Optimal perturbations for nonlinear systems using graph-based optimal transport
NASA Astrophysics Data System (ADS)
Grover, Piyush; Elamvazhuthi, Karthik
2018-06-01
We formulate and solve a class of finite-time transport and mixing problems in the set-oriented framework. The aim is to obtain optimal discrete-time perturbations in nonlinear dynamical systems to transport a specified initial measure on the phase space to a final measure in finite time. The measure is propagated under system dynamics in between the perturbations via the associated transfer operator. Each perturbation is described by a deterministic map in the measure space that implements a version of Monge-Kantorovich optimal transport with quadratic cost. Hence, the optimal solution minimizes a sum of quadratic costs on phase space transport due to the perturbations applied at specified times. The action of the transport map is approximated by a continuous pseudo-time flow on a graph, resulting in a tractable convex optimization problem. This problem is solved via state-of-the-art solvers to global optimality. We apply this algorithm to a problem of transport between measures supported on two disjoint almost-invariant sets in a chaotic fluid system, and to a finite-time optimal mixing problem by choosing the final measure to be uniform. In both cases, the optimal perturbations are found to exploit the phase space structures, such as lobe dynamics, leading to efficient global transport. As the time-horizon of the problem is increased, the optimal perturbations become increasingly localized. Hence, by combining the transfer operator approach with ideas from the theory of optimal mass transportation, we obtain a discrete-time graph-based algorithm for optimal transport and mixing in nonlinear systems.
The intelligence of dual simplex method to solve linear fractional fuzzy transportation problem.
Narayanamoorthy, S; Kalyani, S
2015-01-01
An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.
The Intelligence of Dual Simplex Method to Solve Linear Fractional Fuzzy Transportation Problem
Narayanamoorthy, S.; Kalyani, S.
2015-01-01
An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example. PMID:25810713
The Optimal Location of GEODSS Sensors in Canada
1991-02-01
nteractive procedures for solving multiobjective transportation problems. A transportation problem is a classical linear programming problem where a...product must be transported from each of m sources to any of n destinations such that one or more objectives are optimized (36:96). The first algorithm...0, k - 1,...,L where z, is the fth element of zk The function z’(x) can now be optimized using any efficient, single-objectivc transportation
Optimal partial mass transportation and obstacle Monge-Kantorovich equation
NASA Astrophysics Data System (ADS)
Igbida, Noureddine; Nguyen, Van Thanh
2018-05-01
Optimal partial mass transport, which is a variant of the optimal transport problem, consists in transporting effectively a prescribed amount of mass from a source to a target. The problem was first studied by Caffarelli and McCann (2010) [6] and Figalli (2010) [12] with a particular attention to the quadratic cost. Our aim here is to study the optimal partial mass transport problem with Finsler distance costs including the Monge cost given by the Euclidian distance. Our approach is different and our results do not follow from previous works. Among our results, we introduce a PDE of Monge-Kantorovich type with a double obstacle to characterize active submeasures, Kantorovich potential and optimal flow for the optimal partial transport problem. This new PDE enables us to study the uniqueness and monotonicity results for the active submeasures. Another interesting issue of our approach is its convenience for numerical analysis and computations that we develop in a separate paper [14] (Igbida and Nguyen, 2018).
Particle swarm optimization - Genetic algorithm (PSOGA) on linear transportation problem
NASA Astrophysics Data System (ADS)
Rahmalia, Dinita
2017-08-01
Linear Transportation Problem (LTP) is the case of constrained optimization where we want to minimize cost subject to the balance of the number of supply and the number of demand. The exact method such as northwest corner, vogel, russel, minimal cost have been applied at approaching optimal solution. In this paper, we use heurisitic like Particle Swarm Optimization (PSO) for solving linear transportation problem at any size of decision variable. In addition, we combine mutation operator of Genetic Algorithm (GA) at PSO to improve optimal solution. This method is called Particle Swarm Optimization - Genetic Algorithm (PSOGA). The simulations show that PSOGA can improve optimal solution resulted by PSO.
A Problem on Optimal Transportation
ERIC Educational Resources Information Center
Cechlarova, Katarina
2005-01-01
Mathematical optimization problems are not typical in the classical curriculum of mathematics. In this paper we show how several generalizations of an easy problem on optimal transportation were solved by gifted secondary school pupils in a correspondence mathematical seminar, how they can be used in university courses of linear programming and…
Optimal solution of full fuzzy transportation problems using total integral ranking
NASA Astrophysics Data System (ADS)
Sam’an, M.; Farikhin; Hariyanto, S.; Surarso, B.
2018-03-01
Full fuzzy transportation problem (FFTP) is a transportation problem where transport costs, demand, supply and decision variables are expressed in form of fuzzy numbers. To solve fuzzy transportation problem, fuzzy number parameter must be converted to a crisp number called defuzzyfication method. In this new total integral ranking method with fuzzy numbers from conversion of trapezoidal fuzzy numbers to hexagonal fuzzy numbers obtained result of consistency defuzzyfication on symmetrical fuzzy hexagonal and non symmetrical type 2 numbers with fuzzy triangular numbers. To calculate of optimum solution FTP used fuzzy transportation algorithm with least cost method. From this optimum solution, it is found that use of fuzzy number form total integral ranking with index of optimism gives different optimum value. In addition, total integral ranking value using hexagonal fuzzy numbers has an optimal value better than the total integral ranking value using trapezoidal fuzzy numbers.
Optimization of municipal solid waste collection and transportation routes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Swapan, E-mail: swapan2009sajal@gmail.com; Bhattacharyya, Bidyut Kr., E-mail: bidyut53@yahoo.co.in
2015-09-15
Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scattermore » throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length.« less
Using a derivative-free optimization method for multiple solutions of inverse transport problems
Armstrong, Jerawan C.; Favorite, Jeffrey A.
2016-01-14
Identifying unknown components of an object that emits radiation is an important problem for national and global security. Radiation signatures measured from an object of interest can be used to infer object parameter values that are not known. This problem is called an inverse transport problem. An inverse transport problem may have multiple solutions and the most widely used approach for its solution is an iterative optimization method. This paper proposes a stochastic derivative-free global optimization algorithm to find multiple solutions of inverse transport problems. The algorithm is an extension of a multilevel single linkage (MLSL) method where a meshmore » adaptive direct search (MADS) algorithm is incorporated into the local phase. Furthermore, numerical test cases using uncollided fluxes of discrete gamma-ray lines are presented to show the performance of this new algorithm.« less
Multiple Choice Knapsack Problem: example of planning choice in transportation.
Zhong, Tao; Young, Rhonda
2010-05-01
Transportation programming, a process of selecting projects for funding given budget and other constraints, is becoming more complex as a result of new federal laws, local planning regulations, and increased public involvement. This article describes the use of an integer programming tool, Multiple Choice Knapsack Problem (MCKP), to provide optimal solutions to transportation programming problems in cases where alternative versions of projects are under consideration. In this paper, optimization methods for use in the transportation programming process are compared and then the process of building and solving the optimization problems is discussed. The concepts about the use of MCKP are presented and a real-world transportation programming example at various budget levels is provided. This article illustrates how the use of MCKP addresses the modern complexities and provides timely solutions in transportation programming practice. While the article uses transportation programming as a case study, MCKP can be useful in other fields where a similar decision among a subset of the alternatives is required. Copyright 2009 Elsevier Ltd. All rights reserved.
Optimal rail container shipment planning problem in multimodal transportation
NASA Astrophysics Data System (ADS)
Cao, Chengxuan; Gao, Ziyou; Li, Keping
2012-09-01
The optimal rail container shipment planning problem in multimodal transportation is studied in this article. The characteristics of the multi-period planning problem is presented and the problem is formulated as a large-scale 0-1 integer programming model, which maximizes the total profit generated by all freight bookings accepted in a multi-period planning horizon subject to the limited capacities. Two heuristic algorithms are proposed to obtain an approximate optimal solution of the problem. Finally, numerical experiments are conducted to demonstrate the proposed formulation and heuristic algorithms.
Optimization of municipal solid waste collection and transportation routes.
Das, Swapan; Bhattacharyya, Bidyut Kr
2015-09-01
Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Iswari, T.; Asih, A. M. S.
2018-04-01
In the logistics system, transportation plays an important role to connect every element in the supply chain, but it can produces the greatest cost. Therefore, it is important to make the transportation costs as minimum as possible. Reducing the transportation cost can be done in several ways. One of the ways to minimizing the transportation cost is by optimizing the routing of its vehicles. It refers to Vehicle Routing Problem (VRP). The most common type of VRP is Capacitated Vehicle Routing Problem (CVRP). In CVRP, the vehicles have their own capacity and the total demands from the customer should not exceed the capacity of the vehicle. CVRP belongs to the class of NP-hard problems. These NP-hard problems make it more complex to solve such that exact algorithms become highly time-consuming with the increases in problem sizes. Thus, for large-scale problem instances, as typically found in industrial applications, finding an optimal solution is not practicable. Therefore, this paper uses two kinds of metaheuristics approach to solving CVRP. Those are Genetic Algorithm and Particle Swarm Optimization. This paper compares the results of both algorithms and see the performance of each algorithm. The results show that both algorithms perform well in solving CVRP but still needs to be improved. From algorithm testing and numerical example, Genetic Algorithm yields a better solution than Particle Swarm Optimization in total distance travelled.
Optimal Protocols and Optimal Transport in Stochastic Thermodynamics
NASA Astrophysics Data System (ADS)
Aurell, Erik; Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo
2011-06-01
Thermodynamics of small systems has become an important field of statistical physics. Such systems are driven out of equilibrium by a control, and the question is naturally posed how such a control can be optimized. We show that optimization problems in small system thermodynamics are solved by (deterministic) optimal transport, for which very efficient numerical methods have been developed, and of which there are applications in cosmology, fluid mechanics, logistics, and many other fields. We show, in particular, that minimizing expected heat released or work done during a nonequilibrium transition in finite time is solved by the Burgers equation and mass transport by the Burgers velocity field. Our contribution hence considerably extends the range of solvable optimization problems in small system thermodynamics.
Optimal protocols and optimal transport in stochastic thermodynamics.
Aurell, Erik; Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo
2011-06-24
Thermodynamics of small systems has become an important field of statistical physics. Such systems are driven out of equilibrium by a control, and the question is naturally posed how such a control can be optimized. We show that optimization problems in small system thermodynamics are solved by (deterministic) optimal transport, for which very efficient numerical methods have been developed, and of which there are applications in cosmology, fluid mechanics, logistics, and many other fields. We show, in particular, that minimizing expected heat released or work done during a nonequilibrium transition in finite time is solved by the Burgers equation and mass transport by the Burgers velocity field. Our contribution hence considerably extends the range of solvable optimization problems in small system thermodynamics.
A multi-resolution approach for optimal mass transport
NASA Astrophysics Data System (ADS)
Dominitz, Ayelet; Angenent, Sigurd; Tannenbaum, Allen
2007-09-01
Optimal mass transport is an important technique with numerous applications in econometrics, fluid dynamics, automatic control, statistical physics, shape optimization, expert systems, and meteorology. Motivated by certain problems in image registration and medical image visualization, in this note, we describe a simple gradient descent methodology for computing the optimal L2 transport mapping which may be easily implemented using a multiresolution scheme. We also indicate how the optimal transport map may be computed on the sphere. A numerical example is presented illustrating our ideas.
NASA Astrophysics Data System (ADS)
Ekren, Ibrahim; Soner, H. Mete
2018-03-01
The classical duality theory of Kantorovich (C R (Doklady) Acad Sci URSS (NS) 37:199-201, 1942) and Kellerer (Z Wahrsch Verw Gebiete 67(4):399-432, 1984) for classical optimal transport is generalized to an abstract framework and a characterization of the dual elements is provided. This abstract generalization is set in a Banach lattice X with an order unit. The problem is given as the supremum over a convex subset of the positive unit sphere of the topological dual of X and the dual problem is defined on the bi-dual of X. These results are then applied to several extensions of the classical optimal transport.
Transportation optimization with fuzzy trapezoidal numbers based on possibility theory.
He, Dayi; Li, Ran; Huang, Qi; Lei, Ping
2014-01-01
In this paper, a parametric method is introduced to solve fuzzy transportation problem. Considering that parameters of transportation problem have uncertainties, this paper develops a generalized fuzzy transportation problem with fuzzy supply, demand and cost. For simplicity, these parameters are assumed to be fuzzy trapezoidal numbers. Based on possibility theory and consistent with decision-makers' subjectiveness and practical requirements, the fuzzy transportation problem is transformed to a crisp linear transportation problem by defuzzifying fuzzy constraints and objectives with application of fractile and modality approach. Finally, a numerical example is provided to exemplify the application of fuzzy transportation programming and to verify the validity of the proposed methods.
Ma, Changxi; Hao, Wei; Pan, Fuquan; Xiang, Wang
2018-01-01
Route optimization of hazardous materials transportation is one of the basic steps in ensuring the safety of hazardous materials transportation. The optimization scheme may be a security risk if road screening is not completed before the distribution route is optimized. For road screening issues of hazardous materials transportation, a road screening algorithm of hazardous materials transportation is built based on genetic algorithm and Levenberg-Marquardt neural network (GA-LM-NN) by analyzing 15 attributes data of each road network section. A multi-objective robust optimization model with adjustable robustness is constructed for the hazardous materials transportation problem of single distribution center to minimize transportation risk and time. A multi-objective genetic algorithm is designed to solve the problem according to the characteristics of the model. The algorithm uses an improved strategy to complete the selection operation, applies partial matching cross shift and single ortho swap methods to complete the crossover and mutation operation, and employs an exclusive method to construct Pareto optimal solutions. Studies show that the sets of hazardous materials transportation road can be found quickly through the proposed road screening algorithm based on GA-LM-NN, whereas the distribution route Pareto solutions with different levels of robustness can be found rapidly through the proposed multi-objective robust optimization model and algorithm.
Fuzzy multi objective transportation problem – evolutionary algorithm approach
NASA Astrophysics Data System (ADS)
Karthy, T.; Ganesan, K.
2018-04-01
This paper deals with fuzzy multi objective transportation problem. An fuzzy optimal compromise solution is obtained by using Fuzzy Genetic Algorithm. A numerical example is provided to illustrate the methodology.
Efficient dispatching in a terminal city network
DOT National Transportation Integrated Search
2001-01-01
This report describes new optimization and simulation tools to address several problems in transportation, specifically driver dispatching and tour formation in full truckload trucking. In this segment of transportation industry, one of the problems ...
NASA Astrophysics Data System (ADS)
Hirsch, Piotr; Duzinkiewicz, Kazimierz; Grochowski, Michał
2017-11-01
District Heating (DH) systems are commonly supplied using local heat sources. Nowadays, modern insulation materials allow for effective and economically viable heat transportation over long distances (over 20 km). In the paper a method for optimized selection of design and operating parameters of long distance Heat Transportation System (HTS) is proposed. The method allows for evaluation of feasibility and effectivity of heat transportation from the considered heat sources. The optimized selection is formulated as multicriteria decision-making problem. The constraints for this problem include a static HTS model, allowing considerations of system life cycle, time variability and spatial topology. Thereby, variation of heat demand and ground temperature within the DH area, insulation and pipe aging and/or terrain elevation profile are taken into account in the decision-making process. The HTS construction costs, pumping power, and heat losses are considered as objective functions. Inner pipe diameter, insulation thickness, temperatures and pumping stations locations are optimized during the decision-making process. Moreover, the variants of pipe-laying e.g. one pipeline with the larger diameter or two with the smaller might be considered during the optimization. The analyzed optimization problem is multicriteria, hybrid and nonlinear. Because of such problem properties, the genetic solver was applied.
Optimal Micropatterns in 2D Transport Networks and Their Relation to Image Inpainting
NASA Astrophysics Data System (ADS)
Brancolini, Alessio; Rossmanith, Carolin; Wirth, Benedikt
2018-04-01
We consider two different variational models of transport networks: the so-called branched transport problem and the urban planning problem. Based on a novel relation to Mumford-Shah image inpainting and techniques developed in that field, we show for a two-dimensional situation that both highly non-convex network optimization tasks can be transformed into a convex variational problem, which may be very useful from analytical and numerical perspectives. As applications of the convex formulation, we use it to perform numerical simulations (to our knowledge this is the first numerical treatment of urban planning), and we prove a lower bound for the network cost that matches a known upper bound (in terms of how the cost scales in the model parameters) which helps better understand optimal networks and their minimal costs.
An Algorithm for the Mixed Transportation Network Design Problem
Liu, Xinyu; Chen, Qun
2016-01-01
This paper proposes an optimization algorithm, the dimension-down iterative algorithm (DDIA), for solving a mixed transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraint (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of the existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) problem. The idea of the proposed solution algorithm (DDIA) is to reduce the dimensions of the problem. A group of variables (discrete/continuous) is fixed to optimize another group of variables (continuous/discrete) alternately; then, the problem is transformed into solving a series of CNDPs (continuous network design problems) and DNDPs (discrete network design problems) repeatedly until the problem converges to the optimal solution. The advantage of the proposed algorithm is that its solution process is very simple and easy to apply. Numerical examples show that for the MNDP without budget constraint, the optimal solution can be found within a few iterations with DDIA. For the MNDP with budget constraint, however, the result depends on the selection of initial values, which leads to different optimal solutions (i.e., different local optimal solutions). Some thoughts are given on how to derive meaningful initial values, such as by considering the budgets of new and reconstruction projects separately. PMID:27626803
NASA Astrophysics Data System (ADS)
Tian, Wenli; Cao, Chengxuan
2017-03-01
A generalized interval fuzzy mixed integer programming model is proposed for the multimodal freight transportation problem under uncertainty, in which the optimal mode of transport and the optimal amount of each type of freight transported through each path need to be decided. For practical purposes, three mathematical methods, i.e. the interval ranking method, fuzzy linear programming method and linear weighted summation method, are applied to obtain equivalents of constraints and parameters, and then a fuzzy expected value model is presented. A heuristic algorithm based on a greedy criterion and the linear relaxation algorithm are designed to solve the model.
Optimization for routing vehicles of seafood product transportation
NASA Astrophysics Data System (ADS)
Soenandi, I. A.; Juan, Y.; Budi, M.
2017-12-01
Recently, increasing usage of marine products is creating new challenges for businesses of marine products in terms of transportation that used to carry the marine products like seafood to the main warehouse. This can be a problem if the carrier fleet is limited, and there are time constraints in terms of the freshness of the marine product. There are many ways to solve this problem, including the optimization of routing vehicles. In this study, this strategy is to implement in the marine product business in Indonesia with such an expected arrangement of the company to optimize routing problem in transportation with time and capacity windows. Until now, the company has not used the scientific method to manage the routing of their vehicle from warehouse to the location of marine products source. This study will solve a stochastic Vehicle Routing Problems (VRP) with time and capacity windows by using the comparison of six methods and looking the best results for the optimization, in this situation the company could choose the best method, in accordance with the existing condition. In this research, we compared the optimization with another method such as branch and bound, dynamic programming and Ant Colony Optimization (ACO). Finally, we get the best result after running ACO algorithm with existing travel time data. With ACO algorithm was able to reduce vehicle travel time by 3189.65 minutes, which is about 23% less than existing and based on consideration of the constraints of time within 2 days (including rest time for the driver) using 28 tons capacity of truck and the companies need two units of vehicles for transportation.
AN OPTIMAL ADAPTIVE LOCAL GRID REFINEMENT APPROACH TO MODELING CONTAMINANT TRANSPORT
A Lagrangian-Eulerian method with an optimal adaptive local grid refinement is used to model contaminant transport equations. pplication of this approach to two bench-mark problems indicates that it completely resolves difficulties of peak clipping, numerical diffusion, and spuri...
NASA Astrophysics Data System (ADS)
Kamal, M. A.; Youlla, D.
2018-03-01
Municipal solid waste (MSW) transportation in Pontianak City becomes an issue that need to be tackled by the relevant agencies. The MSW transportation service in Pontianak City currently requires very high resources especially in vehicle usage. Increasing the number of fleets has not been able to increase service levels while garbage volume is growing every year along with population growth. In this research, vehicle routing optimization approach was used to find optimal and efficient routes of vehicle cost in transporting garbage from several Temporary Garbage Dump (TGD) to Final Garbage Dump (FGD). One of the problems of MSW transportation is that there is a TGD which exceed the the vehicle capacity and must be visited more than once. The optimal computation results suggest that the municipal authorities only use 3 vehicles from 5 vehicles provided with the total minimum cost of IDR. 778,870. The computation time to search optimal route and minimal cost is very time consuming. This problem is influenced by the number of constraints and decision variables that have are integer value.
Multidisciplinary Optimization of a Transport Aircraft Wing using Particle Swarm Optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw; Venter, Gerhard
2002-01-01
The purpose of this paper is to demonstrate the application of particle swarm optimization to a realistic multidisciplinary optimization test problem. The paper's new contributions to multidisciplinary optimization is the application of a new algorithm for dealing with the unique challenges associated with multidisciplinary optimization problems, and recommendations as to the utility of the algorithm in future multidisciplinary optimization applications. The selected example is a bi-level optimization problem that demonstrates severe numerical noise and has a combination of continuous and truly discrete design variables. The use of traditional gradient-based optimization algorithms is thus not practical. The numerical results presented indicate that the particle swarm optimization algorithm is able to reliably find the optimum design for the problem presented here. The algorithm is capable of dealing with the unique challenges posed by multidisciplinary optimization as well as the numerical noise and truly discrete variables present in the current example problem.
A PERFECT MATCH CONDITION FOR POINT-SET MATCHING PROBLEMS USING THE OPTIMAL MASS TRANSPORT APPROACH
CHEN, PENGWEN; LIN, CHING-LONG; CHERN, I-LIANG
2013-01-01
We study the performance of optimal mass transport-based methods applied to point-set matching problems. The present study, which is based on the L2 mass transport cost, states that perfect matches always occur when the product of the point-set cardinality and the norm of the curl of the non-rigid deformation field does not exceed some constant. This analytic result is justified by a numerical study of matching two sets of pulmonary vascular tree branch points whose displacement is caused by the lung volume changes in the same human subject. The nearly perfect match performance verifies the effectiveness of this mass transport-based approach. PMID:23687536
Optimal one-way and roundtrip journeys design by mixed-integer programming
NASA Astrophysics Data System (ADS)
Ribeiro, Isabel M.; Vale, Cecília
2017-12-01
The introduction of multimodal/intermodal networks in transportation problems, especially when considering roundtrips, adds complexity to the models. This article presents two models for the optimization of intermodal trips as a contribution to the integration of transport modes in networks. The first model is devoted to one-way trips while the second one is dedicated to roundtrips. The original contribution of this research to transportation is mainly the consideration of roundtrips in the optimization process of intermodal transport, especially because the transport mode between two nodes on the return trip should be the same as the one on the outward trip if both nodes are visited on the return trip, which is a valuable aspect for transport companies. The mathematical formulations of both models leads to mixed binary linear programs, which is not a common approach for this type of problem. In this article, as well as the model description, computational experience is included to highlight the importance and efficiency of the proposed models, which may provide a valuable tool for transport managers.
Study on transfer optimization of urban rail transit and conventional public transport
NASA Astrophysics Data System (ADS)
Wang, Jie; Sun, Quan Xin; Mao, Bao Hua
2018-04-01
This paper mainly studies the time optimization of feeder connection between rail transit and conventional bus in a shopping center. In order to achieve the goal of connecting rail transportation effectively and optimizing the convergence between the two transportations, the things had to be done are optimizing the departure intervals, shorting the passenger transfer time and improving the service level of public transit. Based on the goal that has the minimum of total waiting time of passengers and the number of start of classes, establish the optimizing model of bus connecting of departure time. This model has some constrains such as transfer time, load factor, and the convergence of public transportation grid spacing. It solves the problems by using genetic algorithms.
Marco A. Contreras; Woodam Chung; Greg Jones
2008-01-01
Forest transportation planning problems (FTPP) have evolved from considering only the financial aspects of timber management to more holistic problems that also consider the environmental impacts of roads. These additional requirements have introduced side constraints, making FTPP larger and more complex. Mixed-integer programming (MIP) has been used to solve FTPP, but...
Tomographic Reconstruction from a Few Views: A Multi-Marginal Optimal Transport Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham, I., E-mail: isabelle.abraham@cea.fr; Abraham, R., E-mail: romain.abraham@univ-orleans.fr; Bergounioux, M., E-mail: maitine.bergounioux@univ-orleans.fr
2017-02-15
In this article, we focus on tomographic reconstruction. The problem is to determine the shape of the interior interface using a tomographic approach while very few X-ray radiographs are performed. We use a multi-marginal optimal transport approach. Preliminary numerical results are presented.
Application of decomposition techniques to the preliminary design of a transport aircraft
NASA Technical Reports Server (NTRS)
Rogan, J. E.; Kolb, M. A.
1987-01-01
A nonlinear constrained optimization problem describing the preliminary design process for a transport aircraft has been formulated. A multifaceted decomposition of the optimization problem has been made. Flight dynamics, flexible aircraft loads and deformations, and preliminary structural design subproblems appear prominently in the decomposition. The use of design process decomposition for scheduling design projects, a new system integration approach to configuration control, and the application of object-centered programming to a new generation of design tools are discussed.
A Cascade Optimization Strategy for Solution of Difficult Multidisciplinary Design Problems
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.; Berke, Laszlo
1996-01-01
A research project to comparatively evaluate 10 nonlinear optimization algorithms was recently completed. A conclusion was that no single optimizer could successfully solve all 40 problems in the test bed, even though most optimizers successfully solved at least one-third of the problems. We realized that improved search directions and step lengths, available in the 10 optimizers compared, were not likely to alleviate the convergence difficulties. For the solution of those difficult problems we have devised an alternative approach called cascade optimization strategy. The cascade strategy uses several optimizers, one followed by another in a specified sequence, to solve a problem. A pseudorandom scheme perturbs design variables between the optimizers. The cascade strategy has been tested successfully in the design of supersonic and subsonic aircraft configurations and air-breathing engines for high-speed civil transport applications. These problems could not be successfully solved by an individual optimizer. The cascade optimization strategy, however, generated feasible optimum solutions for both aircraft and engine problems. This paper presents the cascade strategy and solutions to a number of these problems.
Algorithms for optimization of the transport system in living and artificial cells.
Melkikh, A V; Sutormina, M I
2011-06-01
An optimization of the transport system in a cell has been considered from the viewpoint of the operations research. Algorithms for an optimization of the transport system of a cell in terms of both the efficiency and a weak sensitivity of a cell to environmental changes have been proposed. The switching of various systems of transport is considered as the mechanism of weak sensitivity of a cell to changes in environment. The use of the algorithms for an optimization of a cardiac cell has been considered by way of example. We received theoretically for a cell of a cardiac muscle that at the increase of potassium concentration in the environment switching of transport systems for this ion takes place. This conclusion qualitatively coincides with experiments. The problem of synthesizing an optimal system in an artificial cell has been stated.
Gottschlich, Carsten; Schuhmacher, Dominic
2014-01-01
Finding solutions to the classical transportation problem is of great importance, since this optimization problem arises in many engineering and computer science applications. Especially the Earth Mover's Distance is used in a plethora of applications ranging from content-based image retrieval, shape matching, fingerprint recognition, object tracking and phishing web page detection to computing color differences in linguistics and biology. Our starting point is the well-known revised simplex algorithm, which iteratively improves a feasible solution to optimality. The Shortlist Method that we propose substantially reduces the number of candidates inspected for improving the solution, while at the same time balancing the number of pivots required. Tests on simulated benchmarks demonstrate a considerable reduction in computation time for the new method as compared to the usual revised simplex algorithm implemented with state-of-the-art initialization and pivot strategies. As a consequence, the Shortlist Method facilitates the computation of large scale transportation problems in viable time. In addition we describe a novel method for finding an initial feasible solution which we coin Modified Russell's Method.
Gottschlich, Carsten; Schuhmacher, Dominic
2014-01-01
Finding solutions to the classical transportation problem is of great importance, since this optimization problem arises in many engineering and computer science applications. Especially the Earth Mover's Distance is used in a plethora of applications ranging from content-based image retrieval, shape matching, fingerprint recognition, object tracking and phishing web page detection to computing color differences in linguistics and biology. Our starting point is the well-known revised simplex algorithm, which iteratively improves a feasible solution to optimality. The Shortlist Method that we propose substantially reduces the number of candidates inspected for improving the solution, while at the same time balancing the number of pivots required. Tests on simulated benchmarks demonstrate a considerable reduction in computation time for the new method as compared to the usual revised simplex algorithm implemented with state-of-the-art initialization and pivot strategies. As a consequence, the Shortlist Method facilitates the computation of large scale transportation problems in viable time. In addition we describe a novel method for finding an initial feasible solution which we coin Modified Russell's Method. PMID:25310106
NASA Technical Reports Server (NTRS)
Sadovsky, A. V.; Davis, D.; Isaacson, D. R.
2012-01-01
We address the problem of navigating a set of moving agents, e.g. automated guided vehicles, through a transportation network so as to bring each agent to its destination at a specified time. Each pair of agents is required to be separated by a minimal distance, generally agent-dependent, at all times. The speed range, initial position, required destination, and required time of arrival at destination for each agent are assumed provided. The movement of each agent is governed by a controlled differential equation (state equation). The problem consists in choosing for each agent a path and a control strategy so as to meet the constraints and reach the destination at the required time. This problem arises in various fields of transportation, including Air Traffic Management and train coordination, and in robotics. The main contribution of the paper is a model that allows to recast this problem as a decoupled collection of problems in classical optimal control and is easily generalized to the case when inertia cannot be neglected. Some qualitative insight into solution behavior is obtained using the Pontryagin Maximum Principle. Sample numerical solutions are computed using a numerical optimal control solver.
Harmony search optimization algorithm for a novel transportation problem in a consolidation network
NASA Astrophysics Data System (ADS)
Davod Hosseini, Seyed; Akbarpour Shirazi, Mohsen; Taghi Fatemi Ghomi, Seyed Mohammad
2014-11-01
This article presents a new harmony search optimization algorithm to solve a novel integer programming model developed for a consolidation network. In this network, a set of vehicles is used to transport goods from suppliers to their corresponding customers via two transportation systems: direct shipment and milk run logistics. The objective of this problem is to minimize the total shipping cost in the network, so it tries to reduce the number of required vehicles using an efficient vehicle routing strategy in the solution approach. Solving several numerical examples confirms that the proposed solution approach based on the harmony search algorithm performs much better than CPLEX in reducing both the shipping cost in the network and computational time requirement, especially for realistic size problem instances.
Texture mapping via optimal mass transport.
Dominitz, Ayelet; Tannenbaum, Allen
2010-01-01
In this paper, we present a novel method for texture mapping of closed surfaces. Our method is based on the technique of optimal mass transport (also known as the "earth-mover's metric"). This is a classical problem that concerns determining the optimal way, in the sense of minimal transportation cost, of moving a pile of soil from one site to another. In our context, the resulting mapping is area preserving and minimizes angle distortion in the optimal mass sense. Indeed, we first begin with an angle-preserving mapping (which may greatly distort area) and then correct it using the mass transport procedure derived via a certain gradient flow. In order to obtain fast convergence to the optimal mapping, we incorporate a multiresolution scheme into our flow. We also use ideas from discrete exterior calculus in our computations.
Wang, Jiaxi; Gronalt, Manfred; Sun, Yan
2017-01-01
Due to its environmentally sustainable and energy-saving characteristics, railway transportation nowadays plays a fundamental role in delivering passengers and goods. Emerged in the area of transportation planning, the crew (workforce) sizing problem and the crew scheduling problem have been attached great importance by the railway industry and the scientific community. In this paper, we aim to solve the two problems by proposing a novel two-stage optimization approach in the context of the electric multiple units (EMU) depot shunting driver assignment problem. Given a predefined depot shunting schedule, the first stage of the approach focuses on determining an optimal size of shunting drivers. While the second stage is formulated as a bi-objective optimization model, in which we comprehensively consider the objectives of minimizing the total walking distance and maximizing the workload balance. Then we combine the normalized normal constraint method with a modified Pareto filter algorithm to obtain Pareto solutions for the bi-objective optimization problem. Furthermore, we conduct a series of numerical experiments to demonstrate the proposed approach. Based on the computational results, the regression analysis yield a driver size predictor and the sensitivity analysis give some interesting insights that are useful for decision makers.
Gronalt, Manfred; Sun, Yan
2017-01-01
Due to its environmentally sustainable and energy-saving characteristics, railway transportation nowadays plays a fundamental role in delivering passengers and goods. Emerged in the area of transportation planning, the crew (workforce) sizing problem and the crew scheduling problem have been attached great importance by the railway industry and the scientific community. In this paper, we aim to solve the two problems by proposing a novel two-stage optimization approach in the context of the electric multiple units (EMU) depot shunting driver assignment problem. Given a predefined depot shunting schedule, the first stage of the approach focuses on determining an optimal size of shunting drivers. While the second stage is formulated as a bi-objective optimization model, in which we comprehensively consider the objectives of minimizing the total walking distance and maximizing the workload balance. Then we combine the normalized normal constraint method with a modified Pareto filter algorithm to obtain Pareto solutions for the bi-objective optimization problem. Furthermore, we conduct a series of numerical experiments to demonstrate the proposed approach. Based on the computational results, the regression analysis yield a driver size predictor and the sensitivity analysis give some interesting insights that are useful for decision makers. PMID:28704489
NASA Astrophysics Data System (ADS)
Kuang, Simeng Max
This thesis contains two topics in data analysis. The first topic consists of the introduction of algorithms for sample-based optimal transport and barycenter problems. In chapter 1, a family of algorithms is introduced to solve both the L2 optimal transport problem and the Wasserstein barycenter problem. Starting from a theoretical perspective, the new algorithms are motivated from a key characterization of the barycenter measure, which suggests an update that reduces the total transportation cost and stops only when the barycenter is reached. A series of general theorems is given to prove the convergence of all the algorithms. We then extend the algorithms to solve sample-based optimal transport and barycenter problems, in which only finite sample sets are available instead of underlying probability distributions. A unique feature of the new approach is that it compares sample sets in terms of the expected values of a set of feature functions, which at the same time induce the function space of optimal maps and can be chosen by users to incorporate their prior knowledge of the data. All the algorithms are implemented and applied to various synthetic example and practical applications. On synthetic examples it is found that both the SOT algorithm and the SCB algorithm are able to find the true solution and often converge in a handful of iterations. On more challenging applications including Gaussian mixture models, color transfer and shape transform problems, the algorithms give very good results throughout despite the very different nature of the corresponding datasets. In chapter 2, a preconditioning procedure is developed for the L2 and more general optimal transport problems. The procedure is based on a family of affine map pairs, which transforms the original measures into two new measures that are closer to each other, while preserving the optimality of solutions. It is proved that the preconditioning procedure minimizes the remaining transportation cost among all admissible affine maps. The procedure can be used on both continuous measures and finite sample sets from distributions. In numerical examples, the procedure is applied to multivariate normal distributions, to a two-dimensional shape transform problem and to color transfer problems. For the second topic, we present an extension to anisotropic flows of the recently developed Helmholtz and wave-vortex decomposition method for one-dimensional spectra measured along ship or aircraft tracks in Buhler et al. (J. Fluid Mech., vol. 756, 2014, pp. 1007-1026). While in the original method the flow was assumed to be homogeneous and isotropic in the horizontal plane, we allow the flow to have a simple kind of horizontal anisotropy that is chosen in a self-consistent manner and can be deduced from the one-dimensional power spectra of the horizontal velocity fields and their cross-correlation. The key result is that an exact and robust Helmholtz decomposition of the horizontal kinetic energy spectrum can be achieved in this anisotropic flow setting, which then also allows the subsequent wave-vortex decomposition step. The new method is developed theoretically and tested with encouraging results on challenging synthetic data as well as on ocean data from the Gulf Stream.
Nash equilibrium and multi criterion aerodynamic optimization
NASA Astrophysics Data System (ADS)
Tang, Zhili; Zhang, Lianhe
2016-06-01
Game theory and its particular Nash Equilibrium (NE) are gaining importance in solving Multi Criterion Optimization (MCO) in engineering problems over the past decade. The solution of a MCO problem can be viewed as a NE under the concept of competitive games. This paper surveyed/proposed four efficient algorithms for calculating a NE of a MCO problem. Existence and equivalence of the solution are analyzed and proved in the paper based on fixed point theorem. Specific virtual symmetric Nash game is also presented to set up an optimization strategy for single objective optimization problems. Two numerical examples are presented to verify proposed algorithms. One is mathematical functions' optimization to illustrate detailed numerical procedures of algorithms, the other is aerodynamic drag reduction of civil transport wing fuselage configuration by using virtual game. The successful application validates efficiency of algorithms in solving complex aerodynamic optimization problem.
Maximizing algebraic connectivity in air transportation networks
NASA Astrophysics Data System (ADS)
Wei, Peng
In air transportation networks the robustness of a network regarding node and link failures is a key factor for its design. An experiment based on the real air transportation network is performed to show that the algebraic connectivity is a good measure for network robustness. Three optimization problems of algebraic connectivity maximization are then formulated in order to find the most robust network design under different constraints. The algebraic connectivity maximization problem with flight routes addition or deletion is first formulated. Three methods to optimize and analyze the network algebraic connectivity are proposed. The Modified Greedy Perturbation Algorithm (MGP) provides a sub-optimal solution in a fast iterative manner. The Weighted Tabu Search (WTS) is designed to offer a near optimal solution with longer running time. The relaxed semi-definite programming (SDP) is used to set a performance upper bound and three rounding techniques are discussed to find the feasible solution. The simulation results present the trade-off among the three methods. The case study on two air transportation networks of Virgin America and Southwest Airlines show that the developed methods can be applied in real world large scale networks. The algebraic connectivity maximization problem is extended by adding the leg number constraint, which considers the traveler's tolerance for the total connecting stops. The Binary Semi-Definite Programming (BSDP) with cutting plane method provides the optimal solution. The tabu search and 2-opt search heuristics can find the optimal solution in small scale networks and the near optimal solution in large scale networks. The third algebraic connectivity maximization problem with operating cost constraint is formulated. When the total operating cost budget is given, the number of the edges to be added is not fixed. Each edge weight needs to be calculated instead of being pre-determined. It is illustrated that the edge addition and the weight assignment can not be studied separately for the problem with operating cost constraint. Therefore a relaxed SDP method with golden section search is developed to solve both at the same time. The cluster decomposition is utilized to solve large scale networks.
Near-Optimal Guidance Method for Maximizing the Reachable Domain of Gliding Aircraft
NASA Astrophysics Data System (ADS)
Tsuchiya, Takeshi
This paper proposes a guidance method for gliding aircraft by using onboard computers to calculate a near-optimal trajectory in real-time, and thereby expanding the reachable domain. The results are applicable to advanced aircraft and future space transportation systems that require high safety. The calculation load of the optimal control problem that is used to maximize the reachable domain is too large for current computers to calculate in real-time. Thus the optimal control problem is divided into two problems: a gliding distance maximization problem in which the aircraft motion is limited to a vertical plane, and an optimal turning flight problem in a horizontal direction. First, the former problem is solved using a shooting method. It can be solved easily because its scale is smaller than that of the original problem, and because some of the features of the optimal solution are obtained in the first part of this paper. Next, in the latter problem, the optimal bank angle is computed from the solution of the former; this is an analytical computation, rather than an iterative computation. Finally, the reachable domain obtained from the proposed near-optimal guidance method is compared with that obtained from the original optimal control problem.
Fast Algorithms for Earth Mover Distance Based on Optimal Transport and L1 Regularization II
2016-09-01
of optimal transport, the EMD problem can be reformulated as a familiar L1 minimization. We use a regularization which gives us a unique solution for...plays a central role in many applications, including image processing, computer vision and statistics etc. [13, 17, 20, 24]. The EMD is a metric defined
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.
1998-01-01
A key challenge in designing the new High Speed Civil Transport (HSCT) aircraft is determining a good match between the airframe and engine. Multidisciplinary design optimization can be used to solve the problem by adjusting parameters of both the engine and the airframe. Earlier, an example problem was presented of an HSCT aircraft with four mixed-flow turbofan engines and a baseline mission to carry 305 passengers 5000 nautical miles at a cruise speed of Mach 2.4. The problem was solved by coupling NASA Lewis Research Center's design optimization testbed (COMETBOARDS) with NASA Langley Research Center's Flight Optimization System (FLOPS). The computing time expended in solving the problem was substantial, and the instability of the FLOPS analyzer at certain design points caused difficulties. In an attempt to alleviate both of these limitations, we explored the use of two approximation concepts in the design optimization process. The two concepts, which are based on neural network and linear regression approximation, provide the reanalysis capability and design sensitivity analysis information required for the optimization process. The HSCT aircraft optimization problem was solved by using three alternate approaches; that is, the original FLOPS analyzer and two approximate (derived) analyzers. The approximate analyzers were calibrated and used in three different ranges of the design variables; narrow (interpolated), standard, and wide (extrapolated).
Interdisciplinary optimum design. [of aerospace structures
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.
1986-01-01
Problems related to interdisciplinary interactions in the design of a complex engineering systems are examined with reference to aerospace applications. The interdisciplinary optimization problems examined include those dealing with controls and structures, materials and structures, control and stability, structure and aerodynamics, and structure and thermodynamics. The discussion is illustrated by the following specific applications: integrated aerodynamic/structural optimization of glider wing; optimization of an antenna parabolic dish structure for minimum weight and prescribed emitted signal gain; and a multilevel optimization study of a transport aircraft.
2015-01-01
programming formulation of traveling salesman problems , Journal of the ACM, 7(4), 326-329. Montemanni, R., Gambardella, L. M., Rizzoli, A.E., Donati. A.V... salesman problem . BioSystem, 43(1), 73-81. Dror, M., Trudeau, P., 1989. Savings by split delivery routing. Transportation Science, 23, 141- 145. Dror, M...An Ant Colony Optimization and Hybrid Metaheuristics Algorithm to solve the Split Delivery Vehicle Routing Problem Authors: Gautham Rajappa
Research on vehicles and cargos matching model based on virtual logistics platform
NASA Astrophysics Data System (ADS)
Zhuang, Yufeng; Lu, Jiang; Su, Zhiyuan
2018-04-01
Highway less than truckload (LTL) transportation vehicles and cargos matching problem is a joint optimization problem of typical vehicle routing and loading, which is also a hot issue of operational research. This article based on the demand of virtual logistics platform, for the problem of the highway LTL transportation, the matching model of the idle vehicle and the transportation order is set up and the corresponding genetic algorithm is designed. Then the algorithm is implemented by Java. The simulation results show that the solution is satisfactory.
NASA Astrophysics Data System (ADS)
Belokurov, V. P.; Belokurov, S. V.; Korablev, R. A.; Shtepa, A. A.
2018-05-01
The article deals with decision making concerning transport tasks on search iterations in the management of motor transport processes. An optimal selection of the best option for specific situations is suggested in the management of complex multi-criteria transport processes.
Sun, Yan; Lang, Maoxiang; Wang, Danzhu
2016-01-01
The transportation of hazardous materials is always accompanied by considerable risk that will impact public and environment security. As an efficient and reliable transportation organization, a multimodal service should participate in the transportation of hazardous materials. In this study, we focus on transporting hazardous materials through the multimodal service network and explore the hazardous materials multimodal routing problem from the operational level of network planning. To formulate this problem more practicably, minimizing the total generalized costs of transporting the hazardous materials and the social risk along the planned routes are set as the optimization objectives. Meanwhile, the following formulation characteristics will be comprehensively modelled: (1) specific customer demands; (2) multiple hazardous material flows; (3) capacitated schedule-based rail service and uncapacitated time-flexible road service; and (4) environmental risk constraint. A bi-objective mixed integer nonlinear programming model is first built to formulate the routing problem that combines the formulation characteristics above. Then linear reformations are developed to linearize and improve the initial model so that it can be effectively solved by exact solution algorithms on standard mathematical programming software. By utilizing the normalized weighted sum method, we can generate the Pareto solutions to the bi-objective optimization problem for a specific case. Finally, a large-scale empirical case study from the Beijing–Tianjin–Hebei Region in China is presented to demonstrate the feasibility of the proposed methods in dealing with the practical problem. Various scenarios are also discussed in the case study. PMID:27483294
NASA Astrophysics Data System (ADS)
Kinantan, Bag; Rahim Matondang, A.; Hidayati, Juliza
2018-02-01
The problem of urban waste has reached a point of concern. Population and economic growth are thought to be the cause of increasing the waste generation. The major problem related to this condition is the increasing of waste production which is not balance with the increase of its management capacity. Based on the Law Number 18 of 2008 that waste management starts from the source by applying the 3R approach (Reduction, Reuse, Recycle). This regulation provides a way which expect the waste management can be better, so that, the level of waste service can be improved and load on landfills (TPA) can be reduced.The cost of garbage collection and transport are 85% of the total waste management cost, so if this is optimized, it will optimize the system as a whole. Subsequent research focuses on how to optimize the garbage collection and transport sub-systems by finding the shortest route of transportation to the landfill by developing a Vehicle Routing Problem (VRP) model. The development of an urban area leads to the preparation of the best route is no longer an optimal solution. The complexity of the waste problem is not only related to the technical matters, but also the social and economic problems of the community. So, it is necessary to develop a model of waste management which does not only pay attention to the technical aspects, but also the social and economic. Waste is expected to be no longer a burden, but can also be utilized economically to increase community income.
Solving lot-sizing problem with quantity discount and transportation cost
NASA Astrophysics Data System (ADS)
Lee, Amy H. I.; Kang, He-Yau; Lai, Chun-Mei
2013-04-01
Owing to today's increasingly competitive market and ever-changing manufacturing environment, the inventory problem is becoming more complicated to solve. The incorporation of heuristics methods has become a new trend to tackle the complex problem in the past decade. This article considers a lot-sizing problem, and the objective is to minimise total costs, where the costs include ordering, holding, purchase and transportation costs, under the requirement that no inventory shortage is allowed in the system. We first formulate the lot-sizing problem as a mixed integer programming (MIP) model. Next, an efficient genetic algorithm (GA) model is constructed for solving large-scale lot-sizing problems. An illustrative example with two cases in a touch panel manufacturer is used to illustrate the practicality of these models, and a sensitivity analysis is applied to understand the impact of the changes in parameters to the outcomes. The results demonstrate that both the MIP model and the GA model are effective and relatively accurate tools for determining the replenishment for touch panel manufacturing for multi-periods with quantity discount and batch transportation. The contributions of this article are to construct an MIP model to obtain an optimal solution when the problem is not too complicated itself and to present a GA model to find a near-optimal solution efficiently when the problem is complicated.
Methods of increasing efficiency and maintainability of pipeline systems
NASA Astrophysics Data System (ADS)
Ivanov, V. A.; Sokolov, S. M.; Ogudova, E. V.
2018-05-01
This study is dedicated to the issue of pipeline transportation system maintenance. The article identifies two classes of technical-and-economic indices, which are used to select an optimal pipeline transportation system structure. Further, the article determines various system maintenance strategies and strategy selection criteria. Meanwhile, the maintenance strategies turn out to be not sufficiently effective due to non-optimal values of maintenance intervals. This problem could be solved by running the adaptive maintenance system, which includes a pipeline transportation system reliability improvement algorithm, especially an equipment degradation computer model. In conclusion, three model building approaches for determining optimal technical systems verification inspections duration were considered.
NASA Astrophysics Data System (ADS)
Hartatik; Purbayu, A.; Triyono, L.
2018-03-01
Major problem that often occurs in waste transportation in each region is the route of garbage transportation. Determination of this route should become a major concern because it affects fuel consumption and also the working time from the employee. Therefore, in this research we will develop an application to optimize with pigeonhole and dijsktra algorithm. Pigeonhole algorithm is used to determine which garbage trucks should be taken in a particular TPS. Time optimization is done by determining the shortest path that can be skipped for each garbage truck. Data generated from Pigeonhole then used to determine the shortest path by using Dijkstra algorithm.
Optimization problems in natural gas transportation systems. A state-of-the-art review
Ríos-Mercado, Roger Z.; Borraz-Sánchez, Conrado
2015-03-24
Our paper provides a review on the most relevant research works conducted to solve natural gas transportation problems via pipeline systems. The literature reveals three major groups of gas pipeline systems, namely gathering, transmission, and distribution systems. In this work, we aim at presenting a detailed discussion of the efforts made in optimizing natural gas transmission lines.There is certainly a vast amount of research done over the past few years on many decision-making problems in the natural gas industry and, specifically, in pipeline network optimization. In this work, we present a state-of-the-art survey focusing on specific categories that include short-termmore » basis storage (line-packing problems), gas quality satisfaction (pooling problems), and compressor station modeling (fuel cost minimization problems). We also discuss both steady-state and transient optimization models highlighting the modeling aspects and the most relevant solution approaches known to date. Although the literature on natural gas transmission system problems is quite extensive, this is, to the best of our knowledge, the first comprehensive review or survey covering this specific research area on natural gas transmission from an operations research perspective. Furthermore, this paper includes a discussion of the most important and promising research areas in this field. Hence, our paper can serve as a useful tool to gain insight into the evolution of the many real-life applications and most recent advances in solution methodologies arising from this exciting and challenging research area of decision-making problems.« less
Optimization problems in natural gas transportation systems. A state-of-the-art review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ríos-Mercado, Roger Z.; Borraz-Sánchez, Conrado
Our paper provides a review on the most relevant research works conducted to solve natural gas transportation problems via pipeline systems. The literature reveals three major groups of gas pipeline systems, namely gathering, transmission, and distribution systems. In this work, we aim at presenting a detailed discussion of the efforts made in optimizing natural gas transmission lines.There is certainly a vast amount of research done over the past few years on many decision-making problems in the natural gas industry and, specifically, in pipeline network optimization. In this work, we present a state-of-the-art survey focusing on specific categories that include short-termmore » basis storage (line-packing problems), gas quality satisfaction (pooling problems), and compressor station modeling (fuel cost minimization problems). We also discuss both steady-state and transient optimization models highlighting the modeling aspects and the most relevant solution approaches known to date. Although the literature on natural gas transmission system problems is quite extensive, this is, to the best of our knowledge, the first comprehensive review or survey covering this specific research area on natural gas transmission from an operations research perspective. Furthermore, this paper includes a discussion of the most important and promising research areas in this field. Hence, our paper can serve as a useful tool to gain insight into the evolution of the many real-life applications and most recent advances in solution methodologies arising from this exciting and challenging research area of decision-making problems.« less
Efficient transportation for Vermont : optimal statewide transit networks.
DOT National Transportation Integrated Search
2011-01-01
"Public transit systems are receiving increased attention as viable solutions to problems with : transportation system robustness, energy-efficiency and equity. The over-reliance on a single : mode, the automobile, is a threat to system robustness. I...
New variational bounds on convective transport. II. Computations and implications
NASA Astrophysics Data System (ADS)
Souza, Andre; Tobasco, Ian; Doering, Charles R.
