiting specific problem structures to solve large-scale GDMP, and demonstrate its effectiveness in numerical examples. We then turn our attention to distributed optimization on graph with only local communication. Distributed optimization arises in a variety of applications, e.g. distributed tracking and localization, estimation problems in sensor networks, multi-agent coordination. Distributed optimization aims to optimize a global objective function formed by summation of coupled local functions over a graph via only local communication and computation. We developed a weighted proximal ADMM for distributed optimization using graph structure. This fully distributed, single-loop algorithm allows simultaneous updates and can be viewed as a generalization of existing algorithms. More importantly, we achieve faster convergence by jointly designing graph weights and algorithm parameters. Finally, we propose a new problem on networks called Online Network Formation Problem: starting with a base graph and a set of candidate edges, at each round of the game, player one first chooses a candidate edge and reveals it to player two, then player two decides whether to accept it; player two can only accept limited number of edges and make online decisions with the goal to achieve the best properties of the synthesized network. The network properties considered include the number of spanning trees, algebraic connectivity and total effective resistance. These network formation games arise in a variety of cooperative multiagent systems. We propose a primal-dual algorithm framework for the general online network formation game, and analyze the algorithm performance by the competitive ratio and regret.

  16. Surveying traffic congestion based on the concept of community structure of complex networks

    NASA Astrophysics Data System (ADS)

    Ma, Lili; Zhang, Zhanli; Li, Meng

    2016-07-01

    In this paper, taking the traffic of Beijing city as an instance, we study city traffic states, especially traffic congestion, based on the concept of network community structure. Concretely, using the floating car data (FCD) information of vehicles gained from the intelligent transport system (ITS) of the city, we construct a new traffic network model which is with floating cars as network nodes and time-varying. It shows that this traffic network has Gaussian degree distributions at different time points. Furthermore, compared with free traffic situations, our simulations show that the traffic network generally has more obvious community structures with larger values of network fitness for congested traffic situations, and through the GPSspg web page, we show that all of our results are consistent with the reality. Then, it indicates that network community structure should be an available way for investigating city traffic congestion problems.

  17. Simulation model for port shunting yards

    NASA Astrophysics Data System (ADS)

    Rusca, A.; Popa, M.; Rosca, E.; Rosca, M.; Dragu, V.; Rusca, F.

    2016-08-01

    Sea ports are important nodes in the supply chain, joining two high capacity transport modes: rail and maritime transport. The huge cargo flows transiting port requires high capacity construction and installation such as berths, large capacity cranes, respectively shunting yards. However, the port shunting yards specificity raises several problems such as: limited access since these are terminus stations for rail network, the in-output of large transit flows of cargo relatively to the scarcity of the departure/arrival of a ship, as well as limited land availability for implementing solutions to serve these flows. It is necessary to identify technological solutions that lead to an answer to these problems. The paper proposed a simulation model developed with ARENA computer simulation software suitable for shunting yards which serve sea ports with access to the rail network. Are investigates the principal aspects of shunting yards and adequate measures to increase their transit capacity. The operation capacity for shunting yards sub-system is assessed taking in consideration the required operating standards and the measure of performance (e.g. waiting time for freight wagons, number of railway line in station, storage area, etc.) of the railway station are computed. The conclusion and results, drawn from simulation, help transports and logistics specialists to test the proposals for improving the port management.

  18. Human initiated cascading failures in societal infrastructures.

    PubMed

    Barrett, Chris; Channakeshava, Karthik; Huang, Fei; Kim, Junwhan; Marathe, Achla; Marathe, Madhav V; Pei, Guanhong; Saha, Sudip; Subbiah, Balaaji S P; Vullikanti, Anil Kumar S

    2012-01-01

    In this paper, we conduct a systematic study of human-initiated cascading failures in three critical inter-dependent societal infrastructures due to behavioral adaptations in response to a crisis. We focus on three closely coupled socio-technical networks here: (i) cellular and mesh networks, (ii) transportation networks and (iii) mobile call networks. In crises, changes in individual behaviors lead to altered travel, activity and calling patterns, which influence the transport network and the loads on wireless networks. The interaction between these systems and their co-evolution poses significant technical challenges for representing and reasoning about these systems. In contrast to system dynamics models for studying these interacting infrastructures, we develop interaction-based models in which individuals and infrastructure elements are represented in detail and are placed in a common geographic coordinate system. Using the detailed representation, we study the impact of a chemical plume that has been released in a densely populated urban region. Authorities order evacuation of the affected area, and this leads to individual behavioral adaptation wherein individuals drop their scheduled activities and drive to home or pre-specified evacuation shelters as appropriate. They also revise their calling behavior to communicate and coordinate among family members. These two behavioral adaptations cause flash-congestion in the urban transport network and the wireless network. The problem is exacerbated with a few, already occurring, road closures. We analyze how extended periods of unanticipated road congestion can result in failure of infrastructures, starting with the servicing base stations in the congested area. A sensitivity analysis on the compliance rate of evacuees shows non-intuitive effect on the spatial distribution of people and on the loading of the base stations. For example, an evacuation compliance rate of 70% results in higher number of overloaded base stations than the evacuation compliance rate of 90%.

  19. Human Initiated Cascading Failures in Societal Infrastructures

    PubMed Central

    Barrett, Chris; Channakeshava, Karthik; Huang, Fei; Kim, Junwhan; Marathe, Achla; Marathe, Madhav V.; Pei, Guanhong; Saha, Sudip; Subbiah, Balaaji S. P.; Vullikanti, Anil Kumar S.

    2012-01-01

    In this paper, we conduct a systematic study of human-initiated cascading failures in three critical inter-dependent societal infrastructures due to behavioral adaptations in response to a crisis. We focus on three closely coupled socio-technical networks here: (i) cellular and mesh networks, (ii) transportation networks and (iii) mobile call networks. In crises, changes in individual behaviors lead to altered travel, activity and calling patterns, which influence the transport network and the loads on wireless networks. The interaction between these systems and their co-evolution poses significant technical challenges for representing and reasoning about these systems. In contrast to system dynamics models for studying these interacting infrastructures, we develop interaction-based models in which individuals and infrastructure elements are represented in detail and are placed in a common geographic coordinate system. Using the detailed representation, we study the impact of a chemical plume that has been released in a densely populated urban region. Authorities order evacuation of the affected area, and this leads to individual behavioral adaptation wherein individuals drop their scheduled activities and drive to home or pre-specified evacuation shelters as appropriate. They also revise their calling behavior to communicate and coordinate among family members. These two behavioral adaptations cause flash-congestion in the urban transport network and the wireless network. The problem is exacerbated with a few, already occurring, road closures. We analyze how extended periods of unanticipated road congestion can result in failure of infrastructures, starting with the servicing base stations in the congested area. A sensitivity analysis on the compliance rate of evacuees shows non-intuitive effect on the spatial distribution of people and on the loading of the base stations. For example, an evacuation compliance rate of 70% results in higher number of overloaded base stations than the evacuation compliance rate of 90%. PMID:23118847

  20. Comparative analysis of quantitative efficiency evaluation methods for transportation networks

    PubMed Central

    He, Yuxin; Hong, Jian

    2017-01-01

    An effective evaluation of transportation network efficiency could offer guidance for the optimal control of urban traffic. Based on the introduction and related mathematical analysis of three quantitative evaluation methods for transportation network efficiency, this paper compares the information measured by them, including network structure, traffic demand, travel choice behavior and other factors which affect network efficiency. Accordingly, the applicability of various evaluation methods is discussed. Through analyzing different transportation network examples it is obtained that Q-H method could reflect the influence of network structure, traffic demand and user route choice behavior on transportation network efficiency well. In addition, the transportation network efficiency measured by this method and Braess’s Paradox can be explained with each other, which indicates a better evaluation of the real operation condition of transportation network. Through the analysis of the network efficiency calculated by Q-H method, it can also be drawn that a specific appropriate demand is existed to a given transportation network. Meanwhile, under the fixed demand, both the critical network structure that guarantees the stability and the basic operation of the network and a specific network structure contributing to the largest value of the transportation network efficiency can be identified. PMID:28399165

  1. Comparative analysis of quantitative efficiency evaluation methods for transportation networks.

    PubMed

    He, Yuxin; Qin, Jin; Hong, Jian

    2017-01-01

    An effective evaluation of transportation network efficiency could offer guidance for the optimal control of urban traffic. Based on the introduction and related mathematical analysis of three quantitative evaluation methods for transportation network efficiency, this paper compares the information measured by them, including network structure, traffic demand, travel choice behavior and other factors which affect network efficiency. Accordingly, the applicability of various evaluation methods is discussed. Through analyzing different transportation network examples it is obtained that Q-H method could reflect the influence of network structure, traffic demand and user route choice behavior on transportation network efficiency well. In addition, the transportation network efficiency measured by this method and Braess's Paradox can be explained with each other, which indicates a better evaluation of the real operation condition of transportation network. Through the analysis of the network efficiency calculated by Q-H method, it can also be drawn that a specific appropriate demand is existed to a given transportation network. Meanwhile, under the fixed demand, both the critical network structure that guarantees the stability and the basic operation of the network and a specific network structure contributing to the largest value of the transportation network efficiency can be identified.

  2. Hydrogen sulfide emission in sewer networks: a two-phase modeling approach to the sulfur cycle.

    PubMed

    Yongsiri, C; Vollertsen, J; Hvitved-Jacobsen, T

    2004-01-01

    Wherever transport of anaerobic wastewater occurs, potential problems associated with hydrogen sulfide in relation to odor nuisance, health risk and corrosion exist. Improved understanding of prediction of hydrogen sulfide emission into the sewer atmosphere is needed for better evaluation of such problems in sewer networks. A two-phase model for emission of hydrogen sulfide along stretches of gravity sewers is presented to estimate the occurrence of both sulfide in the water phase and hydrogen sulfide in the sewer atmosphere. The model takes into account air-water mass transfer of hydrogen sulfide and interactions with other processes in the sulfur cycle. Various emission scenarios are simulated to illustrate the release characteristics of hydrogen sulfide.

  3. Neural Network and Regression Approximations in High Speed Civil Transport Aircraft Design Optimization

    NASA Technical Reports Server (NTRS)

    Patniak, Surya N.; Guptill, James D.; Hopkins, Dale A.; Lavelle, Thomas M.

    1998-01-01

    Nonlinear mathematical-programming-based design optimization can be an elegant method. However, the calculations required to generate the merit function, constraints, and their gradients, which are frequently required, can make the process computational intensive. The computational burden can be greatly reduced by using approximating analyzers derived from an original analyzer utilizing neural networks and linear regression methods. The experience gained from using both of these approximation methods in the design optimization of a high speed civil transport aircraft is the subject of this paper. The Langley Research Center's Flight Optimization System was selected for the aircraft analysis. This software was exercised to generate a set of training data with which a neural network and a regression method were trained, thereby producing the two approximating analyzers. The derived analyzers were coupled to the Lewis Research Center's CometBoards test bed to provide the optimization capability. With the combined software, both approximation methods were examined for use in aircraft design optimization, and both performed satisfactorily. The CPU time for solution of the problem, which had been measured in hours, was reduced to minutes with the neural network approximation and to seconds with the regression method. Instability encountered in the aircraft analysis software at certain design points was also eliminated. On the other hand, there were costs and difficulties associated with training the approximating analyzers. The CPU time required to generate the input-output pairs and to train the approximating analyzers was seven times that required for solution of the problem.

  4. Research on the transfer learning of the vehicle logo recognition

    NASA Astrophysics Data System (ADS)

    Zhao, Wei

    2017-08-01

    The Convolutional Neural Network of Deep Learning has been a huge success in the field of image intelligent transportation system can effectively solve the traffic safety, congestion, vehicle management and other problems of traffic in the city. Vehicle identification is a vital part of intelligent transportation, and the effective information in vehicles is of great significance to vehicle identification. With the traffic system on the vehicle identification technology requirements are getting higher and higher, the vehicle as an important type of vehicle information, because it should not be removed, difficult to change and other features for vehicle identification provides an important method. The current vehicle identification recognition (VLR) is mostly used to extract the characteristics of the method of classification, which for complex classification of its generalization ability to be some constraints, if the use of depth learning technology, you need a lot of training samples. In this paper, the method of convolution neural network based on transfer learning can solve this problem effectively, and it has important practical application value in the task of vehicle mark recognition.

  5. A flood lamination strategy based on transportation network with time delay.

    PubMed

    Nouasse, H; Chiron, P; Archimède, B

    2013-01-01

    Over the last few years, the frequency and intensity of floods has become more marked due to the influence of climate change. The engendered problems are related to the safety of goods and persons. These considerations require predictive management that will limit water height downstream. In the literature, numerous works have described flow modeling and management. The work presented in this paper is interested in quantitative management by means of flood expansion areas placed along the river and for which we have size and location. The performance of the management system depends on the time and height of gate opening, which will influence wave mitigation. The proposed management method is based on use of a transportation network with time delay from which the volume of water to be stored is calculated.

  6. The school bus routing and scheduling problem with transfers

    PubMed Central

    Doerner, Karl F.; Parragh, Sophie N.

    2015-01-01

    In this article, we study the school bus routing and scheduling problem with transfers arising in the field of nonperiodic public transportation systems. It deals with the transportation of pupils from home to their school in the morning taking the possibility that pupils may change buses into account. Allowing transfers has several consequences. On the one hand, it allows more flexibility in the bus network structure and can, therefore, help to reduce operating costs. On the other hand, transfers have an impact on the service level: the perceived service quality is lower due to the existence of transfers; however, at the same time, user ride times may be reduced and, thus, transfers may also have a positive impact on service quality. The main objective is the minimization of the total operating costs. We develop a heuristic solution framework to solve this problem and compare it with two solution concepts that do not consider transfers. The impact of transfers on the service level in terms of time loss (or user ride time) and the number of transfers is analyzed. Our results show that allowing transfers reduces total operating costs significantly while average and maximum user ride times are comparable to solutions without transfers. © 2015 Wiley Periodicals, Inc. NETWORKS, Vol. 65(2), 180–203 2015 PMID:28163329

  7. Effect of space structures against development of transport infrastructure in Banda Aceh by using the concept of transit oriented development

    NASA Astrophysics Data System (ADS)

    Noer, Fadhly; Matondang, A. Rahim; Sirojuzilam, Saleh, Sofyan M.

    2017-11-01

    Due to the shifting of city urban development causing the shift of city services center, so there is a change in space pattern and space structure in Banda Aceh, then resulting urban sprawl which can lead to congestion problem occurs on the arterial road in Banda Aceh, it can be seen from the increasing number of vehicles per year by 6%. Another issue occurs by urban sprawl is not well organized of settlement due to the uncontrolled use of space so that caused grouping or the differences in socioeconomic strata that can impact to the complexity of population mobility problem. From this background problem considered to be solved by a concept that is Transit Oriented Development (TOD), that is a concept of transportation development in co-operation with spatial. This research will get the model of transportation infrastructure development with TOD concept that can handle transportation problem in Banda Aceh, due to change of spatial structure, and to find whether TOD concept can use for the area that has a population in medium density range. The result that is obtained equation so the space structure is: Space Structure = 0.520 + 0.206X3 + 0.264X6 + 0.100X7 and Transportation Infrastructure Development = -1.457 + 0.652X1 + 0.388X5 + 0.235X6 + 0.222X7 + 0.327X8, So results obtained with path analysis method obtained variable influences, node ratio, network connectivity, travel frequency, travel destination, travel cost, and travel time, it has a lower value when direct effect with transportation infrastructure development, but if the indirect effect through the structure of space has a greater influence, can be seen from spatial structure path scheme - transportation infrastructure development.

  8. On mobile wireless ad hoc IP video transports

    NASA Astrophysics Data System (ADS)

    Kazantzidis, Matheos

    2006-05-01

    Multimedia transports in wireless, ad-hoc, multi-hop or mobile networks must be capable of obtaining information about the network and adaptively tune sending and encoding parameters to the network response. Obtaining meaningful metrics to guide a stable congestion control mechanism in the transport (i.e. passive, simple, end-to-end and network technology independent) is a complex problem. Equally difficult is obtaining a reliable QoS metrics that agrees with user perception in a client/server or distributed environment. Existing metrics, objective or subjective, are commonly used after or before to test or report on a transmission and require access to both original and transmitted frames. In this paper, we propose that an efficient and successful video delivery and the optimization of overall network QoS requires innovation in a) a direct measurement of available and bottleneck capacity for its congestion control and b) a meaningful subjective QoS metric that is dynamically reported to video sender. Once these are in place, a binomial -stable, fair and TCP friendly- algorithm can be used to determine the sending rate and other packet video parameters. An adaptive mpeg codec can then continually test and fit its parameters and temporal-spatial data-error control balance using the perceived QoS dynamic feedback. We suggest a new measurement based on a packet dispersion technique that is independent of underlying network mechanisms. We then present a binomial control based on direct measurements. We implement a QoS metric that is known to agree with user perception (MPQM) in a client/server, distributed environment by using predetermined table lookups and characterization of video content.

  9. Active transport on disordered microtubule networks: the generalized random velocity model.

    PubMed

    Kahana, Aviv; Kenan, Gilad; Feingold, Mario; Elbaum, Michael; Granek, Rony

    2008-11-01

    The motion of small cargo particles on microtubules by means of motor proteins in disordered microtubule networks is investigated theoretically using both analytical tools and computer simulations. Different network topologies in two and three dimensions are considered, one of which has been recently studied experimentally by Salman [Biophys. J. 89, 2134 (2005)]. A generalization of the random velocity model is used to derive the mean-square displacement of the cargo particle. We find that all cases belong to the class of anomalous superdiffusion, which is sensitive mainly to the dimensionality of the network and only marginally to its topology. Yet in three dimensions the motion is very close to simple diffusion, with sublogarithmic corrections that depend on the network topology. When details of the thermal diffusion in the bulk solution are included, no significant change to the asymptotic time behavior is found. However, a small asymmetry in the mean microtubule polarity affects the corresponding long-time behavior. We also study a three-dimensional model of the microtubule network in living animal cells. Three first-passage-time problems of intracellular transport are simulated and analyzed for different motor processivities: (i) cargo that originates near the nucleus and has to reach the membrane, (ii) cargo that originates from the membrane and has to reach the nucleus, and (iii) cargo that leaves the nucleus and has to reach a specific target in the cytoplasm. We conclude that while a higher motor processivity increases the transport efficiency in cases (i) and (ii), in case (iii) it has the opposite effect. We conjecture that the balance between the different network tasks, as manifested in cases (i) and (ii) versus case (iii), may be the reason for the evolutionary choice of a finite motor processivity.

  10. Active transport on disordered microtubule networks: The generalized random velocity model

    NASA Astrophysics Data System (ADS)

    Kahana, Aviv; Kenan, Gilad; Feingold, Mario; Elbaum, Michael; Granek, Rony

    2008-11-01

    The motion of small cargo particles on microtubules by means of motor proteins in disordered microtubule networks is investigated theoretically using both analytical tools and computer simulations. Different network topologies in two and three dimensions are considered, one of which has been recently studied experimentally by Salman [Biophys. J. 89, 2134 (2005)]. A generalization of the random velocity model is used to derive the mean-square displacement of the cargo particle. We find that all cases belong to the class of anomalous superdiffusion, which is sensitive mainly to the dimensionality of the network and only marginally to its topology. Yet in three dimensions the motion is very close to simple diffusion, with sublogarithmic corrections that depend on the network topology. When details of the thermal diffusion in the bulk solution are included, no significant change to the asymptotic time behavior is found. However, a small asymmetry in the mean microtubule polarity affects the corresponding long-time behavior. We also study a three-dimensional model of the microtubule network in living animal cells. Three first-passage-time problems of intracellular transport are simulated and analyzed for different motor processivities: (i) cargo that originates near the nucleus and has to reach the membrane, (ii) cargo that originates from the membrane and has to reach the nucleus, and (iii) cargo that leaves the nucleus and has to reach a specific target in the cytoplasm. We conclude that while a higher motor processivity increases the transport efficiency in cases (i) and (ii), in case (iii) it has the opposite effect. We conjecture that the balance between the different network tasks, as manifested in cases (i) and (ii) versus case (iii), may be the reason for the evolutionary choice of a finite motor processivity.

  11. Universal resilience patterns in cascading load model: More capacity is not always better

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Wang, Xue; Cai, Lin; Ni, Chengzhang; Xie, Wei; Xu, Bo

    We study the problem of universal resilience patterns in complex networks against cascading failures. We revise the classical betweenness method and overcome its limitation of quantifying the load in cascading model. Considering that the generated load by all nodes should be equal to the transported one by all edges in the whole network, we propose a new method to quantify the load on an edge and construct a simple cascading model. By attacking the edge with the highest load, we show that, if the flow between two nodes is transported along the shortest paths between them, then the resilience of some networks against cascading failures inversely decreases with the enhancement of the capacity of every edge, i.e. the more capacity is not always better. We also observe the abnormal fluctuation of the additional load that exceeds the capacity of each edge. By a simple graph, we analyze the propagation of cascading failures step by step, and give a reasonable explanation of the abnormal fluctuation of cascading dynamics.

  12. Regional interpretation of water-quality monitoring data

    USGS Publications Warehouse

    Smith, Richard A.; Schwarz, Gregory E.; Alexander, Richard B.

    1997-01-01

    We describe a method for using spatially referenced regressions of contaminant transport on watershed attributes (SPARROW) in regional water-quality assessment. The method is designed to reduce the problems of data interpretation caused by sparse sampling, network bias, and basin heterogeneity. The regression equation relates measured transport rates in streams to spatially referenced descriptors of pollution sources and land-surface and stream-channel characteristics. Regression models of total phosphorus (TP) and total nitrogen (TN) transport are constructed for a region defined as the nontidal conterminous United States. Observed TN and TP transport rates are derived from water-quality records for 414 stations in the National Stream Quality Accounting Network. Nutrient sources identified in the equations include point sources, applied fertilizer, livestock waste, nonagricultural land, and atmospheric deposition (TN only). Surface characteristics found to be significant predictors of land-water delivery include soil permeability, stream density, and temperature (TN only). Estimated instream decay coefficients for the two contaminants decrease monotonically with increasing stream size. TP transport is found to be significantly reduced by reservoir retention. Spatial referencing of basin attributes in relation to the stream channel network greatly increases their statistical significance and model accuracy. The method is used to estimate the proportion of watersheds in the conterminous United States (i.e., hydrologic cataloging units) with outflow TP concentrations less than the criterion of 0.1 mg/L, and to classify cataloging units according to local TN yield (kg/km2/yr).

  13. Sensor Location Problem Optimization for Traffic Network with Different Spatial Distributions of Traffic Information.

    PubMed

    Bao, Xu; Li, Haijian; Qin, Lingqiao; Xu, Dongwei; Ran, Bin; Rong, Jian

    2016-10-27

    To obtain adequate traffic information, the density of traffic sensors should be sufficiently high to cover the entire transportation network. However, deploying sensors densely over the entire network may not be realistic for practical applications due to the budgetary constraints of traffic management agencies. This paper describes several possible spatial distributions of traffic information credibility and proposes corresponding different sensor information credibility functions to describe these spatial distribution properties. A maximum benefit model and its simplified model are proposed to solve the traffic sensor location problem. The relationships between the benefit and the number of sensors are formulated with different sensor information credibility functions. Next, expanding models and algorithms in analytic results are performed. For each case, the maximum benefit, the optimal number and spacing of sensors are obtained and the analytic formulations of the optimal sensor locations are derived as well. Finally, a numerical example is proposed to verify the validity and availability of the proposed models for solving a network sensor location problem. The results show that the optimal number of sensors of segments with different model parameters in an entire freeway network can be calculated. Besides, it can also be concluded that the optimal sensor spacing is independent of end restrictions but dependent on the values of model parameters that represent the physical conditions of sensors and roads.

  14. Sensor Location Problem Optimization for Traffic Network with Different Spatial Distributions of Traffic Information

    PubMed Central

    Bao, Xu; Li, Haijian; Qin, Lingqiao; Xu, Dongwei; Ran, Bin; Rong, Jian

    2016-01-01

    To obtain adequate traffic information, the density of traffic sensors should be sufficiently high to cover the entire transportation network. However, deploying sensors densely over the entire network may not be realistic for practical applications due to the budgetary constraints of traffic management agencies. This paper describes several possible spatial distributions of traffic information credibility and proposes corresponding different sensor information credibility functions to describe these spatial distribution properties. A maximum benefit model and its simplified model are proposed to solve the traffic sensor location problem. The relationships between the benefit and the number of sensors are formulated with different sensor information credibility functions. Next, expanding models and algorithms in analytic results are performed. For each case, the maximum benefit, the optimal number and spacing of sensors are obtained and the analytic formulations of the optimal sensor locations are derived as well. Finally, a numerical example is proposed to verify the validity and availability of the proposed models for solving a network sensor location problem. The results show that the optimal number of sensors of segments with different model parameters in an entire freeway network can be calculated. Besides, it can also be concluded that the optimal sensor spacing is independent of end restrictions but dependent on the values of model parameters that represent the physical conditions of sensors and roads. PMID:27801794

  15. Taking the Pulse of Plants

    NASA Astrophysics Data System (ADS)

    Jensen, Kaare H.; Beecher, Sierra; Holbrook, N. Michele; Knoblauch, Michael

    2014-11-01

    Many biological systems use complex networks of vascular conduits to distribute energy over great distances. Examples include sugar transport in the phloem tissue of vascular plants and cytoplasmic streaming in some slime molds. Detailed knowledge of transport patterns in these systems is important for our fundamental understanding of energy distribution during development and for engineering of more efficient crops. Current techniques for quantifying transport in these microfluidic systems, however, only allow for the determination of either the flow speed or the concentration of material. Here we demonstrate a new method, based on confocal microscopy, which allows us to simultaneously determine velocity and solute concentration by tracking the dispersion of a tracer dye. We attempt to rationalize the observed transport patterns through consideration of constrained optimization problems.

  16. Billions to the poor for fuel bills, but not a penny for transportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thero, S.

    1980-05-17

    Low-income persons are increasingly faced with having to choose between food and energy and are unable to afford adequate supplies of either. Government assistance to help the poor pay the higher costs has been legislated and funded, but critics find the government's program to be inadequate in scope, inappropriate, and unfair in the formula used to determine the funding levels of different regions. They also protest the absence of any help for transportation costs. The most popular solution to the transportation problem of the rural poor is federal aid for public transportation. A network of vans or old schoolbuses andmore » a program to rehabilitate old cars to make them more efficient are suggested. (DCK)« less

  17. Enhanced ant colony optimization for inventory routing problem

    NASA Astrophysics Data System (ADS)

    Wong, Lily; Moin, Noor Hasnah

    2015-10-01

    The inventory routing problem (IRP) integrates and coordinates two important components of supply chain management which are transportation and inventory management. We consider a one-to-many IRP network for a finite planning horizon. The demand for each product is deterministic and time varying as well as a fleet of capacitated homogeneous vehicles, housed at a depot/warehouse, delivers the products from the warehouse to meet the demand specified by the customers in each period. The inventory holding cost is product specific and is incurred at the customer sites. The objective is to determine the amount of inventory and to construct a delivery routing that minimizes both the total transportation and inventory holding cost while ensuring each customer's demand is met over the planning horizon. The problem is formulated as a mixed integer programming problem and is solved using CPLEX 12.4 to get the lower and upper bound (best integer) for each instance considered. We propose an enhanced ant colony optimization (ACO) to solve the problem and the built route is improved by using local search. The computational experiments demonstrating the effectiveness of our approach is presented.

  18. Research on centrality of urban transport network nodes

    NASA Astrophysics Data System (ADS)

    Wang, Kui; Fu, Xiufen

    2017-05-01

    Based on the actual data of urban transport in Guangzhou, 19,150 bus stations in Guangzhou (as of 2014) are selected as nodes. Based on the theory of complex network, the network model of Guangzhou urban transport is constructed. By analyzing the degree centrality index, betweenness centrality index and closeness centrality index of nodes in the network, the level of centrality of each node in the network is studied. From a different point of view to determine the hub node of Guangzhou urban transport network, corresponding to the city's key sites and major transfer sites. The reliability of the network is determined by the stability of some key nodes (transport hub station). The research of network node centralization can provide a theoretical basis for the rational allocation of urban transport network sites and public transport system planning.

  19. Trapping in scale-free networks with hierarchical organization of modularity.

    PubMed

    Zhang, Zhongzhi; Lin, Yuan; Gao, Shuyang; Zhou, Shuigeng; Guan, Jihong; Li, Mo

    2009-11-01

    A wide variety of real-life networks share two remarkable generic topological properties: scale-free behavior and modular organization, and it is natural and important to study how these two features affect the dynamical processes taking place on such networks. In this paper, we investigate a simple stochastic process--trapping problem, a random walk with a perfect trap fixed at a given location, performed on a family of hierarchical networks that exhibit simultaneously striking scale-free and modular structure. We focus on a particular case with the immobile trap positioned at the hub node having the largest degree. Using a method based on generating functions, we determine explicitly the mean first-passage time (MFPT) for the trapping problem, which is the mean of the node-to-trap first-passage time over the entire network. The exact expression for the MFPT is calculated through the recurrence relations derived from the special construction of the hierarchical networks. The obtained rigorous formula corroborated by extensive direct numerical calculations exhibits that the MFPT grows algebraically with the network order. Concretely, the MFPT increases as a power-law function of the number of nodes with the exponent much less than 1. We demonstrate that the hierarchical networks under consideration have more efficient structure for transport by diffusion in contrast with other analytically soluble media including some previously studied scale-free networks. We argue that the scale-free and modular topologies are responsible for the high efficiency of the trapping process on the hierarchical networks.

  20. T-SDN architecture for space and ground integrated optical transport network

    NASA Astrophysics Data System (ADS)

    Nie, Kunkun; Hu, Wenjing; Gao, Shenghua; Chang, Chengwu

    2015-11-01

    Integrated optical transport network is the development trend of the future space information backbone network. The space and ground integrated optical transport network(SGIOTN) may contain a variety of equipment and systems. Changing the network or meeting some innovation missions in the network will be an expensive implement. Software Defined Network(SDN) provides a good solution to flexibly adding process logic, timely control states and resources of the whole network, as well as shielding the differences of heterogeneous equipment and so on. According to the characteristics of SGIOTN, we propose an transport SDN architecture for it, with hierarchical control plane and data plane composed of packet networks and optical transport networks.

  1. Network reliability maximization for stochastic-flow network subject to correlated failures using genetic algorithm and tabu\\xA0search

    NASA Astrophysics Data System (ADS)

    Yeh, Cheng-Ta; Lin, Yi-Kuei; Yang, Jo-Yun

    2018-07-01

    Network reliability is an important performance index for many real-life systems, such as electric power systems, computer systems and transportation systems. These systems can be modelled as stochastic-flow networks (SFNs) composed of arcs and nodes. Most system supervisors respect the network reliability maximization by finding the optimal multi-state resource assignment, which is one resource to each arc. However, a disaster may cause correlated failures for the assigned resources, affecting the network reliability. This article focuses on determining the optimal resource assignment with maximal network reliability for SFNs. To solve the problem, this study proposes a hybrid algorithm integrating the genetic algorithm and tabu search to determine the optimal assignment, called the hybrid GA-TS algorithm (HGTA), and integrates minimal paths, recursive sum of disjoint products and the correlated binomial distribution to calculate network reliability. Several practical numerical experiments are adopted to demonstrate that HGTA has better computational quality than several popular soft computing algorithms.

  2. A restricted Steiner tree problem is solved by Geometric Method II

    NASA Astrophysics Data System (ADS)

    Lin, Dazhi; Zhang, Youlin; Lu, Xiaoxu

    2013-03-01

    The minimum Steiner tree problem has wide application background, such as transportation system, communication network, pipeline design and VISL, etc. It is unfortunately that the computational complexity of the problem is NP-hard. People are common to find some special problems to consider. In this paper, we first put forward a restricted Steiner tree problem, which the fixed vertices are in the same side of one line L and we find a vertex on L such the length of the tree is minimal. By the definition and the complexity of the Steiner tree problem, we know that the complexity of this problem is also Np-complete. In the part one, we have considered there are two fixed vertices to find the restricted Steiner tree problem. Naturally, we consider there are three fixed vertices to find the restricted Steiner tree problem. And we also use the geometric method to solve such the problem.

  3. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics

    PubMed Central

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-01-01

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design. PMID:26488648

  4. Tokunaga river networks: New empirical evidence and applications to transport problems

    NASA Astrophysics Data System (ADS)

    Tejedor, A.; Zaliapin, I. V.

    2013-12-01

    The Tokunaga self-similarity has proven to be an important constraint for the observed river networks. Notably, various Horton laws are naturally satisfied by the Tokunaga networks, which makes this model of considerable interest for theoretical analysis and modeling of environmental transport. Recall that Horton self-similarity is a weaker property of a tree graph that addresses its principal branching; it is a counterpart of the power-law size distribution for system's elements. The stronger Tokunaga self-similarity addresses so-called side branching; it ensures that different levels of a hierarchy have the same probabilistic structure (in a sense that can be rigorously defined). We describe an improved statistical framework for testing self-similarity in a finite tree and estimating the related parameters. The developed inference is applied to the major river basins in continental United States and Iberian Peninsula. The results demonstrate the validity of the Tokunaga model for the majority of the examined networks with very narrow (universal) range of parameter values. Next, we explore possible relationships between the Tokunaga parameter anomalies (deviations from the universal values) and climatic and geomorphologic characteristics of a region. Finally, we apply the Tokunaga model to explore vulnerability of river networks, defined via reaction of the river discharge to a storm.

  5. A group-based tasks allocation algorithm for the optimization of long leave opportunities in academic departments

    NASA Astrophysics Data System (ADS)

    Eyono Obono, S. D.; Basak, Sujit Kumar

    2011-12-01

    The general formulation of the assignment problem consists in the optimal allocation of a given set of tasks to a workforce. This problem is covered by existing literature for different domains such as distributed databases, distributed systems, transportation, packets radio networks, IT outsourcing, and teaching allocation. This paper presents a new version of the assignment problem for the allocation of academic tasks to staff members in departments with long leave opportunities. It presents the description of a workload allocation scheme and its algorithm, for the allocation of an equitable number of tasks in academic departments where long leaves are necessary.

  6. Charge transport network dynamics in molecular aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Nicholas E.; Chen, Lin X.; Ratner, Mark A.

    2016-07-20

    Due to the nonperiodic nature of charge transport in disordered systems, generating insight into static charge transport networks, as well as analyzing the network dynamics, can be challenging. Here, we apply time-dependent network analysis to scrutinize the charge transport networks of two representative molecular semiconductors: a rigid n-type molecule, perylenediimide, and a flexible p-type molecule, bBDT(TDPP)2. Simulations reveal the relevant timescale for local transfer integral decorrelation to be ~100 fs, which is shown to be faster than that of a crystalline morphology of the same molecule. Using a simple graph metric, global network changes are observed over timescales competitive withmore » charge carrier lifetimes. These insights demonstrate that static charge transport networks are qualitatively inadequate, whereas average networks often overestimate network connectivity. Finally, a simple methodology for tracking dynamic charge transport properties is proposed.« less

  7. An Investigation of Synchrony in Transport Networks

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Alexandrov, Natalia M.; Holroyd, Michael J.

    2007-01-01

    The cumulative degree distributions of transport networks, such as air transportation networks and respiratory neuronal networks, follow power laws. The significance of power laws with respect to other network performance measures, such as throughput and synchronization, remains an open question. Evolving methods for the analysis and design of air transportation networks must address network performance in the face of increasing demands and the need to contain and control local network disturbances, such as congestion. Toward this end, we investigate functional relationships that govern the performance of transport networks; for example, the links between the first nontrivial eigenvalue of a network's Laplacian matrix - a quantitative measure of network synchronizability - and other global network parameters. In particular, among networks with a fixed degree distribution and fixed network assortativity (a measure of a network's preference to attach nodes based on a similarity or difference), those with the small eigenvalue are shown to be poor synchronizers, to have much longer shortest paths and to have greater clustering in comparison to those with large. A simulation of a respiratory network adds data to our investigation. This study is a beginning step in developing metrics and design variables for the analysis and active design of air transport networks.

  8. Surveillance systems for intermodal transportation

    NASA Astrophysics Data System (ADS)

    Jakovlev, Sergej; Voznak, Miroslav; Andziulis, Arunas

    2015-05-01

    Intermodal container monitoring is considered a major security issue in many major logistic companies and countries worldwide. Current representation of the problem, we face today, originated in 2002, right after the 9/11 attacks. Then, a new worldwide Container Security Initiative (CSI, 2002) was considered that shaped the perception of the transportation operations. Now more than 80 larger ports all over the world contribute to its further development and integration into everyday transportation operations and improve the regulations for the developing regions. Although, these new improvements allow us to feel safer and secure, constant management of transportation operations has become a very difficult problem for conventional data analysis methods and information systems. The paper deals with a proposal of a whole new concept for the improvement of the Containers Security Initiative (CSI) by virtually connecting safety, security processes and systems. A conceptual middleware approach with deployable intelligent agent modules is proposed to be used with possible scenarios and a testbed is used to test the solution. Middleware examples are visually programmed using National Instruments LabView software packages and Wireless sensor network hardware modules. An experimental software is used to evaluate he solution. This research is a contribution to the intermodal transportation and is intended to be used as a means or the development of intelligent transport systems.

  9. Peculiarities of solving the problems of modern logistics in high-rise construction and industrial production

    NASA Astrophysics Data System (ADS)

    Rubtsov, Anatoliy E.; Ushakova, Elena V.; Chirkova, Tamara V.

    2018-03-01

    Basing on the analysis of the enterprise (construction organization) structure and infrastructure of the entire logistics system in which this enterprise (construction organization) operates, this article proposes an approach to solve the problems of structural optimization and a set of calculation tasks, based on customer orders as well as on the required levels of insurance stocks, transit stocks and other types of stocks in the distribution network, modes of operation of the in-company transport and storage complex and a number of other factors.

  10. Ships/Trains/Planes/Automobiles: A Renaissance of their Interface

    NASA Technical Reports Server (NTRS)

    Allan, Stanley N.

    1974-01-01

    This paper highlights some of the major multi-modal interface problems created by technological advances, socio-political individualism and the flexibility of choices we expect from our transportation modes. The emphasis is on the need for a comprehensive national network of multi-modal priorities to enhance the movement of people and goods within the changing physical shape of our cities.

  11. Animal transportation networks

    PubMed Central

    Perna, Andrea; Latty, Tanya

    2014-01-01

    Many group-living animals construct transportation networks of trails, galleries and burrows by modifying the environment to facilitate faster, safer or more efficient movement. Animal transportation networks can have direct influences on the fitness of individuals, whereas the shape and structure of transportation networks can influence community dynamics by facilitating contacts between different individuals and species. In this review, we discuss three key areas in the study of animal transportation networks: the topological properties of networks, network morphogenesis and growth, and the behaviour of network users. We present a brief primer on elements of network theory, and then discuss the different ways in which animal groups deal with the fundamental trade-off between the competing network properties of travel efficiency, robustness and infrastructure cost. We consider how the behaviour of network users can impact network efficiency, and call for studies that integrate both network topology and user behaviour. We finish with a prospectus for future research. PMID:25165598

  12. Location Management in a Transport Layer Mobility Architecture

    NASA Technical Reports Server (NTRS)

    Eddy, Wesley M.; Ishac, Joseph

    2005-01-01

    Mobility architectures that place complexity in end nodes rather than in the network interior have many advantageous properties and are becoming popular research topics. Such architectures typically push mobility support into higher layers of the protocol stack than network layer approaches like Mobile IP. The literature is ripe with proposals to provide mobility services in the transport, session, and application layers. In this paper, we focus on a mobility architecture that makes the most significant changes to the transport layer. A common problem amongst all mobility protocols at various layers is location management, which entails translating some form of static identifier into a mobile node's dynamic location. Location management is required for mobile nodes to be able to provide globally-reachable services on-demand to other hosts. In this paper, we describe the challenges of location management in a transport layer mobility architecture, and discuss the advantages and disadvantages of various solutions proposed in the literature. Our conclusion is that, in principle, secure dynamic DNS is most desirable, although it may have current operational limitations. We note that this topic has room for further exploration, and we present this paper largely as a starting point for comparing possible solutions.

  13. Transport and homeostasis of potassium and phosphate: limiting factors for sustainable crop production.

    PubMed

    Luan, Mingda; Tang, Ren-Jie; Tang, Yumei; Tian, Wang; Hou, Congong; Zhao, Fugeng; Lan, Wenzhi; Luan, Sheng

    2017-06-01

    Potassium (K) and phosphate (Pi) are both macronutrients essential for plant growth and crop production, but the unrenewable resources of phosphorus rock and potash have become limiting factors for food security. One critical measure to help solve this problem is to improve nutrient use efficiency (NUE) in plants by understanding and engineering genetic networks for ion uptake, translocation, and storage. Plants have evolved multiple systems to adapt to various nutrient conditions for growth and production. Within the NUE networks, transport proteins and their regulators are the primary players for maintaining nutrient homeostasis and could be utilized to engineer high NUE traits in crop plants. A large number of publications have detailed K+ and Pi transport proteins in plants over the past three decades. Meanwhile, the discovery and validation of their regulatory mechanisms are fast-track topics for research. Here, we provide an overview of K+ and Pi transport proteins and their regulatory mechanisms, which participate in the uptake, translocation, storage, and recycling of these nutrients in plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Neural-tree call admission controller for ATM networks

    NASA Astrophysics Data System (ADS)

    Rughooputh, Harry C. S.

    1999-03-01

    Asynchronous Transfer Mode (ATM) has been recommended by ITU-T as the transport method for broadband integrated services digital networks. In high-speed ATM networks different types of multimedia traffic streams with widely varying traffic characteristics and Quality of Service (QoS) are asynchronously multiplexed on transmission links and switched without window flow control as found in X.25. In such an environment, a traffic control scheme is required to manage the required QoS of each class individually. To meet the QoS requirements, Bandwidth Allocation and Call Admission Control (CAC) in ATM networks must be able to adapt gracefully to the dynamic behavior of traffic and the time-varying nature of the network condition. In this paper, a Neural Network approach for CAC is proposed. The call admission problem is addressed by designing controllers based on Neural Tree Networks. Simulations reveal that the proposed scheme is not only simple but it also offers faster response than conventional neural/neuro-fuzzy controllers.

  15. Determining average path length and average trapping time on generalized dual dendrimer

    NASA Astrophysics Data System (ADS)

    Li, Ling; Guan, Jihong

    2015-03-01

    Dendrimer has wide number of important applications in various fields. In some cases during transport or diffusion process, it transforms into its dual structure named Husimi cactus. In this paper, we study the structure properties and trapping problem on a family of generalized dual dendrimer with arbitrary coordination numbers. We first calculate exactly the average path length (APL) of the networks. The APL increases logarithmically with the network size, indicating that the networks exhibit a small-world effect. Then we determine the average trapping time (ATT) of the trapping process in two cases, i.e., the trap placed on a central node and the trap is uniformly distributed in all the nodes of the network. In both case, we obtain explicit solutions of ATT and show how they vary with the networks size. Besides, we also discuss the influence of the coordination number on trapping efficiency.

  16. Rural women and violence situation: access and accessibility limits to the healthcare network.

    PubMed

    Costa, Marta Cocco da; Silva, Ethel Bastos da; Soares, Joannie Dos Santos Fachinelli; Borth, Luana Cristina; Honnef, Fernanda

    2017-07-13

    To analyze the access and accessibility to the healthcare network of women dwelling in rural contexts undergoing violence situation, as seen from the professionals' speeches. A qualitative, exploratory, descriptive study with professionals from the healthcare network services about coping with violence in four municipalities in the northern region of Rio Grande do Sul. The information derived from interviews, which have been analyzed by thematic modality. (Lack of) information of women, distance, restricted access to transportation, dependence on the partner and (lack of) attention by professionals to welcome women undergoing violence situation and (non)-articulation of the network are factors that limit the access and, as a consequence, they result in the lack of confrontation of this problem. To bring closer the services which integrate the confrontation network of violence against women and to qualify professionals to welcome these situations are factors that can facilitate the access and adhesion of rural women to the services.

  17. Urban development control based on transportation carrying capacity

    NASA Astrophysics Data System (ADS)

    Miharja, M.; Sjafruddin, A. H.

    2017-06-01

    Severe transportation problems in Indonesian urban areas are stimulated by one fundamental factor, namely lack of awareness on transportation carrying capacity in these areas development control. Urban land use development towards more physical coverage is typically not related with the capability of transportation system to accommodate additional trips volume. Lack of clear connection between development permit with its implication on the transportation side has led to a phenomenon of exceeding transport demand over supply capacity. This paper discusses the concept of urban land use development control which will be related with transport carrying capacity. The discussion would cover both supply and demand sides of transportation. From supply side, the analysis regarding the capacity of transport system would take both existing as well as potential road network capacity could be developed. From demand side, the analysis would be through the control of a maximum floor area and public transport provision. Allowed maximum floor area for development would be at the level of generating traffic at reasonable volume. Ultimately, the objective of this paper is to introduce model to incorporate transport carrying capacity in Indonesian urban land use development control.

  18. A feedback control model for network flow with multiple pure time delays

    NASA Technical Reports Server (NTRS)

    Press, J.

    1972-01-01

    A control model describing a network flow hindered by multiple pure time (or transport) delays is formulated. Feedbacks connect each desired output with a single control sector situated at the origin. The dynamic formulation invokes the use of differential difference equations. This causes the characteristic equation of the model to consist of transcendental functions instead of a common algebraic polynomial. A general graphical criterion is developed to evaluate the stability of such a problem. A digital computer simulation confirms the validity of such criterion. An optimal decision making process with multiple delays is presented.