2016-11-01
We study the maximal rate of scalar transport between parallel walls separated by distance h, by an incompressible fluid with scalar diffusion coefficient κ. Given velocity vector field u with intensity measured by the Péclet number Pe =h2 < | ∇ u |2 >1/2 / κ (where < . > is space-time average) the challenge is to determine the largest enhancement of wall-to-wall scalar flux over purely diffusive transport, i.e., the Nusselt number Nu . Variational formulations of the problem are studied numerically and optimizing flow fields are computed over a range of Pe . Implications of this optimal wall-to-wall transport problem for the classical problem of Rayleigh-Bénard convection are discussed: the maximal scaling Nu Pe 2 / 3 corresponds, via the identity Pe2 = Ra (Nu - 1) where Ra is the usual Rayleigh number, to Nu Ra 1 / 2 as Ra -> ∞ . Supported in part by National Science Foundation Graduate Research Fellowship DGE-0813964, awards OISE-0967140, PHY-1205219, DMS-1311833, and DMS-1515161, and the John Simon Guggenheim Memorial Foundation.
Solving iTOUGH2 simulation and optimization problems using the PEST protocol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finsterle, S.A.; Zhang, Y.
2011-02-01
The PEST protocol has been implemented into the iTOUGH2 code, allowing the user to link any simulation program (with ASCII-based inputs and outputs) to iTOUGH2's sensitivity analysis, inverse modeling, and uncertainty quantification capabilities. These application models can be pre- or post-processors of the TOUGH2 non-isothermal multiphase flow and transport simulator, or programs that are unrelated to the TOUGH suite of codes. PEST-style template and instruction files are used, respectively, to pass input parameters updated by the iTOUGH2 optimization routines to the model, and to retrieve the model-calculated values that correspond to observable variables. We summarize the iTOUGH2 capabilities and demonstratemore » the flexibility added by the PEST protocol for the solution of a variety of simulation-optimization problems. In particular, the combination of loosely coupled and tightly integrated simulation and optimization routines provides both the flexibility and control needed to solve challenging inversion problems for the analysis of multiphase subsurface flow and transport systems.« less
Review: Optimization methods for groundwater modeling and management
NASA Astrophysics Data System (ADS)
Yeh, William W.-G.
2015-09-01
Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.
Novo, Leonardo; Chakraborty, Shantanav; Mohseni, Masoud; Neven, Hartmut; Omar, Yasser
2015-01-01
Continuous time quantum walks provide an important framework for designing new algorithms and modelling quantum transport and state transfer problems. Often, the graph representing the structure of a problem contains certain symmetries that confine the dynamics to a smaller subspace of the full Hilbert space. In this work, we use invariant subspace methods, that can be computed systematically using the Lanczos algorithm, to obtain the reduced set of states that encompass the dynamics of the problem at hand without the specific knowledge of underlying symmetries. First, we apply this method to obtain new instances of graphs where the spatial quantum search algorithm is optimal: complete graphs with broken links and complete bipartite graphs, in particular, the star graph. These examples show that regularity and high-connectivity are not needed to achieve optimal spatial search. We also show that this method considerably simplifies the calculation of quantum transport efficiencies. Furthermore, we observe improved efficiencies by removing a few links from highly symmetric graphs. Finally, we show that this reduction method also allows us to obtain an upper bound for the fidelity of a single qubit transfer on an XY spin network. PMID:26330082
An Enhanced Memetic Algorithm for Single-Objective Bilevel Optimization Problems.
Islam, Md Monjurul; Singh, Hemant Kumar; Ray, Tapabrata; Sinha, Ankur
2017-01-01
Bilevel optimization, as the name reflects, deals with optimization at two interconnected hierarchical levels. The aim is to identify the optimum of an upper-level leader problem, subject to the optimality of a lower-level follower problem. Several problems from the domain of engineering, logistics, economics, and transportation have an inherent nested structure which requires them to be modeled as bilevel optimization problems. Increasing size and complexity of such problems has prompted active theoretical and practical interest in the design of efficient algorithms for bilevel optimization. Given the nested nature of bilevel problems, the computational effort (number of function evaluations) required to solve them is often quite high. In this article, we explore the use of a Memetic Algorithm (MA) to solve bilevel optimization problems. While MAs have been quite successful in solving single-level optimization problems, there have been relatively few studies exploring their potential for solving bilevel optimization problems. MAs essentially attempt to combine advantages of global and local search strategies to identify optimum solutions with low computational cost (function evaluations). The approach introduced in this article is a nested Bilevel Memetic Algorithm (BLMA). At both upper and lower levels, either a global or a local search method is used during different phases of the search. The performance of BLMA is presented on twenty-five standard test problems and two real-life applications. The results are compared with other established algorithms to demonstrate the efficacy of the proposed approach.
Deb, Kalyanmoy; Sinha, Ankur
2010-01-01
Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.
Saat, Mohd Rapik; Barkan, Christopher P L
2011-05-15
North America railways offer safe and generally the most economical means of long distance transport of hazardous materials. Nevertheless, in the event of a train accident releases of these materials can pose substantial risk to human health, property or the environment. The majority of railway shipments of hazardous materials are in tank cars. Improving the safety design of these cars to make them more robust in accidents generally increases their weight thereby reducing their capacity and consequent transportation efficiency. This paper presents a generalized tank car safety design optimization model that addresses this tradeoff. The optimization model enables evaluation of each element of tank car safety design, independently and in combination with one another. We present the optimization model by identifying a set of Pareto-optimal solutions for a baseline tank car design in a bicriteria decision problem. This model provides a quantitative framework for a rational decision-making process involving tank car safety design enhancements to reduce the risk of transporting hazardous materials. Copyright © 2011 Elsevier B.V. All rights reserved.
Transoptr — A second order beam transport design code with optimization and constraints
NASA Astrophysics Data System (ADS)
Heighway, E. A.; Hutcheon, R. M.
1981-08-01
This code was written initially to design an achromatic and isochronous reflecting magnet and has been extended to compete in capability (for constrained problems) with TRANSPORT. Its advantage is its flexibility in that the user writes a routine to describe his transport system. The routine allows the definition of general variables from which the system parameters can be derived. Further, the user can write any constraints he requires as algebraic equations relating the parameters. All variables may be used in either a first or second order optimization.
Optimization-based mesh correction with volume and convexity constraints
D'Elia, Marta; Ridzal, Denis; Peterson, Kara J.; ...
2016-02-24
In this study, we consider the problem of finding a mesh such that 1) it is the closest, with respect to a suitable metric, to a given source mesh having the same connectivity, and 2) the volumes of its cells match a set of prescribed positive values that are not necessarily equal to the cell volumes in the source mesh. This volume correction problem arises in important simulation contexts, such as satisfying a discrete geometric conservation law and solving transport equations by incremental remapping or similar semi-Lagrangian transport schemes. In this paper we formulate volume correction as a constrained optimizationmore » problem in which the distance to the source mesh defines an optimization objective, while the prescribed cell volumes, mesh validity and/or cell convexity specify the constraints. We solve this problem numerically using a sequential quadratic programming (SQP) method whose performance scales with the mesh size. To achieve scalable performance we develop a specialized multigrid-based preconditioner for optimality systems that arise in the application of the SQP method to the volume correction problem. Numerical examples illustrate the importance of volume correction, and showcase the accuracy, robustness and scalability of our approach.« less
A stochastic discrete optimization model for designing container terminal facilities
NASA Astrophysics Data System (ADS)
Zukhruf, Febri; Frazila, Russ Bona; Burhani, Jzolanda Tsavalista
2017-11-01
As uncertainty essentially affect the total transportation cost, it remains important in the container terminal that incorporates several modes and transshipments process. This paper then presents a stochastic discrete optimization model for designing the container terminal, which involves the decision of facilities improvement action. The container terminal operation model is constructed by accounting the variation of demand and facilities performance. In addition, for illustrating the conflicting issue that practically raises in the terminal operation, the model also takes into account the possible increment delay of facilities due to the increasing number of equipment, especially the container truck. Those variations expectantly reflect the uncertainty issue in the container terminal operation. A Monte Carlo simulation is invoked to propagate the variations by following the observed distribution. The problem is constructed within the framework of the combinatorial optimization problem for investigating the optimal decision of facilities improvement. A new variant of glow-worm swarm optimization (GSO) is thus proposed for solving the optimization, which is rarely explored in the transportation field. The model applicability is tested by considering the actual characteristics of the container terminal.
Research on vehicle routing optimization for the terminal distribution of B2C E-commerce firms
NASA Astrophysics Data System (ADS)
Zhang, Shiyun; Lu, Yapei; Li, Shasha
2018-05-01
In this paper, we established a half open multi-objective optimization model for the vehicle routing problem of B2C (business-to-customer) E-Commerce firms. To minimize the current transport distance as well as the disparity between the excepted shipments and the transport capacity in the next distribution, we applied the concept of dominated solution and Pareto solutions to the standard particle swarm optimization and proposed a MOPSO (multi-objective particle swarm optimization) algorithm to support the model. Besides, we also obtained the optimization solution of MOPSO algorithm based on data randomly generated through the system, which verified the validity of the model.
Non-adaptive and adaptive hybrid approaches for enhancing water quality management
NASA Astrophysics Data System (ADS)
Kalwij, Ineke M.; Peralta, Richard C.
2008-09-01
SummaryUsing optimization to help solve groundwater management problems cost-effectively is becoming increasingly important. Hybrid optimization approaches, that combine two or more optimization algorithms, will become valuable and common tools for addressing complex nonlinear hydrologic problems. Hybrid heuristic optimizers have capabilities far beyond those of a simple genetic algorithm (SGA), and are continuously improving. SGAs having only parent selection, crossover, and mutation are inefficient and rarely used for optimizing contaminant transport management. Even an advanced genetic algorithm (AGA) that includes elitism (to emphasize using the best strategies as parents) and healing (to help assure optimal strategy feasibility) is undesirably inefficient. Much more efficient than an AGA is the presented hybrid (AGCT), which adds comprehensive tabu search (TS) features to an AGA. TS mechanisms (TS probability, tabu list size, search coarseness and solution space size, and a TS threshold value) force the optimizer to search portions of the solution space that yield superior pumping strategies, and to avoid reproducing similar or inferior strategies. An AGCT characteristic is that TS control parameters are unchanging during optimization. However, TS parameter values that are ideal for optimization commencement can be undesirable when nearing assumed global optimality. The second presented hybrid, termed global converger (GC), is significantly better than the AGCT. GC includes AGCT plus feedback-driven auto-adaptive control that dynamically changes TS parameters during run-time. Before comparing AGCT and GC, we empirically derived scaled dimensionless TS control parameter guidelines by evaluating 50 sets of parameter values for a hypothetical optimization problem. For the hypothetical area, AGCT optimized both well locations and pumping rates. The parameters are useful starting values because using trial-and-error to identify an ideal combination of control parameter values for a new optimization problem can be time consuming. For comparison, AGA, AGCT, and GC are applied to optimize pumping rates for assumed well locations of a complex large-scale contaminant transport and remediation optimization problem at Blaine Naval Ammunition Depot (NAD). Both hybrid approaches converged more closely to the optimal solution than the non-hybrid AGA. GC averaged 18.79% better convergence than AGCT, and 31.9% than AGA, within the same computation time (12.5 days). AGCT averaged 13.1% better convergence than AGA. The GC can significantly reduce the burden of employing computationally intensive hydrologic simulation models within a limited time period and for real-world optimization problems. Although demonstrated for a groundwater quality problem, it is also applicable to other arenas, such as managing salt water intrusion and surface water contaminant loading.
Mobile transporter path planning
NASA Technical Reports Server (NTRS)
Baffes, Paul; Wang, Lui
1990-01-01
The use of a genetic algorithm (GA) for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the space station which must be able to reach any point of the structure autonomously. Elements of the genetic algorithm are explored in both a theoretical and experimental sense. Specifically, double crossover, greedy crossover, and tournament selection techniques are examined. Additionally, the use of local optimization techniques working in concert with the GA are also explored. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research.
Optimization of Supersonic Transport Trajectories
NASA Technical Reports Server (NTRS)
Ardema, Mark D.; Windhorst, Robert; Phillips, James
1998-01-01
This paper develops a near-optimal guidance law for generating minimum fuel, time, or cost fixed-range trajectories for supersonic transport aircraft. The approach uses a choice of new state variables along with singular perturbation techniques to time-scale decouple the dynamic equations into multiple equations of single order (second order for the fast dynamics). Application of the maximum principle to each of the decoupled equations, as opposed to application to the original coupled equations, avoids the two point boundary value problem and transforms the problem from one of a functional optimization to one of multiple function optimizations. It is shown that such an approach produces well known aircraft performance results such as minimizing the Brequet factor for minimum fuel consumption and the energy climb path. Furthermore, the new state variables produce a consistent calculation of flight path angle along the trajectory, eliminating one of the deficiencies in the traditional energy state approximation. In addition, jumps in the energy climb path are smoothed out by integration of the original dynamic equations at constant load factor. Numerical results performed for a supersonic transport design show that a pushover dive followed by a pullout at nominal load factors are sufficient maneuvers to smooth the jump.
Namazi-Rad, Mohammad-Reza; Dunbar, Michelle; Ghaderi, Hadi; Mokhtarian, Payam
2015-01-01
To achieve greater transit-time reduction and improvement in reliability of transport services, there is an increasing need to assist transport planners in understanding the value of punctuality; i.e. the potential improvements, not only to service quality and the consumer but also to the actual profitability of the service. In order for this to be achieved, it is important to understand the network-specific aspects that affect both the ability to decrease transit-time, and the associated cost-benefit of doing so. In this paper, we outline a framework for evaluating the effectiveness of proposed changes to average transit-time, so as to determine the optimal choice of average arrival time subject to desired punctuality levels whilst simultaneously minimizing operational costs. We model the service transit-time variability using a truncated probability density function, and simultaneously compare the trade-off between potential gains and increased service costs, for several commonly employed cost-benefit functions of general form. We formulate this problem as a constrained optimization problem to determine the optimal choice of average transit time, so as to increase the level of service punctuality, whilst simultaneously ensuring a minimum level of cost-benefit to the service operator. PMID:25992902
Locally adaptive methods for KDE-based random walk models of reactive transport in porous media
NASA Astrophysics Data System (ADS)
Sole-Mari, G.; Fernandez-Garcia, D.
2017-12-01
Random Walk Particle Tracking (RWPT) coupled with Kernel Density Estimation (KDE) has been recently proposed to simulate reactive transport in porous media. KDE provides an optimal estimation of the area of influence of particles which is a key element to simulate nonlinear chemical reactions. However, several important drawbacks can be identified: (1) the optimal KDE method is computationally intensive and thereby cannot be used at each time step of the simulation; (2) it does not take advantage of the prior information about the physical system and the previous history of the solute plume; (3) even if the kernel is optimal, the relative error in RWPT simulations typically increases over time as the particle density diminishes by dilution. To overcome these problems, we propose an adaptive branching random walk methodology that incorporates the physics, the particle history and maintains accuracy with time. The method allows particles to efficiently split and merge when necessary as well as to optimally adapt their local kernel shape without having to recalculate the kernel size. We illustrate the advantage of the method by simulating complex reactive transport problems in randomly heterogeneous porous media.
A Simulation-Optimization Model for the Management of Seawater Intrusion
NASA Astrophysics Data System (ADS)
Stanko, Z.; Nishikawa, T.
2012-12-01
Seawater intrusion is a common problem in coastal aquifers where excessive groundwater pumping can lead to chloride contamination of a freshwater resource. Simulation-optimization techniques have been developed to determine optimal management strategies while mitigating seawater intrusion. The simulation models are often density-independent groundwater-flow models that may assume a sharp interface and/or use equivalent freshwater heads. The optimization methods are often linear-programming (LP) based techniques that that require simplifications of the real-world system. However, seawater intrusion is a highly nonlinear, density-dependent flow and transport problem, which requires the use of nonlinear-programming (NLP) or global-optimization (GO) techniques. NLP approaches are difficult because of the need for gradient information; therefore, we have chosen a GO technique for this study. Specifically, we have coupled a multi-objective genetic algorithm (GA) with a density-dependent groundwater-flow and transport model to simulate and identify strategies that optimally manage seawater intrusion. GA is a heuristic approach, often chosen when seeking optimal solutions to highly complex and nonlinear problems where LP or NLP methods cannot be applied. The GA utilized in this study is the Epsilon-Nondominated Sorted Genetic Algorithm II (ɛ-NSGAII), which can approximate a pareto-optimal front between competing objectives. This algorithm has several key features: real and/or binary variable capabilities; an efficient sorting scheme; preservation and diversity of good solutions; dynamic population sizing; constraint handling; parallelizable implementation; and user controlled precision for each objective. The simulation model is SEAWAT, the USGS model that couples MODFLOW with MT3DMS for variable-density flow and transport. ɛ-NSGAII and SEAWAT were efficiently linked together through a C-Fortran interface. The simulation-optimization model was first tested by using a published density-independent flow model test case that was originally solved using a sequential LP method with the USGS's Ground-Water Management Process (GWM). For the problem formulation, the objective is to maximize net groundwater extraction, subject to head and head-gradient constraints. The decision variables are pumping rates at fixed wells and the system's state is represented with freshwater hydraulic head. The results of the proposed algorithm were similar to the published results (within 1%); discrepancies may be attributed to differences in the simulators and inherent differences between LP and GA. The GWM test case was then extended to a density-dependent flow and transport version. As formulated, the optimization problem is infeasible because of the density effects on hydraulic head. Therefore, the sum of the squared constraint violation (SSC) was used as a second objective. The result is a pareto curve showing optimal pumping rates versus the SSC. Analysis of this curve indicates that a similar net-extraction rate to the test case can be obtained with a minor violation in vertical head-gradient constraints. This study shows that a coupled ɛ-NSGAII/SEAWAT model can be used for the management of groundwater seawater intrusion. In the future, the proposed methodology will be applied to a real-world seawater intrusion and resource management problem for Santa Barbara, CA.
Feedback control for fuel-optimal descents using singular perturbation techniques
NASA Technical Reports Server (NTRS)
Price, D. B.
1984-01-01
In response to rising fuel costs and reduced profit margins for the airline companies, the optimization of the paths flown by transport aircraft has been considered. It was found that application of optimal control theory to the considered problem can result in savings in fuel, time, and direct operating costs. The best solution to the aircraft trajectory problem is an onboard real-time feedback control law. The present paper presents a technique which shows promise of becoming a part of a complete solution. The application of singular perturbation techniques to the problem is discussed, taking into account the benefits and some problems associated with them. A different technique for handling the descent part of a trajectory is also discussed.
Novel approaches for road congestion mitigation.
DOT National Transportation Integrated Search
2012-07-02
Transportation planning is usually aiming to solve two problems: the traffic assignment and the toll pricing problems. The latter one utilizes information from the first one, in order to find the optimal set of tolls that is the set of tolls that lea...
Novel approaches for road congestion minimization.
DOT National Transportation Integrated Search
2012-07-01
Transportation planning is usually aiming to solve two problems: the traffic assignment and the toll pricing problems. The latter one utilizes information from the first one, in order to find the optimal set of tolls that is the set of tolls that lea...
A Fuzzy Approach of the Competition on the Air Transport Market
NASA Technical Reports Server (NTRS)
Charfeddine, Souhir; DeColigny, Marc; Camino, Felix Mora; Cosenza, Carlos Alberto Nunes
2003-01-01
The aim of this communication is to study with a new scope the conditions of the equilibrium in an air transport market where two competitive airlines are operating. Each airline is supposed to adopt a strategy maximizing its profit while its estimation of the demand has a fuzzy nature. This leads each company to optimize a program of its proposed services (frequency of the flights and ticket prices) characterized by some fuzzy parameters. The case of monopoly is being taken as a benchmark. Classical convex optimization can be used to solve this decision problem. This approach provides the airline with a new decision tool where uncertainty can be taken into account explicitly. The confrontation of the strategies of the companies, in the ease of duopoly, leads to the definition of a fuzzy equilibrium. This concept of fuzzy equilibrium is more general and can be applied to several other domains. The formulation of the optimization problem and the methodological consideration adopted for its resolution are presented in their general theoretical aspect. In the case of air transportation, where the conditions of management of operations are critical, this approach should offer to the manager elements needed to the consolidation of its decisions depending on the circumstances (ordinary, exceptional events,..) and to be prepared to face all possibilities. Keywords: air transportation, competition equilibrium, convex optimization , fuzzy modeling,
NASA Astrophysics Data System (ADS)
Sun, Ning; Wu, Yiming; Chen, He; Fang, Yongchun
2018-03-01
Underactuated cranes play an important role in modern industry. Specifically, in most situations of practical applications, crane systems exhibit significant double pendulum characteristics, which makes the control problem quite challenging. Moreover, most existing planners/controllers obtained with standard methods/techniques for double pendulum cranes cannot minimize the energy consumption when fulfilling the transportation tasks. Therefore, from a practical perspective, this paper proposes an energy-optimal solution for transportation control of double pendulum cranes. By applying the presented approach, the transportation objective, including fast trolley positioning and swing elimination, is achieved with minimized energy consumption, and the residual oscillations are suppressed effectively with all the state constrains being satisfied during the entire transportation process. As far as we know, this is the first energy-optimal solution for transportation control of underactuated double pendulum cranes with various state and control constraints. Hardware experimental results are included to verify the effectiveness of the proposed approach, whose superior performance is reflected by being experimentally compared with some comparative controllers.
A Decision-making Model for a Two-stage Production-delivery System in SCM Environment
NASA Astrophysics Data System (ADS)
Feng, Ding-Zhong; Yamashiro, Mitsuo
A decision-making model is developed for an optimal production policy in a two-stage production-delivery system that incorporates a fixed quantity supply of finished goods to a buyer at a fixed interval of time. First, a general cost model is formulated considering both supplier (of raw materials) and buyer (of finished products) sides. Then an optimal solution to the problem is derived on basis of the cost model. Using the proposed model and its optimal solution, one can determine optimal production lot size for each stage, optimal number of transportation for semi-finished goods, and optimal quantity of semi-finished goods transported each time to meet the lumpy demand of consumers. Also, we examine the sensitivity of raw materials ordering and production lot size to changes in ordering cost, transportation cost and manufacturing setup cost. A pragmatic computation approach for operational situations is proposed to solve integer approximation solution. Finally, we give some numerical examples.
A Summary of Research on Energy Saving and Emission Reduction of Transportation
NASA Astrophysics Data System (ADS)
Cheng, Dongxiang; Wu, Lufen
2017-12-01
Road transport is an important part of transportation, and road in the field of energy-saving emission reduction is a very important industry. According to the existing problems of road energy saving and emission reduction, this paper elaborates the domestic and international research on energy saving and emission reduction from three aspects: road network optimization, pavement material and pavement maintenance. Road network optimization may be overlooked, and the research content is still relatively preliminary; pavement materials mainly from the asphalt pavement temperature mixed asphalt technology research; pavement maintenance technology development is relatively comprehensive.
NASA Astrophysics Data System (ADS)
Ebrahimnejad, Ali
2015-08-01
There are several methods, in the literature, for solving fuzzy variable linear programming problems (fuzzy linear programming in which the right-hand-side vectors and decision variables are represented by trapezoidal fuzzy numbers). In this paper, the shortcomings of some existing methods are pointed out and to overcome these shortcomings a new method based on the bounded dual simplex method is proposed to determine the fuzzy optimal solution of that kind of fuzzy variable linear programming problems in which some or all variables are restricted to lie within lower and upper bounds. To illustrate the proposed method, an application example is solved and the obtained results are given. The advantages of the proposed method over existing methods are discussed. Also, one application of this algorithm in solving bounded transportation problems with fuzzy supplies and demands is dealt with. The proposed method is easy to understand and to apply for determining the fuzzy optimal solution of bounded fuzzy variable linear programming problems occurring in real-life situations.
NASA Astrophysics Data System (ADS)
Niakan, F.; Vahdani, B.; Mohammadi, M.
2015-12-01
This article proposes a multi-objective mixed-integer model to optimize the location of hubs within a hub network design problem under uncertainty. The considered objectives include minimizing the maximum accumulated travel time, minimizing the total costs including transportation, fuel consumption and greenhouse emissions costs, and finally maximizing the minimum service reliability. In the proposed model, it is assumed that for connecting two nodes, there are several types of arc in which their capacity, transportation mode, travel time, and transportation and construction costs are different. Moreover, in this model, determining the capacity of the hubs is part of the decision-making procedure and balancing requirements are imposed on the network. To solve the model, a hybrid solution approach is utilized based on inexact programming, interval-valued fuzzy programming and rough interval programming. Furthermore, a hybrid multi-objective metaheuristic algorithm, namely multi-objective invasive weed optimization (MOIWO), is developed for the given problem. Finally, various computational experiments are carried out to assess the proposed model and solution approaches.
Bus Stops Location and Bus Route Planning Using Mean Shift Clustering and Ant Colony in West Jakarta
NASA Astrophysics Data System (ADS)
Supangat, Kenny; Eko Soelistio, Yustinus
2017-03-01
Traffic Jam has been a daily problem for people in Jakarta which is one of the busiest city in Indonesia up until now. Even though the official government has tried to reduce the impact of traffic issues by developing a new public transportation which takes up a lot of resources and time, it failed to diminish the problem. The actual concern to this problem actually lies in how people move between places in Jakarta where they always using their own vehicle like cars, and motorcycles that fill most of the street in Jakarta. Among much other public transportations that roams the street of Jakarta, Buses is believed to be an efficient transportation that can move many people at once. However, the location of the bus stop is now have moved to the middle of the main road, and its too far for the nearby residence to access to it. This paper proposes an optimal location of optimal bus stops in West Jakarta that is experimentally proven to have a maximal distance of 350 m. The optimal location is estimated by means of mean shift clustering method while the optimal routes are calculated using Ant Colony algorithm. The bus stops locations rate of error is 0.07% with overall route area of 32 km. Based on our experiments, we believe our proposed bus stop plan can be an interesting alternative to reduce traffic congestion in West Jakarta.
NASA Astrophysics Data System (ADS)
Gen, Mitsuo; Lin, Lin
Many combinatorial optimization problems from industrial engineering and operations research in real-world are very complex in nature and quite hard to solve them by conventional techniques. Since the 1960s, there has been an increasing interest in imitating living beings to solve such kinds of hard combinatorial optimization problems. Simulating the natural evolutionary process of human beings results in stochastic optimization techniques called evolutionary algorithms (EAs), which can often outperform conventional optimization methods when applied to difficult real-world problems. In this survey paper, we provide a comprehensive survey of the current state-of-the-art in the use of EA in manufacturing and logistics systems. In order to demonstrate the EAs which are powerful and broadly applicable stochastic search and optimization techniques, we deal with the following engineering design problems: transportation planning models, layout design models and two-stage logistics models in logistics systems; job-shop scheduling, resource constrained project scheduling in manufacturing system.
A biologically inspired network design model.
Zhang, Xiaoge; Adamatzky, Andrew; Chan, Felix T S; Deng, Yong; Yang, Hai; Yang, Xin-She; Tsompanas, Michail-Antisthenis I; Sirakoulis, Georgios Ch; Mahadevan, Sankaran
2015-06-04
A network design problem is to select a subset of links in a transport network that satisfy passengers or cargo transportation demands while minimizing the overall costs of the transportation. We propose a mathematical model of the foraging behaviour of slime mould P. polycephalum to solve the network design problem and construct optimal transport networks. In our algorithm, a traffic flow between any two cities is estimated using a gravity model. The flow is imitated by the model of the slime mould. The algorithm model converges to a steady state, which represents a solution of the problem. We validate our approach on examples of major transport networks in Mexico and China. By comparing networks developed in our approach with the man-made highways, networks developed by the slime mould, and a cellular automata model inspired by slime mould, we demonstrate the flexibility and efficiency of our approach.
A Biologically Inspired Network Design Model
Zhang, Xiaoge; Adamatzky, Andrew; Chan, Felix T.S.; Deng, Yong; Yang, Hai; Yang, Xin-She; Tsompanas, Michail-Antisthenis I.; Sirakoulis, Georgios Ch.; Mahadevan, Sankaran
2015-01-01
A network design problem is to select a subset of links in a transport network that satisfy passengers or cargo transportation demands while minimizing the overall costs of the transportation. We propose a mathematical model of the foraging behaviour of slime mould P. polycephalum to solve the network design problem and construct optimal transport networks. In our algorithm, a traffic flow between any two cities is estimated using a gravity model. The flow is imitated by the model of the slime mould. The algorithm model converges to a steady state, which represents a solution of the problem. We validate our approach on examples of major transport networks in Mexico and China. By comparing networks developed in our approach with the man-made highways, networks developed by the slime mould, and a cellular automata model inspired by slime mould, we demonstrate the flexibility and efficiency of our approach. PMID:26041508
NASA Astrophysics Data System (ADS)
Zhang, Wenyu; Yang, Yushu; Zhang, Shuai; Yu, Dejian; Chen, Yong
2018-05-01
With the growing complexity of customer requirements and the increasing scale of manufacturing services, how to select and combine the single services to meet the complex demand of the customer has become a growing concern. This paper presents a new manufacturing service composition method to solve the multi-objective optimization problem based on quality of service (QoS). The proposed model not only presents different methods for calculating the transportation time and transportation cost under various structures but also solves the three-dimensional composition optimization problem, including service aggregation, service selection, and service scheduling simultaneously. Further, an improved Flower Pollination Algorithm (IFPA) is proposed to solve the three-dimensional composition optimization problem using a matrix-based representation scheme. The mutation operator and crossover operator of the Differential Evolution (DE) algorithm are also used to extend the basic Flower Pollination Algorithm (FPA) to improve its performance. Compared to Genetic Algorithm, DE, and basic FPA, the experimental results confirm that the proposed method demonstrates superior performance than other meta heuristic algorithms and can obtain better manufacturing service composition solutions.
A model for managing sources of groundwater pollution
Gorelick, Steven M.
1982-01-01
The waste disposal capacity of a groundwater system can be maximized while maintaining water quality at specified locations by using a groundwater pollutant source management model that is based upon linear programing and numerical simulation. The decision variables of the management model are solute waste disposal rates at various facilities distributed over space. A concentration response matrix is used in the management model to describe transient solute transport and is developed using the U.S. Geological Survey solute transport simulation model. The management model was applied to a complex hypothetical groundwater system. Large-scale management models were formulated as dual linear programing problems to reduce numerical difficulties and computation time. Linear programing problems were solved using a numerically stable, available code. Optimal solutions to problems with successively longer management time horizons indicated that disposal schedules at some sites are relatively independent of the number of disposal periods. Optimal waste disposal schedules exhibited pulsing rather than constant disposal rates. Sensitivity analysis using parametric linear programing showed that a sharp reduction in total waste disposal potential occurs if disposal rates at any site are increased beyond their optimal values.
Some Considerations on the Problem of Non-Steady State Traffic Flow Optimization
DOT National Transportation Integrated Search
2007-01-01
Poor traffic signal timing accounts for an estimated 10 percent of all traffic delay about 300 million vehicle-hours on major roadways alone. Americans agree that this is a problem: one U.S. Department of Transportation (DOT) survey found tha...
Model Predictive Optimal Control of a Time-Delay Distributed-Parameter Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2006-01-01
This paper presents an optimal control method for a class of distributed-parameter systems governed by first order, quasilinear hyperbolic partial differential equations that arise in many physical systems. Such systems are characterized by time delays since information is transported from one state to another by wave propagation. A general closed-loop hyperbolic transport model is controlled by a boundary control embedded in a periodic boundary condition. The boundary control is subject to a nonlinear differential equation constraint that models actuator dynamics of the system. The hyperbolic equation is thus coupled with the ordinary differential equation via the boundary condition. Optimality of this coupled system is investigated using variational principles to seek an adjoint formulation of the optimal control problem. The results are then applied to implement a model predictive control design for a wind tunnel to eliminate a transport delay effect that causes a poor Mach number regulation.
Fast Algorithms for Earth Mover’s Distance Based on Optimal Transport and L1 Type Regularization I
2016-09-01
which EMD can be reformulated as a familiar homogeneous degree 1 regularized minimization. The new minimization problem is very similar to problems which...which is also named the Monge problem or the Wasserstein metric, plays a central role in many applications, including image processing, computer vision
High Speed Civil Transport Design Using Collaborative Optimization and Approximate Models
NASA Technical Reports Server (NTRS)
Manning, Valerie Michelle
1999-01-01
The design of supersonic aircraft requires complex analysis in multiple disciplines, posing, a challenge for optimization methods. In this thesis, collaborative optimization, a design architecture developed to solve large-scale multidisciplinary design problems, is applied to the design of supersonic transport concepts. Collaborative optimization takes advantage of natural disciplinary segmentation to facilitate parallel execution of design tasks. Discipline-specific design optimization proceeds while a coordinating mechanism ensures progress toward an optimum and compatibility between disciplinary designs. Two concepts for supersonic aircraft are investigated: a conventional delta-wing design and a natural laminar flow concept that achieves improved performance by exploiting properties of supersonic flow to delay boundary layer transition. The work involves the development of aerodynamics and structural analyses, and integration within a collaborative optimization framework. It represents the most extensive application of the method to date.
Toward Optimal Transport Networks
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Kincaid, Rex K.; Vargo, Erik P.
2008-01-01
Strictly evolutionary approaches to improving the air transport system a highly complex network of interacting systems no longer suffice in the face of demand that is projected to double or triple in the near future. Thus evolutionary approaches should be augmented with active design methods. The ability to actively design, optimize and control a system presupposes the existence of predictive modeling and reasonably well-defined functional dependences between the controllable variables of the system and objective and constraint functions for optimization. Following recent advances in the studies of the effects of network topology structure on dynamics, we investigate the performance of dynamic processes on transport networks as a function of the first nontrivial eigenvalue of the network's Laplacian, which, in turn, is a function of the network s connectivity and modularity. The last two characteristics can be controlled and tuned via optimization. We consider design optimization problem formulations. We have developed a flexible simulation of network topology coupled with flows on the network for use as a platform for computational experiments.
Enhanced ant colony optimization for inventory routing problem
NASA Astrophysics Data System (ADS)
Wong, Lily; Moin, Noor Hasnah
2015-10-01
The inventory routing problem (IRP) integrates and coordinates two important components of supply chain management which are transportation and inventory management. We consider a one-to-many IRP network for a finite planning horizon. The demand for each product is deterministic and time varying as well as a fleet of capacitated homogeneous vehicles, housed at a depot/warehouse, delivers the products from the warehouse to meet the demand specified by the customers in each period. The inventory holding cost is product specific and is incurred at the customer sites. The objective is to determine the amount of inventory and to construct a delivery routing that minimizes both the total transportation and inventory holding cost while ensuring each customer's demand is met over the planning horizon. The problem is formulated as a mixed integer programming problem and is solved using CPLEX 12.4 to get the lower and upper bound (best integer) for each instance considered. We propose an enhanced ant colony optimization (ACO) to solve the problem and the built route is improved by using local search. The computational experiments demonstrating the effectiveness of our approach is presented.
GIS as a tool for efficient management of transport streams
NASA Astrophysics Data System (ADS)
Zatserkovnyi, V. I.; Kobrin, O. V.
2015-10-01
The transport network, which is an ideal object for the automation and the increase of efficiency using geographic information systems (GIS), is considered. The transport problems, which have a lot of mathematical models of the traffic flow for their solution, are enumerated. GIS analysis tools that allow one to build optimal routes in the real road network with its capabilities and limitations are presented. They can solve the extremely important problem of modern Ukraine - the rapid increase of the number of cars and the glut of road network vehicles. The intelligent transport systems, which are created and developed on the basis of GPS, GIS, modern communications and telecommunications facilities, are considered.
Bicriteria Network Optimization Problem using Priority-based Genetic Algorithm
NASA Astrophysics Data System (ADS)
Gen, Mitsuo; Lin, Lin; Cheng, Runwei
Network optimization is being an increasingly important and fundamental issue in the fields such as engineering, computer science, operations research, transportation, telecommunication, decision support systems, manufacturing, and airline scheduling. In many applications, however, there are several criteria associated with traversing each edge of a network. For example, cost and flow measures are both important in the networks. As a result, there has been recent interest in solving Bicriteria Network Optimization Problem. The Bicriteria Network Optimization Problem is known a NP-hard. The efficient set of paths may be very large, possibly exponential in size. Thus the computational effort required to solve it can increase exponentially with the problem size in the worst case. In this paper, we propose a genetic algorithm (GA) approach used a priority-based chromosome for solving the bicriteria network optimization problem including maximum flow (MXF) model and minimum cost flow (MCF) model. The objective is to find the set of Pareto optimal solutions that give possible maximum flow with minimum cost. This paper also combines Adaptive Weight Approach (AWA) that utilizes some useful information from the current population to readjust weights for obtaining a search pressure toward a positive ideal point. Computer simulations show the several numerical experiments by using some difficult-to-solve network design problems, and show the effectiveness of the proposed method.
Optimization of a Small Scale Linear Reluctance Accelerator
NASA Astrophysics Data System (ADS)
Barrera, Thor; Beard, Robby
2011-11-01
Reluctance accelerators are extremely promising future methods of transportation. Several problems still plague these devices, most prominently low efficiency. Variables to overcoming efficiency problems are many and difficult to correlate how they affect our accelerator. The study examined several differing variables that present potential challenges in optimizing the efficiency of reluctance accelerators. These include coil and projectile design, power supplies, switching, and the elusive gradient inductance problem. Extensive research in these areas has been performed from computational and theoretical to experimental. Findings show that these parameters share significant similarity to transformer design elements, thus general findings show current optimized parameters the research suggests as a baseline for further research and design. Demonstration of these current findings will be offered at the time of presentation.
NASA Astrophysics Data System (ADS)
Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah@Rozita
2016-11-01
Two new methods adopted from methods commonly used in the field of transportation and logistics are proposed to solve a specific issue of investment allocation problem. Vehicle routing problem and capacitated vehicle routing methods are applied to optimize the fund allocation of a portfolio of investment assets. This is done by determining the sequence of the assets. As a result, total investment risk is minimized by this sequence.
Mang, Andreas; Ruthotto, Lars
2017-01-01
We present an efficient solver for diffeomorphic image registration problems in the framework of Large Deformations Diffeomorphic Metric Mappings (LDDMM). We use an optimal control formulation, in which the velocity field of a hyperbolic PDE needs to be found such that the distance between the final state of the system (the transformed/transported template image) and the observation (the reference image) is minimized. Our solver supports both stationary and non-stationary (i.e., transient or time-dependent) velocity fields. As transformation models, we consider both the transport equation (assuming intensities are preserved during the deformation) and the continuity equation (assuming mass-preservation). We consider the reduced form of the optimal control problem and solve the resulting unconstrained optimization problem using a discretize-then-optimize approach. A key contribution is the elimination of the PDE constraint using a Lagrangian hyperbolic PDE solver. Lagrangian methods rely on the concept of characteristic curves. We approximate these curves using a fourth-order Runge-Kutta method. We also present an efficient algorithm for computing the derivatives of the final state of the system with respect to the velocity field. This allows us to use fast Gauss-Newton based methods. We present quickly converging iterative linear solvers using spectral preconditioners that render the overall optimization efficient and scalable. Our method is embedded into the image registration framework FAIR and, thus, supports the most commonly used similarity measures and regularization functionals. We demonstrate the potential of our new approach using several synthetic and real world test problems with up to 14.7 million degrees of freedom.
Optimal Observations for Variational Data Assimilation
NASA Technical Reports Server (NTRS)
Koehl, Armin; Stammer, Detlef
2003-01-01
An important aspect of Ocean state estimation is the design of an observing system that allows the efficient study of climate aspects in the ocean. A solution of the design problem is presented here in terms of optimal observations that emerge as nondimensionalized singular vectors of the modified data resolution matrix. The actual computation is feasible only for scalar quantities in the limit of large observational errors. In the framework of a lo resolution North Atlantic primitive equation model it is demonstrated that such optimal observations when applied to determining the strength of the volume and heat transport across the Greenland-Scotland ridge, perform significantly better than traditional section data. On seasonal to inter-annual time-scales optimal observations are located primarily along the continental shelf and information about heat-transport, wind stress and stratification is being communicated via boundary waves and advective processes. On time-scales of about a month, sea surface height observations appear to be more efficient in reconstructing the cross-ridge heat transport than hydrographic observations. Optimal observations also provide a tool for understanding how the ocean state is effected by anomalies of integral quantities such as meridional heat transport.
Wen, Tingxi; Zhang, Zhongnan; Wong, Kelvin K. L.
2016-01-01
Unmanned aerial vehicle (UAV) has been widely used in many industries. In the medical environment, especially in some emergency situations, UAVs play an important role such as the supply of medicines and blood with speed and efficiency. In this paper, we study the problem of multi-objective blood supply by UAVs in such emergency situations. This is a complex problem that includes maintenance of the supply blood’s temperature model during transportation, the UAVs’ scheduling and routes’ planning in case of multiple sites requesting blood, and limited carrying capacity. Most importantly, we need to study the blood’s temperature change due to the external environment, the heating agent (or refrigerant) and time factor during transportation, and propose an optimal method for calculating the mixing proportion of blood and appendage in different circumstances and delivery conditions. Then, by introducing the idea of transportation appendage into the traditional Capacitated Vehicle Routing Problem (CVRP), this new problem is proposed according to the factors of distance and weight. Algorithmically, we use the combination of decomposition-based multi-objective evolutionary algorithm and local search method to perform a series of experiments on the CVRP public dataset. By comparing our technique with the traditional ones, our algorithm can obtain better optimization results and time performance. PMID:27163361
Wen, Tingxi; Zhang, Zhongnan; Wong, Kelvin K L
2016-01-01
Unmanned aerial vehicle (UAV) has been widely used in many industries. In the medical environment, especially in some emergency situations, UAVs play an important role such as the supply of medicines and blood with speed and efficiency. In this paper, we study the problem of multi-objective blood supply by UAVs in such emergency situations. This is a complex problem that includes maintenance of the supply blood's temperature model during transportation, the UAVs' scheduling and routes' planning in case of multiple sites requesting blood, and limited carrying capacity. Most importantly, we need to study the blood's temperature change due to the external environment, the heating agent (or refrigerant) and time factor during transportation, and propose an optimal method for calculating the mixing proportion of blood and appendage in different circumstances and delivery conditions. Then, by introducing the idea of transportation appendage into the traditional Capacitated Vehicle Routing Problem (CVRP), this new problem is proposed according to the factors of distance and weight. Algorithmically, we use the combination of decomposition-based multi-objective evolutionary algorithm and local search method to perform a series of experiments on the CVRP public dataset. By comparing our technique with the traditional ones, our algorithm can obtain better optimization results and time performance.
Development of Advanced Methods of Structural and Trajectory Analysis for Transport Aircraft
NASA Technical Reports Server (NTRS)
Ardema, Mark D.; Windhorst, Robert; Phillips, James
1998-01-01
This paper develops a near-optimal guidance law for generating minimum fuel, time, or cost fixed-range trajectories for supersonic transport aircraft. The approach uses a choice of new state variables along with singular perturbation techniques to time-scale decouple the dynamic equations into multiple equations of single order (second order for the fast dynamics). Application of the maximum principle to each of the decoupled equations, as opposed to application to the original coupled equations, avoids the two point boundary value problem and transforms the problem from one of a functional optimization to one of multiple function optimizations. It is shown that such an approach produces well known aircraft performance results such as minimizing the Brequet factor for minimum fuel consumption and the energy climb path. Furthermore, the new state variables produce a consistent calculation of flight path angle along the trajectory, eliminating one of the deficiencies in the traditional energy state approximation. In addition, jumps in the energy climb path are smoothed out by integration of the original dynamic equations at constant load factor. Numerical results performed for a supersonic transport design show that a pushover dive followed by a pullout at nominal load factors are sufficient maneuvers to smooth the jump.
Development of Gis Tool for the Solution of Minimum Spanning Tree Problem using Prim's Algorithm
NASA Astrophysics Data System (ADS)
Dutta, S.; Patra, D.; Shankar, H.; Alok Verma, P.
2014-11-01
minimum spanning tree (MST) of a connected, undirected and weighted network is a tree of that network consisting of all its nodes and the sum of weights of all its edges is minimum among all such possible spanning trees of the same network. In this study, we have developed a new GIS tool using most commonly known rudimentary algorithm called Prim's algorithm to construct the minimum spanning tree of a connected, undirected and weighted road network. This algorithm is based on the weight (adjacency) matrix of a weighted network and helps to solve complex network MST problem easily, efficiently and effectively. The selection of the appropriate algorithm is very essential otherwise it will be very hard to get an optimal result. In case of Road Transportation Network, it is very essential to find the optimal results by considering all the necessary points based on cost factor (time or distance). This paper is based on solving the Minimum Spanning Tree (MST) problem of a road network by finding it's minimum span by considering all the important network junction point. GIS technology is usually used to solve the network related problems like the optimal path problem, travelling salesman problem, vehicle routing problems, location-allocation problems etc. Therefore, in this study we have developed a customized GIS tool using Python script in ArcGIS software for the solution of MST problem for a Road Transportation Network of Dehradun city by considering distance and time as the impedance (cost) factors. It has a number of advantages like the users do not need a greater knowledge of the subject as the tool is user-friendly and that allows to access information varied and adapted the needs of the users. This GIS tool for MST can be applied for a nationwide plan called Prime Minister Gram Sadak Yojana in India to provide optimal all weather road connectivity to unconnected villages (points). This tool is also useful for constructing highways or railways spanning several cities optimally or connecting all cities with minimum total road length.
Introducing heterogeneous users and vehicles into models and algorithms for the dial-a-ride problem.
Parragh, Sophie N
2011-08-01
Dial-a-ride problems deal with the transportation of people between pickup and delivery locations. Given the fact that people are subject to transportation, constraints related to quality of service are usually present, such as time windows and maximum user ride time limits. In many real world applications, different types of users exist. In the field of patient and disabled people transportation, up to four different transportation modes can be distinguished. In this article we consider staff seats, patient seats, stretchers and wheelchair places. Furthermore, most companies involved in the transportation of the disabled or ill dispose of different types of vehicles. We introduce both aspects into state-of-the-art formulations and branch-and-cut algorithms for the standard dial-a-ride problem. Also a recent metaheuristic method is adapted to this new problem. In addition, a further service quality related issue is analyzed: vehicle waiting time with passengers aboard. Instances with up to 40 requests are solved to optimality. High quality solutions are obtained with the heuristic method.
Lanczos eigensolution method for high-performance computers
NASA Technical Reports Server (NTRS)
Bostic, Susan W.
1991-01-01
The theory, computational analysis, and applications are presented of a Lanczos algorithm on high performance computers. The computationally intensive steps of the algorithm are identified as: the matrix factorization, the forward/backward equation solution, and the matrix vector multiples. These computational steps are optimized to exploit the vector and parallel capabilities of high performance computers. The savings in computational time from applying optimization techniques such as: variable band and sparse data storage and access, loop unrolling, use of local memory, and compiler directives are presented. Two large scale structural analysis applications are described: the buckling of a composite blade stiffened panel with a cutout, and the vibration analysis of a high speed civil transport. The sequential computational time for the panel problem executed on a CONVEX computer of 181.6 seconds was decreased to 14.1 seconds with the optimized vector algorithm. The best computational time of 23 seconds for the transport problem with 17,000 degs of freedom was on the the Cray-YMP using an average of 3.63 processors.
OpenMDAO: Framework for Flexible Multidisciplinary Design, Analysis and Optimization Methods
NASA Technical Reports Server (NTRS)
Heath, Christopher M.; Gray, Justin S.
2012-01-01
The OpenMDAO project is underway at NASA to develop a framework which simplifies the implementation of state-of-the-art tools and methods for multidisciplinary design, analysis and optimization. Foremost, OpenMDAO has been designed to handle variable problem formulations, encourage reconfigurability, and promote model reuse. This work demonstrates the concept of iteration hierarchies in OpenMDAO to achieve a flexible environment for supporting advanced optimization methods which include adaptive sampling and surrogate modeling techniques. In this effort, two efficient global optimization methods were applied to solve a constrained, single-objective and constrained, multiobjective version of a joint aircraft/engine sizing problem. The aircraft model, NASA's nextgeneration advanced single-aisle civil transport, is being studied as part of the Subsonic Fixed Wing project to help meet simultaneous program goals for reduced fuel burn, emissions, and noise. This analysis serves as a realistic test problem to demonstrate the flexibility and reconfigurability offered by OpenMDAO.
Wu, Jun; Li, Chengbing; Huo, Yueying
2014-01-01
Safety of dangerous goods transport is directly related to the operation safety of dangerous goods transport enterprise. Aiming at the problem of the high accident rate and large harm in dangerous goods logistics transportation, this paper took the group decision making problem based on integration and coordination thought into a multiagent multiobjective group decision making problem; a secondary decision model was established and applied to the safety assessment of dangerous goods transport enterprise. First of all, we used dynamic multivalue background and entropy theory building the first level multiobjective decision model. Secondly, experts were to empower according to the principle of clustering analysis, and combining with the relative entropy theory to establish a secondary rally optimization model based on relative entropy in group decision making, and discuss the solution of the model. Then, after investigation and analysis, we establish the dangerous goods transport enterprise safety evaluation index system. Finally, case analysis to five dangerous goods transport enterprises in the Inner Mongolia Autonomous Region validates the feasibility and effectiveness of this model for dangerous goods transport enterprise recognition, which provides vital decision making basis for recognizing the dangerous goods transport enterprises. PMID:25477954
Wu, Jun; Li, Chengbing; Huo, Yueying
2014-01-01
Safety of dangerous goods transport is directly related to the operation safety of dangerous goods transport enterprise. Aiming at the problem of the high accident rate and large harm in dangerous goods logistics transportation, this paper took the group decision making problem based on integration and coordination thought into a multiagent multiobjective group decision making problem; a secondary decision model was established and applied to the safety assessment of dangerous goods transport enterprise. First of all, we used dynamic multivalue background and entropy theory building the first level multiobjective decision model. Secondly, experts were to empower according to the principle of clustering analysis, and combining with the relative entropy theory to establish a secondary rally optimization model based on relative entropy in group decision making, and discuss the solution of the model. Then, after investigation and analysis, we establish the dangerous goods transport enterprise safety evaluation index system. Finally, case analysis to five dangerous goods transport enterprises in the Inner Mongolia Autonomous Region validates the feasibility and effectiveness of this model for dangerous goods transport enterprise recognition, which provides vital decision making basis for recognizing the dangerous goods transport enterprises.
a Novel Discrete Optimal Transport Method for Bayesian Inverse Problems
NASA Astrophysics Data System (ADS)
Bui-Thanh, T.; Myers, A.; Wang, K.; Thiery, A.
2017-12-01
We present the Augmented Ensemble Transform (AET) method for generating approximate samples from a high-dimensional posterior distribution as a solution to Bayesian inverse problems. Solving large-scale inverse problems is critical for some of the most relevant and impactful scientific endeavors of our time. Therefore, constructing novel methods for solving the Bayesian inverse problem in more computationally efficient ways can have a profound impact on the science community. This research derives the novel AET method for exploring a posterior by solving a sequence of linear programming problems, resulting in a series of transport maps which map prior samples to posterior samples, allowing for the computation of moments of the posterior. We show both theoretical and numerical results, indicating this method can offer superior computational efficiency when compared to other SMC methods. Most of this efficiency is derived from matrix scaling methods to solve the linear programming problem and derivative-free optimization for particle movement. We use this method to determine inter-well connectivity in a reservoir and the associated uncertainty related to certain parameters. The attached file shows the difference between the true parameter and the AET parameter in an example 3D reservoir problem. The error is within the Morozov discrepancy allowance with lower computational cost than other particle methods.
NASA Astrophysics Data System (ADS)
Eyono Obono, S. D.; Basak, Sujit Kumar
2011-12-01
The general formulation of the assignment problem consists in the optimal allocation of a given set of tasks to a workforce. This problem is covered by existing literature for different domains such as distributed databases, distributed systems, transportation, packets radio networks, IT outsourcing, and teaching allocation. This paper presents a new version of the assignment problem for the allocation of academic tasks to staff members in departments with long leave opportunities. It presents the description of a workload allocation scheme and its algorithm, for the allocation of an equitable number of tasks in academic departments where long leaves are necessary.
NASA Astrophysics Data System (ADS)
Fazayeli, Saeed; Eydi, Alireza; Kamalabadi, Isa Nakhai
2017-07-01
Nowadays, organizations have to compete with different competitors in regional, national and international levels, so they have to improve their competition capabilities to survive against competitors. Undertaking activities on a global scale requires a proper distribution system which could take advantages of different transportation modes. Accordingly, the present paper addresses a location-routing problem on multimodal transportation network. The introduced problem follows four objectives simultaneously which form main contribution of the paper; determining multimodal routes between supplier and distribution centers, locating mode changing facilities, locating distribution centers, and determining product delivery tours from the distribution centers to retailers. An integer linear programming is presented for the problem, and a genetic algorithm with a new chromosome structure proposed to solve the problem. Proposed chromosome structure consists of two different parts for multimodal transportation and location-routing parts of the model. Based on published data in the literature, two numerical cases with different sizes generated and solved. Also, different cost scenarios designed to better analyze model and algorithm performance. Results show that algorithm can effectively solve large-size problems within a reasonable time which GAMS software failed to reach an optimal solution even within much longer times.
NASA Astrophysics Data System (ADS)
Fazayeli, Saeed; Eydi, Alireza; Kamalabadi, Isa Nakhai
2018-07-01
Nowadays, organizations have to compete with different competitors in regional, national and international levels, so they have to improve their competition capabilities to survive against competitors. Undertaking activities on a global scale requires a proper distribution system which could take advantages of different transportation modes. Accordingly, the present paper addresses a location-routing problem on multimodal transportation network. The introduced problem follows four objectives simultaneously which form main contribution of the paper; determining multimodal routes between supplier and distribution centers, locating mode changing facilities, locating distribution centers, and determining product delivery tours from the distribution centers to retailers. An integer linear programming is presented for the problem, and a genetic algorithm with a new chromosome structure proposed to solve the problem. Proposed chromosome structure consists of two different parts for multimodal transportation and location-routing parts of the model. Based on published data in the literature, two numerical cases with different sizes generated and solved. Also, different cost scenarios designed to better analyze model and algorithm performance. Results show that algorithm can effectively solve large-size problems within a reasonable time which GAMS software failed to reach an optimal solution even within much longer times.
Minimum-fuel turning climbout and descent guidance of transport jets
NASA Technical Reports Server (NTRS)
Neuman, F.; Kreindler, E.
1983-01-01
The complete flightpath optimization problem for minimum fuel consumption from takeoff to landing including the initial and final turns from and to the runway heading is solved. However, only the initial and final segments which contain the turns are treated, since the straight-line climbout, cruise, and descent problems have already been solved. The paths are derived by generating fields of extremals, using the necessary conditions of optimal control together with singular arcs and state constraints. Results show that the speed profiles for straight flight and turning flight are essentially identical except for the final horizontal accelerating or decelerating turns. The optimal turns require no abrupt maneuvers, and an approximation of the optimal turns could be easily integrated with present straight-line climb-cruise-descent fuel-optimization algorithms. Climbout at the optimal IAS rather than the 250-knot terminal-area speed limit would save 36 lb of fuel for the 727-100 aircraft.
NASA Technical Reports Server (NTRS)
1995-01-01
The design of a High-Speed Civil Transport (HSCT) air-breathing propulsion system for multimission, variable-cycle operations was successfully optimized through a soft coupling of the engine performance analyzer NASA Engine Performance Program (NEPP) to a multidisciplinary optimization tool COMETBOARDS that was developed at the NASA Lewis Research Center. The design optimization of this engine was cast as a nonlinear optimization problem, with engine thrust as the merit function and the bypass ratios, r-values of fans, fuel flow, and other factors as important active design variables. Constraints were specified on factors including the maximum speed of the compressors, the positive surge margins for the compressors with specified safety factors, the discharge temperature, the pressure ratios, and the mixer extreme Mach number. Solving the problem by using the most reliable optimization algorithm available in COMETBOARDS would provide feasible optimum results only for a portion of the aircraft flight regime because of the large number of mission points (defined by altitudes, Mach numbers, flow rates, and other factors), diverse constraint types, and overall poor conditioning of the design space. Only the cascade optimization strategy of COMETBOARDS, which was devised especially for difficult multidisciplinary applications, could successfully solve a number of engine design problems for their flight regimes. Furthermore, the cascade strategy converged to the same global optimum solution even when it was initiated from different design points. Multiple optimizers in a specified sequence, pseudorandom damping, and reduction of the design space distortion via a global scaling scheme are some of the key features of the cascade strategy. HSCT engine concept, optimized solution for HSCT engine concept. A COMETBOARDS solution for an HSCT engine (Mach-2.4 mixed-flow turbofan) along with its configuration is shown. The optimum thrust is normalized with respect to NEPP results. COMETBOARDS added value in the design optimization of the HSCT engine.
Feedback laws for fuel minimization for transport aircraft
NASA Technical Reports Server (NTRS)
Price, D. B.; Gracey, C.
1984-01-01
The Theoretical Mechanics Branch has as one of its long-range goals to work toward solving real-time trajectory optimization problems on board an aircraft. This is a generic problem that has application to all aspects of aviation from general aviation through commercial to military. Overall interest is in the generic problem, but specific problems to achieve concrete results are examined. The problem is to develop control laws that generate approximately optimal trajectories with respect to some criteria such as minimum time, minimum fuel, or some combination of the two. These laws must be simple enough to be implemented on a computer that is flown on board an aircraft, which implies a major simplification from the two point boundary value problem generated by a standard trajectory optimization problem. In addition, the control laws allow for changes in end conditions during the flight, and changes in weather along a planned flight path. Therefore, a feedback control law that generates commands based on the current state rather than a precomputed open-loop control law is desired. This requirement, along with the need for order reduction, argues for the application of singular perturbation techniques.
Ayvaz, M Tamer
2010-09-20
This study proposes a linked simulation-optimization model for solving the unknown groundwater pollution source identification problems. In the proposed model, MODFLOW and MT3DMS packages are used to simulate the flow and transport processes in the groundwater system. These models are then integrated with an optimization model which is based on the heuristic harmony search (HS) algorithm. In the proposed simulation-optimization model, the locations and release histories of the pollution sources are treated as the explicit decision variables and determined through the optimization model. Also, an implicit solution procedure is proposed to determine the optimum number of pollution sources which is an advantage of this model. The performance of the proposed model is evaluated on two hypothetical examples for simple and complex aquifer geometries, measurement error conditions, and different HS solution parameter sets. Identified results indicated that the proposed simulation-optimization model is an effective way and may be used to solve the inverse pollution source identification problems. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Object Transportation by Two Mobile Robots with Hand Carts
Hara, Tatsunori
2014-01-01
This paper proposes a methodology by which two small mobile robots can grasp, lift, and transport large objects using hand carts. The specific problems involve generating robot actions and determining the hand cart positions to achieve the stable loading of objects onto the carts. These problems are solved using nonlinear optimization, and we propose an algorithm for generating robot actions. The proposed method was verified through simulations and experiments using actual devices in a real environment. The proposed method could reduce the number of robots required to transport large objects with 50–60%. In addition, we demonstrated the efficacy of this task in real environments where errors occur in robot sensing and movement. PMID:27433499
Object Transportation by Two Mobile Robots with Hand Carts.
Sakuyama, Takuya; Figueroa Heredia, Jorge David; Ogata, Taiki; Hara, Tatsunori; Ota, Jun
2014-01-01
This paper proposes a methodology by which two small mobile robots can grasp, lift, and transport large objects using hand carts. The specific problems involve generating robot actions and determining the hand cart positions to achieve the stable loading of objects onto the carts. These problems are solved using nonlinear optimization, and we propose an algorithm for generating robot actions. The proposed method was verified through simulations and experiments using actual devices in a real environment. The proposed method could reduce the number of robots required to transport large objects with 50-60%. In addition, we demonstrated the efficacy of this task in real environments where errors occur in robot sensing and movement.
NASA Technical Reports Server (NTRS)
Stanford, Bret K.; Jutte, Christine V.
2014-01-01
Several minimum-mass aeroelastic optimization problems are solved to evaluate the effectiveness of a variety of novel tailoring schemes for subsonic transport wings. Aeroelastic strength and panel buckling constraints are imposed across a variety of trimmed maneuver loads. Tailoring with metallic thickness variations, functionally graded materials, composite laminates, tow steering, and distributed trailing edge control effectors are all found to provide reductions in structural wing mass with varying degrees of success. The question as to whether this wing mass reduction will offset the increased manufacturing cost is left unresolved for each case.
A first experience with a Smart bus for improving public transportation
NASA Astrophysics Data System (ADS)
Tostado, R.; Rovirosa, A.; Velázquez, J. L.; Castillo, E.; Cervantes, O.
2017-09-01
An alternative to optimize transportation services in the city of Puebla is presented. Main problems tackled to provide advanced transport applications in a Smart City, are described and some available solutions in other countries are analyzed. As a case of study, the challenges for designing and developing a mobile application oriented to users of the buses provided by Universidad de las Américas Puebla (UDLAP) are presented. Users include students, as well as faculty members and administrative employees. The application provides an innovative way of tracking, in real time, movements of the UDLAP transportation buses through the city of Puebla in Mexico. Modeling and technical implementation solved problems are presented and future steps for extending those services to the city of Puebla are also suggested.
NASA Astrophysics Data System (ADS)
Sole-Mari, G.; Fernandez-Garcia, D.
2016-12-01
Random Walk Particle Tracking (RWPT) coupled with Kernel Density Estimation (KDE) has been recently proposed to simulate reactive transport in porous media. KDE provides an optimal estimation of the area of influence of particles which is a key element to simulate nonlinear chemical reactions. However, several important drawbacks can be identified: (1) the optimal KDE method is computationally intensive and thereby cannot be used at each time step of the simulation; (2) it does not take advantage of the prior information about the physical system and the previous history of the solute plume; (3) even if the kernel is optimal, the relative error in RWPT simulations typically increases over time as the particle density diminishes by dilution. To overcome these problems, we propose an adaptive branching random walk methodology that incorporates the physics, the particle history and maintains accuracy with time. The method allows particles to efficiently split and merge when necessary as well as to optimally adapt their local kernel shape without having to recalculate the kernel size. We illustrate the advantage of the method by simulating complex reactive transport problems in randomly heterogeneous porous media.
Numerical convergence and validation of the DIMP inverse particle transport model
Nelson, Noel; Azmy, Yousry
2017-09-01
The data integration with modeled predictions (DIMP) model is a promising inverse radiation transport method for solving the special nuclear material (SNM) holdup problem. Unlike previous methods, DIMP is a completely passive nondestructive assay technique that requires no initial assumptions regarding the source distribution or active measurement time. DIMP predicts the most probable source location and distribution through Bayesian inference and quasi-Newtonian optimization of predicted detector re-sponses (using the adjoint transport solution) with measured responses. DIMP performs well with for-ward hemispherical collimation and unshielded measurements, but several considerations are required when using narrow-view collimated detectors. DIMP converged well to themore » correct source distribution as the number of synthetic responses increased. DIMP also performed well for the first experimental validation exercise after applying a collimation factor, and sufficiently reducing the source search vol-ume's extent to prevent the optimizer from getting stuck in local minima. DIMP's simple point detector response function (DRF) is being improved to address coplanar false positive/negative responses, and an angular DRF is being considered for integration with the next version of DIMP to account for highly collimated responses. Overall, DIMP shows promise for solving the SNM holdup inverse problem, especially once an improved optimization algorithm is implemented.« less
NASA Technical Reports Server (NTRS)
Parrish, R. V.; Dieudonne, J. E.; Filippas, T. A.
1971-01-01
An algorithm employing a modified sequential random perturbation, or creeping random search, was applied to the problem of optimizing the parameters of a high-energy beam transport system. The stochastic solution of the mathematical model for first-order magnetic-field expansion allows the inclusion of state-variable constraints, and the inclusion of parameter constraints allowed by the method of algorithm application eliminates the possibility of infeasible solutions. The mathematical model and the algorithm were programmed for a real-time simulation facility; thus, two important features are provided to the beam designer: (1) a strong degree of man-machine communication (even to the extent of bypassing the algorithm and applying analog-matching techniques), and (2) extensive graphics for displaying information concerning both algorithm operation and transport-system behavior. Chromatic aberration was also included in the mathematical model and in the optimization process. Results presented show this method as yielding better solutions (in terms of resolutions) to the particular problem than those of a standard analog program as well as demonstrating flexibility, in terms of elements, constraints, and chromatic aberration, allowed by user interaction with both the algorithm and the stochastic model. Example of slit usage and a limited comparison of predicted results and actual results obtained with a 600 MeV cyclotron are given.
NASA Astrophysics Data System (ADS)
Guex, Guillaume
2016-05-01
In recent articles about graphs, different models proposed a formalism to find a type of path between two nodes, the source and the target, at crossroads between the shortest-path and the random-walk path. These models include a freely adjustable parameter, allowing to tune the behavior of the path toward randomized movements or direct routes. This article presents a natural generalization of these models, namely a model with multiple sources and targets. In this context, source nodes can be viewed as locations with a supply of a certain good (e.g. people, money, information) and target nodes as locations with a demand of the same good. An algorithm is constructed to display the flow of goods in the network between sources and targets. With again a freely adjustable parameter, this flow can be tuned to follow routes of minimum cost, thus displaying the flow in the context of the optimal transportation problem or, by contrast, a random flow, known to be similar to the electrical current flow if the random-walk is reversible. Moreover, a source-targetcoupling can be retrieved from this flow, offering an optimal assignment to the transportation problem. This algorithm is described in the first part of this article and then illustrated with case studies.
NASA Astrophysics Data System (ADS)
Abdeh-Kolahchi, A.; Satish, M.; Datta, B.
2004-05-01
A state art groundwater monitoring network design is introduced. The method combines groundwater flow and transport results with optimization Genetic Algorithm (GA) to identify optimal monitoring well locations. Optimization theory uses different techniques to find a set of parameter values that minimize or maximize objective functions. The suggested groundwater optimal monitoring network design is based on the objective of maximizing the probability of tracking a transient contamination plume by determining sequential monitoring locations. The MODFLOW and MT3DMS models included as separate modules within the Groundwater Modeling System (GMS) are used to develop three dimensional groundwater flow and contamination transport simulation. The groundwater flow and contamination simulation results are introduced as input to the optimization model, using Genetic Algorithm (GA) to identify the groundwater optimal monitoring network design, based on several candidate monitoring locations. The groundwater monitoring network design model is used Genetic Algorithms with binary variables representing potential monitoring location. As the number of decision variables and constraints increase, the non-linearity of the objective function also increases which make difficulty to obtain optimal solutions. The genetic algorithm is an evolutionary global optimization technique, which is capable of finding the optimal solution for many complex problems. In this study, the GA approach capable of finding the global optimal solution to a groundwater monitoring network design problem involving 18.4X 1018 feasible solutions will be discussed. However, to ensure the efficiency of the solution process and global optimality of the solution obtained using GA, it is necessary that appropriate GA parameter values be specified. The sensitivity analysis of genetic algorithms parameters such as random number, crossover probability, mutation probability, and elitism are discussed for solution of monitoring network design.
Stochastic optimization of GeantV code by use of genetic algorithms
Amadio, G.; Apostolakis, J.; Bandieramonte, M.; ...
2017-10-01
GeantV is a complex system based on the interaction of different modules needed for detector simulation, which include transport of particles in fields, physics models simulating their interactions with matter and a geometrical modeler library for describing the detector and locating the particles and computing the path length to the current volume boundary. The GeantV project is recasting the classical simulation approach to get maximum benefit from SIMD/MIMD computational architectures and highly massive parallel systems. This involves finding the appropriate balance between several aspects influencing computational performance (floating-point performance, usage of off-chip memory bandwidth, specification of cache hierarchy, etc.) andmore » handling a large number of program parameters that have to be optimized to achieve the best simulation throughput. This optimization task can be treated as a black-box optimization problem, which requires searching the optimum set of parameters using only point-wise function evaluations. Here, the goal of this study is to provide a mechanism for optimizing complex systems (high energy physics particle transport simulations) with the help of genetic algorithms and evolution strategies as tuning procedures for massive parallel simulations. One of the described approaches is based on introducing a specific multivariate analysis operator that could be used in case of resource expensive or time consuming evaluations of fitness functions, in order to speed-up the convergence of the black-box optimization problem.« less
Stochastic optimization of GeantV code by use of genetic algorithms
NASA Astrophysics Data System (ADS)
Amadio, G.; Apostolakis, J.; Bandieramonte, M.; Behera, S. P.; Brun, R.; Canal, P.; Carminati, F.; Cosmo, G.; Duhem, L.; Elvira, D.; Folger, G.; Gheata, A.; Gheata, M.; Goulas, I.; Hariri, F.; Jun, S. Y.; Konstantinov, D.; Kumawat, H.; Ivantchenko, V.; Lima, G.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.
2017-10-01
GeantV is a complex system based on the interaction of different modules needed for detector simulation, which include transport of particles in fields, physics models simulating their interactions with matter and a geometrical modeler library for describing the detector and locating the particles and computing the path length to the current volume boundary. The GeantV project is recasting the classical simulation approach to get maximum benefit from SIMD/MIMD computational architectures and highly massive parallel systems. This involves finding the appropriate balance between several aspects influencing computational performance (floating-point performance, usage of off-chip memory bandwidth, specification of cache hierarchy, etc.) and handling a large number of program parameters that have to be optimized to achieve the best simulation throughput. This optimization task can be treated as a black-box optimization problem, which requires searching the optimum set of parameters using only point-wise function evaluations. The goal of this study is to provide a mechanism for optimizing complex systems (high energy physics particle transport simulations) with the help of genetic algorithms and evolution strategies as tuning procedures for massive parallel simulations. One of the described approaches is based on introducing a specific multivariate analysis operator that could be used in case of resource expensive or time consuming evaluations of fitness functions, in order to speed-up the convergence of the black-box optimization problem.
Stochastic optimization of GeantV code by use of genetic algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amadio, G.; Apostolakis, J.; Bandieramonte, M.
GeantV is a complex system based on the interaction of different modules needed for detector simulation, which include transport of particles in fields, physics models simulating their interactions with matter and a geometrical modeler library for describing the detector and locating the particles and computing the path length to the current volume boundary. The GeantV project is recasting the classical simulation approach to get maximum benefit from SIMD/MIMD computational architectures and highly massive parallel systems. This involves finding the appropriate balance between several aspects influencing computational performance (floating-point performance, usage of off-chip memory bandwidth, specification of cache hierarchy, etc.) andmore » handling a large number of program parameters that have to be optimized to achieve the best simulation throughput. This optimization task can be treated as a black-box optimization problem, which requires searching the optimum set of parameters using only point-wise function evaluations. Here, the goal of this study is to provide a mechanism for optimizing complex systems (high energy physics particle transport simulations) with the help of genetic algorithms and evolution strategies as tuning procedures for massive parallel simulations. One of the described approaches is based on introducing a specific multivariate analysis operator that could be used in case of resource expensive or time consuming evaluations of fitness functions, in order to speed-up the convergence of the black-box optimization problem.« less
NASA Astrophysics Data System (ADS)
Métivier, L.; Brossier, R.; Mérigot, Q.; Oudet, E.; Virieux, J.
2016-04-01
Full waveform inversion using the conventional L2 distance to measure the misfit between seismograms is known to suffer from cycle skipping. An alternative strategy is proposed in this study, based on a measure of the misfit computed with an optimal transport distance. This measure allows to account for the lateral coherency of events within the seismograms, instead of considering each seismic trace independently, as is done generally in full waveform inversion. The computation of this optimal transport distance relies on a particular mathematical formulation allowing for the non-conservation of the total energy between seismograms. The numerical solution of the optimal transport problem is performed using proximal splitting techniques. Three synthetic case studies are investigated using this strategy: the Marmousi 2 model, the BP 2004 salt model, and the Chevron 2014 benchmark data. The results emphasize interesting properties of the optimal transport distance. The associated misfit function is less prone to cycle skipping. A workflow is designed to reconstruct accurately the salt structures in the BP 2004 model, starting from an initial model containing no information about these structures. A high-resolution P-wave velocity estimation is built from the Chevron 2014 benchmark data, following a frequency continuation strategy. This estimation explains accurately the data. Using the same workflow, full waveform inversion based on the L2 distance converges towards a local minimum. These results yield encouraging perspectives regarding the use of the optimal transport distance for full waveform inversion: the sensitivity to the accuracy of the initial model is reduced, the reconstruction of complex salt structure is made possible, the method is robust to noise, and the interpretation of seismic data dominated by reflections is enhanced.
Optimal Mass Transport for Shape Matching and Comparison
Su, Zhengyu; Wang, Yalin; Shi, Rui; Zeng, Wei; Sun, Jian; Luo, Feng; Gu, Xianfeng
2015-01-01
Surface based 3D shape analysis plays a fundamental role in computer vision and medical imaging. This work proposes to use optimal mass transport map for shape matching and comparison, focusing on two important applications including surface registration and shape space. The computation of the optimal mass transport map is based on Monge-Brenier theory, in comparison to the conventional method based on Monge-Kantorovich theory, this method significantly improves the efficiency by reducing computational complexity from O(n2) to O(n). For surface registration problem, one commonly used approach is to use conformal map to convert the shapes into some canonical space. Although conformal mappings have small angle distortions, they may introduce large area distortions which are likely to cause numerical instability thus resulting failures of shape analysis. This work proposes to compose the conformal map with the optimal mass transport map to get the unique area-preserving map, which is intrinsic to the Riemannian metric, unique, and diffeomorphic. For shape space study, this work introduces a novel Riemannian framework, Conformal Wasserstein Shape Space, by combing conformal geometry and optimal mass transport theory. In our work, all metric surfaces with the disk topology are mapped to the unit planar disk by a conformal mapping, which pushes the area element on the surface to a probability measure on the disk. The optimal mass transport provides a map from the shape space of all topological disks with metrics to the Wasserstein space of the disk and the pullback Wasserstein metric equips the shape space with a Riemannian metric. We validate our work by numerous experiments and comparisons with prior approaches and the experimental results demonstrate the efficiency and efficacy of our proposed approach. PMID:26440265
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bledsoe, Keith C.
2015-04-01
The DiffeRential Evolution Adaptive Metropolis (DREAM) method is a powerful optimization/uncertainty quantification tool used to solve inverse transport problems in Los Alamos National Laboratory’s INVERSE code system. The DREAM method has been shown to be adept at accurate uncertainty quantification, but it can be very computationally demanding. Previously, the DREAM method in INVERSE performed a user-defined number of particle transport calculations. This placed a burden on the user to guess the number of calculations that would be required to accurately solve any given problem. This report discusses a new approach that has been implemented into INVERSE, the Gelman-Rubin convergence metric.more » This metric automatically detects when an appropriate number of transport calculations have been completed and the uncertainty in the inverse problem has been accurately calculated. In a test problem with a spherical geometry, this method was found to decrease the number of transport calculations (and thus time required) to solve a problem by an average of over 90%. In a cylindrical test geometry, a 75% decrease was obtained.« less
NASA Astrophysics Data System (ADS)
Peralta, Richard C.; Forghani, Ali; Fayad, Hala
2014-04-01
Many real water resources optimization problems involve conflicting objectives for which the main goal is to find a set of optimal solutions on, or near to the Pareto front. E-constraint and weighting multiobjective optimization techniques have shortcomings, especially as the number of objectives increases. Multiobjective Genetic Algorithms (MGA) have been previously proposed to overcome these difficulties. Here, an MGA derives a set of optimal solutions for multiobjective multiuser conjunctive use of reservoir, stream, and (un)confined groundwater resources. The proposed methodology is applied to a hydraulically and economically nonlinear system in which all significant flows, including stream-aquifer-reservoir-diversion-return flow interactions, are simulated and optimized simultaneously for multiple periods. Neural networks represent constrained state variables. The addressed objectives that can be optimized simultaneously in the coupled simulation-optimization model are: (1) maximizing water provided from sources, (2) maximizing hydropower production, and (3) minimizing operation costs of transporting water from sources to destinations. Results show the efficiency of multiobjective genetic algorithms for generating Pareto optimal sets for complex nonlinear multiobjective optimization problems.
Case Study on Optimal Routing in Logistics Network by Priority-based Genetic Algorithm
NASA Astrophysics Data System (ADS)
Wang, Xiaoguang; Lin, Lin; Gen, Mitsuo; Shiota, Mitsushige
Recently, research on logistics caught more and more attention. One of the important issues on logistics system is to find optimal delivery routes with the least cost for products delivery. Numerous models have been developed for that reason. However, due to the diversity and complexity of practical problem, the existing models are usually not very satisfying to find the solution efficiently and convinently. In this paper, we treat a real-world logistics case with a company named ABC Co. ltd., in Kitakyusyu Japan. Firstly, based on the natures of this conveyance routing problem, as an extension of transportation problem (TP) and fixed charge transportation problem (fcTP) we formulate the problem as a minimum cost flow (MCF) model. Due to the complexity of fcTP, we proposed a priority-based genetic algorithm (pGA) approach to find the most acceptable solution to this problem. In this pGA approach, a two-stage path decoding method is adopted to develop delivery paths from a chromosome. We also apply the pGA approach to this problem, and compare our results with the current logistics network situation, and calculate the improvement of logistics cost to help the management to make decisions. Finally, in order to check the effectiveness of the proposed method, the results acquired are compared with those come from the two methods/ software, such as LINDO and CPLEX.
Optimizing Mars Sphere of Influence Maneuvers for NASA's Evolvable Mars Campaign
NASA Technical Reports Server (NTRS)
Merrill, Raymond G.; Komar, D. R.; Chai, Patrick; Qu, Min
2016-01-01
NASA's Human Spaceflight Architecture Team is refining human exploration architectures that will extend human presence to the Martian surface. For both Mars orbital and surface missions, NASA's Evolvable Mars Campaign assumes that cargo and crew can be delivered repeatedly to the same destination. Up to this point, interplanetary trajectories have been optimized to minimize the total propulsive requirements of the in-space transportation systems, while the pre-deployed assets and surface systems are optimized to minimize their respective propulsive requirements separate from the in-space transportation system. There is a need to investigate the coupled problem of optimizing the interplanetary trajectory and optimizing the maneuvers within Mars's sphere of influence. This paper provides a description of the ongoing method development, analysis and initial results of the effort to resolve the discontinuity between the interplanetary trajectory and the Mars sphere of influence trajectories. Assessment of Phobos and Deimos orbital missions shows the in-space transportation and crew taxi allocations are adequate for missions in the 2030s. Because the surface site has yet to be selected, the transportation elements must be sized to provide enough capability to provide surface access to all landing sites under consideration. Analysis shows access to sites from elliptical parking orbits with a lander that is designed for sub-periapsis landing location is either infeasible or requires expensive orbital maneuvers for many latitude ranges. In this case the locus of potential arrival perigee vectors identifies the potential maximum north or south latitudes accessible. Higher arrival velocities can decrease reorientation costs and increase landing site availability. Utilizing hyperbolic arrival and departure vectors in the optimization scheme will increase transportation site accessibility and provide more optimal solutions.
Using optimal transport theory to estimate transition probabilities in metapopulation dynamics
Nichols, Jonathan M.; Spendelow, Jeffrey A.; Nichols, James D.
2017-01-01
This work considers the estimation of transition probabilities associated with populations moving among multiple spatial locations based on numbers of individuals at each location at two points in time. The problem is generally underdetermined as there exists an extremely large number of ways in which individuals can move from one set of locations to another. A unique solution therefore requires a constraint. The theory of optimal transport provides such a constraint in the form of a cost function, to be minimized in expectation over the space of possible transition matrices. We demonstrate the optimal transport approach on marked bird data and compare to the probabilities obtained via maximum likelihood estimation based on marked individuals. It is shown that by choosing the squared Euclidean distance as the cost, the estimated transition probabilities compare favorably to those obtained via maximum likelihood with marked individuals. Other implications of this cost are discussed, including the ability to accurately interpolate the population's spatial distribution at unobserved points in time and the more general relationship between the cost and minimum transport energy.
Prepositioning emergency supplies under uncertainty: a parametric optimization method
NASA Astrophysics Data System (ADS)
Bai, Xuejie; Gao, Jinwu; Liu, Yankui
2018-07-01
Prepositioning of emergency supplies is an effective method for increasing preparedness for disasters and has received much attention in recent years. In this article, the prepositioning problem is studied by a robust parametric optimization method. The transportation cost, supply, demand and capacity are unknown prior to the extraordinary event, which are represented as fuzzy parameters with variable possibility distributions. The variable possibility distributions are obtained through the credibility critical value reduction method for type-2 fuzzy variables. The prepositioning problem is formulated as a fuzzy value-at-risk model to achieve a minimum total cost incurred in the whole process. The key difficulty in solving the proposed optimization model is to evaluate the quantile of the fuzzy function in the objective and the credibility in the constraints. The objective function and constraints can be turned into their equivalent parametric forms through chance constrained programming under the different confidence levels. Taking advantage of the structural characteristics of the equivalent optimization model, a parameter-based domain decomposition method is developed to divide the original optimization problem into six mixed-integer parametric submodels, which can be solved by standard optimization solvers. Finally, to explore the viability of the developed model and the solution approach, some computational experiments are performed on realistic scale case problems. The computational results reported in the numerical example show the credibility and superiority of the proposed parametric optimization method.
Routing and Scheduling Optimization Model of Sea Transportation
NASA Astrophysics Data System (ADS)
barus, Mika debora br; asyrafy, Habib; nababan, Esther; mawengkang, Herman
2018-01-01
This paper examines the routing and scheduling optimization model of sea transportation. One of the issues discussed is about the transportation of ships carrying crude oil (tankers) which is distributed to many islands. The consideration is the cost of transportation which consists of travel costs and the cost of layover at the port. Crude oil to be distributed consists of several types. This paper develops routing and scheduling model taking into consideration some objective functions and constraints. The formulation of the mathematical model analyzed is to minimize costs based on the total distance visited by the tanker and minimize the cost of the ports. In order for the model of the problem to be more realistic and the cost calculated to be more appropriate then added a parameter that states the multiplier factor of cost increases as the charge of crude oil is filled.
NASA Astrophysics Data System (ADS)
Luo, Qiankun; Wu, Jianfeng; Yang, Yun; Qian, Jiazhong; Wu, Jichun
2014-11-01
This study develops a new probabilistic multi-objective fast harmony search algorithm (PMOFHS) for optimal design of groundwater remediation systems under uncertainty associated with the hydraulic conductivity (K) of aquifers. The PMOFHS integrates the previously developed deterministic multi-objective optimization method, namely multi-objective fast harmony search algorithm (MOFHS) with a probabilistic sorting technique to search for Pareto-optimal solutions to multi-objective optimization problems in a noisy hydrogeological environment arising from insufficient K data. The PMOFHS is then coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, to identify the optimal design of groundwater remediation systems for a two-dimensional hypothetical test problem and a three-dimensional Indiana field application involving two objectives: (i) minimization of the total remediation cost through the engineering planning horizon, and (ii) minimization of the mass remaining in the aquifer at the end of the operational period, whereby the pump-and-treat (PAT) technology is used to clean up contaminated groundwater. Also, Monte Carlo (MC) analysis is employed to evaluate the effectiveness of the proposed methodology. Comprehensive analysis indicates that the proposed PMOFHS can find Pareto-optimal solutions with low variability and high reliability and is a potentially effective tool for optimizing multi-objective groundwater remediation problems under uncertainty.
Multi Dimensional Honey Bee Foraging Algorithm Based on Optimal Energy Consumption
NASA Astrophysics Data System (ADS)
Saritha, R.; Vinod Chandra, S. S.
2017-10-01
In this paper a new nature inspired algorithm is proposed based on natural foraging behavior of multi-dimensional honey bee colonies. This method handles issues that arise when food is shared from multiple sources by multiple swarms at multiple destinations. The self organizing nature of natural honey bee swarms in multiple colonies is based on the principle of energy consumption. Swarms of multiple colonies select a food source to optimally fulfill the requirements of its colonies. This is based on the energy requirement for transporting food between a source and destination. Minimum use of energy leads to maximizing profit in each colony. The mathematical model proposed here is based on this principle. This has been successfully evaluated by applying it on multi-objective transportation problem for optimizing cost and time. The algorithm optimizes the needs at each destination in linear time.
Developing Gis-Based Demand-Responsive Transit System in Tehran City
NASA Astrophysics Data System (ADS)
Faroqi, H.; Sadeghi-Niaraki, A.
2015-12-01
Create, maintain and development of public transport network in metropolitan are important problems in the field of urban transport management. In public transport, maximize the efficient use of public fleet capacity has been considered. Concepts and technologies of GIS have provided suitable way for management and optimization of the public transports systems. In demand-responsive public transportation system, firstly fellow traveller groups have been established for applicants based on spatial concepts and tools of GIS, second for each group according to its' members and their paths, a public vehicle has been allocated to them then based on dynamic routing, the fellow passenger group has been gathered from their origins and has been moved to their destinations through optimal route. The suggested system has been implemented based on network data and commuting trips statistics of 1 to 6 districts in Tehran city. Evaluation performed on the results show the 34% increase using of Taxi capacity, 13% increase using of Van capacity and 10% increase using of Bus capacity in comparison between current public transport system and suggested public transportation system has been improved.
Liu, Xing-Cai; He, Shi-Wei; Song, Rui; Sun, Yang; Li, Hao-Dong
2014-01-01
Railway freight center location problem is an important issue in railway freight transport programming. This paper focuses on the railway freight center location problem in uncertain environment. Seeing that the expected value model ignores the negative influence of disadvantageous scenarios, a robust optimization model was proposed. The robust optimization model takes expected cost and deviation value of the scenarios as the objective. A cloud adaptive clonal selection algorithm (C-ACSA) was presented. It combines adaptive clonal selection algorithm with Cloud Model which can improve the convergence rate. Design of the code and progress of the algorithm were proposed. Result of the example demonstrates the model and algorithm are effective. Compared with the expected value cases, the amount of disadvantageous scenarios in robust model reduces from 163 to 21, which prove the result of robust model is more reliable.
NASA Astrophysics Data System (ADS)
Villanueva Perez, Carlos Hernan
Computational design optimization provides designers with automated techniques to develop novel and non-intuitive optimal designs. Topology optimization is a design optimization technique that allows for the evolution of a broad variety of geometries in the optimization process. Traditional density-based topology optimization methods often lack a sufficient resolution of the geometry and physical response, which prevents direct use of the optimized design in manufacturing and the accurate modeling of the physical response of boundary conditions. The goal of this thesis is to introduce a unified topology optimization framework that uses the Level Set Method (LSM) to describe the design geometry and the eXtended Finite Element Method (XFEM) to solve the governing equations and measure the performance of the design. The methodology is presented as an alternative to density-based optimization approaches, and is able to accommodate a broad range of engineering design problems. The framework presents state-of-the-art methods for immersed boundary techniques to stabilize the systems of equations and enforce the boundary conditions, and is studied with applications in 2D and 3D linear elastic structures, incompressible flow, and energy and species transport problems to test the robustness and the characteristics of the method. A comparison of the framework against density-based topology optimization approaches is studied with regards to convergence, performance, and the capability to manufacture the designs. Furthermore, the ability to control the shape of the design to operate within manufacturing constraints is developed and studied. The analysis capability of the framework is validated quantitatively through comparison against previous benchmark studies, and qualitatively through its application to topology optimization problems. The design optimization problems converge to intuitive designs and resembled well the results from previous 2D or density-based studies.
Applications of numerical methods to simulate the movement of contaminants in groundwater.
Sun, N Z
1989-01-01
This paper reviews mathematical models and numerical methods that have been extensively used to simulate the movement of contaminants through the subsurface. The major emphasis is placed on the numerical methods of advection-dominated transport problems and inverse problems. Several mathematical models that are commonly used in field problems are listed. A variety of numerical solutions for three-dimensional models are introduced, including the multiple cell balance method that can be considered a variation of the finite element method. The multiple cell balance method is easy to understand and convenient for solving field problems. When the advection transport dominates the dispersion transport, two kinds of numerical difficulties, overshoot and numerical dispersion, are always involved in solving standard, finite difference methods and finite element methods. To overcome these numerical difficulties, various numerical techniques are developed, such as upstream weighting methods and moving point methods. A complete review of these methods is given and we also mention the problems of parameter identification, reliability analysis, and optimal-experiment design that are absolutely necessary for constructing a practical model. PMID:2695327
Three-Dimensional Inverse Transport Solver Based on Compressive Sensing Technique
NASA Astrophysics Data System (ADS)
Cheng, Yuxiong; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi
2013-09-01
According to the direct exposure measurements from flash radiographic image, a compressive sensing-based method for three-dimensional inverse transport problem is presented. The linear absorption coefficients and interface locations of objects are reconstructed directly at the same time. It is always very expensive to obtain enough measurements. With limited measurements, compressive sensing sparse reconstruction technique orthogonal matching pursuit is applied to obtain the sparse coefficients by solving an optimization problem. A three-dimensional inverse transport solver is developed based on a compressive sensing-based technique. There are three features in this solver: (1) AutoCAD is employed as a geometry preprocessor due to its powerful capacity in graphic. (2) The forward projection matrix rather than Gauss matrix is constructed by the visualization tool generator. (3) Fourier transform and Daubechies wavelet transform are adopted to convert an underdetermined system to a well-posed system in the algorithm. Simulations are performed and numerical results in pseudo-sine absorption problem, two-cube problem and two-cylinder problem when using compressive sensing-based solver agree well with the reference value.
NASA Technical Reports Server (NTRS)
Krasteva, Denitza T.
1998-01-01
Multidisciplinary design optimization (MDO) for large-scale engineering problems poses many challenges (e.g., the design of an efficient concurrent paradigm for global optimization based on disciplinary analyses, expensive computations over vast data sets, etc.) This work focuses on the application of distributed schemes for massively parallel architectures to MDO problems, as a tool for reducing computation time and solving larger problems. The specific problem considered here is configuration optimization of a high speed civil transport (HSCT), and the efficient parallelization of the embedded paradigm for reasonable design space identification. Two distributed dynamic load balancing techniques (random polling and global round robin with message combining) and two necessary termination detection schemes (global task count and token passing) were implemented and evaluated in terms of effectiveness and scalability to large problem sizes and a thousand processors. The effect of certain parameters on execution time was also inspected. Empirical results demonstrated stable performance and effectiveness for all schemes, and the parametric study showed that the selected algorithmic parameters have a negligible effect on performance.
A problem of optimal control and observation for distributed homogeneous multi-agent system
NASA Astrophysics Data System (ADS)
Kruglikov, Sergey V.
2017-12-01
The paper considers the implementation of a algorithm for controlling a distributed complex of several mobile multi-robots. The concept of a unified information space of the controlling system is applied. The presented information and mathematical models of participants and obstacles, as real agents, and goals and scenarios, as virtual agents, create the base forming the algorithmic and software background for computer decision support system. The controlling scheme assumes the indirect management of the robotic team on the basis of optimal control and observation problem predicting intellectual behavior in a dynamic, hostile environment. A basic content problem is a compound cargo transportation by a group of participants in the case of a distributed control scheme in the terrain with multiple obstacles.
NASA Technical Reports Server (NTRS)
Patniak, Surya N.; Guptill, James D.; Hopkins, Dale A.; Lavelle, Thomas M.
1998-01-01
Nonlinear mathematical-programming-based design optimization can be an elegant method. However, the calculations required to generate the merit function, constraints, and their gradients, which are frequently required, can make the process computational intensive. The computational burden can be greatly reduced by using approximating analyzers derived from an original analyzer utilizing neural networks and linear regression methods. The experience gained from using both of these approximation methods in the design optimization of a high speed civil transport aircraft is the subject of this paper. The Langley Research Center's Flight Optimization System was selected for the aircraft analysis. This software was exercised to generate a set of training data with which a neural network and a regression method were trained, thereby producing the two approximating analyzers. The derived analyzers were coupled to the Lewis Research Center's CometBoards test bed to provide the optimization capability. With the combined software, both approximation methods were examined for use in aircraft design optimization, and both performed satisfactorily. The CPU time for solution of the problem, which had been measured in hours, was reduced to minutes with the neural network approximation and to seconds with the regression method. Instability encountered in the aircraft analysis software at certain design points was also eliminated. On the other hand, there were costs and difficulties associated with training the approximating analyzers. The CPU time required to generate the input-output pairs and to train the approximating analyzers was seven times that required for solution of the problem.
Frisk, Mikael; Jonsson, Annie; Sellman, Stefan; Flisberg, Patrik; Rönnqvist, Mikael; Wennergren, Uno
2018-01-01
Each year, more than three million animals are transported from farms to abattoirs in Sweden. Animal transport is related to economic and environmental costs and a negative impact on animal welfare. Time and the number of pick-up stops between farms and abattoirs are two key parameters for animal welfare. Both are highly dependent on efficient and qualitative transportation planning, which may be difficult if done manually. We have examined the benefits of using route optimization in cattle transportation planning. To simulate the effects of various planning time windows and transportation time regulations and number of pick-up stops along each route, we have used data that represent one year of cattle transport. Our optimization model is a development of a model used in forestry transport that solves a general pick-up and delivery vehicle routing problem. The objective is to minimize transportation costs. We have shown that the length of the planning time window has a significant impact on the animal transport time, the total driving time and the total distance driven; these parameters that will not only affect animal welfare but also affect the economy and environment in the pre-slaughter logistic chain. In addition, we have shown that changes in animal transportation regulations, such as minimizing the number of allowed pick-up stops on each route or minimizing animal transportation time, will have positive effects on animal welfare measured in transportation hours and number of pick-up stops. However, this leads to an increase in working time and driven distances, leading to higher transportation costs for the transport and negative environmental impact.
2018-01-01
Each year, more than three million animals are transported from farms to abattoirs in Sweden. Animal transport is related to economic and environmental costs and a negative impact on animal welfare. Time and the number of pick-up stops between farms and abattoirs are two key parameters for animal welfare. Both are highly dependent on efficient and qualitative transportation planning, which may be difficult if done manually. We have examined the benefits of using route optimization in cattle transportation planning. To simulate the effects of various planning time windows and transportation time regulations and number of pick-up stops along each route, we have used data that represent one year of cattle transport. Our optimization model is a development of a model used in forestry transport that solves a general pick-up and delivery vehicle routing problem. The objective is to minimize transportation costs. We have shown that the length of the planning time window has a significant impact on the animal transport time, the total driving time and the total distance driven; these parameters that will not only affect animal welfare but also affect the economy and environment in the pre-slaughter logistic chain. In addition, we have shown that changes in animal transportation regulations, such as minimizing the number of allowed pick-up stops on each route or minimizing animal transportation time, will have positive effects on animal welfare measured in transportation hours and number of pick-up stops. However, this leads to an increase in working time and driven distances, leading to higher transportation costs for the transport and negative environmental impact. PMID:29513704
Ant colony optimization algorithm for signal coordination of oversaturated traffic networks.
DOT National Transportation Integrated Search
2010-05-01
Traffic congestion is a daily and growing problem of the modern era in mostly all major cities in the world. : Increasing traffic demand strains the existing transportation system, leading to oversaturated network : conditions, especially at peak hou...
NASA Astrophysics Data System (ADS)
Bode, F.; Reuschen, S.; Nowak, W.
2015-12-01
Drinking-water well catchments include many potential sources of contaminations like gas stations or agriculture. Finding optimal positions of early-warning monitoring wells is challenging because there are various parameters (and their uncertainties) that influence the reliability and optimality of any suggested monitoring location or monitoring network.The overall goal of this project is to develop and establish a concept to assess, design and optimize early-warning systems within well catchments. Such optimal monitoring networks need to optimize three competing objectives: a high detection probability, which can be reached by maximizing the "field of vision" of the monitoring network, a long early-warning time such that there is enough time left to install counter measures after first detection, and the overall operating costs of the monitoring network, which should ideally be reduced to a minimum. The method is based on numerical simulation of flow and transport in heterogeneous porous media coupled with geostatistics and Monte-Carlo, scenario analyses for real data, respectively, wrapped up within the framework of formal multi-objective optimization using a genetic algorithm.In order to speed up the optimization process and to better explore the Pareto-front, we developed a concept that forces the algorithm to search only in regions of the search space where promising solutions can be expected. We are going to show how to define these regions beforehand, using knowledge of the optimization problem, but also how to define them independently of problem attributes. With that, our method can be used with and/or without detailed knowledge of the objective functions.In summary, our study helps to improve optimization results in less optimization time by meaningful restrictions of the search space. These restrictions can be done independently of the optimization problem, but also in a problem-specific manner.
2016-04-30
determining the optimal design requirements of a new system, which will operate along with other existing systems to provide a set of overarching...passenger airline transportation (Mane et al., 2007; Govindaraju et al., 2015). Uncertainty in Fleet Operations The uncertainty associated with the...demand can provide the basis for a commercial passenger airline problem. The operations of the commercial air travel industry differ from military
Outsourcing and scheduling for a two-machine flow shop with release times
NASA Astrophysics Data System (ADS)
Ahmadizar, Fardin; Amiri, Zeinab
2018-03-01
This article addresses a two-machine flow shop scheduling problem where jobs are released intermittently and outsourcing is allowed. The first operations of outsourced jobs are processed by the first subcontractor, they are transported in batches to the second subcontractor for processing their second operations, and finally they are transported back to the manufacturer. The objective is to select a subset of jobs to be outsourced, to schedule both the in-house and the outsourced jobs, and to determine a transportation plan for the outsourced jobs so as to minimize the sum of the makespan and the outsourcing and transportation costs. Two mathematical models of the problem and several necessary optimality conditions are presented. A solution approach is then proposed by incorporating the dominance properties with an ant colony algorithm. Finally, computational experiments are conducted to evaluate the performance of the models and solution approach.
Distribution path robust optimization of electric vehicle with multiple distribution centers
Hao, Wei; He, Ruichun; Jia, Xiaoyan; Pan, Fuquan; Fan, Jing; Xiong, Ruiqi
2018-01-01
To identify electrical vehicle (EV) distribution paths with high robustness, insensitivity to uncertainty factors, and detailed road-by-road schemes, optimization of the distribution path problem of EV with multiple distribution centers and considering the charging facilities is necessary. With the minimum transport time as the goal, a robust optimization model of EV distribution path with adjustable robustness is established based on Bertsimas’ theory of robust discrete optimization. An enhanced three-segment genetic algorithm is also developed to solve the model, such that the optimal distribution scheme initially contains all road-by-road path data using the three-segment mixed coding and decoding method. During genetic manipulation, different interlacing and mutation operations are carried out on different chromosomes, while, during population evolution, the infeasible solution is naturally avoided. A part of the road network of Xifeng District in Qingyang City is taken as an example to test the model and the algorithm in this study, and the concrete transportation paths are utilized in the final distribution scheme. Therefore, more robust EV distribution paths with multiple distribution centers can be obtained using the robust optimization model. PMID:29518169
Mixed Transportation Network Design under a Sustainable Development Perspective
Qin, Jin; Ni, Ling-lin; Shi, Feng
2013-01-01
A mixed transportation network design problem considering sustainable development was studied in this paper. Based on the discretization of continuous link-grade decision variables, a bilevel programming model was proposed to describe the problem, in which sustainability factors, including vehicle exhaust emissions, land-use scale, link load, and financial budget, are considered. The objective of the model is to minimize the total amount of resources exploited under the premise of meeting all the construction goals. A heuristic algorithm, which combined the simulated annealing and path-based gradient projection algorithm, was developed to solve the model. The numerical example shows that the transportation network optimized with the method above not only significantly alleviates the congestion on the link, but also reduces vehicle exhaust emissions within the network by up to 41.56%. PMID:23476142
Mixed transportation network design under a sustainable development perspective.
Qin, Jin; Ni, Ling-lin; Shi, Feng
2013-01-01
A mixed transportation network design problem considering sustainable development was studied in this paper. Based on the discretization of continuous link-grade decision variables, a bilevel programming model was proposed to describe the problem, in which sustainability factors, including vehicle exhaust emissions, land-use scale, link load, and financial budget, are considered. The objective of the model is to minimize the total amount of resources exploited under the premise of meeting all the construction goals. A heuristic algorithm, which combined the simulated annealing and path-based gradient projection algorithm, was developed to solve the model. The numerical example shows that the transportation network optimized with the method above not only significantly alleviates the congestion on the link, but also reduces vehicle exhaust emissions within the network by up to 41.56%.
A Framework for Optimal Control Allocation with Structural Load Constraints
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Taylor, Brian R.; Jutte, Christine V.; Burken, John J.; Trinh, Khanh V.; Bodson, Marc
2010-01-01
Conventional aircraft generally employ mixing algorithms or lookup tables to determine control surface deflections needed to achieve moments commanded by the flight control system. Control allocation is the problem of converting desired moments into control effector commands. Next generation aircraft may have many multipurpose, redundant control surfaces, adding considerable complexity to the control allocation problem. These issues can be addressed with optimal control allocation. Most optimal control allocation algorithms have control surface position and rate constraints. However, these constraints are insufficient to ensure that the aircraft's structural load limits will not be exceeded by commanded surface deflections. In this paper, a framework is proposed to enable a flight control system with optimal control allocation to incorporate real-time structural load feedback and structural load constraints. A proof of concept simulation that demonstrates the framework in a simulation of a generic transport aircraft is presented.
An almost-parameter-free harmony search algorithm for groundwater pollution source identification.
Jiang, Simin; Zhang, Yali; Wang, Pei; Zheng, Maohui
2013-01-01
The spatiotemporal characterization of unknown sources of groundwater pollution is frequently encountered in environmental problems. This study adopts a simulation-optimization approach that combines a contaminant transport simulation model with a heuristic harmony search algorithm to identify unknown pollution sources. In the proposed methodology, an almost-parameter-free harmony search algorithm is developed. The performance of this methodology is evaluated on an illustrative groundwater pollution source identification problem, and the identified results indicate that the proposed almost-parameter-free harmony search algorithm-based optimization model can give satisfactory estimations, even when the irregular geometry, erroneous monitoring data, and prior information shortage of potential locations are considered.
Level-Set Topology Optimization with Aeroelastic Constraints
NASA Technical Reports Server (NTRS)
Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia
2015-01-01
Level-set topology optimization is used to design a wing considering skin buckling under static aeroelastic trim loading, as well as dynamic aeroelastic stability (flutter). The level-set function is defined over the entire 3D volume of a transport aircraft wing box. Therefore, the approach is not limited by any predefined structure and can explore novel configurations. The Sequential Linear Programming (SLP) level-set method is used to solve the constrained optimization problems. The proposed method is demonstrated using three problems with mass, linear buckling and flutter objective and/or constraints. A constraint aggregation method is used to handle multiple buckling constraints in the wing skins. A continuous flutter constraint formulation is used to handle difficulties arising from discontinuities in the design space caused by a switching of the critical flutter mode.
Understanding cathode flooding and dry-out for water management in air breathing PEM fuel cells
NASA Astrophysics Data System (ADS)
Paquin, Mathieu; Fréchette, Luc G.