  19. Finding shared decisions in stakeholder networks: An agent-based approach

    NASA Astrophysics Data System (ADS)

    Le Pira, Michela; Inturri, Giuseppe; Ignaccolo, Matteo; Pluchino, Alessandro; Rapisarda, Andrea

    2017-01-01

    We address the problem of a participatory decision-making process where a shared priority list of alternatives has to be obtained while avoiding inconsistent decisions. An agent-based model (ABM) is proposed to mimic this process in different social networks of stakeholders who interact according to an opinion dynamics model. Simulations' results show the efficacy of interaction in finding a transitive and, above all, shared decision. These findings are in agreement with real participation experiences regarding transport planning decisions and can give useful suggestions on how to plan an effective participation process for sustainable policy-making based on opinion consensus.

  20. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics.

    PubMed

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-10-20

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Systematic Dimensionality Reduction for Quantum Walks: Optimal Spatial Search and Transport on Non-Regular Graphs

    PubMed Central

    Novo, Leonardo; Chakraborty, Shantanav; Mohseni, Masoud; Neven, Hartmut; Omar, Yasser

    2015-01-01

    Continuous time quantum walks provide an important framework for designing new algorithms and modelling quantum transport and state transfer problems. Often, the graph representing the structure of a problem contains certain symmetries that confine the dynamics to a smaller subspace of the full Hilbert space. In this work, we use invariant subspace methods, that can be computed systematically using the Lanczos algorithm, to obtain the reduced set of states that encompass the dynamics of the problem at hand without the specific knowledge of underlying symmetries. First, we apply this method to obtain new instances of graphs where the spatial quantum search algorithm is optimal: complete graphs with broken links and complete bipartite graphs, in particular, the star graph. These examples show that regularity and high-connectivity are not needed to achieve optimal spatial search. We also show that this method considerably simplifies the calculation of quantum transport efficiencies. Furthermore, we observe improved efficiencies by removing a few links from highly symmetric graphs. Finally, we show that this reduction method also allows us to obtain an upper bound for the fidelity of a single qubit transfer on an XY spin network. PMID:26330082

  2. Designing a capacitated multi-configuration logistics network under disturbances and parameter uncertainty: a real-world case of a drug supply chain

    NASA Astrophysics Data System (ADS)

    Shishebori, Davood; Babadi, Abolghasem Yousefi

    2018-03-01

    This study investigates the reliable multi-configuration capacitated logistics network design problem (RMCLNDP) under system disturbances, which relates to locating facilities, establishing transportation links, and also allocating their limited capacities to the customers conducive to provide their demand on the minimum expected total cost (including locating costs, link constructing costs, and also expected costs in normal and disturbance conditions). In addition, two types of risks are considered; (I) uncertain environment, (II) system disturbances. A two-level mathematical model is proposed for formulating of the mentioned problem. Also, because of the uncertain parameters of the model, an efficacious possibilistic robust optimization approach is utilized. To evaluate the model, a drug supply chain design (SCN) is studied. Finally, an extensive sensitivity analysis was done on the critical parameters. The obtained results show that the efficiency of the proposed approach is suitable and is worthwhile for analyzing the real practical problems.

  3. Advanced transportation concept for round-trip space travel

    NASA Technical Reports Server (NTRS)

    Yen, Chen-Wan L.

    1988-01-01

    A departure from the conventional concept of round-trip space travel is introduced. It is shown that a substantial reduction in the initial load required of the Shuttle or other launch vehicle can be achieved by staging the ascent orbit and leaving fuel for the return trip at each stage of the orbit. Examples of round trips from a low-inclination LEO to a high-inclination LEO and from an LEO to a GEO are used to show the merits of the new concept. Potential problem areas and research needed for the development of an efficient space transportation network are discussed.

  4. GOMA 6.0 :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunk, Peter Randall; Rao, Rekha Ranjana; Chen, Ken S

    Goma 6.0 is a finite element program which excels in analyses of multiphysical processes, particularly those involving the major branches of mechanics (viz. fluid/solid mechanics, energy transport and chemical species transport). Goma is based on a full-Newton-coupled algorithm which allows for simultaneous solution of the governing principles, making the code ideally suited for problems involving closely coupled bulk mechanics and interfacial phenomena. Example applications include, but are not limited to, coating and polymer processing flows, super-alloy processing, welding/soldering, electrochemical processes, and solid-network or solution film drying. This document serves as a users guide and reference.

  5. Analysis of Fast Charging Station Network for Electrified Ride-Hailing Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Eric W; Rames, Clement L; Kontou, Eleftheria

    Today's electric vehicle (EV) owners charge their vehicles mostly at home and seldom use public direct current fast charger (DCFCs), reducing the need for a large deployment of DCFCs for private EV owners. However, due to the emerging interest among transportation network companies to operate EVs in their fleet, there is great potential for DCFCs to be highly utilized and become economically feasible in the future. This paper describes a heuristic algorithm to emulate operation of EVs within a hypothetical transportation network company fleet using a large global positioning system data set from Columbus, Ohio. DCFC requirements supporting operation ofmore » EVs are estimated using the Electric Vehicle Infrastructure Projection tool. Operation and installation costs were estimated using real-world data to assess the economic feasibility of the recommended fast charging stations. Results suggest that the hypothetical transportation network company fleet increases daily vehicle miles traveled per EV with less overall down time, resulting in increased demand for DCFC. Sites with overhead service lines are recommended for hosting DCFC stations to minimize the need for trenching underground service lines. A negative relationship was found between cost per unit of energy and fast charging utilization, underscoring the importance of prioritizing utilization over installation costs when siting DCFC stations. Although this preliminary analysis of the impacts of new mobility paradigms on alternative fueling infrastructure requirements has produced several key results, the complexity of the problem warrants further investigation.« less

  6. Never Use the Complete Search Space: a Concept to Enhance the Optimization Procedure for Monitoring Networks

    NASA Astrophysics Data System (ADS)

    Bode, F.; Reuschen, S.; Nowak, W.

    2015-12-01

    Drinking-water well catchments include many potential sources of contaminations like gas stations or agriculture. Finding optimal positions of early-warning monitoring wells is challenging because there are various parameters (and their uncertainties) that influence the reliability and optimality of any suggested monitoring location or monitoring network.The overall goal of this project is to develop and establish a concept to assess, design and optimize early-warning systems within well catchments. Such optimal monitoring networks need to optimize three competing objectives: a high detection probability, which can be reached by maximizing the "field of vision" of the monitoring network, a long early-warning time such that there is enough time left to install counter measures after first detection, and the overall operating costs of the monitoring network, which should ideally be reduced to a minimum. The method is based on numerical simulation of flow and transport in heterogeneous porous media coupled with geostatistics and Monte-Carlo, scenario analyses for real data, respectively, wrapped up within the framework of formal multi-objective optimization using a genetic algorithm.In order to speed up the optimization process and to better explore the Pareto-front, we developed a concept that forces the algorithm to search only in regions of the search space where promising solutions can be expected. We are going to show how to define these regions beforehand, using knowledge of the optimization problem, but also how to define them independently of problem attributes. With that, our method can be used with and/or without detailed knowledge of the objective functions.In summary, our study helps to improve optimization results in less optimization time by meaningful restrictions of the search space. These restrictions can be done independently of the optimization problem, but also in a problem-specific manner.

  7. Integrating stochastic time-dependent travel speed in solution methods for the dynamic dial-a-ride problem.

    PubMed

    Schilde, M; Doerner, K F; Hartl, R F

    2014-10-01

    In urban areas, logistic transportation operations often run into problems because travel speeds change, depending on the current traffic situation. If not accounted for, time-dependent and stochastic travel speeds frequently lead to missed time windows and thus poorer service. Especially in the case of passenger transportation, it often leads to excessive passenger ride times as well. Therefore, time-dependent and stochastic influences on travel speeds are relevant for finding feasible and reliable solutions. This study considers the effect of exploiting statistical information available about historical accidents, using stochastic solution approaches for the dynamic dial-a-ride problem (dynamic DARP). The authors propose two pairs of metaheuristic solution approaches, each consisting of a deterministic method (average time-dependent travel speeds for planning) and its corresponding stochastic version (exploiting stochastic information while planning). The results, using test instances with up to 762 requests based on a real-world road network, show that in certain conditions, exploiting stochastic information about travel speeds leads to significant improvements over deterministic approaches.

  8. Implementation of Pass Through PPTP Relay System with Authentication at Each Gateway and Its Performance Evaluations

    NASA Astrophysics Data System (ADS)

    Saito, Shoichi; Uehara, Tetsutaro; Izumi, Yutaka; Kunieda, Yoshitoshi

    The VPN (Virtual Private Network) technique becomes more and more popular to protect contents of messages and to achieve secure communication from incidents, such as tapping. However, it grow in usage that a VPN server is used on a sub-network in part of an office-wide network. But, a PPTP system included in Windows operating systems cannot establish nested VPN links. Moreover encrypted communication by VPN hides a user of the VPN connection. Consequently, any administrators of network systems can’t find out the users of the VPN connection via firewall, moreover can’t decide whether if the user is legal or not. In order to solve this problem, we developed a multi step PPTP relay system on a firewall. This system solves all the problems of our previously developed PPTP relay system(1). The new relay system improves security by encrypting through the whole end-to-end communication and abolishing of prior registration of passwords for the next step. Furthermore, transport speed is accelerated, and the restriction of the number of steps on relay is also abolished. By these features the multi step PPTP relay system expands usability.

  9. A discrete mathematical model of the dynamic evolution of a transportation network

    NASA Astrophysics Data System (ADS)

    Malinetskii, G. G.; Stepantsov, M. E.

    2009-09-01

    A dynamic model of the evolution of a transportation network is proposed. The main feature of this model is that the evolution of the transportation network is not a process of centralized transportation optimization. Rather, its dynamic behavior is a result of the system self-organization that occurs in the course of the satisfaction of needs in goods transportation and the evolution of the infrastructure of the network nodes. Nonetheless, the possibility of soft control of the network evolution direction is taken into account.

  10. Using Inspiration from Synaptic Plasticity Rules to Optimize Traffic Flow in Distributed Engineered Networks.

    PubMed

    Suen, Jonathan Y; Navlakha, Saket

    2017-05-01

    Controlling the flow and routing of data is a fundamental problem in many distributed networks, including transportation systems, integrated circuits, and the Internet. In the brain, synaptic plasticity rules have been discovered that regulate network activity in response to environmental inputs, which enable circuits to be stable yet flexible. Here, we develop a new neuro-inspired model for network flow control that depends only on modifying edge weights in an activity-dependent manner. We show how two fundamental plasticity rules, long-term potentiation and long-term depression, can be cast as a distributed gradient descent algorithm for regulating traffic flow in engineered networks. We then characterize, both by simulation and analytically, how different forms of edge-weight-update rules affect network routing efficiency and robustness. We find a close correspondence between certain classes of synaptic weight update rules derived experimentally in the brain and rules commonly used in engineering, suggesting common principles to both.

  11. Multi-scale modeling of multi-component reactive transport in geothermal aquifers

    NASA Astrophysics Data System (ADS)

    Nick, Hamidreza M.; Raoof, Amir; Wolf, Karl-Heinz; Bruhn, David

    2014-05-01

    In deep geothermal systems heat and chemical stresses can cause physical alterations, which may have a significant effect on flow and reaction rates. As a consequence it will lead to changes in permeability and porosity of the formations due to mineral precipitation and dissolution. Large-scale modeling of reactive transport in such systems is still challenging. A large area of uncertainty is the way in which the pore-scale information controlling the flow and reaction will behave at a larger scale. A possible choice is to use constitutive relationships relating, for example the permeability and porosity evolutions to the change in the pore geometry. While determining such relationships through laboratory experiments may be limited, pore-network modeling provides an alternative solution. In this work, we introduce a new workflow in which a hybrid Finite-Element Finite-Volume method [1,2] and a pore network modeling approach [3] are employed. Using the pore-scale model, relevant constitutive relations are developed. These relations are then embedded in the continuum-scale model. This approach enables us to study non-isothermal reactive transport in porous media while accounting for micro-scale features under realistic conditions. The performance and applicability of the proposed model is explored for different flow and reaction regimes. References: 1. Matthäi, S.K., et al.: Simulation of solute transport through fractured rock: a higher-order accurate finite-element finite-volume method permitting large time steps. Transport in porous media 83.2 (2010): 289-318. 2. Nick, H.M., et al.: Reactive dispersive contaminant transport in coastal aquifers: Numerical simulation of a reactive Henry problem. Journal of contaminant hydrology 145 (2012), 90-104. 3. Raoof A., et al.: PoreFlow: A Complex pore-network model for simulation of reactive transport in variably saturated porous media, Computers & Geosciences, 61, (2013), 160-174.

  12. Hierarchicality of trade flow networks reveals complexity of products.

    PubMed

    Shi, Peiteng; Zhang, Jiang; Yang, Bo; Luo, Jingfei

    2014-01-01

    With globalization, countries are more connected than before by trading flows, which amounts to at least 36 trillion dollars today. Interestingly, around 30-60 percents of exports consist of intermediate products in global. Therefore, the trade flow network of particular product with high added values can be regarded as value chains. The problem is weather we can discriminate between these products from their unique flow network structure? This paper applies the flow analysis method developed in ecology to 638 trading flow networks of different products. We claim that the allometric scaling exponent η can be used to characterize the degree of hierarchicality of a flow network, i.e., whether the trading products flow on long hierarchical chains. Then, it is pointed out that the flow networks of products with higher added values and complexity like machinary, transport equipment etc. have larger exponents, meaning that their trade flow networks are more hierarchical. As a result, without the extra data like global input-output table, we can identify the product categories with higher complexity, and the relative importance of a country in the global value chain by the trading network solely.

  13. Hierarchicality of Trade Flow Networks Reveals Complexity of Products

    PubMed Central

    Shi, Peiteng; Zhang, Jiang; Yang, Bo; Luo, Jingfei

    2014-01-01

    With globalization, countries are more connected than before by trading flows, which amounts to at least trillion dollars today. Interestingly, around percents of exports consist of intermediate products in global. Therefore, the trade flow network of particular product with high added values can be regarded as value chains. The problem is weather we can discriminate between these products from their unique flow network structure? This paper applies the flow analysis method developed in ecology to 638 trading flow networks of different products. We claim that the allometric scaling exponent can be used to characterize the degree of hierarchicality of a flow network, i.e., whether the trading products flow on long hierarchical chains. Then, it is pointed out that the flow networks of products with higher added values and complexity like machinary, transport equipment etc. have larger exponents, meaning that their trade flow networks are more hierarchical. As a result, without the extra data like global input-output table, we can identify the product categories with higher complexity, and the relative importance of a country in the global value chain by the trading network solely. PMID:24905753

  14. Diffusion in random networks: Asymptotic properties, and numerical and engineering approximations

    NASA Astrophysics Data System (ADS)

    Padrino, Juan C.; Zhang, Duan Z.

    2016-11-01

    The ensemble phase averaging technique is applied to model mass transport by diffusion in random networks. The system consists of an ensemble of random networks, where each network is made of a set of pockets connected by tortuous channels. Inside a channel, we assume that fluid transport is governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pores mass density. The so-called dual porosity model is found to be equivalent to the leading order approximation of the integration kernel when the diffusion time scale inside the channels is small compared to the macroscopic time scale. As a test problem, we consider the one-dimensional mass diffusion in a semi-infinite domain, whose solution is sought numerically. Because of the required time to establish the linear concentration profile inside a channel, for early times the similarity variable is xt- 1 / 4 rather than xt- 1 / 2 as in the traditional theory. This early time sub-diffusive similarity can be explained by random walk theory through the network. In addition, by applying concepts of fractional calculus, we show that, for small time, the governing equation reduces to a fractional diffusion equation with known solution. We recast this solution in terms of special functions easier to compute. Comparison of the numerical and exact solutions shows excellent agreement.

  15. Designing Two-Layer Optical Networks with Statistical Multiplexing

    NASA Astrophysics Data System (ADS)

    Addis, B.; Capone, A.; Carello, G.; Malucelli, F.; Fumagalli, M.; Pedrin Elli, E.

    The possibility of adding multi-protocol label switching (MPLS) support to transport networks is considered an important opportunity by telecom carriers that want to add packet services and applications to their networks. However, the question that arises is whether it is suitable to have MPLS nodes just at the edge of the network to collect packet traffic from users, or also to introduce MPLS facilities on a subset of the core nodes in order to exploit packet switching flexibility and multiplexing, thus providing induction of a better bandwidth allocation. In this article, we address this complex decisional problem with the support of a mathematical programming approach. We consider two-layer networks where MPLS is overlaid on top of transport networks-synchronous digital hierarchy (SDH) or wavelength division multiplexing (WDM)-depending on the required link speed. The discussions' decisions take into account the trade-off between the cost of adding MPLS support in the core nodes and the savings in the link bandwidth allocation due to the statistical multiplexing and the traffic grooming effects induced by MPLS nodes. The traffic matrix specifies for each point-to-point request a pair of values: a mean traffic value and an additional one. Using this traffic model, the effect of statistical multiplexing on a link allows the allocation of a capacity equal to the sum of all the mean values of the traffic demands routed on the link and only the highest additional one. The proposed approach is suitable to solve real instances in reasonable time.

  16. Modeling and query the uncertainty of network constrained moving objects based on RFID data

    NASA Astrophysics Data System (ADS)

    Han, Liang; Xie, Kunqing; Ma, Xiujun; Song, Guojie

    2007-06-01

    The management of network constrained moving objects is more and more practical, especially in intelligent transportation system. In the past, the location information of moving objects on network is collected by GPS, which cost high and has the problem of frequent update and privacy. The RFID (Radio Frequency IDentification) devices are used more and more widely to collect the location information. They are cheaper and have less update. And they interfere in the privacy less. They detect the id of the object and the time when moving object passed by the node of the network. They don't detect the objects' exact movement in side the edge, which lead to a problem of uncertainty. How to modeling and query the uncertainty of the network constrained moving objects based on RFID data becomes a research issue. In this paper, a model is proposed to describe the uncertainty of network constrained moving objects. A two level index is presented to provide efficient access to the network and the data of movement. The processing of imprecise time-slice query and spatio-temporal range query are studied in this paper. The processing includes four steps: spatial filter, spatial refinement, temporal filter and probability calculation. Finally, some experiments are done based on the simulated data. In the experiments the performance of the index is studied. The precision and recall of the result set are defined. And how the query arguments affect the precision and recall of the result set is also discussed.

  17. P-glycoprotein (ABCB1) inhibited network of mitochondrion transport along microtubule and BMP signal-induced cell shape in chimpanzee left cerebrum by systems-theoretical analysis.

    PubMed

    Lin, Hong; Wang, Lin; Jiang, Minghu; Huang, Juxiang; Qi, Lianxiu

    2012-10-01

    We constructed the significant low-expression P-glycoprotein (ABCB1) inhibited transport and signal network in chimpanzee compared with high-expression (fold change ≥2) the human left cerebrum in GEO data set, by using integration of gene regulatory activated and inhibited network inference method with gene ontology (GO) analysis. Our result showed that ABCB1 transport and signal upstream network RAB2A inhibited ABCB1, and downstream ABCB1-inhibited SMAD1_2, NCK2, SLC25A46, GDF10, RASGRP1, EGFR, LRPPRC, RASSF2, RASA4, CA2, CBLB, UBR5, SLC25A16, ITGB3BP, DDIT4, PDPN, RAB2A in chimpanzee left cerebrum. We obtained that the different biological processes of ABCB1 inhibited transport and signal network repressed carbon dioxide transport, ER to Golgi vesicle-mediated transport, folic acid transport, mitochondrion transport along microtubule, water transport, BMP signaling pathway, Ras protein signal transduction, transforming growth factor beta receptor signaling pathway in chimpanzee compared with the inhibited network of the human left cerebrum, as a result of inducing inhibition of mitochondrion transport along microtubule and BMP signal-induced cell shape in chimpanzee left cerebrum. Our hypothesis was verified by the same and different biological processes of ABCB1 inhibited transport and signal network of chimpanzee compared with the corresponding activated network of chimpanzee and the human left cerebrum, respectively. Copyright © 2012 John Wiley & Sons, Ltd.

  18. An Enhanced Privacy-Preserving Authentication Scheme for Vehicle Sensor Networks.

    PubMed

    Zhou, Yousheng; Zhao, Xiaofeng; Jiang, Yi; Shang, Fengjun; Deng, Shaojiang; Wang, Xiaojun

    2017-12-08

    Vehicle sensor networks (VSNs) are ushering in a promising future by enabling more intelligent transportation systems and providing a more efficient driving experience. However, because of their inherent openness, VSNs are subject to a large number of potential security threats. Although various authentication schemes have been proposed for addressing security problems, they are not suitable for VSN applications because of their high computation and communication costs. Chuang and Lee have developed a trust-extended authentication mechanism (TEAM) for vehicle-to-vehicle communication using a transitive trust relationship, which they claim can resist various attacks. However, it fails to counter internal attacks because of the utilization of a shared secret key. In this paper, to eliminate the vulnerability of TEAM, an enhanced privacy-preserving authentication scheme for VSNs is constructed. The security of our proposed scheme is proven under the random oracle model based on the assumption of the computational Diffie-Hellman problem.

  19. An Enhanced Privacy-Preserving Authentication Scheme for Vehicle Sensor Networks

    PubMed Central

    Zhou, Yousheng; Zhao, Xiaofeng; Jiang, Yi; Shang, Fengjun; Deng, Shaojiang; Wang, Xiaojun

    2017-01-01

    Vehicle sensor networks (VSNs) are ushering in a promising future by enabling more intelligent transportation systems and providing a more efficient driving experience. However, because of their inherent openness, VSNs are subject to a large number of potential security threats. Although various authentication schemes have been proposed for addressing security problems, they are not suitable for VSN applications because of their high computation and communication costs. Chuang and Lee have developed a trust-extended authentication mechanism (TEAM) for vehicle-to-vehicle communication using a transitive trust relationship, which they claim can resist various attacks. However, it fails to counter internal attacks because of the utilization of a shared secret key. In this paper, to eliminate the vulnerability of TEAM, an enhanced privacy-preserving authentication scheme for VSNs is constructed. The security of our proposed scheme is proven under the random oracle model based on the assumption of the computational Diffie–Hellman problem. PMID:29292792

  20. Household food waste collection: Building service networks through neighborhood expansion.

    PubMed

    Armington, William R; Chen, Roger B

    2018-04-17

    In this paper we develop a residential food waste collection analysis and modeling framework that captures transportation costs faced by service providers in their initial stages of service provision. With this framework and model, we gain insights into network transportation costs and investigate possible service expansion scenarios faced by these organizations. We solve a vehicle routing problem (VRP) formulated for the residential neighborhood context using a heuristic approach developed. The scenarios considered follow a narrative where service providers start with an initial neighborhood or community and expands to incorporate other communities and their households. The results indicate that increasing household participation, decreases the travel time and cost per household, up to a critical threshold, beyond which we see marginal time and cost improvements. Additionally, the results indicate different outcomes in expansion scenarios depending on the household density of incorporated neighborhoods. As household participation and density increases, the travel time per household in the network decreases. However, at approximately 10-20 households per km 2 , the decrease in travel time per household is marginal, suggesting a lowerbound household density threshold. Finally, we show in food waste collection, networks share common scaling effects with respect to travel time and costs, regardless of the number of nodes and links. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Structure and formation of ant transportation networks

    PubMed Central

    Latty, Tanya; Ramsch, Kai; Ito, Kentaro; Nakagaki, Toshiyuki; Sumpter, David J. T.; Middendorf, Martin; Beekman, Madeleine

    2011-01-01

    Many biological systems use extensive networks for the transport of resources and information. Ants are no exception. How do biological systems achieve efficient transportation networks in the absence of centralized control and without global knowledge of the environment? Here, we address this question by studying the formation and properties of inter-nest transportation networks in the Argentine ant (Linepithema humile). We find that the formation of inter-nest networks depends on the number of ants involved in the construction process. When the number of ants is sufficient and networks do form, they tend to have short total length but a low level of robustness. These networks are topologically similar to either minimum spanning trees or Steiner networks. The process of network formation involves an initial construction of multiple links followed by a pruning process that reduces the number of trails. Our study thus illuminates the conditions under and the process by which minimal biological transport networks can be constructed. PMID:21288958

  2. A Comparison of Geographic Information Systems, Complex Networks, and Other Models for Analyzing Transportation Network Topologies

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia (Technical Monitor); Kuby, Michael; Tierney, Sean; Roberts, Tyler; Upchurch, Christopher

    2005-01-01

    This report reviews six classes of models that are used for studying transportation network topologies. The report is motivated by two main questions. First, what can the "new science" of complex networks (scale-free, small-world networks) contribute to our understanding of transport network structure, compared to more traditional methods? Second, how can geographic information systems (GIS) contribute to studying transport networks? The report defines terms that can be used to classify different kinds of models by their function, composition, mechanism, spatial and temporal dimensions, certainty, linearity, and resolution. Six broad classes of models for analyzing transport network topologies are then explored: GIS; static graph theory; complex networks; mathematical programming; simulation; and agent-based modeling. Each class of models is defined and classified according to the attributes introduced earlier. The paper identifies some typical types of research questions about network structure that have been addressed by each class of model in the literature.

  3. TCP Packet Trace Analysis. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Shepard, Timothy J.

    1991-01-01

    Examination of a trace of packets collected from the network is often the only method available for diagnosing protocol performance problems in computer networks. This thesis explores the use of packet traces to diagnose performance problems of the transport protocol TCP. Unfortunately, manual examination of these traces can be so tedious that effective analysis is not possible. The primary contribution of this thesis is a graphical method of displaying the packet trace which greatly reduce, the tediousness of examining a packet trace. The graphical method is demonstrated by the examination of some packet traces of typical TCP connections. The performance of two different implementations of TCP sending data across a particular network path is compared. Traces many thousands of packets long are used to demonstrate how effectively the graphical method simplifies examination of long complicated traces. In the comparison of the two TCP implementations, the burstiness of the TCP transmitter appeared to be related to the achieved throughput. A method of quantifying this burstiness is presented and its possible relevance to understanding the performance of TCP is discussed.

  4. Diffusive flux in a model of stochastically gated oxygen transport in insect respiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    Oxygen delivery to insect tissues is controlled by transport through a branched tubular network that is connected to the atmosphere by valve-like gates, known as spiracles. In certain physiological regimes, the spiracles appear to be randomly switching between open and closed states. Quantitative analysis of this regime leads a reaction-diffusion problem with stochastically switching boundary condition. We derive an expression for the diffusive flux at long times in this problem. Our approach starts with the derivation of the passage probability for a single particle that diffuses between a stochastically gated boundary, which models the opening and closing spiracle, and themore » perfectly absorbing boundary, which models oxygen absorption by the tissue. This passage probability is then used to derive an expression giving the diffusive flux as a function of the geometric parameters of the tube and characteristic time scales of diffusion and gate dynamics.« less

  5. Diffusive flux in a model of stochastically gated oxygen transport in insect respiration.

    PubMed

    Berezhkovskii, Alexander M; Shvartsman, Stanislav Y

    2016-05-28

    Oxygen delivery to insect tissues is controlled by transport through a branched tubular network that is connected to the atmosphere by valve-like gates, known as spiracles. In certain physiological regimes, the spiracles appear to be randomly switching between open and closed states. Quantitative analysis of this regime leads a reaction-diffusion problem with stochastically switching boundary condition. We derive an expression for the diffusive flux at long times in this problem. Our approach starts with the derivation of the passage probability for a single particle that diffuses between a stochastically gated boundary, which models the opening and closing spiracle, and the perfectly absorbing boundary, which models oxygen absorption by the tissue. This passage probability is then used to derive an expression giving the diffusive flux as a function of the geometric parameters of the tube and characteristic time scales of diffusion and gate dynamics.

  6. Meteorology and energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    In the consideration of the meteorological aspects of energy problems, the latter is divided into three main groups: energy production, energy transport and exploration, and new energy resources. Increased energy production will have an impact on the environment. Although at present there is insufficient information for precise forecasts, meteorologists and hydrologists will be able to make reasonable assumptions for the future. Human use of energy is strongly influenced by variations of weather. Such systems as electric power transmission networks, shipping of hydrocarbons by sea, and pipelines for the transportation of large quantities of oil and gas, are all particularly sensitivemore » to weather and climate. The meteorologist provides basic data on weather and climate to facilitate energy exploration. The new energy resources addressed in this article are solar, wind, geothermal, and nuclear. The World Meteorological Organization's Executive Committee established a set of priorities in dealing with energy problems. This paper also briefly examines the burden imposed on global energy resources.« less

  7. A New View of Dynamic River Networks

    NASA Astrophysics Data System (ADS)

    Perron, J. T.; Willett, S.; McCoy, S. W.

    2014-12-01

    River networks are the main conduits that transport water, sediment, and nutrients from continental interiors to the oceans. They also shape topography as they erode through bedrock. These hierarchical networks are dynamic: there are numerous examples of apparent changes in the topology of river networks through geologic time. But these examples are geographically scattered, the evidence can be ambiguous, and the mechanisms that drive changes in river networks are poorly understood. This makes it difficult to assess how pervasive river network reorganization is, how it operates, and how the interlocking river basins that compose a given landscape are changing through time. Recent progress has improved the situation. We describe three developments that have dramatically advanced our understanding of dynamic river networks. First, new topographic, geophysical and geochronological measurement techniques are revealing the rate and extent of river network adjustment. Second, laboratory experiments and computational models are clarifying how river networks respond to tectonic and climatic perturbations at scales ranging from local to continental. Third, spatial analysis of genetic data is exposing links between landscape evolution, biological evolution, and the development of biodiversity. We highlight key problems that remain unsolved, and suggest ways to build on recent advances that will bring dynamic river networks into even sharper focus.

  8. The Ordered Clustered Travelling Salesman Problem: A Hybrid Genetic Algorithm

    PubMed Central

    Ahmed, Zakir Hussain

    2014-01-01

    The ordered clustered travelling salesman problem is a variation of the usual travelling salesman problem in which a set of vertices (except the starting vertex) of the network is divided into some prespecified clusters. The objective is to find the least cost Hamiltonian tour in which vertices of any cluster are visited contiguously and the clusters are visited in the prespecified order. The problem is NP-hard, and it arises in practical transportation and sequencing problems. This paper develops a hybrid genetic algorithm using sequential constructive crossover, 2-opt search, and a local search for obtaining heuristic solution to the problem. The efficiency of the algorithm has been examined against two existing algorithms for some asymmetric and symmetric TSPLIB instances of various sizes. The computational results show that the proposed algorithm is very effective in terms of solution quality and computational time. Finally, we present solution to some more symmetric TSPLIB instances. PMID:24701148

  9. Implementation of the Algorithm for Congestion control in the Dynamic Circuit Network (DCN)

    NASA Astrophysics Data System (ADS)

    Nalamwar, H. S.; Ivanov, M. A.; Buddhawar, G. U.

    2017-01-01

    Transport Control Protocol (TCP) incast congestion happens when a number of senders work in parallel with the same server where the high bandwidth and low latency network problem occurs. For many data center network applications such as a search engine, heavy traffic is present on such a server. Incast congestion degrades the entire performance as packets are lost at a server side due to buffer overflow, and as a result, the response time becomes longer. In this work, we focus on TCP throughput, round-trip time (RTT), receive window and retransmission. Our method is based on the proactive adjust of the TCP receive window before the packet loss occurs. We aim to avoid the wastage of the bandwidth by adjusting its size as per the number of packets. To avoid the packet loss, the ICTCP algorithm has been implemented in the data center network (ToR).

  10. Exchanging transportation networks between two GISs via the SDTS

    DOT National Transportation Integrated Search

    1997-05-01

    Performing meaningful network analyses is greatly dependent upon accurate and : complete transportation network models, which are digitized into a Geographic : Information System (GIS) or, more often, imported from another GIS. : Transportation netwo...

  11. Analysis of Station Quality Issues from EarthScope's Transportable Array

    NASA Astrophysics Data System (ADS)

    Pfeifer, C.; Barstow, N.; Busby, R.; Hafner, K.

    2008-12-01

    160 of the first 400 Earthscope USARRY transportable array (TA) stations have completed their first two-year deployment and are being moved to their next locations. Over the past 4 years the majority of stations have run with few interruptions in the transfer of real time data to the Array Network Facility (ANF) at the Univ of CA San Diego and near real time data to the IRIS Data Management System (DMS). The combination of telemetered data and dedicated people reviewing the waveforms and state of health data have revealed several conditions that can affect the data quality or cause loss of data. The data problems fall into three broad categories; station power, equipment malfunction, and communication failures. Station power issues have been implicated in several types of noise seen in the seismic data (as well as causing station failures and resultant data gaps). The most common type of equipment problem that has been found to degrade data quality is caused by sensor problems, and has affected all 3 types of sensors used in the TA to varying degrees. While communication problems can cause real time data loss, they do not cause a degradation of the quality of the data, and any gaps in the real time data due solely to communications problems are filled in later with the continuous data recorded to disk at each TA station. Over the past 4 years the TA team has recognized a number of noise sources and have made several design changes to minimize the effects on data quality. Design/procedural changes include: stopping water incursion into the stations, power conditioning, changing mass re-center voltage thresholds. Figures that demonstrate examples are provided. Changes have created better data quality and improved the station performance. Vigilance and deployment of service teams to reestablish communications, replace noisy sensors, and troubleshoot problems is also key to maintaining the high-quality TA network.

  12. Infant Transport Monitoring

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The photo sequence illustrates the movement of an ill infant to a special care hospital by means of a new Pediatric Monitoring and Transport System, in which NASA technology and technical assistance are being applied to an urgent medical problem. Development of the system is a collaborative effort involving several organizations, principally, NASA Ames Research Center and Children's Hospital Medical Center, Oakland, California. Key to the system's efficacy is a custom-designed ambulance-to-hospital and hospital-to-hospital communications network, including two-way voice capability and space-derived biotelemetry; it allows a specialist at the destination hospital to monitor continuously the vital signs of the patient during transit.

  13. Upscaling of nanoparticle transport in porous media under unfavorable conditions: Pore scale to Darcy scale

    NASA Astrophysics Data System (ADS)

    Seetha, N.; Raoof, Amir; Mohan Kumar, M. S.; Majid Hassanizadeh, S.

    2017-05-01

    Transport and deposition of nanoparticles in porous media is a multi-scale problem governed by several pore-scale processes, and hence, it is critical to link the processes at pore scale to the Darcy-scale behavior. In this study, using pore network modeling, we develop correlation equations for deposition rate coefficients for nanoparticle transport under unfavorable conditions at the Darcy scale based on pore-scale mechanisms. The upscaling tool is a multi-directional pore-network model consisting of an interconnected network of pores with variable connectivities. Correlation equations describing the pore-averaged deposition rate coefficients under unfavorable conditions in a cylindrical pore, developed in our earlier studies, are employed for each pore element. Pore-network simulations are performed for a wide range of parameter values to obtain the breakthrough curves of nanoparticle concentration. The latter is fitted with macroscopic 1-D advection-dispersion equation with a two-site linear reversible deposition accounting for both equilibrium and kinetic sorption. This leads to the estimation of three Darcy-scale deposition coefficients: distribution coefficient, kinetic rate constant, and the fraction of equilibrium sites. The correlation equations for the Darcy-scale deposition coefficients, under unfavorable conditions, are provided as a function of measurable Darcy-scale parameters, including: porosity, mean pore throat radius, mean pore water velocity, nanoparticle radius, ionic strength, dielectric constant, viscosity, temperature, and surface potentials of the particle and grain surfaces. The correlation equations are found to be consistent with the available experimental results, and in qualitative agreement with Colloid Filtration Theory for all parameters, except for the mean pore water velocity and nanoparticle radius.

  14. Risk Evaluation of Railway Coal Transportation Network Based on Multi Level Grey Evaluation Model

    NASA Astrophysics Data System (ADS)

    Niu, Wei; Wang, Xifu

    2018-01-01

    The railway transport mode is currently the most important way of coal transportation, and now China’s railway coal transportation network has become increasingly perfect, but there is still insufficient capacity, some lines close to saturation and other issues. In this paper, the theory and method of risk assessment, analytic hierarchy process and multi-level gray evaluation model are applied to the risk evaluation of coal railway transportation network in China. Based on the example analysis of Shanxi railway coal transportation network, to improve the internal structure and the competitiveness of the market.

  15. Noise-assisted energy transport in electrical oscillator networks with off-diagonal dynamical disorder.

    PubMed

    León-Montiel, Roberto de J; Quiroz-Juárez, Mario A; Quintero-Torres, Rafael; Domínguez-Juárez, Jorge L; Moya-Cessa, Héctor M; Torres, Juan P; Aragón, José L

    2015-11-27

    Noise is generally thought as detrimental for energy transport in coupled oscillator networks. However, it has been shown that for certain coherently evolving systems, the presence of noise can enhance, somehow unexpectedly, their transport efficiency; a phenomenon called environment-assisted quantum transport (ENAQT) or dephasing-assisted transport. Here, we report on the experimental observation of such effect in a network of coupled electrical oscillators. We demonstrate that by introducing stochastic fluctuations in one of the couplings of the network, a relative enhancement in the energy transport efficiency of 22.5 ± 3.6% can be observed.

  16. Many-objective Groundwater Monitoring Network Design Using Bias-Aware Ensemble Kalman Filtering and Evolutionary Optimization

    NASA Astrophysics Data System (ADS)

    Kollat, J. B.; Reed, P. M.

    2009-12-01

    This study contributes the ASSIST (Adaptive Strategies for Sampling in Space and Time) framework for improving long-term groundwater monitoring decisions across space and time while accounting for the influences of systematic model errors (or predictive bias). The ASSIST framework combines contaminant flow-and-transport modeling, bias-aware ensemble Kalman filtering (EnKF) and many-objective evolutionary optimization. Our goal in this work is to provide decision makers with a fuller understanding of the information tradeoffs they must confront when performing long-term groundwater monitoring network design. Our many-objective analysis considers up to 6 design objectives simultaneously and consequently synthesizes prior monitoring network design methodologies into a single, flexible framework. This study demonstrates the ASSIST framework using a tracer study conducted within a physical aquifer transport experimental tank located at the University of Vermont. The tank tracer experiment was extensively sampled to provide high resolution estimates of tracer plume behavior. The simulation component of the ASSIST framework consists of stochastic ensemble flow-and-transport predictions using ParFlow coupled with the Lagrangian SLIM transport model. The ParFlow and SLIM ensemble predictions are conditioned with tracer observations using a bias-aware EnKF. The EnKF allows decision makers to enhance plume transport predictions in space and time in the presence of uncertain and biased model predictions by conditioning them on uncertain measurement data. In this initial demonstration, the position and frequency of sampling were optimized to: (i) minimize monitoring cost, (ii) maximize information provided to the EnKF, (iii) minimize failure to detect the tracer, (iv) maximize the detection of tracer flux, (v) minimize error in quantifying tracer mass, and (vi) minimize error in quantifying the moment of the tracer plume. The results demonstrate that the many-objective problem formulation provides a tremendous amount of information for decision makers. Specifically our many-objective analysis highlights the limitations and potentially negative design consequences of traditional single and two-objective problem formulations. These consequences become apparent through visual exploration of high-dimensional tradeoffs and the identification of regions with interesting compromise solutions. The prediction characteristics of these compromise designs are explored in detail, as well as their implications for subsequent design decisions in both space and time.

  17. Incorporating location, routing, and inventory decisions in a bi-objective supply chain design problem with risk-pooling

    NASA Astrophysics Data System (ADS)

    Tavakkoli-Moghaddam, Reza; Forouzanfar, Fateme; Ebrahimnejad, Sadoullah

    2013-07-01

    This paper considers a single-sourcing network design problem for a three-level supply chain. For the first time, a novel mathematical model is presented considering risk-pooling, the inventory existence at distribution centers (DCs) under demand uncertainty, the existence of several alternatives to transport the product between facilities, and routing of vehicles from distribution centers to customer in a stochastic supply chain system, simultaneously. This problem is formulated as a bi-objective stochastic mixed-integer nonlinear programming model. The aim of this model is to determine the number of located distribution centers, their locations, and capacity levels, and allocating customers to distribution centers and distribution centers to suppliers. It also determines the inventory control decisions on the amount of ordered products and the amount of safety stocks at each opened DC, selecting a type of vehicle for transportation. Moreover, it determines routing decisions, such as determination of vehicles' routes starting from an opened distribution center to serve its allocated customers and returning to that distribution center. All are done in a way that the total system cost and the total transportation time are minimized. The Lingo software is used to solve the presented model. The computational results are illustrated in this paper.

  18. Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks

    PubMed Central

    Yu, Haiyang; Wu, Zhihai; Wang, Shuqin; Wang, Yunpeng; Ma, Xiaolei

    2017-01-01

    Predicting large-scale transportation network traffic has become an important and challenging topic in recent decades. Inspired by the domain knowledge of motion prediction, in which the future motion of an object can be predicted based on previous scenes, we propose a network grid representation method that can retain the fine-scale structure of a transportation network. Network-wide traffic speeds are converted into a series of static images and input into a novel deep architecture, namely, spatiotemporal recurrent convolutional networks (SRCNs), for traffic forecasting. The proposed SRCNs inherit the advantages of deep convolutional neural networks (DCNNs) and long short-term memory (LSTM) neural networks. The spatial dependencies of network-wide traffic can be captured by DCNNs, and the temporal dynamics can be learned by LSTMs. An experiment on a Beijing transportation network with 278 links demonstrates that SRCNs outperform other deep learning-based algorithms in both short-term and long-term traffic prediction. PMID:28672867

  19. Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks.

    PubMed

    Yu, Haiyang; Wu, Zhihai; Wang, Shuqin; Wang, Yunpeng; Ma, Xiaolei

    2017-06-26

    Predicting large-scale transportation network traffic has become an important and challenging topic in recent decades. Inspired by the domain knowledge of motion prediction, in which the future motion of an object can be predicted based on previous scenes, we propose a network grid representation method that can retain the fine-scale structure of a transportation network. Network-wide traffic speeds are converted into a series of static images and input into a novel deep architecture, namely, spatiotemporal recurrent convolutional networks (SRCNs), for traffic forecasting. The proposed SRCNs inherit the advantages of deep convolutional neural networks (DCNNs) and long short-term memory (LSTM) neural networks. The spatial dependencies of network-wide traffic can be captured by DCNNs, and the temporal dynamics can be learned by LSTMs. An experiment on a Beijing transportation network with 278 links demonstrates that SRCNs outperform other deep learning-based algorithms in both short-term and long-term traffic prediction.

  20. Stochastic user equilibrium model with a tradable credit scheme and application in maximizing network reserve capacity

    NASA Astrophysics Data System (ADS)

    Han, Fei; Cheng, Lin

    2017-04-01

    The tradable credit scheme (TCS) outperforms congestion pricing in terms of social equity and revenue neutrality, apart from the same perfect performance on congestion mitigation. This article investigates the effectiveness and efficiency of TCS on enhancing transportation network capacity in a stochastic user equilibrium (SUE) modelling framework. First, the SUE and credit market equilibrium conditions are presented; then an equivalent general SUE model with TCS is established by virtue of two constructed functions, which can be further simplified under a specific probability distribution. To enhance the network capacity by utilizing TCS, a bi-level mathematical programming model is established for the optimal TCS design problem, with the upper level optimization objective maximizing network reserve capacity and lower level being the proposed SUE model. The heuristic sensitivity analysis-based algorithm is developed to solve the bi-level model. Three numerical examples are provided to illustrate the improvement effect of TCS on the network in different scenarios.

  1. A modified NSGA-II solution for a new multi-objective hub maximal covering problem under uncertain shipments

    NASA Astrophysics Data System (ADS)

    Ebrahimi Zade, Amir; Sadegheih, Ahmad; Lotfi, Mohammad Mehdi

    2014-07-01

    Hubs are centers for collection, rearrangement, and redistribution of commodities in transportation networks. In this paper, non-linear multi-objective formulations for single and multiple allocation hub maximal covering problems as well as the linearized versions are proposed. The formulations substantially mitigate complexity of the existing models due to the fewer number of constraints and variables. Also, uncertain shipments are studied in the context of hub maximal covering problems. In many real-world applications, any link on the path from origin to destination may fail to work due to disruption. Therefore, in the proposed bi-objective model, maximizing safety of the weakest path in the network is considered as the second objective together with the traditional maximum coverage goal. Furthermore, to solve the bi-objective model, a modified version of NSGA-II with a new dynamic immigration operator is developed in which the accurate number of immigrants depends on the results of the other two common NSGA-II operators, i.e. mutation and crossover. Besides validating proposed models, computational results confirm a better performance of modified NSGA-II versus traditional one.

  2. Noise-assisted energy transport in electrical oscillator networks with off-diagonal dynamical disorder

    PubMed Central

    León-Montiel, Roberto de J.; Quiroz-Juárez, Mario A.; Quintero-Torres, Rafael; Domínguez-Juárez, Jorge L.; Moya-Cessa, Héctor M.; Torres, Juan P.; Aragón, José L.

    2015-01-01

    Noise is generally thought as detrimental for energy transport in coupled oscillator networks. However, it has been shown that for certain coherently evolving systems, the presence of noise can enhance, somehow unexpectedly, their transport efficiency; a phenomenon called environment-assisted quantum transport (ENAQT) or dephasing-assisted transport. Here, we report on the experimental observation of such effect in a network of coupled electrical oscillators. We demonstrate that by introducing stochastic fluctuations in one of the couplings of the network, a relative enhancement in the energy transport efficiency of 22.5 ± 3.6% can be observed. PMID:26610864

  3. A Green's function method for simulation of time-dependent solute transport and reaction in realistic microvascular geometries

    PubMed Central

    Secomb, Timothy W.

    2016-01-01

    A novel theoretical method is presented for simulating the spatially resolved convective and diffusive transport of reacting solutes between microvascular networks and the surrounding tissues. The method allows for efficient computational solution of problems involving convection and non-linear binding of solutes in blood flowing through microvascular networks with realistic 3D geometries, coupled with transvascular exchange and diffusion and reaction in the surrounding tissue space. The method is based on a Green's function approach, in which the solute concentration distribution in the tissue is expressed as a sum of fields generated by time-varying distributions of discrete sources and sinks. As an example of the application of the method, the washout of an inert diffusible tracer substance from a tissue region perfused by a network of microvessels is simulated, showing its dependence on the solute's transvascular permeability and tissue diffusivity. Exponential decay of the washout concentration is predicted, with rate constants that are about 10–30% lower than the rate constants for a tissue cylinder model with the same vessel length, vessel surface area and blood flow rate per tissue volume. PMID:26443811

  4. Integrating stochastic time-dependent travel speed in solution methods for the dynamic dial-a-ride problem

    PubMed Central

    Schilde, M.; Doerner, K.F.; Hartl, R.F.