An analysis of water management in air breathing small polymer electrolyte membrane fuel cells (PEMFCs) is presented. Comprehensive understanding of flooding and dry-out limiting phenomena is presented through a combination of analytical modeling and experimental investigations using a small PEMFC prototype. Configurations of the fuel cell with different heat and mass transfer properties are experimentally evaluated to assess the impact of thermal resistance and mass transport resistance on water balance. Manifestation of dry-out and flooding problems, as limiting phenomena, are explained through a ratio between these two resistances. Main conclusions are that decreasing the ratio between thermal and mass transport resistance under a certain point leads to flooding problems in air breathing PEMFC. Increasing this ratio leads to dry-out of the polymer electrolyte membrane. However, too high thermal resistance or too low mass transport resistance reduces the limiting current by pushing forward the dry-out problem. This work provides a framework to achieve the proper balance between thermal rejection and mass transport to optimize the maximum current density of free convection fuel cells.
A multi-objective approach to solid waste management.
Galante, Giacomo; Aiello, Giuseppe; Enea, Mario; Panascia, Enrico
2010-01-01
The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached in a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy). 2010 Elsevier Ltd. All rights reserved.
A multi-objective approach to solid waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galante, Giacomo, E-mail: galante@dtpm.unipa.i; Aiello, Giuseppe; Enea, Mario
2010-08-15
The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached inmore » a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy).« less
An Extended EPQ-Based Problem with a Discontinuous Delivery Policy, Scrap Rate, and Random Breakdown
Song, Ming-Syuan; Chen, Hsin-Mei; Chiu, Yuan-Shyi P.
2015-01-01
In real supply chain environments, the discontinuous multidelivery policy is often used when finished products need to be transported to retailers or customers outside the production units. To address this real-life production-shipment situation, this study extends recent work using an economic production quantity- (EPQ-) based inventory model with a continuous inventory issuing policy, defective items, and machine breakdown by incorporating a multiple delivery policy into the model to replace the continuous policy and investigates the effect on the optimal run time decision for this specific EPQ model. Next, we further expand the scope of the problem to combine the retailer's stock holding cost into our study. This enhanced EPQ-based model can be used to reflect the situation found in contemporary manufacturing firms in which finished products are delivered to the producer's own retail stores and stocked there for sale. A second model is developed and studied. With the help of mathematical modeling and optimization techniques, the optimal run times that minimize the expected total system costs comprising costs incurred in production units, transportation, and retail stores are derived, for both models. Numerical examples are provided to demonstrate the applicability of our research results. PMID:25821853
Chiu, Singa Wang; Lin, Hong-Dar; Song, Ming-Syuan; Chen, Hsin-Mei; Chiu, Yuan-Shyi P
2015-01-01
In real supply chain environments, the discontinuous multidelivery policy is often used when finished products need to be transported to retailers or customers outside the production units. To address this real-life production-shipment situation, this study extends recent work using an economic production quantity- (EPQ-) based inventory model with a continuous inventory issuing policy, defective items, and machine breakdown by incorporating a multiple delivery policy into the model to replace the continuous policy and investigates the effect on the optimal run time decision for this specific EPQ model. Next, we further expand the scope of the problem to combine the retailer's stock holding cost into our study. This enhanced EPQ-based model can be used to reflect the situation found in contemporary manufacturing firms in which finished products are delivered to the producer's own retail stores and stocked there for sale. A second model is developed and studied. With the help of mathematical modeling and optimization techniques, the optimal run times that minimize the expected total system costs comprising costs incurred in production units, transportation, and retail stores are derived, for both models. Numerical examples are provided to demonstrate the applicability of our research results.
Logistics of Trainsets Creation with the Use of Simulation Models
NASA Astrophysics Data System (ADS)
Sedláček, Michal; Pavelka, Hynek
2016-12-01
This paper focuses on rail transport in following the train formation operational processes problem using computer simulations. The problem has been solved using SIMUL8 and applied to specific train formation station in the Czech Republic. The paper describes a proposal simulation model of the train formation work. Experimental modeling with an assessment of achievements and design solution for optimizing of the train formation operational process is also presented.
Dynamic Network Formation Using Ant Colony Optimization
2009-03-01
backhauls, VRP with pick-up and delivery, VRP with satellite facilities, and VRP with time windows (Murata & Itai , 2005). The general vehicle...given route is only visited once. The objective of the basic problem is to minimize a total cost as follows (Murata & Itai , 2005): M m mc 1 min...Problem based on Ant Colony System. Second Internation Workshop on Freight Transportation and Logistics. Palermo, Italy. Murata, T., & Itai , R. (2005
Numerical optimization of the ramp-down phase with the RAPTOR code
NASA Astrophysics Data System (ADS)
Teplukhina, Anna; Sauter, Olivier; Felici, Federico; The Tcv Team; The ASDEX-Upgrade Team; The Eurofusion Mst1 Team
2017-10-01
The ramp-down optimization goal in this work is defined as the fastest possible decrease of a plasma current while avoiding any disruptions caused by reaching physical or technical limits. Numerical simulations and preliminary experiments on TCV and AUG have shown that a fast decrease of plasma elongation and an adequate timing of the H-L transition during current ramp-down can help to avoid reaching high values of the plasma internal inductance. The RAPTOR code (F. Felici et al., 2012 PPCF 54; F. Felici, 2011 EPFL PhD thesis), developed for real-time plasma control, has been used for an optimization problem solving. Recently the transport model has been extended to include the ion temperature and electron density transport equations in addition to the electron temperature and current density transport equations, increasing the physical applications of the code. The gradient-based models for the transport coefficients (O. Sauter et al., 2014 PPCF 21; D. Kim et al., 2016 PPCF 58) have been implemented to RAPTOR and tested during this work. Simulations of the AUG and TCV entire plasma discharges will be presented. See the author list of S. Coda et al., Nucl. Fusion 57 2017 102011.
A Comparison of Metallic, Composite and Nanocomposite Optimal Transonic Transport Wings
NASA Technical Reports Server (NTRS)
Kennedy, Graeme J.; Kenway, Gaetan K. W.; Martins, Joaquim R. R.
2014-01-01
Current and future composite material technologies have the potential to greatly improve the performance of large transport aircraft. However, the coupling between aerodynamics and structures makes it challenging to design optimal flexible wings, and the transonic flight regime requires high fidelity computational models. We address these challenges by solving a series of high-fidelity aerostructural optimization problems that explore the design space for the wing of a large transport aircraft. We consider three different materials: aluminum, carbon-fiber reinforced composites and an hypothetical composite based on carbon nanotubes. The design variables consist of both aerodynamic shape (including span), structural sizing, and ply angle fractions in the case of composites. Pareto fronts with respect to structural weight and fuel burn are generated. The wing performance in each case is optimized subject to stress and buckling constraints. We found that composite wings consistently resulted in lower fuel burn and lower structural weight, and that the carbon nanotube composite did not yield the increase in performance one would expect from a material with such outstanding properties. This indicates that there might be diminishing returns when it comes to the application of advanced materials to wing design, requiring further investigation.
NASA Astrophysics Data System (ADS)
Koloch, Grzegorz; Kaminski, Bogumil
2010-10-01
In the paper we examine a modification of the classical Vehicle Routing Problem (VRP) in which shapes of transported cargo are accounted for. This problem, known as a three-dimensional VRP with loading constraints (3D-VRP), is appropriate when transported commodities are not perfectly divisible, but they have fixed and heterogeneous dimensions. In the paper restrictions on allowable cargo positionings are also considered. These restrictions are derived from business practice and they extended the baseline 3D-VRP formulation as considered by Koloch and Kaminski (2010). In particular, we investigate how additional restrictions influence relative performance of two proposed optimization algorithms: the nested and the joint one. Performance of both methods is compared on artificial problems and on a big-scale real life case study.
NASA Astrophysics Data System (ADS)
Sakakibara, Kazutoshi; Tian, Yajie; Nishikawa, Ikuko
We discuss the planning of transportation by trucks over a multi-day period. Each truck collects loads from suppliers and delivers them to assembly plants or a truck terminal. By exploiting the truck terminal as a temporal storage, we aim to increase the load ratio of each truck and to minimize the lead time for transportation. In this paper, we show a mixed integer programming model which represents each product explicitly, and discuss the decomposition of the problem into a problem of delivery and storage, and a problem of vehicle routing. Based on this model, we propose a relax-and-fix type heuristic in which decision variables are fixed one by one by mathematical programming techniques such as branch-and-bound methods.
Busing and Redistricting in the 'Down-Up' Era.
ERIC Educational Resources Information Center
Freeman, David N.
1987-01-01
Besides redistricting problems engendered by higher elementary school enrollments (and decreasing secondary enrollments), school administrators face student transport challenges. Acquiring new routes and larger buses could be costly. This article advances computerized systems as the most cost-effective way to optimize routes and manage…
Unequal-area, fixed-shape facility layout problems using the firefly algorithm
NASA Astrophysics Data System (ADS)
Ingole, Supriya; Singh, Dinesh
2017-07-01
In manufacturing industries, the facility layout design is a very important task, as it is concerned with the overall manufacturing cost and profit of the industry. The facility layout problem (FLP) is solved by arranging the departments or facilities of known dimensions on the available floor space. The objective of this article is to implement the firefly algorithm (FA) for solving unequal-area, fixed-shape FLPs and optimizing the costs of total material handling and transportation between the facilities. The FA is a nature-inspired algorithm and can be used for combinatorial optimization problems. Benchmark problems from the previous literature are solved using the FA. To check its effectiveness, it is implemented to solve large-sized FLPs. Computational results obtained using the FA show that the algorithm is less time consuming and the total layout costs for FLPs are better than the best results achieved so far.
Tripartite equilibrium strategy for a carbon tax setting problem in air passenger transport.
Xu, Jiuping; Qiu, Rui; Tao, Zhimiao; Xie, Heping
2018-03-01
Carbon emissions in air passenger transport have become increasing serious with the rapidly development of aviation industry. Combined with a tripartite equilibrium strategy, this paper proposes a multi-level multi-objective model for an air passenger transport carbon tax setting problem (CTSP) among an international organization, an airline and passengers with the fuzzy uncertainty. The proposed model is simplified to an equivalent crisp model by a weighted sum procedure and a Karush-Kuhn-Tucker (KKT) transformation method. To solve the equivalent crisp model, a fuzzy logic controlled genetic algorithm with entropy-Bolitzmann selection (FLC-GA with EBS) is designed as an integrated solution method. Then, a numerical example is provided to demonstrate the practicality and efficiency of the optimization method. Results show that the cap tax mechanism is an important part of air passenger trans'port carbon emission mitigation and thus, it should be effectively applied to air passenger transport. These results also indicate that the proposed method can provide efficient ways of mitigating carbon emissions for air passenger transport, and therefore assist decision makers in formulating relevant strategies under multiple scenarios.
Wang, Lin; Qu, Hui; Liu, Shan; Dun, Cai-xia
2013-01-01
As a practical inventory and transportation problem, it is important to synthesize several objectives for the joint replenishment and delivery (JRD) decision. In this paper, a new multiobjective stochastic JRD (MSJRD) of the one-warehouse and n-retailer systems considering the balance of service level and total cost simultaneously is proposed. The goal of this problem is to decide the reasonable replenishment interval, safety stock factor, and traveling routing. Secondly, two approaches are designed to handle this complex multi-objective optimization problem. Linear programming (LP) approach converts the multi-objective to single objective, while a multi-objective evolution algorithm (MOEA) solves a multi-objective problem directly. Thirdly, three intelligent optimization algorithms, differential evolution algorithm (DE), hybrid DE (HDE), and genetic algorithm (GA), are utilized in LP-based and MOEA-based approaches. Results of the MSJRD with LP-based and MOEA-based approaches are compared by a contrastive numerical example. To analyses the nondominated solution of MOEA, a metric is also used to measure the distribution of the last generation solution. Results show that HDE outperforms DE and GA whenever LP or MOEA is adopted.
Dun, Cai-xia
2013-01-01
As a practical inventory and transportation problem, it is important to synthesize several objectives for the joint replenishment and delivery (JRD) decision. In this paper, a new multiobjective stochastic JRD (MSJRD) of the one-warehouse and n-retailer systems considering the balance of service level and total cost simultaneously is proposed. The goal of this problem is to decide the reasonable replenishment interval, safety stock factor, and traveling routing. Secondly, two approaches are designed to handle this complex multi-objective optimization problem. Linear programming (LP) approach converts the multi-objective to single objective, while a multi-objective evolution algorithm (MOEA) solves a multi-objective problem directly. Thirdly, three intelligent optimization algorithms, differential evolution algorithm (DE), hybrid DE (HDE), and genetic algorithm (GA), are utilized in LP-based and MOEA-based approaches. Results of the MSJRD with LP-based and MOEA-based approaches are compared by a contrastive numerical example. To analyses the nondominated solution of MOEA, a metric is also used to measure the distribution of the last generation solution. Results show that HDE outperforms DE and GA whenever LP or MOEA is adopted. PMID:24302880
Application of decomposition techniques to the preliminary design of a transport aircraft
NASA Technical Reports Server (NTRS)
Rogan, J. E.; Mcelveen, R. P.; Kolb, M. A.
1986-01-01
A multifaceted decomposition of a nonlinear constrained optimization problem describing the preliminary design process for a transport aircraft has been made. Flight dynamics, flexible aircraft loads and deformations, and preliminary structural design subproblems appear prominently in the decomposition. The use of design process decomposition for scheduling design projects, a new system integration approach to configuration control, and the application of object-centered programming to a new generation of design tools are discussed.
Evolutionary design optimization of traffic signals applied to Quito city.
Armas, Rolando; Aguirre, Hernán; Daolio, Fabio; Tanaka, Kiyoshi
2017-01-01
This work applies evolutionary computation and machine learning methods to study the transportation system of Quito from a design optimization perspective. It couples an evolutionary algorithm with a microscopic transport simulator and uses the outcome of the optimization process to deepen our understanding of the problem and gain knowledge about the system. The work focuses on the optimization of a large number of traffic lights deployed on a wide area of the city and studies their impact on travel time, emissions and fuel consumption. An evolutionary algorithm with specialized mutation operators is proposed to search effectively in large decision spaces, evolving small populations for a short number of generations. The effects of the operators combined with a varying mutation schedule are studied, and an analysis of the parameters of the algorithm is also included. In addition, hierarchical clustering is performed on the best solutions found in several runs of the algorithm. An analysis of signal clusters and their geolocation, estimation of fuel consumption, spatial analysis of emissions, and an analysis of signal coordination provide an overall picture of the systemic effects of the optimization process.
Evolutionary design optimization of traffic signals applied to Quito city
2017-01-01
This work applies evolutionary computation and machine learning methods to study the transportation system of Quito from a design optimization perspective. It couples an evolutionary algorithm with a microscopic transport simulator and uses the outcome of the optimization process to deepen our understanding of the problem and gain knowledge about the system. The work focuses on the optimization of a large number of traffic lights deployed on a wide area of the city and studies their impact on travel time, emissions and fuel consumption. An evolutionary algorithm with specialized mutation operators is proposed to search effectively in large decision spaces, evolving small populations for a short number of generations. The effects of the operators combined with a varying mutation schedule are studied, and an analysis of the parameters of the algorithm is also included. In addition, hierarchical clustering is performed on the best solutions found in several runs of the algorithm. An analysis of signal clusters and their geolocation, estimation of fuel consumption, spatial analysis of emissions, and an analysis of signal coordination provide an overall picture of the systemic effects of the optimization process. PMID:29236733
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, John C; Peplow, Douglas E.; Mosher, Scott W
2011-01-01
This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or moremore » localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(102-4), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.« less
An Integer Programming Model for Multi-Echelon Supply Chain Decision Problem Considering Inventories
NASA Astrophysics Data System (ADS)
Harahap, Amin; Mawengkang, Herman; Siswadi; Effendi, Syahril
2018-01-01
In this paper we address a problem that is of significance to the industry, namely the optimal decision of a multi-echelon supply chain and the associated inventory systems. By using the guaranteed service approach to model the multi-echelon inventory system, we develop a mixed integer; programming model to simultaneously optimize the transportation, inventory and network structure of a multi-echelon supply chain. To solve the model we develop a direct search approach using a strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points.
Optimal Topology of Aircraft Rib and Spar Structures under Aeroelastic Loads
NASA Technical Reports Server (NTRS)
Stanford, Bret K.; Dunning, Peter D.
2014-01-01
Several topology optimization problems are conducted within the ribs and spars of a wing box. It is desired to locate the best position of lightening holes, truss/cross-bracing, etc. A variety of aeroelastic metrics are isolated for each of these problems: elastic wing compliance under trim loads and taxi loads, stress distribution, and crushing loads. Aileron effectiveness under a constant roll rate is considered, as are dynamic metrics: natural vibration frequency and flutter. This approach helps uncover the relationship between topology and aeroelasticity in subsonic transport wings, and can therefore aid in understanding the complex aircraft design process which must eventually consider all these metrics and load cases simultaneously.
A heterogeneous fleet vehicle routing model for solving the LPG distribution problem: A case study
NASA Astrophysics Data System (ADS)
Onut, S.; Kamber, M. R.; Altay, G.
2014-03-01
Vehicle Routing Problem (VRP) is an important management problem in the field of distribution and logistics. In VRPs, routes from a distribution point to geographically distributed points are designed with minimum cost and considering customer demands. All points should be visited only once and by one vehicle in one route. Total demand in one route should not exceed the capacity of the vehicle that assigned to that route. VRPs are varied due to real life constraints related to vehicle types, number of depots, transportation conditions and time periods, etc. Heterogeneous fleet vehicle routing problem is a kind of VRP that vehicles have different capacity and costs. There are two types of vehicles in our problem. In this study, it is used the real world data and obtained from a company that operates in LPG sector in Turkey. An optimization model is established for planning daily routes and assigned vehicles. The model is solved by GAMS and optimal solution is found in a reasonable time.
NASA Astrophysics Data System (ADS)
Tarigan, U.; Sidabutar, R. F.; Tarigan, U. P. P.; Chen, A.
2018-04-01
Manufacturers engaged in the business, producing CPO and kernels whose raw materials are oil palm fresh fruit bunches taken from their own plantation, generally face problems of transporting from plantation to factory where there is often a change of distance traveled by the truck the carrier of FFB is due to non-specific transport instructions. The research was conducted to determine the optimal transportation route in terms of distance, time and route number. The determination of this transportation route is solved using Nearest Neighbours and Clarke & Wright Savings methods. Based on the calculations performed then found in area I with method Nearest Neighbours has a distance of 200.78 Km while Clarke & Wright Savings as with a result of 214.09 Km. As for the harvest area, II obtained results with Nearest Neighbours method of 264.37 Km and Clarke & Wright Savings method with a total distance of 264.33 Km. Based on the calculation of the time to do all the activities of transporting FFB juxtaposed with the work time of the driver got the reduction of conveyance from 8 units to 5 units. There is also improvement of fuel efficiency by 0.8%.
Stochastic modelling of turbulent combustion for design optimization of gas turbine combustors
NASA Astrophysics Data System (ADS)
Mehanna Ismail, Mohammed Ali
The present work covers the development and the implementation of an efficient algorithm for the design optimization of gas turbine combustors. The purpose is to explore the possibilities and indicate constructive suggestions for optimization techniques as alternative methods for designing gas turbine combustors. The algorithm is general to the extent that no constraints are imposed on the combustion phenomena or on the combustor configuration. The optimization problem is broken down into two elementary problems: the first is the optimum search algorithm, and the second is the turbulent combustion model used to determine the combustor performance parameters. These performance parameters constitute the objective and physical constraints in the optimization problem formulation. The examination of both turbulent combustion phenomena and the gas turbine design process suggests that the turbulent combustion model represents a crucial part of the optimization algorithm. The basic requirements needed for a turbulent combustion model to be successfully used in a practical optimization algorithm are discussed. In principle, the combustion model should comply with the conflicting requirements of high fidelity, robustness and computational efficiency. To that end, the problem of turbulent combustion is discussed and the current state of the art of turbulent combustion modelling is reviewed. According to this review, turbulent combustion models based on the composition PDF transport equation are found to be good candidates for application in the present context. However, these models are computationally expensive. To overcome this difficulty, two different models based on the composition PDF transport equation were developed: an improved Lagrangian Monte Carlo composition PDF algorithm and the generalized stochastic reactor model. Improvements in the Lagrangian Monte Carlo composition PDF model performance and its computational efficiency were achieved through the implementation of time splitting, variable stochastic fluid particle mass control, and a second order time accurate (predictor-corrector) scheme used for solving the stochastic differential equations governing the particles evolution. The model compared well against experimental data found in the literature for two different configurations: bluff body and swirl stabilized combustors. The generalized stochastic reactor is a newly developed model. This model relies on the generalization of the concept of the classical stochastic reactor theory in the sense that it accounts for both finite micro- and macro-mixing processes. (Abstract shortened by UMI.)
Studies of HZE particle interactions and transport for space radiation protection purposes
NASA Technical Reports Server (NTRS)
Townsend, Lawrence W.; Wilson, John W.; Schimmerling, Walter; Wong, Mervyn
1987-01-01
The main emphasis is on developing general methods for accurately predicting high-energy heavy ion (HZE) particle interactions and transport for use by researchers in mission planning studies, in evaluating astronaut self-shielding factors, and in spacecraft shield design and optimization studies. The two research tasks are: (1) to develop computationally fast and accurate solutions to the Boltzmann (transport) equation; and (2) to develop accurate HZE interaction models, from fundamental physical considerations, for use as inputs into these transport codes. Accurate solutions to the HZE transport problem have been formulated through a combination of analytical and numerical techniques. In addition, theoretical models for the input interaction parameters are under development: stopping powers, nuclear absorption cross sections, and fragmentation parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhai, B.
A new method for solving radiation transport problems is presented. The heart of the technique is a new cross section processing procedure for the calculation of group-to-point and point-to-group cross sections sets. The method is ideally suited for problems which involve media with highly fluctuating cross sections, where the results of the traditional multigroup calculations are beclouded by the group averaging procedures employed. Extensive computational efforts, which would be required to evaluate double integrals in the multigroup treatment numerically, prohibit iteration to optimize the energy boundaries. On the other hand, use of point-to-point techniques (as in the stochastic technique) ismore » often prohibitively expensive due to the large computer storage requirement. The pseudo-point code is a hybrid of the two aforementioned methods (group-to-group and point-to-point) - hence the name pseudo-point - that reduces the computational efforts of the former and the large core requirements of the latter. The pseudo-point code generates the group-to-point or the point-to-group transfer matrices, and can be coupled with the existing transport codes to calculate pointwise energy-dependent fluxes. This approach yields much more detail than is available from the conventional energy-group treatments. Due to the speed of this code, several iterations could be performed (in affordable computing efforts) to optimize the energy boundaries and the weighting functions. The pseudo-point technique is demonstrated by solving six problems, each depicting a certain aspect of the technique. The results are presented as flux vs energy at various spatial intervals. The sensitivity of the technique to the energy grid and the savings in computational effort are clearly demonstrated.« less
Konikow, Leonard F.
1981-01-01
Undesirable salinity increases occur in both groundwater and surface water and are commonly related to agricultural practices. Groundwater recharge from precipitation or irrigation will transport and disperse residual salts concentrated by evapotranspiration, salts leached from soil and aquifer materials, as well as some dissolved fertilizers and pesticides. Where stream salinity is affected by agricultural practices, the increases in salt load usually are attributable mostly to a groundwater component of flow. Thus, efforts to predict, manage, or control stream salinity increases should consider the role of groundwater in salt transport. Two examples of groundwater salinity problems in Colorado, U.S.A., illustrate that a model which simulates accurately the transport and dispersion of solutes in flowing groundwater can be (1) a valuable investigative tool to help understand the processes and parameters controlling the movement and fate of the salt, and (2) a valuable management tool for predicting responses and optimizing the development and use of the total water resource. ?? 1981.
Parallel-Batch Scheduling and Transportation Coordination with Waiting Time Constraint
Gong, Hua; Chen, Daheng; Xu, Ke
2014-01-01
This paper addresses a parallel-batch scheduling problem that incorporates transportation of raw materials or semifinished products before processing with waiting time constraint. The orders located at the different suppliers are transported by some vehicles to a manufacturing facility for further processing. One vehicle can load only one order in one shipment. Each order arriving at the facility must be processed in the limited waiting time. The orders are processed in batches on a parallel-batch machine, where a batch contains several orders and the processing time of the batch is the largest processing time of the orders in it. The goal is to find a schedule to minimize the sum of the total flow time and the production cost. We prove that the general problem is NP-hard in the strong sense. We also demonstrate that the problem with equal processing times on the machine is NP-hard. Furthermore, a dynamic programming algorithm in pseudopolynomial time is provided to prove its ordinarily NP-hardness. An optimal algorithm in polynomial time is presented to solve a special case with equal processing times and equal transportation times for each order. PMID:24883385
Solving Two-Level Optimization Problems with Applications to Robust Design and Energy Markets
2011-01-01
additional a transportation system operator (TSO) who manages the congestion and 172 flows. The TSO’s linear program is as follows (where other...were tested are shown in Table 5.11 below. Node 1 Node 2 Producer A Producer B Producer C Producer D Transmission System Operator 174... Systems to Solve Problems that are Not Linear. Operational Research Quarterly , 26, 609–618. 9. Beale, E., & Tomlin, J. (1970). Special Facilities
Energy efficient motion control of the electric bus on route
NASA Astrophysics Data System (ADS)
Kotiev, G. O.; Butarovich, D. O.; Kositsyn, B. B.
2018-02-01
At present, the urgent problem is the reduction of energy costs of urban motor transport. The article proposes a method of solving this problem by developing an energy-efficient law governing the movement of an electric bus along a city route. To solve this problem, an algorithm is developed based on the dynamic programming method. The proposed method allows you to take into account the constraints imposed on the phase coordinates, control action, as well as on the time of the route. In the course of solving the problem, the model of rectilinear motion of an electric bus on a horizontal reference surface is considered, taking into account the assumptions that allow it to be adapted for the implementation of the method. For the formation of a control action in the equations of motion dynamics, an algorithm for changing the traction / braking torque on the wheels of an electric bus is considered, depending on the magnitude of the control parameter and the speed of motion. An optimal phase trajectory was obtained on a selected section of the road for the prototype of an electric bus. The article presents the comparison of simulation results obtained with the optimal energy efficient control law with the results obtained by a test driver. The comparison proved feasibility of the energy efficient control law for the automobile city electric transport.
A new multistage groundwater transport inverse method: presentation, evaluation, and implications
Anderman, Evan R.; Hill, Mary C.
1999-01-01
More computationally efficient methods of using concentration data are needed to estimate groundwater flow and transport parameters. This work introduces and evaluates a three‐stage nonlinear‐regression‐based iterative procedure in which trial advective‐front locations link decoupled flow and transport models. Method accuracy and efficiency are evaluated by comparing results to those obtained when flow‐ and transport‐model parameters are estimated simultaneously. The new method is evaluated as conclusively as possible by using a simple test case that includes distinct flow and transport parameters, but does not include any approximations that are problem dependent. The test case is analytical; the only flow parameter is a constant velocity, and the transport parameters are longitudinal and transverse dispersivity. Any difficulties detected using the new method in this ideal situation are likely to be exacerbated in practical problems. Monte‐Carlo analysis of observation error ensures that no specific error realization obscures the results. Results indicate that, while this, and probably other, multistage methods do not always produce optimal parameter estimates, the computational advantage may make them useful in some circumstances, perhaps as a precursor to using a simultaneous method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; UT Southwestern Medical Center, Dallas, TX; Tian, Z
2015-06-15
Purpose: Intensity-modulated proton therapy (IMPT) is increasingly used in proton therapy. For IMPT optimization, Monte Carlo (MC) is desired for spots dose calculations because of its high accuracy, especially in cases with a high level of heterogeneity. It is also preferred in biological optimization problems due to the capability of computing quantities related to biological effects. However, MC simulation is typically too slow to be used for this purpose. Although GPU-based MC engines have become available, the achieved efficiency is still not ideal. The purpose of this work is to develop a new optimization scheme to include GPU-based MC intomore » IMPT. Methods: A conventional approach using MC in IMPT simply calls the MC dose engine repeatedly for each spot dose calculations. However, this is not the optimal approach, because of the unnecessary computations on some spots that turned out to have very small weights after solving the optimization problem. GPU-memory writing conflict occurring at a small beam size also reduces computational efficiency. To solve these problems, we developed a new framework that iteratively performs MC dose calculations and plan optimizations. At each dose calculation step, the particles were sampled from different spots altogether with Metropolis algorithm, such that the particle number is proportional to the latest optimized spot intensity. Simultaneously transporting particles from multiple spots also mitigated the memory writing conflict problem. Results: We have validated the proposed MC-based optimization schemes in one prostate case. The total computation time of our method was ∼5–6 min on one NVIDIA GPU card, including both spot dose calculation and plan optimization, whereas a conventional method naively using the same GPU-based MC engine were ∼3 times slower. Conclusion: A fast GPU-based MC dose calculation method along with a novel optimization workflow is developed. The high efficiency makes it attractive for clinical usages.« less
NASA Astrophysics Data System (ADS)
Miharja, M.; Priadi, Y. N.
2018-05-01
Promoting a better public transport is a key strategy to cope with urban transport problems which are mostly caused by a huge private vehicle usage. A better public transport service quality not only focuses on one type of public transport mode, but also concerns on inter modes service integration. Fragmented inter mode public transport service leads to a longer trip chain as well as average travel time which would result in its failure to compete with a private vehicle. This paper examines the optimation process of operation system integration between Trans Jakarta Bus as the main public transport mode and Kopaja Bus as feeder public transport service in Jakarta. Using scoring-interview method combined with standard parameters in operation system integration, this paper identifies the key factors that determine the success of the two public transport operation system integrations. The study found that some key integration parameters, such as the cancellation of “system setoran”, passenger get in-get out at official stop points, and systematic payment, positively contribute to a better service integration. However, some parameters such as fine system, time and changing point reliability, and information system reliability are among those which need improvement. These findings are very useful for the authority to set the right strategy to improve operation system integration between Trans Jakarta and Kopaja Bus services.
Inverse transport calculations in optical imaging with subspace optimization algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Tian, E-mail: tding@math.utexas.edu; Ren, Kui, E-mail: ren@math.utexas.edu
2014-09-15
Inverse boundary value problems for the radiative transport equation play an important role in optics-based medical imaging techniques such as diffuse optical tomography (DOT) and fluorescence optical tomography (FOT). Despite the rapid progress in the mathematical theory and numerical computation of these inverse problems in recent years, developing robust and efficient reconstruction algorithms remains a challenging task and an active research topic. We propose here a robust reconstruction method that is based on subspace minimization techniques. The method splits the unknown transport solution (or a functional of it) into low-frequency and high-frequency components, and uses singular value decomposition to analyticallymore » recover part of low-frequency information. Minimization is then applied to recover part of the high-frequency components of the unknowns. We present some numerical simulations with synthetic data to demonstrate the performance of the proposed algorithm.« less
Method of interplanetary trajectory optimization for the spacecraft with low thrust and swing-bys
NASA Astrophysics Data System (ADS)
Konstantinov, M. S.; Thein, M.
2017-07-01
The method developed to avoid the complexity of solving the multipoint boundary value problem while optimizing interplanetary trajectories of the spacecraft with electric propulsion and a sequence of swing-bys is presented in the paper. This method is based on the use of the preliminary problem solutions for the impulsive trajectories. The preliminary problem analyzed at the first stage of the study is formulated so that the analysis and optimization of a particular flight path is considered as the unconstrained minimum in the space of the selectable parameters. The existing methods can effectively solve this problem and make it possible to identify rational flight paths (the sequence of swing-bys) to receive the initial approximation for the main characteristics of the flight path (dates, values of the hyperbolic excess velocity, etc.). These characteristics can be used to optimize the trajectory of the spacecraft with electric propulsion. The special feature of the work is the introduction of the second (intermediate) stage of the research. At this stage some characteristics of the analyzed flight path (e.g. dates of swing-bys) are fixed and the problem is formulated so that the trajectory of the spacecraft with electric propulsion is optimized on selected sites of the flight path. The end-to-end optimization is carried out at the third (final) stage of the research. The distinctive feature of this stage is the analysis of the full set of optimal conditions for the considered flight path. The analysis of the characteristics of the optimal flight trajectories to Jupiter with Earth, Venus and Mars swing-bys for the spacecraft with electric propulsion are presented. The paper shows that the spacecraft weighing more than 7150 kg can be delivered into the vicinity of Jupiter along the trajectory with two Earth swing-bys by use of the space transportation system based on the "Angara A5" rocket launcher, the chemical upper stage "KVTK" and the electric propulsion system with input electrical power of 100 kW.
Graph Design via Convex Optimization: Online and Distributed Perspectives
NASA Astrophysics Data System (ADS)
Meng, De
Network and graph have long been natural abstraction of relations in a variety of applications, e.g. transportation, power system, social network, communication, electrical circuit, etc. As a large number of computation and optimization problems are naturally defined on graphs, graph structures not only enable important properties of these problems, but also leads to highly efficient distributed and online algorithms. For example, graph separability enables the parallelism for computation and operation as well as limits the size of local problems. More interestingly, graphs can be defined and constructed in order to take best advantage of those problem properties. This dissertation focuses on graph structure and design in newly proposed optimization problems, which establish a bridge between graph properties and optimization problem properties. We first study a new optimization problem called Geodesic Distance Maximization Problem (GDMP). Given a graph with fixed edge weights, finding the shortest path, also known as the geodesic, between two nodes is a well-studied network flow problem. We introduce the Geodesic Distance Maximization Problem (GDMP): the problem of finding the edge weights that maximize the length of the geodesic subject to convex constraints on the weights. We show that GDMP is a convex optimization problem for a wide class of flow costs, and provide a physical interpretation using the dual. We present applications of the GDMP in various fields, including optical lens design, network interdiction, and resource allocation in the control of forest fires. We develop an Alternating Direction Method of Multipliers (ADMM) by exploiting specific problem structures to solve large-scale GDMP, and demonstrate its effectiveness in numerical examples. We then turn our attention to distributed optimization on graph with only local communication. Distributed optimization arises in a variety of applications, e.g. distributed tracking and localization, estimation problems in sensor networks, multi-agent coordination. Distributed optimization aims to optimize a global objective function formed by summation of coupled local functions over a graph via only local communication and computation. We developed a weighted proximal ADMM for distributed optimization using graph structure. This fully distributed, single-loop algorithm allows simultaneous updates and can be viewed as a generalization of existing algorithms. More importantly, we achieve faster convergence by jointly designing graph weights and algorithm parameters. Finally, we propose a new problem on networks called Online Network Formation Problem: starting with a base graph and a set of candidate edges, at each round of the game, player one first chooses a candidate edge and reveals it to player two, then player two decides whether to accept it; player two can only accept limited number of edges and make online decisions with the goal to achieve the best properties of the synthesized network. The network properties considered include the number of spanning trees, algebraic connectivity and total effective resistance. These network formation games arise in a variety of cooperative multiagent systems. We propose a primal-dual algorithm framework for the general online network formation game, and analyze the algorithm performance by the competitive ratio and regret.
New Approaches to HSCT Multidisciplinary Design and Optimization
NASA Technical Reports Server (NTRS)
Schrage, D. P.; Craig, J. I.; Fulton, R. E.; Mistree, F.
1996-01-01
The successful development of a capable and economically viable high speed civil transport (HSCT) is perhaps one of the most challenging tasks in aeronautics for the next two decades. At its heart it is fundamentally the design of a complex engineered system that has significant societal, environmental and political impacts. As such it presents a formidable challenge to all areas of aeronautics, and it is therefore a particularly appropriate subject for research in multidisciplinary design and optimization (MDO). In fact, it is starkly clear that without the availability of powerful and versatile multidisciplinary design, analysis and optimization methods, the design, construction and operation of im HSCT simply cannot be achieved. The present research project is focused on the development and evaluation of MDO methods that, while broader and more general in scope, are particularly appropriate to the HSCT design problem. The research aims to not only develop the basic methods but also to apply them to relevant examples from the NASA HSCT R&D effort. The research involves a three year effort aimed first at the HSCT MDO problem description, next the development of the problem, and finally a solution to a significant portion of the problem.
Reconstruction of phonon relaxation times from systems featuring interfaces with unknown properties
NASA Astrophysics Data System (ADS)
Forghani, Mojtaba; Hadjiconstantinou, Nicolas G.
2018-05-01
We present a method for reconstructing the phonon relaxation-time function τω=τ (ω ) (including polarization) and associated phonon free-path distribution from thermal spectroscopy data for systems featuring interfaces with unknown properties. Our method does not rely on the effective thermal-conductivity approximation or a particular physical model of the interface behavior. The reconstruction is formulated as an optimization problem in which the relaxation times are determined as functions of frequency by minimizing the discrepancy between the experimentally measured temperature profiles and solutions of the Boltzmann transport equation for the same system. Interface properties such as transmissivities are included as unknowns in the optimization; however, because for the thermal spectroscopy problems considered here the reconstruction is not very sensitive to the interface properties, the transmissivities are only approximately reconstructed and can be considered as byproducts of the calculation whose primary objective is the accurate determination of the relaxation times. The proposed method is validated using synthetic experimental data obtained from Monte Carlo solutions of the Boltzmann transport equation. The method is shown to remain robust in the presence of uncertainty (noise) in the measurement.
Optimal experimental design for placement of boreholes
NASA Astrophysics Data System (ADS)
Padalkina, Kateryna; Bücker, H. Martin; Seidler, Ralf; Rath, Volker; Marquart, Gabriele; Niederau, Jan; Herty, Michael
2014-05-01
Drilling for deep resources is an expensive endeavor. Among the many problems finding the optimal drilling location for boreholes is one of the challenging questions. We contribute to this discussion by using a simulation based assessment of possible future borehole locations. We study the problem of finding a new borehole location in a given geothermal reservoir in terms of a numerical optimization problem. In a geothermal reservoir the temporal and spatial distribution of temperature and hydraulic pressure may be simulated using the coupled differential equations for heat transport and mass and momentum conservation for Darcy flow. Within this model the permeability and thermal conductivity are dependent on the geological layers present in the subsurface model of the reservoir. In general, those values involve some uncertainty making it difficult to predict actual heat source in the ground. Within optimal experimental the question is which location and to which depth to drill the borehole in order to estimate conductivity and permeability with minimal uncertainty. We introduce a measure for computing the uncertainty based on simulations of the coupled differential equations. The measure is based on the Fisher information matrix of temperature data obtained through the simulations. We assume that the temperature data is available within the full borehole. A minimization of the measure representing the uncertainty in the unknown permeability and conductivity parameters is performed to determine the optimal borehole location. We present the theoretical framework as well as numerical results for several 2d subsurface models including up to six geological layers. Also, the effect of unknown layers on the introduced measure is studied. Finally, to obtain a more realistic estimate of optimal borehole locations, we couple the optimization to a cost model for deep drilling problems.
Leong, Kah Huo; Abdul-Rahman, Hamzah; Wang, Chen; Onn, Chiu Chuen
2016-01-01
Railway and metro transport systems (RS) are becoming one of the popular choices of transportation among people, especially those who live in urban cities. Urbanization and increasing population due to rapid development of economy in many cities are leading to a bigger demand for urban rail transit. Despite being a popular variant of Traveling Salesman Problem (TSP), it appears that the universal formula or techniques to solve the problem are yet to be found. This paper aims to develop an optimization algorithm for optimum route selection to multiple destinations in RS before returning to the starting point. Bee foraging behaviour is examined to generate a reliable algorithm in railway TSP. The algorithm is then verified by comparing the results with the exact solutions in 10 test cases, and a numerical case study is designed to demonstrate the application with large size sample. It is tested to be efficient and effective in railway route planning as the tour can be completed within a certain period of time by using minimal resources. The findings further support the reliability of the algorithm and capability to solve the problems with different complexity. This algorithm can be used as a method to assist business practitioners making better decision in route planning. PMID:27930659
Leong, Kah Huo; Abdul-Rahman, Hamzah; Wang, Chen; Onn, Chiu Chuen; Loo, Siaw-Chuing
2016-01-01
Railway and metro transport systems (RS) are becoming one of the popular choices of transportation among people, especially those who live in urban cities. Urbanization and increasing population due to rapid development of economy in many cities are leading to a bigger demand for urban rail transit. Despite being a popular variant of Traveling Salesman Problem (TSP), it appears that the universal formula or techniques to solve the problem are yet to be found. This paper aims to develop an optimization algorithm for optimum route selection to multiple destinations in RS before returning to the starting point. Bee foraging behaviour is examined to generate a reliable algorithm in railway TSP. The algorithm is then verified by comparing the results with the exact solutions in 10 test cases, and a numerical case study is designed to demonstrate the application with large size sample. It is tested to be efficient and effective in railway route planning as the tour can be completed within a certain period of time by using minimal resources. The findings further support the reliability of the algorithm and capability to solve the problems with different complexity. This algorithm can be used as a method to assist business practitioners making better decision in route planning.
Optimization of an Aeroservoelastic Wing with Distributed Multiple Control Surfaces
NASA Technical Reports Server (NTRS)
Stanford, Bret K.
2015-01-01
This paper considers the aeroelastic optimization of a subsonic transport wingbox under a variety of static and dynamic aeroelastic constraints. Three types of design variables are utilized: structural variables (skin thickness, stiffener details), the quasi-steady deflection scheduling of a series of control surfaces distributed along the trailing edge for maneuver load alleviation and trim attainment, and the design details of an LQR controller, which commands oscillatory hinge moments into those same control surfaces. Optimization problems are solved where a closed loop flutter constraint is forced to satisfy the required flight margin, and mass reduction benefits are realized by relaxing the open loop flutter requirements.
Optimization of atmospheric transport models on HPC platforms
NASA Astrophysics Data System (ADS)
de la Cruz, Raúl; Folch, Arnau; Farré, Pau; Cabezas, Javier; Navarro, Nacho; Cela, José María
2016-12-01
The performance and scalability of atmospheric transport models on high performance computing environments is often far from optimal for multiple reasons including, for example, sequential input and output, synchronous communications, work unbalance, memory access latency or lack of task overlapping. We investigate how different software optimizations and porting to non general-purpose hardware architectures improve code scalability and execution times considering, as an example, the FALL3D volcanic ash transport model. To this purpose, we implement the FALL3D model equations in the WARIS framework, a software designed from scratch to solve in a parallel and efficient way different geoscience problems on a wide variety of architectures. In addition, we consider further improvements in WARIS such as hybrid MPI-OMP parallelization, spatial blocking, auto-tuning and thread affinity. Considering all these aspects together, the FALL3D execution times for a realistic test case running on general-purpose cluster architectures (Intel Sandy Bridge) decrease by a factor between 7 and 40 depending on the grid resolution. Finally, we port the application to Intel Xeon Phi (MIC) and NVIDIA GPUs (CUDA) accelerator-based architectures and compare performance, cost and power consumption on all the architectures. Implications on time-constrained operational model configurations are discussed.
Optimal Control of Hybrid Systems in Air Traffic Applications
NASA Astrophysics Data System (ADS)
Kamgarpour, Maryam
Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient implementation of the proposed algorithms.
NASA Astrophysics Data System (ADS)
Jensen, Kaare H.; Beecher, Sierra; Holbrook, N. Michele; Knoblauch, Michael
2014-11-01
Many biological systems use complex networks of vascular conduits to distribute energy over great distances. Examples include sugar transport in the phloem tissue of vascular plants and cytoplasmic streaming in some slime molds. Detailed knowledge of transport patterns in these systems is important for our fundamental understanding of energy distribution during development and for engineering of more efficient crops. Current techniques for quantifying transport in these microfluidic systems, however, only allow for the determination of either the flow speed or the concentration of material. Here we demonstrate a new method, based on confocal microscopy, which allows us to simultaneously determine velocity and solute concentration by tracking the dispersion of a tracer dye. We attempt to rationalize the observed transport patterns through consideration of constrained optimization problems.
Availability Control for Means of Transport in Decisive Semi-Markov Models of Exploitation Process
NASA Astrophysics Data System (ADS)
Migawa, Klaudiusz
2012-12-01
The issues presented in this research paper refer to problems connected with the control process for exploitation implemented in the complex systems of exploitation for technical objects. The article presents the description of the method concerning the control availability for technical objects (means of transport) on the basis of the mathematical model of the exploitation process with the implementation of the decisive processes by semi-Markov. The presented method means focused on the preparing the decisive for the exploitation process for technical objects (semi-Markov model) and after that specifying the best control strategy (optimal strategy) from among possible decisive variants in accordance with the approved criterion (criteria) of the activity evaluation of the system of exploitation for technical objects. In the presented method specifying the optimal strategy for control availability in the technical objects means a choice of a sequence of control decisions made in individual states of modelled exploitation process for which the function being a criterion of evaluation reaches the extreme value. In order to choose the optimal control strategy the implementation of the genetic algorithm was chosen. The opinions were presented on the example of the exploitation process of the means of transport implemented in the real system of the bus municipal transport. The model of the exploitation process for the means of transports was prepared on the basis of the results implemented in the real transport system. The mathematical model of the exploitation process was built taking into consideration the fact that the model of the process constitutes the homogenous semi-Markov process.
Extensions to PIFCGT: Multirate output feedback and optimal disturbance suppression
NASA Technical Reports Server (NTRS)
Broussard, J. R.
1986-01-01
New control synthesis procedures for digital flight control systems were developed. The theoretical developments are the solution to the problem of optimal disturbance suppression in the presence of windshear. Control synthesis is accomplished using a linear quadratic cost function, the command generator tracker for trajectory following and the proportional-integral-filter control structure for practical implementation. Extensions are made to the optimal output feedback algorithm for computing feedback gains so that the multirate and optimal disturbance control designs are computed and compared for the advanced transport operating system (ATOPS). The performance of the designs is demonstrated by closed-loop poles, frequency domain multiinput sigma and eigenvalue plots and detailed nonlinear 6-DOF aircraft simulations in the terminal area in the presence of windshear.
Algorithms for constructing optimal paths and statistical analysis of passenger traffic
NASA Astrophysics Data System (ADS)
Trofimov, S. P.; Druzhinina, N. G.; Trofimova, O. G.
2018-01-01
Several existing information systems of urban passenger transport (UPT) are considered. Author’s UPT network model is presented. To a passenger a new service is offered that is the best path from one stop to another stop at a specified time. The algorithm and software implementation for finding the optimal path are presented. The algorithm uses the current UPT schedule. The article also describes the algorithm of statistical analysis of trip payments by the electronic E-cards. The algorithm allows obtaining the density of passenger traffic during the day. This density is independent of the network topology and UPT schedules. The resulting density of the traffic flow can solve a number of practical problems. In particular, the forecast for the overflow of passenger transport in the «rush» hours, the quantitative comparison of different topologies transport networks, constructing of the best UPT timetable. The efficiency of the proposed integrated approach is demonstrated by the example of the model town with arbitrary dimensions.
Investigation of Optimal Control Allocation for Gust Load Alleviation in Flight Control
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Taylor, Brian R.; Bodson, Marc
2012-01-01
Advances in sensors and avionics computation power suggest real-time structural load measurements could be used in flight control systems for improved safety and performance. A conventional transport flight control system determines the moments necessary to meet the pilot's command, while rejecting disturbances and maintaining stability of the aircraft. Control allocation is the problem of converting these desired moments into control effector commands. In this paper, a framework is proposed to incorporate real-time structural load feedback and structural load constraints in the control allocator. Constrained optimal control allocation can be used to achieve desired moments without exceeding specified limits on monitored load points. Minimization of structural loads by the control allocator is used to alleviate gust loads. The framework to incorporate structural loads in the flight control system and an optimal control allocation algorithm will be described and then demonstrated on a nonlinear simulation of a generic transport aircraft with flight dynamics and static structural loads.
Bao, Xu; Li, Haijian; Qin, Lingqiao; Xu, Dongwei; Ran, Bin; Rong, Jian
2016-10-27
To obtain adequate traffic information, the density of traffic sensors should be sufficiently high to cover the entire transportation network. However, deploying sensors densely over the entire network may not be realistic for practical applications due to the budgetary constraints of traffic management agencies. This paper describes several possible spatial distributions of traffic information credibility and proposes corresponding different sensor information credibility functions to describe these spatial distribution properties. A maximum benefit model and its simplified model are proposed to solve the traffic sensor location problem. The relationships between the benefit and the number of sensors are formulated with different sensor information credibility functions. Next, expanding models and algorithms in analytic results are performed. For each case, the maximum benefit, the optimal number and spacing of sensors are obtained and the analytic formulations of the optimal sensor locations are derived as well. Finally, a numerical example is proposed to verify the validity and availability of the proposed models for solving a network sensor location problem. The results show that the optimal number of sensors of segments with different model parameters in an entire freeway network can be calculated. Besides, it can also be concluded that the optimal sensor spacing is independent of end restrictions but dependent on the values of model parameters that represent the physical conditions of sensors and roads.
Bao, Xu; Li, Haijian; Qin, Lingqiao; Xu, Dongwei; Ran, Bin; Rong, Jian
2016-01-01
To obtain adequate traffic information, the density of traffic sensors should be sufficiently high to cover the entire transportation network. However, deploying sensors densely over the entire network may not be realistic for practical applications due to the budgetary constraints of traffic management agencies. This paper describes several possible spatial distributions of traffic information credibility and proposes corresponding different sensor information credibility functions to describe these spatial distribution properties. A maximum benefit model and its simplified model are proposed to solve the traffic sensor location problem. The relationships between the benefit and the number of sensors are formulated with different sensor information credibility functions. Next, expanding models and algorithms in analytic results are performed. For each case, the maximum benefit, the optimal number and spacing of sensors are obtained and the analytic formulations of the optimal sensor locations are derived as well. Finally, a numerical example is proposed to verify the validity and availability of the proposed models for solving a network sensor location problem. The results show that the optimal number of sensors of segments with different model parameters in an entire freeway network can be calculated. Besides, it can also be concluded that the optimal sensor spacing is independent of end restrictions but dependent on the values of model parameters that represent the physical conditions of sensors and roads. PMID:27801794
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shekar, Venkateswaran; Fiondella, Lance; Chatterjee, Samrat
Transportation networks are critical to the social and economic function of nations. Given the continuing increase in the populations of cities throughout the world, the criticality of transportation infrastructure is expected to increase. Thus, it is ever more important to mitigate congestion as well as to assess the impact disruptions would have on individuals who depend on transportation for their work and livelihood. Moreover, several government organizations are responsible for ensuring transportation networks are available despite the constant threat of natural disasters and terrorist activities. Most of the previous transportation network vulnerability research has been performed in the context ofmore » static traffic models, many of which are formulated as traditional optimization problems. However, transportation networks are dynamic because their usage varies over time. Thus, more appropriate methods to characterize the vulnerability of transportation networks should consider their dynamic properties. This paper presents a quantitative approach to assess the vulnerability of a transportation network to disruptions with methods from traffic simulation. Our approach can prioritize the critical links over time and is generalizable to the case where both link and node disruptions are of concern. We illustrate the approach through a series of examples. Our results demonstrate that the approach provides quantitative insight into the time varying criticality of links. Such an approach could be used as the objective function of less traditional optimization methods that use simulation and other techniques to evaluate the relative utility of a particular network defense to reduce vulnerability and increase resilience.« less
NASA Astrophysics Data System (ADS)
Antamoshkin, O. A.; Kilochitskaya, T. R.; Ontuzheva, G. A.; Stupina, A. A.; Tynchenko, V. S.
2018-05-01
This study reviews the problem of allocation of resources in the heterogeneous distributed information processing systems, which may be formalized in the form of a multicriterion multi-index problem with the linear constraints of the transport type. The algorithms for solution of this problem suggest a search for the entire set of Pareto-optimal solutions. For some classes of hierarchical systems, it is possible to significantly speed up the procedure of verification of a system of linear algebraic inequalities for consistency due to the reducibility of them to the stream models or the application of other solution schemes (for strongly connected structures) that take into account the specifics of the hierarchies under consideration.
NASA Astrophysics Data System (ADS)
Römer, Friedhard; Deppner, Marcus; Andreev, Zhelio; Kölper, Christopher; Sabathil, Matthias; Strassburg, Martin; Ledig, Johannes; Li, Shunfeng; Waag, Andreas; Witzigmann, Bernd
2012-02-01
We present a computational study on the anisotropic luminescence and the efficiency of a core-shell type nanowire LED based on GaN with InGaN active quantum wells. The physical simulator used for analyzing this device integrates a multidimensional drift-diffusion transport solver and a k . p Schrödinger problem solver for quantization effects and luminescence. The solution of both problems is coupled to achieve self-consistency. Using this solver we investigate the effect of dimensions, design of quantum wells, and current injection on the efficiency and luminescence of the core-shell nanowire LED. The anisotropy of the luminescence and re-absorption is analyzed with respect to the external efficiency of the LED. From the results we derive strategies for design optimization.
Optimal routing of hazardous substances in time-varying, stochastic transportation networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, A.L.; Miller-Hooks, E.; Mahmassani, H.S.
This report is concerned with the selection of routes in a network along which to transport hazardous substances, taking into consideration several key factors pertaining to the cost of transport and the risk of population exposure in the event of an accident. Furthermore, the fact that travel time and the risk measures are not constant over time is explicitly recognized in the routing decisions. Existing approaches typically assume static conditions, possibly resulting in inefficient route selection and unnecessary risk exposure. The report described the application of recent advances in network analysis methodologies to the problem of routing hazardous substances. Severalmore » specific problem formulations are presented, reflecting different degrees of risk aversion on the part of the decision-maker, as well as different possible operational scenarios. All procedures explicitly consider travel times and travel costs (including risk measures) to be stochastic time-varying quantities. The procedures include both exact algorithms, which may require extensive computational effort in some situations, as well as more efficient heuristics that may not guarantee a Pareto-optimal solution. All procedures are systematically illustrated for an example application using the Texas highway network, for both normal and incident condition scenarios. The application illustrates the trade-offs between the information obtained in the solution and computational efficiency, and highlights the benefits of incorporating these procedures in a decision-support system for hazardous substance shipment routing decisions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, John C; Peplow, Douglas E.; Mosher, Scott W
2010-01-01
This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or moremore » localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(10{sup 2-4}), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.« less
Study on multimodal transport route under low carbon background
NASA Astrophysics Data System (ADS)
Liu, Lele; Liu, Jie
2018-06-01
Low-carbon environmental protection is the focus of attention around the world, scientists are constantly researching on production of carbon emissions and living carbon emissions. However, there is little literature about multimodal transportation based on carbon emission at home and abroad. Firstly, this paper introduces the theory of multimodal transportation, the multimodal transport models that didn't consider carbon emissions and consider carbon emissions are analyzed. On this basis, a multi-objective programming 0-1 programming model with minimum total transportation cost and minimum total carbon emission is proposed. The idea of weight is applied to Ideal point method for solving problem, multi-objective programming is transformed into a single objective function. The optimal solution of carbon emission to transportation cost under different weights is determined by a single objective function with variable weights. Based on the model and algorithm, an example is given and the results are analyzed.
Multidisciplinary design integration system for a supersonic transport aircraft
NASA Technical Reports Server (NTRS)
Dovi, A. R.; Wrenn, G. A.; Barthelemy, J.-F. M.; Coen, P. G.; Hall, L. E.
1992-01-01
An aircraft preliminary design system which provides the multidisciplinary communications and couplings between several engineering disciplines is described. A primary benefit of this system is to demonstrate advanced technology multidisciplinary design integration methodologies. The current version includes the disciplines of aerodynamics and structures. Contributing engineering disciplines are coupled using the Global Sensitivity Equation approach to influence the global design optimization problem. A high speed civil transport configuration is used for configuration trade studies. Forty four independent design variables are used to control the cross-sectional areas of wing rib and spar caps and the thicknesses of wingskincover panels. A total of 300 stress, strain, buckling and displacement behavioral constraints and minimum gages on the design variables were used to optimize the idealized wing structure. The goal of the designs to resize the wing cover panels and internal structure for minimum mass.
Energy optimization in mobile sensor networks
NASA Astrophysics Data System (ADS)
Yu, Shengwei
Mobile sensor networks are considered to consist of a network of mobile robots, each of which has computation, communication and sensing capabilities. Energy efficiency is a critical issue in mobile sensor networks, especially when mobility (i.e., locomotion control), routing (i.e., communications) and sensing are unique characteristics of mobile robots for energy optimization. This thesis focuses on the problem of energy optimization of mobile robotic sensor networks, and the research results can be extended to energy optimization of a network of mobile robots that monitors the environment, or a team of mobile robots that transports materials from stations to stations in a manufacturing environment. On the energy optimization of mobile robotic sensor networks, our research focuses on the investigation and development of distributed optimization algorithms to exploit the mobility of robotic sensor nodes for network lifetime maximization. In particular, the thesis studies these five problems: 1. Network-lifetime maximization by controlling positions of networked mobile sensor robots based on local information with distributed optimization algorithms; 2. Lifetime maximization of mobile sensor networks with energy harvesting modules; 3. Lifetime maximization using joint design of mobility and routing; 4. Optimal control for network energy minimization; 5. Network lifetime maximization in mobile visual sensor networks. In addressing the first problem, we consider only the mobility strategies of the robotic relay nodes in a mobile sensor network in order to maximize its network lifetime. By using variable substitutions, the original problem is converted into a convex problem, and a variant of the sub-gradient method for saddle-point computation is developed for solving this problem. An optimal solution is obtained by the method. Computer simulations show that mobility of robotic sensors can significantly prolong the lifetime of the whole robotic sensor network while consuming negligible amount of energy for mobility cost. For the second problem, the problem is extended to accommodate mobile robotic nodes with energy harvesting capability, which makes it a non-convex optimization problem. The non-convexity issue is tackled by using the existing sequential convex approximation method, based on which we propose a novel procedure of modified sequential convex approximation that has fast convergence speed. For the third problem, the proposed procedure is used to solve another challenging non-convex problem, which results in utilizing mobility and routing simultaneously in mobile robotic sensor networks to prolong the network lifetime. The results indicate that joint design of mobility and routing has an edge over other methods in prolonging network lifetime, which is also the justification for the use of mobility in mobile sensor networks for energy efficiency purpose. For the fourth problem, we include the dynamics of the robotic nodes in the problem by modeling the networked robotic system using hybrid systems theory. A novel distributed method for the networked hybrid system is used to solve the optimal moving trajectories for robotic nodes and optimal network links, which are not answered by previous approaches. Finally, the fact that mobility is more effective in prolonging network lifetime for a data-intensive network leads us to apply our methods to study mobile visual sensor networks, which are useful in many applications. We investigate the joint design of mobility, data routing, and encoding power to help improving the video quality while maximizing the network lifetime. This study leads to a better understanding of the role mobility can play in data-intensive surveillance sensor networks.
Optimal-mass-transfer-based estimation of glymphatic transport in living brain
NASA Astrophysics Data System (ADS)
Ratner, Vadim; Zhu, Liangjia; Kolesov, Ivan; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen
2015-03-01
It was recently shown that the brain-wide cerebrospinal fluid (CSF) and interstitial fluid exchange system designated the `glymphatic pathway' plays a key role in removing waste products from the brain, similarly to the lymphatic system in other body organs . It is therefore important to study the flow patterns of glymphatic transport through the live brain in order to better understand its functionality in normal and pathological states. Unlike blood, the CSF does not flow rapidly through a network of dedicated vessels, but rather through para-vascular channels and brain parenchyma in a slower time-domain, and thus conventional fMRI or other blood-flow sensitive MRI sequences do not provide much useful information about the desired flow patterns. We have accordingly analyzed a series of MRI images, taken at different times, of the brain of a live rat, which was injected with a paramagnetic tracer into the CSF via the lumbar intrathecal space of the spine. Our goal is twofold: (a) find glymphatic (tracer) flow directions in the live rodent brain; and (b) provide a model of a (healthy) brain that will allow the prediction of tracer concentrations given initial conditions. We model the liquid flow through the brain by the diffusion equation. We then use the Optimal Mass Transfer (OMT) approach to derive the glymphatic flow vector field, and estimate the diffusion tensors by analyzing the (changes in the) flow. Simulations show that the resulting model successfully reproduces the dominant features of the experimental data. Keywords: inverse problem, optimal mass transport, diffusion equation, cerebrospinal fluid flow in brain, optical flow, liquid flow modeling, Monge Kantorovich problem, diffusion tensor estimation
A POD reduced order model for resolving angular direction in neutron/photon transport problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchan, A.G., E-mail: andrew.buchan@imperial.ac.uk; Calloo, A.A.; Goffin, M.G.
2015-09-01
This article presents the first Reduced Order Model (ROM) that efficiently resolves the angular dimension of the time independent, mono-energetic Boltzmann Transport Equation (BTE). It is based on Proper Orthogonal Decomposition (POD) and uses the method of snapshots to form optimal basis functions for resolving the direction of particle travel in neutron/photon transport problems. A unique element of this work is that the snapshots are formed from the vector of angular coefficients relating to a high resolution expansion of the BTE's angular dimension. In addition, the individual snapshots are not recorded through time, as in standard POD, but instead theymore » are recorded through space. In essence this work swaps the roles of the dimensions space and time in standard POD methods, with angle and space respectively. It is shown here how the POD model can be formed from the POD basis functions in a highly efficient manner. The model is then applied to two radiation problems; one involving the transport of radiation through a shield and the other through an infinite array of pins. Both problems are selected for their complex angular flux solutions in order to provide an appropriate demonstration of the model's capabilities. It is shown that the POD model can resolve these fluxes efficiently and accurately. In comparison to high resolution models this POD model can reduce the size of a problem by up to two orders of magnitude without compromising accuracy. Solving times are also reduced by similar factors.« less
Yamaguti, M.; Muller, E.E.; Piffer, A.I.; Kich, J.D.; Klein, C.S.; Kuchiishi, S.S.
2008-01-01
Since Mycoplasma hyopneumoniae isolation in appropriate media is a difficult task and impractical for daily routine diagnostics, Nested-PCR (N-PCR) techniques are currently used to improve the direct diagnostic sensitivity of Swine Enzootic Pneumonia. In a first experiment, this paper describes a N-PCR technique optimization based on three variables: different sampling sites, sample transport media, and DNA extraction methods, using eight pigs. Based on the optimization results, a second experiment was conducted for testing validity using 40 animals. In conclusion, the obtained results of the N-PCR optimization and validation allow us to recommend this test as a routine monitoring diagnostic method for Mycoplasma hyopneumoniae infection in swine herds. PMID:24031248
LATTICE/hor ellipsis/a beam transport program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staples, J.
1987-06-01
LATTICE is a computer program that calculates the first order characteristics of synchrotrons and beam transport systems. The program uses matrix algebra to calculate the propagation of the betatron (Twiss) parameters along a beam line. The program draws on ideas from several older programs, notably Transport and Synch, adds many new ones and incorporates them into an interactive, user-friendly program. LATTICE will calculate the matched functions of a synchrotron lattice and display them in a number of ways, including a high resolution Tektronix graphics display. An optimizer is included to adjust selected element parameters so the beam meets a setmore » of constraints. LATTICE is a first order program, but the effect of sextupoles on the chromaticity of a synchrotron lattice is included, and the optimizer will set the sextupole strengths for zero chromaticity. The program will also calculate the characteristics of beam transport systems. In this mode, the beam parameters, defined at the start of the transport line, are propagated through to the end. LATTICE has two distinct modes: the lattice mode which finds the matched functions of a synchrotron, and the transport mode which propagates a predefined beam through a beam line. However, each mode can be used for either type of problem: the transport mode may be used to calculate an insertion for a synchrotron lattice, and the lattice mode may be used to calculate the characteristics of a long periodic beam transport system.« less
TRANSPORT PLANNING MODEL FOR WIDE AREA RECYCLING SYSTEM OF INDUSTRIAL WASTE PLASTIC
NASA Astrophysics Data System (ADS)
Arai, Yasuhiro; Kawamura, Hisashi; Koizumi, Akira; Mogi, Satoshi
To date, the majority of industrial waste plastic generated in an urban city has been processed into landfill. However, it is now necessary to actively utilize that plastic as a useful resource to create a recycling society with a low environment influence. In order to construct a reasonable recycling system, it is necessary to address the "transportation problem," which means determining how much industrial waste plastic is to be transported to what location. With the goal of eliminating landfill processing, this study considers a transport planning model for industrial waste plastic applying linear programming. The results of running optimized calculations under given scenarios clarified not only the possibilities for recycle processing in the Metropolitan area, but also the validity of wide area recycling system.
NASA Technical Reports Server (NTRS)
Radkey, R. L.
1974-01-01
High floor angles at cruise have been identified as a significant problem facing airline and public acceptance of a supersonic transport. In order to explore the relationship between cruise performances and floor angle, four related wing-fuselage design and integration studies have been conducted. The studies were: (1) a fuselage camber study in which perturbations in the fuselage camber distribution were examined with a baseline wing, (2) a wing optimization study in which wings were optimized for minimum drag at C sub L's less than the design C sub L. These wings were optimized as wing planform camber surfaces alone and evaluated with a baseline fuselage, (3) a second wing optimization study in which wings were optimized for minimum drag at C sub L's less than the design C sub L but for this study the wings were optimized in the presence of the baseline fuselage, and (4) a third wing optimization study in which wings were optimized for minmum drag subject to C sub M constraints designed to produce more positive C sub MO's, thereby reducing trim drag. The studies indicated that it was not possible to both improve the aircraft cruise L/D and substantially reduce the cruise floor angle. The studies did indicate that the cruise floor angle could be reduced by reducing the fuselage incidence relative to the wing, but the reduction in floor angle was accompanied by a substantial reduction in L/D.
A Fuzzy Goal Programming for a Multi-Depot Distribution Problem
NASA Astrophysics Data System (ADS)
Nunkaew, Wuttinan; Phruksaphanrat, Busaba
2010-10-01
A fuzzy goal programming model for solving a Multi-Depot Distribution Problem (MDDP) is proposed in this research. This effective proposed model is applied for solving in the first step of Assignment First-Routing Second (AFRS) approach. Practically, a basic transportation model is firstly chosen to solve this kind of problem in the assignment step. After that the Vehicle Routing Problem (VRP) model is used to compute the delivery cost in the routing step. However, in the basic transportation model, only depot to customer relationship is concerned. In addition, the consideration of customer to customer relationship should also be considered since this relationship exists in the routing step. Both considerations of relationships are solved using Preemptive Fuzzy Goal Programming (P-FGP). The first fuzzy goal is set by a total transportation cost and the second fuzzy goal is set by a satisfactory level of the overall independence value. A case study is used for describing the effectiveness of the proposed model. Results from the proposed model are compared with the basic transportation model that has previously been used in this company. The proposed model can reduce the actual delivery cost in the routing step owing to the better result in the assignment step. Defining fuzzy goals by membership functions are more realistic than crisps. Furthermore, flexibility to adjust goals and an acceptable satisfactory level for decision maker can also be increased and the optimal solution can be obtained.
Grey-Theory-Based Optimization Model of Emergency Logistics Considering Time Uncertainty.
Qiu, Bao-Jian; Zhang, Jiang-Hua; Qi, Yuan-Tao; Liu, Yang
2015-01-01
Natural disasters occur frequently in recent years, causing huge casualties and property losses. Nowadays, people pay more and more attention to the emergency logistics problems. This paper studies the emergency logistics problem with multi-center, multi-commodity, and single-affected-point. Considering that the path near the disaster point may be damaged, the information of the state of the paths is not complete, and the travel time is uncertainty, we establish the nonlinear programming model that objective function is the maximization of time-satisfaction degree. To overcome these drawbacks: the incomplete information and uncertain time, this paper firstly evaluates the multiple roads of transportation network based on grey theory and selects the reliable and optimal path. Then simplify the original model under the scenario that the vehicle only follows the optimal path from the emergency logistics center to the affected point, and use Lingo software to solve it. The numerical experiments are presented to show the feasibility and effectiveness of the proposed method.
Grey-Theory-Based Optimization Model of Emergency Logistics Considering Time Uncertainty
Qiu, Bao-Jian; Zhang, Jiang-Hua; Qi, Yuan-Tao; Liu, Yang
2015-01-01
Natural disasters occur frequently in recent years, causing huge casualties and property losses. Nowadays, people pay more and more attention to the emergency logistics problems. This paper studies the emergency logistics problem with multi-center, multi-commodity, and single-affected-point. Considering that the path near the disaster point may be damaged, the information of the state of the paths is not complete, and the travel time is uncertainty, we establish the nonlinear programming model that objective function is the maximization of time-satisfaction degree. To overcome these drawbacks: the incomplete information and uncertain time, this paper firstly evaluates the multiple roads of transportation network based on grey theory and selects the reliable and optimal path. Then simplify the original model under the scenario that the vehicle only follows the optimal path from the emergency logistics center to the affected point, and use Lingo software to solve it. The numerical experiments are presented to show the feasibility and effectiveness of the proposed method. PMID:26417946
NASA Technical Reports Server (NTRS)
1971-01-01
The optimal allocation of resources to the national space program over an extended time period requires the solution of a large combinatorial problem in which the program elements are interdependent. The computer model uses an accelerated search technique to solve this problem. The model contains a large number of options selectable by the user to provide flexible input and a broad range of output for use in sensitivity analyses of all entering elements. Examples of these options are budget smoothing under varied appropriation levels, entry of inflation and discount effects, and probabilistic output which provides quantified degrees of certainty that program costs will remain within planned budget. Criteria and related analytic procedures were established for identifying potential new space program directions. Used in combination with the optimal resource allocation model, new space applications can be analyzed in realistic perspective, including the advantage gain from existing space program plant and on-going programs such as the space transportation system.
NASA Astrophysics Data System (ADS)
Rubtsov, Anatoliy E.; Ushakova, Elena V.; Chirkova, Tamara V.
2018-03-01
Basing on the analysis of the enterprise (construction organization) structure and infrastructure of the entire logistics system in which this enterprise (construction organization) operates, this article proposes an approach to solve the problems of structural optimization and a set of calculation tasks, based on customer orders as well as on the required levels of insurance stocks, transit stocks and other types of stocks in the distribution network, modes of operation of the in-company transport and storage complex and a number of other factors.
NASA Astrophysics Data System (ADS)
Bause, Markus
2008-02-01
In this work we study mixed finite element approximations of Richards' equation for simulating variably saturated subsurface flow and simultaneous reactive solute transport. Whereas higher order schemes have proved their ability to approximate reliably reactive solute transport (cf., e.g. [Bause M, Knabner P. Numerical simulation of contaminant biodegradation by higher order methods and adaptive time stepping. Comput Visual Sci 7;2004:61-78]), the Raviart- Thomas mixed finite element method ( RT0) with a first order accurate flux approximation is popular for computing the underlying water flow field (cf. [Bause M, Knabner P. Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Adv Water Resour 27;2004:565-581, Farthing MW, Kees CE, Miller CT. Mixed finite element methods and higher order temporal approximations for variably saturated groundwater flow. Adv Water Resour 26;2003:373-394, Starke G. Least-squares mixed finite element solution of variably saturated subsurface flow problems. SIAM J Sci Comput 21;2000:1869-1885, Younes A, Mosé R, Ackerer P, Chavent G. A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements. J Comp Phys 149;1999:148-167, Woodward CS, Dawson CN. Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media. SIAM J Numer Anal 37;2000:701-724]). This combination might be non-optimal. Higher order techniques could increase the accuracy of the flow field calculation and thereby improve the prediction of the solute transport. Here, we analyse the application of the Brezzi- Douglas- Marini element ( BDM1) with a second order accurate flux approximation to elliptic, parabolic and degenerate problems whose solutions lack the regularity that is assumed in optimal order error analyses. For the flow field calculation a superiority of the BDM1 approach to the RT0 one is observed, which however is less significant for the accompanying solute transport.
Next-generation acceleration and code optimization for light transport in turbid media using GPUs
Alerstam, Erik; Lo, William Chun Yip; Han, Tianyi David; Rose, Jonathan; Andersson-Engels, Stefan; Lilge, Lothar
2010-01-01
A highly optimized Monte Carlo (MC) code package for simulating light transport is developed on the latest graphics processing unit (GPU) built for general-purpose computing from NVIDIA - the Fermi GPU. In biomedical optics, the MC method is the gold standard approach for simulating light transport in biological tissue, both due to its accuracy and its flexibility in modelling realistic, heterogeneous tissue geometry in 3-D. However, the widespread use of MC simulations in inverse problems, such as treatment planning for PDT, is limited by their long computation time. Despite its parallel nature, optimizing MC code on the GPU has been shown to be a challenge, particularly when the sharing of simulation result matrices among many parallel threads demands the frequent use of atomic instructions to access the slow GPU global memory. This paper proposes an optimization scheme that utilizes the fast shared memory to resolve the performance bottleneck caused by atomic access, and discusses numerous other optimization techniques needed to harness the full potential of the GPU. Using these techniques, a widely accepted MC code package in biophotonics, called MCML, was successfully accelerated on a Fermi GPU by approximately 600x compared to a state-of-the-art Intel Core i7 CPU. A skin model consisting of 7 layers was used as the standard simulation geometry. To demonstrate the possibility of GPU cluster computing, the same GPU code was executed on four GPUs, showing a linear improvement in performance with an increasing number of GPUs. The GPU-based MCML code package, named GPU-MCML, is compatible with a wide range of graphics cards and is released as an open-source software in two versions: an optimized version tuned for high performance and a simplified version for beginners (http://code.google.com/p/gpumcml). PMID:21258498
Yu, Hao; Solvang, Wei Deng
2016-01-01
Hazardous waste location-routing problems are of importance due to the potential risk for nearby residents and the environment. In this paper, an improved mathematical formulation is developed based upon a multi-objective mixed integer programming approach. The model aims at assisting decision makers in selecting locations for different facilities including treatment plants, recycling plants and disposal sites, providing appropriate technologies for hazardous waste treatment, and routing transportation. In the model, two critical factors are taken into account: system operating costs and risk imposed on local residents, and a compensation factor is introduced to the risk objective function in order to account for the fact that the risk level imposed by one type of hazardous waste or treatment technology may significantly vary from that of other types. Besides, the policy instruments for promoting waste recycling are considered, and their influence on the costs and risk of hazardous waste management is also discussed. The model is coded and calculated in Lingo optimization solver, and the augmented ε-constraint method is employed to generate the Pareto optimal curve of the multi-objective optimization problem. The trade-off between different objectives is illustrated in the numerical experiment. PMID:27258293
Yu, Hao; Solvang, Wei Deng
2016-05-31
Hazardous waste location-routing problems are of importance due to the potential risk for nearby residents and the environment. In this paper, an improved mathematical formulation is developed based upon a multi-objective mixed integer programming approach. The model aims at assisting decision makers in selecting locations for different facilities including treatment plants, recycling plants and disposal sites, providing appropriate technologies for hazardous waste treatment, and routing transportation. In the model, two critical factors are taken into account: system operating costs and risk imposed on local residents, and a compensation factor is introduced to the risk objective function in order to account for the fact that the risk level imposed by one type of hazardous waste or treatment technology may significantly vary from that of other types. Besides, the policy instruments for promoting waste recycling are considered, and their influence on the costs and risk of hazardous waste management is also discussed. The model is coded and calculated in Lingo optimization solver, and the augmented ε-constraint method is employed to generate the Pareto optimal curve of the multi-objective optimization problem. The trade-off between different objectives is illustrated in the numerical experiment.
Bula, Gustavo Alfredo; Prodhon, Caroline; Gonzalez, Fabio Augusto; Afsar, H Murat; Velasco, Nubia
2017-02-15
This work focuses on the Heterogeneous Fleet Vehicle Routing problem (HFVRP) in the context of hazardous materials (HazMat) transportation. The objective is to determine a set of routes that minimizes the total expected routing risk. This is a nonlinear function, and it depends on the vehicle load and the population exposed when an incident occurs. Thus, a piecewise linear approximation is used to estimate it. For solving the problem, a variant of the Variable Neighborhood Search (VNS) algorithm is employed. To improve its performance, a post-optimization procedure is implemented via a Set Partitioning (SP) problem. The SP is solved on a pool of routes obtained from executions of the local search procedure embedded on the VNS. The algorithm is tested on two sets of HFVRP instances based on literature with up to 100 nodes, these instances are modified to include vehicle and arc risk parameters. The results are competitive in terms of computational efficiency and quality attested by a comparison with Mixed Integer Linear Programming (MILP) previously proposed. Copyright © 2016 Elsevier B.V. All rights reserved.
Solutions to inverse plume in a crosswind problem using a predictor - corrector method
NASA Astrophysics Data System (ADS)
Vanderveer, Joseph; Jaluria, Yogesh
2013-11-01
Investigation for minimalist solutions to the inverse convection problem of a plume in a crosswind has developed a predictor - corrector method. The inverse problem is to predict the strength and location of the plume with respect to a select few downstream sampling points. This is accomplished with the help of two numerical simulations of the domain at differing source strengths, allowing the generation of two inverse interpolation functions. These functions in turn are utilized by the predictor step to acquire the plume strength. Finally, the same interpolation functions with the corrections from the plume strength are used to solve for the plume location. Through optimization of the relative location of the sampling points, the minimum number of samples for accurate predictions is reduced to two for the plume strength and three for the plume location. After the optimization, the predictor-corrector method demonstrates global uniqueness of the inverse solution for all test cases. The solution error is less than 1% for both plume strength and plume location. The basic approach could be extended to other inverse convection transport problems, particularly those encountered in environmental flows.
Location of an intermediate hub for port activities
NASA Astrophysics Data System (ADS)
Burciu, Ş.; Ştefănică, C.; Roşca, E.; Dragu, V.; Ruscă, F.
2015-11-01
An intermediate hub might increase the accessibility level of ports but also hinterland and so it can be considered more than a facility with a transhipment role. These hubs might lead to the development of other transport services and enhance their role in gathering and covering economic centres within hinterlands and also getting the part of logistic facility for the ports, with effects on port utilization and its connectivity to global economy. A new location for a hub terminal leads to reduced transport distances within hinterland, with decreased transport costs and external effects, so with gains in people's life quality. Because the production and distribution systems are relatively fixed on short and medium term and the location decisions are strategic and on long term, the logistic chains activities location models have to consider the uncertainties regarding the possible future situations. In most models, production costs are considered equal, the location problem reducing itself to a problem that aims to minimize the total transport costs, meaning the transport problem. The main objective of the paper is to locate a hub terminal that links the producers of cereals that are going to be exported by naval transportation with the Romanian fluvial-maritime ports (Galaţi, Brăila). GIS environment can be used to integrate and analyse a great amount of data and has the ability of using functions as location - allocation models necessary both to private and public sector, being able to determine the optimal location for services like factories, warehouses, logistic platforms and other public services.
Coomer, R A
2013-07-01
The aim of this qualitative study was to describe the problems that parents or caregivers of children with mental health disabilities and disorders in Namibia experience when accessing healthcare resources for their children. Data was collected through focus group discussions with the participants and individual interviews with the key informants. Overall, a total of 41 people provided information for this study. Thematic data analysis was used to assess the data. The main barriers experienced by the parents were poor service provision, transport and money, whilst access to education services facilitated access to healthcare services. The challenges go beyond commonly-reported problems such as sub-optimal service provision and include the basic challenge of lack of transportation to reach healthcare services. Many of the barriers identified in this study have been related to general problems with the healthcare system in Namibia. Therefore there is a need to address general concerns about healthcare provision as well as improve specific services for children with mental health disabilities and disorders in Namibia.
NASA Astrophysics Data System (ADS)
Valles Sosa, Claudia Evangelina
Bioenergy has become an important alternative source of energy to alleviate the reliance on petroleum energy. Bioenergy offers diminishing climate change by reducing Green House Gas Emissions, as well as providing energy security and enhancing rural development. The Energy Independence and Security Act mandate the use of 21 billion gallons of advanced biofuels including 16 billion gallons of cellulosic biofuels by the year 2022. It is clear that Biomass can make a substantial contribution to supply future energy demand in a sustainable way. However, the supply of sustainable energy is one of the main challenges that mankind will face over the coming decades. For instance, many logistical challenges will be faced in order to provide an efficient and reliable supply of quality feedstock to biorefineries. 700 million tons of biomass will be required to be sustainably delivered to biorefineries annually to meet the projected use of biofuels by the year of 2022. Approaching this complex logistic problem as a multi-commodity network flow structure, the present work proposes the use of a genetic algorithm as a single objective optimization problem that considers the maximization of profit and the present work also proposes the use of a Multiple Objective Evolutionary Algorithm to simultaneously maximize profit while minimizing global warming potential. Most transportation optimization problems available in the literature have mostly considered the maximization of profit or the minimization of total travel time as potential objectives to be optimized. However, on this research work, we take a more conscious and sustainable approach for this logistic problem. Planners are increasingly expected to adopt a multi-disciplinary approach, especially due to the rising importance of environmental stewardship. The role of a transportation planner and designer is shifting from simple economic analysis to promoting sustainability through the integration of environmental objectives. To respond to these new challenges, the Modified Multiple Objective Evolutionary Algorithm for the design optimization of a biomass to bio-refinery logistic system that considers the simultaneous maximization of the total profit and the minimization of three environmental impacts is presented. Sustainability balances economic, social and environmental goals and objectives. There exist several works in the literature that have considered economic and environmental objectives for the presented supply chain problem. However, there is a lack of research performed in the social aspect of a sustainable logistics system. This work proposes a methodology to integrate social aspect assessment, based on employment creation. Finally, most of the assessment methodologies considered in the literature only contemplate deterministic values, when in realistic situations uncertainties in the supply chain are present. In this work, Value-at-Risk, an advanced risk measure commonly used in portfolio optimization is included to consider the uncertainties in biofuel prices, among the others.
Analytical and simulator study of advanced transport
NASA Technical Reports Server (NTRS)
Levison, W. H.; Rickard, W. W.
1982-01-01
An analytic methodology, based on the optimal-control pilot model, was demonstrated for assessing longitidunal-axis handling qualities of transport aircraft in final approach. Calibration of the methodology is largely in terms of closed-loop performance requirements, rather than specific vehicle response characteristics, and is based on a combination of published criteria, pilot preferences, physical limitations, and engineering judgment. Six longitudinal-axis approach configurations were studied covering a range of handling qualities problems, including the presence of flexible aircraft modes. The analytical procedure was used to obtain predictions of Cooper-Harper ratings, a solar quadratic performance index, and rms excursions of important system variables.
Zhang, Yong; Jiang, Yunjian
2017-02-01
Waste cooking oil (WCO)-for-biodiesel conversion is regarded as the "waste-to-wealthy" industry. This paper addresses the design of a WCO-for-biodiesel supply chain at both strategic and tactical levels. The supply chain of this problem is studied, which is based on a typical mode of the waste collection (from restaurants' kitchen) and conversion in the cities. The supply chain comprises three stakeholders: WCO supplier, integrated bio-refinery and demand zone. Three key problems should be addressed for the optimal design of the supply chain: (1) the number, sizes and locations of bio-refinery; (2) the sites and amount of WCO collected; (3) the transportation plans of WCO and biodiesel. A robust mixed integer linear model with muti-objective (economic, environmental and social objectives) is proposed for these problems. Finally, a large-scale practical case study is adopted based on Suzhou, a city in the east of China, to verify the proposed models. Copyright © 2016 Elsevier Ltd. All rights reserved.
Simulation to Support Local Search in Trajectory Optimization Planning
NASA Technical Reports Server (NTRS)
Morris, Robert A.; Venable, K. Brent; Lindsey, James
2012-01-01
NASA and the international community are investing in the development of a commercial transportation infrastructure that includes the increased use of rotorcraft, specifically helicopters and civil tilt rotors. However, there is significant concern over the impact of noise on the communities surrounding the transportation facilities. One way to address the rotorcraft noise problem is by exploiting powerful search techniques coming from artificial intelligence coupled with simulation and field tests to design low-noise flight profiles which can be tested in simulation or through field tests. This paper investigates the use of simulation based on predictive physical models to facilitate the search for low-noise trajectories using a class of automated search algorithms called local search. A novel feature of this approach is the ability to incorporate constraints directly into the problem formulation that addresses passenger safety and comfort.
[Hygienic optimization of the use of chemical protective means on railway transport].
Kaptsov, V A; Pankova, V B; Elizarov, B B; Mezentsev, A P; Komleva, E A
2004-01-01
The paper presents data characterizing the working conditions of railway workers. It shows that there is the greatest levels of noise and vibration, the burden and intensity of work. The worst working conditions are noted in energy supply, car, locomotive services and track facilities. The working conditions determine a significant industrial risk of railway workers since the prevention of health abnormalities by using chemical protective means is a topical problem. The priority lines of hygienic rationale for optimization the choice and use of chemical protective means for workers exposed to occupational hazards are determined.
NASA Technical Reports Server (NTRS)
Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.
1972-01-01
The problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars were investigated. Problem areas receiving attention include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis; navigation, terrain modeling and path selection; and chemical analysis of specimens. The following specific tasks were studied: vehicle model design, mathematical modeling of dynamic vehicle, experimental vehicle dynamics, obstacle negotiation, electromechanical controls, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer subsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, chromatograph model evaluation and improvement and transport parameter evaluation.
Optimized Diffusion of Run-and-Tumble Particles in Crowded Environments
NASA Astrophysics Data System (ADS)
Bertrand, Thibault; Zhao, Yongfeng; Bénichou, Olivier; Tailleur, Julien; Voituriez, Raphaël
2018-05-01
We study the transport of self-propelled particles in dynamic complex environments. To obtain exact results, we introduce a model of run-and-tumble particles (RTPs) moving in discrete time on a d -dimensional cubic lattice in the presence of diffusing hard-core obstacles. We derive an explicit expression for the diffusivity of the RTP, which is exact in the limit of low density of fixed obstacles. To do so, we introduce a generalization of Kac's theorem on the mean return times of Markov processes, which we expect to be relevant for a large class of lattice gas problems. Our results show the diffusivity of RTPs to be nonmonotonic in the tumbling probability for low enough obstacle mobility. These results prove the potential for the optimization of the transport of RTPs in crowded and disordered environments with applications to motile artificial and biological systems.
Quantum and classical dynamics in adiabatic computation
NASA Astrophysics Data System (ADS)
Crowley, P. J. D.; Äńurić, T.; Vinci, W.; Warburton, P. A.; Green, A. G.
2014-10-01
Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimization algorithms and quantum adiabatic optimization. This perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing—though inconclusive—results.
Cihan, Abdullah; Birkholzer, Jens; Bianchi, Marco
2014-12-31
Large-scale pressure increases resulting from carbon dioxide (CO 2) injection in the subsurface can potentially impact caprock integrity, induce reactivation of critically stressed faults, and drive CO 2 or brine through conductive features into shallow groundwater. Pressure management involving the extraction of native fluids from storage formations can be used to minimize pressure increases while maximizing CO2 storage. However, brine extraction requires pumping, transportation, possibly treatment, and disposal of substantial volumes of extracted brackish or saline water, all of which can be technically challenging and expensive. This paper describes a constrained differential evolution (CDE) algorithm for optimal well placement andmore » injection/ extraction control with the goal of minimizing brine extraction while achieving predefined pressure contraints. The CDE methodology was tested for a simple optimization problem whose solution can be partially obtained with a gradient-based optimization methodology. The CDE successfully estimated the true global optimum for both extraction well location and extraction rate, needed for the test problem. A more complex example application of the developed strategy was also presented for a hypothetical CO 2 storage scenario in a heterogeneous reservoir consisting of a critically stressed fault nearby an injection zone. Through the CDE optimization algorithm coupled to a numerical vertically-averaged reservoir model, we successfully estimated optimal rates and locations for CO 2 injection and brine extraction wells while simultaneously satisfying multiple pressure buildup constraints to avoid fault activation and caprock fracturing. The study shows that the CDE methodology is a very promising tool to solve also other optimization problems related to GCS, such as reducing ‘Area of Review’, monitoring design, reducing risk of leakage and increasing storage capacity and trapping.« less
NASA Astrophysics Data System (ADS)
Kuri, Josu�; Gagnaire, Maurice; Puech, Nicolas
2005-10-01
Virtual concatenation (VCAT) is a Synchronous Digital Hierarchy (SDH)/Synchronous Optical Network (SONET) network functionality recently standardized by the International Telecommunication Union Telecommunication Standardization Sector (ITU-T). VCAT provides the flexibility required to efficiently allocate network resources to Ethernet, Fiber Channel (FC), Enterprise System Connection (ESCON), and other important data traffic signals. In this article, we assess the resources' gain provided by VCAT with respect to contiguous concatenation (CCAT) in SDH/SONET mesh transport networks bearing protected scheduled connection demands (SCDs).
Dynamic Flow Management Problems in Air Transportation
NASA Technical Reports Server (NTRS)
Patterson, Sarah Stock
1997-01-01
In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer programming formulation, the solution of which generates feasible and near-optimal routes for individual flights. The algorithm, termed the Lagrangian Generation Algorithm, is used to solve practical problems in the southwestern portion of United States in which the solutions are within 1% of the corresponding lower bounds.
Pfeuffer, Kevin P.; Ray, Steven J.; Hieftje, Gary M.
2014-01-01
Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last nine years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification due to the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass-spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet. PMID:24658804
Pfeuffer, Kevin P; Ray, Steven J; Hieftje, Gary M
2014-05-01
Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last 9 years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification because of the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet.
NASA Astrophysics Data System (ADS)
Pfeuffer, Kevin P.; Ray, Steven J.; Hieftje, Gary M.
2014-05-01
Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last 9 years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification because of the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet.
A new numerical benchmark for variably saturated variable-density flow and transport in porous media
NASA Astrophysics Data System (ADS)
Guevara, Carlos; Graf, Thomas
2016-04-01
In subsurface hydrological systems, spatial and temporal variations in solute concentration and/or temperature may affect fluid density and viscosity. These variations could lead to potentially unstable situations, in which a dense fluid overlies a less dense fluid. These situations could produce instabilities that appear as dense plume fingers migrating downwards counteracted by vertical upwards flow of freshwater (Simmons et al., Transp. Porous Medium, 2002). As a result of unstable variable-density flow, solute transport rates are increased over large distances and times as compared to constant-density flow. The numerical simulation of variable-density flow in saturated and unsaturated media requires corresponding benchmark problems against which a computer model is validated (Diersch and Kolditz, Adv. Water Resour, 2002). Recorded data from a laboratory-scale experiment of variable-density flow and solute transport in saturated and unsaturated porous media (Simmons et al., Transp. Porous Medium, 2002) is used to define a new numerical benchmark. The HydroGeoSphere code (Therrien et al., 2004) coupled with PEST (www.pesthomepage.org) are used to obtain an optimized parameter set capable of adequately representing the data set by Simmons et al., (2002). Fingering in the numerical model is triggered using random hydraulic conductivity fields. Due to the inherent randomness, a large number of simulations were conducted in this study. The optimized benchmark model adequately predicts the plume behavior and the fate of solutes. This benchmark is useful for model verification of variable-density flow problems in saturated and/or unsaturated media.
Maintenance Policy in Public-Transport Involving Government Subsidy
NASA Astrophysics Data System (ADS)
Pasaribu, U. S.; Bayuzetra, Y.; Gunawan, L. E.; Husniah, H.
2018-02-01
A public transport with government subsidy is considered to encourage the sustainability of the transportation. The transportations revenue is determined by the maximum of the uptimes of the vehicle. In this paper, we study a one-dimensional maintenance policy for new vehicle which is characterized by age parameter. We consider that the degradation of the vehicle is affected by the age of the vehicle, and modelled by using a one-dimensional approach. The owner performs both preventive and corrective maintenance actions, and the preventive maintenance action will reduce the vehicle failure rate and hence it will decrease the corrective maintenance cost during the life time of the vehicle. The decision problem for the owner is to find the optimal preventive maintenance time of the vehicle of each subsidy option offered by maximizing the expected profit for each subsidy.
NASA Astrophysics Data System (ADS)
Nidziy, Elena
2017-10-01
Dependence of the regional economic development from efficiency of financing of the construction of transport infrastructure is analyzed and proved in this article. Effective mechanism for infrastructure projects financing, public and private partnership, is revealed and its concrete forms are formulated. Here is proposed an optimal scenario for financing for the transport infrastructure, which can lead to positive transformations in the economy. Paper considers the advantages and risks of public and private partnership for subjects of contractual relations. At that, components for the assessment of economic effect of the implementation of infrastructure projects were proposed simultaneously with formulation of conditions for minimization risks. Results of the research could be used for solution of persistent problems in the development of transport infrastructure, issues of financial assurance of construction of infrastructure projects at the regional level.
The systems biology of uric acid transporters: the role of remote sensing and signaling.
Nigam, Sanjay K; Bhatnagar, Vibha
2018-07-01
Uric acid homeostasis in the body is mediated by a number of SLC and ABC transporters in the kidney and intestine, including several multispecific 'drug' transporters (e.g., OAT1, OAT3, and ABCG2). Optimization of uric acid levels can be viewed as a 'systems biology' problem. Here, we consider uric acid transporters from a systems physiology perspective using the framework of the 'Remote Sensing and Signaling Hypothesis.' This hypothesis explains how SLC and ABC 'drug' and other transporters mediate interorgan and interorganismal communication (e.g., gut microbiome and host) via small molecules (e.g., metabolites, antioxidants signaling molecules) through transporters expressed in tissues lining body fluid compartments (e.g., blood, urine, cerebrospinal fluid). The list of uric acid transporters includes: SLC2A9, ABCG2, URAT1 (SLC22A12), OAT1 (SLC22A6), OAT3 (SLC22A8), OAT4 (SLC22A11), OAT10 (SLC22A13), NPT1 (SLC17A1), NPT4 (SLC17A3), MRP2 (ABCC2), MRP4 (ABCC4). Normally, SLC2A9, - along with URAT1, OAT1 and OAT3, - appear to be the main transporters regulating renal urate handling, while ABCG2 appears to regulate intestinal transport. In chronic kidney disease (CKD), intestinal ABCG2 becomes much more important, suggesting remote organ communication between the injured kidney and the intestine. The remote sensing and signaling hypothesis provides a useful systems-level framework for understanding the complex interplay of uric acid transporters expressed in different tissues involved in optimizing uric acid levels under normal and diseased (e.g., CKD, gut microflora dysbiosis) conditions.
A chance-constrained stochastic approach to intermodal container routing problems.
Zhao, Yi; Liu, Ronghui; Zhang, Xi; Whiteing, Anthony
2018-01-01
We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service satisfies ship fulfilment and cargo on-time delivery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the binary integer chance-constrained programming model. Two case studies are conducted to demonstrate the feasibility of the proposed model and to analyse the impact of stochastic variables and chance-constraints on the optimal solution and total cost.
A chance-constrained stochastic approach to intermodal container routing problems
Zhao, Yi; Zhang, Xi; Whiteing, Anthony
2018-01-01
We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service satisfies ship fulfilment and cargo on-time delivery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the binary integer chance-constrained programming model. Two case studies are conducted to demonstrate the feasibility of the proposed model and to analyse the impact of stochastic variables and chance-constraints on the optimal solution and total cost. PMID:29438389
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergmann, Ryan M.; Rowland, Kelly L.
2017-04-12
WARP, which can stand for ``Weaving All the Random Particles,'' is a three-dimensional (3D) continuous energy Monte Carlo neutron transport code developed at UC Berkeley to efficiently execute on NVIDIA graphics processing unit (GPU) platforms. WARP accelerates Monte Carlo simulations while preserving the benefits of using the Monte Carlo method, namely, that very few physical and geometrical simplifications are applied. WARP is able to calculate multiplication factors, neutron flux distributions (in both space and energy), and fission source distributions for time-independent neutron transport problems. It can run in both criticality or fixed source modes, but fixed source mode is currentlymore » not robust, optimized, or maintained in the newest version. WARP can transport neutrons in unrestricted arrangements of parallelepipeds, hexagonal prisms, cylinders, and spheres. The goal of developing WARP is to investigate algorithms that can grow into a full-featured, continuous energy, Monte Carlo neutron transport code that is accelerated by running on GPUs. The crux of the effort is to make Monte Carlo calculations faster while producing accurate results. Modern supercomputers are commonly being built with GPU coprocessor cards in their nodes to increase their computational efficiency and performance. GPUs execute efficiently on data-parallel problems, but most CPU codes, including those for Monte Carlo neutral particle transport, are predominantly task-parallel. WARP uses a data-parallel neutron transport algorithm to take advantage of the computing power GPUs offer.« less
NASA Astrophysics Data System (ADS)
Kenway, Gaetan K. W.
This thesis presents new tools and techniques developed to address the challenging problem of high-fidelity aerostructural optimization with respect to large numbers of design variables. A new mesh-movement scheme is developed that is both computationally efficient and sufficiently robust to accommodate large geometric design changes and aerostructural deformations. A fully coupled Newton-Krylov method is presented that accelerates the convergence of aerostructural systems and provides a 20% performance improvement over the traditional nonlinear block Gauss-Seidel approach and can handle more exible structures. A coupled adjoint method is used that efficiently computes derivatives for a gradient-based optimization algorithm. The implementation uses only machine accurate derivative techniques and is verified to yield fully consistent derivatives by comparing against the complex step method. The fully-coupled large-scale coupled adjoint solution method is shown to have 30% better performance than the segregated approach. The parallel scalability of the coupled adjoint technique is demonstrated on an Euler Computational Fluid Dynamics (CFD) model with more than 80 million state variables coupled to a detailed structural finite-element model of the wing with more than 1 million degrees of freedom. Multi-point high-fidelity aerostructural optimizations of a long-range wide-body, transonic transport aircraft configuration are performed using the developed techniques. The aerostructural analysis employs Euler CFD with a 2 million cell mesh and a structural finite element model with 300 000 DOF. Two design optimization problems are solved: one where takeoff gross weight is minimized, and another where fuel burn is minimized. Each optimization uses a multi-point formulation with 5 cruise conditions and 2 maneuver conditions. The optimization problems have 476 design variables are optimal results are obtained within 36 hours of wall time using 435 processors. The TOGW minimization results in a 4.2% reduction in TOGW with a 6.6% fuel burn reduction, while the fuel burn optimization resulted in a 11.2% fuel burn reduction with no change to the takeoff gross weight.
NASA Technical Reports Server (NTRS)
Oconnell, R. F.; Hassig, H. J.; Radovcich, N. A.
1976-01-01
Results of a study of the development of flutter modules applicable to automated structural design of advanced aircraft configurations, such as a supersonic transport, are presented. Automated structural design is restricted to automated sizing of the elements of a given structural model. It includes a flutter optimization procedure; i.e., a procedure for arriving at a structure with minimum mass for satisfying flutter constraints. Methods of solving the flutter equation and computing the generalized aerodynamic force coefficients in the repetitive analysis environment of a flutter optimization procedure are studied, and recommended approaches are presented. Five approaches to flutter optimization are explained in detail and compared. An approach to flutter optimization incorporating some of the methods discussed is presented. Problems related to flutter optimization in a realistic design environment are discussed and an integrated approach to the entire flutter task is presented. Recommendations for further investigations are made. Results of numerical evaluations, applying the five methods of flutter optimization to the same design task, are presented.
Analysis of oil-pipeline distribution of multiple products subject to delivery time-windows
NASA Astrophysics Data System (ADS)
Jittamai, Phongchai
This dissertation defines the operational problems of, and develops solution methodologies for, a distribution of multiple products into oil pipeline subject to delivery time-windows constraints. A multiple-product oil pipeline is a pipeline system composing of pipes, pumps, valves and storage facilities used to transport different types of liquids. Typically, products delivered by pipelines are petroleum of different grades moving either from production facilities to refineries or from refineries to distributors. Time-windows, which are generally used in logistics and scheduling areas, are incorporated in this study. The distribution of multiple products into oil pipeline subject to delivery time-windows is modeled as multicommodity network flow structure and mathematically formulated. The main focus of this dissertation is the investigation of operating issues and problem complexity of single-source pipeline problems and also providing solution methodology to compute input schedule that yields minimum total time violation from due delivery time-windows. The problem is proved to be NP-complete. The heuristic approach, a reversed-flow algorithm, is developed based on pipeline flow reversibility to compute input schedule for the pipeline problem. This algorithm is implemented in no longer than O(T·E) time. This dissertation also extends the study to examine some operating attributes and problem complexity of multiple-source pipelines. The multiple-source pipeline problem is also NP-complete. A heuristic algorithm modified from the one used in single-source pipeline problems is introduced. This algorithm can also be implemented in no longer than O(T·E) time. Computational results are presented for both methodologies on randomly generated problem sets. The computational experience indicates that reversed-flow algorithms provide good solutions in comparison with the optimal solutions. Only 25% of the problems tested were more than 30% greater than optimal values and approximately 40% of the tested problems were solved optimally by the algorithms.
NASA Technical Reports Server (NTRS)
Yoshihara, H.
1978-01-01
The problem of designing the wing-fuselage configuration of an advanced transonic commercial airliner and the optimization of a supercruiser fighter are sketched, pointing out the essential fluid mechanical phenomena that play an important role. Such problems suggest that for a numerical method to be useful, it must be able to treat highly three dimensional turbulent separations, flows with jet engine exhausts, and complex vehicle configurations. Weaknesses of the two principal tools of the aerodynamicist, the wind tunnel and the computer, suggest a complementing combined use of these tools, which is illustrated by the case of the transonic wing-fuselage design. The anticipated difficulties in developing an adequate turbulent transport model suggest that such an approach may have to suffice for an extended period. On a longer term, experimentation of turbulent transport in meaningful cases must be intensified to provide a data base for both modeling and theory validation purposes.
NASA Astrophysics Data System (ADS)
Yeghiazarian, L.; Riasi, M. S.
2016-12-01
Although controlling the level of contamination everywhere in the surface water network may not be feasible, it is vital to maintain safe water quality levels in specific areas, e.g. recreational waters. The question then is "what is the most efficient way to fully/partially control water quality in surface water networks?". This can be posed as a control problem where the goal is to efficiently drive the system to a desired state by manipulating few input variables. Such problems reduce to (1) finding the best control locations in the network to influence the state of the system; and (2) choosing the time-variant inputs at the control locations to achieve the desired state of the system with minimum effort. We demonstrate that the optimal solution to control the level of contamination in the network can be found through application of control theory concepts to transport in dendritic surface water networks.