    2014-01-01

    In urban areas, logistic transportation operations often run into problems because travel speeds change, depending on the current traffic situation. If not accounted for, time-dependent and stochastic travel speeds frequently lead to missed time windows and thus poorer service. Especially in the case of passenger transportation, it often leads to excessive passenger ride times as well. Therefore, time-dependent and stochastic influences on travel speeds are relevant for finding feasible and reliable solutions. This study considers the effect of exploiting statistical information available about historical accidents, using stochastic solution approaches for the dynamic dial-a-ride problem (dynamic DARP). The authors propose two pairs of metaheuristic solution approaches, each consisting of a deterministic method (average time-dependent travel speeds for planning) and its corresponding stochastic version (exploiting stochastic information while planning). The results, using test instances with up to 762 requests based on a real-world road network, show that in certain conditions, exploiting stochastic information about travel speeds leads to significant improvements over deterministic approaches. PMID:25844013

  5. Adapting End Host Congestion Control for Mobility

    NASA Technical Reports Server (NTRS)

    Eddy, Wesley M.; Swami, Yogesh P.

    2005-01-01

    Network layer mobility allows transport protocols to maintain connection state, despite changes in a node's physical location and point of network connectivity. However, some congestion-controlled transport protocols are not designed to deal with these rapid and potentially significant path changes. In this paper we demonstrate several distinct problems that mobility-induced path changes can create for TCP performance. Our premise is that mobility events indicate path changes that require re-initialization of congestion control state at both connection end points. We present the application of this idea to TCP in the form of a simple solution (the Lightweight Mobility Detection and Response algorithm, that has been proposed in the IETF), and examine its effectiveness. In general, we find that the deficiencies presented are both relatively easily and painlessly fixed using this solution. We also find that this solution has the counter-intuitive property of being both more friendly to competing traffic, and simultaneously more aggressive in utilizing newly available capacity than unmodified TCP.

  6. Optimization problems in natural gas transportation systems. A state-of-the-art review

    DOE PAGES

    Ríos-Mercado, Roger Z.; Borraz-Sánchez, Conrado

    2015-03-24

    Our paper provides a review on the most relevant research works conducted to solve natural gas transportation problems via pipeline systems. The literature reveals three major groups of gas pipeline systems, namely gathering, transmission, and distribution systems. In this work, we aim at presenting a detailed discussion of the efforts made in optimizing natural gas transmission lines.There is certainly a vast amount of research done over the past few years on many decision-making problems in the natural gas industry and, specifically, in pipeline network optimization. In this work, we present a state-of-the-art survey focusing on specific categories that include short-termmore » basis storage (line-packing problems), gas quality satisfaction (pooling problems), and compressor station modeling (fuel cost minimization problems). We also discuss both steady-state and transient optimization models highlighting the modeling aspects and the most relevant solution approaches known to date. Although the literature on natural gas transmission system problems is quite extensive, this is, to the best of our knowledge, the first comprehensive review or survey covering this specific research area on natural gas transmission from an operations research perspective. Furthermore, this paper includes a discussion of the most important and promising research areas in this field. Hence, our paper can serve as a useful tool to gain insight into the evolution of the many real-life applications and most recent advances in solution methodologies arising from this exciting and challenging research area of decision-making problems.« less

  7. Optimization problems in natural gas transportation systems. A state-of-the-art review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ríos-Mercado, Roger Z.; Borraz-Sánchez, Conrado

    Our paper provides a review on the most relevant research works conducted to solve natural gas transportation problems via pipeline systems. The literature reveals three major groups of gas pipeline systems, namely gathering, transmission, and distribution systems. In this work, we aim at presenting a detailed discussion of the efforts made in optimizing natural gas transmission lines.There is certainly a vast amount of research done over the past few years on many decision-making problems in the natural gas industry and, specifically, in pipeline network optimization. In this work, we present a state-of-the-art survey focusing on specific categories that include short-termmore » basis storage (line-packing problems), gas quality satisfaction (pooling problems), and compressor station modeling (fuel cost minimization problems). We also discuss both steady-state and transient optimization models highlighting the modeling aspects and the most relevant solution approaches known to date. Although the literature on natural gas transmission system problems is quite extensive, this is, to the best of our knowledge, the first comprehensive review or survey covering this specific research area on natural gas transmission from an operations research perspective. Furthermore, this paper includes a discussion of the most important and promising research areas in this field. Hence, our paper can serve as a useful tool to gain insight into the evolution of the many real-life applications and most recent advances in solution methodologies arising from this exciting and challenging research area of decision-making problems.« less

  8. A systems approach to energy management and policy in commuter rail transportation

    NASA Astrophysics Data System (ADS)

    Owan, Ransome Egimine

    1998-12-01

    This research is motivated by a recognition of energy as a significant part of the transportation problem. Energy is a long-term variable cost that is controllable. The problem is comprised of: the limited supply of energy, chronic energy deficits and oil imports, energy cost, poor fuel substitution, and the undesirable environmental effects of transportation fuels (Green House Gases and global warming). Mass transit systems are energy intensive networks and energy is a direct constraint to the supply of affordable transportation. Commuter railroads are also relatively unresponsive to energy price changes due to travel demand patterns, firm power needs and slow adoption of efficient train technologies. However, the long term energy demand is lacking in existing transportation planning philosophy. In spite of the apparent oversight, energy is as important as urban land use, funding and congestion, all of which merit explicit treatment. This research was conducted in the form of a case study of New Jersey Transit in an attempt to broaden the understanding of the long-term effects of energy in a transportation environment. The systems approach method that is driven by heuristic models was utilized to investigate energy usage, transit peer group efficiency, energy management regimes, and the tradeoffs between energy and transportation, a seldom discussed topic in the field. Implicit in systems thinking is the methodological hunt for solutions. The energy problem was divided into thinking is the methodological hunt for solutions. The energy problem was divided into smaller parts that in turn were simpler to solve. The research presented five heuristic models: Transit Energy Aggregation Model, Structural Energy Consumption Model, Traction Power Consumption Model, Conjunctive Demand Model, and a Managerial Action Module. A putative relationship was established between traction energy, car-miles, seasonal and ambient factors, without inference of direct causality. The co-mingling of traction power with energy for rail yard and switch heating skewed certain energy intensities. It was concluded that managerial actions such as: demand-side energy conservation strategies, utility rebates, rate case intervention and open market purchases of deregulated power can lower transit operating cost.

  9. Fuzzy-information-based robustness of interconnected networks against attacks and failures

    NASA Astrophysics Data System (ADS)

    Zhu, Qian; Zhu, Zhiliang; Wang, Yifan; Yu, Hai

    2016-09-01

    Cascading failure is fatal in applications and its investigation is essential and therefore became a focal topic in the field of complex networks in the last decade. In this paper, a cascading failure model is established for interconnected networks and the associated data-packet transport problem is discussed. A distinguished feature of the new model is its utilization of fuzzy information in resisting uncertain failures and malicious attacks. We numerically find that the giant component of the network after failures increases with tolerance parameter for any coupling preference and attacking ambiguity. Moreover, considering the effect of the coupling probability on the robustness of the networks, we find that the robustness of the assortative coupling and random coupling of the network model increases with the coupling probability. However, for disassortative coupling, there exists a critical phenomenon for coupling probability. In addition, a critical value that attacking information accuracy affects the network robustness is observed. Finally, as a practical example, the interconnected AS-level Internet in South Korea and Japan is analyzed. The actual data validates the theoretical model and analytic results. This paper thus provides some guidelines for preventing cascading failures in the design of architecture and optimization of real-world interconnected networks.

  10. Selective randomized load balancing and mesh networks with changing demands

    NASA Astrophysics Data System (ADS)

    Shepherd, F. B.; Winzer, P. J.

    2006-05-01

    We consider the problem of building cost-effective networks that are robust to dynamic changes in demand patterns. We compare several architectures using demand-oblivious routing strategies. Traditional approaches include single-hop architectures based on a (static or dynamic) circuit-switched core infrastructure and multihop (packet-switched) architectures based on point-to-point circuits in the core. To address demand uncertainty, we seek minimum cost networks that can carry the class of hose demand matrices. Apart from shortest-path routing, Valiant's randomized load balancing (RLB), and virtual private network (VPN) tree routing, we propose a third, highly attractive approach: selective randomized load balancing (SRLB). This is a blend of dual-hop hub routing and randomized load balancing that combines the advantages of both architectures in terms of network cost, delay, and delay jitter. In particular, we give empirical analyses for the cost (in terms of transport and switching equipment) for the discussed architectures, based on three representative carrier networks. Of these three networks, SRLB maintains the resilience properties of RLB while achieving significant cost reduction over all other architectures, including RLB and multihop Internet protocol/multiprotocol label switching (IP/MPLS) networks using VPN-tree routing.

  11. Closed loop supply chain network design with fuzzy tactical decisions

    NASA Astrophysics Data System (ADS)

    Sherafati, Mahtab; Bashiri, Mahdi

    2016-09-01

    One of the most strategic and the most significant decisions in supply chain management is reconfiguration of the structure and design of the supply chain network. In this paper, a closed loop supply chain network design model is presented to select the best tactical and strategic decision levels simultaneously considering the appropriate transportation mode in activated links. The strategic decisions are made for a long term; thus, it is more satisfactory and more appropriate when the decision variables are considered uncertain and fuzzy, because it is more flexible and near to the real world. This paper is the first research which considers fuzzy decision variables in the supply chain network design model. Moreover, in this study a new fuzzy optimization approach is proposed to solve a supply chain network design problem with fuzzy tactical decision variables. Finally, the proposed approach and model are verified using several numerical examples. The comparison of the results with other existing approaches confirms efficiency of the proposed approach. Moreover the results confirms that by considering the vagueness of tactical decisions some properties of the supply chain network will be improved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreedharan, Priya

    The sudden release of toxic contaminants that reach indoor spaces can be hazardousto building occupants. To respond effectively, the contaminant release must be quicklydetected and characterized to determine unobserved parameters, such as release locationand strength. Characterizing the release requires solving an inverse problem. Designinga robust real-time sensor system that solves the inverse problem is challenging becausethe fate and transport of contaminants is complex, sensor information is limited andimperfect, and real-time estimation is computationally constrained.This dissertation uses a system-level approach, based on a Bayes Monte Carloframework, to develop sensor-system design concepts and methods. I describe threeinvestigations that explore complex relationships amongmore » sensors, network architecture,interpretation algorithms, and system performance. The investigations use data obtainedfrom tracer gas experiments conducted in a real building. The influence of individual sensor characteristics on the sensor-system performance for binary-type contaminant sensors is analyzed. Performance tradeoffs among sensor accuracy, threshold level and response time are identified; these attributes could not be inferred without a system-level analysis. For example, more accurate but slower sensors are found to outperform less accurate but faster sensors. Secondly, I investigate how the sensor-system performance can be understood in terms of contaminant transport processes and the model representation that is used to solve the inverse problem. The determination of release location and mass are shown to be related to and constrained by transport and mixing time scales. These time scales explain performance differences among different sensor networks. For example, the effect of longer sensor response times is comparably less for releases with longer mixing time scales. The third investigation explores how information fusion from heterogeneous sensors may improve the sensor-system performance and offset the need for more contaminant sensors. Physics- and algorithm-based frameworks are presented for selecting and fusing information from noncontaminant sensors. The frameworks are demonstrated with door-position sensors, which are found to be more useful in natural airflow conditions, but which cannot compensate for poor placement of contaminant sensors. The concepts and empirical findings have the potential to help in the design of sensor systems for more complex building systems. The research has broader relevance to additional environmental monitoring problems, fault detection and diagnostics, and system design.« less

  13. Modeling cytoskeletal traffic: an interplay between passive diffusion and active transport.

    PubMed

    Neri, Izaak; Kern, Norbert; Parmeggiani, Andrea

    2013-03-01

    We introduce the totally asymmetric simple exclusion process with Langmuir kinetics on a network as a microscopic model for active motor protein transport on the cytoskeleton, immersed in the diffusive cytoplasm. We discuss how the interplay between active transport along a network and infinite diffusion in a bulk reservoir leads to a heterogeneous matter distribution on various scales: we find three regimes for steady state transport, corresponding to the scale of the network, of individual segments, or local to sites. At low exchange rates strong density heterogeneities develop between different segments in the network. In this regime one has to consider the topological complexity of the whole network to describe transport. In contrast, at moderate exchange rates the transport through the network decouples, and the physics is determined by single segments and the local topology. At last, for very high exchange rates the homogeneous Langmuir process dominates the stationary state. We introduce effective rate diagrams for the network to identify these different regimes. Based on this method we develop an intuitive but generic picture of how the stationary state of excluded volume processes on complex networks can be understood in terms of the single-segment phase diagram.

  14. Node-node correlations and transport properties in scale-free networks

    NASA Astrophysics Data System (ADS)

    Obregon, Bibiana; Guzman, Lev

    2011-03-01

    We study some transport properties of complex networks. We focus our attention on transport properties of scale-free and small-world networks and compare two types of transport: Electric and max-flow cases. In particular, we construct scale-free networks, with a given degree sequence, to estimate the distribution of conductances for different values of assortative/dissortative mixing. For the electric case we find that the distributions of conductances are affect ed by the assortative mixing of the network whereas for the max-flow case, the distributions almost do not show changes when node-node correlations are altered. Finally, we compare local and global transport in terms of the average conductance for the small-world (Watts-Strogatz) model

  15. Applying the Network Simulation Method for testing chaos in a resistively and capacitively shunted Josephson junction model

    NASA Astrophysics Data System (ADS)

    Bellver, Fernando Gimeno; Garratón, Manuel Caravaca; Soto Meca, Antonio; López, Juan Antonio Vera; Guirao, Juan L. G.; Fernández-Martínez, Manuel

    In this paper, we explore the chaotic behavior of resistively and capacitively shunted Josephson junctions via the so-called Network Simulation Method. Such a numerical approach establishes a formal equivalence among physical transport processes and electrical networks, and hence, it can be applied to efficiently deal with a wide range of differential systems. The generality underlying that electrical equivalence allows to apply the circuit theory to several scientific and technological problems. In this work, the Fast Fourier Transform has been applied for chaos detection purposes and the calculations have been carried out in PSpice, an electrical circuit software. Overall, it holds that such a numerical approach leads to quickly computationally solve Josephson differential models. An empirical application regarding the study of the Josephson model completes the paper.

  16. Optimizing Nutrient Uptake in Biological Transport Networks

    NASA Astrophysics Data System (ADS)

    Ronellenfitsch, Henrik; Katifori, Eleni

    2013-03-01

    Many biological systems employ complex networks of vascular tubes to facilitate transport of solute nutrients, examples include the vascular system of plants (phloem), some fungi, and the slime-mold Physarum. It is believed that such networks are optimized through evolution for carrying out their designated task. We propose a set of hydrodynamic governing equations for solute transport in a complex network, and obtain the optimal network architecture for various classes of optimizing functionals. We finally discuss the topological properties and statistical mechanics of the resulting complex networks, and examine correspondence of the obtained networks to those found in actual biological systems.

  17. Summary and recommendations for the NASA/MIT workshop on short haul air transport

    NASA Technical Reports Server (NTRS)

    Simpson, R. W.

    1971-01-01

    The material is summarized that was covered by the MIT/NASA Waterville Valley workshop which dealt with the institutional, socio-economic, operational and technological problems associated with introducing new forms of short haul domestic air transportation. It was found that future air systems hold great potential in satisfying society's needs for a low noise, low landspace, high access, high speed, large network system for public travel over distances between 5 and 500 miles. It is concluded that quiet air systems are necessary for obtaining community approval, and is recommended that extremely high priority be assigned to the development of quiet aircraft for future short haul air systems.

  18. Potential interaction between transport and stream networks over the lowland rivers in Eastern India.

    PubMed

    Roy, Suvendu; Sahu, Abhay Sankar

    2017-07-15

    Extension of transport networks supports good accessibility and associated with the development of a region. However, transport lines have fragmented the regional landscape and disturbed the natural interplay between rivers and their floodplains. Spatial analysis using multiple buffers provides information about the potential interaction between road and stream networks and their impact on channel morphology of a small watershed in the Lower Gangetic Plain. Present study is tried to understand the lateral and longitudinal disconnection in headwater stream by rural roads with the integration of geoinformatics and field survey. Significant (p < 0.001) growth of total road length and number of road-stream crossing in the last five decades (1970s-2010s) contribute to making longitudinal and lateral disconnection in the fluvial system of Kunur River Basin. Channel geometry from ten road-stream crossings shows significant (p = 0.01) differences between upstream and downstream of crossing structure and created problems like downstream scouring, increased drop height at outlet, formation of stable bars, severe bank erosion, and make barriers for river biota. The hydro-geomorphic processes are also adversely affected due to lateral disconnection and input of fine to coarse sediments from the river side growth of unpaved road (1922%). Limited streamside development, delineation of stream corridor, regular monitoring and engineering efficiency for the construction of road and road-stream crossing might be effective in managing river geomorphology and riverine landscape. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Complexity analysis on public transport networks of 97 large- and medium-sized cities in China

    NASA Astrophysics Data System (ADS)

    Tian, Zhanwei; Zhang, Zhuo; Wang, Hongfei; Ma, Li

    2018-04-01

    The traffic situation in Chinese urban areas is continuing to deteriorate. To make a better planning and designing of the public transport system, it is necessary to make profound research on the structure of urban public transport networks (PTNs). We investigate 97 large- and medium-sized cities’ PTNs in China, construct three types of network models — bus stop network, bus transit network and bus line network, then analyze the structural characteristics of them. It is revealed that bus stop network is small-world and scale-free, bus transit network and bus line network are both small-world. Betweenness centrality of each city’s PTN shows similar distribution pattern, although these networks’ size is various. When classifying cities according to the characteristics of PTNs or economic development level, the results are similar. It means that the development of cities’ economy and transport network has a strong correlation, PTN expands in a certain model with the development of economy.

  20. Dynamic Integration of Mobile JXTA with Cloud Computing for Emergency Rural Public Health Care

    PubMed Central

    Rajkumar, Rajasekaran; Sriman Narayana Iyengar, Nallani Chackravatula

    2013-01-01

    Objectives The existing processes of health care systems where data collection requires a great deal of labor with high-end tasks to retrieve and analyze information, are usually slow, tedious, and error prone, which restrains their clinical diagnostic and monitoring capabilities. Research is now focused on integrating cloud services with P2P JXTA to identify systematic dynamic process for emergency health care systems. The proposal is based on the concepts of a community cloud for preventative medicine, to help promote a healthy rural community. We investigate the approaches of patient health monitoring, emergency care, and an ambulance alert alarm (AAA) under mobile cloud-based telecare or community cloud controller systems. Methods Considering permanent mobile users, an efficient health promotion method is proposed. Experiments were conducted to verify the effectiveness of the method. The performance was evaluated from September 2011 to July 2012. A total of 1,856,454 cases were transported and referred to hospital, identified with health problems, and were monitored. We selected all the peer groups and the control server N0 which controls N1, N2, and N3 proxied peer groups. The hospital cloud controller maintains the database of the patients through a JXTA network. Results Among 1,856,454 transported cases with beneficiaries of 1,712,877 cases there were 1,662,834 lives saved and 8,500 cases transported per day with 104,530 transported cases found to be registered in a JXTA network. Conclusion The registered case histories were referred from the Hospital community cloud (HCC). SMS messages were sent from node N0 to the relay peers which connected to the N1, N2, and N3 nodes, controlled by the cloud controller through a JXTA network. PMID:24298441

  1. Dynamic Integration of Mobile JXTA with Cloud Computing for Emergency Rural Public Health Care.

    PubMed

    Rajkumar, Rajasekaran; Sriman Narayana Iyengar, Nallani Chackravatula

    2013-10-01

    The existing processes of health care systems where data collection requires a great deal of labor with high-end tasks to retrieve and analyze information, are usually slow, tedious, and error prone, which restrains their clinical diagnostic and monitoring capabilities. Research is now focused on integrating cloud services with P2P JXTA to identify systematic dynamic process for emergency health care systems. The proposal is based on the concepts of a community cloud for preventative medicine, to help promote a healthy rural community. We investigate the approaches of patient health monitoring, emergency care, and an ambulance alert alarm (AAA) under mobile cloud-based telecare or community cloud controller systems. Considering permanent mobile users, an efficient health promotion method is proposed. Experiments were conducted to verify the effectiveness of the method. The performance was evaluated from September 2011 to July 2012. A total of 1,856,454 cases were transported and referred to hospital, identified with health problems, and were monitored. We selected all the peer groups and the control server N0 which controls N1, N2, and N3 proxied peer groups. The hospital cloud controller maintains the database of the patients through a JXTA network. Among 1,856,454 transported cases with beneficiaries of 1,712,877 cases there were 1,662,834 lives saved and 8,500 cases transported per day with 104,530 transported cases found to be registered in a JXTA network. The registered case histories were referred from the Hospital community cloud (HCC). SMS messages were sent from node N0 to the relay peers which connected to the N1, N2, and N3 nodes, controlled by the cloud controller through a JXTA network.

  2. How to pass information and deliver energy to a network of implantable devices within the human body.

    PubMed

    Sun, Mingui; Hackworth, Steven A; Tang, Zhide; Gilbert, Gary; Cardin, Sylvain; Sclabassi, Robert J

    2007-01-01

    It has been envisioned that a body network can be built to collect data from, and transport information to, implanted miniature devices at multiple sites within the human body. Currently, two problems of utmost importance remain unsolved: 1) how to link information between a pair of implants at a distance? and 2) how to provide electric power to these implants allowing them to function and communicate? In this paper, we present new solutions to these problems by minimizing the intra-body communication distances. We show that, based on a study of human anatomy, the maximum distance from the body surface to the deepest point inside the body is approximately 15 cm. This finding provides an upper bound for the lengths of communication pathways required to reach the body's interior. We also show that these pathways do not have to cross any joins within the body. In order to implement the envisioned body network, we present the design of a new device, called an energy pad. This small-size, light-weight device can easily interface with the skin to perform data communication with, and supply power to, miniature implants.

  3. [From guidelines to practice: evaluation of the pediatric care provided by a service of secondary reference in the north of the State of Minas Gerais].

    PubMed

    Moreira, Laura Monteiro de Castro; Alves, Cláudia Regina Lindgren; Belisário, Soraya Almeida; Bueno, Mariana de Caux; de Moraes, Erica Furtado

    2013-06-01

    In the State of Minas Gerais, the Secondary Reference Viva Vida Centers (CVVRS) are one of the strategies deployed to tackle the problems in child health. This study sought to evaluate pediatric care provided in a CVVRS, using the guidelines defined when it was set up as a benchmark. A quantitative-qualitative approach was adopted, which included a cross-sectional study with stratified random sampling of 385 medical records of children registered with the program between 2007 and 2009, and analysis of focus groups with strategic actors of the initiative. There were divergences between the user profiles and the target audience in terms of age, hometown and clinical characteristics. Access and use of the service differed depending on the town, due to problems of misinformation concerning the proposal, difficulty of transportation and the fragility of the health network. The centers are considered an innovative and important initiative for the expansion and organization of the health network, though the intended logic is not effectively seen in practice. Interventions for articulation between the network services and adaptation of the agreed guidelines to the regional specificities are necessary.

  4. Congestion based mechanism for route discovery in a V2I-V2V system applying smart devices and IoT.

    PubMed

    Parrado, Natalia; Donoso, Yezid

    2015-03-31

    The Internet of Things is a new paradigm in which objects in a specific context can be integrated into traditional communication networks to actively participate in solving a determined problem. The Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) technologies are specific cases of IoT and key enablers for Intelligent Transportation Systems (ITS). V2V and V2I have been widely used to solve different problems associated with transportation in cities, in which the most important is traffic congestion. A high percentage of congestion is usually presented by the inappropriate use of resources in vehicular infrastructure. In addition, the integration of traffic congestion in decision making for vehicular traffic is a challenge due to its high dynamic behavior. In this paper, an optimization model over the load balancing in the congestion percentage of the streets is formulated. Later, we explore a fully congestion-oriented route discovery mechanism and we make a proposal on the communication infrastructure that should support it based on V2I and V2V communication. The mechanism is also compared with a modified Dijkstra's approach that reacts at congestion states. Finally, we compare the results of the efficiency of the vehicle's trip with the efficiency in the use of the capacity of the vehicular network.

  5. Congestion Based Mechanism for Route Discovery in a V2I-V2V System Applying Smart Devices and IoT

    PubMed Central

    Parrado, Natalia; Donoso, Yezid

    2015-01-01

    The Internet of Things is a new paradigm in which objects in a specific context can be integrated into traditional communication networks to actively participate in solving a determined problem. The Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) technologies are specific cases of IoT and key enablers for Intelligent Transportation Systems (ITS). V2V and V2I have been widely used to solve different problems associated with transportation in cities, in which the most important is traffic congestion. A high percentage of congestion is usually presented by the inappropriate use of resources in vehicular infrastructure. In addition, the integration of traffic congestion in decision making for vehicular traffic is a challenge due to its high dynamic behavior. In this paper, an optimization model over the load balancing in the congestion percentage of the streets is formulated. Later, we explore a fully congestion-oriented route discovery mechanism and we make a proposal on the communication infrastructure that should support it based on V2I and V2V communication. The mechanism is also compared with a modified Dijkstra’s approach that reacts at congestion states. Finally, we compare the results of the efficiency of the vehicle’s trip with the efficiency in the use of the capacity of the vehicular network. PMID:25835185

  6. Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction.

    PubMed

    Ma, Xiaolei; Dai, Zhuang; He, Zhengbing; Ma, Jihui; Wang, Yong; Wang, Yunpeng

    2017-04-10

    This paper proposes a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to images describing the time and space relations of traffic flow via a two-dimensional time-space matrix. A CNN is applied to the image following two consecutive steps: abstract traffic feature extraction and network-wide traffic speed prediction. The effectiveness of the proposed method is evaluated by taking two real-world transportation networks, the second ring road and north-east transportation network in Beijing, as examples, and comparing the method with four prevailing algorithms, namely, ordinary least squares, k-nearest neighbors, artificial neural network, and random forest, and three deep learning architectures, namely, stacked autoencoder, recurrent neural network, and long-short-term memory network. The results show that the proposed method outperforms other algorithms by an average accuracy improvement of 42.91% within an acceptable execution time. The CNN can train the model in a reasonable time and, thus, is suitable for large-scale transportation networks.

  7. Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction

    PubMed Central

    Ma, Xiaolei; Dai, Zhuang; He, Zhengbing; Ma, Jihui; Wang, Yong; Wang, Yunpeng

    2017-01-01

    This paper proposes a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to images describing the time and space relations of traffic flow via a two-dimensional time-space matrix. A CNN is applied to the image following two consecutive steps: abstract traffic feature extraction and network-wide traffic speed prediction. The effectiveness of the proposed method is evaluated by taking two real-world transportation networks, the second ring road and north-east transportation network in Beijing, as examples, and comparing the method with four prevailing algorithms, namely, ordinary least squares, k-nearest neighbors, artificial neural network, and random forest, and three deep learning architectures, namely, stacked autoencoder, recurrent neural network, and long-short-term memory network. The results show that the proposed method outperforms other algorithms by an average accuracy improvement of 42.91% within an acceptable execution time. The CNN can train the model in a reasonable time and, thus, is suitable for large-scale transportation networks. PMID:28394270

  8. Numerical Experiments on Advective Transport in Large Three-Dimensional Discrete Fracture Networks

    NASA Astrophysics Data System (ADS)

    Makedonska, N.; Painter, S. L.; Karra, S.; Gable, C. W.

    2013-12-01

    Modeling of flow and solute transport in discrete fracture networks is an important approach for understanding the migration of contaminants in impermeable hard rocks such as granite, where fractures provide dominant flow and transport pathways. The discrete fracture network (DFN) model attempts to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. An integrated DFN meshing [1], flow, and particle tracking [2] simulation capability that enables accurate flow and particle tracking simulation on large DFNs has recently been developed. The new capability has been used in numerical experiments on advective transport in large DFNs with tens of thousands of fractures and millions of computational cells. The modeling procedure starts from the fracture network generation using a stochastic model derived from site data. A high-quality computational mesh is then generated [1]. Flow is then solved using the highly parallel PFLOTRAN [3] code. PFLOTRAN uses the finite volume approach, which is locally mass conserving and thus eliminates mass balance problems during particle tracking. The flow solver provides the scalar fluxes on each control volume face. From the obtained fluxes the Darcy velocity is reconstructed for each node in the network [4]. Velocities can then be continuously interpolated to any point in the domain of interest, thus enabling random walk particle tracking. In order to describe the flow field on fractures intersections, the control volume cells on intersections are split into four planar polygons, where each polygon corresponds to a piece of a fracture near the intersection line. Thus, computational nodes lying on fracture intersections have four associated velocities, one on each side of the intersection in each fracture plane [2]. This information is used to route particles arriving at the fracture intersection to the appropriate downstream fracture segment. Verified for small DFNs, the new simulation capability allows accurate particle tracking on more realistic representations of fractured rock sites. In the current work we focus on travel time statistics and spatial dispersion and show numerical results in DFNs of different sizes, fracture densities, and transmissivity distributions. [1] Hyman J.D., Gable C.W., Painter S.L., Automated meshing of stochastically generated discrete fracture networks, Abstract H33G-1403, 2011 AGU, San Francisco, CA, 5-9 Dec. [2] N. Makedonska, S. L. Painter, T.-L. Hsieh, Q.M. Bui, and C. W. Gable., Development and verification of a new particle tracking capability for modeling radionuclide transport in discrete fracture networks, Abstract, 2013 IHLRWM, Albuquerque, NM, Apr. 28 - May 3. [3] Lichtner, P.C., Hammond, G.E., Bisht, G., Karra, S., Mills, R.T., and Kumar, J. (2013) PFLOTRAN User's Manual: A Massively Parallel Reactive Flow Code. [4] Painter S.L., Gable C.W., Kelkar S., Pathline tracing on fully unstructured control-volume grids, Computational Geosciences, 16 (4), 2012, 1125-1134.

  9. Evaluation of the Public Transportation Network : Diffusion of Innovative Transit Practices

    DOT National Transportation Integrated Search

    1988-08-01

    This report presents an evaluation of the Public Transportation Network (PTN), a technical assistance program established by the Urban Mass Transportation Administration in 1983 to help public transportation agencies adopt better ways of managing and...

  10. An integrated GIS-based data model for multimodal urban public transportation analysis and management

    NASA Astrophysics Data System (ADS)

    Chen, Shaopei; Tan, Jianjun; Ray, C.; Claramunt, C.; Sun, Qinqin

    2008-10-01

    Diversity is one of the main characteristics of transportation data collected from multiple sources or formats, which can be extremely complex and disparate. Moreover, these multimodal transportation data are usually characterised by spatial and temporal properties. Multimodal transportation network data modelling involves both an engineering and research domain that has attracted the design of a number of spatio-temporal data models in the geographic information system (GIS). However, the application of these specific models to multimodal transportation network is still a challenging task. This research addresses this challenge from both integrated multimodal data organization and object-oriented modelling perspectives, that is, how a complex urban transportation network should be organized, represented and modeled appropriately when considering a multimodal point of view, and using object-oriented modelling method. We proposed an integrated GIS-based data model for multimodal urban transportation network that lays a foundation to enhance the multimodal transportation network analysis and management. This modelling method organizes and integrates multimodal transit network data, and supports multiple representations for spatio-temporal objects and relationship as both visual and graphic views. The data model is expressed by using a spatio-temporal object-oriented modelling method, i.e., the unified modelling language (UML) extended to spatial and temporal plug-in for visual languages (PVLs), which provides an essential support to the spatio-temporal data modelling for transportation GIS.

  11. Analysis of Intelligent Transportation Systems Using Model-Driven Simulations.

    PubMed

    Fernández-Isabel, Alberto; Fuentes-Fernández, Rubén

    2015-06-15

    Intelligent Transportation Systems (ITSs) integrate information, sensor, control, and communication technologies to provide transport related services. Their users range from everyday commuters to policy makers and urban planners. Given the complexity of these systems and their environment, their study in real settings is frequently unfeasible. Simulations help to address this problem, but present their own issues: there can be unintended mistakes in the transition from models to code; their platforms frequently bias modeling; and it is difficult to compare works that use different models and tools. In order to overcome these problems, this paper proposes a framework for a model-driven development of these simulations. It is based on a specific modeling language that supports the integrated specification of the multiple facets of an ITS: people, their vehicles, and the external environment; and a network of sensors and actuators conveniently arranged and distributed that operates over them. The framework works with a model editor to generate specifications compliant with that language, and a code generator to produce code from them using platform specifications. There are also guidelines to help researchers in the application of this infrastructure. A case study on advanced management of traffic lights with cameras illustrates its use.

  12. Constrained Optimization of Average Arrival Time via a Probabilistic Approach to Transport Reliability

    PubMed Central

    Namazi-Rad, Mohammad-Reza; Dunbar, Michelle; Ghaderi, Hadi; Mokhtarian, Payam

    2015-01-01

    To achieve greater transit-time reduction and improvement in reliability of transport services, there is an increasing need to assist transport planners in understanding the value of punctuality; i.e. the potential improvements, not only to service quality and the consumer but also to the actual profitability of the service. In order for this to be achieved, it is important to understand the network-specific aspects that affect both the ability to decrease transit-time, and the associated cost-benefit of doing so. In this paper, we outline a framework for evaluating the effectiveness of proposed changes to average transit-time, so as to determine the optimal choice of average arrival time subject to desired punctuality levels whilst simultaneously minimizing operational costs. We model the service transit-time variability using a truncated probability density function, and simultaneously compare the trade-off between potential gains and increased service costs, for several commonly employed cost-benefit functions of general form. We formulate this problem as a constrained optimization problem to determine the optimal choice of average transit time, so as to increase the level of service punctuality, whilst simultaneously ensuring a minimum level of cost-benefit to the service operator. PMID:25992902

  13. Analysis of Intelligent Transportation Systems Using Model-Driven Simulations

    PubMed Central

    Fernández-Isabel, Alberto; Fuentes-Fernández, Rubén

    2015-01-01

    Intelligent Transportation Systems (ITSs) integrate information, sensor, control, and communication technologies to provide transport related services. Their users range from everyday commuters to policy makers and urban planners. Given the complexity of these systems and their environment, their study in real settings is frequently unfeasible. Simulations help to address this problem, but present their own issues: there can be unintended mistakes in the transition from models to code; their platforms frequently bias modeling; and it is difficult to compare works that use different models and tools. In order to overcome these problems, this paper proposes a framework for a model-driven development of these simulations. It is based on a specific modeling language that supports the integrated specification of the multiple facets of an ITS: people, their vehicles, and the external environment; and a network of sensors and actuators conveniently arranged and distributed that operates over them. The framework works with a model editor to generate specifications compliant with that language, and a code generator to produce code from them using platform specifications. There are also guidelines to help researchers in the application of this infrastructure. A case study on advanced management of traffic lights with cameras illustrates its use. PMID:26083232

  14. Putting Man in the Machine: Exploiting Expertise to Enhance Multiobjective Design of Water Supply Monitoring Network

    NASA Astrophysics Data System (ADS)

    Bode, F.; Nowak, W.; Reed, P. M.; Reuschen, S.

    2016-12-01

    Drinking-water well catchments need effective early-warning monitoring networks. Groundwater water supply wells in complex urban environments are in close proximity to a myriad of potential industrial pollutant sources that could irreversibly damage their source aquifers. These urban environments pose fiscal and physical challenges to designing monitoring networks. Ideal early-warning monitoring networks would satisfy three objectives: to detect (1) all potential contaminations within the catchment (2) as early as possible before they reach the pumping wells, (3) while minimizing costs. Obviously, the ideal case is nonexistent, so we search for tradeoffs using multiobjective optimization. The challenge of this optimization problem is the high number of potential monitoring-well positions (the search space) and the non-linearity of the underlying groundwater flow-and-transport problem. This study evaluates (1) different ways to effectively restrict the search space in an efficient way, with and without expert knowledge, (2) different methods to represent the search space during the optimization and (3) the influence of incremental increases in uncertainty in the system. Conductivity, regional flow direction and potential source locations are explored as key uncertainties. We show the need and the benefit of our methods by comparing optimized monitoring networks for different uncertainty levels with networks that seek to effectively exploit expert knowledge. The study's main contributions are the different approaches restricting and representing the search space. The restriction algorithms are based on a point-wise comparison of decision elements of the search space. The representation of the search space can be either binary or continuous. For both cases, the search space must be adjusted properly. Our results show the benefits and drawbacks of binary versus continuous search space representations and the high potential of automated search space restriction algorithms for high-dimensional, highly non-linear optimization problems.

  15. P-adic model of transport in porous disordered media

    NASA Astrophysics Data System (ADS)

    Khrennikov, Adrei Yu.; Oleschko, Klaudia

    2014-05-01

    The soil porosity and permeability are the most important quantitative indicators of soil dynamics under the land-use change. The main problema in the modeling of this dynamic is still poor correlation between the real measuring data and the mathematical and computer simulation models. In order to overpassed this deep divorce we have designed a new technique, able to compare the data arised from the multiscale image analices and time series of the basic physical properties dynamics in porous media studied in time and space. We present a model of the diffusion reaction type describing transport in disordered porous media, e.g., water or oil flow in a complex network of pores. Our model is based on p-adic representation of such networks. This is a kind of fractal representation. We explore advantages of p- adic representation, namely, the possibility to endow p-adic trees with an algebraic structure and ultrametric topology and, hence, to apply analysis which have (at least some) similarities with ordinary real analysis on the straight line. We present the system of two diffusion reaction equations describing propagation of particles in networks of pores in disordered media. As an application, one can consider water transport through the soil pore Networks, or oil flow through capillaries nets. Under some restrictions on potentials and rate coefficients we found the stationary regime corresponding to water content or concentration of oil in a cluster of capillaries. Usage of p-adic analysis (in particular, p-adic wavelets) gives a possibility to find the stationary solution in the analytic form which makes possible to present a clear pedological or geological picture of the process. The mathematical model elaborated in this paper (Khrennikov, 2013) can be applied to variety of problems from water concentration in aquifers to the problem of formation of oil reservoirs in disordered media with porous structures. Another possible application may have real practical output. In fact, our system of diffusion-reaction equations can be used to model the process of extraction of water or oil from an extended network of capillaries (Khrennikov et al., 2013). The accomplished analyses show that the time series of water content/pressure dynamics in saturated/unsaturated conditions reflect the fractal structure of pores separated by familias base don the seven geometric descriptors which we used for the soils multiscale images (Oleschko et al., 2012). The similar models were applied to the porous media behind the oil flow from wells. These results motivate usage of the fractal and, in particular, p-adic methods of modeling.

  16. Locating Groundwater Pollution Source using Breakthrough Curve Characteristics and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Kumar, J.; Jain, A.; Srivastava, R.

    2005-12-01

    The identification of pollution sources in aquifers is an important area of research not only for the hydrologists but also for the local and Federal agencies and defense organizations. Once the data in terms of pollutant concentration measurements at observation wells become known, it is important to identify the polluting industry in order to implement punitive or remedial measures. Traditionally, hydrologists have relied on the conceptual methods for the identification of groundwater pollution sources. The problem of identification of groundwater pollution sources using the conceptual methods requires a thorough understanding of the groundwater flow and contaminant transport processes and inverse modeling procedures that are highly complex and difficult to implement. Recently, the soft computing techniques, such as artificial neural networks (ANNs) and genetic algorithms, have provided an attractive and easy to implement alternative to solve complex problems efficiently. Some researchers have used ANNs for the identification of pollution sources in aquifers. A major problem with most previous studies using ANNs has been the large size of the neural networks that are needed to model the inverse problem. The breakthrough curves at an observation well may consist of hundreds of concentration measurements, and presenting all of them to the input layer of an ANN not only results in humongous networks but also requires large amount of training and testing data sets to develop the ANN models. This paper presents the results of a study aimed at using certain characteristics of the breakthrough curves and ANNs for determining the distance of the pollution source from a given observation well. Two different neural network models are developed that differ in the manner of characterizing the breakthrough curves. The first ANN model uses five parameters, similar to the synthetic unit hydrograph parameters, to characterize the breakthrough curves. The five parameters employed are peak concentration, time to peak concentration, the widths of the breakthrough curves at 50% and 75% of the peak concentration, and the time base of the breakthrough curve. The second ANN model employs only the first four parameters leaving out the time base. The measurement of breakthrough curve at an observation well involves very high costs in sample collection at suitable time intervals and analysis for various contaminants. The receding portions of the breakthrough curves are normally very long and excluding the time base from modeling would result in considerable cost savings. The feed-forward multi-layer perceptron (MLP) type neural networks trained using the back-propagation algorithm, are employed in this study. The ANN models for the two approaches were developed using simulated data generated for conservative pollutant transport through a homogeneous aquifer. A new approach for ANN training using back-propagation is employed that considers two different error statistics to prevent over-training and under-training of the ANNs. The preliminary results indicate that the ANNs are able to identify the location of the pollution source very efficiently from both the methods of the breakthrough curves characterization.

  17. Application research on big data in energy conservation and emission reduction of transportation industry

    NASA Astrophysics Data System (ADS)

    Bai, Bingdong; Chen, Jing; Wang, Mei; Yao, Jingjing

    2017-06-01

    In the context of big data age, the energy conservation and emission reduction of transportation is a natural big data industry. The planning, management, decision-making of energy conservation and emission reduction of transportation and other aspects should be supported by the analysis and forecasting of large amounts of data. Now, with the development of information technology, such as intelligent city, sensor road and so on, information collection technology in the direction of the Internet of things gradually become popular. The 3G/4G network transmission technology develop rapidly, and a large number of energy conservation and emission reduction of transportation data is growing into a series with different ways. The government not only should be able to make good use of big data to solve the problem of energy conservation and emission reduction of transportation, but also to explore and use a large amount of data behind the hidden value. Based on the analysis of the basic characteristics and application technology of energy conservation and emission reduction of transportation data, this paper carries out its application research in energy conservation and emission reduction of transportation industry, so as to provide theoretical basis and reference value for low carbon management.

  18. Assessing lateral flows and solute transport during floods in a conduit-flow-dominated karst system using the inverse problem for the advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Cholet, Cybèle; Charlier, Jean-Baptiste; Moussa, Roger; Steinmann, Marc; Denimal, Sophie

    2017-07-01

    The aim of this study is to present a framework that provides new ways to characterize the spatio-temporal variability of lateral exchanges for water flow and solute transport in a karst conduit network during flood events, treating both the diffusive wave equation and the advection-diffusion equation with the same mathematical approach, assuming uniform lateral flow and solute transport. A solution to the inverse problem for the advection-diffusion equations is then applied to data from two successive gauging stations to simulate flows and solute exchange dynamics after recharge. The study site is the karst conduit network of the Fourbanne aquifer in the French Jura Mountains, which includes two reaches characterizing the network from sinkhole to cave stream to the spring. The model is applied, after separation of the base from the flood components, on discharge and total dissolved solids (TDSs) in order to assess lateral flows and solute concentrations and compare them to help identify water origin. The results showed various lateral contributions in space - between the two reaches located in the unsaturated zone (R1), and in the zone that is both unsaturated and saturated (R2) - as well as in time, according to hydrological conditions. Globally, the two reaches show a distinct response to flood routing, with important lateral inflows on R1 and large outflows on R2. By combining these results with solute exchanges and the analysis of flood routing parameters distribution, we showed that lateral inflows on R1 are the addition of diffuse infiltration (observed whatever the hydrological conditions) and localized infiltration in the secondary conduit network (tributaries) in the unsaturated zone, except in extreme dry periods. On R2, despite inflows on the base component, lateral outflows are observed during floods. This pattern was attributed to the concept of reversal flows of conduit-matrix exchanges, inducing a complex water mixing effect in the saturated zone. From our results we build the functional scheme of the karst system. It demonstrates the impact of the saturated zone on matrix-conduit exchanges in this shallow phreatic aquifer and highlights the important role of the unsaturated zone on storage and transfer functions of the system.

  19. Feasibility of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) networking in university hospitals in Brussels.

    PubMed

    Martiny, D; Cremagnani, P; Gaillard, A; Miendje Deyi, V Y; Mascart, G; Ebraert, A; Attalibi, S; Dediste, A; Vandenberg, O

    2014-05-01

    The mutualisation of analytical platforms might be used to address rising healthcare costs. Our study aimed to evaluate the feasibility of networking a unique matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) system for common use in several university hospitals in Brussels, Belgium. During a one-month period, 1,055 successive bacterial isolates from the Brugmann University Hospital were identified on-site using conventional techniques; these same isolates were also identified using a MALDI-TOF MS system at the Porte de Hal Laboratory by sending target plates and identification projects via transportation and the INFECTIO_MALDI software (Infopartner, Nancy, France), respectively. The occurrence of transmission problems (<2 %) and human errors (<1 %) suggested that the system was sufficiently robust to be implemented in a network. With a median time-to-identification of 5 h and 11 min (78 min, min-max: 154-547), MALDI-TOF MS networking always provided a faster identification result than conventional techniques, except when chromogenic culture media and oxidase tests were used (p < 0.0001). However, the limited clinical benefits of the chromogenic culture media do not support their extra cost. Our financial analysis also suggested that MALDI-TOF MS networking could lead to substantial annual cost savings. MALDI-TOF MS networking presents many advantages, and few conventional techniques (optochin and oxidase tests) are required to ensure the same quality in patient care from the distant laboratory. Nevertheless, such networking should not be considered unless there is a reorganisation of workflow, efficient communication between teams, qualified technologists and a reliable IT department and helpdesk to manage potential connectivity problems.

  20. Adaptive Video Streaming Using Bandwidth Estimation for 3.5G Mobile Network

    NASA Astrophysics Data System (ADS)

    Nam, Hyeong-Min; Park, Chun-Su; Jung, Seung-Won; Ko, Sung-Jea

    Currently deployed mobile networks including High Speed Downlink Packet Access (HSDPA) offer only best-effort Quality of Service (QoS). In wireless best effort networks, the bandwidth variation is a critical problem, especially, for mobile devices with small buffers. This is because the bandwidth variation leads to packet losses caused by buffer overflow as well as picture freezing due to high transmission delay or buffer underflow. In this paper, in order to provide seamless video streaming over HSDPA, we propose an efficient real-time video streaming method that consists of the available bandwidth (AB) estimation for the HSDPA network and the transmission rate control to prevent buffer overflows/underflows. In the proposed method, the client estimates the AB and the estimated AB is fed back to the server through real-time transport control protocol (RTCP) packets. Then, the server adaptively adjusts the transmission rate according to the estimated AB and the buffer state obtained from the RTCP feedback information. Experimental results show that the proposed method achieves seamless video streaming over the HSDPA network providing higher video quality and lower transmission delay.

  1. Network Extender for MIL-STD-1553 Bus

    NASA Technical Reports Server (NTRS)

    Marcus, Julius; Hanson, T. David

    2003-01-01

    An extender system for MIL-STD-1553 buses transparently couples bus components at multiple developer sites. The bus network extender is a relatively inexpensive system that minimizes the time and cost of integration of avionic systems by providing a convenient mechanism for early testing without the need to transport the usual test equipment and personnel to an integration facility. This bus network extender can thus alleviate overloading of the test facility while enabling the detection of interface problems that can occur during the integration of avionic systems. With this bus extender in place, developers can correct and adjust their own hardware and software before products leave a development site. Currently resident at Johnson Space Center, the bus network extender is used to test the functionality of equipment that, although remotely located, is connected through a MILSTD- 1553 bus. Inasmuch as the standard bus protocol for avionic equipment is that of MIL-STD-1553, companies that supply MIL-STD-1553-compliant equipment to government or industry and that need long-distance communication support might benefit from this network bus extender

  2. Dynamic modeling and optimization for space logistics using time-expanded networks

    NASA Astrophysics Data System (ADS)

    Ho, Koki; de Weck, Olivier L.; Hoffman, Jeffrey A.; Shishko, Robert

    2014-12-01

    This research develops a dynamic logistics network formulation for lifecycle optimization of mission sequences as a system-level integrated method to find an optimal combination of technologies to be used at each stage of the campaign. This formulation can find the optimal transportation architecture considering its technology trades over time. The proposed methodologies are inspired by the ground logistics analysis techniques based on linear programming network optimization. Particularly, the time-expanded network and its extension are developed for dynamic space logistics network optimization trading the quality of the solution with the computational load. In this paper, the methodologies are applied to a human Mars exploration architecture design problem. The results reveal multiple dynamic system-level trades over time and give recommendation of the optimal strategy for the human Mars exploration architecture. The considered trades include those between In-Situ Resource Utilization (ISRU) and propulsion technologies as well as the orbit and depot location selections over time. This research serves as a precursor for eventual permanent settlement and colonization of other planets by humans and us becoming a multi-planet species.

  3. Flow distribution in parallel microfluidic networks and its effect on concentration gradient

    PubMed Central

    Guermonprez, Cyprien; Michelin, Sébastien; Baroud, Charles N.

    2015-01-01

    The architecture of microfluidic networks can significantly impact the flow distribution within its different branches and thereby influence tracer transport within the network. In this paper, we study the flow rate distribution within a network of parallel microfluidic channels with a single input and single output, using a combination of theoretical modeling and microfluidic experiments. Within the ladder network, the flow rate distribution follows a U-shaped profile, with the highest flow rate occurring in the initial and final branches. The contrast with the central branches is controlled by a single dimensionless parameter, namely, the ratio of hydrodynamic resistance between the distribution channel and the side branches. This contrast in flow rates decreases when the resistance of the side branches increases relative to the resistance of the distribution channel. When the inlet flow is composed of two parallel streams, one of which transporting a diffusing species, a concentration variation is produced within the side branches of the network. The shape of this concentration gradient is fully determined by two dimensionless parameters: the ratio of resistances, which determines the flow rate distribution, and the Péclet number, which characterizes the relative speed of diffusion and advection. Depending on the values of these two control parameters, different distribution profiles can be obtained ranging from a flat profile to a step distribution of solute, with well-distributed gradients between these two limits. Our experimental results are in agreement with our numerical model predictions, based on a simplified 2D advection-diffusion problem. Finally, two possible applications of this work are presented: the first one combines the present design with self-digitization principle to encapsulate the controlled concentration in nanoliter chambers, while the second one extends the present design to create a continuous concentration gradient within an open flow chamber. PMID:26487905

  4. Structural and robustness properties of smart-city transportation networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Gang; Ding, Zhuo; Fan, Jing-Fang; Meng, Jun; Ding, Yi-Min; Ye, Fang-Fu; Chen, Xiao-Song

    2015-09-01

    The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities. Project supported by the Major Projects of the China National Social Science Fund (Grant No. 11 & ZD154).

  5. An Integer Programming Model for Multi-Echelon Supply Chain Decision Problem Considering Inventories

    NASA Astrophysics Data System (ADS)

    Harahap, Amin; Mawengkang, Herman; Siswadi; Effendi, Syahril

    2018-01-01

    In this paper we address a problem that is of significance to the industry, namely the optimal decision of a multi-echelon supply chain and the associated inventory systems. By using the guaranteed service approach to model the multi-echelon inventory system, we develop a mixed integer; programming model to simultaneously optimize the transportation, inventory and network structure of a multi-echelon supply chain. To solve the model we develop a direct search approach using a strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points.

  6. A Green's function method for simulation of time-dependent solute transport and reaction in realistic microvascular geometries.

    PubMed

    Secomb, Timothy W

    2016-12-01

    A novel theoretical method is presented for simulating the spatially resolved convective and diffusive transport of reacting solutes between microvascular networks and the surrounding tissues. The method allows for efficient computational solution of problems involving convection and non-linear binding of solutes in blood flowing through microvascular networks with realistic 3D geometries, coupled with transvascular exchange and diffusion and reaction in the surrounding tissue space. The method is based on a Green's function approach, in which the solute concentration distribution in the tissue is expressed as a sum of fields generated by time-varying distributions of discrete sources and sinks. As an example of the application of the method, the washout of an inert diffusible tracer substance from a tissue region perfused by a network of microvessels is simulated, showing its dependence on the solute's transvascular permeability and tissue diffusivity. Exponential decay of the washout concentration is predicted, with rate constants that are about 10-30% lower than the rate constants for a tissue cylinder model with the same vessel length, vessel surface area and blood flow rate per tissue volume. © The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  7. Multiscale model reduction for shale gas transport in poroelastic fractured media

    NASA Astrophysics Data System (ADS)

    Akkutlu, I. Yucel; Efendiev, Yalchin; Vasilyeva, Maria; Wang, Yuhe

    2018-01-01

    Inherently coupled flow and geomechanics processes in fractured shale media have implications for shale gas production. The system involves highly complex geo-textures comprised of a heterogeneous anisotropic fracture network spatially embedded in an ultra-tight matrix. In addition, nonlinearities due to viscous flow, diffusion, and desorption in the matrix and high velocity gas flow in the fractures complicates the transport. In this paper, we develop a multiscale model reduction approach to couple gas flow and geomechanics in fractured shale media. A Discrete Fracture Model (DFM) is used to treat the complex network of fractures on a fine grid. The coupled flow and geomechanics equations are solved using a fixed stress-splitting scheme by solving the pressure equation using a continuous Galerkin method and the displacement equation using an interior penalty discontinuous Galerkin method. We develop a coarse grid approximation and coupling using the Generalized Multiscale Finite Element Method (GMsFEM). GMsFEM constructs the multiscale basis functions in a systematic way to capture the fracture networks and their interactions with the shale matrix. Numerical results and an error analysis is provided showing that the proposed approach accurately captures the coupled process using a few multiscale basis functions, i.e. a small fraction of the degrees of freedom of the fine-scale problem.

  8. Biased random walks on Kleinberg's spatial networks

    NASA Astrophysics Data System (ADS)

    Pan, Gui-Jun; Niu, Rui-Wu

    2016-12-01

    We investigate the problem of the particle or message that travels as a biased random walk toward a target node in Kleinberg's spatial network which is built from a d-dimensional (d = 2) regular lattice improved by adding long-range shortcuts with probability P(rij) ∼rij-α, where rij is the lattice distance between sites i and j, and α is a variable exponent. Bias is represented as a probability p of the packet to travel at every hop toward the node which has the smallest Manhattan distance to the target node. We study the mean first passage time (MFPT) for different exponent α and the scaling of the MFPT with the size of the network L. We find that there exists a threshold probability pth ≈ 0.5, for p ≥pth the optimal transportation condition is obtained with an optimal transport exponent αop = d, while for 0 < p pth, and increases with L less than a power law and get close to logarithmical law for 0 < p

  9. User's Guide for Mixed-Size Sediment Transport Model for Networks of One-Dimensional Open Channels

    USGS Publications Warehouse

    Bennett, James P.

    2001-01-01

    This user's guide describes a mathematical model for predicting the transport of mixed sizes of sediment by flow in networks of one-dimensional open channels. The simulation package is useful for general sediment routing problems, prediction of erosion and deposition following dam removal, and scour in channels at road embankment crossings or other artificial structures. The model treats input hydrographs as stepwise steady-state, and the flow computation algorithm automatically switches between sub- and supercritical flow as dictated by channel geometry and discharge. A variety of boundary conditions including weirs and rating curves may be applied both external and internal to the flow network. The model may be used to compute flow around islands and through multiple openings in embankments, but the network must be 'simple' in the sense that the flow directions in all channels can be specified before simulation commences. The location and shape of channel banks are user specified, and all bedelevation changes take place between these banks and above a user-specified bedrock elevation. Computation of sediment-transport emphasizes the sand-size range (0.0625-2.0 millimeter) but the user may select any desired range of particle diameters including silt and finer (<0.0625 millimeter). As part of data input, the user may set the original bed-sediment composition of any number of layers of known thickness. The model computes the time evolution of total transport and the size composition of bed- and suspended-load sand through any cross section of interest. It also tracks bed -surface elevation and size composition. The model is written in the FORTRAN programming language for implementation on personal computers using the WINDOWS operating system and, along with certain graphical output display capability, is accessed from a graphical user interface (GUI). The GUI provides a framework for selecting input files and parameters of a number of components of the sediment-transport process. There are no restrictions in the use of the model as to numbers of channels, channel junctions, cross sections per channel, or points defining the cross sections. Following completion of the simulation computations, the GUI accommodates display of longitudinal plots of either bed elevation and size composition, or of transport rate and size composition of the various components, for individual channels and selected times during the simulation period. For individual cross sections, the GUI also allows display of time series of transport rate and size composition of the various components and of bed elevation and size composition.

  10. Assessment of uncertainty in discrete fracture network modeling using probabilistic distribution method.

    PubMed

    Wei, Yaqiang; Dong, Yanhui; Yeh, Tian-Chyi J; Li, Xiao; Wang, Liheng; Zha, Yuanyuan

    2017-11-01

    There have been widespread concerns about solute transport problems in fractured media, e.g. the disposal of high-level radioactive waste in geological fractured rocks. Numerical simulation of particle tracking is gradually being employed to address these issues. Traditional predictions of radioactive waste transport using discrete fracture network (DFN) models often consider one particular realization of the fracture distribution based on fracture statistic features. This significantly underestimates the uncertainty of the risk of radioactive waste deposit evaluation. To adequately assess the uncertainty during the DFN modeling in a potential site for the disposal of high-level radioactive waste, this paper utilized the probabilistic distribution method (PDM). The method was applied to evaluate the risk of nuclear waste deposit in Beishan, China. Moreover, the impact of the number of realizations on the simulation results was analyzed. In particular, the differences between the modeling results of one realization and multiple realizations were demonstrated. Probabilistic distributions of 20 realizations at different times were also obtained. The results showed that the employed PDM can be used to describe the ranges of the contaminant particle transport. The high-possibility contaminated areas near the release point were more concentrated than the farther areas after 5E6 days, which was 25,400 m 2 .

  11. Multiple Path Static Routing Protocols for Packet Switched Networks.

    DTIC Science & Technology

    1983-09-01

    model are: (1) Physical Layer (2) Data Link Layer (3) Network Layer (4) Transport Layer (5) Session Layer (6) Presentation Layer (7) pplication Layer The...The transport layer, also known as the host-host layer, accepts data from the session layer, splits it into smaller units if needed, passes these to...the network layer, and ensures that all the pieces arrive correctly at the other end. It creates a distinct network connection for each transport

  12. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less

  13. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    DOE PAGES

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; ...

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less

  14. Reactive transport under stress: Permeability evolution by chemo-mechanical deformation

    NASA Astrophysics Data System (ADS)

    Roded, R.; Holtzman, R.

    2017-12-01

    The transport of reactive fluids in porous media is important in many natural and engineering processes. Reaction with the solid matrix—e.g. dissolution—changes the transport properties, which in turn affect the rate of reagent transport and hence the reaction. The importance of this highly nonlinear problem has motivated intensive research. Specifically, there have been numerous studies concerning the permeability evolution, especially the process of "wormholing", where preferential dissolution of the most conductive regions leads to a runaway permeability increase. Much less attention, however, has been given to the effect of geomechanics; that is, how the fact that the medium is under stress changes the permeability evolution. Here, we present a novel, mechanistic pore-scale model, simulating the interplay between pore opening by matrix dissolution and pore closure by mechanical compaction, facilitated by weakening caused by the very same process of dissolution. We combine a pore network model of reactive transport with a block-spring model that captures the effect of geomechanics through the update of the network properties. Our simulations show that permeability enhancement is inhibited by stress concentration downstream, in the less dissolved (hence stiffer) regions. Higher stresses lead to stronger inhibition, in agreement with experiments. The effect of stress also depends on the Damkohler number (Da)—the ratio between the flow and the reaction rate. At rapid injection (small Da), where dissolution is relatively uniform, stress has a significant effect on permeability. At slower flow rates (high Da, wormholing regime), stress affects the permeability evolution mostly in early stages, with a much smaller effect on the injected volume required for a significant permeability increase (breakthrough) than at low Da. Interestingly, at higher Da, stress concentration downstream induced by the more heterogeneous dissolution leads to a more homogeneous reagent transport, promoting wormhole competition.

  15. VORBrouter: A dynamic data routing system for Real-Time Seismic networks

    NASA Astrophysics Data System (ADS)

    Hansen, T.; Vernon, F.; Lindquist, K.; Orcutt, J.

    2004-12-01

    For anyone who has managed a moderately complex buffered real-time data transport system, the need for reliable adaptive data transport is clear. The ROADNet VORBrouter system, an extension to the ROADNet data catalog system [AGU-2003, Dynamic Dataflow Topology Monitoring for Real-time Seismic Networks], allows dynamic routing of real-time seismic data from sensor to end-user. Traditional networks consist of a series of data buffer computers with data transport interconnections configured by hand. This allows for arbitrarily complex data networks, which can often exceed full comprehension by network administrators, sometimes resulting in data loops or accidental data cutoff. In order to manage data transport systems in the event of a network failure, a network administrator must be called upon to change the data transport paths and to recover the missing data. Using VORBrouter, administrators can sleep at night while still providing 7/24 uninterupted data streams at realistic cost. This software package uses information from the ROADNet data catalog system to route packets around failed link outages and to new consumers in real-time. Dynamic data routing protocols operating on top of the Antelope Data buffering layer allow authorized users to request data sets from their local buffer and to have them delivered from anywhere within the network of buffers. The VORBrouter software also allows for dynamic routing around network outages, and the elimination of duplicate data paths within the network, while maintaining the nearly lossless data transport features exhibited by the underlying Antelope system. We present the design of the VORBrouter system, its features, limitations and some future research directions.

  16. Analytical transport network theory to guide the design of 3-D microstructural networks in energy materials: Part 1. Flow without reactions

    NASA Astrophysics Data System (ADS)

    Cocco, Alex P.; Nakajo, Arata; Chiu, Wilson K. S.

    2017-12-01

    We present a fully analytical, heuristic model - the "Analytical Transport Network Model" - for steady-state, diffusive, potential flow through a 3-D network. Employing a combination of graph theory, linear algebra, and geometry, the model explicitly relates a microstructural network's topology and the morphology of its channels to an effective material transport coefficient (a general term meant to encompass, e.g., conductivity or diffusion coefficient). The model's transport coefficient predictions agree well with those from electrochemical fin (ECF) theory and finite element analysis (FEA), but are computed 0.5-1.5 and 5-6 orders of magnitude faster, respectively. In addition, the theory explicitly relates a number of morphological and topological parameters directly to the transport coefficient, whereby the distributions that characterize the structure are readily available for further analysis. Furthermore, ATN's explicit development provides insight into the nature of the tortuosity factor and offers the potential to apply theory from network science and to consider the optimization of a network's effective resistance in a mathematically rigorous manner. The ATN model's speed and relative ease-of-use offer the potential to aid in accelerating the design (with respect to transport), and thus reducing the cost, of energy materials.

  17. Adaptive fuzzy-neural-network control for maglev transportation system.

    PubMed

    Wai, Rong-Jong; Lee, Jeng-Dao

    2008-01-01

    A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.

  18. 40 CFR 93.106 - Content of transportation plans and timeframe of conformity determinations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... modifications to the existing transportation network which the transportation plan envisions to be operational in the horizon years. Additions and modifications to the highway network shall be sufficiently... effect on route options between transportation analysis zones. Each added or modified highway segment...

  19. 40 CFR 93.106 - Content of transportation plans and timeframe of conformity determinations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... modifications to the existing transportation network which the transportation plan envisions to be operational in the horizon years. Additions and modifications to the highway network shall be sufficiently... effect on route options between transportation analysis zones. Each added or modified highway segment...

  20. 40 CFR 93.106 - Content of transportation plans and timeframe of conformity determinations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... modifications to the existing transportation network which the transportation plan envisions to be operational in the horizon years. Additions and modifications to the highway network shall be sufficiently... effect on route options between transportation analysis zones. Each added or modified highway segment...

  1. 40 CFR 93.106 - Content of transportation plans and timeframe of conformity determinations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... modifications to the existing transportation network which the transportation plan envisions to be operational in the horizon years. Additions and modifications to the highway network shall be sufficiently... effect on route options between transportation analysis zones. Each added or modified highway segment...

  2. 40 CFR 93.106 - Content of transportation plans and timeframe of conformity determinations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... modifications to the existing transportation network which the transportation plan envisions to be operational in the horizon years. Additions and modifications to the highway network shall be sufficiently... effect on route options between transportation analysis zones. Each added or modified highway segment...

  3. Constraints of nonresponding flows based on cross layers in the networks

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi-Chao; Xiao, Yang; Wang, Dong

    2016-02-01

    In the active queue management (AQM) scheme, core routers cannot manage and constrain user datagram protocol (UDP) data flows by the sliding window control mechanism in the transport layer due to the nonresponsive nature of such traffic flows. However, the UDP traffics occupy a large part of the network service nowadays which brings a great challenge to the stability of the more and more complex networks. To solve the uncontrollable problem, this paper proposes a cross layers random early detection (CLRED) scheme, which can control the nonresponding UDP-like flows rate effectively when congestion occurs in the access point (AP). The CLRED makes use of the MAC frame acknowledgement (ACK) transmitting congestion information to the sources nodes and utilizes the back-off windows of the MAC layer throttling data rate. Consequently, the UDP-like flows data rate can be restrained timely by the sources nodes in order to alleviate congestion in the complex networks. The proposed CLRED can constrain the nonresponsive flows availably and make the communication expedite, so that the network can sustain stable. The simulation results of network simulator-2 (NS2) verify the proposed CLRED scheme.

  4. A Numerical Model of Anisotropic Mass Transport Through Grain Boundary Networks

    NASA Astrophysics Data System (ADS)

    Wang, Yibo

    Tin (Sn) thin films are commonly used in electronic circuit applications as coatings on contacts and solders for joining components. It is widely observed, for some such system, that whiskers---long, thin crystalline structures---emerge and grow from the film. The Sn whisker phenomenon has become a highly active research area since Sn whiskers have caused a large amount of damage and loss in manufacturing, military, medical and power industries. Though lead (Pb) addition to Sn has been used to solve this problem for over five decades, the adverse environmental and health effects of Pb have motivated legislation to severely constrain Pb use in society. People are researching and seeking the reasons which cause whiskers and corresponding methods to solve the problem. The contributing factors to cause a Sn whisker are potentially many and much still remains unknown. Better understanding of fundamental driving forces should point toward strategies to improve (a) the accuracy with which we can predict whisker formation, and (b) our ability to mitigate the phenomenon. This thesis summarizes recent important research achievements in understanding Sn whisker formation and growth, both experimentally and theoretically. Focus is then placed on examining the role that anisotropy in grain boundary diffusivity plays in determining whisker characteristics (specifically, whether they form and, if so, where on a surface). To study this aspect of the problem and to enable future studies on stress driven grain boundary diffusion, this thesis presents a numerical anisotropic mass transport model. In addition to presenting details of the model and implementation, model predictions for a set of increasingly complex grain boundary networks are discussed. Preliminary results from the model provide evidence that anisotropic grain boundary diffusion may be a primary driving mechanism in whisker formation.

  5. A link-adding strategy for transport efficiency of complex networks

    NASA Astrophysics Data System (ADS)

    Ma, Jinlong; Han, Weizhan; Guo, Qing; Wang, Zhenyong; Zhang, Shuai

    2016-12-01

    The transport efficiency is one of the critical parameters to evaluate the performance of a network. In this paper, we propose an improved efficient (IE) strategy to enhance the network transport efficiency of complex networks by adding a fraction of links to an existing network based on the node’s local degree centrality and the shortest path length. Simulation results show that the proposed strategy can bring better traffic capacity and shorter average shortest path length than the low-degree-first (LDF) strategy under the shortest path routing protocol. It is found that the proposed strategy is beneficial to the improvement of overall traffic handling and delivering ability of the network. This study can alleviate the congestion in networks, and is helpful to design and optimize realistic networks.

  6. Imaging complex nutrient dynamics in mycelial networks.

    PubMed

    Fricker, M D; Lee, J A; Bebber, D P; Tlalka, M; Hynes, J; Darrah, P R; Watkinson, S C; Boddy, L

    2008-08-01

    Transport networks are vital components of multi-cellular organisms, distributing nutrients and removing waste products. Animal cardiovascular and respiratory systems, and plant vasculature, are branching trees whose architecture is thought to determine universal scaling laws in these organisms. In contrast, the transport systems of many multi-cellular fungi do not fit into this conceptual framework, as they have evolved to explore a patchy environment in search of new resources, rather than ramify through a three-dimensional organism. These fungi grow as a foraging mycelium, formed by the branching and fusion of threadlike hyphae, that gives rise to a complex network. To function efficiently, the mycelial network must both transport nutrients between spatially separated source and sink regions and also maintain its integrity in the face of continuous attack by mycophagous insects or random damage. Here we review the development of novel imaging approaches and software tools that we have used to characterise nutrient transport and network formation in foraging mycelia over a range of spatial scales. On a millimetre scale, we have used a combination of time-lapse confocal imaging and fluorescence recovery after photobleaching to quantify the rate of diffusive transport through the unique vacuole system in individual hyphae. These data then form the basis of a simulation model to predict the impact of such diffusion-based movement on a scale of several millimetres. On a centimetre scale, we have used novel photon-counting scintillation imaging techniques to visualize radiolabel movement in small microcosms. This approach has revealed novel N-transport phenomena, including rapid, preferential N-resource allocation to C-rich sinks, induction of simultaneous bi-directional transport, abrupt switching between different pre-existing transport routes, and a strong pulsatile component to transport in some species. Analysis of the pulsatile transport component using Fourier techniques shows that as the colony forms, it self-organizes into well demarcated domains that are identifiable by differences in the phase relationship of the pulses. On the centimetre to metre scale, we have begun to use techniques borrowed from graph theory to characterize the development and dynamics of the network, and used these abstracted network models to predict the transport characteristics, resilience, and cost of the network.

  7. First field demonstration of cloud datacenter workflow automation employing dynamic optical transport network resources under OpenStack and OpenFlow orchestration.

    PubMed

    Szyrkowiec, Thomas; Autenrieth, Achim; Gunning, Paul; Wright, Paul; Lord, Andrew; Elbers, Jörg-Peter; Lumb, Alan

    2014-02-10

    For the first time, we demonstrate the orchestration of elastic datacenter and inter-datacenter transport network resources using a combination of OpenStack and OpenFlow. Programmatic control allows a datacenter operator to dynamically request optical lightpaths from a transport network operator to accommodate rapid changes of inter-datacenter workflows.

  8. An overload behavior detection system for engineering transport vehicles based on deep learning

    NASA Astrophysics Data System (ADS)

    Zhou, Libo; Wu, Gang

    2018-04-01

    This paper builds an overloaded truck detect system called ITMD to help traffic department automatically identify the engineering transport vehicles (commonly known as `dirt truck') in CCTV and determine whether the truck is overloaded or not. We build the ITMD system based on the Single Shot MultiBox Detector (SSD) model. By constructing the image dataset of the truck and adjusting hyper-parameters of the original SSD neural network, we successfully trained a basic network model which the ITMD system depends on. The basic ITMD system achieves 83.01% mAP on classifying overload/non-overload truck, which is a not bad result. Still, some shortcomings of basic ITMD system have been targeted to enhance: it is easy for the ITMD system to misclassify other similar vehicle as truck. In response to this problem, we optimized the basic ITMD system, which effectively reduced basic model's false recognition rate. The optimized ITMD system achieved 86.18% mAP on the test set, which is better than the 83.01% mAP of the basic ITMD system.

  9. Nonlinear electronic transport and enhanced catalytic behavior caused by native oxides on Cu nanowires

    NASA Astrophysics Data System (ADS)

    Hajimammadov, Rashad; Csendes, Zita; Ojakoski, Juha-Matti; Lorite, Gabriela Simone; Mohl, Melinda; Kordas, Krisztian

    2017-09-01

    Electrical transport properties of individual nanowires (both in axial and transversal directions) and their random networks suggest rapid oxidation when Cu is exposed to ambient conditions. The oxidation process is elucidated by thorough XRD, XPS and Raman analyzes conducted for a period of 30 days. Based on the obtained experimental data, we may conclude that first, cuprous oxide and copper hydroxide form that finally transform to cupric oxide. In electrical applications, oxidation of copper is not a true problem as long as thin films or bulk metal is concerned. However, as highlighted in our work, this is not the case for nanowires, since the oxidized surface plays quite important role in the contact formation and also in the conduction of percolated nanowire networks. On the other hand, by taking advantage of the mixed surface oxide states present on the nanowires along with their large specific surface area, we tested and found excellent catalytic activity of the oxidized nanowires in phenol oxidation, which suggests further applications of these materials in catalysis.

  10. Network planning under uncertainties

    NASA Astrophysics Data System (ADS)

    Ho, Kwok Shing; Cheung, Kwok Wai

    2008-11-01

    One of the main focuses for network planning is on the optimization of network resources required to build a network under certain traffic demand projection. Traditionally, the inputs to this type of network planning problems are treated as deterministic. In reality, the varying traffic requirements and fluctuations in network resources can cause uncertainties in the decision models. The failure to include the uncertainties in the network design process can severely affect the feasibility and economics of the network. Therefore, it is essential to find a solution that can be insensitive to the uncertain conditions during the network planning process. As early as in the 1960's, a network planning problem with varying traffic requirements over time had been studied. Up to now, this kind of network planning problems is still being active researched, especially for the VPN network design. Another kind of network planning problems under uncertainties that has been studied actively in the past decade addresses the fluctuations in network resources. One such hotly pursued research topic is survivable network planning. It considers the design of a network under uncertainties brought by the fluctuations in topology to meet the requirement that the network remains intact up to a certain number of faults occurring anywhere in the network. Recently, the authors proposed a new planning methodology called Generalized Survivable Network that tackles the network design problem under both varying traffic requirements and fluctuations of topology. Although all the above network planning problems handle various kinds of uncertainties, it is hard to find a generic framework under more general uncertainty conditions that allows a more systematic way to solve the problems. With a unified framework, the seemingly diverse models and algorithms can be intimately related and possibly more insights and improvements can be brought out for solving the problem. This motivates us to seek a generic framework for solving the network planning problem under uncertainties. In addition to reviewing the various network planning problems involving uncertainties, we also propose that a unified framework based on robust optimization can be used to solve a rather large segment of network planning problem under uncertainties. Robust optimization is first introduced in the operations research literature and is a framework that incorporates information about the uncertainty sets for the parameters in the optimization model. Even though robust optimization is originated from tackling the uncertainty in the optimization process, it can serve as a comprehensive and suitable framework for tackling generic network planning problems under uncertainties. In this paper, we begin by explaining the main ideas behind the robust optimization approach. Then we demonstrate the capabilities of the proposed framework by giving out some examples of how the robust optimization framework can be applied to the current common network planning problems under uncertain environments. Next, we list some practical considerations for solving the network planning problem under uncertainties with the proposed framework. Finally, we conclude this article with some thoughts on the future directions for applying this framework to solve other network planning problems.

  11. Transport spatial model for the definition of green routes for city logistics centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pamučar, Dragan, E-mail: dpamucar@gmail.com; Gigović, Ljubomir, E-mail: gigoviclj@gmail.com; Ćirović, Goran, E-mail: cirovic@sezampro.rs

    This paper presents a transport spatial decision support model (TSDSM) for carrying out the optimization of green routes for city logistics centers. The TSDSM model is based on the integration of the multi-criteria method of Weighted Linear Combination (WLC) and the modified Dijkstra algorithm within a geographic information system (GIS). The GIS is used for processing spatial data. The proposed model makes it possible to plan routes for green vehicles and maximize the positive effects on the environment, which can be seen in the reduction of harmful gas emissions and an increase in the air quality in highly populated areas.more » The scheduling of delivery vehicles is given as a problem of optimization in terms of the parameters of: the environment, health, use of space and logistics operating costs. Each of these input parameters was thoroughly examined and broken down in the GIS into criteria which further describe them. The model presented here takes into account the fact that logistics operators have a limited number of environmentally friendly (green) vehicles available. The TSDSM was tested on a network of roads with 127 links for the delivery of goods from the city logistics center to the user. The model supports any number of available environmentally friendly or environmentally unfriendly vehicles consistent with the size of the network and the transportation requirements. - Highlights: • Model for routing light delivery vehicles in urban areas. • Optimization of green routes for city logistics centers. • The proposed model maximizes the positive effects on the environment. • The model was tested on a real network.« less

  12. Performance Analysis of Optical Mobile Fronthaul for Cloud Radio Access Networks

    NASA Astrophysics Data System (ADS)

    Zhang, Jiawei; Xiao, Yuming; Li, Hui; Ji, Yuefeng

    2017-10-01

    Cloud radio access networks (C-RAN) separates baseband units (BBU) of conventional base station to a centralized pool which connects remote radio heads (RRH) through mobile fronthaul. Mobile fronthaul is a new network segment of C-RAN, it is designed to transport digital sampling data between BBU and RRH. Optical transport networks that provide large bandwidth and low latency is a promising fronthaul solution. In this paper, we discuss several optical transport networks which are candidates for mobile fronthaul, analyze their performances including the number of used wavelength, round-trip latency and wavelength utilization.

  13. Satellite Radar Interferometry For Risk Management Of Gas Pipeline Networks

    NASA Astrophysics Data System (ADS)

    Ianoschi, Raluca; Schouten, Mathijs; Bas Leezenberg, Pieter; Dheenathayalan, Prabu; Hanssen, Ramon

    2013-12-01

    InSAR time series analyses can be fine-tuned for specific applications, yielding a potential increase in benchmark density, precision and reliability. Here we demonstrate the algorithms developed for gas pipeline monitoring, enabling operators to precisely pinpoint unstable locations. This helps asset management in planning, prioritizing and focusing in-situ inspections, thus reducing maintenance costs. In unconsolidated Quaternary soils, ground settlement contributes to possible failure of brittle cast iron gas pipes and their connections to houses. Other risk factors include the age and material of the pipe. The soil dynamics have led to a catastrophic explosion in the city of Amsterdam, which triggered an increased awareness for the significance of this problem. As the extent of the networks can be very wide, InSAR is shown to be a valuable source of information for identifying the hazard regions. We monitor subsidence affecting an urban gas transportation network in the Netherlands using both medium and high resolution SAR data. Results for the 2003-2010 period provide clear insights on the differential subsidence rates in the area. This enables characterization of underground motion that affects the integrity of the pipeline. High resolution SAR data add extra detail of door-to-door pipeline connections, which are vulnerable due to different settlements between house connections and main pipelines. The rates which we measure represent important input in planning of maintenance works. Managers can decide the priority and timing for inspecting the pipelines. The service helps manage the risk and reduce operational cost in gas transportation networks.

  14. Optical Ethernet

    NASA Astrophysics Data System (ADS)

    Chan, Calvin C. K.; Lam, Cedric F.; Tsang, Danny H. K.

    2005-09-01

    Call for Papers: Optical Ethernet The Journal of Optical Networking (JON) is soliciting papers for a second feature issue on Optical Ethernet. Ethernet has evolved from a LAN technology connecting desktop computers to a universal broadband network interface. It is not only the vehicle for local data connectivity but also the standard interface for next-generation network equipment such as video servers and IP telephony. High-speed Ethernet has been increasingly assuming the volume of backbone network traffic from SONET/SDH-based circuit applications. It is clear that IP has become the universal network protocol for future converged networks, and Ethernet is becoming the ubiquitous link layer for connectivity. Network operators have been offering Ethernet services for several years. Problems and new requirements in Ethernet service offerings have been captured through previous experience. New study groups and standards bodies have been formed to address these problems. This feature issue aims at reviewing and updating the new developments and R&D efforts of high-speed Ethernet in recent years, especially those related to the field of optical networking. Scope of Submission The scope of the papers includes, but is not limited to, the following: Ethernet PHY development 10-Gbit Ethernet on multimode fiber Native Ethernet transport and Ethernet on legacy networks EPON Ethernet OAM Resilient packet ring (RPR) and Ethernet QoS definition and management on Ethernet Ethernet protection switching Circuit emulation services on Ethernet Transparent LAN service development Carrier VLAN and Ethernet Ethernet MAC frame expansion Ethernet switching High-speed Ethernet applications Economic models of high-speed Ethernet services Ethernet field deployment and standard activities To submit to this special issue, follow the normal procedure for submission to JON, indicating "Optical Ethernet feature" in the "Comments" field of the online submission form. For all other questions relating to this feature issue, please send an e-mail to jon@osa.org, subject line "Optical Ethernet." Additional information can be found on the JON website: http://www.osa-jon.org/submission/

  15. Construction of Multimodal Transport Information Platform

    NASA Astrophysics Data System (ADS)

    Wang, Ya; Cheng, Yu; Zhao, Zhi

    2018-06-01

    With the rapid development of economy, the volume of transportation in China is increasing, the opening process of the market is accelerating, the scale of enterprises is expanding, the service quality is being improved, and the container multimodal transport is developing continuously.The hardware infrastructure of container multimodal transport is improved obviously, but the network platform construction of multimodal transport is still insufficient.Taking Shandong region of China as an example, the present situation of container multimodal transport in Shandong area can no longer meet the requirement of rapid development of container, and the construction of network platform needs to be solved urgently. Therefore, this paper will briefly describe the conception of construction of multimodal transport network platform in Shandong area.In order to achieve the rapid development of multimodal transport.

  16. Systems for the Intermodal Routing of Spent Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Steven K; Liu, Cheng

    The safe and secure movement of spent nuclear fuel from shutdown and active reactor facilities to intermediate or long term storage sites may, in some instances, require the use of several modes of transportation to accomplish the move. To that end, a fully operable multi-modal routing system is being developed within Oak Ridge National Laboratory s (ORNL) WebTRAGIS (Transportation Routing Analysis Geographic Information System). This study aims to provide an overview of multi-modal routing, the existing state of the TRAGIS networks, the source data needs, and the requirements for developing structural relationships between various modes to create a suitable systemmore » for modeling the transport of spent nuclear fuel via a multimodal network. Modern transportation systems are comprised of interconnected, yet separate, modal networks. Efficient transportation networks rely upon the smooth transfer of cargoes at junction points that serve as connectors between modes. A key logistical impediment to the shipment of spent nuclear fuel is the absence of identified or designated transfer locations between transport modes. Understanding the potential network impacts on intermodal transportation of spent nuclear fuel is vital for planning transportation routes from origin to destination. By identifying key locations where modes intersect, routing decisions can be made to prioritize cost savings, optimize transport times and minimize potential risks to the population and environment. In order to facilitate such a process, ORNL began the development of a base intermodal network and associated routing code. The network was developed using previous intermodal networks and information from publicly available data sources to construct a database of potential intermodal transfer locations with likely capability to handle spent nuclear fuel casks. The coding development focused on modifying the existing WebTRAGIS routing code to accommodate intermodal transfers and the selection of prioritization constraints and modifiers to determine route selection. The limitations of the current model and future directions for development are discussed, including the current state of information on possible intermodal transfer locations for spent fuel.« less

  17. Mathematical model of highways network optimization

    NASA Astrophysics Data System (ADS)

    Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.

    2017-12-01

    The article deals with the issue of highways network design. Studies show that the main requirement from road transport for the road network is to ensure the realization of all the transport links served by it, with the least possible cost. The goal of optimizing the network of highways is to increase the efficiency of transport. It is necessary to take into account a large number of factors that make it difficult to quantify and qualify their impact on the road network. In this paper, we propose building an optimal variant for locating the road network on the basis of a mathematical model. The article defines the criteria for optimality and objective functions that reflect the requirements for the road network. The most fully satisfying condition for optimality is the minimization of road and transport costs. We adopted this indicator as a criterion of optimality in the economic-mathematical model of a network of highways. Studies have shown that each offset point in the optimal binding road network is associated with all other corresponding points in the directions providing the least financial costs necessary to move passengers and cargo from this point to the other corresponding points. The article presents general principles for constructing an optimal network of roads.

  18. Network Aggregation in Transportation Planning : Volume I : Summary and Survey

    DOT National Transportation Integrated Search

    1978-04-01

    Volume 1 summarizes research on network aggregation in transportation models. It includes a survey of network aggregation practices, definition of an extraction aggregation model, computational results on a heuristic implementation of the model, and ...

  19. Role of Distance-Based Routing in Traffic Dynamics on Mobile Networks

    NASA Astrophysics Data System (ADS)

    Yang, Han-Xin; Wang, Wen-Xu

    2013-06-01

    Despite of intensive investigations on transportation dynamics taking place on complex networks with fixed structures, a deep understanding of networks consisting of mobile nodes is challenging yet, especially the lacking of insight into the effects of routing strategies on transmission efficiency. We introduce a distance-based routing strategy for networks of mobile agents toward enhancing the network throughput and the transmission efficiency. We study the transportation capacity and delivering time of data packets associated with mobility and communication ability. Interestingly, we find that the transportation capacity is optimized at moderate moving speed, which is quite different from random routing strategy. In addition, both continuous and discontinuous transitions from free flow to congestions are observed. Degree distributions are explored in order to explain the enhancement of network throughput and other observations. Our work is valuable toward understanding complex transportation dynamics and designing effective routing protocols.

  20. Acquisition management of the Global Transportation Network

    DOT National Transportation Integrated Search

    2001-08-02

    This report discusses the acquisition management of the Global transportation Network by the U.S. Transportation Command. This report is one in a series of audit reports addressing DoD acquisition management of information technology systems. The Glo...

  1. Freight Transportation Energy Use : Appendix. Transportation Network Model Output.

    DOT National Transportation Integrated Search

    1978-07-01

    The overall design of the TSC Freight Energy Model is presented. A hierarchical modeling strategy is used, in which detailed modal simulators estimate the performance characteristics of transportation network elements, and the estimates are input to ...

  2. Photo-induced Mass Transport through Polymer Networks

    NASA Astrophysics Data System (ADS)

    Meng, Yuan; Anthamatten, Mitchell

    2014-03-01

    Among adaptable materials, photo-responsive polymers are especially attractive as they allow for spatiotemporal stimuli and response. We have recently developed a macromolecular network capable of photo-induced mass transport of covalently bound species. The system comprises of crosslinked chains that form an elastic network and photosensitive fluorescent arms that become mobile upon irradiation. We form loosely crosslinked polymer networks by Michael-Addition between multifunctional thiols and small molecule containing acrylate end-groups. The arms are connected to the network by allyl sulfide, that undergoes addition-fragmentation chain transfer (AFCT) in the presence of free radicals, releasing diffusible fluorophore. The networks are loaded with photoinitiator to allow for spatial modulation of the AFCT reactions. FRAP experiments within bulk elastomers are conducted to establish correlations between the fluorophore's diffusion coefficient and experimental variables such as network architecture, temperature and UV intensity. Photo-induced mass transport between two contacted films is demonstrated, and release of fluorophore into a solvent is investigated. Spatial and temporal control of mass transport could benefit drug release, printing, and sensing applications.

  3. A collection of public transport network data sets for 25 cities

    PubMed Central

    Kujala, Rainer; Weckström, Christoffer; Darst, Richard K.; Mladenović, Miloš N; Saramäki, Jari

    2018-01-01

    Various public transport (PT) agencies publish their route and timetable information with the General Transit Feed Specification (GTFS) as the standard open format. Timetable data are commonly used for PT passenger routing. They can also be used for studying the structure and organization of PT networks, as well as the accessibility and the level of service these networks provide. However, using raw GTFS data is challenging as researchers need to understand the details of the GTFS data format, make sure that the data contain all relevant modes of public transport, and have no errors. To lower the barrier for using GTFS data in research, we publish a curated collection of 25 cities' public transport networks in multiple easy-to-use formats including network edge lists, temporal network event lists, SQLite databases, GeoJSON files, and the GTFS data format. This collection promotes the study of how PT is organized across the globe, and also provides a testbed for developing tools for PT network analysis and PT routing algorithms. PMID:29762553

  4. Critical forces for actin filament buckling and force transmission influence transport in actomyosin networks

    NASA Astrophysics Data System (ADS)

    Stam, Samantha; Gardel, Margaret

    Viscoelastic networks of biopolymers coordinate the motion of intracellular objects during transport. These networks have nonlinear mechanical properties due to events such as filament buckling or breaking of cross-links. The influence of such nonlinear properties on the time and length scales of transport is not understood. Here, we use in vitro networks of actin and the motor protein myosin II to clarify how intracellular forces regulate active diffusion. We observe two transitions in the mean-squared displacement of cross-linked actin with increasing motor concentration. The first is a sharp transition from initially subdiffusive to diffusive-like motion that requires filament buckling but does not cause net contraction of the network. Further increase of the motor density produces a second transition to network rupture and ballistic actin transport. This corresponds with an increase in the correlation of motion and thus may be caused when forces propagate far enough for global motion. We conclude that filament buckling and overall network contraction require different amounts of force and produce distinct transport properties. These nonlinear transitions may act as mechanical switches that can be turned on to produce observed motion within cells.

  5. Intelligent optical networking with photonic cross connections

    NASA Astrophysics Data System (ADS)

    Ceuppens, L.; Jerphagnon, Olivier L.; Lang, Jonathan; Banerjee, Ayan; Blumenthal, Daniel J.

    2002-09-01

    Optical amplification and dense wavelength division multiplexing (DWDM) have fundamentally changed optical transport networks. Now that these technologies are widely adopted, the bottleneck has moved from the outside line plant to nodal central offices, where electrical switching equipment has not kept pace. While OEO technology was (and still is) necessary for grooming and traffic aggregation, the transport network has dramatically changed, requiring a dramatic rethinking of how networks need to be designed and operated. While todays transport networks carry remarkable amounts of bandwidth, their optical layer is fundamentally static and provides for only simple point-to-point transport. Efficiently managing the growing number of wavelengths can only be achieved through a new breed of networking element. Photonic switching systems (PSS) can efficiently execute these functions because they are bit rate, wavelength, and protocol transparent. With their all-optical switch cores and interfaces, PSS can switch optical signals at various levels of granularity wavelength, sub band, and composite DWDM fiber levels. Though cross-connect systems with electrical switch cores are available, they perform these functions at very high capital costs and operational inefficiencies. This paper examines enabling technologies for deployment of intelligent optical transport networks (OTN), and takes a practical perspective on survivability architecture migration and implementation issues.

  6. Coupling of active motion and advection shapes intracellular cargo transport.

    PubMed

    Khuc Trong, Philipp; Guck, Jochen; Goldstein, Raymond E

    2012-07-13

    Intracellular cargo transport can arise from passive diffusion, active motor-driven transport along cytoskeletal filament networks, and passive advection by fluid flows entrained by such cargo-motor motion. Active and advective transport are thus intrinsically coupled as related, yet different representations of the same underlying network structure. A reaction-advection-diffusion system is used here to show that this coupling affects the transport and localization of a passive tracer in a confined geometry. For sufficiently low diffusion, cargo localization to a target zone is optimized either by low reaction kinetics and decoupling of bound and unbound states, or by a mostly disordered cytoskeletal network with only weak directional bias. These generic results may help to rationalize subtle features of cytoskeletal networks, for example as observed for microtubules in fly oocytes.