NASA Astrophysics Data System (ADS)
Senkpiel, Charlotte; Biener, Wolfgang; Shammugam, Shivenes; Längle, Sven
2018-02-01
Energy system models serve as a basis for long term system planning. Joint optimization of electricity generating technologies, storage systems and the electricity grid leads to lower total system cost compared to an approach in which the grid expansion follows a given technology portfolio and their distribution. Modelers often face the problem of finding a good tradeoff between computational time and the level of detail that can be modeled. This paper analyses the differences between a transport model and a DC load flow model to evaluate the validity of using a simple but faster transport model within the system optimization model in terms of system reliability. The main findings in this paper are that a higher regional resolution of a system leads to better results compared to an approach in which regions are clustered as more overloads can be detected. An aggregation of lines between two model regions compared to a line sharp representation has little influence on grid expansion within a system optimizer. In a DC load flow model overloads can be detected in a line sharp case, which is therefore preferred. Overall the regions that need to reinforce the grid are identified within the system optimizer. Finally the paper recommends the usage of a load-flow model to test the validity of the model results.
Projective-Dual Method for Solving Systems of Linear Equations with Nonnegative Variables
NASA Astrophysics Data System (ADS)
Ganin, B. V.; Golikov, A. I.; Evtushenko, Yu. G.
2018-02-01
In order to solve an underdetermined system of linear equations with nonnegative variables, the projection of a given point onto its solutions set is sought. The dual of this problem—the problem of unconstrained maximization of a piecewise-quadratic function—is solved by Newton's method. The problem of unconstrained optimization dual of the regularized problem of finding the projection onto the solution set of the system is considered. A connection of duality theory and Newton's method with some known algorithms of projecting onto a standard simplex is shown. On the example of taking into account the specifics of the constraints of the transport linear programming problem, the possibility to increase the efficiency of calculating the generalized Hessian matrix is demonstrated. Some examples of numerical calculations using MATLAB are presented.
Application of quasi-distributions for solving inverse problems of neutron and {gamma}-ray transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogosbekyan, L.R.; Lysov, D.A.
The considered inverse problems deal with the calculation of the unknown values of nuclear installations by means of the known (goal) functionals of neutron/{gamma}-ray distributions. The example of these problems might be the calculation of the automatic control rods position as function of neutron sensors reading, or the calculation of experimentally-corrected values of cross-sections, isotopes concentration, fuel enrichment via the measured functional. The authors have developed the new method to solve inverse problem. It finds flux density as quasi-solution of the particles conservation linear system adjointed to equalities for functionals. The method is more effective compared to the one basedmore » on the classical perturbation theory. It is suitable for vectorization and it can be used successfully in optimization codes.« less
NASA Astrophysics Data System (ADS)
Chen, Xueli; Liang, Jimin; Hu, Hao; Qu, Xiaochao; Yang, Defu; Chen, Duofang; Zhu, Shouping; Tian, Jie
2012-03-01
Gastric cancer is the second cause of cancer-related death in the world, and it remains difficult to cure because it has been in late-stage once that is found. Early gastric cancer detection becomes an effective approach to decrease the gastric cancer mortality. Bioluminescence tomography (BLT) has been applied to detect early liver cancer and prostate cancer metastasis. However, the gastric cancer commonly originates from the gastric mucosa and grows outwards. The bioluminescent light will pass through a non-scattering region constructed by gastric pouch when it transports in tissues. Thus, the current BLT reconstruction algorithms based on the approximation model of radiative transfer equation are not optimal to handle this problem. To address the gastric cancer specific problem, this paper presents a novel reconstruction algorithm that uses a hybrid light transport model to describe the bioluminescent light propagation in tissues. The radiosity theory integrated with the diffusion equation to form the hybrid light transport model is utilized to describe light propagation in the non-scattering region. After the finite element discretization, the hybrid light transport model is converted into a minimization problem which fuses an l1 norm based regularization term to reveal the sparsity of bioluminescent source distribution. The performance of the reconstruction algorithm is first demonstrated with a digital mouse based simulation with the reconstruction error less than 1mm. An in situ gastric cancer-bearing nude mouse based experiment is then conducted. The primary result reveals the ability of the novel BLT reconstruction algorithm in early gastric cancer detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biondo, Elliott D.; Wilson, Paul P. H.
In fusion energy systems (FES) neutrons born from burning plasma activate system components. The photon dose rate after shutdown from resulting radionuclides must be quantified. This shutdown dose rate (SDR) is calculated by coupling neutron transport, activation analysis, and photon transport. The size, complexity, and attenuating configuration of FES motivate the use of hybrid Monte Carlo (MC)/deterministic neutron transport. The Multi-Step Consistent Adjoint Driven Importance Sampling (MS-CADIS) method can be used to optimize MC neutron transport for coupled multiphysics problems, including SDR analysis, using deterministic estimates of adjoint flux distributions. When used for SDR analysis, MS-CADIS requires the formulation ofmore » an adjoint neutron source that approximates the transmutation process. In this work, transmutation approximations are used to derive a solution for this adjoint neutron source. It is shown that these approximations are reasonably met for typical FES neutron spectra and materials over a range of irradiation scenarios. When these approximations are met, the Groupwise Transmutation (GT)-CADIS method, proposed here, can be used effectively. GT-CADIS is an implementation of the MS-CADIS method for SDR analysis that uses a series of single-energy-group irradiations to calculate the adjoint neutron source. For a simple SDR problem, GT-CADIS provides speedups of 200 100 relative to global variance reduction with the Forward-Weighted (FW)-CADIS method and 9 ± 5 • 104 relative to analog. As a result, this work shows that GT-CADIS is broadly applicable to FES problems and will significantly reduce the computational resources necessary for SDR analysis.« less
Biondo, Elliott D.; Wilson, Paul P. H.
2017-05-08
In fusion energy systems (FES) neutrons born from burning plasma activate system components. The photon dose rate after shutdown from resulting radionuclides must be quantified. This shutdown dose rate (SDR) is calculated by coupling neutron transport, activation analysis, and photon transport. The size, complexity, and attenuating configuration of FES motivate the use of hybrid Monte Carlo (MC)/deterministic neutron transport. The Multi-Step Consistent Adjoint Driven Importance Sampling (MS-CADIS) method can be used to optimize MC neutron transport for coupled multiphysics problems, including SDR analysis, using deterministic estimates of adjoint flux distributions. When used for SDR analysis, MS-CADIS requires the formulation ofmore » an adjoint neutron source that approximates the transmutation process. In this work, transmutation approximations are used to derive a solution for this adjoint neutron source. It is shown that these approximations are reasonably met for typical FES neutron spectra and materials over a range of irradiation scenarios. When these approximations are met, the Groupwise Transmutation (GT)-CADIS method, proposed here, can be used effectively. GT-CADIS is an implementation of the MS-CADIS method for SDR analysis that uses a series of single-energy-group irradiations to calculate the adjoint neutron source. For a simple SDR problem, GT-CADIS provides speedups of 200 100 relative to global variance reduction with the Forward-Weighted (FW)-CADIS method and 9 ± 5 • 104 relative to analog. As a result, this work shows that GT-CADIS is broadly applicable to FES problems and will significantly reduce the computational resources necessary for SDR analysis.« less
NASA Technical Reports Server (NTRS)
Jordan, T. M.
1970-01-01
A description of the FASTER-III program for Monte Carlo Carlo calculation of photon and neutron transport in complex geometries is presented. Major revisions include the capability of calculating minimum weight shield configurations for primary and secondary radiation and optimal importance sampling parameters. The program description includes a users manual describing the preparation of input data cards, the printout from a sample problem including the data card images, definitions of Fortran variables, the program logic, and the control cards required to run on the IBM 7094, IBM 360, UNIVAC 1108 and CDC 6600 computers.
Aeroelastic Tailoring of Transport Wings Including Transonic Flutter Constraints
NASA Technical Reports Server (NTRS)
Stanford, Bret K.; Wieseman, Carol D.; Jutte, Christine V.
2015-01-01
Several minimum-mass optimization problems are solved to evaluate the effectiveness of a variety of novel tailoring schemes for subsonic transport wings. Aeroelastic stress and panel buckling constraints are imposed across several trimmed static maneuver loads, in addition to a transonic flutter margin constraint, captured with aerodynamic influence coefficient-based tools. Tailoring with metallic thickness variations, functionally graded materials, balanced or unbalanced composite laminates, curvilinear tow steering, and distributed trailing edge control effectors are all found to provide reductions in structural wing mass with varying degrees of success. The question as to whether this wing mass reduction will offset the increased manufacturing cost is left unresolved for each case.
NASA Astrophysics Data System (ADS)
Umam, M. I. H.; Santosa, B.
2018-04-01
Combinatorial optimization has been frequently used to solve both problems in science, engineering, and commercial applications. One combinatorial problems in the field of transportation is to find a shortest travel route that can be taken from the initial point of departure to point of destination, as well as minimizing travel costs and travel time. When the distance from one (initial) node to another (destination) node is the same with the distance to travel back from destination to initial, this problems known to the Traveling Salesman Problem (TSP), otherwise it call as an Asymmetric Traveling Salesman Problem (ATSP). The most recent optimization techniques is Symbiotic Organisms Search (SOS). This paper discuss how to hybrid the SOS algorithm with variable neighborhoods search (SOS-VNS) that can be applied to solve the ATSP problem. The proposed mechanism to add the variable neighborhoods search as a local search is to generate the better initial solution and then we modify the phase of parasites with adapting mechanism of mutation. After modification, the performance of the algorithm SOS-VNS is evaluated with several data sets and then the results is compared with the best known solution and some algorithm such PSO algorithm and SOS original algorithm. The SOS-VNS algorithm shows better results based on convergence, divergence and computing time.
The Camassa-Holm equation as an incompressible Euler equation: A geometric point of view
NASA Astrophysics Data System (ADS)
Gallouët, Thomas; Vialard, François-Xavier
2018-04-01
The group of diffeomorphisms of a compact manifold endowed with the L2 metric acting on the space of probability densities gives a unifying framework for the incompressible Euler equation and the theory of optimal mass transport. Recently, several authors have extended optimal transport to the space of positive Radon measures where the Wasserstein-Fisher-Rao distance is a natural extension of the classical L2-Wasserstein distance. In this paper, we show a similar relation between this unbalanced optimal transport problem and the Hdiv right-invariant metric on the group of diffeomorphisms, which corresponds to the Camassa-Holm (CH) equation in one dimension. Geometrically, we present an isometric embedding of the group of diffeomorphisms endowed with this right-invariant metric in the automorphisms group of the fiber bundle of half densities endowed with an L2 type of cone metric. This leads to a new formulation of the (generalized) CH equation as a geodesic equation on an isotropy subgroup of this automorphisms group; On S1, solutions to the standard CH thus give radially 1-homogeneous solutions of the incompressible Euler equation on R2 which preserves a radial density that has a singularity at 0. An other application consists in proving that smooth solutions of the Euler-Arnold equation for the Hdiv right-invariant metric are length minimizing geodesics for sufficiently short times.
Bissacco, Alessandro; Chiuso, Alessandro; Soatto, Stefano
2007-11-01
We address the problem of performing decision tasks, and in particular classification and recognition, in the space of dynamical models in order to compare time series of data. Motivated by the application of recognition of human motion in image sequences, we consider a class of models that include linear dynamics, both stable and marginally stable (periodic), both minimum and non-minimum phase, driven by non-Gaussian processes. This requires extending existing learning and system identification algorithms to handle periodic modes and nonminimum phase behavior, while taking into account higher-order statistics of the data. Once a model is identified, we define a kernel-based cord distance between models that includes their dynamics, their initial conditions as well as input distribution. This is made possible by a novel kernel defined between two arbitrary (non-Gaussian) distributions, which is computed by efficiently solving an optimal transport problem. We validate our choice of models, inference algorithm, and distance on the tasks of human motion synthesis (sample paths of the learned models), and recognition (nearest-neighbor classification in the computed distance). However, our work can be applied more broadly where one needs to compare historical data while taking into account periodic trends, non-minimum phase behavior, and non-Gaussian input distributions.
Minimization for conditional simulation: Relationship to optimal transport
NASA Astrophysics Data System (ADS)
Oliver, Dean S.
2014-05-01
In this paper, we consider the problem of generating independent samples from a conditional distribution when independent samples from the prior distribution are available. Although there are exact methods for sampling from the posterior (e.g. Markov chain Monte Carlo or acceptance/rejection), these methods tend to be computationally demanding when evaluation of the likelihood function is expensive, as it is for most geoscience applications. As an alternative, in this paper we discuss deterministic mappings of variables distributed according to the prior to variables distributed according to the posterior. Although any deterministic mappings might be equally useful, we will focus our discussion on a class of algorithms that obtain implicit mappings by minimization of a cost function that includes measures of data mismatch and model variable mismatch. Algorithms of this type include quasi-linear estimation, randomized maximum likelihood, perturbed observation ensemble Kalman filter, and ensemble of perturbed analyses (4D-Var). When the prior pdf is Gaussian and the observation operators are linear, we show that these minimization-based simulation methods solve an optimal transport problem with a nonstandard cost function. When the observation operators are nonlinear, however, the mapping of variables from the prior to the posterior obtained from those methods is only approximate. Errors arise from neglect of the Jacobian determinant of the transformation and from the possibility of discontinuous mappings.
Fairness in optimizing bus-crew scheduling process.
Ma, Jihui; Song, Cuiying; Ceder, Avishai Avi; Liu, Tao; Guan, Wei
2017-01-01
This work proposes a model considering fairness in the problem of crew scheduling for bus drivers (CSP-BD) using a hybrid ant-colony optimization (HACO) algorithm to solve it. The main contributions of this work are the following: (a) a valid approach for cases with a special cost structure and constraints considering the fairness of working time and idle time; (b) an improved algorithm incorporating Gamma heuristic function and selecting rules. The relationships of each cost are examined with ten bus lines collected from the Beijing Public Transport Holdings (Group) Co., Ltd., one of the largest bus transit companies in the world. It shows that unfair cost is indirectly related to common cost, fixed cost and extra cost and also the unfair cost approaches to common and fixed cost when its coefficient is twice of common cost coefficient. Furthermore, the longest time for the tested bus line with 1108 pieces, 74 blocks is less than 30 minutes. The results indicate that the HACO-based algorithm can be a feasible and efficient optimization technique for CSP-BD, especially with large scale problems.
Transport and percolation in complex networks
NASA Astrophysics Data System (ADS)
Li, Guanliang
To design complex networks with optimal transport properties such as flow efficiency, we consider three approaches to understanding transport and percolation in complex networks. We analyze the effects of randomizing the strengths of connections, randomly adding long-range connections to regular lattices, and percolation of spatially constrained networks. Various real-world networks often have links that are differentiated in terms of their strength, intensity, or capacity. We study the distribution P(σ) of the equivalent conductance for Erdoḧs-Rényi (ER) and scale-free (SF) weighted resistor networks with N nodes, for which links are assigned with conductance σ i ≡ e-axi, where xi is a random variable with 0 < xi < 1. We find, both analytically and numerically, that P(σ) for ER networks exhibits two regimes: (i) For σ < e-apc, P(σ) is independent of N and scales as a power law P(σ) ˜ sk/a-1 . Here pc = 1/
NASA Astrophysics Data System (ADS)
Kollat, J. B.; Reed, P. M.
2009-12-01
This study contributes the ASSIST (Adaptive Strategies for Sampling in Space and Time) framework for improving long-term groundwater monitoring decisions across space and time while accounting for the influences of systematic model errors (or predictive bias). The ASSIST framework combines contaminant flow-and-transport modeling, bias-aware ensemble Kalman filtering (EnKF) and many-objective evolutionary optimization. Our goal in this work is to provide decision makers with a fuller understanding of the information tradeoffs they must confront when performing long-term groundwater monitoring network design. Our many-objective analysis considers up to 6 design objectives simultaneously and consequently synthesizes prior monitoring network design methodologies into a single, flexible framework. This study demonstrates the ASSIST framework using a tracer study conducted within a physical aquifer transport experimental tank located at the University of Vermont. The tank tracer experiment was extensively sampled to provide high resolution estimates of tracer plume behavior. The simulation component of the ASSIST framework consists of stochastic ensemble flow-and-transport predictions using ParFlow coupled with the Lagrangian SLIM transport model. The ParFlow and SLIM ensemble predictions are conditioned with tracer observations using a bias-aware EnKF. The EnKF allows decision makers to enhance plume transport predictions in space and time in the presence of uncertain and biased model predictions by conditioning them on uncertain measurement data. In this initial demonstration, the position and frequency of sampling were optimized to: (i) minimize monitoring cost, (ii) maximize information provided to the EnKF, (iii) minimize failure to detect the tracer, (iv) maximize the detection of tracer flux, (v) minimize error in quantifying tracer mass, and (vi) minimize error in quantifying the moment of the tracer plume. The results demonstrate that the many-objective problem formulation provides a tremendous amount of information for decision makers. Specifically our many-objective analysis highlights the limitations and potentially negative design consequences of traditional single and two-objective problem formulations. These consequences become apparent through visual exploration of high-dimensional tradeoffs and the identification of regions with interesting compromise solutions. The prediction characteristics of these compromise designs are explored in detail, as well as their implications for subsequent design decisions in both space and time.
NASA Astrophysics Data System (ADS)
Teplukhina, A. A.; Sauter, O.; Felici, F.; Merle, A.; Kim, D.; the TCV Team; the ASDEX Upgrade Team; the EUROfusion MST1 Team
2017-12-01
The present work demonstrates the capabilities of the transport code RAPTOR as a fast and reliable simulator of plasma profiles for the entire plasma discharge, i.e. from ramp-up to ramp-down. This code focuses, at this stage, on the simulation of electron temperature and poloidal flux profiles using prescribed equilibrium and some kinetic profiles. In this work we extend the RAPTOR transport model to include a time-varying plasma equilibrium geometry and verify the changes via comparison with ATSRA code simulations. In addition a new ad hoc transport model based on constant gradients and suitable for simulations of L-H and H-L mode transitions has been incorporated into the RAPTOR code and validated with rapid simulations of the time evolution of the safety factor and the electron temperature over the entire AUG and TCV discharges. An optimization procedure for the plasma termination phase has also been developed during this work. We define the goal of the optimization as ramping down the plasma current as fast as possible while avoiding any disruptions caused by reaching physical or technical limits. Our numerical study of this problem shows that a fast decrease of plasma elongation during current ramp-down can help in reducing plasma internal inductance. An early transition from H- to L-mode allows us to reduce the drop in poloidal beta, which is also important for plasma MHD stability and control. This work shows how these complex nonlinear interactions can be optimized automatically using relevant cost functions and constraints. Preliminary experimental results for TCV are demonstrated.
On the improvement of blood sample collection at clinical laboratories
2014-01-01
Background Blood samples are usually collected daily from different collection points, such hospitals and health centers, and transported to a core laboratory for testing. This paper presents a project to improve the collection routes of two of the largest clinical laboratories in Spain. These routes must be designed in a cost-efficient manner while satisfying two important constraints: (i) two-hour time windows between collection and delivery, and (ii) vehicle capacity. Methods A heuristic method based on a genetic algorithm has been designed to solve the problem of blood sample collection. The user enters the following information for each collection point: postal address, average collecting time, and average demand (in thermal containers). After implementing the algorithm using C programming, this is run and, in few seconds, it obtains optimal (or near-optimal) collection routes that specify the collection sequence for each vehicle. Different scenarios using various types of vehicles have been considered. Unless new collection points are added or problem parameters are changed substantially, routes need to be designed only once. Results The two laboratories in this study previously planned routes manually for 43 and 74 collection points, respectively. These routes were covered by an external carrier company. With the implementation of this algorithm, the number of routes could be reduced from ten to seven in one laboratory and from twelve to nine in the other, which represents significant annual savings in transportation costs. Conclusions The algorithm presented can be easily implemented in other laboratories that face this type of problem, and it is particularly interesting and useful as the number of collection points increases. The method designs blood collection routes with reduced costs that meet the time and capacity constraints of the problem. PMID:24406140
Integration of a CAD System Into an MDO Framework
NASA Technical Reports Server (NTRS)
Townsend, J. C.; Samareh, J. A.; Weston, R. P.; Zorumski, W. E.
1998-01-01
NASA Langley has developed a heterogeneous distributed computing environment, called the Framework for Inter-disciplinary Design Optimization, or FIDO. Its purpose has been to demonstrate framework technical feasibility and usefulness for optimizing the preliminary design of complex systems and to provide a working environment for testing optimization schemes. Its initial implementation has been for a simplified model of preliminary design of a high-speed civil transport. Upgrades being considered for the FIDO system include a more complete geometry description, required by high-fidelity aerodynamics and structures codes and based on a commercial Computer Aided Design (CAD) system. This report presents the philosophy behind some of the decisions that have shaped the FIDO system and gives a brief case study of the problems and successes encountered in integrating a CAD system into the FEDO framework.
Design Methods and Optimization for Morphing Aircraft
NASA Technical Reports Server (NTRS)
Crossley, William A.
2005-01-01
This report provides a summary of accomplishments made during this research effort. The major accomplishments are in three areas. The first is the use of a multiobjective optimization strategy to help identify potential morphing features that uses an existing aircraft sizing code to predict the weight, size and performance of several fixed-geometry aircraft that are Pareto-optimal based upon on two competing aircraft performance objectives. The second area has been titled morphing as an independent variable and formulates the sizing of a morphing aircraft as an optimization problem in which the amount of geometric morphing for various aircraft parameters are included as design variables. This second effort consumed most of the overall effort on the project. The third area involved a more detailed sizing study of a commercial transport aircraft that would incorporate a morphing wing to possibly enable transatlantic point-to-point passenger service.
NASA Astrophysics Data System (ADS)
Bürger, Raimund; Kumar, Sarvesh; Ruiz-Baier, Ricardo
2015-10-01
The sedimentation-consolidation and flow processes of a mixture of small particles dispersed in a viscous fluid at low Reynolds numbers can be described by a nonlinear transport equation for the solids concentration coupled with the Stokes problem written in terms of the mixture flow velocity and the pressure field. Here both the viscosity and the forcing term depend on the local solids concentration. A semi-discrete discontinuous finite volume element (DFVE) scheme is proposed for this model. The numerical method is constructed on a baseline finite element family of linear discontinuous elements for the approximation of velocity components and concentration field, whereas the pressure is approximated by piecewise constant elements. The unique solvability of both the nonlinear continuous problem and the semi-discrete DFVE scheme is discussed, and optimal convergence estimates in several spatial norms are derived. Properties of the model and the predicted space accuracy of the proposed formulation are illustrated by detailed numerical examples, including flows under gravity with changing direction, a secondary settling tank in an axisymmetric setting, and batch sedimentation in a tilted cylindrical vessel.
Dynamic modeling and optimization for space logistics using time-expanded networks
NASA Astrophysics Data System (ADS)
Ho, Koki; de Weck, Olivier L.; Hoffman, Jeffrey A.; Shishko, Robert
2014-12-01
This research develops a dynamic logistics network formulation for lifecycle optimization of mission sequences as a system-level integrated method to find an optimal combination of technologies to be used at each stage of the campaign. This formulation can find the optimal transportation architecture considering its technology trades over time. The proposed methodologies are inspired by the ground logistics analysis techniques based on linear programming network optimization. Particularly, the time-expanded network and its extension are developed for dynamic space logistics network optimization trading the quality of the solution with the computational load. In this paper, the methodologies are applied to a human Mars exploration architecture design problem. The results reveal multiple dynamic system-level trades over time and give recommendation of the optimal strategy for the human Mars exploration architecture. The considered trades include those between In-Situ Resource Utilization (ISRU) and propulsion technologies as well as the orbit and depot location selections over time. This research serves as a precursor for eventual permanent settlement and colonization of other planets by humans and us becoming a multi-planet species.
NASA Technical Reports Server (NTRS)
Unger, Eric R.; Hager, James O.; Agrawal, Shreekant
1999-01-01
This paper is a discussion of the supersonic nonlinear point design optimization efforts at McDonnell Douglas Aerospace under the High-Speed Research (HSR) program. The baseline for these optimization efforts has been the M2.4-7A configuration which represents an arrow-wing technology for the High-Speed Civil Transport (HSCT). Optimization work on this configuration began in early 1994 and continued into 1996. Initial work focused on optimization of the wing camber and twist on a wing/body configuration and reductions of 3.5 drag counts (Euler) were realized. The next phase of the optimization effort included fuselage camber along with the wing and a drag reduction of 5.0 counts was achieved. Including the effects of the nacelles and diverters into the optimization problem became the next focus where a reduction of 6.6 counts (Euler W/B/N/D) was eventually realized. The final two phases of the effort included a large set of constraints designed to make the final optimized configuration more realistic and they were successful albeit with a loss of performance.
NASA Astrophysics Data System (ADS)
Gavvalapalli, Nagarjuna
All-polymer solar cells (APSC) are a class of organic solar cells in which hole and electron transporting phases are made of conjugated polymers. Unlike polymer/fullerene solar cell, photoactive material of APSC can be designed to have hole and electron transporting polymers with complementary absorption range and proper frontier energy level offset. However, the highest reported PCE of APSC is 5 times less than that of polymer/fullerene solar cell. The low PCE of APSC is mainly due to: i) low charge separation efficiency; and ii) lack of optimal morphology to facilitate charge transfer and transport; and iii) lack of control over the exciton and charge transport in each phase. My research work is focused towards addressing these issues. The charge separation efficiency of APSC can be enhanced by designing novel electron transporting polymers with: i) broad absorption range; ii) high electron mobility; and iii) high dielectric constant. In addition to with the above parameters chemical and electronic structure of the repeating unit of conjugated polymer also plays a role in charge separation efficiency. So far only three classes of electron transporting polymers, CN substituted PPV, 2,1,3-benzothiadiazole derived polymers and rylene diimide derived polymers, are used in APSC. Thus to enhance the charge separation efficiency new classes of electron transporting polymers with the above characteristics need to be synthesized. I have developed a new straightforward synthetic strategy to rapidly generate new classes of electron transporting polymers with different chemical and electronic structure, broad absorption range, and high electron mobility from readily available electron deficient monomers. In APSCs due to low entropy of mixing, polymers tend to micro-phase segregate rather than forming the more useful nano-phase segregation. Optimizing the polymer blend morphology to obtain nano-phase segregation is specific to the system under study, time consuming, and not trivial. Thus to avoid micro-phase segregation, nanoparticles of hole and electron transporters are synthesized and blended. But the PCE of nanoparticle blends are far less than those of polymer blends. This is mainly due to the: i) lack of optimal assembly of nanoparticles to facilitate charge transfer and transport processes; and ii) lack of control over the exciton and charge transport properties within the nanoparticles. Polymer packing within the nanoparticle controls the optoelectronic and charge transport properties of the nanoparticle. In this work I have shown that the solvent used to synthesize nanoparticles plays a crucial role in determining the assembly of polymer chains inside the nanoparticle there by affecting its exciton and charge transport processes. To obtain the optimal morphology for better charge transfer and transport, we have also synthesized nanoparticles of different radius with surfactants of opposite charge. We propose that depending on the radius and/or Coulombic interactions these nanoparticles can be assembled into mineral structure-types that are useful for photovoltaic devices.
NASA Astrophysics Data System (ADS)
Sun, Xiuqiao; Wang, Jian
2018-07-01
Freeway service patrol (FSP), is considered to be an effective method for incident management and can help transportation agency decision-makers alter existing route coverage and fleet allocation. This paper investigates the FSP problem of patrol routing design and fleet allocation, with the objective of minimizing the overall average incident response time. While the simulated annealing (SA) algorithm and its improvements have been applied to solve this problem, they often become trapped in local optimal solution. Moreover, the issue of searching efficiency remains to be further addressed. In this paper, we employ the genetic algorithm (GA) and SA to solve the FSP problem. To maintain population diversity and avoid premature convergence, niche strategy is incorporated into the traditional genetic algorithm. We also employ elitist strategy to speed up the convergence. Numerical experiments have been conducted with the help of the Sioux Falls network. Results show that the GA slightly outperforms the dual-based greedy (DBG) algorithm, the very large-scale neighborhood searching (VLNS) algorithm, the SA algorithm and the scenario algorithm.
New variational bounds on convective transport. I. Formulation and analysis
NASA Astrophysics Data System (ADS)
Tobasco, Ian; Souza, Andre N.; Doering, Charles R.
2016-11-01
We study the maximal rate of scalar transport between parallel walls separated by distance h, by an incompressible fluid with scalar diffusion coefficient κ. Given velocity vector field u with intensity measured by the Péclet number Pe =h2 < | ∇ u |2 >1/2 / κ (where < . > is space-time average) the challenge is to determine the largest enhancement of wall-to-wall scalar flux over purely diffusive transport, i.e., the Nusselt number Nu . Variational formulations of the problem are presented and it is determined that Nu <= cPe 2 / 3 , where c is an absolute constant, as Pe -> ∞ . Moreover, this scaling for optimal transport-possibly modulo logarithmic corrections-is asymptotically sharp: admissible steady flows with Nu >=c' Pe 2 / 3 /[ log Pe ] 2 are constructed. The structure of (nearly) maximally transporting flow fields is discussed. Supported in part by National Science Foundation Graduate Research Fellowship DGE-0813964, awards OISE-0967140, PHY-1205219, DMS-1311833, and DMS-1515161, and the John Simon Guggenheim Memorial Foundation.
Hida, Kyoko; Kikuchi, Hiroshi; Maishi, Nako; Hida, Yasuhiro
2017-08-01
Drug resistance is a major problem in anticancer therapy. ATP-binding cassette (ABC) transporters have a role in the multidrug resistance. A new regimen of chemotherapy has been proposed, called "metronomic chemotherapy". Metronomic chemotherapy is the frequent, regular administration of drug doses designed to maintain low, but active, concentrations of chemotherapeutic drugs over prolonged periods of time, without causing serious toxicities. Metronomic chemotherapy regimens were developed to optimize the antitumor efficacy of agents that target the tumor vasculature instead of tumor cells, and to reduce toxicity of antineoplastic drugs [1]. Nevertheless, recent studies revealed that ABC transporters are expressed at a higher level in the endothelium in the tumor. To avoid resistance to metronomic anti-angiogenic chemotherapy, ABC transporter inhibition of tumor endothelial cells may be a promising strategy. In this mini-review, we discuss the possible mechanism of resistance to metronomic chemotherapy from the viewpoint of tumor endothelial cell biology, focusing on ABC transporters. Copyright © 2017. Published by Elsevier B.V.
Lunar Habitat Optimization Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
SanScoucie, M. P.; Hull, P. V.; Tinker, M. L.; Dozier, G. V.
2007-01-01
Long-duration surface missions to the Moon and Mars will require bases to accommodate habitats for the astronauts. Transporting the materials and equipment required to build the necessary habitats is costly and difficult. The materials chosen for the habitat walls play a direct role in protection against each of the mentioned hazards. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Clearly, an optimization method is warranted for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat wall design tool utilizing genetic algorithms (GAs) has been developed. GAs use a "survival of the fittest" philosophy where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multiobjective formulation of up-mass, heat loss, structural analysis, meteoroid impact protection, and radiation protection. This Technical Publication presents the research and development of this tool as well as a technique for finding the optimal GA search parameters.
Research on crude oil storage and transportation based on optimization algorithm
NASA Astrophysics Data System (ADS)
Yuan, Xuhua
2018-04-01
At present, the optimization theory and method have been widely used in the optimization scheduling and optimal operation scheme of complex production systems. Based on C++Builder 6 program development platform, the theoretical research results are implemented by computer. The simulation and intelligent decision system of crude oil storage and transportation inventory scheduling are designed. The system includes modules of project management, data management, graphics processing, simulation of oil depot operation scheme. It can realize the optimization of the scheduling scheme of crude oil storage and transportation system. A multi-point temperature measuring system for monitoring the temperature field of floating roof oil storage tank is developed. The results show that by optimizing operating parameters such as tank operating mode and temperature, the total transportation scheduling costs of the storage and transportation system can be reduced by 9.1%. Therefore, this method can realize safe and stable operation of crude oil storage and transportation system.
Direct adaptive performance optimization of subsonic transports: A periodic perturbation technique
NASA Technical Reports Server (NTRS)
Espana, Martin D.; Gilyard, Glenn
1995-01-01
Aircraft performance can be optimized at the flight condition by using available redundancy among actuators. Effective use of this potential allows improved performance beyond limits imposed by design compromises. Optimization based on nominal models does not result in the best performance of the actual aircraft at the actual flight condition. An adaptive algorithm for optimizing performance parameters, such as speed or fuel flow, in flight based exclusively on flight data is proposed. The algorithm is inherently insensitive to model inaccuracies and measurement noise and biases and can optimize several decision variables at the same time. An adaptive constraint controller integrated into the algorithm regulates the optimization constraints, such as altitude or speed, without requiring and prior knowledge of the autopilot design. The algorithm has a modular structure which allows easy incorporation (or removal) of optimization constraints or decision variables to the optimization problem. An important part of the contribution is the development of analytical tools enabling convergence analysis of the algorithm and the establishment of simple design rules. The fuel-flow minimization and velocity maximization modes of the algorithm are demonstrated on the NASA Dryden B-720 nonlinear flight simulator for the single- and multi-effector optimization cases.
Geometric Variational Methods for Controlled Active Vision
2006-08-01
Haker , L. Zhu, and A. Tannenbaum, ``Optimal mass transport for registration and warping’’ Int. Journal Computer Vision, volume 60, 2004, pp. 225-240. G...pp. 119-142. A. Angenent, S. Haker , and A. Tannenbaum, ``Minimizing flows for the Monge-Kantorovich problem,’’ SIAM J. Math. Analysis, volume 35...Shape analysis of structures using spherical wavelets’’ (with S. Haker and D. Nain), Proceeedings of MICCAI, 2005. ``Affine surface evolution for 3D
NASA Technical Reports Server (NTRS)
Berke, J. G.
1971-01-01
The organization and functions of an interdisciplinary team for the application of aerospace generated technology to the solution of discrete technological problems within the public sector are presented. The interdisciplinary group formed at Stanford Research Institute, California is discussed. The functions of the group are to develop and conduct a program not only optimizing the match between public sector technological problems in criminalistics, transportation, and the postal services and potential solutions found in the aerospace data base, but ensuring that appropriate solutions are acutally utilized. The work accomplished during the period from July 1, 1970 to June 30, 1971 is reported.
Uncertainty-Based Multi-Objective Optimization of Groundwater Remediation Design
NASA Astrophysics Data System (ADS)
Singh, A.; Minsker, B.
2003-12-01
Management of groundwater contamination is a cost-intensive undertaking filled with conflicting objectives and substantial uncertainty. A critical source of this uncertainty in groundwater remediation design problems comes from the hydraulic conductivity values for the aquifer, upon which the prediction of flow and transport of contaminants are dependent. For a remediation solution to be reliable in practice it is important that it is robust over the potential error in the model predictions. This work focuses on incorporating such uncertainty within a multi-objective optimization framework, to get reliable as well as Pareto optimal solutions. Previous research has shown that small amounts of sampling within a single-objective genetic algorithm can produce highly reliable solutions. However with multiple objectives the noise can interfere with the basic operations of a multi-objective solver, such as determining non-domination of individuals, diversity preservation, and elitism. This work proposes several approaches to improve the performance of noisy multi-objective solvers. These include a simple averaging approach, taking samples across the population (which we call extended averaging), and a stochastic optimization approach. All the approaches are tested on standard multi-objective benchmark problems and a hypothetical groundwater remediation case-study; the best-performing approach is then tested on a field-scale case at Umatilla Army Depot.
NASA Technical Reports Server (NTRS)
Tarry, Scott E.; Bowen, Brent D.
2001-01-01
America's air transport system is currently faced with two equally important dilemmas. First, congestion and delays associated with the overburdened hub and spoke system will continue to worsen unless dramatic changes are made in the way air transportation services are provided. Second, many communities and various regions of the country have not benefited from the air transport system, which tends to focus its attention on major population centers. An emerging solution to both problems is a Small Aircraft Transportation System (SATS), which will utilize a new generation of advanced small aircraft to provide air transport services to those citizens who are poorly served by the hub and spoke system and those citizens who are not served at all. Using new innovations in navigation, communication, and propulsion technologies, these aircraft will enable users to safely and reliably access the over 5,000 general aviation landing facilities around the United States. A small aircraft transportation system holds the potential to revolutionize the way Americans travel and to greatly enhance the use of air transport as an economic development tool in rural and isolated communities across the nation.
Wu, Hao; Wan, Zhong
2018-02-01
In this paper, a multiobjective mixed-integer piecewise nonlinear programming model (MOMIPNLP) is built to formulate the management problem of urban mining system, where the decision variables are associated with buy-back pricing, choices of sites, transportation planning, and adjustment of production capacity. Different from the existing approaches, the social negative effect, generated from structural optimization of the recycling system, is minimized in our model, as well as the total recycling profit and utility from environmental improvement are jointly maximized. For solving the problem, the MOMIPNLP model is first transformed into an ordinary mixed-integer nonlinear programming model by variable substitution such that the piecewise feature of the model is removed. Then, based on technique of orthogonal design, a hybrid heuristic algorithm is developed to find an approximate Pareto-optimal solution, where genetic algorithm is used to optimize the structure of search neighborhood, and both local branching algorithm and relaxation-induced neighborhood search algorithm are employed to cut the searching branches and reduce the number of variables in each branch. Numerical experiments indicate that this algorithm spends less CPU (central processing unit) time in solving large-scale regional urban mining management problems, especially in comparison with the similar ones available in literature. By case study and sensitivity analysis, a number of practical managerial implications are revealed from the model. Since the metal stocks in society are reliable overground mineral sources, urban mining has been paid great attention as emerging strategic resources in an era of resource shortage. By mathematical modeling and development of efficient algorithms, this paper provides decision makers with useful suggestions on the optimal design of recycling system in urban mining. For example, this paper can answer how to encourage enterprises to join the recycling activities by government's support and subsidies, whether the existing recycling system can meet the developmental requirements or not, and what is a reasonable adjustment of production capacity.
Automated and Cooperative Vehicle Merging at Highway On-Ramps
Rios-Torres, Jackeline; Malikopoulos, Andreas A.
2016-08-05
Recognition of necessities of connected and automated vehicles (CAVs) is gaining momentum. CAVs can improve both transportation network efficiency and safety through control algorithms that can harmonically use all existing information to coordinate the vehicles. This paper addresses the problem of optimally coordinating CAVs at merging roadways to achieve smooth traffic flow without stop-and-go driving. Here we present an optimization framework and an analytical closed-form solution that allows online coordination of vehicles at merging zones. The effectiveness of the efficiency of the proposed solution is validated through a simulation, and it is shown that coordination of vehicles can significantly reducemore » both fuel consumption and travel time.« less
Weight optimization of plane truss using genetic algorithm
NASA Astrophysics Data System (ADS)
Neeraja, D.; Kamireddy, Thejesh; Santosh Kumar, Potnuru; Simha Reddy, Vijay
2017-11-01
Optimization of structure on basis of weight has many practical benefits in every engineering field. The efficiency is proportionally related to its weight and hence weight optimization gains prime importance. Considering the field of civil engineering, weight optimized structural elements are economical and easier to transport to the site. In this study, genetic optimization algorithm for weight optimization of steel truss considering its shape, size and topology aspects has been developed in MATLAB. Material strength and Buckling stability have been adopted from IS 800-2007 code of construction steel. The constraints considered in the present study are fabrication, basic nodes, displacements, and compatibility. Genetic programming is a natural selection search technique intended to combine good solutions to a problem from many generations to improve the results. All solutions are generated randomly and represented individually by a binary string with similarities of natural chromosomes, and hence it is termed as genetic programming. The outcome of the study is a MATLAB program, which can optimise a steel truss and display the optimised topology along with element shapes, deflections, and stress results.
NASA Astrophysics Data System (ADS)
Chandra, Rishabh
Partial differential equation-constrained combinatorial optimization (PDECCO) problems are a mixture of continuous and discrete optimization problems. PDECCO problems have discrete controls, but since the partial differential equations (PDE) are continuous, the optimization space is continuous as well. Such problems have several applications, such as gas/water network optimization, traffic optimization, micro-chip cooling optimization, etc. Currently, no efficient classical algorithm which guarantees a global minimum for PDECCO problems exists. A new mapping has been developed that transforms PDECCO problem, which only have linear PDEs as constraints, into quadratic unconstrained binary optimization (QUBO) problems that can be solved using an adiabatic quantum optimizer (AQO). The mapping is efficient, it scales polynomially with the size of the PDECCO problem, requires only one PDE solve to form the QUBO problem, and if the QUBO problem is solved correctly and efficiently on an AQO, guarantees a global optimal solution for the original PDECCO problem.
The Study on the Optimization of Container Multimodal Transport Business Process in Shandong
NASA Astrophysics Data System (ADS)
Wang, Fengmei; Gong, Xiaoyi; Ni, Yingying; Zhan, Jun; Che, Huiping
2018-06-01
Shandong is a coastal city with good location advantages. As a hub port for international trade goods and a port of transhipment, shandong's demand for multimodal transport is more urgent. By selecting the suitable non-water port and the multimodal transport carrier to improve the efficiency of multimodal transport, the purpose of saving the time of logistics is achieved, thus reducing the logistics cost.It branch out through Shandongt, and it can reach the central region of China, can reach the Western remote area ,too. This paper puts forward the optimization scheme of the business process of container multimodal transport. The optimization of freight forwarding business process is analyzed. The multimodal transport model in Shandong was designed. Finally, the optimal approach of multimodal transport in Shandong is put forward.
Stratified Shear Flows In Pipe Geometries
NASA Astrophysics Data System (ADS)
Harabin, George; Camassa, Roberto; McLaughlin, Richard; UNC Joint Fluids Lab Team Team
2015-11-01
Exact and series solutions to the full Navier-Stokes equations coupled to the advection diffusion equation are investigated in tilted three-dimensional pipe geometries. Analytic techniques for studying the three-dimensional problem provide a means for tackling interesting questions such as the optimal domain for mass transport, and provide new avenues for experimental investigation of diffusion driven flows. Both static and time dependent solutions will be discussed. NSF RTG DMS-0943851, NSF RTG ARC-1025523, NSF DMS-1009750.
Statistical and Variational Methods for Problems in Visual Control
2009-03-02
plane curves to round points," /. Differential Geometry 26 (1987), pp. 285-314. 12 [7] S. Haker , G. Sapiro, and A. Tannenbaum, "Knowledge-based...segmentation of SAR data with learned priors," IEEE Trans. Image Processing, vol. 9, pp. 298-302, 2000. [8] S. Haker , L. Zhu, S. Angenent, and A...Tannenbaum, "Optimal mass transport for registration and warping" Int. Journal Computer Vision, vol. 60, pp. 225-240, 2004. [9] S. Haker , G. Sapiro, A
DOT National Transportation Integrated Search
2015-09-01
This report describes an Alternative Fuel Transportation Optimization Tool (AFTOT), developed by the U.S. Department of Transportation (DOT) Volpe National Transportation Systems Center (Volpe) in support of the Federal Aviation Administration (FAA)....
NASA Astrophysics Data System (ADS)
Yahyaei, Mohsen; Bashiri, Mahdi
2017-12-01
The hub location problem arises in a variety of domains such as transportation and telecommunication systems. In many real-world situations, hub facilities are subject to disruption. This paper deals with the multiple allocation hub location problem in the presence of facilities failure. To model the problem, a two-stage stochastic formulation is developed. In the proposed model, the number of scenarios grows exponentially with the number of facilities. To alleviate this issue, two approaches are applied simultaneously. The first approach is to apply sample average approximation to approximate the two stochastic problem via sampling. Then, by applying the multiple cuts Benders decomposition approach, computational performance is enhanced. Numerical studies show the effective performance of the SAA in terms of optimality gap for small problem instances with numerous scenarios. Moreover, performance of multi-cut Benders decomposition is assessed through comparison with the classic version and the computational results reveal the superiority of the multi-cut approach regarding the computational time and number of iterations.
Rapid, parallel path planning by propagating wavefronts of spiking neural activity
Ponulak, Filip; Hopfield, John J.
2013-01-01
Efficient path planning and navigation is critical for animals, robotics, logistics and transportation. We study a model in which spatial navigation problems can rapidly be solved in the brain by parallel mental exploration of alternative routes using propagating waves of neural activity. A wave of spiking activity propagates through a hippocampus-like network, altering the synaptic connectivity. The resulting vector field of synaptic change then guides a simulated animal to the appropriate selected target locations. We demonstrate that the navigation problem can be solved using realistic, local synaptic plasticity rules during a single passage of a wavefront. Our model can find optimal solutions for competing possible targets or learn and navigate in multiple environments. The model provides a hypothesis on the possible computational mechanisms for optimal path planning in the brain, at the same time it is useful for neuromorphic implementations, where the parallelism of information processing proposed here can fully be harnessed in hardware. PMID:23882213
A Conceptual Approach for Optimising Bus Stop Spacing
NASA Astrophysics Data System (ADS)
Johar, Amita; Jain, S. S.; Garg, P. k.
2017-06-01
An efficient public transportation system is essential of any country. The growth, development and shape of the urban areas are mainly due to availability of good transportation (Shah et al. in Inst Town Plan India J 5(3):50-59, 1). In developing countries, like India, travel by local bus in a city is very common. The accidents, congestion, pollution and appropriate location of bus stops are the major problems arising in metropolitan cities. Among all the metropolitan cities in India, Delhi has highest percentage of growth of population and vehicles. Therefore, it is important to adopt efficient and effective ways to improve mobility in different metropolitan cities in order to overcome the problem and to reduce the number of private vehicles on the road. The primary objective of this paper is to present a methodology for developing a model for optimum bus stop spacing (OBSS). It describes the evaluation of existing urban bus route, data collection, development of model for optimizing urban bus route and application of model. In this work, the bus passenger generalized cost method is used to optimize the spacing between bus stops. For the development of model, a computer program is required to be written. The applicability of the model has been evaluated by taking the data of urban bus route of Delhi Transport Corporation (DTC) in Excel sheet in first phase. Later on, it is proposed to develop a programming in C++ language. The developed model is expected to be useful to transport planner for rational design of the spacing of bus stops to save travel time and to generalize operating cost. After analysis it is found that spacing between the bus stop comes out to be between 250 and 500 m. The Proposed Spacing of bus stops is done considering the points that they don't come nearer to metro/rail station, entry or exit of flyover and near traffic signal.
Analysis of the type II robotic mixed-model assembly line balancing problem
NASA Astrophysics Data System (ADS)
Çil, Zeynel Abidin; Mete, Süleyman; Ağpak, Kürşad
2017-06-01
In recent years, there has been an increasing trend towards using robots in production systems. Robots are used in different areas such as packaging, transportation, loading/unloading and especially assembly lines. One important step in taking advantage of robots on the assembly line is considering them while balancing the line. On the other hand, market conditions have increased the importance of mixed-model assembly lines. Therefore, in this article, the robotic mixed-model assembly line balancing problem is studied. The aim of this study is to develop a new efficient heuristic algorithm based on beam search in order to minimize the sum of cycle times over all models. In addition, mathematical models of the problem are presented for comparison. The proposed heuristic is tested on benchmark problems and compared with the optimal solutions. The results show that the algorithm is very competitive and is a promising tool for further research.
NASA Astrophysics Data System (ADS)
Trueba, Isidoro
Bioenergy has become an important alternative source of energy to alleviate the reliance on petroleum energy. Bioenergy offers significant potential to mitigate climate change by reducing life-cycle greenhouse gas emissions relative to fossil fuels. The Energy Independence and Security Act mandate the use of 21 billion gallons of advanced biofuels including 16 billion gallons of cellulosic biofuels by the year 2022. It is clear that Biomass can make a substantial contribution to supplying future energy demand in a sustainable way. However, the supply of sustainable energy is one of the main challenges that mankind will face over the coming decades. For instance, many logistical challenges will be faced in order to provide an efficient and reliable supply of quality feedstock to biorefineries. 700 million tons of biomass will be required to be sustainably delivered to biorefineries annually to meet the projected use of biofuels by the year of 2022. This thesis is motivated by the urgent need of advancing knowledge and understanding of the highly complex biofuel supply chain. While corn ethanol production has increased fast enough to keep up with the energy mandates, production of biofuels from different types of feedstocks has also been incremented. A number of pilot and demonstration scale advanced biofuel facilities have been set up, but commercial scale facilities are yet to become operational. Scaling up this new biofuel sector poses significant economic and logistical challenges for regional planners and biofuel entrepreneurs in terms of feedstock supply assurance, supply chain development, biorefinery establishment, and setting up transport, storage and distribution infrastructure. The literature also shows that the larger cost in the production of biomass to ethanol originates from the logistics operation therefore it is essential that an optimal logistics system is designed in order to keep low the costs of producing ethanol and make possible the shift from fossil fuels to biofuels. In many ways biomass is a unique renewable resource. It can be stored and transported relatively easily in contrast to renewable options such as wind and solar, which create intermittent electrical power that requires immediate consumption and a connection to the grid. This thesis presents two different models for the design optimization of a biomass-to-biorefinery logistics system through bio-inspired metaheuristic optimization considering multiple types of feedstocks. This work compares the performance and solutions obtained by two types of metaheuristic approaches; genetic algorithm and ant colony optimization. Compared to rigorous mathematical optimization methods or iterative algorithms, metaheuristics do not guarantee that a global optimal solution can be found on some class of problems. Problems with similar characteristics to the one presented in this thesis have been previously solved using linear programming, integer programming and mixed integer programming methods. However, depending on the type of problem, these mathematical or complete methods might need exponential computation time in the worst-case. This often leads to computation times too high for practical purposes. Therefore, this thesis develops two types of metaheuristic approaches for the design optimization of a biomass-to-biorefinery logistics system considering multiple types of feedstocks and shows that metaheuristics are highly suitable to solve hard combinatorial optimization problems such as the one addressed in this research work.
Integration of geospatial multi-mode transportation Systems in Kuala Lumpur
NASA Astrophysics Data System (ADS)
Ismail, M. A.; Said, M. N.
2014-06-01
Public transportation serves people with mobility and accessibility to workplaces, health facilities, community resources, and recreational areas across the country. Development in the application of Geographical Information Systems (GIS) to transportation problems represents one of the most important areas of GIS-technology today. To show the importance of GIS network analysis, this paper highlights the determination of the optimal path between two or more destinations based on multi-mode concepts. The abstract connector is introduced in this research as an approach to integrate urban public transportation in Kuala Lumpur, Malaysia including facilities such as Light Rapid Transit (LRT), Keretapi Tanah Melayu (KTM) Komuter, Express Rail Link (ERL), KL Monorail, road driving as well as pedestrian modes into a single intelligent data model. To assist such analysis, ArcGIS's Network Analyst functions are used whereby the final output includes the total distance, total travelled time, directional maps produced to find the quickest, shortest paths, and closest facilities based on either time or distance impedance for multi-mode route analysis.
Software Performs Complex Design Analysis
NASA Technical Reports Server (NTRS)
2008-01-01
Designers use computational fluid dynamics (CFD) to gain greater understanding of the fluid flow phenomena involved in components being designed. They also use finite element analysis (FEA) as a tool to help gain greater understanding of the structural response of components to loads, stresses and strains, and the prediction of failure modes. Automated CFD and FEA engineering design has centered on shape optimization, which has been hindered by two major problems: 1) inadequate shape parameterization algorithms, and 2) inadequate algorithms for CFD and FEA grid modification. Working with software engineers at Stennis Space Center, a NASA commercial partner, Optimal Solutions Software LLC, was able to utilize its revolutionary, one-of-a-kind arbitrary shape deformation (ASD) capability-a major advancement in solving these two aforementioned problems-to optimize the shapes of complex pipe components that transport highly sensitive fluids. The ASD technology solves the problem of inadequate shape parameterization algorithms by allowing the CFD designers to freely create their own shape parameters, therefore eliminating the restriction of only being able to use the computer-aided design (CAD) parameters. The problem of inadequate algorithms for CFD grid modification is solved by the fact that the new software performs a smooth volumetric deformation. This eliminates the extremely costly process of having to remesh the grid for every shape change desired. The program can perform a design change in a markedly reduced amount of time, a process that would traditionally involve the designer returning to the CAD model to reshape and then remesh the shapes, something that has been known to take hours, days-even weeks or months-depending upon the size of the model.