  7. Perfect quantum excitation energy transport via single edge perturbation in a complete network

    NASA Astrophysics Data System (ADS)

    Bassereh, Hassan; Salari, Vahid; Shahbazi, Farhad; Ala-Nissila, Tapio

    2017-06-01

    We consider quantum excitation energy transport (EET) in a network of two-state nodes in the Markovian approximation by employing the Lindblad formulation. We find that EET from an initial site, where the excitation is inserted to the sink, is generally inefficient due to the inhibition of transport by localization of the excitation wave packet in a symmetric, fully-connected network. We demonstrate that the EET efficiency can be significantly increased up to ≈100% by perturbing hopping transport between the initial node and the one connected directly to the sink, while the rate of energy transport is highest at a finite value of the hopping parameter. We also show that prohibiting hopping between the other nodes which are not directly linked to the sink does not improve the efficiency. We show that external dephasing noise in the network plays a constructive role for EET in the presence of localization in the network, while in the absence of localization it reduces the efficiency of EET. We also consider the influence of off-diagonal disorder in the hopping parameters of the network.

  8. A kinetic Monte Carlo approach to study fluid transport in pore networks

    NASA Astrophysics Data System (ADS)

    Apostolopoulou, M.; Day, R.; Hull, R.; Stamatakis, M.; Striolo, A.

    2017-10-01

    The mechanism of fluid migration in porous networks continues to attract great interest. Darcy's law (phenomenological continuum theory), which is often used to describe macroscopically fluid flow through a porous material, is thought to fail in nano-channels. Transport through heterogeneous and anisotropic systems, characterized by a broad distribution of pores, occurs via a contribution of different transport mechanisms, all of which need to be accounted for. The situation is likely more complicated when immiscible fluid mixtures are present. To generalize the study of fluid transport through a porous network, we developed a stochastic kinetic Monte Carlo (KMC) model. In our lattice model, the pore network is represented as a set of connected finite volumes (voxels), and transport is simulated as a random walk of molecules, which "hop" from voxel to voxel. We simulated fluid transport along an effectively 1D pore and we compared the results to those expected by solving analytically the diffusion equation. The KMC model was then implemented to quantify the transport of methane through hydrated micropores, in which case atomistic molecular dynamic simulation results were reproduced. The model was then used to study flow through pore networks, where it was able to quantify the effect of the pore length and the effect of the network's connectivity. The results are consistent with experiments but also provide additional physical insights. Extension of the model will be useful to better understand fluid transport in shale rocks.

  9. Dispersion of a Passive Scalar Within and Above an Urban Street Network

    NASA Astrophysics Data System (ADS)

    Goulart, E. V.; Coceal, O.; Belcher, S. E.

    2018-03-01

    The transport of a passive scalar from a continuous point-source release in an urban street network is studied using direct numerical simulation (DNS). Dispersion through the network is characterized by evaluating horizontal fluxes of scalar within and above the urban canopy and vertical exchange fluxes through the canopy top. The relative magnitude and balance of these fluxes are used to distinguish three different regions relative to the source location: a near-field region, a transition region and a far-field region. The partitioning of each of these fluxes into mean and turbulent parts is computed. It is shown that within the canopy the horizontal turbulent flux in the street network is small, whereas above the canopy it comprises a significant fraction of the total flux. Vertical fluxes through the canopy top are predominantly turbulent. The mean and turbulent fluxes are respectively parametrized in terms of an advection velocity and a detrainment velocity and the parametrization incorporated into a simple box-network model. The model treats the coupled dispersion problem within and above the street network in a unified way and predictions of mean concentrations compare well with the DNS data. This demonstrates the usefulness of the box-network approach for process studies and interpretation of results from more detailed numerical simulations.

  10. Groundwater Discharge of Legacy Nitrogen to River Networks: Linking Regional Groundwater Models to Streambed Groundwater-Surface Water Exchange and Nitrogen Processing

    NASA Astrophysics Data System (ADS)

    Barclay, J. R.; Helton, A. M.; Briggs, M. A.; Starn, J. J.; Hunt, A.

    2017-12-01

    Despite years of management, excess nitrogen (N) is a pervasive problem in many aquatic ecosystems. More than half of surface water in the United States is derived from groundwater, and widespread N contamination in aquifers from decades of watershed N inputs suggest legacy N discharging from groundwater may contribute to contemporary N pollution problems in surface waters. Legacy N loads to streams and rivers are controlled by both regional scale flow paths and fine-scale processes that drive N transformations, such as groundwater-surface water exchange across steep redox gradients that occur at stream bed interfaces. Adequately incorporating these disparate scales is a challenge, but it is essential to understanding legacy N transport and making informed management decisions. We developed a regional groundwater flow model for the Farmington River, a HUC-8 basin that drains to the Long Island Sound, a coastal estuary that suffers from elevated N loads despite decades of management, to understand broad patterns of regional transport. To evaluate and refine the regional model, we used thermal infrared imagery paired with vertical temperature profiling to estimate groundwater discharge at the streambed interface. We also analyzed discharging groundwater for multiple N species to quantify fine scale patterns of N loading and transformation via denitrification at the streambed interface. Integrating regional and local estimates of groundwater discharge of legacy N to river networks should improve our ability to predict spatiotemporal patterns of legacy N loading to and transformation within surface waters.

  11. Ted Madden's Network Methods: Applications to the Earth's Schumann Resonances

    NASA Astrophysics Data System (ADS)

    Williams, E. R.; Yu, H.

    2014-12-01

    Ted Madden made clever use of electrical circuit concepts throughout his long career in geophysical research: induced polarization, DC resistivity, magnetotellurics, Schumann resonances, the transport properties of rocks and even elasticity and the brittle failure of stressed rocks. The general methods on network analogies were presented in a terse monograph (Madden, 1972) which came to be called "The Grey Peril" by his students, named more for the challenge of deciphering the material as for the color of its cover. This talk will focus on Ted's first major use of the transmission line analogy in treating the Earth's Schumann resonances. This approach in Madden and Thompson (1965) provided a greatly simplified two-dimensional treatment of an electromagnetic problem with a notable three-dimensional structure. This skillful treatment that included the role of the Earth's magnetic field also led to predictions that the Schumann resonance energy would leak into space, predictions that have been verified nearly 50 years later in satellite observations. An extension of the network analogy by Nelson (1967) using Green's function methods provides a means to treat the inverse problem for the background Schumann resonances for the global lightning activity. The development of Madden's methods will be discussed along with concrete results based on them for the monitoring of global lightning.

  12. Advanced development and calibration of the network robustness index to identify critical road network links.

    DOT National Transportation Integrated Search

    2010-05-31

    In this research project, transportation flexibility and reliability concepts are extended and applied : to a new method for identifying the most critical links in a road network. Current transportation : management practices typically utilize locali...

  13. Multiobjective sampling design for parameter estimation and model discrimination in groundwater solute transport

    USGS Publications Warehouse

    Knopman, Debra S.; Voss, Clifford I.

    1989-01-01

    Sampling design for site characterization studies of solute transport in porous media is formulated as a multiobjective problem. Optimal design of a sampling network is a sequential process in which the next phase of sampling is designed on the basis of all available physical knowledge of the system. Three objectives are considered: model discrimination, parameter estimation, and cost minimization. For the first two objectives, physically based measures of the value of information obtained from a set of observations are specified. In model discrimination, value of information of an observation point is measured in terms of the difference in solute concentration predicted by hypothesized models of transport. Points of greatest difference in predictions can contribute the most information to the discriminatory power of a sampling design. Sensitivity of solute concentration to a change in a parameter contributes information on the relative variance of a parameter estimate. Inclusion of points in a sampling design with high sensitivities to parameters tends to reduce variance in parameter estimates. Cost minimization accounts for both the capital cost of well installation and the operating costs of collection and analysis of field samples. Sensitivities, discrimination information, and well installation and sampling costs are used to form coefficients in the multiobjective problem in which the decision variables are binary (zero/one), each corresponding to the selection of an observation point in time and space. The solution to the multiobjective problem is a noninferior set of designs. To gain insight into effective design strategies, a one-dimensional solute transport problem is hypothesized. Then, an approximation of the noninferior set is found by enumerating 120 designs and evaluating objective functions for each of the designs. Trade-offs between pairs of objectives are demonstrated among the models. The value of an objective function for a given design is shown to correspond to the ability of a design to actually meet an objective.

  14. Transitions from trees to cycles in adaptive flow networks

    NASA Astrophysics Data System (ADS)

    Martens, Erik A.; Klemm, Konstantin

    2017-11-01

    Transport networks are crucial to the functioning of natural and technological systems. Nature features transport networks that are adaptive over a vast range of parameters, thus providing an impressive level of robustness in supply. Theoretical and experimental studies have found that real-world transport networks exhibit both tree-like motifs and cycles. When the network is subject to load fluctuations, the presence of cyclic motifs may help to reduce flow fluctuations and, thus, render supply in the network more robust. While previous studies considered network topology via optimization principles, here, we take a dynamical systems approach and study a simple model of a flow network with dynamically adapting weights (conductances). We assume a spatially non-uniform distribution of rapidly fluctuating loads in the sinks and investigate what network configurations are dynamically stable. The network converges to a spatially non-uniform stable configuration composed of both cyclic and tree-like structures. Cyclic structures emerge locally in a transcritical bifurcation as the amplitude of the load fluctuations is increased. The resulting adaptive dynamics thus partitions the network into two distinct regions with cyclic and tree-like structures. The location of the boundary between these two regions is determined by the amplitude of the fluctuations. These findings may explain why natural transport networks display cyclic structures in the micro-vascular regions near terminal nodes, but tree-like features in the regions with larger veins.

  15. Near real-time traffic routing

    NASA Technical Reports Server (NTRS)

    Yang, Chaowei (Inventor); Xie, Jibo (Inventor); Zhou, Bin (Inventor); Cao, Ying (Inventor)

    2012-01-01

    A near real-time physical transportation network routing system comprising: a traffic simulation computing grid and a dynamic traffic routing service computing grid. The traffic simulator produces traffic network travel time predictions for a physical transportation network using a traffic simulation model and common input data. The physical transportation network is divided into a multiple sections. Each section has a primary zone and a buffer zone. The traffic simulation computing grid includes multiple of traffic simulation computing nodes. The common input data includes static network characteristics, an origin-destination data table, dynamic traffic information data and historical traffic data. The dynamic traffic routing service computing grid includes multiple dynamic traffic routing computing nodes and generates traffic route(s) using the traffic network travel time predictions.

  16. The intelligence of dual simplex method to solve linear fractional fuzzy transportation problem.

    PubMed

    Narayanamoorthy, S; Kalyani, S

    2015-01-01

    An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.

  17. Interpolating between random walks and optimal transportation routes: Flow with multiple sources and targets

    NASA Astrophysics Data System (ADS)

    Guex, Guillaume

    2016-05-01

    In recent articles about graphs, different models proposed a formalism to find a type of path between two nodes, the source and the target, at crossroads between the shortest-path and the random-walk path. These models include a freely adjustable parameter, allowing to tune the behavior of the path toward randomized movements or direct routes. This article presents a natural generalization of these models, namely a model with multiple sources and targets. In this context, source nodes can be viewed as locations with a supply of a certain good (e.g. people, money, information) and target nodes as locations with a demand of the same good. An algorithm is constructed to display the flow of goods in the network between sources and targets. With again a freely adjustable parameter, this flow can be tuned to follow routes of minimum cost, thus displaying the flow in the context of the optimal transportation problem or, by contrast, a random flow, known to be similar to the electrical current flow if the random-walk is reversible. Moreover, a source-targetcoupling can be retrieved from this flow, offering an optimal assignment to the transportation problem. This algorithm is described in the first part of this article and then illustrated with case studies.

  18. Spatially varying dispersion to model breakthrough curves.

    PubMed

    Li, Guangquan

    2011-01-01

    Often the water flowing in a karst conduit is a combination of contaminated water entering at a sinkhole and cleaner water released from the limestone matrix. Transport processes in the conduit are controlled by advection, mixing (dilution and dispersion), and retention-release. In this article, a karst transport model considering advection, spatially varying dispersion, and dilution (from matrix seepage) is developed. Two approximate Green's functions are obtained using transformation of variables, respectively, for the initial-value problem and for the boundary-value problem. A numerical example illustrates that mixing associated with strong spatially varying conduit dispersion can cause strong skewness and long tailing in spring breakthrough curves. Comparison of the predicted breakthrough curve against that measured from a dye-tracing experiment between Ames Sink and Indian Spring, Northwest Florida, shows that the conduit dispersivity can be as large as 400 m. Such a large number is believed to imply strong solute interaction between the conduit and the matrix and/or multiple flow paths in a conduit network. It is concluded that Taylor dispersion is not dominant in transport in a karst conduit, and the complicated retention-release process between mobile- and immobile waters may be described by strong spatially varying conduit dispersion. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  19. The Department of Defense energy vulnerabilities: Potential problems and observations

    NASA Astrophysics Data System (ADS)

    Freiwald, D. A.; Berger, M. E.; Roach, J. F.

    1982-08-01

    The Department of Defense is almost entirely dependent on civilian energy supplies to meet its needs in both peacetime and periods of heightened conflict. There are a number of potential vulnerabilities to the continual and timely supply of energy to both the civilian and military sectors. These include denial of the energy resources themselves, disruption of critical transportation networks, destruction of storage facilities, and interruption of electrical power. This report briefly reviews the present situation for provision of energy from the civilian sector to the military. General vulnerabilities of the existing energy supply system are identified, along with the potential for armed aggression (including terrorist and sabotage activities) against the energy network. Conclusions and some tentative observations are made as to a proper response to the existing vulnerabilities.

  20. Optimization of OSPF Routing in IP Networks

    NASA Astrophysics Data System (ADS)

    Bley, Andreas; Fortz, Bernard; Gourdin, Eric; Holmberg, Kaj; Klopfenstein, Olivier; Pióro, Michał; Tomaszewski, Artur; Ümit, Hakan

    The Internet is a huge world-wide packet switching network comprised of more than 13,000 distinct subnetworks, referred to as Autonomous Systems (ASs) autonomous system AS . They all rely on the Internet Protocol (IP) internet protocol IP for transport of packets across the network. And most of them use shortest path routing protocols shortest path routing!protocols , such as OSPF or IS-IS, to control the routing of IP packets routing!of IP packets within an AS. The idea of the routing is extremely simple — every packet is forwarded on IP links along the shortest route between its source and destination nodes of the AS. The AS network administrator can manage the routing of packets in the AS by supplying the so-called administrative weights of IP links, which specify the link lengths that are used by the routing protocols for their shortest path computations. The main advantage of the shortest path routing policy is its simplicity, allowing for little administrative overhead. From the network engineering perspective, however, shortest path routing can pose problems in achieving satisfactory traffic handling efficiency. As all routing paths depend on the same routing metric routing!metric , it is not possible to configure the routing paths for the communication demands between different pairs of nodes explicitly or individually; the routing can be controlled only indirectly and only as a whole by modifying the routing metric. Thus, one of the main tasks when planning such networks is to find administrative link weights that induce a globally efficient traffic routing traffic!routing configuration of an AS. It turns out that this task leads to very difficult mathematical optimization problems. In this chapter, we discuss and describe exact integer programming models and solution approaches as well as practically efficient smart heuristics for such shortest path routing problems shortest path routing!problems .

  1. IJS: An Intelligent Junction Selection Based Routing Protocol for VANET to Support ITS Services.

    PubMed

    Bhoi, Sourav Kumar; Khilar, Pabitra Mohan

    2014-01-01

    Selecting junctions intelligently for data transmission provides better intelligent transportation system (ITS) services. The main problem in vehicular communication is high disturbances of link connectivity due to mobility and less density of vehicles. If link conditions are predicted earlier, then there is a less chance of performance degradation. In this paper, an intelligent junction selection based routing protocol (IJS) is proposed to transmit the data in a quickest path, in which the vehicles are mostly connected and have less link connectivity problem. In this protocol, a helping vehicle is set at every junction to control the communication by predicting link failures or network gaps in a route. Helping vehicle at the junction produces a score for every neighboring junction to forward the data to the destination by considering the current traffic information and selects that junction which has minimum score. IJS protocol is implemented and compared with GyTAR, A-STAR, and GSR routing protocols. Simulation results show that IJS performs better in terms of average end-to-end delay, network gap encounter, and number of hops.

  2. IJS: An Intelligent Junction Selection Based Routing Protocol for VANET to Support ITS Services

    PubMed Central

    Khilar, Pabitra Mohan

    2014-01-01

    Selecting junctions intelligently for data transmission provides better intelligent transportation system (ITS) services. The main problem in vehicular communication is high disturbances of link connectivity due to mobility and less density of vehicles. If link conditions are predicted earlier, then there is a less chance of performance degradation. In this paper, an intelligent junction selection based routing protocol (IJS) is proposed to transmit the data in a quickest path, in which the vehicles are mostly connected and have less link connectivity problem. In this protocol, a helping vehicle is set at every junction to control the communication by predicting link failures or network gaps in a route. Helping vehicle at the junction produces a score for every neighboring junction to forward the data to the destination by considering the current traffic information and selects that junction which has minimum score. IJS protocol is implemented and compared with GyTAR, A-STAR, and GSR routing protocols. Simulation results show that IJS performs better in terms of average end-to-end delay, network gap encounter, and number of hops. PMID:27433485

  3. Thermal Runaway in Jammed Networks

    NASA Astrophysics Data System (ADS)

    Lechman, Jeremy; Yarrington, Cole; Bolintineanu, Dan

    2017-06-01

    The study of thermal explosion has a long history. Names such as Semenov and Frank-Kamenetskii are associated with classical model descriptions under particular assumptions. In this talk we revisit this problem with particular focus on the latter's model for conduction dominated thermal transport and Arrenhius-type reaction chemistry. We extend this description to the case of inhomogeneous microstructure generated by packing mono-sized spheres via a well-defined ``Jamming'' protocol. With these material structures in hand, we recast the Frank-Kamenetskii problem into a reduced-order network form for conduction in particle packs. With this model we can efficiently investigate the variability of the time to ignition due to the random microstructure. Additionally, we propose a modal decomposition and stability analysis of the model akin to stability of linear systems. We highlight the physical insights this approach can give with respect to questions of material dependent performance variability. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  4. A multi-period capacitated school location problem with modular equipment and closest assignment considerations

    NASA Astrophysics Data System (ADS)

    Delmelle, Eric M.; Thill, Jean-Claude; Peeters, Dominique; Thomas, Isabelle

    2014-07-01

    In rapidly growing urban areas, it is deemed vital to expand (or contract) an existing network of public facilities to meet anticipated changes in the level of demand. We present a multi-period capacitated median model for school network facility location planning that minimizes transportation costs, while functional costs are subject to a budget constraint. The proposed Vintage Flexible Capacitated Location Problem (ViFCLP) has the flexibility to account for a minimum school-age closing requirement, while the maximum capacity of each school can be adjusted by the addition of modular units. Non-closest assignments are controlled by the introduction of a parameter penalizing excess travel. The applicability of the ViFCLP is illustrated on a large US school system (Charlotte-Mecklenburg, North Carolina) where high school demand is expected to grow faster with distance to the city center. Higher school capacities and greater penalty on travel impedance parameter reduce the number of non-closest assignments. The proposed model is beneficial to policy makers seeking to improve the provision and efficiency of public services over a multi-period planning horizon.

  5. Leveraging socially networked mobile ICT platforms for the last-mile delivery problem.

    PubMed

    Suh, Kyo; Smith, Timothy; Linhoff, Michelle

    2012-09-04

    Increasing numbers of people are managing their social networks on mobile information and communication technology (ICT) platforms. This study materializes these social relationships by leveraging spatial and networked information for sharing excess capacity to reduce the environmental impacts associated with "last-mile" package delivery systems from online purchases, particularly in low population density settings. Alternative package pickup location systems (PLS), such as a kiosk on a public transit platform or in a grocery store, have been suggested as effective strategies for reducing package travel miles and greenhouse gas emissions, compared to current door-to-door delivery models (CDS). However, our results suggest that a pickup location delivery system operating in a suburban setting may actually increase travel miles and emissions. Only once a social network is employed to assist in package pickup (SPLS) are significant reductions in the last-mile delivery distance and carbon emissions observed across both urban and suburban settings. Implications for logistics management's decades-long focus on improving efficiencies of dedicated distribution systems through specialization, as well as for public policy targeting carbon emissions of the transport sector are discussed.

  6. The design and application of a Transportable Inference Engine (TIE1)

    NASA Technical Reports Server (NTRS)

    Mclean, David R.

    1986-01-01

    A Transportable Inference Engine (TIE1) system has been developed by the author as part of the Interactive Experimenter Planning System (IEPS) task which is involved with developing expert systems in support of the Spacecraft Control Programs Branch at Goddard Space Flight Center in Greenbelt, Maryland. Unlike traditional inference engines, TIE1 is written in the C programming language. In the TIE1 system, knowledge is represented by a hierarchical network of objects which have rule frames. The TIE1 search algorithm uses a set of strategies, including backward chaining, to obtain the values of goals. The application of TIE1 to a spacecraft scheduling problem is described. This application involves the development of a strategies interpreter which uses TIE1 to do constraint checking.

  7. A systems approach to risk reduction of transportation infrastructure networks subject to multiple hazards : final report, December 31, 2008.

    DOT National Transportation Integrated Search

    2008-12-31

    Integrity, robustness, reliability, and resiliency of infrastructure networks are vital to the economy, : security and well-being of any country. Faced with threats caused by natural and man-made hazards, : transportation infrastructure network manag...

  8. The Intelligence of Dual Simplex Method to Solve Linear Fractional Fuzzy Transportation Problem

    PubMed Central

    Narayanamoorthy, S.; Kalyani, S.

    2015-01-01

    An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example. PMID:25810713

  9. Interplay between structure and transport properties of molten salt mixtures of ZnCl2-NaCl-KCl: A molecular dynamics study.

    PubMed

    Manga, Venkateswara Rao; Swinteck, Nichlas; Bringuier, Stefan; Lucas, Pierre; Deymier, Pierre; Muralidharan, Krishna

    2016-03-07

    Molten mixtures of network-forming covalently bonded ZnCl2 and network-modifying ionically bonded NaCl and KCl salts are investigated as high-temperature heat transfer fluids for concentrating solar power plants. Specifically, using molecular dynamics simulations, the interplay between the extent of the network structure, composition, and the transport properties (viscosity, thermal conductivity, and diffusion) of ZnCl2-NaCl-KCl molten salts is characterized. The Stokes-Einstein/Eyring relationship is found to break down in these network-forming liquids at high concentrations of ZnCl2 (>63 mol. %), while the Eyring relationship is seen with increasing KCl concentration. Further, the network modification due to the addition of K ions leads to formation of non-bridging terminal Cl ions, which in turn lead to a positive temperature dependence of thermal conductivity in these melts. This new understanding of transport in these ternary liquids enables the identification of appropriate concentrations of the network formers and network modifiers to design heat transfer fluids with desired transport properties for concentrating solar power plants.

  10. Collaborative learning in networks.

    PubMed

    Mason, Winter; Watts, Duncan J

    2012-01-17

    Complex problems in science, business, and engineering typically require some tradeoff between exploitation of known solutions and exploration for novel ones, where, in many cases, information about known solutions can also disseminate among individual problem solvers through formal or informal networks. Prior research on complex problem solving by collectives has found the counterintuitive result that inefficient networks, meaning networks that disseminate information relatively slowly, can perform better than efficient networks for problems that require extended exploration. In this paper, we report on a series of 256 Web-based experiments in which groups of 16 individuals collectively solved a complex problem and shared information through different communication networks. As expected, we found that collective exploration improved average success over independent exploration because good solutions could diffuse through the network. In contrast to prior work, however, we found that efficient networks outperformed inefficient networks, even in a problem space with qualitative properties thought to favor inefficient networks. We explain this result in terms of individual-level explore-exploit decisions, which we find were influenced by the network structure as well as by strategic considerations and the relative payoff between maxima. We conclude by discussing implications for real-world problem solving and possible extensions.

  11. Collaborative learning in networks

    PubMed Central

    Mason, Winter; Watts, Duncan J.

    2012-01-01

    Complex problems in science, business, and engineering typically require some tradeoff between exploitation of known solutions and exploration for novel ones, where, in many cases, information about known solutions can also disseminate among individual problem solvers through formal or informal networks. Prior research on complex problem solving by collectives has found the counterintuitive result that inefficient networks, meaning networks that disseminate information relatively slowly, can perform better than efficient networks for problems that require extended exploration. In this paper, we report on a series of 256 Web-based experiments in which groups of 16 individuals collectively solved a complex problem and shared information through different communication networks. As expected, we found that collective exploration improved average success over independent exploration because good solutions could diffuse through the network. In contrast to prior work, however, we found that efficient networks outperformed inefficient networks, even in a problem space with qualitative properties thought to favor inefficient networks. We explain this result in terms of individual-level explore-exploit decisions, which we find were influenced by the network structure as well as by strategic considerations and the relative payoff between maxima. We conclude by discussing implications for real-world problem solving and possible extensions. PMID:22184216

  12. Quantum Max-flow/Min-cut

    NASA Astrophysics Data System (ADS)

    Cui, Shawn X.; Freedman, Michael H.; Sattath, Or; Stong, Richard; Minton, Greg

    2016-06-01

    The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating an integral capacity to each edge and a tensor to each vertex in a flow network, we can also interpret it as a tensor network and, more specifically, as a linear map from the input space to the output space. The quantum max-flow is defined to be the maximal rank of this linear map over all choices of tensors. The quantum min-cut is defined to be the minimum product of the capacities of edges over all cuts of the tensor network. We show that unlike the classical case, the quantum max-flow=min-cut conjecture is not true in general. Under certain conditions, e.g., when the capacity on each edge is some power of a fixed integer, the quantum max-flow is proved to equal the quantum min-cut. However, concrete examples are also provided where the equality does not hold. We also found connections of quantum max-flow/min-cut with entropy of entanglement and the quantum satisfiability problem. We speculate that the phenomena revealed may be of interest both in spin systems in condensed matter and in quantum gravity.

  13. Modeling of FMISO [F18] nanoparticle PET tracer in normal-cancerous tissue based on real clinical image.

    PubMed

    Asgari, Hanie; Soltani, M; Sefidgar, Mostafa

    2018-07-01

    Hypoxia as one of the principal properties of tumor cells is a reaction to the deprivation of oxygen. The location of tumor cells could be identified by assessment of oxygen and nutrient level in human body. Positron emission tomography (PET) is a well-known non-invasive method that is able to measure hypoxia based on the FMISO (Fluoromisonidazole) tracer dynamic. This paper aims to study the PET tracer concentration through convection-diffusion-reaction equations in a real human capillary-like network. A non-uniform oxygen pressure along the capillary path and convection mechanism for FMISO transport are taken into account to accurately model the characteristics of the tracer. To this end, a multi-scale model consists of laminar blood flow through the capillary network, interstitial pressure, oxygen pressure, FMISO diffusion and FMISO convection transport in the extravascular region is developed. The present model considers both normal and tumor tissue regions in computational domain. The accuracy of numerical model is verified with the experimental results available in the literature. The convection and diffusion types of transport mechanism are employed in order to calculate the concentration of FMISO in the normal and tumor sub-domain. The influences of intravascular oxygen pressure, FMISO transport mechanisms, capillary density and different types of tissue on the FMISO concentration have been investigated. According to result (Table 4) the convection mechanism of FMISO molecules transportation is negligible, but it causes more accuracy of the proposed model. The approach of present study can be employed in order to investigate the effects of various parameters, such as tumor shape, on the dynamic behavior of different PET tracers, such as FDG, can be extended to different case study problems, such as drug delivery. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Betweenness centrality in a weighted network

    NASA Astrophysics Data System (ADS)

    Wang, Huijuan; Hernandez, Javier Martin; van Mieghem, Piet

    2008-04-01

    When transport in networks follows the shortest paths, the union of all shortest path trees G∪SPT can be regarded as the “transport overlay network.” Overlay networks such as peer-to-peer networks or virtual private networks can be considered as a subgraph of G∪SPT . The traffic through the network is examined by the betweenness Bl of links in the overlay G∪SPT . The strength of disorder can be controlled by, e.g., tuning the extreme value index α of the independent and identically distributed polynomial link weights. In the strong disorder limit (α→0) , all transport flows over a critical backbone, the minimum spanning tree (MST). We investigate the betweenness distributions of wide classes of trees, such as the MST of those well-known network models and of various real-world complex networks. All these trees with different degree distributions (e.g., uniform, exponential, or power law) are found to possess a power law betweenness distribution Pr[Bl=j]˜j-c . The exponent c seems to be positively correlated with the degree variance of the tree and to be insensitive of the size N of a network. In the weak disorder regime, transport in the network traverses many links. We show that a link with smaller link weight tends to carry more traffic. This negative correlation between link weight and betweenness depends on α and the structure of the underlying topology.

  15. Synthesizing Porous NaTi2(PO4)3 Nanoparticles Embedded in 3D Graphene Networks for High-Rate and Long Cycle-Life Sodium Electrodes.

    PubMed

    Wu, Chao; Kopold, Peter; Ding, Yuan-Li; van Aken, Peter A; Maier, Joachim; Yu, Yan

    2015-06-23

    Sodium ion batteries attract increasing attention for large-scale energy storage as a promising alternative to the lithium counterparts in view of low cost and abundant sodium source. However, the large ion radius of Na brings about a series of challenging thermodynamic and kinetic difficulties to the electrodes for sodium-storage, including low reversible capacity and low ion transport, as well as large volume change. To mitigate or even overcome the kinetic problems, we develop a self-assembly route to a novel architecture consisting of nanosized porous NASICON-type NaTi2(PO4)3 particles embedded in microsized 3D graphene network. Such architecture synergistically combines the advantages of a 3D graphene network and of 0D porous nanoparticles. It greatly increases the electron/ion transport kinetics and assures the electrode structure integrity, leading to attractive electrochemical performance as reflected by a high rate-capability (112 mAh g(-1) at 1C, 105 mAh g(-1) at 5C, 96 mAh g(-1) at 10C, 67 mAh g(-1) at 50C), a long cycle-life (capacity retention of 80% after 1000 cycles at 10C), and a high initial Coulombic efficiency (>79%). This nanostructure design provides a promising pathway for developing high performance NASICON-type materials for sodium storage.

  16. The complex network of global cargo ship movements.

    PubMed

    Kaluza, Pablo; Kölzsch, Andrea; Gastner, Michael T; Blasius, Bernd

    2010-07-06

    Transportation networks play a crucial role in human mobility, the exchange of goods and the spread of invasive species. With 90 per cent of world trade carried by sea, the global network of merchant ships provides one of the most important modes of transportation. Here, we use information about the itineraries of 16 363 cargo ships during the year 2007 to construct a network of links between ports. We show that the network has several features that set it apart from other transportation networks. In particular, most ships can be classified into three categories: bulk dry carriers, container ships and oil tankers. These three categories do not only differ in the ships' physical characteristics, but also in their mobility patterns and networks. Container ships follow regularly repeating paths whereas bulk dry carriers and oil tankers move less predictably between ports. The network of all ship movements possesses a heavy-tailed distribution for the connectivity of ports and for the loads transported on the links with systematic differences between ship types. The data analysed in this paper improve current assumptions based on gravity models of ship movements, an important step towards understanding patterns of global trade and bioinvasion.

  17. The complex network of global cargo ship movements

    PubMed Central

    Kaluza, Pablo; Kölzsch, Andrea; Gastner, Michael T.; Blasius, Bernd

    2010-01-01

    Transportation networks play a crucial role in human mobility, the exchange of goods and the spread of invasive species. With 90 per cent of world trade carried by sea, the global network of merchant ships provides one of the most important modes of transportation. Here, we use information about the itineraries of 16 363 cargo ships during the year 2007 to construct a network of links between ports. We show that the network has several features that set it apart from other transportation networks. In particular, most ships can be classified into three categories: bulk dry carriers, container ships and oil tankers. These three categories do not only differ in the ships' physical characteristics, but also in their mobility patterns and networks. Container ships follow regularly repeating paths whereas bulk dry carriers and oil tankers move less predictably between ports. The network of all ship movements possesses a heavy-tailed distribution for the connectivity of ports and for the loads transported on the links with systematic differences between ship types. The data analysed in this paper improve current assumptions based on gravity models of ship movements, an important step towards understanding patterns of global trade and bioinvasion. PMID:20086053

  18. Intercontinental Transport of Aerosols: Implication for Regional Air Quality

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Ginoux, Paul

    2006-01-01

    Aerosol particles, also known as PM2.5 (particle diameter less than 2.5 microns) and PM10 (particle diameter less than 10 microns), is one of the key atmospheric components that determine ambient air quality. Current US air quality standards for PM10 (particles with diameter < 10 microns) and PM2.5 (particles with diameter 2.5 microns) are 50 pg/cu m and 15 pg/cu m, respectively. While local and regional emission sources are the main cause of air pollution problems, aerosols can be transported on a hemispheric or global scale. In this study, we use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to quantify contributions of long-range transport vs. local/regional pollution sources and from natural vs. anthropogenic sources to PM concentrations different regions. In particular, we estimate the hemispheric impact of anthropogenic sulfate aerosols and dust from major source areas on other regions in the world. The GOCART model results are compared with satellite remote sensing and ground-based network measurements of aerosol optical depth and concentrations.

  19. Effects of mobility and location on food access.

    PubMed

    Coveney, John; O'Dwyer, Lisel A

    2009-03-01

    Access to healthy food has become an important area of investigation for researchers interested in health disparities and inequalities. The debate about the existence and characteristics of 'food deserts' has increased the interest in food availability and equity in health research. This debate is crucial to an understanding of the factors leading to food security. Research reported here used in-depth interviews with respondents without private transport living within and outside food deserts in Adelaide, South Australia. The respondents came from a variety of households, including single and double parent families, and people living alone. The research found that living in a food desert did not, by itself, impose food access difficulties. Far more important was the access to independent transport to shops. A number of features were identified in this research including reliance on supermarkets, difficulties with public transport, and the provision of government schemes and systems that for some made food shopping much easier. The research suggests that food access problems in Adelaide are not so much the product of geographic distance between home and shop, as the social or welfare networks that allow people to access private transport.

  20. Toward efficiency in heterogeneous multispecies reactive transport modeling: A particle-tracking solution for first-order network reactions

    NASA Astrophysics Data System (ADS)

    Henri, Christopher; Fernàndez-Garcia, Daniel

    2015-04-01

    Modeling multi-species reactive transport in natural systems with strong heterogeneities and complex biochemical reactions is a major challenge for assessing groundwater polluted sites with organic and inorganic contaminants. A large variety of these contaminants react according to serial-parallel reaction networks commonly simplified by a combination of first-order kinetic reactions. In this context, a random-walk particle tracking method is presented. This method is capable of efficiently simulating the motion of particles affected by first-order network reactions in three-dimensional systems, which are represented by spatially variable physical and biochemical coefficients described at high resolution. The approach is based on the development of transition probabilities that describe the likelihood that particles belonging to a given species and location at a given time will be transformed into and moved to another species and location afterwards. These probabilities are derived from the solution matrix of the spatial moments governing equations. The method is fully coupled with reactions, free of numerical dispersion and overcomes the inherent numerical problems stemming from the incorporation of heterogeneities to reactive transport codes. In doing this, we demonstrate that the motion of particles follows a standard random walk with time-dependent effective retardation and dispersion parameters that depend on the initial and final chemical state of the particle. The behavior of effective parameters develops as a result of differential retardation effects among species. Moreover, explicit analytic solutions of the transition probability matrix and related particle motions are provided for serial reactions. An example of the effect of heterogeneity on the dechlorination of organic solvents in a three-dimensional random porous media shows that the power-law behavior typically observed in conservative tracers breakthrough curves can be largely compromised by the effect of biochemical reactions.

  1. Toward efficiency in heterogeneous multispecies reactive transport modeling: A particle-tracking solution for first-order network reactions

    NASA Astrophysics Data System (ADS)

    Henri, Christopher V.; Fernàndez-Garcia, Daniel

    2014-09-01

    Modeling multispecies reactive transport in natural systems with strong heterogeneities and complex biochemical reactions is a major challenge for assessing groundwater polluted sites with organic and inorganic contaminants. A large variety of these contaminants react according to serial-parallel reaction networks commonly simplified by a combination of first-order kinetic reactions. In this context, a random-walk particle tracking method is presented. This method is capable of efficiently simulating the motion of particles affected by first-order network reactions in three-dimensional systems, which are represented by spatially variable physical and biochemical coefficients described at high resolution. The approach is based on the development of transition probabilities that describe the likelihood that particles belonging to a given species and location at a given time will be transformed into and moved to another species and location afterward. These probabilities are derived from the solution matrix of the spatial moments governing equations. The method is fully coupled with reactions, free of numerical dispersion and overcomes the inherent numerical problems stemming from the incorporation of heterogeneities to reactive transport codes. In doing this, we demonstrate that the motion of particles follows a standard random walk with time-dependent effective retardation and dispersion parameters that depend on the initial and final chemical state of the particle. The behavior of effective parameters develops as a result of differential retardation effects among species. Moreover, explicit analytic solutions of the transition probability matrix and related particle motions are provided for serial reactions. An example of the effect of heterogeneity on the dechlorination of organic solvents in a three-dimensional random porous media shows that the power-law behavior typically observed in conservative tracers breakthrough curves can be largely compromised by the effect of biochemical reactions.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burchett, Deon L.; Chen, Richard Li-Yang; Phillips, Cynthia A.

    This report summarizes the work performed under the project project Next-Generation Algo- rithms for Assessing Infrastructure Vulnerability and Optimizing System Resilience. The goal of the project was to improve mathematical programming-based optimization technology for in- frastructure protection. In general, the owner of a network wishes to design a network a network that can perform well when certain transportation channels are inhibited (e.g. destroyed) by an adversary. These are typically bi-level problems where the owner designs a system, an adversary optimally attacks it, and then the owner can recover by optimally using the remaining network. This project funded three years ofmore » Deon Burchett's graduate research. Deon's graduate advisor, Professor Jean-Philippe Richard, and his Sandia advisors, Richard Chen and Cynthia Phillips, supported Deon on other funds or volunteer time. This report is, therefore. essentially a replication of the Ph.D. dissertation it funded [12] in a format required for project documentation. The thesis had some general polyhedral research. This is the study of the structure of the feasi- ble region of mathematical programs, such as integer programs. For example, an integer program optimizes a linear objective function subject to linear constraints, and (nonlinear) integrality con- straints on the variables. The feasible region without the integrality constraints is a convex polygon. Careful study of additional valid constraints can significantly improve computational performance. Here is the abstract from the dissertation: We perform a polyhedral study of a multi-commodity generalization of variable upper bound flow models. In particular, we establish some relations between facets of single- and multi- commodity models. We then introduce a new family of inequalities, which generalizes traditional flow cover inequalities to the multi-commodity context. We present encouraging numerical results. We also consider the directed edge-failure resilient network design problem (DRNDP). This problem entails the design of a directed multi-commodity flow network that is capable of fulfilling a specified percentage of demands in the event that any G arcs are destroyed, where G is a constant parameter. We present a formulation of DRNDP and solve it in a branch-column-cut framework. We present computational results.« less

  3. Transport through a network of capillaries from ultrametric diffusion equation with quadratic nonlinearity

    NASA Astrophysics Data System (ADS)

    Oleschko, K.; Khrennikov, A.

    2017-10-01

    This paper is about a novel mathematical framework to model transport (of, e.g., fluid or gas) through networks of capillaries. This framework takes into account the tree structure of the networks of capillaries. (Roughly speaking, we use the tree-like system of coordinates.) As is well known, tree-geometry can be topologically described as the geometry of an ultrametric space, i.e., a metric space in which the metric satisfies the strong triangle inequality: in each triangle, the third side is less than or equal to the maximum of two other sides. Thus transport (e.g., of oil or emulsion of oil and water in porous media, or blood and air in biological organisms) through networks of capillaries can be mathematically modelled as ultrametric diffusion. Such modelling was performed in a series of recently published papers of the authors. However, the process of transport through capillaries can be only approximately described by the linear diffusion, because the concentration of, e.g., oil droplets, in a capillary can essentially modify the dynamics. Therefore nonlinear dynamical equations provide a more adequate model of transport in a network of capillaries. We consider a nonlinear ultrametric diffusion equation with quadratic nonlinearity - to model transport in such a network. Here, as in the linear case, we apply the theory of ultrametric wavelets. The paper also contains a simple introduction to theory of ultrametric spaces and analysis on them.

  4. Planning the City Logistics Terminal Location by Applying the Green p-Median Model and Type-2 Neurofuzzy Network

    PubMed Central

    Pamučar, Dragan; Vasin, Ljubislav; Atanasković, Predrag; Miličić, Milica

    2016-01-01

    The paper herein presents green p-median problem (GMP) which uses the adaptive type-2 neural network for the processing of environmental and sociological parameters including costs of logistics operators and demonstrates the influence of these parameters on planning the location for the city logistics terminal (CLT) within the discrete network. CLT shows direct effects on increment of traffic volume especially in urban areas, which further results in negative environmental effects such as air pollution and noise as well as increased number of urban populations suffering from bronchitis, asthma, and similar respiratory infections. By applying the green p-median model (GMM), negative effects on environment and health in urban areas caused by delivery vehicles may be reduced to minimum. This model creates real possibilities for making the proper investment decisions so as profitable investments may be realized in the field of transport infrastructure. The paper herein also includes testing of GMM in real conditions on four CLT locations in Belgrade City zone. PMID:27195005

  5. Planning the City Logistics Terminal Location by Applying the Green p-Median Model and Type-2 Neurofuzzy Network.

    PubMed

    Pamučar, Dragan; Vasin, Ljubislav; Atanasković, Predrag; Miličić, Milica

    2016-01-01

    The paper herein presents green p-median problem (GMP) which uses the adaptive type-2 neural network for the processing of environmental and sociological parameters including costs of logistics operators and demonstrates the influence of these parameters on planning the location for the city logistics terminal (CLT) within the discrete network. CLT shows direct effects on increment of traffic volume especially in urban areas, which further results in negative environmental effects such as air pollution and noise as well as increased number of urban populations suffering from bronchitis, asthma, and similar respiratory infections. By applying the green p-median model (GMM), negative effects on environment and health in urban areas caused by delivery vehicles may be reduced to minimum. This model creates real possibilities for making the proper investment decisions so as profitable investments may be realized in the field of transport infrastructure. The paper herein also includes testing of GMM in real conditions on four CLT locations in Belgrade City zone.

  6. Super-Joule heating in graphene and silver nanowire network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maize, Kerry; Das, Suprem R.; Sadeque, Sajia

    Transistors, sensors, and transparent conductors based on randomly assembled nanowire networks rely on multi-component percolation for unique and distinctive applications in flexible electronics, biochemical sensing, and solar cells. While conduction models for 1-D and 1-D/2-D networks have been developed, typically assuming linear electronic transport and self-heating, the model has not been validated by direct high-resolution characterization of coupled electronic pathways and thermal response. In this letter, we show the occurrence of nonlinear “super-Joule” self-heating at the transport bottlenecks in networks of silver nanowires and silver nanowire/single layer graphene hybrid using high resolution thermoreflectance (TR) imaging. TR images at the microscopicmore » self-heating hotspots within nanowire network and nanowire/graphene hybrid network devices with submicron spatial resolution are used to infer electrical current pathways. The results encourage a fundamental reevaluation of transport models for network-based percolating conductors.« less

  7. A case study predicting environmental impacts of urban transport planning in China.

    PubMed

    Chen, Chong; Shao, Li-guo; Xu, Ling; Shang, Jin-cheng

    2009-10-01

    Predicting environmental impacts is essential when performing an environmental assessment on urban transport planning. System dynamics (SD) is usually used to solve complex nonlinear problems. In this study, we utilized system dynamics (SD) to evaluate the environmental impacts associated with urban transport planning in Jilin City, China with respect to the local economy, society, transport, the environment and resources. To accomplish this, we generated simulation models comprising interrelated subsystems designed to utilize changes in the economy, society, road construction, changes in the number of vehicles, the capacity of the road network capacity, nitrogen oxides emission, traffic noise, land used for road construction and fuel consumption associated with traffic to estimate dynamic trends in the environmental impacts associated with Jilin's transport planning. Two simulation scenarios were then analyzed comparatively. The results of this study indicated that implementation of Jilin transport planning would improve the current urban traffic conditions and boost the local economy and development while benefiting the environment in Jilin City. In addition, comparative analysis of the two scenarios provided additional information that can be used to aid in scientific decision-making regarding which aspects of the transport planning to implement in Jilin City. This study demonstrates that our application of the SD method, which is referred to as the Strategic Environmental Assessment (SEA), is feasible for use in urban transport planning.

  8. Relations between macropore network characteristics and the degree of preferential solute transport

    NASA Astrophysics Data System (ADS)

    Larsbo, M.; Koestel, J.; Jarvis, N.

    2014-12-01

    The characteristics of the soil macropore network determine the potential for fast transport of agrochemicals and contaminants through the soil. The objective of this study was to examine the relationships between macropore network characteristics, hydraulic properties and state variables and measures of preferential transport. Experiments were carried out under near-saturated conditions on undisturbed columns sampled from four agricultural topsoils of contrasting texture and structure. Macropore network characteristics were computed from 3-D X-ray tomography images of the soil pore system. Non-reactive solute transport experiments were carried out at five steady-state water flow rates from 2 to 12 mm h-1. The degree of preferential transport was evaluated by the normalised 5% solute arrival time and the apparent dispersivity calculated from the resulting breakthrough curves. Near-saturated hydraulic conductivities were measured on the same samples using a tension disc infiltrometer placed on top of the columns. Results showed that many of the macropore network characteristics were inter-correlated. For example, large macroporosities were associated with larger specific macropore surface areas and better local connectivity of the macropore network. Generally, an increased flow rate resulted in earlier solute breakthrough and a shifting of the arrival of peak concentration towards smaller drained volumes. Columns with smaller macroporosities, poorer local connectivity of the macropore network and smaller near-saturated hydraulic conductivities exhibited a greater degree of preferential transport. This can be explained by the fact that, with only two exceptions, global (i.e. sample scale) continuity of the macropore network was still preserved at low macroporosities. Thus, for any given flow rate, pores of larger diameter were actively conducting solute in soils of smaller near-saturated hydraulic conductivity. This was associated with larger local transport velocities and, hence, less time for equilibration between the macropores and the surrounding matrix which made the transport more preferential. Conversely, the large specific macropore surface area and well-connected macropore networks associated with columns with large macroporosities limit the degree of preferential transport because they increase the diffusive flux between macropores and the soil matrix and they increase the near-saturated hydraulic conductivity. The normalised 5% arrival times were most strongly correlated with the estimated hydraulic state variables (e.g. with the degree of saturation in the macropores R2 = 0.589), since these combine into one measure the effects of irrigation rate and the near-saturated hydraulic conductivity function, which in turn implicitly depends on the volume, size distribution, global continuity, local connectivity and tortuosity of the macropore network.

  9. Self-organization and solution of shortest-path optimization problems with memristive networks

    NASA Astrophysics Data System (ADS)

    Pershin, Yuriy V.; Di Ventra, Massimiliano

    2013-07-01

    We show that memristive networks, namely networks of resistors with memory, can efficiently solve shortest-path optimization problems. Indeed, the presence of memory (time nonlocality) promotes self organization of the network into the shortest possible path(s). We introduce a network entropy function to characterize the self-organized evolution, show the solution of the shortest-path problem and demonstrate the healing property of the solution path. Finally, we provide an algorithm to solve the traveling salesman problem. Similar considerations apply to networks of memcapacitors and meminductors, and networks with memory in various dimensions.

  10. Extending natural hazard impacts: an assessment of landslide disruptions on a national road transportation network

    NASA Astrophysics Data System (ADS)

    Postance, Benjamin; Hillier, John; Dijkstra, Tom; Dixon, Neil

    2017-01-01

    Disruptions to transportation networks by natural hazard events cause direct losses (e.g. by physical damage) and indirect socio-economic losses via travel delays and decreased transportation efficiency. The severity and spatial distribution of these losses varies according to user travel demands and which links, nodes or infrastructure assets are physically disrupted. Increasing transport network resilience, for example by targeted mitigation strategies, requires the identification of the critical network segments which if disrupted would incur undesirable or unacceptable socio-economic impacts. Here, these impacts are assessed on a national road transportation network by coupling hazard data with a transport network model. This process is illustrated using a case study of landslide hazards on the road network of Scotland. A set of possible landslide-prone road segments is generated using landslide susceptibility data. The results indicate that at least 152 road segments are susceptible to landslides, which could cause indirect economic losses exceeding £35 k for each day of closure. In addition, previous estimates for historic landslide events might be significant underestimates. For example, the estimated losses for the 2007 A83 ‘Rest and Be Thankful’ landslide are £80 k day-1, totalling £1.2 million over a 15 day closure, and are ˜60% greater than previous estimates. The spatial distribution of impact to road users is communicated in terms of ‘extended hazard impact footprints’. These footprints reveal previously unknown exposed communities and unanticipated spatial patterns of severe disruption. Beyond cost-benefit analyses for landslide mitigation efforts, the approach implemented is applicable to other natural hazards (e.g. flooding), combinations of hazards, or even other network disruption events.

  11. Stanley Corrsin Award Talk: Fluid Mechanics of Fungi and Slime

    NASA Astrophysics Data System (ADS)

    Brenner, Michael

    2013-11-01

    There are interesting fluid mechanics problems everywhere, even in the most lowly and hidden corners of forest floors. Here I discuss some questions we have been working on in recent years involving fungi and slime. A critical issue for the ecology of fungi and slime is nutrient availability: nutrient sources are highly heterogeneous, and strategies are necessary to find food when it runs out. In the fungal phylum Ascomycota, spore dispersal is the primary mechanism for finding new food sources. The defining feature of this phylum is the ascus, a fluid filled sac from which spores are ejected, through a build up in osmotic pressure. We outline the (largely fluid mechanical) design constraints on this ejection strategy, and demonstrate how it provides strong constraints for the diverse morphologies of spores and asci found in nature. The core of the argument revisits a classical problem in elastohydrodynamic lubrication from a different perspective. A completely different strategy for finding new nutrient is found by slime molds and fungi that stretch out - as a single organism- over enormous areas (up to hectares) over forest floors. As a model problem we study the slime mold Physarum polycephalum, which forages with a large network of connected tubes on the forest floors. Localized regions in the network find nutrient sources and then pump the nutrients throughout the entire organism. We discuss fluid mechanical mechanisms for coordinating this transport, which generalize peristalsis to pumping in a heterogeneous network. We give a preliminary discussion to how physarum can detect a nutrient source and pump the nutrient throughout the organism.

  12. Mental Health, School Problems, and Social Networks: Modeling Urban Adolescent Substance Use

    ERIC Educational Resources Information Center

    Mason, Michael J.

    2010-01-01

    This study tested a mediation model of the relationship with school problems, social network quality, and substance use with a primary care sample of 301 urban adolescents. It was theorized that social network quality (level of risk or protection in network) would mediate the effects of school problems, accounting for internalizing problems and…

  13. Algorithms for Data Sharing, Coordination, and Communication in Dynamic Network Settings

    DTIC Science & Technology

    2007-12-03

    problems in dynamic networks, focusing on mobile networks with wireless communication. Problems studied include data management, time synchronization ...The discovery of a fundamental limitation in capabilities for time synchronization in large networks. (2) The identification and development of the...Problems studied include data management, time synchronization , communication problems (broadcast, geocast, and point-to-point routing), distributed

  14. Space evolution model and empirical analysis of an urban public transport network

    NASA Astrophysics Data System (ADS)

    Sui, Yi; Shao, Feng-jing; Sun, Ren-cheng; Li, Shu-jing

    2012-07-01

    This study explores the space evolution of an urban public transport network, using empirical evidence and a simulation model validated on that data. Public transport patterns primarily depend on traffic spatial-distribution, demands of passengers and expected utility of investors. Evolution is an iterative process of satisfying the needs of passengers and investors based on a given traffic spatial-distribution. The temporal change of urban public transport network is evaluated both using topological measures and spatial ones. The simulation model is validated using empirical data from nine big cities in China. Statistical analyses on topological and spatial attributes suggest that an evolution network with traffic demands characterized by power-law numerical values which distribute in a mode of concentric circles tallies well with these nine cities.

  15. Internal fracture heterogeneity in discrete fracture network modelling: Effect of correlation length and textures with connected and disconnected permeability field

    NASA Astrophysics Data System (ADS)

    Frampton, A.; Hyman, J.; Zou, L.

    2017-12-01

    Analysing flow and transport in sparsely fractured media is important for understanding how crystalline bedrock environments function as barriers to transport of contaminants, with important applications towards subsurface repositories for storage of spent nuclear fuel. Crystalline bedrocks are particularly favourable due to their geological stability, low advective flow and strong hydrogeochemical retention properties, which can delay transport of radionuclides, allowing decay to limit release to the biosphere. There are however many challenges involved in quantifying and modelling subsurface flow and transport in fractured media, largely due to geological complexity and heterogeneity, where the interplay between advective and dispersive flow strongly impacts both inert and reactive transport. A key to modelling transport in a Lagrangian framework involves quantifying pathway travel times and the hydrodynamic control of retention, and both these quantities strongly depend on heterogeneity of the fracture network at different scales. In this contribution, we present recent analysis of flow and transport considering fracture networks with single-fracture heterogeneity described by different multivariate normal distributions. A coherent triad of fields with identical correlation length and variance are created but which greatly differ in structure, corresponding to textures with well-connected low, medium and high permeability structures. Through numerical modelling of multiple scales in a stochastic setting we quantify the relative impact of texture type and correlation length against network topological measures, and identify key thresholds for cases where flow dispersion is controlled by single-fracture heterogeneity versus network-scale heterogeneity. This is achieved by using a recently developed novel numerical discrete fracture network model. Furthermore, we highlight enhanced flow channelling for cases where correlation structure continues across intersections in a network, and discuss application to realistic fracture networks using field data of sparsely fractured crystalline rock from the Swedish candidate repository site for spent nuclear fuel.

  16. Nonlinear Dynamics on Interconnected Networks

    NASA Astrophysics Data System (ADS)

    Arenas, Alex; De Domenico, Manlio

    2016-06-01

    Networks of dynamical interacting units can represent many complex systems, from the human brain to transportation systems and societies. The study of these complex networks, when accounting for different types of interactions has become a subject of interest in the last few years, especially because its representational power in the description of users' interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.) [1], or in representing different transportation modes in urban networks [2,3]. The general name coined for these networks is multilayer networks, where each layer accounts for a type of interaction (see Fig. 1).

  17. A new transport phenomenon in nanostructures: a mesoscopic analog of the Braess paradox encountered in road networks

    PubMed Central

    2012-01-01

    The Braess paradox, known for traffic and other classical networks, lies in the fact that adding a new route to a congested network in an attempt to relieve congestion can degrade counterintuitively the overall network performance. Recently, we have extended the concept of the Braess paradox to semiconductor mesoscopic networks, whose transport properties are governed by quantum physics. In this paper, we demonstrate theoretically that, alike in classical systems, congestion plays a key role in the occurrence of a Braess paradox in mesoscopic networks. PMID:22913510

  18. Airport Surface Network Architecture Definition

    NASA Technical Reports Server (NTRS)

    Nguyen, Thanh C.; Eddy, Wesley M.; Bretmersky, Steven C.; Lawas-Grodek, Fran; Ellis, Brenda L.

    2006-01-01

    Currently, airport surface communications are fragmented across multiple types of systems. These communication systems for airport operations at most airports today are based dedicated and separate architectures that cannot support system-wide interoperability and information sharing. The requirements placed upon the Communications, Navigation, and Surveillance (CNS) systems in airports are rapidly growing and integration is urgently needed if the future vision of the National Airspace System (NAS) and the Next Generation Air Transportation System (NGATS) 2025 concept are to be realized. To address this and other problems such as airport surface congestion, the Space Based Technologies Project s Surface ICNS Network Architecture team at NASA Glenn Research Center has assessed airport surface communications requirements, analyzed existing and future surface applications, and defined a set of architecture functions that will help design a scalable, reliable and flexible surface network architecture to meet the current and future needs of airport operations. This paper describes the systems approach or methodology to networking that was employed to assess airport surface communications requirements, analyze applications, and to define the surface network architecture functions as the building blocks or components of the network. The systems approach used for defining these functions is relatively new to networking. It is viewing the surface network, along with its environment (everything that the surface network interacts with or impacts), as a system. Associated with this system are sets of services that are offered by the network to the rest of the system. Therefore, the surface network is considered as part of the larger system (such as the NAS), with interactions and dependencies between the surface network and its users, applications, and devices. The surface network architecture includes components such as addressing/routing, network management, network performance and security.

  19. Space Transportation and the Computer Industry: Learning from the Past

    NASA Technical Reports Server (NTRS)

    Merriam, M. L.; Rasky, D.

    2002-01-01

    Since the space shuttle began flying in 1981, NASA has made a number of attempts to advance the state of the art in space transportation. In spite of billions of dollars invested, and several concerted attempts, no replacement for the shuttle is expected before 2010. Furthermore, the cost of access to space has dropped very slowly over the last two decades. On the other hand, the same two decades have seen dramatic progress in the computer industry. Computational speeds have increased by about a factor of 1000 and available memory, disk space, and network bandwidth has seen similar increases. At the same time, the cost of computing has dropped by about a factor of 10000. Is the space transportation problem simply harder? Or is there something to be learned from the computer industry? In looking for the answers, this paper reviews the early history of NASA's experience with supercomputers and NASA's visionary course change in supercomputer procurement strategy.

  20. Community core detection in transportation networks

    NASA Astrophysics Data System (ADS)

    De Leo, Vincenzo; Santoboni, Giovanni; Cerina, Federica; Mureddu, Mario; Secchi, Luca; Chessa, Alessandro

    2013-10-01

    This work analyzes methods for the identification and the stability under perturbation of a territorial community structure with specific reference to transportation networks. We considered networks of commuters for a city and an insular region. In both cases, we have studied the distribution of commuters’ trips (i.e., home-to-work trips and vice versa). The identification and stability of the communities’ cores are linked to the land-use distribution within the zone system, and therefore their proper definition may be useful to transport planners.

  1. Insight to the express transport network

    NASA Astrophysics Data System (ADS)

    Yang, Hua; Nie, Yuchao; Zhang, Hongbin; Di, Zengru; Fan, Ying

    2009-09-01

    The express delivery industry is developing rapidly in recent years and has attracted attention in many fields. Express shipment service requires that parcels be delivered in a limited time with a low operation cost, which requests a high level and efficient express transport network (ETN). The ETN is constructed based on the public transport networks, especially the airline network. It is similar to the airline network in some aspects, while it has its own feature. With the complex network theory, the topological properties of the ETN are analyzed deeply. We find that the ETN has the small-world property, with disassortative mixing behavior and rich club phenomenon. It also shows difference from the airline network in some features, such as edge density and average shortest path. Analysis on the corresponding distance-weighted network shows that the distance distribution displays a truncated power-law behavior. At last, an evolving model, which takes both geographical constraint and preference attachment into account, is proposed. The model shows similar properties with the empirical results.

  2. Laboratory-based ROTEM(®) analysis: implementing pneumatic tube transport and real-time graphic transmission.

    PubMed

    Colucci, G; Giabbani, E; Barizzi, G; Urwyler, N; Alberio, L

    2011-08-01

    ROTEM(®) is considered a helpful point-of-care device to monitor blood coagulation. Centrally performed analysis is desirable but rapid transport of blood samples and real-time transmission of graphic results are an important prerequisite. The effect of sample transport through a pneumatic tube system on ROTEM(®) results is unknown. The aims of the present work were (i) to determine the influence of blood sample transport through a pneumatic tube system on ROTEM(®) parameters compared to manual transportation, and (ii) to verify whether graphic results can be transmitted on line via virtual network computing using local area network to the physician in charge of the patient. Single centre study with 30 normal volunteers. Two whole blood samples were transferred to the central haematology laboratory by either normal transport or pneumatic delivery. EXTEM, INTEM, FIBTEM and APTEM were analysed in parallel with two ROTEM(®) devices and compared. Connection between central laboratory, emergency and operating rooms was established using local area network. All collected ROTEM(®) parameters were within normal limits. No statistically significant differences between normal transport and pneumatic delivery were observed. Real-time transmission of the original ROTEM(®) curves using local area network is feasible and easy to establish. At our institution, transport of blood samples by pneumatic delivery does not influence ROTEM(®) parameters. Blood samples can be analysed centrally, and results transmitted live via virtual network computing to emergency or operating rooms. Prior to analyse blood samples centrally, the type of sample transport should be tested to exclude in vitro blood activation by local pneumatic transport system. © 2011 Blackwell Publishing Ltd.

  3. On the use of space photography for identifying transportation routes: A summary of problems

    NASA Technical Reports Server (NTRS)

    Simonett, D. S.; Henderson, F. M.; Egbert, D. D.

    1970-01-01

    It has been widely suggested that space photography may be used for updating maps of transportation networks. Proponents of the argument have suggested that color space photographs of the resolution obtained with Hasselblad 80 mm lenses (about 300 feet) contain enough useful information to update the extensions of major U. S. highways. The present study systematically documents for the Dallas-Fort Worth area the potential of such space photography in detecting, and to a lesser degree identifying, the existing road networks. Color separation plates and an enlargement of the color photograph were produced and all visible roads traced onto transparencies for study. Major roads and roads under construction were the most visible while lower class roads and roads in urban areas had the poorest return. Road width and classification were found to be the major determinant in visibility, varying from 100 per cent visible for divided highways to 15 per cent visible of bladed earth roads. In summary, space photographs of this resolution proved to be difficult to use for accurate road delineation. Only super highways in rural areas with the greatest road-width were completely identifiable, the width being about 1/3 that of the resolution cell.

  4. A Wideband Satcom Based Avionics Network with CDMA Uplink and TDM Downlink

    NASA Technical Reports Server (NTRS)

    Agrawal, D.; Johnson, B. S.; Madhow, U.; Ramchandran, K.; Chun, K. S.

    2000-01-01

    The purpose of this paper is to describe some key technical ideas behind our vision of a future satcom based digital communication network for avionics applications The key features of our design are as follows: (a) Packetized transmission to permit efficient use of system resources for multimedia traffic; (b) A time division multiplexed (TDM) satellite downlink whose physical layer is designed to operate the satellite link at maximum power efficiency. We show how powerful turbo codes (invented originally for linear modulation) can be used with nonlinear constant envelope modulation, thus permitting the satellite amplifier to operate in a power efficient nonlinear regime; (c) A code division multiple access (CDMA) satellite uplink, which permits efficient access to the satellite from multiple asynchronous users. Closed loop power control is difficult for bursty packetized traffic, especially given the large round trip delay to the satellite. We show how adaptive interference suppression techniques can be used to deal with the ensuing near-far problem; (d) Joint source-channel coding techniques are required both at the physical and the data transport layer to optimize the end-to-end performance. We describe a novel approach to multiple description image encoding at the data transport layer in this paper.

  5. Reduced-Order Direct Numerical Simulation of Solute Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Mehmani, Yashar; Tchelepi, Hamdi

    2017-11-01

    Pore-scale models are an important tool for analyzing fluid dynamics in porous materials (e.g., rocks, soils, fuel cells). Current direct numerical simulation (DNS) techniques, while very accurate, are computationally prohibitive for sample sizes that are statistically representative of the porous structure. Reduced-order approaches such as pore-network models (PNM) aim to approximate the pore-space geometry and physics to remedy this problem. Predictions from current techniques, however, have not always been successful. This work focuses on single-phase transport of a passive solute under advection-dominated regimes and delineates the minimum set of approximations that consistently produce accurate PNM predictions. Novel network extraction (discretization) and particle simulation techniques are developed and compared to high-fidelity DNS simulations for a wide range of micromodel heterogeneities and a single sphere pack. Moreover, common modeling assumptions in the literature are analyzed and shown that they can lead to first-order errors under advection-dominated regimes. This work has implications for optimizing material design and operations in manufactured (electrodes) and natural (rocks) porous media pertaining to energy systems. This work was supported by the Stanford University Petroleum Research Institute for Reservoir Simulation (SUPRI-B).

  6. Establishment of a Spaceport Network Architecture

    NASA Technical Reports Server (NTRS)

    Larson, Wiley J.; Gill, Tracy R.; Mueller, Robert P.; Brink, Jeffrey S.

    2012-01-01

    Since the beginning of the space age, the main actors in space exploration have been governmental agencies, enabling a privileged access to space, but with very restricted and rare missions. The last decade has seen the rise of space tourism, and the founding of ambitious private space mining companies, showing the beginnings of a new exploration era, that is based on a more generalized and regular access to space and which is not limited to the Earth's vicinity. However, the cost of launching sufficient mass into orbit to sustain these inspiring challenges is prohibitive, and the necessary infrastructures to support these missions is still lacking. To provide easy and affordable access into orbital and deep space destinations, there is the need to create a network of spaceports via specific waypoint locations coupled with the use of natural resources, or In Situ Resource Utilization (ISRU), to provide a more economical solution. As part of the International Space University Space Studies Program 2012, the international and intercultural team of Operations and Service Infrastructure for Space (OASIS) proposes an interdisciplinary answer to the problem of economical space access and transportation. This paper presents a summary of a detailed report [1] of the different phases of a project for developing a network of spaceports throughout the Solar System in a timeframe of 50 years. The requirements, functions, critical technologies and mission architecture of this network of spaceports are outlined in a roadmap of the important steps and phases. The economic and financial aspects are emphasized in order to allow a sustainable development of the network in a public-private partnership via the formation of an International Spaceport Authority (ISPA). The approach includes engineering, scientific, financial, legal, policy, and societal aspects. Team OASIS intends to provide guidelines to make the development of space transportation via a spaceports logistics network feasible, and believes that this pioneering effort will revolutionize space exploration, science and commerce, ultimately contributing to permanently expand humanity into space.

  7. Transportation optimization with fuzzy trapezoidal numbers based on possibility theory.

    PubMed

    He, Dayi; Li, Ran; Huang, Qi; Lei, Ping

    2014-01-01

    In this paper, a parametric method is introduced to solve fuzzy transportation problem. Considering that parameters of transportation problem have uncertainties, this paper develops a generalized fuzzy transportation problem with fuzzy supply, demand and cost. For simplicity, these parameters are assumed to be fuzzy trapezoidal numbers. Based on possibility theory and consistent with decision-makers' subjectiveness and practical requirements, the fuzzy transportation problem is transformed to a crisp linear transportation problem by defuzzifying fuzzy constraints and objectives with application of fractile and modality approach. Finally, a numerical example is provided to exemplify the application of fuzzy transportation programming and to verify the validity of the proposed methods.

  8. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing

    NASA Astrophysics Data System (ADS)

    Kumar, Suhas; Strachan, John Paul; Williams, R. Stanley

    2017-08-01

    At present, machine learning systems use simplified neuron models that lack the rich nonlinear phenomena observed in biological systems, which display spatio-temporal cooperative dynamics. There is evidence that neurons operate in a regime called the edge of chaos that may be central to complexity, learning efficiency, adaptability and analogue (non-Boolean) computation in brains. Neural networks have exhibited enhanced computational complexity when operated at the edge of chaos, and networks of chaotic elements have been proposed for solving combinatorial or global optimization problems. Thus, a source of controllable chaotic behaviour that can be incorporated into a neural-inspired circuit may be an essential component of future computational systems. Such chaotic elements have been simulated using elaborate transistor circuits that simulate known equations of chaos, but an experimental realization of chaotic dynamics from a single scalable electronic device has been lacking. Here we describe niobium dioxide (NbO2) Mott memristors each less than 100 nanometres across that exhibit both a nonlinear-transport-driven current-controlled negative differential resistance and a Mott-transition-driven temperature-controlled negative differential resistance. Mott materials have a temperature-dependent metal-insulator transition that acts as an electronic switch, which introduces a history-dependent resistance into the device. We incorporate these memristors into a relaxation oscillator and observe a tunable range of periodic and chaotic self-oscillations. We show that the nonlinear current transport coupled with thermal fluctuations at the nanoscale generates chaotic oscillations. Such memristors could be useful in certain types of neural-inspired computation by introducing a pseudo-random signal that prevents global synchronization and could also assist in finding a global minimum during a constrained search. We specifically demonstrate that incorporating such memristors into the hardware of a Hopfield computing network can greatly improve the efficiency and accuracy of converging to a solution for computationally difficult problems.

  9. DOE Network 2025: Network Research Problems and Challenges for DOE Scientists. Workshop Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2016-02-01

    The growing investments in large science instruments and supercomputers by the US Department of Energy (DOE) hold enormous promise for accelerating the scientific discovery process. They facilitate unprecedented collaborations of geographically dispersed teams of scientists that use these resources. These collaborations critically depend on the production, sharing, moving, and management of, as well as interactive access to, large, complex data sets at sites dispersed across the country and around the globe. In particular, they call for significant enhancements in network capacities to sustain large data volumes and, equally important, the capabilities to collaboratively access the data across computing, storage, andmore » instrument facilities by science users and automated scripts and systems. Improvements in network backbone capacities of several orders of magnitude are essential to meet these challenges, in particular, to support exascale initiatives. Yet, raw network speed represents only a part of the solution. Indeed, the speed must be matched by network and transport layer protocols and higher layer tools that scale in ways that aggregate, compose, and integrate the disparate subsystems into a complete science ecosystem. Just as important, agile monitoring and management services need to be developed to operate the network at peak performance levels. Finally, these solutions must be made an integral part of the production facilities by using sound approaches to develop, deploy, diagnose, operate, and maintain them over the science infrastructure.« less

  10. Assessing urban strategies for reducing the impacts of extreme weather on infrastructure networks.

    PubMed

    Pregnolato, Maria; Ford, Alistair; Robson, Craig; Glenis, Vassilis; Barr, Stuart; Dawson, Richard

    2016-05-01

    Critical infrastructure networks, including transport, are crucial to the social and economic function of urban areas but are at increasing risk from natural hazards. Minimizing disruption to these networks should form part of a strategy to increase urban resilience. A framework for assessing the disruption from flood events to transport systems is presented that couples a high-resolution urban flood model with transport modelling and network analytics to assess the impacts of extreme rainfall events, and to quantify the resilience value of different adaptation options. A case study in Newcastle upon Tyne in the UK shows that both green roof infrastructure and traditional engineering interventions such as culverts or flood walls can reduce transport disruption from flooding. The magnitude of these benefits depends on the flood event and adaptation strategy, but for the scenarios considered here 3-22% improvements in city-wide travel times are achieved. The network metric of betweenness centrality, weighted by travel time, is shown to provide a rapid approach to identify and prioritize the most critical locations for flood risk management intervention. Protecting just the top ranked critical location from flooding provides an 11% reduction in person delays. A city-wide deployment of green roofs achieves a 26% reduction, and although key routes still flood, the benefits of this strategy are more evenly distributed across the transport network as flood depths are reduced across the model domain. Both options should form part of an urban flood risk management strategy, but this method can be used to optimize investment and target limited resources at critical locations, enabling green infrastructure strategies to be gradually implemented over the longer term to provide city-wide benefits. This framework provides a means of prioritizing limited financial resources to improve resilience. This is particularly important as flood management investments must typically exceed a far higher benefit-cost threshold than transport infrastructure investments. By capturing the value to the transport network from flood management interventions, it is possible to create new business models that provide benefits to, and enhance the resilience of, both transport and flood risk management infrastructures. Further work will develop the framework to consider other hazards and infrastructure networks.

  11. Assessing urban strategies for reducing the impacts of extreme weather on infrastructure networks

    PubMed Central

    Pregnolato, Maria; Ford, Alistair; Robson, Craig; Glenis, Vassilis; Barr, Stuart; Dawson, Richard

    2016-01-01

    Critical infrastructure networks, including transport, are crucial to the social and economic function of urban areas but are at increasing risk from natural hazards. Minimizing disruption to these networks should form part of a strategy to increase urban resilience. A framework for assessing the disruption from flood events to transport systems is presented that couples a high-resolution urban flood model with transport modelling and network analytics to assess the impacts of extreme rainfall events, and to quantify the resilience value of different adaptation options. A case study in Newcastle upon Tyne in the UK shows that both green roof infrastructure and traditional engineering interventions such as culverts or flood walls can reduce transport disruption from flooding. The magnitude of these benefits depends on the flood event and adaptation strategy, but for the scenarios considered here 3–22% improvements in city-wide travel times are achieved. The network metric of betweenness centrality, weighted by travel time, is shown to provide a rapid approach to identify and prioritize the most critical locations for flood risk management intervention. Protecting just the top ranked critical location from flooding provides an 11% reduction in person delays. A city-wide deployment of green roofs achieves a 26% reduction, and although key routes still flood, the benefits of this strategy are more evenly distributed across the transport network as flood depths are reduced across the model domain. Both options should form part of an urban flood risk management strategy, but this method can be used to optimize investment and target limited resources at critical locations, enabling green infrastructure strategies to be gradually implemented over the longer term to provide city-wide benefits. This framework provides a means of prioritizing limited financial resources to improve resilience. This is particularly important as flood management investments must typically exceed a far higher benefit–cost threshold than transport infrastructure investments. By capturing the value to the transport network from flood management interventions, it is possible to create new business models that provide benefits to, and enhance the resilience of, both transport and flood risk management infrastructures. Further work will develop the framework to consider other hazards and infrastructure networks. PMID:27293781

  12. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferri, Giovane Lopes, E-mail: giovane.ferri@aluno.ufes.br; Diniz Chaves, Gisele de Lorena, E-mail: gisele.chaves@ufes.br; Ribeiro, Glaydston Mattos, E-mail: glaydston@pet.coppe.ufrj.br

    Highlights: • We propose a reverse logistics network for MSW involving waste pickers. • A generic facility location mathematical model was validated in a Brazilian city. • The results enable to predict the capacity for screening and storage centres (SSC). • We minimise the costs for transporting MSW with screening and storage centres. • The use of SSC can be a potential source of revenue and a better use of MSW. - Abstract: This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering themore » recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the characteristic of social vulnerability, must be included in the system. In addition to the theoretical contribution to the reverse logistics network problem, this study aids in decision-making for public managers who have limited technical and administrative capacities for the management of solid wastes.« less

  13. FTP Extensions for Variable Protocol Specification

    NASA Technical Reports Server (NTRS)

    Allman, Mark; Ostermann, Shawn

    2000-01-01

    The specification for the File Transfer Protocol (FTP) assumes that the underlying network protocols use a 32-bit network address and a 16-bit transport address (specifically IP version 4 and TCP). With the deployment of version 6 of the Internet Protocol, network addresses will no longer be 32-bits. This paper species extensions to FTP that will allow the protocol to work over a variety of network and transport protocols.

  14. Complexity, Robustness, and Multistability in Network Systems with Switching Topologies: A Hierarchical Hybrid Control Approach

    DTIC Science & Technology

    2015-05-22

    sensor networks for managing power levels of wireless networks ; air and ground transportation systems for air traffic control and payload transport and... network systems, large-scale systems, adaptive control, discontinuous systems 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF...cover a broad spectrum of ap- plications including cooperative control of unmanned air vehicles, autonomous underwater vehicles, distributed sensor

  15. Vulnerability of network of networks

    NASA Astrophysics Data System (ADS)

    Havlin, S.; Kenett, D. Y.; Bashan, A.; Gao, J.; Stanley, H. E.

    2014-10-01

    Our dependence on networks - be they infrastructure, economic, social or others - leaves us prone to crises caused by the vulnerabilities of these networks. There is a great need to develop new methods to protect infrastructure networks and prevent cascade of failures (especially in cases of coupled networks). Terrorist attacks on transportation networks have traumatized modern societies. With a single blast, it has become possible to paralyze airline traffic, electric power supply, ground transportation or Internet communication. How, and at which cost can one restructure the network such that it will become more robust against malicious attacks? The gradual increase in attacks on the networks society depends on - Internet, mobile phone, transportation, air travel, banking, etc. - emphasize the need to develop new strategies to protect and defend these crucial networks of communication and infrastructure networks. One example is the threat of liquid explosives a few years ago, which completely shut down air travel for days, and has created extreme changes in regulations. Such threats and dangers warrant the need for new tools and strategies to defend critical infrastructure. In this paper we review recent advances in the theoretical understanding of the vulnerabilities of interdependent networks with and without spatial embedding, attack strategies and their affect on such networks of networks as well as recently developed strategies to optimize and repair failures caused by such attacks.

  16. A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application.

    PubMed

    Li, Shuai; Li, Yangming; Wang, Zheng

    2013-03-01

    This paper presents a class of recurrent neural networks to solve quadratic programming problems. Different from most existing recurrent neural networks for solving quadratic programming problems, the proposed neural network model converges in finite time and the activation function is not required to be a hard-limiting function for finite convergence time. The stability, finite-time convergence property and the optimality of the proposed neural network for solving the original quadratic programming problem are proven in theory. Extensive simulations are performed to evaluate the performance of the neural network with different parameters. In addition, the proposed neural network is applied to solving the k-winner-take-all (k-WTA) problem. Both theoretical analysis and numerical simulations validate the effectiveness of our method for solving the k-WTA problem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Transportation and dynamic networks: Models, theory, and applications to supply chains, electric power, and financial networks

    NASA Astrophysics Data System (ADS)

    Liu, Zugang

    Network systems, including transportation and logistic systems, electric power generation and distribution networks as well as financial networks, provide the critical infrastructure for the functioning of our societies and economies. The understanding of the dynamic behavior of such systems is also crucial to national security and prosperity. The identification of new connections between distinct network systems is the inspiration for the research in this dissertation. In particular, I answer two questions raised by Beckmann, McGuire, and Winsten (1956) and Copeland (1952) over half a century ago, which are, respectively, how are electric power flows related to transportation flows and does money flow like water or electricity? In addition, in this dissertation, I achieve the following: (1) I establish the relationships between transportation networks and three other classes of complex network systems: supply chain networks, electric power generation and transmission networks, and financial networks with intermediation. The establishment of such connections provides novel theoretical insights as well as new pricing mechanisms, and efficient computational methods. (2) I develop new modeling frameworks based on evolutionary variational inequality theory that capture the dynamics of such network systems in terms of the time-varying flows and incurred costs, prices, and, where applicable, profits. This dissertation studies the dynamics of such network systems by addressing both internal competition and/or cooperation, and external changes, such as varying costs and demands. (3) I focus, in depth, on electric power supply chains. By exploiting the relationships between transportation networks and electric power supply chains, I develop a large-scale network model that integrates electric power supply chains and fuel supply markets. The model captures both the economic transactions as well as the physical transmission constraints. The model is then applied to the New England electric power supply chain consisting of 6 states, 5 fuel types, 82 power generators, with a total of 573 generating units, and 10 demand markets. The empirical case study demonstrates that the regional electricity prices simulated by the model match very well the actual electricity prices in New England. I also utilize the model to study interactions between electric power supply chains and energy fuel markets.

  18. dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia

    DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in anmore » intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO 2 sequestration are also included.« less

  19. Quantifying Economic and Environmental Impacts of Transportation Network Disruptions with Dynamic Traffic Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shekar, Venkateswaran; Fiondella, Lance; Chatterjee, Samrat

    Several transportation network vulnerability models have been proposed. However, most only consider disruptions as a static snapshot in time and the impact on total travel time. These approaches cannot consider the time-varying nature of travel demand nor other undesirable outcomes that follow from transportation network disruptions. This paper proposes an algorithmic approach to assess the vulnerability of a transportation network that considers the time-varying demand with an open source dynamic transportation simulation tool. The open source nature of the tool allows us to systematically consider many disruption scenarios and quantitatively compare their relative criticality. This is far more efficient thanmore » traditional approaches which would require days or weeks of a transportation engineers time to manually set up, run, and assess these simulations. In addition to travel time, we also collect statistics on additional fuel consumed and the corresponding carbon dioxide emissions. Our approach, thus provides a more systematic approach that is both time-varying and can consider additional negative consequences of disruptions for decision makers to evaluate.« less

  20. dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport

    DOE PAGES

    Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia; ...

    2015-11-01

    DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in anmore » intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO 2 sequestration are also included.« less

  1. Self-organization in neural networks - Applications in structural optimization

    NASA Technical Reports Server (NTRS)

    Hajela, Prabhat; Fu, B.; Berke, Laszlo

    1993-01-01

    The present paper discusses the applicability of ART (Adaptive Resonance Theory) networks, and the Hopfield and Elastic networks, in problems of structural analysis and design. A characteristic of these network architectures is the ability to classify patterns presented as inputs into specific categories. The categories may themselves represent distinct procedural solution strategies. The paper shows how this property can be adapted in the structural analysis and design problem. A second application is the use of Hopfield and Elastic networks in optimization problems. Of particular interest are problems characterized by the presence of discrete and integer design variables. The parallel computing architecture that is typical of neural networks is shown to be effective in such problems. Results of preliminary implementations in structural design problems are also included in the paper.

  2. The SIMPSONS project: An integrated Mars transportation system

    NASA Astrophysics Data System (ADS)

    Kaplan, Matthew; Carlson, Eric; Bradfute, Sherie; Allen, Kent; Duvergne, Francois; Hernandez, Bert; Le, David; Nguyen, Quan; Thornhill, Brett

    In response to the Request for Proposal (RFP) for an integrated transportation system network for an advanced Martian base, Frontier Transportation Systems (FTS) presents the results of the SIMPSONS project (Systems Integration for Mars Planetary Surface Operations Networks). The following topics are included: the project background, vehicle design, future work, conclusions, management status, and cost breakdown. The project focuses solely on the surface-to-surface transportation at an advanced Martian base.

  3. The SIMPSONS project: An integrated Mars transportation system

    NASA Technical Reports Server (NTRS)

    Kaplan, Matthew; Carlson, Eric; Bradfute, Sherie; Allen, Kent; Duvergne, Francois; Hernandez, Bert; Le, David; Nguyen, Quan; Thornhill, Brett

    1992-01-01

    In response to the Request for Proposal (RFP) for an integrated transportation system network for an advanced Martian base, Frontier Transportation Systems (FTS) presents the results of the SIMPSONS project (Systems Integration for Mars Planetary Surface Operations Networks). The following topics are included: the project background, vehicle design, future work, conclusions, management status, and cost breakdown. The project focuses solely on the surface-to-surface transportation at an advanced Martian base.

  4. Hopfield networks for solving Tower of Hanoi problems

    NASA Astrophysics Data System (ADS)

    Kaplan, G. B.; Güzeliş, Cüneyt

    2001-08-01

    In this paper, Hopfield neural networks have been considered in solving the Tower of Hanoi test which is used in the determining of deficit of planning capability of the human prefrontal cortex. The main difference between this paper and the ones in the literature which use neural networks is that the Tower of Hanoi problem has been formulated here as a special shortest-path problem. In the literature, some Hopfield networks are developed for solving the shortest path problem which is a combinatorial optimization problem having a diverse field of application. The approach given in this paper gives the possibility of solving the Tower of Hanoi problem using these Hopfield networks. Also, the paper proposes new Hopfield network models for the shortest path and hence the Tower of Hanoi problems and compares them to the available ones in terms of the memory and time (number of steps) needed in the simulations.

  5. Carbon dioxide emission and bio-capacity indexing for transportation activities: A methodological development in determining the sustainability of vehicular transportation systems.

    PubMed

    Labib, S M; Neema, Meher Nigar; Rahaman, Zahidur; Patwary, Shahadath Hossain; Shakil, Shahadat Hossain

    2018-06-09

    CO 2 emissions from urban traffic are a major concern in an era of increasing ecological disequilibrium. Adding to the problem net CO 2 emissions in urban settings are worsened due to the decline of bio-productive areas in many cities. This decline exacerbates the lack of capacity to sequestrate CO 2 at the micro and meso-scales resulting in increased temperatures and decreased air quality within city boundaries. Various transportation and environmental strategies have been implemented to address traffic related CO 2 emissions, however current literature identifies difficulties in pinpointing these critical areas of maximal net emissions in urban transport networks. This study attempts to close this gap in the literature by creating a new lay-person friendly index that combines CO 2 emissions from vehicles and the bio-capacity of specific traffic zones to identify these areas at the meso-scale within four ranges of values with the lowest index values representing the highest net CO 2 levels. The study used traffic volume, fuel types, and vehicular travel distance to estimate CO 2 emissions at major links in Dhaka, Bangladesh's capital city's transportation network. Additionally, using remote-sensing tools, adjacent bio-productive areas were identified and their bio-capacity for CO 2 sequestration estimated. The bio-productive areas were correlated with each traffic zone under study resulting in an Emission Bio-Capacity index (EBI) value estimate for each traffic node. Among the ten studied nodes in Dhaka City, nine had very low EBI values, correlating to very high CO 2 emissions and low bio-capacity. As a result, the study considered these areas unsustainable as traffic nodes going forward. Key reasons for unsustainability included increasing use of motorized traffic, absence of optimized signal systems, inadequate public transit options, disincentives for fuel free transport (FFT), and a decline in bio-productive areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Anomalous Transport in Natural Fracture Networks Induced by Tectonic Stress

    NASA Astrophysics Data System (ADS)

    Kang, P. K.; Lei, Q.; Lee, S.; Dentz, M.; Juanes, R.

    2017-12-01

    Fluid flow and transport in fractured rock controls many natural and engineered processes in the subsurface. However, characterizing flow and transport through fractured media is challenging due to the high uncertainty and large heterogeneity associated with fractured rock properties. In addition to these "static" challenges, geologic fractures are always under significant overburden stress, and changes in the stress state can lead to changes in the fracture's ability to conduct fluids. While confining stress has been shown to impact fluid flow through fractures in a fundamental way, the impact of confining stress on transportthrough fractured rock remains poorly understood. The link between anomalous (non-Fickian) transport and confining stress has been shown, only recently, at the level of a single rough fracture [1]. Here, we investigate the impact of geologic (tectonic) stress on flow and tracer transport through natural fracture networks. We model geomechanical effects in 2D fractured rock by means of a finite-discrete element method (FEMDEM) [2], which can capture the deformation of matrix blocks, reactivation of pre-existing fractures, and propagation of new cracks, upon changes in the stress field. We apply the model to a fracture network extracted from the geological map of an actual rock outcrop to obtain the aperture field at different stress conditions. We then simulate fluid flow and particle transport through the stressed fracture networks. We observe that anomalous transport emerges in response to confining stress on the fracture network, and show that the stress state is a powerful determinant of transport behavior: (1) An anisotropic stress state induces preferential flow paths through shear dilation; (2) An increase in geologic stress increases aperture heterogeneity that induces late-time tailing of particle breakthrough curves. Finally, we develop an effective transport model that captures the anomalous transport through the stressed fracture network. Our results point to a heretofore unrecognized link between geomechanics and anomalous transport in natural fractured media. [1] P. K. Kang, S. Brown, and R. Juanes, Earth and Planetary Science Letters, 454, 46-54 (2016). [2] Q. Lei, J. P. Latham, and C. F. Tsang, Computers and Geotechnics, 85, 151-176 (2017).

  7. Migration of optical core network to next generation networks - Carrier Grade Ethernet Optical Transport Network

    NASA Astrophysics Data System (ADS)

    Glamočanin, D.

    2017-05-01

    In order to maintain the continuity of the telecom operators’ network construction, while monitoring development needs, increasing customers’ demands and application of technological improvements, it is necessary to migrate optical transport core network to the next generation networks - Carrier Grade Ethernet Optical Transport Network (OTN CE). The primary objective of OTN CE is to realize an environment that is based solely on the switching in the optical domain, i.e. the realization of transparent optical networks and optical switching to the second layer of ISO / OSI model. The realization of such a network provides opportunities for further development of existing, but also technologically more demanding, new services. It is also a prerequisite to provide higher scalability, reliability, security and quality of QoS service, as well as prerequisites for the establishment of SLA (Service Level Agreement) for existing services, especially traffic in real time. This study aims to clarify the proposed model, which has the potential to be eventually adjusted in accordance with new scientific knowledge in this field as well as market requirements.

  8. Optimization-based method for automated road network extraction

    DOT National Transportation Integrated Search

    2001-09-18

    Automated road information extraction has significant applicability in transportation. : It provides a means for creating, maintaining, and updating transportation network databases that : are needed for purposes ranging from traffic management to au...

  9. The Xpress Transfer Protocol (XTP): A tutorial (expanded version)

    NASA Technical Reports Server (NTRS)

    Sanders, Robert M.; Weaver, Alfred C.

    1990-01-01

    The Xpress Transfer Protocol (XTP) is a reliable, real-time, light weight transfer layer protocol. Current transport layer protocols such as DoD's Transmission Control Protocol (TCP) and ISO's Transport Protocol (TP) were not designed for the next generation of high speed, interconnected reliable networks such as fiber distributed data interface (FDDI) and the gigabit/second wide area networks. Unlike all previous transport layer protocols, XTP is being designed to be implemented in hardware as a VLSI chip set. By streamlining the protocol, combining the transport and network layers and utilizing the increased speed and parallelization possible with a VLSI implementation, XTP will be able to provide the end-to-end data transmission rates demanded in high speed networks without compromising reliability and functionality. This paper describes the operation of the XTP protocol and in particular, its error, flow and rate control; inter-networking addressing mechanisms; and multicast support features, as defined in the XTP Protocol Definition Revision 3.4.

  10. Determining the Impact of Personal Mobility Carbon Allowance Schemes in Transportation Networks

    DOE PAGES

    Aziz, H. M. Abdul; Ukkusuri, Satish V.; Zhan, Xianyuan

    2016-10-17

    We know that personal mobility carbon allowance (PMCA) schemes are designed to reduce carbon consumption from transportation networks. PMCA schemes influence the travel decision process of users and accordingly impact the system metrics including travel time and greenhouse gas (GHG) emissions. Here, we develop a multi-user class dynamic user equilibrium model to evaluate the transportation system performance when PMCA scheme is implemented. The results using Sioux-Falls test network indicate that PMCA schemes can achieve the emissions reduction goals for transportation networks. Further, users characterized by high value of travel time are found to be less sensitive to carbon budget inmore » the context of work trips. Results also show that PMCA scheme can lead to higher emissions for a path compared with the case without PMCA because of flow redistribution. The developed network equilibrium model allows us to examine the change in system states at different carbon allocation levels and to design parameters of PMCA schemes accounting for population heterogeneity.« less

  11. Determining the Impact of Personal Mobility Carbon Allowance Schemes in Transportation Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, H. M. Abdul; Ukkusuri, Satish V.; Zhan, Xianyuan

    We know that personal mobility carbon allowance (PMCA) schemes are designed to reduce carbon consumption from transportation networks. PMCA schemes influence the travel decision process of users and accordingly impact the system metrics including travel time and greenhouse gas (GHG) emissions. Here, we develop a multi-user class dynamic user equilibrium model to evaluate the transportation system performance when PMCA scheme is implemented. The results using Sioux-Falls test network indicate that PMCA schemes can achieve the emissions reduction goals for transportation networks. Further, users characterized by high value of travel time are found to be less sensitive to carbon budget inmore » the context of work trips. Results also show that PMCA scheme can lead to higher emissions for a path compared with the case without PMCA because of flow redistribution. The developed network equilibrium model allows us to examine the change in system states at different carbon allocation levels and to design parameters of PMCA schemes accounting for population heterogeneity.« less

  12. The Right Network for the Right Problem

    ERIC Educational Resources Information Center

    Gomez, Louis M.; Russell, Jennifer L.; Bryk, Anthony S.; LeMahieu, Paul G.; Mejia, Eva M.

    2016-01-01

    Educators are realizing that individuals working in isolation can't adequately address the teaching and learning problems that face us today. Collective action networks are needed. Sharing networks use collective energy to support individual action and agency, whereas execution networks typically address complex problems that require sustained…

  13. Reactive transport in a partially molten system with binary solid solution

    NASA Astrophysics Data System (ADS)

    Jordan, J.; Hesse, M. A.