Shareef, Hussain; Mohamed, Azah
2017-01-01
The electric vehicle (EV) is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS) planning. A novel optimization technique, called binary lightning search algorithm (BLSA), is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method. PMID:29220396
Islam, Md Mainul; Shareef, Hussain; Mohamed, Azah
2017-01-01
The electric vehicle (EV) is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS) planning. A novel optimization technique, called binary lightning search algorithm (BLSA), is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method.
Designing train-speed trajectory with energy efficiency and service quality
NASA Astrophysics Data System (ADS)
Jia, Jiannan; Yang, Kai; Yang, Lixing; Gao, Yuan; Li, Shukai
2018-05-01
With the development of automatic train operations, optimal trajectory design is significant to the performance of train operations in railway transportation systems. Considering energy efficiency and service quality, this article formulates a bi-objective train-speed trajectory optimization model to minimize simultaneously the energy consumption and travel time in an inter-station section. This article is distinct from previous studies in that more sophisticated train driving strategies characterized by the acceleration/deceleration gear, the cruising speed, and the speed-shift site are specifically considered. For obtaining an optimal train-speed trajectory which has equal satisfactory degree on both objectives, a fuzzy linear programming approach is applied to reformulate the objectives. In addition, a genetic algorithm is developed to solve the proposed train-speed trajectory optimization problem. Finally, a series of numerical experiments based on a real-world instance of Beijing-Tianjin Intercity Railway are implemented to illustrate the practicability of the proposed model as well as the effectiveness of the solution methodology.
Logistics Solution for Choosing Location of Production of Road Construction Enterprise
NASA Astrophysics Data System (ADS)
Gavrilina, I.; Bondar, A.
2017-11-01
The current state of construction of highways indicates that not all the resources of the construction organization are implemented and supported by the modern approaches in logistics problems solving. This article deals with the solution of these problems and considers the features of basic road linear works organization, their large extent and different locations of enterprises. Analyzing these data, it is proposed to simulate the logistics processes and substantiate the methods of transport operations organizing by linking the technology and the organization road construction materials delivery which allows one to optimize the construction processes, to choose the most economically advantageous options, and also to monitor the quality of work.
Ride comfort control in large flexible aircraft. M.S. Thesis
NASA Technical Reports Server (NTRS)
Warren, M. E.
1971-01-01
The problem of ameliorating the discomfort of passengers on a large air transport subject to flight disturbances is examined. The longitudinal dynamics of the aircraft, including effects of body flexing, are developed in terms of linear, constant coefficient differential equations in state variables. A cost functional, penalizing the rigid body displacements and flexure accelerations over the surface of the aircraft is formulated as a quadratic form. The resulting control problem, to minimize the cost subject to the state equation constraints, is of a class whose solutions are well known. The feedback gains for the optimal controller are calculated digitally, and the resulting autopilot is simulated on an analog computer and its performance evaluated.
A Framework for Multi-Stakeholder Decision-Making and ...
This contribution describes the implementation of the conditional-value-at-risk (CVaR) metric to create a general multi-stakeholder decision-making framework. It is observed that stakeholder dissatisfactions (distance to their individual ideal solutions) can be interpreted as random variables. We thus shape the dissatisfaction distribution and find an optimal compromise solution by solving a CVaR minimization problem parameterized in the probability level. This enables us to generalize multi-stakeholder settings previously proposed in the literature that minimizes average and worst-case dissatisfactions. We use the concept of the CVaR norm to give a geometric interpretation to this problem and use the properties of this norm to prove that the CVaR minimization problem yields Pareto optimal solutions for any choice of the probability level. We discuss a broad range of potential applications of the framework. We demonstrate the framework in a bio-waste processing facility location case study, where we seek compromise solutions (facility locations) that balance stakeholder priorities on transportation, safety, water quality, and capital costs. This conference presentation abstract explains a new decision-making framework that computes compromise solution alternatives (reach consensus) by mitigating dissatisfactions among stakeholders as needed for SHC Decision Science and Support Tools project.
Two-dimensional advective transport in ground-water flow parameter estimation
Anderman, E.R.; Hill, M.C.; Poeter, E.P.
1996-01-01
Nonlinear regression is useful in ground-water flow parameter estimation, but problems of parameter insensitivity and correlation often exist given commonly available hydraulic-head and head-dependent flow (for example, stream and lake gain or loss) observations. To address this problem, advective-transport observations are added to the ground-water flow, parameter-estimation model MODFLOWP using particle-tracking methods. The resulting model is used to investigate the importance of advective-transport observations relative to head-dependent flow observations when either or both are used in conjunction with hydraulic-head observations in a simulation of the sewage-discharge plume at Otis Air Force Base, Cape Cod, Massachusetts, USA. The analysis procedure for evaluating the probable effect of new observations on the regression results consists of two steps: (1) parameter sensitivities and correlations calculated at initial parameter values are used to assess the model parameterization and expected relative contributions of different types of observations to the regression; and (2) optimal parameter values are estimated by nonlinear regression and evaluated. In the Cape Cod parameter-estimation model, advective-transport observations did not significantly increase the overall parameter sensitivity; however: (1) inclusion of advective-transport observations decreased parameter correlation enough for more unique parameter values to be estimated by the regression; (2) realistic uncertainties in advective-transport observations had a small effect on parameter estimates relative to the precision with which the parameters were estimated; and (3) the regression results and sensitivity analysis provided insight into the dynamics of the ground-water flow system, especially the importance of accurate boundary conditions. In this work, advective-transport observations improved the calibration of the model and the estimation of ground-water flow parameters, and use of regression and related techniques produced significant insight into the physical system.
NASA Astrophysics Data System (ADS)
Vesselinov, V. V.; Harp, D.
2010-12-01
The process of decision making to protect groundwater resources requires a detailed estimation of uncertainties in model predictions. Various uncertainties associated with modeling a natural system, such as: (1) measurement and computational errors; (2) uncertainties in the conceptual model and model-parameter estimates; (3) simplifications in model setup and numerical representation of governing processes, contribute to the uncertainties in the model predictions. Due to this combination of factors, the sources of predictive uncertainties are generally difficult to quantify individually. Decision support related to optimal design of monitoring networks requires (1) detailed analyses of existing uncertainties related to model predictions of groundwater flow and contaminant transport, (2) optimization of the proposed monitoring network locations in terms of their efficiency to detect contaminants and provide early warning. We apply existing and newly-proposed methods to quantify predictive uncertainties and to optimize well locations. An important aspect of the analysis is the application of newly-developed optimization technique based on coupling of Particle Swarm and Levenberg-Marquardt optimization methods which proved to be robust and computationally efficient. These techniques and algorithms are bundled in a software package called MADS. MADS (Model Analyses for Decision Support) is an object-oriented code that is capable of performing various types of model analyses and supporting model-based decision making. The code can be executed under different computational modes, which include (1) sensitivity analyses (global and local), (2) Monte Carlo analysis, (3) model calibration, (4) parameter estimation, (5) uncertainty quantification, and (6) model selection. The code can be externally coupled with any existing model simulator through integrated modules that read/write input and output files using a set of template and instruction files (consistent with the PEST I/O protocol). MADS can also be internally coupled with a series of built-in analytical simulators. MADS provides functionality to work directly with existing control files developed for the code PEST (Doherty 2009). To perform the computational modes mentioned above, the code utilizes (1) advanced Latin-Hypercube sampling techniques (including Improved Distributed Sampling), (2) various gradient-based Levenberg-Marquardt optimization methods, (3) advanced global optimization methods (including Particle Swarm Optimization), and (4) a selection of alternative objective functions. The code has been successfully applied to perform various model analyses related to environmental management of real contamination sites. Examples include source identification problems, quantification of uncertainty, model calibration, and optimization of monitoring networks. The methodology and software codes are demonstrated using synthetic and real case studies where monitoring networks are optimized taking into account the uncertainty in model predictions of contaminant transport.
Intelligent Space Tube Optimization for speeding ground water remedial design.
Kalwij, Ineke M; Peralta, Richard C
2008-01-01
An innovative Intelligent Space Tube Optimization (ISTO) two-stage approach facilitates solving complex nonlinear flow and contaminant transport management problems. It reduces computational effort of designing optimal ground water remediation systems and strategies for an assumed set of wells. ISTO's stage 1 defines an adaptive mobile space tube that lengthens toward the optimal solution. The space tube has overlapping multidimensional subspaces. Stage 1 generates several strategies within the space tube, trains neural surrogate simulators (NSS) using the limited space tube data, and optimizes using an advanced genetic algorithm (AGA) with NSS. Stage 1 speeds evaluating assumed well locations and combinations. For a large complex plume of solvents and explosives, ISTO stage 1 reaches within 10% of the optimal solution 25% faster than an efficient AGA coupled with comprehensive tabu search (AGCT) does by itself. ISTO input parameters include space tube radius and number of strategies used to train NSS per cycle. Larger radii can speed convergence to optimality for optimizations that achieve it but might increase the number of optimizations reaching it. ISTO stage 2 automatically refines the NSS-AGA stage 1 optimal strategy using heuristic optimization (we used AGCT), without using NSS surrogates. Stage 2 explores the entire solution space. ISTO is applicable for many heuristic optimization settings in which the numerical simulator is computationally intensive, and one would like to reduce that burden.
Longitudinal train dynamics model for a rail transit simulation system
Wang, Jinghui; Rakha, Hesham A.
2018-01-01
The paper develops a longitudinal train dynamics model in support of microscopic railway transportation simulation. The model can be calibrated without any mechanical data making it ideal for implementation in transportation simulators. The calibration and validation work is based on data collected from the Portland light rail train fleet. The calibration procedure is mathematically formulated as a constrained non-linear optimization problem. The validity of the model is assessed by comparing instantaneous model predictions against field observations, and also evaluated in the domains of acceleration/deceleration versus speed and acceleration/deceleration versus distance. A test is conducted to investigate the adequacy of themore » model in simulation implementation. The results demonstrate that the proposed model can adequately capture instantaneous train dynamics, and provides good performance in the simulation test. Thus, the model provides a simple theoretical foundation for microscopic simulators and will significantly support the planning, management and control of railway transportation systems.« less
Longitudinal train dynamics model for a rail transit simulation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jinghui; Rakha, Hesham A.
The paper develops a longitudinal train dynamics model in support of microscopic railway transportation simulation. The model can be calibrated without any mechanical data making it ideal for implementation in transportation simulators. The calibration and validation work is based on data collected from the Portland light rail train fleet. The calibration procedure is mathematically formulated as a constrained non-linear optimization problem. The validity of the model is assessed by comparing instantaneous model predictions against field observations, and also evaluated in the domains of acceleration/deceleration versus speed and acceleration/deceleration versus distance. A test is conducted to investigate the adequacy of themore » model in simulation implementation. The results demonstrate that the proposed model can adequately capture instantaneous train dynamics, and provides good performance in the simulation test. Thus, the model provides a simple theoretical foundation for microscopic simulators and will significantly support the planning, management and control of railway transportation systems.« less
Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; ...
2015-12-21
This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Somemore » specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000 ® problems. These benchmark and scaling studies show promising results.« less
Revisiting Street Intersections Using Slot-Based Systems.
Tachet, Remi; Santi, Paolo; Sobolevsky, Stanislav; Reyes-Castro, Luis Ignacio; Frazzoli, Emilio; Helbing, Dirk; Ratti, Carlo
2016-01-01
Since their appearance at the end of the 19th century, traffic lights have been the primary mode of granting access to road intersections. Today, this centuries-old technology is challenged by advances in intelligent transportation, which are opening the way to new solutions built upon slot-based systems similar to those commonly used in aerial traffic: what we call Slot-based Intersections (SIs). Despite simulation-based evidence of the potential benefits of SIs, a comprehensive, analytical framework to compare their relative performance with traffic lights is still lacking. Here, we develop such a framework. We approach the problem in a novel way, by generalizing classical queuing theory. Having defined safety conditions, we characterize capacity and delay of SIs. In the 2-road crossing configuration, we provide a capacity-optimal SI management system. For arbitrary intersection configurations, near-optimal solutions are developed. Results theoretically show that transitioning from a traffic light system to SI has the potential of doubling capacity and significantly reducing delays. This suggests a reduction of non-linear dynamics induced by intersection bottlenecks, with positive impact on the road network. Such findings can provide transportation engineers and planners with crucial insights as they prepare to manage the transition towards a more intelligent transportation infrastructure in cities.
Moments and Legendre-Fourier Series for Measures Supported on Curves
NASA Astrophysics Data System (ADS)
Lasserre, Jean B.
2015-09-01
Some important problems (e.g., in optimal transport and optimal control) have a relaxed (or weak) formulation in a space of appropriate measures which is much easier to solve. However, an optimal solution μ of the latter solves the former if and only if the measure μ is supported on a ''trajectory'' {(t,x(t))\\colon tin [0,T]} for some measurable function x(t). We provide necessary and sufficient conditions on moments (γ_{ij}) of a measure dμ(x,t) on [0,1]^2 to ensure that μ is supported on a trajectory {(t,x(t))\\colon tin [0,1]}. Those conditions are stated in terms of Legendre-Fourier coefficients {f}_j=({f}_j(i)) associated with some functions f_j\\colon [0,1]to R, j=1,ldots, where each f_j is obtained from the moments γ_{ji}, i=0,1,ldots, of μ.
HSCT4.0 Application: Software Requirements Specification
NASA Technical Reports Server (NTRS)
Salas, A. O.; Walsh, J. L.; Mason, B. H.; Weston, R. P.; Townsend, J. C.; Samareh, J. A.; Green, L. L.
2001-01-01
The software requirements for the High Performance Computing and Communication Program High Speed Civil Transport application project, referred to as HSCT4.0, are described. The objective of the HSCT4.0 application project is to demonstrate the application of high-performance computing techniques to the problem of multidisciplinary design optimization of a supersonic transport configuration, using high-fidelity analysis simulations. Descriptions of the various functions (and the relationships among them) that make up the multidisciplinary application as well as the constraints on the software design arc provided. This document serves to establish an agreement between the suppliers and the customer as to what the HSCT4.0 application should do and provides to the software developers the information necessary to design and implement the system.
NASA Astrophysics Data System (ADS)
Korolev, A. M.; Shulga, V. M.; Turutanov, O. G.; Shnyrkov, V. I.
2016-07-01
A technically simple and physically clear method is suggested for direct measurement of the brightness temperature of two-dimensional electron gas (2DEG) in the channel of a high electron mobility transistor (HEMT). The usage of the method was demonstrated with the pseudomorphic HEMT as a specimen. The optimal HEMT dc regime, from the point of view of the "back action" problem, was found to belong to the unsaturated area of the static characteristics possibly corresponding to the ballistic electron transport mode. The proposed method is believed to be a convenient tool to explore the ballistic transport, electron diffusion, 2DEG properties and other electrophysical processes in heterostructures.
High speed civil transport: Sonic boom softening and aerodynamic optimization
NASA Technical Reports Server (NTRS)
Cheung, Samson
1994-01-01
An improvement in sonic boom extrapolation techniques has been the desire of aerospace designers for years. This is because the linear acoustic theory developed in the 60's is incapable of predicting the nonlinear phenomenon of shock wave propagation. On the other hand, CFD techniques are too computationally expensive to employ on sonic boom problems. Therefore, this research focused on the development of a fast and accurate sonic boom extrapolation method that solves the Euler equations for axisymmetric flow. This new technique has brought the sonic boom extrapolation techniques up to the standards of the 90's. Parallel computing is a fast growing subject in the field of computer science because of its promising speed. A new optimizer (IIOWA) for the parallel computing environment has been developed and tested for aerodynamic drag minimization. This is a promising method for CFD optimization making use of the computational resources of workstations, which unlike supercomputers can spend most of their time idle. Finally, the OAW concept is attractive because of its overall theoretical performance. In order to fully understand the concept, a wind-tunnel model was built and is currently being tested at NASA Ames Research Center. The CFD calculations performed under this cooperative agreement helped to identify the problem of the flow separation, and also aided the design by optimizing the wing deflection for roll trim.
Fuzzy usage pattern in customizing public transport fleet and its maintenance options
NASA Astrophysics Data System (ADS)
Husniah, H.; Herdiani, L.; Kusmaya; Supriatna, A. K.
2018-05-01
In this paper we study a two-dimensional maintenance contract for a fleet of public transport, such as buses, shuttle etc. The buses are sold with a two-dimensional warranty. The warranty and the maintenance contract are characterized by two parameters – age and usage – which define a two-dimensional region. However, we use one dimensional approach to model these age and usage of the buses. The under-laying maintenance service contracts is the one which offers policy limit cost to protect a service provider (an agent) from over claim and to pursue the owner to do maintenance under specified cost in house. This in turn gives benefit for both the owner of the buses and the agent of service contract. The decision problem for an agent is to determine the optimal price for each option offered, and for the owner is to select the best contract option. We use a Nash game theory formulation in order to obtain a win-win solution – i.e. the optimal price for the agent and the optimal option for the owner. We further assume that there will be three different usage pattern of the buses, i.e. low, medium, and high pattern of the usage rate. In many situations it is often that we face a blur boundary between the adjacent patterns. In this paper we look for the optimal price for the agent and the optimal option for the owner, which minimizes the expected total cost while considering the fuzziness of the usage rate pattern.
Asteroid retrieval missions enabled by invariant manifold dynamics
NASA Astrophysics Data System (ADS)
Sánchez, Joan Pau; García Yárnoz, Daniel
2016-10-01
Near Earth Asteroids are attractive targets for new space missions; firstly, because of their scientific importance, but also because of their impact threat and prospective resources. The asteroid retrieval mission concept has thus arisen as a synergistic approach to tackle these three facets of interest in one single mission. This paper reviews the methodology used by the authors (2013) in a previous search for objects that could be transported from accessible heliocentric orbits into the Earth's neighbourhood at affordable costs (or Easily Retrievable Objects, a.k.a. EROs). This methodology consisted of a heuristic pruning and an impulsive manoeuvre trajectory optimisation. Low thrust propulsion on the other hand clearly enables the transportation of much larger objects due to its higher specific impulse. Hence, in this paper, low thrust retrieval transfers are sought using impulsive trajectories as first guesses to solve the optimal control problem. GPOPS-II is used to transcribe the continuous-time optimal control problem to a nonlinear programming problem (NLP). The latter is solved by IPOPT, an open source software package for large-scale NLPs. Finally, a natural continuation procedure that increases the asteroid mass allows to find out the largest objects that could be retrieved from a given asteroid orbit. If this retrievable mass is larger than the actual mass of the asteroid, the asteroid retrieval mission for this particular object is said to be feasible. The paper concludes with an updated list of 17 EROs, as of April 2016, with their maximum retrievable masses by means of low thrust propulsion. This ranges from 2000 tons for the easiest object to be retrieved to 300 tons for the least accessible of them.
NASA Astrophysics Data System (ADS)
Hariyani, S.; Meidiana, C.
2018-04-01
Increasing population led to the emergence of the urban infrastructure services issue including waste problems especially waste transportation system. Data in 2016 shows that the amount of waste in Malang was 659.21 tons / day. The amount of waste transported to landfill only reached 464.74 tons / day. This indicates that not all waste can be transported to the landfill Supiturang because Level of Service (LoS) reached 70.49%. This study aims to determine the effectiveness of waste transportation system and determine the fastest route from waste transfers point in Lowokwaru district to the landfill Supiturang. The data collection method in this research were 1) primary survey by interview officials from the Sanitation and Gardening Agency which questions related to the condition of the waste transportation system in waste transfer point, 2) Secondary survey related to data of waste transportation system in Malang City i.e the amount of waste generation in waste transfer point, number of garbage trucks and other data related to the garbage transportation system. To determine the fastest route analyzed by network analyst using ArcGIS software. The results of network analyst show that not all routes are already using the fastest route to the landfill Supiturang.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaitsgory, Vladimir, E-mail: vladimir.gaitsgory@mq.edu.au; Rossomakhine, Sergey, E-mail: serguei.rossomakhine@flinders.edu.au
The paper aims at the development of an apparatus for analysis and construction of near optimal solutions of singularly perturbed (SP) optimal controls problems (that is, problems of optimal control of SP systems) considered on the infinite time horizon. We mostly focus on problems with time discounting criteria but a possibility of the extension of results to periodic optimization problems is discussed as well. Our consideration is based on earlier results on averaging of SP control systems and on linear programming formulations of optimal control problems. The idea that we exploit is to first asymptotically approximate a given problem ofmore » optimal control of the SP system by a certain averaged optimal control problem, then reformulate this averaged problem as an infinite-dimensional linear programming (LP) problem, and then approximate the latter by semi-infinite LP problems. We show that the optimal solution of these semi-infinite LP problems and their duals (that can be found with the help of a modification of an available LP software) allow one to construct near optimal controls of the SP system. We demonstrate the construction with two numerical examples.« less
An overload behavior detection system for engineering transport vehicles based on deep learning
NASA Astrophysics Data System (ADS)
Zhou, Libo; Wu, Gang
2018-04-01
This paper builds an overloaded truck detect system called ITMD to help traffic department automatically identify the engineering transport vehicles (commonly known as `dirt truck') in CCTV and determine whether the truck is overloaded or not. We build the ITMD system based on the Single Shot MultiBox Detector (SSD) model. By constructing the image dataset of the truck and adjusting hyper-parameters of the original SSD neural network, we successfully trained a basic network model which the ITMD system depends on. The basic ITMD system achieves 83.01% mAP on classifying overload/non-overload truck, which is a not bad result. Still, some shortcomings of basic ITMD system have been targeted to enhance: it is easy for the ITMD system to misclassify other similar vehicle as truck. In response to this problem, we optimized the basic ITMD system, which effectively reduced basic model's false recognition rate. The optimized ITMD system achieved 86.18% mAP on the test set, which is better than the 83.01% mAP of the basic ITMD system.
Optimum Climb to Cruise Noise Trajectories for the High Speed Civil Transport
NASA Technical Reports Server (NTRS)
Berton, Jeffrey J.
2003-01-01
By entraining large quantities of ambient air into advanced ejector nozzles, the jet noise of the proposed High Speed Civil Transport (HSCT) is expected to be reduced to levels acceptable for airport-vicinity noise certification. Away from the airport, however, this entrained air is shut off and the engines are powered up from their cutback levels to provide better thrust for the climb to cruise altitude. Unsuppressed jet noise levels propagating to the ground far from the airport are expected to be high. Complicating this problem is the HSCT's relative noise level with respect to the subsonic commercial fleet of 2010, which is expected to be much quieter than it is today after the retirement of older, louder, domestic stage II aircraft by the year 2000. In this study, the classic energy state approximation theory is extended to calculate trajectories that minimize the climb to cruise noise of the HSCT. The optimizer dynamically chooses the optimal altitude velocity trajectory, the engine power setting, and whether the ejector should be stowed or deployed with respect to practical aircraft climb constraints and noise limits.
Transport spatial model for the definition of green routes for city logistics centers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pamučar, Dragan, E-mail: dpamucar@gmail.com; Gigović, Ljubomir, E-mail: gigoviclj@gmail.com; Ćirović, Goran, E-mail: cirovic@sezampro.rs
This paper presents a transport spatial decision support model (TSDSM) for carrying out the optimization of green routes for city logistics centers. The TSDSM model is based on the integration of the multi-criteria method of Weighted Linear Combination (WLC) and the modified Dijkstra algorithm within a geographic information system (GIS). The GIS is used for processing spatial data. The proposed model makes it possible to plan routes for green vehicles and maximize the positive effects on the environment, which can be seen in the reduction of harmful gas emissions and an increase in the air quality in highly populated areas.more » The scheduling of delivery vehicles is given as a problem of optimization in terms of the parameters of: the environment, health, use of space and logistics operating costs. Each of these input parameters was thoroughly examined and broken down in the GIS into criteria which further describe them. The model presented here takes into account the fact that logistics operators have a limited number of environmentally friendly (green) vehicles available. The TSDSM was tested on a network of roads with 127 links for the delivery of goods from the city logistics center to the user. The model supports any number of available environmentally friendly or environmentally unfriendly vehicles consistent with the size of the network and the transportation requirements. - Highlights: • Model for routing light delivery vehicles in urban areas. • Optimization of green routes for city logistics centers. • The proposed model maximizes the positive effects on the environment. • The model was tested on a real network.« less
Performance of Grey Wolf Optimizer on large scale problems
NASA Astrophysics Data System (ADS)
Gupta, Shubham; Deep, Kusum
2017-01-01
For solving nonlinear continuous problems of optimization numerous nature inspired optimization techniques are being proposed in literature which can be implemented to solve real life problems wherein the conventional techniques cannot be applied. Grey Wolf Optimizer is one of such technique which is gaining popularity since the last two years. The objective of this paper is to investigate the performance of Grey Wolf Optimization Algorithm on large scale optimization problems. The Algorithm is implemented on 5 common scalable problems appearing in literature namely Sphere, Rosenbrock, Rastrigin, Ackley and Griewank Functions. The dimensions of these problems are varied from 50 to 1000. The results indicate that Grey Wolf Optimizer is a powerful nature inspired Optimization Algorithm for large scale problems, except Rosenbrock which is a unimodal function.
Using GIS and Ahp for Planning Primer Transportation of Forest Products
NASA Astrophysics Data System (ADS)
Akay, A. E.; Yılmaz, B.
2017-11-01
Primer transportation is one of the most costly and time consuming forestry activities in extraction of timber from forest lands. Transportation methods are essentially determined based on terrain characteristics, especially ground slope. Besides, unsuitable machine selection and unplanned operations may cause ecological damages such as soil disturbance. Soil damage can lead to long term impacts on forest ecosystem. Thus, the optimum transportation methods should be determined by considering not only economic factors but also topographical factors and soil conditions. In recent decades, some of the advanced features of Geographical Information System (GIS) assist decision makers to solve such complex transportation problems with various constraints. In this study, it was aimed to plan forest transportation operation by using GIS integrated Analytical Hierarchy Process (AHP) method, considering ground slope, soil type, and available transportation equipment in the region. This method was implemented within the border of İnegöl Forest Enterprise Chief in the city of Bursa in Turkey. Alternative transportation method included cable system, chute system, skidder, and farm tractor. GIS-based method integrated with AHP found that skidder was the optimal transportation method for about 60% of the study area, while farm tractor was the second most suitable method with 25% ground cover. The results indicated that GIS-based decision support systems can be effectively used as rational, quick, and economic tool for forest transportation planning.
Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints
NASA Astrophysics Data System (ADS)
Kmet', Tibor; Kmet'ová, Mária
2009-09-01
A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.
Aerodynamic shape optimization directed toward a supersonic transport using sensitivity analysis
NASA Technical Reports Server (NTRS)
Baysal, Oktay
1995-01-01
This investigation was conducted from March 1994 to August 1995, primarily, to extend and implement the previously developed aerodynamic design optimization methodologies for the problems related to a supersonic transport design. These methods had demonstrated promise to improve the designs (more specifically, the shape) of aerodynamic surfaces, by coupling optimization algorithms (OA) with Computational Fluid Dynamics (CFD) algorithms via sensitivity analyses (SA) with surface definition methods from Computer Aided Design (CAD). The present extensions of this method and their supersonic implementations have produced wing section designs, delta wing designs, cranked-delta wing designs, and nacelle designs, all of which have been reported in the open literature. Despite the fact that these configurations were highly simplified to be of any practical or commercial use, they served the algorithmic and proof-of-concept objectives of the study very well. The primary cause for the configurational simplifications, other than the usual simplify-to-study the fundamentals reason, were the premature closing of the project. Only after the first of the originally intended three-year term, both the funds and the computer resources supporting the project were abruptly cut due to their severe shortages at the funding agency. Nonetheless, it was shown that the extended methodologies could be viable options in optimizing the design of not only an isolated single-component configuration, but also a multiple-component configuration in supersonic and viscous flow. This allowed designing with the mutual interference of the components being one of the constraints all along the evolution of the shapes.
Knopman, Debra S.; Voss, Clifford I.
1989-01-01
Sampling design for site characterization studies of solute transport in porous media is formulated as a multiobjective problem. Optimal design of a sampling network is a sequential process in which the next phase of sampling is designed on the basis of all available physical knowledge of the system. Three objectives are considered: model discrimination, parameter estimation, and cost minimization. For the first two objectives, physically based measures of the value of information obtained from a set of observations are specified. In model discrimination, value of information of an observation point is measured in terms of the difference in solute concentration predicted by hypothesized models of transport. Points of greatest difference in predictions can contribute the most information to the discriminatory power of a sampling design. Sensitivity of solute concentration to a change in a parameter contributes information on the relative variance of a parameter estimate. Inclusion of points in a sampling design with high sensitivities to parameters tends to reduce variance in parameter estimates. Cost minimization accounts for both the capital cost of well installation and the operating costs of collection and analysis of field samples. Sensitivities, discrimination information, and well installation and sampling costs are used to form coefficients in the multiobjective problem in which the decision variables are binary (zero/one), each corresponding to the selection of an observation point in time and space. The solution to the multiobjective problem is a noninferior set of designs. To gain insight into effective design strategies, a one-dimensional solute transport problem is hypothesized. Then, an approximation of the noninferior set is found by enumerating 120 designs and evaluating objective functions for each of the designs. Trade-offs between pairs of objectives are demonstrated among the models. The value of an objective function for a given design is shown to correspond to the ability of a design to actually meet an objective.
Heuristic Optimization Approach to Selecting a Transport Connection in City Public Transport
NASA Astrophysics Data System (ADS)
Kul'ka, Jozef; Mantič, Martin; Kopas, Melichar; Faltinová, Eva; Kachman, Daniel
2017-02-01
The article presents a heuristic optimization approach to select a suitable transport connection in the framework of a city public transport. This methodology was applied on a part of the public transport in Košice, because it is the second largest city in the Slovak Republic and its network of the public transport creates a complex transport system, which consists of three different transport modes, namely from the bus transport, tram transport and trolley-bus transport. This solution focused on examining the individual transport services and their interconnection in relevant interchange points.
NASA Astrophysics Data System (ADS)
Sahelgozin, M.; Alimohammadi, A.
2015-12-01
Increasing distances between locations of residence and services leads to a large number of daily commutes in urban areas. Developing subway systems has been taken into consideration of transportation managers as a response to this huge amount of travel demands. In developments of subway infrastructures, representing a temporal schedule for trains is an important task; because an appropriately designed timetable decreases Total passenger travel times, Total Operation Costs and Energy Consumption of trains. Since these variables are not positively correlated, subway scheduling is considered as a multi-criteria optimization problem. Therefore, proposing a proper solution for subway scheduling has been always a controversial issue. On the other hand, research on a phenomenon requires a summarized representation of the real world that is known as Model. In this study, it is attempted to model temporal schedule of urban trains that can be applied in Multi-Criteria Subway Schedule Optimization (MCSSO) problems. At first, a conceptual framework is represented for MCSSO. Then, an agent-based simulation environment is implemented to perform Sensitivity Analysis (SA) that is used to extract the interrelations between the framework components. These interrelations is then taken into account in order to construct the proposed model. In order to evaluate performance of the model in MCSSO problems, Tehran subway line no. 1 is considered as the case study. Results of the study show that the model was able to generate an acceptable distribution of Pareto-optimal solutions which are applicable in the real situations while solving a MCSSO is the goal. Also, the accuracy of the model in representing the operation of subway systems was significant.
Design search and optimization in aerospace engineering.
Keane, A J; Scanlan, J P
2007-10-15
In this paper, we take a design-led perspective on the use of computational tools in the aerospace sector. We briefly review the current state-of-the-art in design search and optimization (DSO) as applied to problems from aerospace engineering, focusing on those problems that make heavy use of computational fluid dynamics (CFD). This ranges over issues of representation, optimization problem formulation and computational modelling. We then follow this with a multi-objective, multi-disciplinary example of DSO applied to civil aircraft wing design, an area where this kind of approach is becoming essential for companies to maintain their competitive edge. Our example considers the structure and weight of a transonic civil transport wing, its aerodynamic performance at cruise speed and its manufacturing costs. The goals are low drag and cost while holding weight and structural performance at acceptable levels. The constraints and performance metrics are modelled by a linked series of analysis codes, the most expensive of which is a CFD analysis of the aerodynamics using an Euler code with coupled boundary layer model. Structural strength and weight are assessed using semi-empirical schemes based on typical airframe company practice. Costing is carried out using a newly developed generative approach based on a hierarchical decomposition of the key structural elements of a typical machined and bolted wing-box assembly. To carry out the DSO process in the face of multiple competing goals, a recently developed multi-objective probability of improvement formulation is invoked along with stochastic process response surface models (Krigs). This approach both mitigates the significant run times involved in CFD computation and also provides an elegant way of balancing competing goals while still allowing the deployment of the whole range of single objective optimizers commonly available to design teams.
COPS: Large-scale nonlinearly constrained optimization problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bondarenko, A.S.; Bortz, D.M.; More, J.J.
2000-02-10
The authors have started the development of COPS, a collection of large-scale nonlinearly Constrained Optimization Problems. The primary purpose of this collection is to provide difficult test cases for optimization software. Problems in the current version of the collection come from fluid dynamics, population dynamics, optimal design, and optimal control. For each problem they provide a short description of the problem, notes on the formulation of the problem, and results of computational experiments with general optimization solvers. They currently have results for DONLP2, LANCELOT, MINOS, SNOPT, and LOQO.
NASA Astrophysics Data System (ADS)
Ghaderi, F.; Pahlavani, P.
2015-12-01
A multimodal multi-criteria route planning (MMRP) system provides an optimal multimodal route from an origin point to a destination point considering two or more criteria in a way this route can be a combination of public and private transportation modes. In this paper, the simulate annealing (SA) and the fuzzy analytical hierarchy process (fuzzy AHP) were combined in order to find this route. In this regard, firstly, the effective criteria that are significant for users in their trip were determined. Then the weight of each criterion was calculated using the fuzzy AHP weighting method. The most important characteristic of this weighting method is the use of fuzzy numbers that aids the users to consider their uncertainty in pairwise comparison of criteria. After determining the criteria weights, the proposed SA algorithm were used for determining an optimal route from an origin to a destination. One of the most important problems in a meta-heuristic algorithm is trapping in local minima. In this study, five transportation modes, including subway, bus rapid transit (BRT), taxi, walking, and bus were considered for moving between nodes. Also, the fare, the time, the user's bother, and the length of the path were considered as effective criteria for solving the problem. The proposed model was implemented in an area in centre of Tehran in a GUI MATLAB programming language. The results showed a high efficiency and speed of the proposed algorithm that support our analyses.
Estimated Benefits of Variable-Geometry Wing Camber Control for Transport Aircraft
NASA Technical Reports Server (NTRS)
Bolonkin, Alexander; Gilyard, Glenn B.
1999-01-01
Analytical benefits of variable-camber capability on subsonic transport aircraft are explored. Using aerodynamic performance models, including drag as a function of deflection angle for control surfaces of interest, optimal performance benefits of variable camber are calculated. Results demonstrate that if all wing trailing-edge surfaces are available for optimization, drag can be significantly reduced at most points within the flight envelope. The optimization approach developed and illustrated for flight uses variable camber for optimization of aerodynamic efficiency (maximizing the lift-to-drag ratio). Most transport aircraft have significant latent capability in this area. Wing camber control that can affect performance optimization for transport aircraft includes symmetric use of ailerons and flaps. In this paper, drag characteristics for aileron and flap deflections are computed based on analytical and wind-tunnel data. All calculations based on predictions for the subject aircraft and the optimal surface deflection are obtained by simple interpolation for given conditions. An algorithm is also presented for computation of optimal surface deflection for given conditions. Benefits of variable camber for a transport configuration using a simple trailing-edge control surface system can approach more than 10 percent, especially for nonstandard flight conditions. In the cruise regime, the benefit is 1-3 percent.
NASA Astrophysics Data System (ADS)
Sempau, Josep; Wilderman, Scott J.; Bielajew, Alex F.
2000-08-01
A new Monte Carlo (MC) algorithm, the `dose planning method' (DPM), and its associated computer program for simulating the transport of electrons and photons in radiotherapy class problems employing primary electron beams, is presented. DPM is intended to be a high-accuracy MC alternative to the current generation of treatment planning codes which rely on analytical algorithms based on an approximate solution of the photon/electron Boltzmann transport equation. For primary electron beams, DPM is capable of computing 3D dose distributions (in 1 mm3 voxels) which agree to within 1% in dose maximum with widely used and exhaustively benchmarked general-purpose public-domain MC codes in only a fraction of the CPU time. A representative problem, the simulation of 1 million 10 MeV electrons impinging upon a water phantom of 1283 voxels of 1 mm on a side, can be performed by DPM in roughly 3 min on a modern desktop workstation. DPM achieves this performance by employing transport mechanics and electron multiple scattering distribution functions which have been derived to permit long transport steps (of the order of 5 mm) which can cross heterogeneity boundaries. The underlying algorithm is a `mixed' class simulation scheme, with differential cross sections for hard inelastic collisions and bremsstrahlung events described in an approximate manner to simplify their sampling. The continuous energy loss approximation is employed for energy losses below some predefined thresholds, and photon transport (including Compton, photoelectric absorption and pair production) is simulated in an analogue manner. The δ-scattering method (Woodcock tracking) is adopted to minimize the computational costs of transporting photons across voxels.
Optimal damper placement research
NASA Astrophysics Data System (ADS)
Smirnov, Vladimir; Kuzhin, Bulat
2017-10-01
Nowadays increased noise and vibration pollution on technopark and research laboratories territories, which is negatively influencing on production of high-precision measuring instruments. The problem is actual for transport hubs, which experience influence of machines, vehicles, trains and planes. Energy efficiency is one of major functions in modern road transport development. The problem of environmental pollution, lack of energy resources and energy efficiency requires research, production and implementation of energy efficient materials that would be the foundation of environmentally sustainable transport infrastructure in road traffic. Improving the efficiency of energy use is a leading option to gain better energy security, improve industry profitability and competitiveness, and reduce the overall energy sector impacts on climate change. This paper has next indirect goals. Research impact of vibration on constructions, such as bus and train stations, terminals, which are mostly exposed to oscillation. Extend the buildings operation by decreasing the negative influence. Reduce expenses on maintenance and repair works. It is important not to forget about seismic protection, which is actual nowadays, when the safety stands first. Analysis of devastating earthquakes for last few years proves reasonableness of application such systems. The article is dedicated to learning dependence of damper location on natural frequency. As a model for analyze was simulated concrete construction with variable profile. We used program complex Patran for analyzing the model.
Generalized bipartite quantum state discrimination problems with sequential measurements
NASA Astrophysics Data System (ADS)
Nakahira, Kenji; Kato, Kentaro; Usuda, Tsuyoshi Sasaki
2018-02-01
We investigate an optimization problem of finding quantum sequential measurements, which forms a wide class of state discrimination problems with the restriction that only local operations and one-way classical communication are allowed. Sequential measurements from Alice to Bob on a bipartite system are considered. Using the fact that the optimization problem can be formulated as a problem with only Alice's measurement and is convex programming, we derive its dual problem and necessary and sufficient conditions for an optimal solution. Our results are applicable to various practical optimization criteria, including the Bayes criterion, the Neyman-Pearson criterion, and the minimax criterion. In the setting of the problem of finding an optimal global measurement, its dual problem and necessary and sufficient conditions for an optimal solution have been widely used to obtain analytical and numerical expressions for optimal solutions. Similarly, our results are useful to obtain analytical and numerical expressions for optimal sequential measurements. Examples in which our results can be used to obtain an analytical expression for an optimal sequential measurement are provided.
Intelligent emission-sensitive routing for plugin hybrid electric vehicles.
Sun, Zhonghao; Zhou, Xingshe
2016-01-01
The existing transportation sector creates heavily environmental impacts and is a prime cause for the current climate change. The need to reduce emissions from this sector has stimulated efforts to speed up the application of electric vehicles (EVs). A subset of EVs, called plug-in hybrid electric vehicles (PHEVs), backup batteries with combustion engine, which makes PHEVs have a comparable driving range to conventional vehicles. However, this hybridization comes at a cost of higher emissions than all-electric vehicles. This paper studies the routing problem for PHEVs to minimize emissions. The existing shortest-path based algorithms cannot be applied to solving this problem, because of the several new challenges: (1) an optimal route may contain circles caused by detour for recharging; (2) emissions of PHEVs not only depend on the driving distance, but also depend on the terrain and the state of charge (SOC) of batteries; (3) batteries can harvest energy by regenerative braking, which makes some road segments have negative energy consumption. To address these challenges, this paper proposes a green navigation algorithm (GNA) which finds the optimal strategies: where to go and where to recharge. GNA discretizes the SOC, then makes the PHEV routing problem to satisfy the principle of optimality. Finally, GNA adopts dynamic programming to solve the problem. We evaluate GNA using synthetic maps generated by the delaunay triangulation. The results show that GNA can save more than 10 % energy and reduce 10 % emissions when compared to the shortest path algorithm. We also observe that PHEVs with the battery capacity of 10-15 KWh detour most and nearly no detour when larger than 30 KWh. This observation gives some insights when developing PHEVs.
Optimization of heterogeneous Bin packing using adaptive genetic algorithm
NASA Astrophysics Data System (ADS)
Sridhar, R.; Chandrasekaran, M.; Sriramya, C.; Page, Tom
2017-03-01
This research is concentrates on a very interesting work, the bin packing using hybrid genetic approach. The optimal and feasible packing of goods for transportation and distribution to various locations by satisfying the practical constraints are the key points in this project work. As the number of boxes for packing can not be predicted in advance and the boxes may not be of same category always. It also involves many practical constraints that are why the optimal packing makes much importance to the industries. This work presents a combinational of heuristic Genetic Algorithm (HGA) for solving Three Dimensional (3D) Single container arbitrary sized rectangular prismatic bin packing optimization problem by considering most of the practical constraints facing in logistic industries. This goal was achieved in this research by optimizing the empty volume inside the container using genetic approach. Feasible packing pattern was achieved by satisfying various practical constraints like box orientation, stack priority, container stability, weight constraint, overlapping constraint, shipment placement constraint. 3D bin packing problem consists of ‘n’ number of boxes being to be packed in to a container of standard dimension in such a way to maximize the volume utilization and in-turn profit. Furthermore, Boxes to be packed may be of arbitrary sizes. The user input data are the number of bins, its size, shape, weight, and constraints if any along with standard container dimension. This user input were stored in the database and encoded to string (chromosomes) format which were normally acceptable by GA. GA operators were allowed to act over these encoded strings for finding the best solution.
NASA Astrophysics Data System (ADS)
Khogeer, Ahmed Sirag
2005-11-01
Petroleum refining is a capital-intensive business. With stringent environmental regulations on the processing industry and declining refining margins, political instability, increased risk of war and terrorist attacks in which refineries and fuel transportation grids may be targeted, higher pressures are exerted on refiners to optimize performance and find the best combination of feed and processes to produce salable products that meet stricter product specifications, while at the same time meeting refinery supply commitments and of course making profit. This is done through multi objective optimization. For corporate refining companies and at the national level, Intea-Refinery and Inter-Refinery optimization is the second step in optimizing the operation of the whole refining chain as a single system. Most refinery-wide optimization methods do not cover multiple objectives such as minimizing environmental impact, avoiding catastrophic failures, or enhancing product spec upgrade effects. This work starts by carrying out a refinery-wide, single objective optimization, and then moves to multi objective-single refinery optimization. The last step is multi objective-multi refinery optimization, the objectives of which are analysis of the effects of economic, environmental, product spec, strategic, and catastrophic failure. Simulation runs were carried out using both MATLAB and ASPEN PIMS utilizing nonlinear techniques to solve the optimization problem. The results addressed the need to debottleneck some refineries or transportation media in order to meet the demand for essential products under partial or total failure scenarios. They also addressed how importing some high spec products can help recover some of the losses and what is needed in order to accomplish this. In addition, the results showed nonlinear relations among local and global objectives for some refineries. The results demonstrate that refineries can have a local multi objective optimum that does not follow the same trends as either global or local single objective optimums. Catastrophic failure effects on refinery operations and on local objectives are more significant than environmental objective effects, and changes in the capacity or the local objectives follow a discrete behavioral pattern, in contrast to environmental objective cases in which the effects are smoother. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Bode, F.; Nowak, W.; Reed, P. M.; Reuschen, S.
2016-12-01
Drinking-water well catchments need effective early-warning monitoring networks. Groundwater water supply wells in complex urban environments are in close proximity to a myriad of potential industrial pollutant sources that could irreversibly damage their source aquifers. These urban environments pose fiscal and physical challenges to designing monitoring networks. Ideal early-warning monitoring networks would satisfy three objectives: to detect (1) all potential contaminations within the catchment (2) as early as possible before they reach the pumping wells, (3) while minimizing costs. Obviously, the ideal case is nonexistent, so we search for tradeoffs using multiobjective optimization. The challenge of this optimization problem is the high number of potential monitoring-well positions (the search space) and the non-linearity of the underlying groundwater flow-and-transport problem. This study evaluates (1) different ways to effectively restrict the search space in an efficient way, with and without expert knowledge, (2) different methods to represent the search space during the optimization and (3) the influence of incremental increases in uncertainty in the system. Conductivity, regional flow direction and potential source locations are explored as key uncertainties. We show the need and the benefit of our methods by comparing optimized monitoring networks for different uncertainty levels with networks that seek to effectively exploit expert knowledge. The study's main contributions are the different approaches restricting and representing the search space. The restriction algorithms are based on a point-wise comparison of decision elements of the search space. The representation of the search space can be either binary or continuous. For both cases, the search space must be adjusted properly. Our results show the benefits and drawbacks of binary versus continuous search space representations and the high potential of automated search space restriction algorithms for high-dimensional, highly non-linear optimization problems.
Modified allocation capacitated planning model in blood supply chain management
NASA Astrophysics Data System (ADS)
Mansur, A.; Vanany, I.; Arvitrida, N. I.
2018-04-01
Blood supply chain management (BSCM) is a complex process management that involves many cooperating stakeholders. BSCM involves four echelon processes, which are blood collection or procurement, production, inventory, and distribution. This research develops an optimization model of blood distribution planning. The efficiency of decentralization and centralization policies in a blood distribution chain are compared, by optimizing the amount of blood delivered from a blood center to a blood bank. This model is developed based on allocation problem of capacitated planning model. At the first stage, the capacity and the cost of transportation are considered to create an initial capacitated planning model. Then, the inventory holding and shortage costs are added to the model. These additional parameters of inventory costs lead the model to be more realistic and accurate.
Mathematical Analysis and Optimization of Infiltration Processes
NASA Technical Reports Server (NTRS)
Chang, H.-C.; Gottlieb, D.; Marion, M.; Sheldon, B. W.
1997-01-01
A variety of infiltration techniques can be used to fabricate solid materials, particularly composites. In general these processes can be described with at least one time dependent partial differential equation describing the evolution of the solid phase, coupled to one or more partial differential equations describing mass transport through a porous structure. This paper presents a detailed mathematical analysis of a relatively simple set of equations which is used to describe chemical vapor infiltration. The results demonstrate that the process is controlled by only two parameters, alpha and beta. The optimization problem associated with minimizing the infiltration time is also considered. Allowing alpha and beta to vary with time leads to significant reductions in the infiltration time, compared with the conventional case where alpha and beta are treated as constants.
Efficient protocols for Stirling heat engines at the micro-scale
NASA Astrophysics Data System (ADS)
Muratore-Ginanneschi, Paolo; Schwieger, Kay
2015-10-01
We investigate the thermodynamic efficiency of sub-micro-scale Stirling heat engines operating under the conditions described by overdamped stochastic thermodynamics. We show how to construct optimal protocols such that at maximum power the efficiency attains for constant isotropic mobility the universal law η=2 ηC/(4-ηC) , where ηC is the efficiency of an ideal Carnot cycle. We show that these protocols are specified by the solution of an optimal mass transport problem. Such solution can be determined explicitly using well-known Monge-Ampère-Kantorovich reconstruction algorithms. Furthermore, we show that the same law describes the efficiency of heat engines operating at maximum work over short time periods. Finally, we illustrate the straightforward extension of these results to cases when the mobility is anisotropic and temperature dependent.
Vector processing efficiency of plasma MHD codes by use of the FACOM 230-75 APU
NASA Astrophysics Data System (ADS)
Matsuura, T.; Tanaka, Y.; Naraoka, K.; Takizuka, T.; Tsunematsu, T.; Tokuda, S.; Azumi, M.; Kurita, G.; Takeda, T.
1982-06-01
In the framework of pipelined vector architecture, the efficiency of vector processing is assessed with respect to plasma MHD codes in nuclear fusion research. By using a vector processor, the FACOM 230-75 APU, the limit of the enhancement factor due to parallelism of current vector machines is examined for three numerical codes based on a fluid model. Reasonable speed-up factors of approximately 6,6 and 4 times faster than the highly optimized scalar version are obtained for ERATO (linear stability code), AEOLUS-R1 (nonlinear stability code) and APOLLO (1-1/2D transport code), respectively. Problems of the pipelined vector processors are discussed from the viewpoint of restructuring, optimization and choice of algorithms. In conclusion, the important concept of "concurrency within pipelined parallelism" is emphasized.
NASA Astrophysics Data System (ADS)
Cotar, Codina; Friesecke, Gero; Klüppelberg, Claudia
2018-06-01
We prove rigorously that the exact N-electron Hohenberg-Kohn density functional converges in the strongly interacting limit to the strictly correlated electrons (SCE) functional, and that the absolute value squared of the associated constrained search wavefunction tends weakly in the sense of probability measures to a minimizer of the multi-marginal optimal transport problem with Coulomb cost associated to the SCE functional. This extends our previous work for N = 2 ( Cotar etal. in Commun Pure Appl Math 66:548-599, 2013). The correct limit problem has been derived in the physics literature by Seidl (Phys Rev A 60 4387-4395, 1999) and Seidl, Gorigiorgi and Savin (Phys Rev A 75:042511 1-12, 2007); in these papers the lack of a rigorous proofwas pointed out.We also give amathematical counterexample to this type of result, by replacing the constraint of given one-body density—an infinite dimensional quadratic expression in the wavefunction—by an infinite-dimensional quadratic expression in the wavefunction and its gradient. Connections with the Lawrentiev phenomenon in the calculus of variations are indicated.
A joint economic lot-sizing problem with fuzzy demand, defective items and environmental impacts
NASA Astrophysics Data System (ADS)
Jauhari, W. A.; Laksono, P. W.
2017-11-01
In this paper, a joint economic lot-sizing problem consisting of a vendor and a buyer was proposed. A buyer ordered products from a vendor to fulfill end customer’s demand. A produced a batch of products, and delivered it to the buyer. The production process in the vendor was imperfect and produced a number of defective products. Production rate was assumed to be adjustable to control the output of vendor’s production. A continuous review policy was adopted by the buyer to manage his inventory level. In addition, an average annual demand was considered to be fuzzy rather than constant. The proposed model contributed to the current inventory literature by allowing the inclusion of fuzzy annual demand, imperfect production emission cost, and adjustable production rate. The proposed model also considered carbon emission cost which was resulted from the transportation activity. A mathematical model was developed for obtaining the optimal ordering quantity, safety factor and the number of deliveries so the joint total cost was minimized. Furthermore, an iterative procedure was suggested to determine the optimal solutions.