    2017-12-01

    Melt extraction from the Earth's mantle through high-porosity channels is required to explain the composition of the oceanic crust. Feedbacks from reactive melt transport are thought to localize melt into a network of high-porosity channels. Recent studies invoke lithological heterogeneities in the Earth's mantle to seed the localization of partial melts. Therefore, it is necessary to understand the reaction fronts that form as melt flows across the lithological interface of a heterogeneity and the background mantle. Simplified melting models of such systems aide in the interpretation and formulation of larger scale mantle models. Motivated by the aforementioned facts, we present a chromatographic analysis of reactive melt transport across lithological boundaries, using theory for hyperbolic conservation laws. This is an extension of well-known linear trace element chromatography to the coupling of major elements and energy transport. Our analysis allows the prediction of the feedbacks that arise in reactive melt transport due to melting, freezing, dissolution and precipitation for frontal reactions. This study considers the simplified case of a rigid, partially molten porous medium with binary solid solution. As melt traverses a lithological contact-modeled as a Riemann problem-a rich set of features arise, including a reacted zone between an advancing reaction front and partial chemical preservation of the initial contact. Reactive instabilities observed in this study originate at the lithological interface rather than along a chemical gradient as in most studies of mantle dynamics. We present a regime diagram that predicts where reaction fronts become unstable, thereby allowing melt localization into high-porosity channels through reactive instabilities. After constructing the regime diagram, we test the one-dimensional hyperbolic theory against two-dimensional numerical experiments. The one-dimensional hyperbolic theory is sufficient for predicting the qualitative behavior of reactive melt transport simulations conducted in two-dimensions. The theoretical framework presented can be extended to more complex and realistic phase behavior, and is therefore a useful tool for understanding nonlinear feedbacks in reactive melt transport problems relevant to mantle dynamics.

  14. Can Simple Biophysical Principles Yield Complicated Biological Functions?

    NASA Astrophysics Data System (ADS)

    Liphardt, Jan

    2011-03-01

    About once a year, a new regulatory paradigm is discovered in cell biology. As of last count, eukaryotic cells have more than 40 distinct ways of regulating protein concentration and function. Regulatory possibilities include site-specific phosphorylation, epigenetics, alternative splicing, mRNA (re)localization, and modulation of nucleo-cytoplasmic transport. This raises a simple question. Do all the remarkable things cells do, require an intricately choreographed supporting cast of hundreds of molecular machines and associated signaling networks? Alternatively, are there a few simple biophysical principles that can generate apparently very complicated cellular behaviors and functions? I'll discuss two problems, spatial organization of the bacterial chemotaxis system and nucleo-cytoplasmic transport, where the latter might be true. In both cases, the ability to precisely quantify biological organization and function, at the single-molecule level, helped to find signatures of basic biological organizing principles.

  15. Identifying the Critical Links in Road Transportation Networks: Centrality-based approach utilizing structural properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinthavali, Supriya

    Surface transportation road networks share structural properties similar to other complex networks (e.g., social networks, information networks, biological networks, and so on). This research investigates the structural properties of road networks for any possible correlation with the traffic characteristics such as link flows those determined independently. Additionally, we define a criticality index for the links of the road network that identifies the relative importance in the network. We tested our hypotheses with two sample road networks. Results show that, correlation exists between the link flows and centrality measures of a link of the road (dual graph approach is followed) andmore » the criticality index is found to be effective for one test network to identify the vulnerable nodes.« less

  16. Recent research in network problems with applications

    NASA Technical Reports Server (NTRS)

    Thompson, G. L.

    1980-01-01

    The capabilities of network codes and their extensions are surveyed in regard to specially structured integer programming problems which are solved by using the solutions of a series of ordinary network problems.

  17. An optimal routing strategy on scale-free networks

    NASA Astrophysics Data System (ADS)

    Yang, Yibo; Zhao, Honglin; Ma, Jinlong; Qi, Zhaohui; Zhao, Yongbin

    Traffic is one of the most fundamental dynamical processes in networked systems. With the traditional shortest path routing (SPR) protocol, traffic congestion is likely to occur on the hub nodes on scale-free networks. In this paper, we propose an improved optimal routing (IOR) strategy which is based on the betweenness centrality and the degree centrality of nodes in the scale-free networks. With the proposed strategy, the routing paths can accurately bypass hub nodes in the network to enhance the transport efficiency. Simulation results show that the traffic capacity as well as some other indexes reflecting transportation efficiency are further improved with the IOR strategy. Owing to the significantly improved traffic performance, this study is helpful to design more efficient routing strategies in communication or transportation systems.

  18. Networking for large-scale science: infrastructure, provisioning, transport and application mapping

    NASA Astrophysics Data System (ADS)

    Rao, Nageswara S.; Carter, Steven M.; Wu, Qishi; Wing, William R.; Zhu, Mengxia; Mezzacappa, Anthony; Veeraraghavan, Malathi; Blondin, John M.

    2005-01-01

    Large-scale science computations and experiments require unprecedented network capabilities in the form of large bandwidth and dynamically stable connections to support data transfers, interactive visualizations, and monitoring and steering operations. A number of component technologies dealing with the infrastructure, provisioning, transport and application mappings must be developed and/or optimized to achieve these capabilities. We present a brief account of the following technologies that contribute toward achieving these network capabilities: (a) DOE UltraScienceNet and NSF CHEETAH network testbeds that provide on-demand and scheduled dedicated network connections; (b) experimental results on transport protocols that achieve close to 100% utilization on dedicated 1Gbps wide-area channels; (c) a scheme for optimally mapping a visualization pipeline onto a network to minimize the end-to-end delays; and (d) interconnect configuration and protocols that provides multiple Gbps flows from Cray X1 to external hosts.

  19. Routing and wavelength assignment based on normalized resource and constraints for all-optical network

    NASA Astrophysics Data System (ADS)

    Joo, Seong-Soon; Nam, Hyun-Soon; Lim, Chang-Kyu

    2003-08-01

    With the rapid growth of the Optical Internet, high capacity pipes is finally destined to support end-to-end IP on the WDM optical network. Newly launched 2D MEMS optical switching module in the market supports that expectations of upcoming a transparent optical cross-connect in the network have encouraged the field applicable research on establishing real all-optical transparent network. To open up a customer-driven bandwidth services, design of the optical transport network becomes more challenging task in terms of optimal network resource usage. This paper presents a practical approach to finding a route and wavelength assignment for wavelength routed all-optical network, which has λ-plane OXC switches and wavelength converters, and supports that optical paths are randomly set up and released by dynamic wavelength provisioning to create bandwidth between end users with timescales on the order of seconds or milliseconds. We suggest three constraints to make the RWA problem become more practical one on deployment for wavelength routed all-optical network in network view: limitation on maximum hop of a route within bearable optical network impairments, limitation on minimum hops to travel before converting a wavelength, and limitation on calculation time to find all routes for connections requested at once. We design the NRCD (Normalized Resource and Constraints for All-Optical Network RWA Design) algorithm for the Tera OXC: network resource for a route is calculated by the number of internal switching paths established in each OXC nodes on the route, and is normalized by ratio of number of paths established and number of paths equipped in a node. We show that it fits for the RWA algorithm of the wavelength routed all-optical network through real experiments on the distributed objects platform.

  20. Analog Processor To Solve Optimization Problems

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Eberhardt, Silvio P.; Thakoor, Anil P.

    1993-01-01

    Proposed analog processor solves "traveling-salesman" problem, considered paradigm of global-optimization problems involving routing or allocation of resources. Includes electronic neural network and auxiliary circuitry based partly on concepts described in "Neural-Network Processor Would Allocate Resources" (NPO-17781) and "Neural Network Solves 'Traveling-Salesman' Problem" (NPO-17807). Processor based on highly parallel computing solves problem in significantly less time.

  1. Assessing the Climate Resilience of Transport Infrastructure Investments in Tanzania

    NASA Astrophysics Data System (ADS)

    Hall, J. W.; Pant, R.; Koks, E.; Thacker, S.; Russell, T.

    2017-12-01

    Whilst there is an urgent need for infrastructure investment in developing countries, there is a risk that poorly planned and built infrastructure will introduce new vulnerabilities. As climate change increases the magnitudes and frequency of natural hazard events, incidence of disruptive infrastructure failures are likely to become more frequent. Therefore, it is important that infrastructure planning and investment is underpinned by climate risk assessment that can inform adaptation planning. Tanzania's rapid economic growth is placing considerable strain on the country's transportation infrastructure (roads, railways, shipping and aviation); especially at the port of Dar es Salaam and its linking transport corridors. A growing number of natural hazard events, in particular flooding, are impacting the reliability of this already over-used network. Here we report on new methodology to analyse vulnerabilities and risks due to failures of key locations in the intermodal transport network of Tanzania, including strategic connectivity to neighboring countries. To perform the national-scale risk analysis we will utilize a system-of-systems methodology. The main components of this general risk assessment, when applied to transportation systems, include: (1) Assembling data on: spatially coherent extreme hazards and intermodal transportation networks; (2) Intersecting hazards with transport network models to initiate failure conditions that trigger failure propagation across interdependent networks; (3) Quantifying failure outcomes in terms of social impacts (customers/passengers disrupted) and/or macroeconomic consequences (across multiple sectors); and (4) Simulating, testing and collecting multiple failure scenarios to perform an exhaustive risk assessment in terms of probabilities and consequences. The methodology is being used to pinpoint vulnerability and reduce climate risks to transport infrastructure investments.

  2. Acoustic emission safety monitoring of intermodal transportation infrastructure.

    DOT National Transportation Integrated Search

    2015-09-01

    Safety and integrity of the national transportation infrastructure are of paramount importance and highway bridges are critical components of the highway system network. This network provides an immense contribution to the industry productivity and e...

  3. Transportation networks : data, analysis, methodology development and visualization.

    DOT National Transportation Integrated Search

    2007-12-29

    This project provides data compilation, analysis methodology and visualization methodology for the current network : data assets of the Alabama Department of Transportation (ALDOT). This study finds that ALDOT is faced with a : considerable number of...

  4. Application of sensor networks to intelligent transportation systems.

    DOT National Transportation Integrated Search

    2009-12-01

    The objective of the research performed is the application of wireless sensor networks to intelligent transportation infrastructures, with the aim of increasing their dependability and improving the efficacy of data collection and utilization. Exampl...

  5. Policy implications of transportation network companies.

    DOT National Transportation Integrated Search

    2016-01-01

    This policy brief presents a brief introduction to transportation network companies (TNCs) and their services, a review of state-level legislation across the United States, and the municipal regulations that have been implemented in Texas in response...

  6. Impact of pore size variability and network coupling on electrokinetic transport in porous media

    NASA Astrophysics Data System (ADS)

    Alizadeh, Shima; Bazant, Martin Z.; Mani, Ali

    2016-11-01

    We have developed and validated an efficient and robust computational model to study the coupled fluid and ion transport through electrokinetic porous media, which are exposed to external gradients of pressure, electric potential, and concentration. In our approach a porous media is modeled as a network of many pores through which the transport is described by the coupled Poisson-Nernst-Planck-Stokes equations. When the pore sizes are random, the interactions between various modes of transport may provoke complexities such as concentration polarization shocks and internal flow circulations. These phenomena impact mixing and transport in various systems including deionization and filtration systems, supercapacitors, and lab-on-a-chip devices. In this work, we present simulations of massive networks of pores and we demonstrate the impact of pore size variation, and pore-pore coupling on the overall electrokinetic transport in porous media.

  7. Epidemic spreading in networks with nonrandom long-range interactions

    NASA Astrophysics Data System (ADS)

    Estrada, Ernesto; Kalala-Mutombo, Franck; Valverde-Colmeiro, Alba

    2011-09-01

    An “infection,” understood here in a very broad sense, can be propagated through the network of social contacts among individuals. These social contacts include both “close” contacts and “casual” encounters among individuals in transport, leisure, shopping, etc. Knowing the first through the study of the social networks is not a difficult task, but having a clear picture of the network of casual contacts is a very hard problem in a society of increasing mobility. Here we assume, on the basis of several pieces of empirical evidence, that the casual contacts between two individuals are a function of their social distance in the network of close contacts. Then, we assume that we know the network of close contacts and infer the casual encounters by means of nonrandom long-range (LR) interactions determined by the social proximity of the two individuals. This approach is then implemented in a susceptible-infected-susceptible (SIS) model accounting for the spread of infections in complex networks. A parameter called “conductance” controls the feasibility of those casual encounters. In a zero conductance network only contagion through close contacts is allowed. As the conductance increases the probability of having casual encounters also increases. We show here that as the conductance parameter increases, the rate of propagation increases dramatically and the infection is less likely to die out. This increment is particularly marked in networks with scale-free degree distributions, where infections easily become epidemics. Our model provides a general framework for studying epidemic spreading in networks with arbitrary topology with and without casual contacts accounted for by means of LR interactions.

  8. Epidemic spreading in networks with nonrandom long-range interactions.

    PubMed

    Estrada, Ernesto; Kalala-Mutombo, Franck; Valverde-Colmeiro, Alba

    2011-09-01

    An "infection," understood here in a very broad sense, can be propagated through the network of social contacts among individuals. These social contacts include both "close" contacts and "casual" encounters among individuals in transport, leisure, shopping, etc. Knowing the first through the study of the social networks is not a difficult task, but having a clear picture of the network of casual contacts is a very hard problem in a society of increasing mobility. Here we assume, on the basis of several pieces of empirical evidence, that the casual contacts between two individuals are a function of their social distance in the network of close contacts. Then, we assume that we know the network of close contacts and infer the casual encounters by means of nonrandom long-range (LR) interactions determined by the social proximity of the two individuals. This approach is then implemented in a susceptible-infected-susceptible (SIS) model accounting for the spread of infections in complex networks. A parameter called "conductance" controls the feasibility of those casual encounters. In a zero conductance network only contagion through close contacts is allowed. As the conductance increases the probability of having casual encounters also increases. We show here that as the conductance parameter increases, the rate of propagation increases dramatically and the infection is less likely to die out. This increment is particularly marked in networks with scale-free degree distributions, where infections easily become epidemics. Our model provides a general framework for studying epidemic spreading in networks with arbitrary topology with and without casual contacts accounted for by means of LR interactions.

  9. Ethernet-Based Services for Next Generation Networks

    NASA Astrophysics Data System (ADS)

    Hernandez-Valencia, Enrique

    Over the last few years, Ethernet technology and services have emerged as an indispensable component of the broadband networking and telecommunications infrastructure, both for network operators and service providers. As an example, Worldwide Enterprise customer demand for Ethernet services by itself is expected to hit the 30B US mark by year 2012. Use of Ethernet technology in the feeder networks that support residential applications, such as "triple play" voice, data, and video services, is equally on the rise. As the synergies between packet-aware transport and service oriented equipment continue to be exploited in the path toward transport convergence. Ethernet technology is expected to play a critical part in the evolution toward converged Optical/Packet Transport networks. Here we discuss the main business motivations, services, and technologies driving the specifications of so-called carrier Ethernet and highlight challenges associated with delivering the expectations for low implementation complexity, easy of use, provisioning and management of networks and network elements embracing this technology.

  10. Network Design for Reliability and Resilience to Attack

    DTIC Science & Technology

    2014-03-01

    attacker can destroy n arcs in the network SPNI Shortest-Path Network-Interdiction problem TSP Traveling Salesman Problem UB upper bound UKR Ukraine...elimination from the traveling salesman problem (TSP). Literature calls a walk that does not contain a cycle a path [19]. The objective function in...arc lengths as random variables with known probability distributions. The m-median problem seeks to design a network with minimum average travel cost

  11. Floquet-Network Theory of Nonreciprocal Transport

    NASA Astrophysics Data System (ADS)

    Li, Huanan; Kottos, Tsampikos; Shapiro, Boris

    2018-04-01

    We develop a theoretical framework that lays out the fundamental rules under which a periodic (Floquet) driving scheme can induce nonreciprocal transport. Our approach utilizes an extended Hilbert space where a Floquet network with an extra (frequency) dimension naturally arises. The properties of this network (its on-site potential and the intersite couplings) are in one-to-one correspondence with the initial driving scheme. Its proper design allows for a control of the multipath scattering processes and the associated interferences. We harness this degree of freedom to realize driving schemes with narrow-band or broadband nonreciprocal transport.

  12. 49 CFR 40.205 - How are drug test problems corrected?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false How are drug test problems corrected? 40.205 Section 40.205 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Problems in Drug Tests § 40.205 How are drug test problems corrected? (a) As a collector, you have the...

  13. Sensor Authentication in Collaborating Sensor Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bielefeldt, Jake Uriah

    2014-11-01

    In this thesis, we address a new security problem in the realm of collaborating sensor networks. By collaborating sensor networks, we refer to the networks of sensor networks collaborating on a mission, with each sensor network is independently owned and operated by separate entities. Such networks are practical where a number of independent entities can deploy their own sensor networks in multi-national, commercial, and environmental scenarios, and some of these networks will integrate complementary functionalities for a mission. In the scenario, we address an authentication problem wherein the goal is for the Operator O i of Sensor Network S imore » to correctly determine the number of active sensors in Network Si. Such a problem is challenging in collaborating sensor networks where other sensor networks, despite showing an intent to collaborate, may not be completely trustworthy and could compromise the authentication process. We propose two authentication protocols to address this problem. Our protocols rely on Physically Unclonable Functions, which are a hardware based authentication primitive exploiting inherent randomness in circuit fabrication. Our protocols are light-weight, energy efficient, and highly secure against a number of attacks. To the best of our knowledge, ours is the first to addresses a practical security problem in collaborating sensor networks.« less

  14. Scale-Free Networks and Commercial Air Carrier Transportation in the United States

    NASA Technical Reports Server (NTRS)

    Conway, Sheila R.

    2004-01-01

    Network science, or the art of describing system structure, may be useful for the analysis and control of large, complex systems. For example, networks exhibiting scale-free structure have been found to be particularly well suited to deal with environmental uncertainty and large demand growth. The National Airspace System may be, at least in part, a scalable network. In fact, the hub-and-spoke structure of the commercial segment of the NAS is an often-cited example of an existing scale-free network After reviewing the nature and attributes of scale-free networks, this assertion is put to the test: is commercial air carrier transportation in the United States well explained by this model? If so, are the positive attributes of these networks, e.g. those of efficiency, flexibility and robustness, fully realized, or could we effect substantial improvement? This paper first outlines attributes of various network types, then looks more closely at the common carrier air transportation network from perspectives of the traveler, the airlines, and Air Traffic Control (ATC). Network models are applied within each paradigm, including discussion of implied strengths and weaknesses of each model. Finally, known limitations of scalable networks are discussed. With an eye towards NAS operations, utilizing the strengths and avoiding the weaknesses of scale-free networks are addressed.

  15. Randomized shortest-path problems: two related models.

    PubMed

    Saerens, Marco; Achbany, Youssef; Fouss, François; Yen, Luh

    2009-08-01

    This letter addresses the problem of designing the transition probabilities of a finite Markov chain (the policy) in order to minimize the expected cost for reaching a destination node from a source node while maintaining a fixed level of entropy spread throughout the network (the exploration). It is motivated by the following scenario. Suppose you have to route agents through a network in some optimal way, for instance, by minimizing the total travel cost-nothing particular up to now-you could use a standard shortest-path algorithm. Suppose, however, that you want to avoid pure deterministic routing policies in order, for instance, to allow some continual exploration of the network, avoid congestion, or avoid complete predictability of your routing strategy. In other words, you want to introduce some randomness or unpredictability in the routing policy (i.e., the routing policy is randomized). This problem, which will be called the randomized shortest-path problem (RSP), is investigated in this work. The global level of randomness of the routing policy is quantified by the expected Shannon entropy spread throughout the network and is provided a priori by the designer. Then, necessary conditions to compute the optimal randomized policy-minimizing the expected routing cost-are derived. Iterating these necessary conditions, reminiscent of Bellman's value iteration equations, allows computing an optimal policy, that is, a set of transition probabilities in each node. Interestingly and surprisingly enough, this first model, while formulated in a totally different framework, is equivalent to Akamatsu's model ( 1996 ), appearing in transportation science, for a special choice of the entropy constraint. We therefore revisit Akamatsu's model by recasting it into a sum-over-paths statistical physics formalism allowing easy derivation of all the quantities of interest in an elegant, unified way. For instance, it is shown that the unique optimal policy can be obtained by solving a simple linear system of equations. This second model is therefore more convincing because of its computational efficiency and soundness. Finally, simulation results obtained on simple, illustrative examples show that the models behave as expected.

  16. Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints

    NASA Astrophysics Data System (ADS)

    Kmet', Tibor; Kmet'ová, Mária

    2009-09-01

    A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.

  17. A program to compute the soft Robinson-Foulds distance between phylogenetic networks.

    PubMed

    Lu, Bingxin; Zhang, Louxin; Leong, Hon Wai

    2017-03-14

    Over the past two decades, phylogenetic networks have been studied to model reticulate evolutionary events. The relationships among phylogenetic networks, phylogenetic trees and clusters serve as the basis for reconstruction and comparison of phylogenetic networks. To understand these relationships, two problems are raised: the tree containment problem, which asks whether a phylogenetic tree is displayed in a phylogenetic network, and the cluster containment problem, which asks whether a cluster is represented at a node in a phylogenetic network. Both the problems are NP-complete. A fast exponential-time algorithm for the cluster containment problem on arbitrary networks is developed and implemented in C. The resulting program is further extended into a computer program for fast computation of the Soft Robinson-Foulds distance between phylogenetic networks. Two computer programs are developed for facilitating reconstruction and validation of phylogenetic network models in evolutionary and comparative genomics. Our simulation tests indicated that they are fast enough for use in practice. Additionally, the distribution of the Soft Robinson-Foulds distance between phylogenetic networks is demonstrated to be unlikely normal by our simulation data.

  18. Integrating pro-environmental behavior with transportation network modeling: User and system level strategies, implementation, and evaluation

    NASA Astrophysics Data System (ADS)

    Aziz, H. M. Abdul

    Personal transport is a leading contributor to fossil fuel consumption and greenhouse (GHG) emissions in the U.S. The U.S. Energy Information Administration (EIA) reports that light-duty vehicles (LDV) are responsible for 61% of all transportation related energy consumption in 2012, which is equivalent to 8.4 million barrels of oil (fossil fuel) per day. The carbon content in fossil fuels is the primary source of GHG emissions that links to the challenge associated with climate change. Evidently, it is high time to develop actionable and innovative strategies to reduce fuel consumption and GHG emissions from the road transportation networks. This dissertation integrates the broader goal of minimizing energy and emissions into the transportation planning process using novel systems modeling approaches. This research aims to find, investigate, and evaluate strategies that minimize carbon-based fuel consumption and emissions for a transportation network. We propose user and system level strategies that can influence travel decisions and can reinforce pro-environmental attitudes of road users. Further, we develop strategies that system operators can implement to optimize traffic operations with emissions minimization goal. To complete the framework we develop an integrated traffic-emissions (EPA-MOVES) simulation framework that can assess the effectiveness of the strategies with computational efficiency and reasonable accuracy. The dissertation begins with exploring the trade-off between emissions and travel time in context of daily travel decisions and its heterogeneous nature. Data are collected from a web-based survey and the trade-off values indicating the average additional travel minutes a person is willing to consider for reducing a lb. of GHG emissions are estimated from random parameter models. Results indicate that different trade-off values for male and female groups. Further, participants from high-income households are found to have higher trade-off values compared with other groups. Next, we propose personal mobility carbon allowance (PMCA) scheme to reduce emissions from personal travel. PMCA is a market-based scheme that allocates carbon credits to users at no cost based on the emissions reduction goal of the system. Users can spend carbon credits for travel and a market place exists where users can buy or sell credits. This dissertation addresses two primary dimensions: the change in travel behavior of the users and the impact at network level in terms of travel time and emissions when PMCA is implemented. To understand this process, a real-time experimental game tool is developed where players are asked to make travel decisions within the carbon budget set by PMCA and they are allowed to trade carbon credits in a market modeled as a double auction game. Random parameter models are estimated to examine the impact of PMCA on short-term travel decisions. Further, to assess the impact at system level, a multi-class dynamic user equilibrium model is formulated that captures the travel behavior under PMCA scheme. The equivalent variational inequality problem is solved using projection method. Results indicate that PMCA scheme is able to reduce GHG emissions from transportation networks. Individuals with high value of travel time (VOTT) are less sensitive to PMCA scheme in context of work trips. High and medium income users are more likely to have non-work trips with lower carbon cost (higher travel time) to save carbon credits for work trips. Next, we focus on the strategies from the perspectives of system operators in transportation networks. Learning based signal control schemes are developed that can reduce emissions from signalized urban networks. The algorithms are implemented and tested in VISSIM micro simulator. Finally, an integrated emissions-traffic simulator framework is outlined that can be used to evaluate the effectiveness of the strategies. The integrated framework uses MOVES2010b as the emissions simulator. To estimate the emissions efficiently we propose a hierarchical clustering technique with dynamic time warping similarity measures (HC-DTW) to find the link driving schedules for MOVES2010b. Test results using the data from a five-intersection corridor show that HC-DTW technique can significantly reduce emissions estimation time without compromising the accuracy. The benefits are found to be most significant when the level of congestion variation is high. In addition to finding novel strategies for reducing emissions from transportation networks, this dissertation has broader impacts on behavior based energy policy design and transportation network modeling research. The trade-off values can be a useful indicator to identify which policies are most effective to reinforce pro-environmental travel choices. For instance, the model can estimate the distribution of trade-off between emissions and travel time, and provide insights on the effectiveness of policies for New York City if we are able to collect data to construct a representative sample. The probability of route choice decisions vary across population groups and trip contexts. The probability as a function of travel and demographic attributes can be used as behavior rules for agents in an agent-based traffic simulation. Finally, the dynamic user equilibrium based network model provides a general framework for energy policies such carbon tax, tradable permit, and emissions credits system.

  19. Quantum Max-flow/Min-cut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Shawn X., E-mail: xingshan@math.ucsb.edu; Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052; Freedman, Michael H., E-mail: michaelf@microsoft.com

    2016-06-15

    The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating an integral capacity to each edge and a tensor to each vertex in a flow network, we can also interpret it as a tensor network and, more specifically, as a linear map from the input space to the output space. The quantum max-flow is defined to be the maximal rank of this linear map over all choices of tensors. The quantum min-cut is defined to be the minimum product of the capacities of edges over all cuts ofmore » the tensor network. We show that unlike the classical case, the quantum max-flow=min-cut conjecture is not true in general. Under certain conditions, e.g., when the capacity on each edge is some power of a fixed integer, the quantum max-flow is proved to equal the quantum min-cut. However, concrete examples are also provided where the equality does not hold. We also found connections of quantum max-flow/min-cut with entropy of entanglement and the quantum satisfiability problem. We speculate that the phenomena revealed may be of interest both in spin systems in condensed matter and in quantum gravity.« less

  20. Information services in social networked transportation : governance and ITS.

    DOT National Transportation Integrated Search

    2014-06-01

    The purpose of this research seeks to understand the functions and the benefits of social : networked transportation (SNT), the processes that make SNT possible, and the institutional : innovations needed to facilitate those processes. First, this re...

  1. Aggregation in Network Models for Transportation Planning

    DOT National Transportation Integrated Search

    1978-02-01

    This report documents research performed on techniques of aggregation applied to network models used in transportation planning. The central objective of this research has been to identify, extend, and evaluate methods of aggregation so as to improve...

  2. Monitoring bridge scour using fiber optic sensors : research project capsule.

    DOT National Transportation Integrated Search

    2009-03-01

    The interstate highway network is an : important national asset. Bridges : constituting critical nodes within : transportation networks are the : backbone of the transportation : infrastructure. It is well known that : scour is one of the major cours...

  3. Lattice Boltzmann simulation of CO2 reactive transport in network fractured media

    NASA Astrophysics Data System (ADS)

    Tian, Zhiwei; Wang, Junye

    2017-08-01

    Carbon dioxide (CO2) geological sequestration plays an important role in mitigating CO2 emissions for climate change. Understanding interactions of the injected CO2 with network fractures and hydrocarbons is key for optimizing and controlling CO2 geological sequestration and evaluating its risks to ground water. However, there is a well-known, difficult process in simulating the dynamic interaction of fracture-matrix, such as dynamic change of matrix porosity, unsaturated processes in rock matrix, and effect of rock mineral properties. In this paper, we develop an explicit model of the fracture-matrix interactions using multilayer bounce-back treatment as a first attempt to simulate CO2 reactive transport in network fractured media through coupling the Dardis's LBM porous model for a new interface treatment. Two kinds of typical fracture networks in porous media are simulated: straight cross network fractures and interleaving network fractures. The reaction rate and porosity distribution are illustrated and well-matched patterns are found. The species concentration distribution and evolution with time steps are also analyzed and compared with different transport properties. The results demonstrate the capability of this model to investigate the complex processes of CO2 geological injection and reactive transport in network fractured media, such as dynamic change of matrix porosity.

  4. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size

    NASA Astrophysics Data System (ADS)

    Hyman, J. D.; Aldrich, G.; Viswanathan, H.; Makedonska, N.; Karra, S.

    2016-08-01

    We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected so that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. These observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.

  5. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size

    NASA Astrophysics Data System (ADS)

    Hyman, J.; Aldrich, G. A.; Viswanathan, H. S.; Makedonska, N.; Karra, S.

    2016-12-01

    We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semi-correlation, and non-correlation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected so that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same.We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. These observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.

  6. Network-based model of the growth of termite nests

    NASA Astrophysics Data System (ADS)

    Eom, Young-Ho; Perna, Andrea; Fortunato, Santo; Darrouzet, Eric; Theraulaz, Guy; Jost, Christian

    2015-12-01

    We present a model for the growth of the transportation network inside nests of the social insect subfamily Termitinae (Isoptera, termitidae). These nests consist of large chambers (nodes) connected by tunnels (edges). The model based on the empirical analysis of the real nest networks combined with pruning (edge removal, either random or weighted by betweenness centrality) and a memory effect (preferential growth from the latest added chambers) successfully predicts emergent nest properties (degree distribution, size of the largest connected component, average path lengths, backbone link ratios, and local graph redundancy). The two pruning alternatives can be associated with different genuses in the subfamily. A sensitivity analysis on the pruning and memory parameters indicates that Termitinae networks favor fast internal transportation over efficient defense strategies against ant predators. Our results provide an example of how complex network organization and efficient network properties can be generated from simple building rules based on local interactions and contribute to our understanding of the mechanisms that come into play for the formation of termite networks and of biological transportation networks in general.

  7. Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes

    PubMed Central

    2016-01-01

    The ability to select and enrich semiconducting single-walled carbon nanotubes (SWNT) with high purity has led to a fast rise of solution-processed nanotube network field-effect transistors (FETs) with high carrier mobilities and on/off current ratios. However, it remains an open question whether it is best to use a network of only one nanotube species (monochiral) or whether a mix of purely semiconducting nanotubes but with different bandgaps is sufficient for high performance FETs. For a range of different polymer-sorted semiconducting SWNT networks, we demonstrate that a very small amount of narrow bandgap nanotubes within a dense network of large bandgap nanotubes can dominate the transport and thus severely limit on-currents and effective carrier mobility. Using gate-voltage-dependent electroluminescence, we spatially and spectrally reveal preferential charge transport that does not depend on nominal network density but on the energy level distribution within the network and carrier density. On the basis of these results, we outline rational guidelines for the use of mixed SWNT networks to obtain high performance FETs while reducing the cost for purification. PMID:26867006

  8. NSI operations center

    NASA Technical Reports Server (NTRS)

    Zanley, Nancy L.

    1991-01-01

    The NASA Science Internet (NSI) Network Operations Staff is responsible for providing reliable communication connectivity for the NASA science community. As the NSI user community expands, so does the demand for greater interoperability with users and resources on other networks (e.g., NSFnet, ESnet), both nationally and internationally. Coupled with the science community's demand for greater access to other resources is the demand for more reliable communication connectivity. Recognizing this, the NASA Science Internet Project Office (NSIPO) expands its Operations activities. By January 1990, Network Operations was equipped with a telephone hotline, and its staff was expanded to six Network Operations Analysts. These six analysts provide 24-hour-a-day, 7-day-a-week coverage to assist site managers with problem determination and resolution. The NSI Operations staff monitors network circuits and their associated routers. In most instances, NSI Operations diagnoses and reports problems before users realize a problem exists. Monitoring of the NSI TCP/IP Network is currently being done with Proteon's Overview monitoring system. The Overview monitoring system displays a map of the NSI network utilizing various colors to indicate the conditions of the components being monitored. Each node or site is polled via the Simple Network Monitoring Protocol (SNMP). If a circuit goes down, Overview alerts the Network Operations staff with an audible alarm and changes the color of the component. When an alert is received, Network Operations personnel immediately verify and diagnose the problem, coordinate repair with other networking service groups, track problems, and document problem and resolution into a trouble ticket data base. NSI Operations offers the NSI science community reliable connectivity by exercising prompt assessment and resolution of network problems.

  9. Smart Computer-Assisted Markets

    NASA Astrophysics Data System (ADS)

    McCabe, Kevin A.; Rassenti, Stephen J.; Smith, Vernon L.

    1991-10-01

    The deregulation movement has motivated the experimental study of auction markets designed for interdependent network industries such as natural gas pipelines or electric power systems. Decentralized agents submit bids to buy commodity and offers to sell transportation and commodity to a computerized dispatch center. Computer algorithms determine prices and allocations that maximize the gains from exchange in the system relative to the submitted bids and offers. The problem is important, because traditionally the scale and coordination economies in such industries were thought to require regulation. Laboratory experiments are used to study feasibility, limitations, incentives, and performance of proposed market designs for deregulation, providing motivation for new theory.

  10. Geographic location, network patterns and population distribution of rural settlements in Greece

    NASA Astrophysics Data System (ADS)

    Asimakopoulos, Avraam; Mogios, Emmanuel; Xenikos, Dimitrios G.

    2016-10-01

    Our work addresses the problem of how social networks are embedded in space, by studying the spread of human population over complex geomorphological terrain. We focus on villages or small cities up to a few thousand inhabitants located in mountainous areas in Greece. This terrain presents a familiar tree-like structure of valleys and land plateaus. Cities are found more often at lower altitudes and exhibit preference on south orientation. Furthermore, the population generally avoids flat land plateaus and river beds, preferring locations slightly uphill, away from the plateau edge. Despite the location diversity regarding geomorphological parameters, we find certain quantitative norms when we examine location and population distributions relative to the (man-made) transportation network. In particular, settlements at radial distance ℓ away from road network junctions have the same mean altitude, practically independent of ℓ ranging from a few meters to 10 km. Similarly, the distribution of the settlement population at any given ℓ is the same for all ℓ. Finally, the cumulative distribution of the number of rural cities n(ℓ) is fitted to the Weibull distribution, suggesting that human decisions for creating settlements could be paralleled to mechanisms typically attributed to this particular statistical distribution.

  11. The Application of Selected Network Methods for Reliable and Safe Transport by Small Commercial Vehicles

    NASA Astrophysics Data System (ADS)

    Matuszak, Zbigniew; Bartosz, Michał; Barta, Dalibor

    2016-09-01

    In the article are characterized two network methods (critical path method - CPM and program evaluation and review technique - PERT). On the example of an international furniture company's product, it presented the exemplification of methods to transport cargos (furniture elements). Moreover, the study showed diagrams for transportation of cargos from individual components' producers to the final destination - the showroom. Calculations were based on the transportation of furniture elements via small commercial vehicles.

  12. Generalisation and specialisation in hoverfly (Syrphidae) grassland pollen transport networks revealed by DNA metabarcoding.

    PubMed

    Lucas, Andrew; Bodger, Owen; Brosi, Berry J; Ford, Col R; Forman, Dan W; Greig, Carolyn; Hegarty, Matthew; Neyland, Penelope J; de Vere, Natasha

    2018-04-16

    Pollination by insects is a key ecosystem service and important to wider ecosystem function. Most species-level pollination networks studied have a generalised structure, with plants having several potential pollinators, and pollinators in turn visiting a number of different plant species. This is in apparent contrast to a plant's need for efficient conspecific pollen transfer. The aim of this study was to investigate the structure of pollen transport networks at three levels of biological hierarchy: community, species and individual. We did this using hoverflies in the genus Eristalis, a key group of non-Hymenopteran pollinators. We constructed pollen transport networks using DNA metabarcoding to identify pollen. We captured hoverflies in conservation grasslands in west Wales, UK, removed external pollen loads, sequenced the pollen DNA on the Illumina MiSeq platform using the standard plant barcode rbcL, and matched sequences using a pre-existing plant DNA barcode reference library. We found that Eristalis hoverflies transport pollen from 65 plant taxa, more than previously appreciated. Networks were generalised at the site and species level, suggesting some degree of functional redundancy, and were more generalised in late summer compared to early summer. In contrast, pollen transport at the individual level showed some degree of specialisation. Hoverflies defined as "single-plant visitors" varied from 40% of those captured in early summer to 24% in late summer. Individual hoverflies became more generalised in late summer, possibly in response to an increase in floral resources. Rubus fruticosus agg. and Succisa pratensis were key plant species for hoverflies at our sites Our results contribute to resolving the apparent paradox of how generalised pollinator networks can provide efficient pollination to plant species. Generalised hoverfly pollen transport networks may result from a varied range of short-term specialised feeding bouts by individual insects. The generalisation and functional redundancy of Eristalis pollen transport networks may increase the stability of the pollination service they deliver. © 2018 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  13. Simulation of unsteady flow and solute transport in a tidal river network

    USGS Publications Warehouse

    Zhan, X.

    2003-01-01

    A mathematical model and numerical method for water flow and solute transport in a tidal river network is presented. The tidal river network is defined as a system of open channels of rivers with junctions and cross sections. As an example, the Pearl River in China is represented by a network of 104 channels, 62 nodes, and a total of 330 cross sections with 11 boundary section for one of the applications. The simulations are performed with a supercomputer for seven scenarios of water flow and/or solute transport in the Pearl River, China, with different hydrological and weather conditions. Comparisons with available data are shown. The intention of this study is to summarize previous works and to provide a useful tool for water environmental management in a tidal river network, particularly for the Pearl River, China.

  14. Diverging Narratives: Evaluating the Uses of the Ideal-Typical Sequence of Transport Network Development

    ERIC Educational Resources Information Center

    Weber, Joe

    2004-01-01

    The development of new transport systems has been an important and highly visible component of economic development and spatial reorganization in the past two centuries. The Ideal-Typical Sequence of network development has been a widely used model of transport development. This paper shows that this model has been used in several different ways,…

  15. It's a Sooty Problem: Black Carbon and Aerosols from Space

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    2005-01-01

    Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with solar radiation, clouds and precipitation is lacking despite decades of research. Just recently we recognized that understanding the global aerosol system is fundamental for progress in climate change and hydrological cycle research. While a single instrument was used to demonstrate 50 yrs ago that the global CO2 levels are rising, posing thread to our climate, we need an may of satellites, surface networks of radiometers, elaborated laboratory and field experiments coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week), variability of the chemical composition and complex chemical and physical processes in the atmosphere. The result is a heterogeneous distribution of aerosol and their properties. The new generation of satellites and surface networks of radiometers provides exciting opportunities to measure the aerosol properties and their interaction with clouds and climate. However farther development in the satellite capability, aerosol chemical models and climate models is needed to fully decipher the aerosol secrets with accuracy required to predict future climates.

  16. Organization of complex networks

    NASA Astrophysics Data System (ADS)

    Kitsak, Maksim

    Many large complex systems can be successfully analyzed using the language of graphs and networks. Interactions between the objects in a network are treated as links connecting nodes. This approach to understanding the structure of networks is an important step toward understanding the way corresponding complex systems function. Using the tools of statistical physics, we analyze the structure of networks as they are found in complex systems such as the Internet, the World Wide Web, and numerous industrial and social networks. In the first chapter we apply the concept of self-similarity to the study of transport properties in complex networks. Self-similar or fractal networks, unlike non-fractal networks, exhibit similarity on a range of scales. We find that these fractal networks have transport properties that differ from those of non-fractal networks. In non-fractal networks, transport flows primarily through the hubs. In fractal networks, the self-similar structure requires any transport to also flow through nodes that have only a few connections. We also study, in models and in real networks, the crossover from fractal to non-fractal networks that occurs when a small number of random interactions are added by means of scaling techniques. In the second chapter we use k-core techniques to study dynamic processes in networks. The k-core of a network is the network's largest component that, within itself, exhibits all nodes with at least k connections. We use this k-core analysis to estimate the relative leadership positions of firms in the Life Science (LS) and Information and Communication Technology (ICT) sectors of industry. We study the differences in the k-core structure between the LS and the ICT sectors. We find that the lead segment (highest k-core) of the LS sector, unlike that of the ICT sector, is remarkably stable over time: once a particular firm enters the lead segment, it is likely to remain there for many years. In the third chapter we study how epidemics spread though networks. Our results indicate that a virus is more likely to infect a large area of a network if it originates at a node contained within k-core of high index k.

  17. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-08-01

    Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques

  18. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-06-01

    Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques

  19. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-05-01

    Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques

  20. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-04-01

    Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques

  1. Influence of changes in hydrodynamic conditions on cadmium transport in tidal river network of the Pearl River Delta, China.

    PubMed

    Dou, Ming; Zuo, Qiting; Zhang, Jinping; Li, Congying; Li, Guiqiu

    2013-09-01

    With rapid economic development, the Pearl River Delta (PRD) of China has experienced a series of serious heavy metal pollution events. Considering complex hydrodynamic and pollutants transport process, one-dimensional hydrodynamic model and heavy metal transport model were developed for tidal river network of the PRD. Then, several pollution emergency scenarios were designed by combining with the upper inflow, water quality and the lower tide level boundary conditions. Using this set of models, the temporal and spatial change process of cadmium (Cd) concentration was simulated. The influence of change in hydrodynamic conditions on Cd transport in tidal river network was assessed, and its transport laws were summarized. The result showed the following: Flow changes in the tidal river network were influenced remarkably by tidal backwater action, which further influenced the transport process of heavy metals; Cd concentrations in most sections while encountering high tide were far greater than those while encountering middle or low tides; and increased inflows from upper reaches could intensify water pollution in the West River (while encountering high tide) or the North River (while encountering middle or low tides).

  2. Optimizing Energy Consumption in Vehicular Sensor Networks by Clustering Using Fuzzy C-Means and Fuzzy Subtractive Algorithms

    NASA Astrophysics Data System (ADS)

    Ebrahimi, A.; Pahlavani, P.; Masoumi, Z.

    2017-09-01

    Traffic monitoring and managing in urban intelligent transportation systems (ITS) can be carried out based on vehicular sensor networks. In a vehicular sensor network, vehicles equipped with sensors such as GPS, can act as mobile sensors for sensing the urban traffic and sending the reports to a traffic monitoring center (TMC) for traffic estimation. The energy consumption by the sensor nodes is a main problem in the wireless sensor networks (WSNs); moreover, it is the most important feature in designing these networks. Clustering the sensor nodes is considered as an effective solution to reduce the energy consumption of WSNs. Each cluster should have a Cluster Head (CH), and a number of nodes located within its supervision area. The cluster heads are responsible for gathering and aggregating the information of clusters. Then, it transmits the information to the data collection center. Hence, the use of clustering decreases the volume of transmitting information, and, consequently, reduces the energy consumption of network. In this paper, Fuzzy C-Means (FCM) and Fuzzy Subtractive algorithms are employed to cluster sensors and investigate their performance on the energy consumption of sensors. It can be seen that the FCM algorithm and Fuzzy Subtractive have been reduced energy consumption of vehicle sensors up to 90.68% and 92.18%, respectively. Comparing the performance of the algorithms implies the 1.5 percent improvement in Fuzzy Subtractive algorithm in comparison.

  3. Hybrid computing using a neural network with dynamic external memory.

    PubMed

    Graves, Alex; Wayne, Greg; Reynolds, Malcolm; Harley, Tim; Danihelka, Ivo; Grabska-Barwińska, Agnieszka; Colmenarejo, Sergio Gómez; Grefenstette, Edward; Ramalho, Tiago; Agapiou, John; Badia, Adrià Puigdomènech; Hermann, Karl Moritz; Zwols, Yori; Ostrovski, Georg; Cain, Adam; King, Helen; Summerfield, Christopher; Blunsom, Phil; Kavukcuoglu, Koray; Hassabis, Demis

    2016-10-27

    Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning, but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to the lack of an external memory. Here we introduce a machine learning model called a differentiable neural computer (DNC), which consists of a neural network that can read from and write to an external memory matrix, analogous to the random-access memory in a conventional computer. Like a conventional computer, it can use its memory to represent and manipulate complex data structures, but, like a neural network, it can learn to do so from data. When trained with supervised learning, we demonstrate that a DNC can successfully answer synthetic questions designed to emulate reasoning and inference problems in natural language. We show that it can learn tasks such as finding the shortest path between specified points and inferring the missing links in randomly generated graphs, and then generalize these tasks to specific graphs such as transport networks and family trees. When trained with reinforcement learning, a DNC can complete a moving blocks puzzle in which changing goals are specified by sequences of symbols. Taken together, our results demonstrate that DNCs have the capacity to solve complex, structured tasks that are inaccessible to neural networks without external read-write memory.

  4. Probing the water distribution in porous model sands with two immiscible fluids: A nuclear magnetic resonance micro-imaging study

    NASA Astrophysics Data System (ADS)

    Lee, Bum Han; Lee, Sung Keun

    2017-10-01

    The effect of the structural heterogeneity of porous networks on the water distribution in porous media, initially saturated with immiscible fluid followed by increasing durations of water injection, remains one of the important problems in hydrology. The relationship among convergence rates (i.e., the rate of fluid saturation with varying injection time) and the macroscopic properties and structural parameters of porous media have been anticipated. Here, we used nuclear magnetic resonance (NMR) micro-imaging to obtain images (down to ∼50 μm resolution) of the distribution of water injected for varying durations into porous networks that were initially saturated with silicone oil. We then established the relationships among the convergence rates, structural parameters, and transport properties of porous networks. The volume fraction of the water phase increases as the water injection duration increases. The 3D images of the water distributions for silica gel samples are similar to those of the glass bead samples. The changes in water saturation (and the accompanying removal of silicone oil) and the variations in the volume fraction, specific surface area, and cube-counting fractal dimension of the water phase fit well with the single-exponential recovery function { f (t) = a [ 1 -exp (- λt) ] } . The asymptotic values (a, i.e., saturated value) of the properties of the volume fraction, specific surface area, and cube-counting fractal dimension of the glass bead samples were greater than those for the silica gel samples primarily because of the intrinsic differences in the porous networks and local distribution of the pore size and connectivity. The convergence rates of all of the properties are inversely proportional to the entropy length and permeability. Despite limitations of the current study, such as insufficient resolution and uncertainty for the estimated parameters due to sparsely selected short injection times, the observed trends highlight the first analyses of the cube-counting fractal dimension (and other structural properties) and convergence rates in porous networks consisting of two fluid components. These results indicate that the convergence rates correlate with the geometric factor that characterizes the porous networks and transport property of the porous networks.

  5. Scaling and correlations in three bus-transport networks of China

    NASA Astrophysics Data System (ADS)

    Xu, Xinping; Hu, Junhui; Liu, Feng; Liu, Lianshou

    2007-01-01

    We report the statistical properties of three bus-transport networks (BTN) in three different cities of China. These networks are composed of a set of bus lines and stations serviced by these. Network properties, including the degree distribution, clustering and average path length are studied in different definitions of network topology. We explore scaling laws and correlations that may govern intrinsic features of such networks. Besides, we create a weighted network representation for BTN with lines mapped to nodes and number of common stations to weights between lines. In such a representation, the distributions of degree, strength and weight are investigated. A linear behavior between strength and degree s(k)∼k is also observed.

  6. Neural networks applications to control and computations

    NASA Technical Reports Server (NTRS)

    Luxemburg, Leon A.

    1994-01-01

    Several interrelated problems in the area of neural network computations are described. First an interpolation problem is considered, then a control problem is reduced to a problem of interpolation by a neural network via Lyapunov function approach, and finally a new, faster method of learning as compared with the gradient descent method, was introduced.

  7. Plasmodial vein networks of the slime mold Physarum polycephalum form regular graphs

    NASA Astrophysics Data System (ADS)

    Baumgarten, Werner; Ueda, Tetsuo; Hauser, Marcus J. B.

    2010-10-01

    The morphology of a typical developing biological transportation network, the vein network of the plasmodium of the myxomycete Physarum polycephalum is analyzed during its free extension. The network forms a classical, regular graph, and has exclusively nodes of degree 3. This contrasts to most real-world transportation networks which show small-world or scale-free properties. The complexity of the vein network arises from the weighting of the lengths, widths, and areas of the vein segments. The lengths and areas follow exponential distributions, while the widths are distributed log-normally. These functional dependencies are robust during the entire evolution of the network, even though the exponents change with time due to the coarsening of the vein network.

  8. Plasmodial vein networks of the slime mold Physarum polycephalum form regular graphs.

    PubMed

    Baumgarten, Werner; Ueda, Tetsuo; Hauser, Marcus J B

    2010-10-01

    The morphology of a typical developing biological transportation network, the vein network of the plasmodium of the myxomycete Physarum polycephalum is analyzed during its free extension. The network forms a classical, regular graph, and has exclusively nodes of degree 3. This contrasts to most real-world transportation networks which show small-world or scale-free properties. The complexity of the vein network arises from the weighting of the lengths, widths, and areas of the vein segments. The lengths and areas follow exponential distributions, while the widths are distributed log-normally. These functional dependencies are robust during the entire evolution of the network, even though the exponents change with time due to the coarsening of the vein network.

  9. Development of a decision support tool for assessing vulnerability of transportation networks.

    DOT National Transportation Integrated Search

    2010-08-01

    This research develops a decision support tool for assessing vulnerability of transportation networks. This report consists of 1) describing the trends of freight movements in Utah, 2) identifying the current and potential freight chokepoints/bottlen...

  10. An evaluation of county comprehensive plans in Virginia.

    DOT National Transportation Integrated Search

    2006-01-01

    This study evaluated the comprehensive plans of 59 Virginia counties to determine if the transportation elements of the plans had an inventory of the transportation network in the county, an assessment of the network, and recommendations to address t...

  11. Learning in stochastic neural networks for constraint satisfaction problems

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Adorf, Hans-Martin

    1989-01-01

    Researchers describe a newly-developed artificial neural network algorithm for solving constraint satisfaction problems (CSPs) which includes a learning component that can significantly improve the performance of the network from run to run. The network, referred to as the Guarded Discrete Stochastic (GDS) network, is based on the discrete Hopfield network but differs from it primarily in that auxiliary networks (guards) are asymmetrically coupled to the main network to enforce certain types of constraints. Although the presence of asymmetric connections implies that the network may not converge, it was found that, for certain classes of problems, the network often quickly converges to find satisfactory solutions when they exist. The network can run efficiently on serial machines and can find solutions to very large problems (e.g., N-queens for N as large as 1024). One advantage of the network architecture is that network connection strengths need not be instantiated when the network is established: they are needed only when a participating neural element transitions from off to on. They have exploited this feature to devise a learning algorithm, based on consistency techniques for discrete CSPs, that updates the network biases and connection strengths and thus improves the network performance.

  12. Steady state analysis of Boolean molecular network models via model reduction and computational algebra.

    PubMed

    Veliz-Cuba, Alan; Aguilar, Boris; Hinkelmann, Franziska; Laubenbacher, Reinhard

    2014-06-26

    A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for large Boolean networks with high average connectivity remains an open problem.

  13. Steady state analysis of Boolean molecular network models via model reduction and computational algebra

    PubMed Central

    2014-01-01

    Background A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. Results This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. Conclusions The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for large Boolean networks with high average connectivity remains an open problem. PMID:24965213

  14. Discrete-time neural network for fast solving large linear L1 estimation problems and its application to image restoration.

    PubMed

    Xia, Youshen; Sun, Changyin; Zheng, Wei Xing

    2012-05-01

    There is growing interest in solving linear L1 estimation problems for sparsity of the solution and robustness against non-Gaussian noise. This paper proposes a discrete-time neural network which can calculate large linear L1 estimation problems fast. The proposed neural network has a fixed computational step length and is proved to be globally convergent to an optimal solution. Then, the proposed neural network is efficiently applied to image restoration. Numerical results show that the proposed neural network is not only efficient in solving degenerate problems resulting from the nonunique solutions of the linear L1 estimation problems but also needs much less computational time than the related algorithms in solving both linear L1 estimation and image restoration problems.

  15. Application of Fiber-Optical Techniques in the Access Transmission and Backbone Transport of Mobile Networks

    NASA Astrophysics Data System (ADS)

    Hilt, Attila; Pozsonyi, László

    2012-09-01

    Fixed access networks widely employ fiber-optical techniques due to the extremely wide bandwidth offered to subscribers. In the last decade, there has also been an enormous increase of user data visible in mobile systems. The importance of fiber-optical techniques within the fixed transmission/transport networks of mobile systems is therefore inevitably increasing. This article summarizes a few reasons and gives examples why and how fiber-optic techniques are employed efficiently in second-generation networks.

  16. A new neural network model for solving random interval linear programming problems.

    PubMed

    Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza

    2017-05-01

    This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Energy-Efficient Cognitive Radio Sensor Networks: Parametric and Convex Transformations

    PubMed Central

    Naeem, Muhammad; Illanko, Kandasamy; Karmokar, Ashok; Anpalagan, Alagan; Jaseemuddin, Muhammad

    2013-01-01

    Designing energy-efficient cognitive radio sensor networks is important to intelligently use battery energy and to maximize the sensor network life. In this paper, the problem of determining the power allocation that maximizes the energy-efficiency of cognitive radio-based wireless sensor networks is formed as a constrained optimization problem, where the objective function is the ratio of network throughput and the network power. The proposed constrained optimization problem belongs to a class of nonlinear fractional programming problems. Charnes-Cooper Transformation is used to transform the nonlinear fractional problem into an equivalent concave optimization problem. The structure of the power allocation policy for the transformed concave problem is found to be of a water-filling type. The problem is also transformed into a parametric form for which a ε-optimal iterative solution exists. The convergence of the iterative algorithms is proven, and numerical solutions are presented. The iterative solutions are compared with the optimal solution obtained from the transformed concave problem, and the effects of different system parameters (interference threshold level, the number of primary users and secondary sensor nodes) on the performance of the proposed algorithms are investigated. PMID:23966194

  18. Constant change: dynamic regulation of membrane transport by calcium signalling networks keeps plants in tune with their environment.

    PubMed

    Kleist, Thomas J; Luan, Sheng

    2016-03-01

    Despite substantial variation and irregularities in their environment, plants must conform to spatiotemporal demands on the molecular composition of their cytosol. Cell membranes are the major interface between organisms and their environment and the basis for controlling the contents and intracellular organization of the cell. Membrane transport proteins (MTPs) govern the flow of molecules across membranes, and their activities are closely monitored and regulated by cell signalling networks. By continuously adjusting MTP activities, plants can mitigate the effects of environmental perturbations, but effective implementation of this strategy is reliant on precise coordination among transport systems that reside in distinct cell types and membranes. Here, we examine the role of calcium signalling in the coordination of membrane transport, with an emphasis on potassium transport. Potassium is an exceptionally abundant and mobile ion in plants, and plant potassium transport has been intensively studied for decades. Classic and recent studies have underscored the importance of calcium in plant environmental responses and membrane transport regulation. In reviewing recent advances in our understanding of the coding and decoding of calcium signals, we highlight established and emerging roles of calcium signalling in coordinating membrane transport among multiple subcellular locations and distinct transport systems in plants, drawing examples from the CBL-CIPK signalling network. By synthesizing classical studies and recent findings, we aim to provide timely insights on the role of calcium signalling networks in the modulation of membrane transport and its importance in plant environmental responses. © 2015 John Wiley & Sons Ltd.

  19. Porosity Development in a Coastal Setting: A Reactive Transport Model to Assess the Influence of Heterogeneity of Hydrological, Geochemical and Lithological Conditions

    NASA Astrophysics Data System (ADS)

    Maqueda, A.; Renard, P.; Cornaton, F. J.

    2014-12-01

    Coastal karst networks are formed by mineral dissolution, mainly calcite, in the freshwater-saltwater mixing zone. The problem has been approached first by studying the kinetics of calcite dissolution and then coupling ion-pairing software with flow and mass transport models. Porosity development models require high computational power. A workaround to reduce computational complexity is to assume the calcite dissolution reaction is relatively fast, thus equilibrium chemistry can be used to model it (Sanford & Konikow, 1989). Later developments allowed the full coupling of kinetics and transport in a model. However kinetics effects of calcite dissolution were found negligible under the single set of assumed hydrological and geochemical boundary conditions. A model is implemented with the coupling of FeFlow software as the flow & transport module and PHREEQC4FEFLOW (Wissmeier, 2013) ion-pairing module. The model is used to assess the influence of heterogeneities in hydrological, geochemical and lithological boundary conditions on porosity evolution. The hydrologic conditions present in the karst aquifer of Quintana Roo coast in Mexico are used as a guide for generating inputs for simulations.

  20. 49 CFR 40.199 - What problems always cause a drug test to be cancelled?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false What problems always cause a drug test to be cancelled? 40.199 Section 40.199 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Problems in Drug Tests § 40.199 What problems always cause a drug test to be cancelled? (a...

  1. 49 CFR 40.208 - What problem requires corrective action but does not result in the cancellation of a test?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false What problem requires corrective action but does not result in the cancellation of a test? 40.208 Section 40.208 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Problems in Drug Tests § 40.208 What problem requires...

  2. Assessment of critical path analyses of the relationship between permeability and electrical conductivity of pore networks

    NASA Astrophysics Data System (ADS)

    Skaggs, Todd H.

    2011-10-01

    Critical path analysis (CPA) is a method for estimating macroscopic transport coefficients of heterogeneous materials that are highly disordered at the micro-scale. Developed originally to model conduction in semiconductors, numerous researchers have noted that CPA might also have relevance to flow and transport processes in porous media. However, the results of several numerical investigations of critical path analysis on pore network models raise questions about the applicability of CPA to porous media. Among other things, these studies found that (i) in well-connected 3D networks, CPA predictions were inaccurate and became worse when heterogeneity was increased; and (ii) CPA could not fully explain the transport properties of 2D networks. To better understand the applicability of CPA to porous media, we made numerical computations of permeability and electrical conductivity on 2D and 3D networks with differing pore-size distributions and geometries. A new CPA model for the relationship between the permeability and electrical conductivity was found to be in good agreement with numerical data, and to be a significant improvement over a classical CPA model. In sufficiently disordered 3D networks, the new CPA prediction was within ±20% of the true value, and was nearly optimal in terms of minimizing the squared prediction errors across differing network configurations. The agreement of CPA predictions with 2D network computations was similarly good, although 2D networks are in general not well-suited for evaluating CPA. Numerical transport coefficients derived for regular 3D networks of slit-shaped pores were found to be in better agreement with experimental data from rock samples than were coefficients derived for networks of cylindrical pores.

  3. Optimal percolation on multiplex networks.

    PubMed

    Osat, Saeed; Faqeeh, Ali; Radicchi, Filippo

    2017-11-16

    Optimal percolation is the problem of finding the minimal set of nodes whose removal from a network fragments the system into non-extensive disconnected clusters. The solution to this problem is important for strategies of immunization in disease spreading, and influence maximization in opinion dynamics. Optimal percolation has received considerable attention in the context of isolated networks. However, its generalization to multiplex networks has not yet been considered. Here we show that approximating the solution of the optimal percolation problem on a multiplex network with solutions valid for single-layer networks extracted from the multiplex may have serious consequences in the characterization of the true robustness of the system. We reach this conclusion by extending many of the methods for finding approximate solutions of the optimal percolation problem from single-layer to multiplex networks, and performing a systematic analysis on synthetic and real-world multiplex networks.

  4. Observation of Conductance Quantization in InSb Nanowire Networks

    PubMed Central

    2017-01-01

    Majorana zero modes (MZMs) are prime candidates for robust topological quantum bits, holding a great promise for quantum computing. Semiconducting nanowires with strong spin orbit coupling offer a promising platform to harness one-dimensional electron transport for Majorana physics. Demonstrating the topological nature of MZMs relies on braiding, accomplished by moving MZMs around each other in a certain sequence. Most of the proposed Majorana braiding circuits require nanowire networks with minimal disorder. Here, the electronic transport across a junction between two merged InSb nanowires is studied to investigate how disordered these nanowire networks are. Conductance quantization plateaus are observed in most of the contact pairs of the epitaxial InSb nanowire networks: the hallmark of ballistic transport behavior. PMID:28665621

  5. A Coral Reef Algorithm Based on Learning Automata for the Coverage Control Problem of Heterogeneous Directional Sensor Networks

    PubMed Central

    Li, Ming; Miao, Chunyan; Leung, Cyril

    2015-01-01

    Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches. PMID:26690162

  6. A Coral Reef Algorithm Based on Learning Automata for the Coverage Control Problem of Heterogeneous Directional Sensor Networks.

    PubMed

    Li, Ming; Miao, Chunyan; Leung, Cyril

    2015-12-04

    Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches.

  7. The diurnal interaction between convection and peninsular-scale forcing over South Florida

    NASA Technical Reports Server (NTRS)

    Cooper, H. J.; Simpson, J.; Garstang, M.

    1982-01-01

    One of the outstanding problems in modern meterology is that of describing in detail the manner in which larger scales of motion interact with, influence and are influenced by successively smaller scales of motion. The present investigation is concerned with a study of the diurnal evolution of convection, the interaction between the peninsular-scale convergence and convection, and the role of the feedback produced by the cloud-scale downdrafts in the maintenance of the convection. Attention is given to the analysis, the diurnal cycle of the network area-averaged divergence, convective-scale divergence, convective mass transports, and the peninsular scale divergence. The links established in the investigation between the large scale (peninsular), the mesoscale (network), and the convective scale (cloud) are found to be of fundamental importance to the understanding of the initiation, maintenance, and decay of deep precipitating convection and to its theoretical parameterization.

  8. Implementing and Simulating Dynamic Traffic Assignment with Intelligent Transportation Systems in Cube Avenue

    NASA Technical Reports Server (NTRS)

    Foytik, Peter; Robinson, Mike

    2010-01-01

    As urban populations and traffic congestion levels increase, effective use of information and communication tools and intelligent transportation systems as becoming increasingly important in order to maximize the efficiency of transportation networks. The appropriate placement and employment of these tools within a network is critical to their effectiveness. This presentation proposes and demonstrates the use of a commercial transportation simulation tool to simulate dynamic traffic assignment and rerouting to model route modifications as a result of traffic information.

  9. Stochastic Multi-Commodity Facility Location Based on a New Scenario Generation Technique

    NASA Astrophysics Data System (ADS)

    Mahootchi, M.; Fattahi, M.; Khakbazan, E.

    2011-11-01

    This paper extends two models for stochastic multi-commodity facility location problem. The problem is formulated as two-stage stochastic programming. As a main point of this study, a new algorithm is applied to efficiently generate scenarios for uncertain correlated customers' demands. This algorithm uses Latin Hypercube Sampling (LHS) and a scenario reduction approach. The relation between customer satisfaction level and cost are considered in model I. The risk measure using Conditional Value-at-Risk (CVaR) is embedded into the optimization model II. Here, the structure of the network contains three facility layers including plants, distribution centers, and retailers. The first stage decisions are the number, locations, and the capacity of distribution centers. In the second stage, the decisions are the amount of productions, the volume of transportation between plants and customers.

  10. Big data during crisis : lessons from Hurricane Irene.

    DOT National Transportation Integrated Search

    2015-03-01

    Transportation networks connect people with the goods and services that they require on a daily basis. : In a disaster or emergency, they serve the same role, but often for more urgent needs. Transportation : networks provide access to food, water, s...

  11. A historical perspective of the Global Transportation Network (GTN)

    DOT National Transportation Integrated Search

    2000-03-01

    This thesis analyzes the changes within the Global Transportation Network (GTN)/In Transit Visibility (ITV) feeder systems and the subsequent ITV they provide by comparing the current position to the past and by examining future trends. Up until now,...

  12. Molecular transport network security using multi-wavelength optical spins.

    PubMed

    Tunsiri, Surachai; Thammawongsa, Nopparat; Mitatha, Somsak; Yupapin, Preecha P

    2016-01-01

    Multi-wavelength generation system using an optical spin within the modified add-drop optical filter known as a PANDA ring resonator for molecular transport network security is proposed. By using the dark-bright soliton pair control, the optical capsules can be constructed and applied to securely transport the trapped molecules within the network. The advantage is that the dark and bright soliton pair (components) can securely propagate for long distance without electromagnetic interference. In operation, the optical intensity from PANDA ring resonator is fed into gold nano-antenna, where the surface plasmon oscillation between soliton pair and metallic waveguide is established.

  13. Impact of Stress on Anomalous Transport in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Kang, P. K.; Lei, Q.; Lee, S.; Dentz, M.; Juanes, R.

    2016-12-01

    Fluid flow and transport in fractured rock controls many natural and engineered processes in the subsurface. However, characterizing flow and transport through fractured media is challenging due to the large heterogeneity of fractured rock properties. In addition to these "static" challenges, geologic fractures are always under significant overburden stress, and changes in the stress state can lead to changes in the fracture's ability to conduct fluids. While confining stress has been shown to impact fluid flow through fractures in a fundamental way, the impact of confining stress on transport through fractured rock remains largely unexplored. The link between anomalous (non-Fickian) transport and confining stress has been shown only recently, at the level of a single rough fracture [1]. Here, we investigate the impact of confining stress on flow and transport through discrete fracture networks. We model geomechanical effects in 2D fractured rock by means of a finite-discrete element method (FEMDEM), which can capture the deformation of matrix blocks, reactivation and propagation of cracks. We implement a joint constitutive model within the FEMDEM framework to simulate the effect of fracture roughness. We apply the model to a fracture network extracted from the geological map of an actual outcrop to obtain the aperture field at different stress conditions (Figure 1). We then simulate fluid flow and particle transport through the stressed fracture networks. We observe that anomalous transport emerges in response to confining stress on the fracture networks, and show that this anomalous behavior can be linked to the stress state of the rock. Finally, we develop an effective transport model that captures the anomalous transport through stressed fractures. Our results point to a heretofore unrecognized link between geomechanics and anomalous transport in discrete fractured networks. [1] P. K. Kang, S. Brown, and R. Juanes, Emergence of anomalous transport in stressed rough fractures. Earth and Planetary Science Letters, to appear (2016). Figure (a) Map of maximum principal stress with a vertical normal compressive stress of 3 MPa at top and bottom boundaries, and 1MPa at left and right boundaries. (b) Normal compressive stress of 15 MPa at top and bottom boundaries, and 5MPa at left and right boundaries.

  14. Network integration modelling of feeder and BRT(bus rapid transit) to reduce the usage of private vehicles in Palembang’s suburban area

    NASA Astrophysics Data System (ADS)

    Nur'afalia, D.; Afifa, F.; Rubianto, L.; Handayeni, K. D. M. E.

    2018-01-01

    The aim of this research is to determine the optimal feeder network route that integrates with BRT (Bus Rapid Transit). Palembang, a high growing population city with unresolved transportation demand sector. BRT as main public transportation could not fulfill people’s demand in transportation, especially in Alang-Alang Lebar sub-district. As an impact, the usage of private vehicles increases along the movement toward the city center. The concept of Network Integration that integrates feeder network with BRT is expected to be a solution to suppress the rate of private vehicles’ usage and to improve public transportation service, so that the use of BRT will be increased in the suburban area of Palembang. The method used to identifying the optimal route using Route Analysis method is route analysis using Tranetsim 0.4. The best route is obtained based on 156 movement samples. The result is 58,7% from 199 mobility’s potency of private vehicle usage’s can be reduced if there is a feeder network’s route in Alang-Alang Lebar’s sub-district. From the result, the existance of integration between feeder network and BRT is potential enough to reduce the usage of private vehicles and supports the sustainability of transportation mobility in Palembang City.

  15. Congestion patterns of electric vehicles with limited battery capacity.

    PubMed

    Jing, Wentao; Ramezani, Mohsen; An, Kun; Kim, Inhi

    2018-01-01

    The path choice behavior of battery electric vehicle (BEV) drivers is influenced by the lack of public charging stations, limited battery capacity, range anxiety and long battery charging time. This paper investigates the congestion/flow pattern captured by stochastic user equilibrium (SUE) traffic assignment problem in transportation networks with BEVs, where the BEV paths are restricted by their battery capacities. The BEV energy consumption is assumed to be a linear function of path length and path travel time, which addresses both path distance limit problem and road congestion effect. A mathematical programming model is proposed for the path-based SUE traffic assignment where the path cost is the sum of the corresponding link costs and a path specific out-of-energy penalty. We then apply the convergent Lagrangian dual method to transform the original problem into a concave maximization problem and develop a customized gradient projection algorithm to solve it. A column generation procedure is incorporated to generate the path set. Finally, two numerical examples are presented to demonstrate the applicability of the proposed model and the solution algorithm.

  16. Congestion patterns of electric vehicles with limited battery capacity

    PubMed Central

    2018-01-01

    The path choice behavior of battery electric vehicle (BEV) drivers is influenced by the lack of public charging stations, limited battery capacity, range anxiety and long battery charging time. This paper investigates the congestion/flow pattern captured by stochastic user equilibrium (SUE) traffic assignment problem in transportation networks with BEVs, where the BEV paths are restricted by their battery capacities. The BEV energy consumption is assumed to be a linear function of path length and path travel time, which addresses both path distance limit problem and road congestion effect. A mathematical programming model is proposed for the path-based SUE traffic assignment where the path cost is the sum of the corresponding link costs and a path specific out-of-energy penalty. We then apply the convergent Lagrangian dual method to transform the original problem into a concave maximization problem and develop a customized gradient projection algorithm to solve it. A column generation procedure is incorporated to generate the path set. Finally, two numerical examples are presented to demonstrate the applicability of the proposed model and the solution algorithm. PMID:29543875

  17. Impact analysis of two kinds of failure strategies in Beijing road transportation network

    NASA Astrophysics Data System (ADS)

    Zhang, Zundong; Xu, Xiaoyang; Zhang, Zhaoran; Zhou, Huijuan

    The Beijing road transportation network (BRTN), as a large-scale technological network, exhibits very complex and complicate features during daily periods. And it has been widely highlighted that how statistical characteristics (i.e. average path length and global network efficiency) change while the network evolves. In this paper, by using different modeling concepts, three kinds of network models of BRTN namely the abstract network model, the static network model with road mileage as weights and the dynamic network model with travel time as weights — are constructed, respectively, according to the topological data and the real detected flow data. The degree distribution of the three kinds of network models are analyzed, which proves that the urban road infrastructure network and the dynamic network behavior like scale-free networks. By analyzing and comparing the important statistical characteristics of three models under random attacks and intentional attacks, it shows that the urban road infrastructure network and the dynamic network of BRTN are both robust and vulnerable.

  18. Nexus networks in carbon honeycombs

    NASA Astrophysics Data System (ADS)

    Chen, Yuanping; Xie, Yuee; Gao, Yan; Chang, Po-Yao; Zhang, Shengbai; Vanderbilt, David

    2018-04-01

    Nexus metals represent a new type of topological material in which nodal lines merge at nexus points. Here we propose novel networks in nexus systems through intertwining between nexus fermions and additional nodal lines. These nexus networks can be realized in recently synthesized carbon honeycomb materials. In these carbon honeycombs, we demonstrate a phase transition between a nexus network and a system with triply degenerate points and additional nodal lines. The Landau level spectra show unusual magnetic transport properties in the nexus networks. Our results pave the way toward realizations of new topological materials with novel transport properties beyond standard Weyl/Dirac semimetals.

  19. Network problem threshold

    NASA Technical Reports Server (NTRS)

    Gejji, Raghvendra, R.

    1992-01-01

    Network transmission errors such as collisions, CRC errors, misalignment, etc. are statistical in nature. Although errors can vary randomly, a high level of errors does indicate specific network problems, e.g. equipment failure. In this project, we have studied the random nature of collisions theoretically as well as by gathering statistics, and established a numerical threshold above which a network problem is indicated with high probability.

  20. Linear network representation of multistate models of transport.

    PubMed Central

    Sandblom, J; Ring, A; Eisenman, G

    1982-01-01

    By introducing external driving forces in rate-theory models of transport we show how the Eyring rate equations can be transformed into Ohm's law with potentials that obey Kirchhoff's second law. From such a formalism the state diagram of a multioccupancy multicomponent system can be directly converted into linear network with resistors connecting nodal (branch) points and with capacitances connecting each nodal point with a reference point. The external forces appear as emf or current generators in the network. This theory allows the algebraic methods of linear network theory to be used in solving the flux equations for multistate models and is particularly useful for making proper simplifying approximation in models of complex membrane structure. Some general properties of linear network representation are also deduced. It is shown, for instance, that Maxwell's reciprocity relationships of linear networks lead directly to Onsager's relationships in the near equilibrium region. Finally, as an example of the procedure, the equivalent circuit method is used to solve the equations for a few transport models. PMID:7093425

  1. Locating inefficient links in a large-scale transportation network

    NASA Astrophysics Data System (ADS)

    Sun, Li; Liu, Like; Xu, Zhongzhi; Jie, Yang; Wei, Dong; Wang, Pu

    2015-02-01

    Based on data from geographical information system (GIS) and daily commuting origin destination (OD) matrices, we estimated the distribution of traffic flow in the San Francisco road network and studied Braess's paradox in a large-scale transportation network with realistic travel demand. We measured the variation of total travel time Δ T when a road segment is closed, and found that | Δ T | follows a power-law distribution if Δ T < 0 or Δ T > 0. This implies that most roads have a negligible effect on the efficiency of the road network, while the failure of a few crucial links would result in severe travel delays, and closure of a few inefficient links would counter-intuitively reduce travel costs considerably. Generating three theoretical networks, we discovered that the heterogeneously distributed travel demand may be the origin of the observed power-law distributions of | Δ T | . Finally, a genetic algorithm was used to pinpoint inefficient link clusters in the road network. We found that closing specific road clusters would further improve the transportation efficiency.

  2. Predicting commuter flows in spatial networks using a radiation model based on temporal ranges

    NASA Astrophysics Data System (ADS)

    Ren, Yihui; Ercsey-Ravasz, Mária; Wang, Pu; González, Marta C.; Toroczkai, Zoltán

    2014-11-01

    Understanding network flows such as commuter traffic in large transportation networks is an ongoing challenge due to the complex nature of the transportation infrastructure and human mobility. Here we show a first-principles based method for traffic prediction using a cost-based generalization of the radiation model for human mobility, coupled with a cost-minimizing algorithm for efficient distribution of the mobility fluxes through the network. Using US census and highway traffic data, we show that traffic can efficiently and accurately be computed from a range-limited, network betweenness type calculation. The model based on travel time costs captures the log-normal distribution of the traffic and attains a high Pearson correlation coefficient (0.75) when compared with real traffic. Because of its principled nature, this method can inform many applications related to human mobility driven flows in spatial networks, ranging from transportation, through urban planning to mitigation of the effects of catastrophic events.

  3. Polarity related influence maximization in signed social networks.

    PubMed

    Li, Dong; Xu, Zhi-Ming; Chakraborty, Nilanjan; Gupta, Anika; Sycara, Katia; Li, Sheng

    2014-01-01

    Influence maximization in social networks has been widely studied motivated by applications like spread of ideas or innovations in a network and viral marketing of products. Current studies focus almost exclusively on unsigned social networks containing only positive relationships (e.g. friend or trust) between users. Influence maximization in signed social networks containing both positive relationships and negative relationships (e.g. foe or distrust) between users is still a challenging problem that has not been studied. Thus, in this paper, we propose the polarity-related influence maximization (PRIM) problem which aims to find the seed node set with maximum positive influence or maximum negative influence in signed social networks. To address the PRIM problem, we first extend the standard Independent Cascade (IC) model to the signed social networks and propose a Polarity-related Independent Cascade (named IC-P) diffusion model. We prove that the influence function of the PRIM problem under the IC-P model is monotonic and submodular Thus, a greedy algorithm can be used to achieve an approximation ratio of 1-1/e for solving the PRIM problem in signed social networks. Experimental results on two signed social network datasets, Epinions and Slashdot, validate that our approximation algorithm for solving the PRIM problem outperforms state-of-the-art methods.

  4. Polarity Related Influence Maximization in Signed Social Networks

    PubMed Central

    Li, Dong; Xu, Zhi-Ming; Chakraborty, Nilanjan; Gupta, Anika; Sycara, Katia; Li, Sheng

    2014-01-01

    Influence maximization in social networks has been widely studied motivated by applications like spread of ideas or innovations in a network and viral marketing of products. Current studies focus almost exclusively on unsigned social networks containing only positive relationships (e.g. friend or trust) between users. Influence maximization in signed social networks containing both positive relationships and negative relationships (e.g. foe or distrust) between users is still a challenging problem that has not been studied. Thus, in this paper, we propose the polarity-related influence maximization (PRIM) problem which aims to find the seed node set with maximum positive influence or maximum negative influence in signed social networks. To address the PRIM problem, we first extend the standard Independent Cascade (IC) model to the signed social networks and propose a Polarity-related Independent Cascade (named IC-P) diffusion model. We prove that the influence function of the PRIM problem under the IC-P model is monotonic and submodular Thus, a greedy algorithm can be used to achieve an approximation ratio of 1-1/e for solving the PRIM problem in signed social networks. Experimental results on two signed social network datasets, Epinions and Slashdot, validate that our approximation algorithm for solving the PRIM problem outperforms state-of-the-art methods. PMID:25061986

  5. The application of statistical mechanics on the study of glassy behaviors in transportation networks and dynamics in models of financial markets

    NASA Astrophysics Data System (ADS)

    Yeung, Chi Ho

    In this thesis, we study two interdisciplinary problems in the framework of statistical physics, which show the broad applicability of physics on problems with various origins. The first problem corresponds to an optimization problem in allocating resources on random regular networks. Frustrations arise from competition for resources. When the initial resources are uniform, different regimes with discrete fractions of satisfied nodes are observed, resembling the Devil's staircase. We apply the spin glass theory in analyses and demonstrate how functional recursions are converted to simple recursions of probabilities. Equilibrium properties such as the average energy and the fraction of free nodes are derived. When the initial resources are bimodally distributed, increases in the fraction of rich nodes induce a glassy transition, entering a glassy phase described by the existence of multiple metastable states, in which we employ the replica symmetry breaking ansatz for analysis. The second problem corresponds to the study of multi-agent systems modeling financial markets. Agents in the system trade among themselves, and self-organize to produce macroscopic trading behaviors resembling the real financial markets. These behaviors include the arbitraging activities, the setting up and the following of price trends. A phase diagram of these behaviors is obtained, as a function of the sensitivity of price and the market impact factor. We finally test the applicability of the models with real financial data including the Hang Seng Index, the Nasdaq Composite and the Dow Jones Industrial Average. A substantial fraction of agents gains faster than the inflation rate of the indices, suggesting the possibility of using multi-agent systems as a tool for real trading.

  6. Substituting telecommunications for travel - Feasible or desirable

    NASA Technical Reports Server (NTRS)

    Van Vleck, E. M.

    1974-01-01

    This paper reviews recent advances in telecommunications and examines the detailed structure of travel to estimate the feasibility of substituting telecommunications for various travel objectives. The impact of travel is analyzed from a social, economic, energy, and pollution standpoint to assess the desirability of substitution. Perhaps 35-50% of the nation's travel could, in theory, be replaced by very advanced telecommunications (such as a much improved large-screen teleconferencing network), but public resistance would be massive. Much economic dislocation would result since, for example, over 25% of retail sales are travel-related. The energy savings would be modest since only 25% of the nation's energy is consumed by transportation. However, all pollution would be reduced substantially since transportation accounts for 75% of the carbon monoxide, 60% of the hydrocarbon, and 55% of the nitrogen oxide pollution in the nation. Problems related to the implementation of large-scale substitution are discussed.

  7. Control of Multilayer Networks

    PubMed Central

    Menichetti, Giulia; Dall’Asta, Luca; Bianconi, Ginestra

    2016-01-01

    The controllability of a network is a theoretical problem of relevance in a variety of contexts ranging from financial markets to the brain. Until now, network controllability has been characterized only on isolated networks, while the vast majority of complex systems are formed by multilayer networks. Here we build a theoretical framework for the linear controllability of multilayer networks by mapping the problem into a combinatorial matching problem. We found that correlating the external signals in the different layers can significantly reduce the multiplex network robustness to node removal, as it can be seen in conjunction with a hybrid phase transition occurring in interacting Poisson networks. Moreover we observe that multilayer networks can stabilize the fully controllable multiplex network configuration that can be stable also when the full controllability of the single network is not stable. PMID:26869210

  8. Optimization and resilience of complex supply-demand networks

    NASA Astrophysics Data System (ADS)

    Zhang, Si-Ping; Huang, Zi-Gang; Dong, Jia-Qi; Eisenberg, Daniel; Seager, Thomas P.; Lai, Ying-Cheng

    2015-06-01

    Supply-demand processes take place on a large variety of real-world networked systems ranging from power grids and the internet to social networking and urban systems. In a modern infrastructure, supply-demand systems are constantly expanding, leading to constant increase in load requirement for resources and consequently, to problems such as low efficiency, resource scarcity, and partial system failures. Under certain conditions global catastrophe on the scale of the whole system can occur through the dynamical process of cascading failures. We investigate optimization and resilience of time-varying supply-demand systems by constructing network models of such systems, where resources are transported from the supplier sites to users through various links. Here by optimization we mean minimization of the maximum load on links, and system resilience can be characterized using the cascading failure size of users who fail to connect with suppliers. We consider two representative classes of supply schemes: load driven supply and fix fraction supply. Our findings are: (1) optimized systems are more robust since relatively smaller cascading failures occur when triggered by external perturbation to the links; (2) a large fraction of links can be free of load if resources are directed to transport through the shortest paths; (3) redundant links in the performance of the system can help to reroute the traffic but may undesirably transmit and enlarge the failure size of the system; (4) the patterns of cascading failures depend strongly upon the capacity of links; (5) the specific location of the trigger determines the specific route of cascading failure, but has little effect on the final cascading size; (6) system expansion typically reduces the efficiency; and (7) when the locations of the suppliers are optimized over a long expanding period, fewer suppliers are required. These results hold for heterogeneous networks in general, providing insights into designing optimal and resilient complex supply-demand systems that expand constantly in time.

  9. 49 CFR 40.203 - What problems cause a drug test to be cancelled unless they are corrected?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false What problems cause a drug test to be cancelled unless they are corrected? 40.203 Section 40.203 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Problems in Drug Tests § 40.203 What problems cause a drug test to be...

  10. Smart Collision Avoidance and Hazard Routing Mechanism for Intelligent Transport Network

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Gupta, Pooja; Wahab, Mohd Helmy Abd

    2017-08-01

    The smart vehicular ad-hoc network is the network that consists of vehicles for smooth movement and better management of the vehicular connectivity across the given network. This research paper aims to propose a set of solution for the VANETs consisting of the automatic driven vehicles, also called as the autonomous car. Such vehicular networks are always prone to collision due to the natural or un-natural reasons which must be solved before the large-scale deployment of the autonomous transport systems. The newly designed intelligent transport movement control mechanism is based upon the intelligent data propagation along with the vehicle collision and traffic jam prevention schema [8], which may help the future designs of smart cities to become more robust and less error-prone. In the proposed model, the focus is on designing a new dynamic and robust hazard routing protocol for intelligent vehicular networks for improvement of the overall performance in various aspects. It is expected to improve the overall transmission delay as well as the number of collisions or adversaries across the vehicular network zone.

  11. Research on Some Bus Transport Networks with Random Overlapping Clique Structure

    NASA Astrophysics Data System (ADS)

    Yang, Xu-Hua; Wang, Bo; Wang, Wan-Liang; Sun, You-Xian

    2008-11-01

    On the basis of investigating the statistical data of bus transport networks of three big cities in China, we propose that each bus route is a clique (maximal complete subgraph) and a bus transport network (BTN) consists of a lot of cliques, which intensively connect and overlap with each other. We study the network properties, which include the degree distribution, multiple edges' overlapping time distribution, distribution of the overlap size between any two overlapping cliques, distribution of the number of cliques that a node belongs to. Naturally, the cliques also constitute a network, with the overlapping nodes being their multiple links. We also research its network properties such as degree distribution, clustering, average path length, and so on. We propose that a BTN has the properties of random clique increment and random overlapping clique, at the same time, a BTN is a small-world network with highly clique-clustered and highly clique-overlapped. Finally, we introduce a BTN evolution model, whose simulation results agree well with the statistical laws that emerge in real BTNs.

  12. Random network peristalsis in Physarum polycephalum organizes fluid flows across an individual

    PubMed Central

    Alim, Karen; Amselem, Gabriel; Peaudecerf, François; Brenner, Michael P.; Pringle, Anne

    2013-01-01

    Individuals can function as integrated organisms only when information and resources are shared across a body. Signals and substrates are commonly moved using fluids, often channeled through a network of tubes. Peristalsis is one mechanism for fluid transport and is caused by a wave of cross-sectional contractions along a tube. We extend the concept of peristalsis from the canonical case of one tube to a random network. Transport is maximized within the network when the wavelength of the peristaltic wave is of the order of the size of the network. The slime mold Physarum polycephalum grows as a random network of tubes, and our experiments confirm peristalsis is used by the slime mold to drive internal cytoplasmic flows. Comparisons of theoretically generated contraction patterns with the patterns exhibited by individuals of P. polycephalum demonstrate that individuals maximize internal flows by adapting patterns of contraction to size, thus optimizing transport throughout an organism. This control of fluid flow may be the key to coordinating growth and behavior, including the dynamic changes in network architecture seen over time in an individual. PMID:23898203

  13. Random network peristalsis in Physarum polycephalum organizes fluid flows across an individual.

    PubMed

    Alim, Karen; Amselem, Gabriel; Peaudecerf, François; Brenner, Michael P; Pringle, Anne

    2013-08-13

    Individuals can function as integrated organisms only when information and resources are shared across a body. Signals and substrates are commonly moved using fluids, often channeled through a network of tubes. Peristalsis is one mechanism for fluid transport and is caused by a wave of cross-sectional contractions along a tube. We extend the concept of peristalsis from the canonical case of one tube to a random network. Transport is maximized within the network when the wavelength of the peristaltic wave is of the order of the size of the network. The slime mold Physarum polycephalum grows as a random network of tubes, and our experiments confirm peristalsis is used by the slime mold to drive internal cytoplasmic flows. Comparisons of theoretically generated contraction patterns with the patterns exhibited by individuals of P. polycephalum demonstrate that individuals maximize internal flows by adapting patterns of contraction to size, thus optimizing transport throughout an organism. This control of fluid flow may be the key to coordinating growth and behavior, including the dynamic changes in network architecture seen over time in an individual.

  14. Transport link scanner: simulating geographic transport network expansion through individual investments

    NASA Astrophysics Data System (ADS)

    Jacobs-Crisioni, C.; Koopmans, C. C.

    2016-07-01

    This paper introduces a GIS-based model that simulates the geographic expansion of transport networks by several decision-makers with varying objectives. The model progressively adds extensions to a growing network by choosing the most attractive investments from a limited choice set. Attractiveness is defined as a function of variables in which revenue and broader societal benefits may play a role and can be based on empirically underpinned parameters that may differ according to private or public interests. The choice set is selected from an exhaustive set of links and presumably contains those investment options that best meet private operator's objectives by balancing the revenues of additional fare against construction costs. The investment options consist of geographically plausible routes with potential detours. These routes are generated using a fine-meshed regularly latticed network and shortest path finding methods. Additionally, two indicators of the geographic accuracy of the simulated networks are introduced. A historical case study is presented to demonstrate the model's first results. These results show that the modelled networks reproduce relevant results of the historically built network with reasonable accuracy.

  15. Balancing building and maintenance costs in growing transport networks

    NASA Astrophysics Data System (ADS)

    Bottinelli, Arianna; Louf, Rémi; Gherardi, Marco

    2017-09-01

    The costs associated to the length of links impose unavoidable constraints to the growth of natural and artificial transport networks. When future network developments cannot be predicted, the costs of building and maintaining connections cannot be minimized simultaneously, requiring competing optimization mechanisms. Here, we study a one-parameter nonequilibrium model driven by an optimization functional, defined as the convex combination of building cost and maintenance cost. By varying the coefficient of the combination, the model interpolates between global and local length minimization, i.e., between minimum spanning trees and a local version known as dynamical minimum spanning trees. We show that cost balance within this ensemble of dynamical networks is a sufficient ingredient for the emergence of tradeoffs between the network's total length and transport efficiency, and of optimal strategies of construction. At the transition between two qualitatively different regimes, the dynamics builds up power-law distributed waiting times between global rearrangements, indicating a point of nonoptimality. Finally, we use our model as a framework to analyze empirical ant trail networks, showing its relevance as a null model for cost-constrained network formation.

  16. Supply chain network design problem for a new market opportunity in an agile manufacturing system

    NASA Astrophysics Data System (ADS)

    Babazadeh, Reza; Razmi, Jafar; Ghodsi, Reza

    2012-08-01

    The characteristics of today's competitive environment, such as the speed with which products are designed, manufactured, and distributed, and the need for higher responsiveness and lower operational cost, are forcing companies to search for innovative ways to do business. The concept of agile manufacturing has been proposed in response to these challenges for companies. This paper copes with the strategic and tactical level decisions in agile supply chain network design. An efficient mixed-integer linear programming model that is able to consider the key characteristics of agile supply chain such as direct shipments, outsourcing, different transportation modes, discount, alliance (process and information integration) between opened facilities, and maximum waiting time of customers for deliveries is developed. In addition, in the proposed model, the capacity of facilities is determined as decision variables, which are often assumed to be fixed. Computational results illustrate that the proposed model can be applied as a power tool in agile supply chain network design as well as in the integration of strategic decisions with tactical decisions.

  17. Economic optimization of the energy transport component of a large distributed solar power plant

    NASA Technical Reports Server (NTRS)

    Turner, R. H.

    1976-01-01

    A solar thermal power plant with a field of collectors, each locally heating some transport fluid, requires a pipe network system for eventual delivery of energy power generation equipment. For a given collector distribution and pipe network geometry, a technique is herein developed which manipulates basic cost information and physical data in order to design an energy transport system consistent with minimized cost constrained by a calculated technical performance. For a given transport fluid and collector conditions, the method determines the network pipe diameter and pipe thickness distribution and also insulation thickness distribution associated with minimum system cost; these relative distributions are unique. Transport losses, including pump work and heat leak, are calculated operating expenses and impact the total system cost. The minimum cost system is readily selected. The technique is demonstrated on six candidate transport fluids to emphasize which parameters dominate the system cost and to provide basic decision data. Three different power plant output sizes are evaluated in each case to determine severity of diseconomy of scale.

  18. Individual- and area-level disparities in access to the road network, subway system and a public bicycle share program on the Island of Montreal, Canada.

    PubMed

    Fuller, Daniel; Gauvin, Lise; Kestens, Yan

    2013-02-01

    Few studies have examined potential disparities in access to transportation infrastructures, an important determinant of population health. To examine individual- and area-level disparities in access to the road network, public transportation system, and a public bicycle share program in Montreal, Canada. Examining associations between sociodemographic variables and access to the road network, public transportation system, and a public bicycle share program, 6,495 adult respondents (mean age, 48.7 years; 59.0 % female) nested in 33 areas were included in a multilevel analysis. Individuals with lower incomes lived significantly closer to public transportation and the bicycle share program. At the area level, the interaction between low-education and low-income neighborhoods showed that these areas were significantly closer to public transportation and the bicycle share program controlling for individual and urbanicity variables. More deprived areas of the Island of Montreal have better access to transportation infrastructure than less-deprived areas.

  19. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size

    DOE PAGES

    Hyman, Jeffrey De'Haven; Aldrich, Garrett Allen; Viswanathan, Hari S.; ...

    2016-08-01

    We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected somore » that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. Lastly, these observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.« less

  20. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyman, Jeffrey De'Haven; Aldrich, Garrett Allen; Viswanathan, Hari S.

    We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected somore » that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. Lastly, these observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.« less

Top