Parallelization of the preconditioned IDR solver for modern multicore computer systems
NASA Astrophysics Data System (ADS)
Bessonov, O. A.; Fedoseyev, A. I.
2012-10-01
This paper present the analysis, parallelization and optimization approach for the large sparse matrix solver CNSPACK for modern multicore microprocessors. CNSPACK is an advanced solver successfully used for coupled solution of stiff problems arising in multiphysics applications such as CFD, semiconductor transport, kinetic and quantum problems. It employs iterative IDR algorithm with ILU preconditioning (user chosen ILU preconditioning order). CNSPACK has been successfully used during last decade for solving problems in several application areas, including fluid dynamics and semiconductor device simulation. However, there was a dramatic change in processor architectures and computer system organization in recent years. Due to this, performance criteria and methods have been revisited, together with involving the parallelization of the solver and preconditioner using Open MP environment. Results of the successful implementation for efficient parallelization are presented for the most advances computer system (Intel Core i7-9xx or two-processor Xeon 55xx/56xx).
NASA Technical Reports Server (NTRS)
Baecher, Juergen; Bandte, Oliver; DeLaurentis, Dan; Lewis, Kemper; Sicilia, Jose; Soboleski, Craig
1995-01-01
This report documents the efforts of a Georgia Tech High Speed Civil Transport (HSCT) aerospace student design team in completing a design methodology demonstration under NASA's Advanced Design Program (ADP). Aerodynamic and propulsion analyses are integrated into the synthesis code FLOPS in order to improve its prediction accuracy. Executing the integrated product and process development (IPPD) methodology proposed at the Aerospace Systems Design Laboratory (ASDL), an improved sizing process is described followed by a combined aero-propulsion optimization, where the objective function, average yield per revenue passenger mile ($/RPM), is constrained by flight stability, noise, approach speed, and field length restrictions. Primary goals include successful demonstration of the application of the response surface methodolgy (RSM) to parameter design, introduction to higher fidelity disciplinary analysis than normally feasible at the conceptual and early preliminary level, and investigations of relationships between aerodynamic and propulsion design parameters and their effect on the objective function, $/RPM. A unique approach to aircraft synthesis is developed in which statistical methods, specifically design of experiments and the RSM, are used to more efficiently search the design space for optimum configurations. In particular, two uses of these techniques are demonstrated. First, response model equations are formed which represent complex analysis in the form of a regression polynomial. Next, a second regression equation is constructed, not for modeling purposes, but instead for the purpose of optimization at the system level. Such an optimization problem with the given tools normally would be difficult due to the need for hard connections between the various complex codes involved. The statistical methodology presents an alternative and is demonstrated via an example of aerodynamic modeling and planform optimization for a HSCT.
Hybrid parallel code acceleration methods in full-core reactor physics calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courau, T.; Plagne, L.; Ponicot, A.
2012-07-01
When dealing with nuclear reactor calculation schemes, the need for three dimensional (3D) transport-based reference solutions is essential for both validation and optimization purposes. Considering a benchmark problem, this work investigates the potential of discrete ordinates (Sn) transport methods applied to 3D pressurized water reactor (PWR) full-core calculations. First, the benchmark problem is described. It involves a pin-by-pin description of a 3D PWR first core, and uses a 8-group cross-section library prepared with the DRAGON cell code. Then, a convergence analysis is performed using the PENTRAN parallel Sn Cartesian code. It discusses the spatial refinement and the associated angular quadraturemore » required to properly describe the problem physics. It also shows that initializing the Sn solution with the EDF SPN solver COCAGNE reduces the number of iterations required to converge by nearly a factor of 6. Using a best estimate model, PENTRAN results are then compared to multigroup Monte Carlo results obtained with the MCNP5 code. Good consistency is observed between the two methods (Sn and Monte Carlo), with discrepancies that are less than 25 pcm for the k{sub eff}, and less than 2.1% and 1.6% for the flux at the pin-cell level and for the pin-power distribution, respectively. (authors)« less
Minimizing stellarator turbulent transport by geometric optimization
NASA Astrophysics Data System (ADS)
Mynick, H. E.
2010-11-01
Up to now, a transport optimized stellarator has meant one optimized to minimize neoclassical transport,ootnotetextH.E. Mynick, Phys. Plasmas 13, 058102 (2006). while the task of also mitigating turbulent transport, usually the dominant transport channel in such designs, has not been addressed, due to the complexity of plasma turbulence in stellarators. However, with the advent of gyrokinetic codes valid for 3D geometries such as GENE,ootnotetextF. Jenko, W. Dorland, M. Kotschenreuther, B.N. Rogers, Phys. Plasmas 7, 1904 (2000). and stellarator optimization codes such as STELLOPT,ootnotetextA. Reiman, G. Fu, S. Hirshman, L. Ku, et al, Plasma Phys. Control. Fusion 41 B273 (1999). designing stellarators to also reduce turbulent transport has become a realistic possibility. We have been using GENE to characterize the dependence of turbulent transport on stellarator geometry,ootnotetextH.E Mynick, P.A. Xanthopoulos, A.H. Boozer, Phys.Plasmas 16 110702 (2009). and to identify key geometric quantities which control the transport level. From the information obtained from these GENE studies, we are developing proxy functions which approximate the level of turbulent transport one may expect in a machine of a given geometry, and have extended STELLOPT to use these in its cost function, obtaining stellarator configurations with turbulent transport levels substantially lower than those in the original designs.
Fate of Trace Metals in Anaerobic Digestion.
Fermoso, F G; van Hullebusch, E D; Guibaud, G; Collins, G; Svensson, B H; Carliell-Marquet, C; Vink, J P M; Esposito, G; Frunzo, L
2015-01-01
A challenging, and largely uncharted, area of research in the field of anaerobic digestion science and technology is in understanding the roles of trace metals in enabling biogas production. This is a major knowledge gap and a multifaceted problem involving metal chemistry; physical interactions of metal and solids; microbiology; and technology optimization. Moreover, the fate of trace metals, and the chemical speciation and transport of trace metals in environments--often agricultural lands receiving discharge waters from anaerobic digestion processes--simultaneously represents challenges for environmental protection and opportunities to close process loops in anaerobic digestion.
NASA Technical Reports Server (NTRS)
Dowell, E. H.
1976-01-01
Internal sound fields are considered. Specifically, the interaction between the (acoustic) sound pressure field and the (elastic) flexible wall of an enclosure is discussed. Such problems frequently arise when the vibrating walls of a transportation vehicle induce a significant internal sound field. Cabin noise in various flight vehicles and the internal sound field in an automobile are representative examples. A mathematical model, simplified solutions, and numerical results and comparisons with representative experimental data are briefly considered. An overall conclusion is that reasonable grounds for optimism exist with respect to available theoretical models and their predictive capability.
Shoemaker, W C; Patil, R; Appel, P L; Kram, H B
1992-11-01
A generalized decision tree or clinical algorithm for treatment of high-risk elective surgical patients was developed from a physiologic model based on empirical data. First, a large data bank was used to do the following: (1) describe temporal hemodynamic and oxygen transport patterns that interrelate cardiac, pulmonary, and tissue perfusion functions in survivors and nonsurvivors; (2) define optimal therapeutic goals based on the supranormal oxygen transport values of high-risk postoperative survivors; (3) compare the relative effectiveness of alternative therapies in a wide variety of clinical and physiologic conditions; and (4) to develop criteria for titration of therapy to the endpoints of the supranormal optimal goals using cardiac index (CI), oxygen delivery (DO2), and oxygen consumption (VO2) as proxy outcome measures. Second, a general purpose algorithm was generated from these data and tested in preoperatively randomized clinical trials of high-risk surgical patients. Improved outcome was demonstrated with this generalized algorithm. The concept that the supranormal values represent compensations that have survival value has been corroborated by several other groups. We now propose a unique approach to refine the generalized algorithm to develop customized algorithms and individualized decision analysis for each patient's unique problems. The present article describes a preliminary evaluation of the feasibility of artificial intelligence techniques to accomplish individualized algorithms that may further improve patient care and outcome.
NASA Astrophysics Data System (ADS)
Zhang, Yongqin; Iman, Kory
2018-05-01
Fuel-based transportation is one of the major contributors to poor air quality in the United States. Electric Vehicle (EV) is potentially the cleanest transportation technology to our environment. This research developed a spatial suitability model to identify optimal geographic locations for installing EV charging stations for travelling public. The model takes into account a variety of positive and negative factors to identify prime locations for installing EV charging stations in Wasatch Front, Utah, where automobile emission causes severe air pollution due to atmospheric inversion condition near the valley floor. A walkable factor grid was created to store index scores from input factor layers to determine prime locations. 27 input factors including land use, demographics, employment centers etc. were analyzed. Each factor layer was analyzed to produce a summary statistic table to determine the site suitability. Potential locations that exhibit high EV charging usage were identified and scored. A hot spot map was created to demonstrate high, moderate, and low suitability areas for installing EV charging stations. A spatially well distributed EV charging system was then developed, aiming to reduce "range anxiety" from traveling public. This spatial methodology addresses the complex problem of locating and establishing a robust EV charging station infrastructure for decision makers to build a clean transportation infrastructure, and eventually improve environment pollution.
Algorithms for bilevel optimization
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Dennis, J. E., Jr.
1994-01-01
General multilevel nonlinear optimization problems arise in design of complex systems and can be used as a means of regularization for multi-criteria optimization problems. Here, for clarity in displaying our ideas, we restrict ourselves to general bi-level optimization problems, and we present two solution approaches. Both approaches use a trust-region globalization strategy, and they can be easily extended to handle the general multilevel problem. We make no convexity assumptions, but we do assume that the problem has a nondegenerate feasible set. We consider necessary optimality conditions for the bi-level problem formulations and discuss results that can be extended to obtain multilevel optimization formulations with constraints at each level.
Modeling marine surface microplastic transport to assess optimal removal locations
NASA Astrophysics Data System (ADS)
Sherman, Peter; van Sebille, Erik
2016-01-01
Marine plastic pollution is an ever-increasing problem that demands immediate mitigation and reduction plans. Here, a model based on satellite-tracked buoy observations and scaled to a large data set of observations on microplastic from surface trawls was used to simulate the transport of plastics floating on the ocean surface from 2015 to 2025, with the goal to assess the optimal marine microplastic removal locations for two scenarios: removing the most surface microplastic and reducing the impact on ecosystems, using plankton growth as a proxy. The simulations show that the optimal removal locations are primarily located off the coast of China and in the Indonesian Archipelago for both scenarios. Our estimates show that 31% of the modeled microplastic mass can be removed by 2025 using 29 plastic collectors operating at a 45% capture efficiency from these locations, compared to only 17% when the 29 plastic collectors are moored in the North Pacific garbage patch, between Hawaii and California. The overlap of ocean surface microplastics and phytoplankton growth can be reduced by 46% at our proposed locations, while sinks in the North Pacific can only reduce the overlap by 14%. These results are an indication that oceanic plastic removal might be more effective in removing a greater microplastic mass and in reducing potential harm to marine life when closer to shore than inside the plastic accumulation zones in the centers of the gyres.
Optimization of a Multi-Product Intra-Supply Chain System with Failure in Rework.
Chiu, Singa Wang; Chen, Shin-Wei; Chang, Chih-Kai; Chiu, Yuan-Shyi Peter
2016-01-01
Globalization has created tremendous opportunities, but also made business environment highly competitive and turbulent. To gain competitive advantage, management of present-day transnational firms always seeks options to trim down various transaction and coordination costs, especially in the area of controllable intra-supply chain system. This study investigates a multi-product intra-supply chain system with failure in rework. To achieve maximum machine utilization, multiple products are fabricated in succession on a single machine. During the process, production of some defective items is inevitable. Reworking of nonconforming items is used to reduce the quality cost in production and achieving the goal of lower overall production cost. Because reworks are sometimes unsuccessful, failures in rework are also considered in this study. Finished goods for each product are transported to the sales offices when the entire production lot is quality assured after rework. A multi-delivery policy is used, wherein fixed quantity n installments of the finished lot are transported at fixed intervals during delivery time. The objective is to jointly determine the common production cycle time and the number of deliveries needed to minimize the long-term expected production-inventory-delivery costs for the problem. With the help of a mathematical model along with optimization technique, the optimal production-shipment policy is obtained. We have used a numerical example to demonstrate applicability of the result of our research.
Optimization of a Multi–Product Intra-Supply Chain System with Failure in Rework
2016-01-01
Globalization has created tremendous opportunities, but also made business environment highly competitive and turbulent. To gain competitive advantage, management of present-day transnational firms always seeks options to trim down various transaction and coordination costs, especially in the area of controllable intra-supply chain system. This study investigates a multi–product intra-supply chain system with failure in rework. To achieve maximum machine utilization, multiple products are fabricated in succession on a single machine. During the process, production of some defective items is inevitable. Reworking of nonconforming items is used to reduce the quality cost in production and achieving the goal of lower overall production cost. Because reworks are sometimes unsuccessful, failures in rework are also considered in this study. Finished goods for each product are transported to the sales offices when the entire production lot is quality assured after rework. A multi-delivery policy is used, wherein fixed quantity n installments of the finished lot are transported at fixed intervals during delivery time. The objective is to jointly determine the common production cycle time and the number of deliveries needed to minimize the long–term expected production–inventory–delivery costs for the problem. With the help of a mathematical model along with optimization technique, the optimal production–shipment policy is obtained. We have used a numerical example to demonstrate applicability of the result of our research. PMID:27918588
Direct Method Transcription for a Human-Class Translunar Injection Trajectory Optimization
NASA Technical Reports Server (NTRS)
Witzberger, Kevin E.; Zeiler, Tom
2012-01-01
This paper presents a new trajectory optimization software package developed in the framework of a low-to-high fidelity 3 degrees-of-freedom (DOF)/6-DOF vehicle simulation program named Mission Analysis Simulation Tool in Fortran (MASTIF) and its application to a translunar trajectory optimization problem. The functionality of the developed optimization package is implemented as a new "mode" in generalized settings to make it applicable for a general trajectory optimization problem. In doing so, a direct optimization method using collocation is employed for solving the problem. Trajectory optimization problems in MASTIF are transcribed to a constrained nonlinear programming (NLP) problem and solved with SNOPT, a commercially available NLP solver. A detailed description of the optimization software developed is provided as well as the transcription specifics for the translunar injection (TLI) problem. The analysis includes a 3-DOF trajectory TLI optimization and a 3-DOF vehicle TLI simulation using closed-loop guidance.
Transportation Network Analysis and Decomposition Methods
DOT National Transportation Integrated Search
1978-03-01
The report outlines research in transportation network analysis using decomposition techniques as a basis for problem solutions. Two transportation network problems were considered in detail: a freight network flow problem and a scheduling problem fo...
Robust Optimal Adaptive Control Method with Large Adaptive Gain
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2009-01-01
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.
Parametric study of a canard-configured transport using conceptual design optimization
NASA Technical Reports Server (NTRS)
Arbuckle, P. D.; Sliwa, S. M.
1985-01-01
Constrained-parameter optimization is used to perform optimal conceptual design of both canard and conventional configurations of a medium-range transport. A number of design constants and design constraints are systematically varied to compare the sensitivities of canard and conventional configurations to a variety of technology assumptions. Main-landing-gear location and canard surface high-lift performance are identified as critical design parameters for a statically stable, subsonic, canard-configured transport.
Optimal recombination in genetic algorithms for flowshop scheduling problems
NASA Astrophysics Data System (ADS)
Kovalenko, Julia
2016-10-01
The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Second SIAM Conference on Computational Science and Engineering was held in San Diego from February 10-12, 2003. Total conference attendance was 553. This is a 23% increase in attendance over the first conference. The focus of this conference was to draw attention to the tremendous range of major computational efforts on large problems in science and engineering, to promote the interdisciplinary culture required to meet these large-scale challenges, and to encourage the training of the next generation of computational scientists. Computational Science & Engineering (CS&E) is now widely accepted, along with theory and experiment, as a crucial third modemore » of scientific investigation and engineering design. Aerospace, automotive, biological, chemical, semiconductor, and other industrial sectors now rely on simulation for technical decision support. For federal agencies also, CS&E has become an essential support for decisions on resources, transportation, and defense. CS&E is, by nature, interdisciplinary. It grows out of physical applications and it depends on computer architecture, but at its heart are powerful numerical algorithms and sophisticated computer science techniques. From an applied mathematics perspective, much of CS&E has involved analysis, but the future surely includes optimization and design, especially in the presence of uncertainty. Another mathematical frontier is the assimilation of very large data sets through such techniques as adaptive multi-resolution, automated feature search, and low-dimensional parameterization. The themes of the 2003 conference included, but were not limited to: Advanced Discretization Methods; Computational Biology and Bioinformatics; Computational Chemistry and Chemical Engineering; Computational Earth and Atmospheric Sciences; Computational Electromagnetics; Computational Fluid Dynamics; Computational Medicine and Bioengineering; Computational Physics and Astrophysics; Computational Solid Mechanics and Materials; CS&E Education; Meshing and Adaptivity; Multiscale and Multiphysics Problems; Numerical Algorithms for CS&E; Discrete and Combinatorial Algorithms for CS&E; Inverse Problems; Optimal Design, Optimal Control, and Inverse Problems; Parallel and Distributed Computing; Problem-Solving Environments; Software and Wddleware Systems; Uncertainty Estimation and Sensitivity Analysis; and Visualization and Computer Graphics.« less
Mathematical model of highways network optimization
NASA Astrophysics Data System (ADS)
Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.
2017-12-01
The article deals with the issue of highways network design. Studies show that the main requirement from road transport for the road network is to ensure the realization of all the transport links served by it, with the least possible cost. The goal of optimizing the network of highways is to increase the efficiency of transport. It is necessary to take into account a large number of factors that make it difficult to quantify and qualify their impact on the road network. In this paper, we propose building an optimal variant for locating the road network on the basis of a mathematical model. The article defines the criteria for optimality and objective functions that reflect the requirements for the road network. The most fully satisfying condition for optimality is the minimization of road and transport costs. We adopted this indicator as a criterion of optimality in the economic-mathematical model of a network of highways. Studies have shown that each offset point in the optimal binding road network is associated with all other corresponding points in the directions providing the least financial costs necessary to move passengers and cargo from this point to the other corresponding points. The article presents general principles for constructing an optimal network of roads.
Optimisation of logistics processes of energy grass collection
NASA Astrophysics Data System (ADS)
Bányai, Tamás.
2010-05-01
The collection of energy grass is a logistics-intensive process [1]. The optimal design and control of transportation and collection subprocesses is a critical point of the supply chain. To avoid irresponsible decisions by right of experience and intuition, the optimisation and analysis of collection processes based on mathematical models and methods is the scientific suggestible way. Within the frame of this work, the author focuses on the optimisation possibilities of the collection processes, especially from the point of view transportation and related warehousing operations. However the developed optimisation methods in the literature [2] take into account the harvesting processes, county-specific yields, transportation distances, erosion constraints, machinery specifications, and other key variables, but the possibility of more collection points and the multi-level collection were not taken into consideration. The possible areas of using energy grass is very wide (energetically use, biogas and bio alcohol production, paper and textile industry, industrial fibre material, foddering purposes, biological soil protection [3], etc.), so not only a single level but also a multi-level collection system with more collection and production facilities has to be taken into consideration. The input parameters of the optimisation problem are the followings: total amount of energy grass to be harvested in each region; specific facility costs of collection, warehousing and production units; specific costs of transportation resources; pre-scheduling of harvesting process; specific transportation and warehousing costs; pre-scheduling of processing of energy grass at each facility (exclusive warehousing). The model take into consideration the following assumptions: (1) cooperative relation among processing and production facilties, (2) capacity constraints are not ignored, (3) the cost function of transportation is non-linear, (4) the drivers conditions are ignored. The objective function of the optimisation is the maximisation of the profit which means the maximization of the difference between revenue and cost. The objective function trades off the income of the assigned transportation demands against the logistic costs. The constraints are the followings: (1) the free capacity of the assigned transportation resource is more than the re-quested capacity of the transportation demand; the calculated arrival time of the transportation resource to the harvesting place is not later than the requested arrival time of them; (3) the calculated arrival time of the transportation demand to the processing and production facility is not later than the requested arrival time; (4) one transportation demand is assigned to one transportation resource and one resource is assigned to one transportation resource. The decision variable of the optimisation problem is the set of scheduling variables and the assignment of resources to transportation demands. The evaluation parameters of the optimised system are the followings: total costs of the collection process; utilisation of transportation resources and warehouses; efficiency of production and/or processing facilities. However the multidimensional heuristic optimisation method is based on genetic algorithm, but the routing sequence of the optimisation works on the base of an ant colony algorithm. The optimal routes are calculated by the aid of the ant colony algorithm as a subroutine of the global optimisation method and the optimal assignment is given by the genetic algorithm. One important part of the mathematical method is the sensibility analysis of the objective function, which shows the influence rate of the different input parameters. Acknowledgements This research was implemented within the frame of the project entitled "Development and operation of the Technology and Knowledge Transfer Centre of the University of Miskolc". with support by the European Union and co-funding of the European Social Fund. References [1] P. R. Daniel: The Economics of Harvesting and Transporting Corn Stover for Conversion to Fuel Ethanol: A Case Study for Minnesota. University of Minnesota, Department of Applied Economics. 2006. http://ideas.repec.org/p/ags/umaesp/14213.html [2] T. G. Douglas, J. Brendan, D. Erin & V.-D. Becca: Energy and Chemicals from Native Grasses: Production, Transportation and Processing Technologies Considered in the Northern Great Plains. University of Minnesota, Department of Applied Economics. 2006. http://ideas.repec.org/p/ags/umaesp/13838.html [3] Homepage of energygrass. www.energiafu.hu
Solving a real-world problem using an evolving heuristically driven schedule builder.
Hart, E; Ross, P; Nelson, J
1998-01-01
This work addresses the real-life scheduling problem of a Scottish company that must produce daily schedules for the catching and transportation of large numbers of live chickens. The problem is complex and highly constrained. We show that it can be successfully solved by division into two subproblems and solving each using a separate genetic algorithm (GA). We address the problem of whether this produces locally optimal solutions and how to overcome this. We extend the traditional approach of evolving a "permutation + schedule builder" by concentrating on evolving the schedule builder itself. This results in a unique schedule builder being built for each daily scheduling problem, each individually tailored to deal with the particular features of that problem. This results in a robust, fast, and flexible system that can cope with most of the circumstances imaginable at the factory. We also compare the performance of a GA approach to several other evolutionary methods and show that population-based methods are superior to both hill-climbing and simulated annealing in the quality of solutions produced. Population-based methods also have the distinct advantage of producing multiple, equally fit solutions, which is of particular importance when considering the practical aspects of the problem.
Optimal control of thermally coupled Navier Stokes equations
NASA Technical Reports Server (NTRS)
Ito, Kazufumi; Scroggs, Jeffrey S.; Tran, Hien T.
1994-01-01
The optimal boundary temperature control of the stationary thermally coupled incompressible Navier-Stokes equation is considered. Well-posedness and existence of the optimal control and a necessary optimality condition are obtained. Optimization algorithms based on the augmented Lagrangian method with second order update are discussed. A test example motivated by control of transport process in the high pressure vapor transport (HVPT) reactor is presented to demonstrate the applicability of our theoretical results and proposed algorithm.
Parallel and Portable Monte Carlo Particle Transport
NASA Astrophysics Data System (ADS)
Lee, S. R.; Cummings, J. C.; Nolen, S. D.; Keen, N. D.
1997-08-01
We have developed a multi-group, Monte Carlo neutron transport code in C++ using object-oriented methods and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and α eigenvalues of the neutron transport equation on a rectilinear computational mesh. It is portable to and runs in parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities are discussed, along with physics and performance results for several test problems on a variety of hardware, including all three Accelerated Strategic Computing Initiative (ASCI) platforms. Current parallel performance indicates the ability to compute α-eigenvalues in seconds or minutes rather than days or weeks. Current and future work on the implementation of a general transport physics framework (TPF) is also described. This TPF employs modern C++ programming techniques to provide simplified user interfaces, generic STL-style programming, and compile-time performance optimization. Physics capabilities of the TPF will be extended to include continuous energy treatments, implicit Monte Carlo algorithms, and a variety of convergence acceleration techniques such as importance combing.
Multilayer organic based structures with enhanced hole transport
NASA Astrophysics Data System (ADS)
Mladenova, D.; Sinigersky, V.; Budurova, D.; Dobreva, T.; Karashanova, D.; Dimov, D.; Zhivkov, I.
2010-11-01
Multilayer Organic Based Devices (OBDs) were constructed by subsequent casting of organic films (from polymers, soluble in the same organic solvent). The problem with dissolution of the underlying layer was avoided by using electrophoretic deposition technique. Optimized conditions for electrophoretic deposition (EPD) of thin films with homogeneous and smooth surfaces, as confirmed by SEM, were found. The EPD, carried out at constant current, requires continuous increase of the voltage between the electrodes. In this way the decreased deposition rate caused by the decreased concentration of the material in the suspension and the increased thickness of the film deposited is compensated. The SEM images and the current voltage characteristics recorded, show that the hole transport polyvinylcarbazole (PVK) underlayer survive the treatment with the suspension used for the electrophoretic deposition of the active poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylene vinylene] electroluminescent layer. The PVK hole transport layer increases the device current, as confirmed by the current-voltage measurements. The results obtained demonstrate the possibility of OBDs preparation for electroluminescent and photovoltaic applications.
Optimizing Nutrient Uptake in Biological Transport Networks
NASA Astrophysics Data System (ADS)
Ronellenfitsch, Henrik; Katifori, Eleni
2013-03-01
Many biological systems employ complex networks of vascular tubes to facilitate transport of solute nutrients, examples include the vascular system of plants (phloem), some fungi, and the slime-mold Physarum. It is believed that such networks are optimized through evolution for carrying out their designated task. We propose a set of hydrodynamic governing equations for solute transport in a complex network, and obtain the optimal network architecture for various classes of optimizing functionals. We finally discuss the topological properties and statistical mechanics of the resulting complex networks, and examine correspondence of the obtained networks to those found in actual biological systems.
Rosen, I G; Luczak, Susan E; Weiss, Jordan
2014-03-15
We develop a blind deconvolution scheme for input-output systems described by distributed parameter systems with boundary input and output. An abstract functional analytic theory based on results for the linear quadratic control of infinite dimensional systems with unbounded input and output operators is presented. The blind deconvolution problem is then reformulated as a series of constrained linear and nonlinear optimization problems involving infinite dimensional dynamical systems. A finite dimensional approximation and convergence theory is developed. The theory is applied to the problem of estimating blood or breath alcohol concentration (respectively, BAC or BrAC) from biosensor-measured transdermal alcohol concentration (TAC) in the field. A distributed parameter model with boundary input and output is proposed for the transdermal transport of ethanol from the blood through the skin to the sensor. The problem of estimating BAC or BrAC from the TAC data is formulated as a blind deconvolution problem. A scheme to identify distinct drinking episodes in TAC data based on a Hodrick Prescott filter is discussed. Numerical results involving actual patient data are presented.
NASA Astrophysics Data System (ADS)
Yeh, Cheng-Ta; Lin, Yi-Kuei; Yang, Jo-Yun
2018-07-01
Network reliability is an important performance index for many real-life systems, such as electric power systems, computer systems and transportation systems. These systems can be modelled as stochastic-flow networks (SFNs) composed of arcs and nodes. Most system supervisors respect the network reliability maximization by finding the optimal multi-state resource assignment, which is one resource to each arc. However, a disaster may cause correlated failures for the assigned resources, affecting the network reliability. This article focuses on determining the optimal resource assignment with maximal network reliability for SFNs. To solve the problem, this study proposes a hybrid algorithm integrating the genetic algorithm and tabu search to determine the optimal assignment, called the hybrid GA-TS algorithm (HGTA), and integrates minimal paths, recursive sum of disjoint products and the correlated binomial distribution to calculate network reliability. Several practical numerical experiments are adopted to demonstrate that HGTA has better computational quality than several popular soft computing algorithms.
49 CFR 40.205 - How are drug test problems corrected?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 1 2013-10-01 2013-10-01 false How are drug test problems corrected? 40.205 Section 40.205 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Problems in Drug Tests § 40.205 How are drug test problems corrected? (a) As a collector, you have the...
Finite dimensional approximation of a class of constrained nonlinear optimal control problems
NASA Technical Reports Server (NTRS)
Gunzburger, Max D.; Hou, L. S.
1994-01-01
An abstract framework for the analysis and approximation of a class of nonlinear optimal control and optimization problems is constructed. Nonlinearities occur in both the objective functional and in the constraints. The framework includes an abstract nonlinear optimization problem posed on infinite dimensional spaces, and approximate problem posed on finite dimensional spaces, together with a number of hypotheses concerning the two problems. The framework is used to show that optimal solutions exist, to show that Lagrange multipliers may be used to enforce the constraints, to derive an optimality system from which optimal states and controls may be deduced, and to derive existence results and error estimates for solutions of the approximate problem. The abstract framework and the results derived from that framework are then applied to three concrete control or optimization problems and their approximation by finite element methods. The first involves the von Karman plate equations of nonlinear elasticity, the second, the Ginzburg-Landau equations of superconductivity, and the third, the Navier-Stokes equations for incompressible, viscous flows.
LDRD Final Report: Global Optimization for Engineering Science Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
HART,WILLIAM E.
1999-12-01
For a wide variety of scientific and engineering problems the desired solution corresponds to an optimal set of objective function parameters, where the objective function measures a solution's quality. The main goal of the LDRD ''Global Optimization for Engineering Science Problems'' was the development of new robust and efficient optimization algorithms that can be used to find globally optimal solutions to complex optimization problems. This SAND report summarizes the technical accomplishments of this LDRD, discusses lessons learned and describes open research issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Economopoulou, M.A.; Economopoulou, A.A.; Economopoulos, A.P., E-mail: eco@otenet.gr
2013-11-15
Highlights: • A two-step (strategic and detailed optimal planning) methodology is used for solving complex MSW management problems. • A software package is outlined, which can be used for generating detailed optimal plans. • Sensitivity analysis compares alternative scenarios that address objections and/or wishes of local communities. • A case study shows the application of the above procedure in practice and demonstrates the results and benefits obtained. - Abstract: The paper describes a software system capable of formulating alternative optimal Municipal Solid Wastes (MSWs) management plans, each of which meets a set of constraints that may reflect selected objections and/ormore » wishes of local communities. The objective function to be minimized in each plan is the sum of the annualized capital investment and annual operating cost of all transportation, treatment and final disposal operations involved, taking into consideration the possible income from the sale of products and any other financial incentives or disincentives that may exist. For each plan formulated, the system generates several reports that define the plan, analyze its cost elements and yield an indicative profile of selected types of installations, as well as data files that facilitate the geographic representation of the optimal solution in maps through the use of GIS. A number of these reports compare the technical and economic data from all scenarios considered at the study area, municipality and installation level constituting in effect sensitivity analysis. The generation of alternative plans offers local authorities the opportunity of choice and the results of the sensitivity analysis allow them to choose wisely and with consensus. The paper presents also an application of this software system in the capital Region of Attica in Greece, for the purpose of developing an optimal waste transportation system in line with its approved waste management plan. The formulated plan was able to: (a) serve 113 Municipalities and Communities that generate nearly 2 million t/y of comingled MSW with distinctly different waste collection patterns, (b) take into consideration several existing waste transfer stations (WTS) and optimize their use within the overall plan, (c) select the most appropriate sites among the potentially suitable (new and in use) ones, (d) generate the optimal profile of each WTS proposed, and (e) perform sensitivity analysis so as to define the impact of selected sets of constraints (limitations in the availability of sites and in the capacity of their installations) on the design and cost of the ensuing optimal waste transfer system. The results show that optimal planning offers significant economic savings to municipalities, while reducing at the same time the present levels of traffic, fuel consumptions and air emissions in the congested Athens basin.« less
Optimal Concentrations in Transport Networks
NASA Astrophysics Data System (ADS)
Jensen, Kaare; Savage, Jessica; Kim, Wonjung; Bush, John; Holbrook, N. Michele
2013-03-01
Biological and man-made systems rely on effective transport networks for distribution of material and energy. Mass flow in these networks is determined by the flow rate and the concentration of material. While the most concentrated solution offers the greatest potential for mass flow, impedance grows with concentration and thus makes it the most difficult to transport. The concentration at which mass flow is optimal depends on specific physical and physiological properties of the system. We derive a simple model which is able to predict optimal concentrations observed in blood flows, sugar transport in plants, and nectar feeding animals. Our model predicts that the viscosity at the optimal concentration μopt =2nμ0 is an integer power of two times the viscosity of the pure carrier medium μ0. We show how the observed powers 1 <= n <= 6 agree well with theory and discuss how n depends on biological constraints imposed on the transport process. The model provides a universal framework for studying flows impeded by concentration and provides hints of how to optimize engineered flow systems, such as congestion in traffic flows.
Disorder-assisted quantum transport in suboptimal decoherence regimes
Novo, Leonardo; Mohseni, Masoud; Omar, Yasser
2016-01-01
We investigate quantum transport in binary tree structures and in hypercubes for the disordered Frenkel-exciton Hamiltonian under pure dephasing noise. We compute the energy transport efficiency as a function of disorder and dephasing rates. We demonstrate that dephasing improves transport efficiency not only in the disordered case, but also in the ordered one. The maximal transport efficiency is obtained when the dephasing timescale matches the hopping timescale, which represent new examples of the Goldilocks principle at the quantum scale. Remarkably, we find that in weak dephasing regimes, away from optimal levels of environmental fluctuations, the average effect of increasing disorder is to improve the transport efficiency until an optimal value for disorder is reached. Our results suggest that rational design of the site energies statistical distributions could lead to better performances in transport systems at nanoscale when their natural environments are far from the optimal dephasing regime. PMID:26726133
Modifications to the rapid melt/rapid quench and transparent polymer video furnaces for the KC-135
NASA Technical Reports Server (NTRS)
Smith, Guy A.; Kosten, Sue E.; Workman, Gary L.
1990-01-01
Given here is a summary of tasks performed on two furnace systems, the Transparent Polymer (TPF) and the Rapid Melt/Rapid Quench (RMRQ) furnaces, to be used aboard NASA's KC-135. It was determined that major changes were needed for both furnaces to operate according to the scientific investigators' experiment parameters. Discussed here are what the problems were, what was required to solve the problems, and possible future enhancements. It was determined that the enhancements would be required for the furnaces to perform at their optimal levels. Services provided include hardware and software modifications, Safety DataPackage documentation, ground based testing, transportation to and from Ellington Air Field, operation of hardware during KC-135 flights, and post-flight data processing.
Research on NC laser combined cutting optimization model of sheet metal parts
NASA Astrophysics Data System (ADS)
Wu, Z. Y.; Zhang, Y. L.; Li, L.; Wu, L. H.; Liu, N. B.
2017-09-01
The optimization problem for NC laser combined cutting of sheet metal parts was taken as the research object in this paper. The problem included two contents: combined packing optimization and combined cutting path optimization. In the problem of combined packing optimization, the method of “genetic algorithm + gravity center NFP + geometric transformation” was used to optimize the packing of sheet metal parts. In the problem of combined cutting path optimization, the mathematical model of cutting path optimization was established based on the parts cutting constraint rules of internal contour priority and cross cutting. The model played an important role in the optimization calculation of NC laser combined cutting.
Quadratic constrained mixed discrete optimization with an adiabatic quantum optimizer
NASA Astrophysics Data System (ADS)
Chandra, Rishabh; Jacobson, N. Tobias; Moussa, Jonathan E.; Frankel, Steven H.; Kais, Sabre
2014-07-01
We extend the family of problems that may be implemented on an adiabatic quantum optimizer (AQO). When a quadratic optimization problem has at least one set of discrete controls and the constraints are linear, we call this a quadratic constrained mixed discrete optimization (QCMDO) problem. QCMDO problems are NP-hard, and no efficient classical algorithm for their solution is known. Included in the class of QCMDO problems are combinatorial optimization problems constrained by a linear partial differential equation (PDE) or system of linear PDEs. An essential complication commonly encountered in solving this type of problem is that the linear constraint may introduce many intermediate continuous variables into the optimization while the computational cost grows exponentially with problem size. We resolve this difficulty by developing a constructive mapping from QCMDO to quadratic unconstrained binary optimization (QUBO) such that the size of the QUBO problem depends only on the number of discrete control variables. With a suitable embedding, taking into account the physical constraints of the realizable coupling graph, the resulting QUBO problem can be implemented on an existing AQO. The mapping itself is efficient, scaling cubically with the number of continuous variables in the general case and linearly in the PDE case if an efficient preconditioner is available.
NASA Astrophysics Data System (ADS)
Masuda, Kazuaki; Aiyoshi, Eitaro
We propose a method for solving optimal price decision problems for simultaneous multi-article auctions. An auction problem, originally formulated as a combinatorial problem, determines both every seller's whether or not to sell his/her article and every buyer's which article(s) to buy, so that the total utility of buyers and sellers will be maximized. Due to the duality theory, we transform it equivalently into a dual problem in which Lagrange multipliers are interpreted as articles' transaction price. As the dual problem is a continuous optimization problem with respect to the multipliers (i.e., the transaction prices), we propose a numerical method to solve it by applying heuristic global search methods. In this paper, Particle Swarm Optimization (PSO) is used to solve the dual problem, and experimental results are presented to show the validity of the proposed method.
Techniques for shuttle trajectory optimization
NASA Technical Reports Server (NTRS)
Edge, E. R.; Shieh, C. J.; Powers, W. F.
1973-01-01
The application of recently developed function-space Davidon-type techniques to the shuttle ascent trajectory optimization problem is discussed along with an investigation of the recently developed PRAXIS algorithm for parameter optimization. At the outset of this analysis, the major deficiency of the function-space algorithms was their potential storage problems. Since most previous analyses of the methods were with relatively low-dimension problems, no storage problems were encountered. However, in shuttle trajectory optimization, storage is a problem, and this problem was handled efficiently. Topics discussed include: the shuttle ascent model and the development of the particular optimization equations; the function-space algorithms; the operation of the algorithm and typical simulations; variable final-time problem considerations; and a modification of Powell's algorithm.
Development of a graphical method for choosing the optimal mode of traffic light
NASA Astrophysics Data System (ADS)
Novikov, A. N.; Katunin, A. A.; Novikov, I. A.; Kravchenko, A. A.; Shevtsova, A. G.
2018-05-01
Changing the transportation infrastructure for improving the main characteristics of the transportation flow is the key problem in transportation planning, therefore the main question lies in the ability to plan the change of the main indicators for the long term. In this investigation, an analysis of the city’s population has been performed and the most difficult transportation segment has been identified. During its identification, the main characteristics of the transportation flow have been established. For the evaluation of these characteristics until 2025, an analysis of the available methods of establishing changes in their values has been conducted. During the analysis of the above mentioned methods of evaluation of the change in intensity, based on the method of extrapolation, three scenarios of the development of the transportation system have been identified. It has been established that the most favorable method of controlling the transportation flow in the entrance to the city is the long term control of the traffic system. For the first time, with the help of the authors, based on the investigations of foreign scientists and the mathematical analysis of the changes in intensiveness on the main routes of the given road, the method of graphically choosing the required control plan has been put forward. The effectiveness of said organization scheme of the transportation system has been rated in the Transyt-14 program, with the analysis of changes in the main characteristics of the transportation flow.
Validation of a coupled core-transport, pedestal-structure, current-profile and equilibrium model
NASA Astrophysics Data System (ADS)
Meneghini, O.
2015-11-01
The first workflow capable of predicting the self-consistent solution to the coupled core-transport, pedestal structure, and equilibrium problems from first-principles and its experimental tests are presented. Validation with DIII-D discharges in high confinement regimes shows that the workflow is capable of robustly predicting the kinetic profiles from on axis to the separatrix and matching the experimental measurements to within their uncertainty, with no prior knowledge of the pedestal height nor of any measurement of the temperature or pressure. Self-consistent coupling has proven to be essential to match the experimental results, and capture the non-linear physics that governs the core and pedestal solutions. In particular, clear stabilization of the pedestal peeling ballooning instabilities by the global Shafranov shift and destabilization by additional edge bootstrap current, and subsequent effect on the core plasma profiles, have been clearly observed and documented. In our model, self-consistency is achieved by iterating between the TGYRO core transport solver (with NEO and TGLF for neoclassical and turbulent flux), and the pedestal structure predicted by the EPED model. A self-consistent equilibrium is calculated by EFIT, while the ONETWO transport package evolves the current profile and calculates the particle and energy sources. The capabilities of such workflow are shown to be critical for the design of future experiments such as ITER and FNSF, which operate in a regime where the equilibrium, the pedestal, and the core transport problems are strongly coupled, and for which none of these quantities can be assumed to be known. Self-consistent core-pedestal predictions for ITER, as well as initial optimizations, will be presented. Supported by the US Department of Energy under DE-FC02-04ER54698, DE-SC0012652.
On l(1): Optimal decentralized performance
NASA Technical Reports Server (NTRS)
Sourlas, Dennis; Manousiouthakis, Vasilios
1993-01-01
In this paper, the Manousiouthakis parametrization of all decentralized stabilizing controllers is employed in mathematically formulating the l(sup 1) optimal decentralized controller synthesis problem. The resulting optimization problem is infinite dimensional and therefore not directly amenable to computations. It is shown that finite dimensional optimization problems that have value arbitrarily close to the infinite dimensional one can be constructed. Based on this result, an algorithm that solves the l(sup 1) decentralized performance problems is presented. A global optimization approach to the solution of the infinite dimensional approximating problems is also discussed.
Execution of Multidisciplinary Design Optimization Approaches on Common Test Problems
NASA Technical Reports Server (NTRS)
Balling, R. J.; Wilkinson, C. A.
1997-01-01
A class of synthetic problems for testing multidisciplinary design optimization (MDO) approaches is presented. These test problems are easy to reproduce because all functions are given as closed-form mathematical expressions. They are constructed in such a way that the optimal value of all variables and the objective is unity. The test problems involve three disciplines and allow the user to specify the number of design variables, state variables, coupling functions, design constraints, controlling design constraints, and the strength of coupling. Several MDO approaches were executed on two sample synthetic test problems. These approaches included single-level optimization approaches, collaborative optimization approaches, and concurrent subspace optimization approaches. Execution results are presented, and the robustness and efficiency of these approaches an evaluated for these sample problems.
NASA Technical Reports Server (NTRS)
Bless, Robert R.
1991-01-01
A time-domain finite element method is developed for optimal control problems. The theory derived is general enough to handle a large class of problems including optimal control problems that are continuous in the states and controls, problems with discontinuities in the states and/or system equations, problems with control inequality constraints, problems with state inequality constraints, or problems involving any combination of the above. The theory is developed in such a way that no numerical quadrature is necessary regardless of the degree of nonlinearity in the equations. Also, the same shape functions may be employed for every problem because all strong boundary conditions are transformed into natural or weak boundary conditions. In addition, the resulting nonlinear algebraic equations are very sparse. Use of sparse matrix solvers allows for the rapid and accurate solution of very difficult optimization problems. The formulation is applied to launch-vehicle trajectory optimization problems, and results show that real-time optimal guidance is realizable with this method. Finally, a general problem solving environment is created for solving a large class of optimal control problems. The algorithm uses both FORTRAN and a symbolic computation program to solve problems with a minimum of user interaction. The use of symbolic computation eliminates the need for user-written subroutines which greatly reduces the setup time for solving problems.
Optimal transport and the placenta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Simon; Xia, Qinglan; Salafia, Carolym
2010-01-01
The goal of this paper is to investigate the expected effects of (i) placental size, (ii) placental shape and (iii) the position of insertion of the umbilical cord on the work done by the foetus heart in pumping blood across the placenta. We use optimal transport theory and modeling to quantify the expected effects of these factors . Total transport cost and the shape factor contribution to cost are given by the optimal transport model. Total placental transport cost is highly correlated with birth weight, placenta weight, FPR and the metabolic scaling factor beta. The shape factor is also highlymore » correlated with birth weight, and after adjustment for placental weight, is highly correlated with the metabolic scaling factor beta.« less
Incorporating biplane wing theory into a large, subsonic, all-cargo transport
NASA Technical Reports Server (NTRS)
Zyskowski, Michael K.
1994-01-01
If the air-cargo market increases at the pace predicted, a new conceptual aircraft will be demanded to meet the needs of the air-cargo industry. Furthermore, it has been found that not only should this aircraft be optimized to carry the intermodal containers used by the current shipping industry, but it should also be be able to operate at existing airports. The best solution to these problems is a configuration incorporating a bi-wing planform, which has resulted in significant improvements over the monoplane in lift/drag, weight reduction, and span reduction. The future of the air-cargo market, biplane theory, wind tunnel tests, and a comparison of the aerodynamic characteristics of the biplane and monoplane are discussed. The factors pertaining to a biplane cargo transport are then examined, resulting in biplane geometric parameters.
Coupled Aerodynamic and Structural Sensitivity Analysis of a High-Speed Civil Transport
NASA Technical Reports Server (NTRS)
Mason, B. H.; Walsh, J. L.
2001-01-01
An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity, finite-element structural analysis and computational fluid dynamics aerodynamic analysis. In a previous study, a multi-disciplinary analysis system for a high-speed civil transport was formulated to integrate a set of existing discipline analysis codes, some of them computationally intensive, This paper is an extension of the previous study, in which the sensitivity analysis for the coupled aerodynamic and structural analysis problem is formulated and implemented. Uncoupled stress sensitivities computed with a constant load vector in a commercial finite element analysis code are compared to coupled aeroelastic sensitivities computed by finite differences. The computational expense of these sensitivity calculation methods is discussed.
Optimization and resilience of complex supply-demand networks
NASA Astrophysics Data System (ADS)
Zhang, Si-Ping; Huang, Zi-Gang; Dong, Jia-Qi; Eisenberg, Daniel; Seager, Thomas P.; Lai, Ying-Cheng
2015-06-01
Supply-demand processes take place on a large variety of real-world networked systems ranging from power grids and the internet to social networking and urban systems. In a modern infrastructure, supply-demand systems are constantly expanding, leading to constant increase in load requirement for resources and consequently, to problems such as low efficiency, resource scarcity, and partial system failures. Under certain conditions global catastrophe on the scale of the whole system can occur through the dynamical process of cascading failures. We investigate optimization and resilience of time-varying supply-demand systems by constructing network models of such systems, where resources are transported from the supplier sites to users through various links. Here by optimization we mean minimization of the maximum load on links, and system resilience can be characterized using the cascading failure size of users who fail to connect with suppliers. We consider two representative classes of supply schemes: load driven supply and fix fraction supply. Our findings are: (1) optimized systems are more robust since relatively smaller cascading failures occur when triggered by external perturbation to the links; (2) a large fraction of links can be free of load if resources are directed to transport through the shortest paths; (3) redundant links in the performance of the system can help to reroute the traffic but may undesirably transmit and enlarge the failure size of the system; (4) the patterns of cascading failures depend strongly upon the capacity of links; (5) the specific location of the trigger determines the specific route of cascading failure, but has little effect on the final cascading size; (6) system expansion typically reduces the efficiency; and (7) when the locations of the suppliers are optimized over a long expanding period, fewer suppliers are required. These results hold for heterogeneous networks in general, providing insights into designing optimal and resilient complex supply-demand systems that expand constantly in time.
An Empirical Comparison of Seven Iterative and Evolutionary Function Optimization Heuristics
NASA Technical Reports Server (NTRS)
Baluja, Shumeet
1995-01-01
This report is a repository of the results obtained from a large scale empirical comparison of seven iterative and evolution-based optimization heuristics. Twenty-seven static optimization problems, spanning six sets of problem classes which are commonly explored in genetic algorithm literature, are examined. The problem sets include job-shop scheduling, traveling salesman, knapsack, binpacking, neural network weight optimization, and standard numerical optimization. The search spaces in these problems range from 2368 to 22040. The results indicate that using genetic algorithms for the optimization of static functions does not yield a benefit, in terms of the final answer obtained, over simpler optimization heuristics. Descriptions of the algorithms tested and the encodings of the problems are described in detail for reproducibility.
Learning the dynamics of objects by optimal functional interpolation.
Ahn, Jong-Hoon; Kim, In Young
2012-09-01
Many areas of science and engineering rely on functional data and their numerical analysis. The need to analyze time-varying functional data raises the general problem of interpolation, that is, how to learn a smooth time evolution from a finite number of observations. Here, we introduce optimal functional interpolation (OFI), a numerical algorithm that interpolates functional data over time. Unlike the usual interpolation or learning algorithms, the OFI algorithm obeys the continuity equation, which describes the transport of some types of conserved quantities, and its implementation shows smooth, continuous flows of quantities. Without the need to take into account equations of motion such as the Navier-Stokes equation or the diffusion equation, OFI is capable of learning the dynamics of objects such as those represented by mass, image intensity, particle concentration, heat, spectral density, and probability density.
Optimal Transport, Convection, Magnetic Relaxation and Generalized Boussinesq Equations
NASA Astrophysics Data System (ADS)
Brenier, Yann
2009-10-01
We establish a connection between optimal transport theory (see Villani in Topics in optimal transportation. Graduate studies in mathematics, vol. 58, AMS, Providence, 2003, for instance) and classical convection theory for geophysical flows (Pedlosky, in Geophysical fluid dynamics, Springer, New York, 1979). Our starting point is the model designed few years ago by Angenent, Haker, and Tannenbaum (SIAM J. Math. Anal. 35:61-97, 2003) to solve some optimal transport problems. This model can be seen as a generalization of the Darcy-Boussinesq equations, which is a degenerate version of the Navier-Stokes-Boussinesq (NSB) equations. In a unified framework, we relate different variants of the NSB equations (in particular what we call the generalized hydrostatic-Boussinesq equations) to various models involving optimal transport (and the related Monge-Ampère equation, Brenier in Commun. Pure Appl. Math. 64:375-417, 1991; Caffarelli in Commun. Pure Appl. Math. 45:1141-1151, 1992). This includes the 2D semi-geostrophic equations (Hoskins in Annual review of fluid mechanics, vol. 14, pp. 131-151, Palo Alto, 1982; Cullen et al. in SIAM J. Appl. Math. 51:20-31, 1991, Arch. Ration. Mech. Anal. 185:341-363, 2007; Benamou and Brenier in SIAM J. Appl. Math. 58:1450-1461, 1998; Loeper in SIAM J. Math. Anal. 38:795-823, 2006) and some fully nonlinear versions of the so-called high-field limit of the Vlasov-Poisson system (Nieto et al. in Arch. Ration. Mech. Anal. 158:29-59, 2001) and of the Keller-Segel for Chemotaxis (Keller and Segel in J. Theor. Biol. 30:225-234, 1971; Jäger and Luckhaus in Trans. Am. Math. Soc. 329:819-824, 1992; Chalub et al. in Mon. Math. 142:123-141, 2004). Mathematically speaking, we establish some existence theorems for local smooth, global smooth or global weak solutions of the different models. We also justify that the inertia terms can be rigorously neglected under appropriate scaling assumptions in the generalized Navier-Stokes-Boussinesq equations. Finally, we show how a “stringy” generalization of the AHT model can be related to the magnetic relaxation model studied by Arnold and Moffatt to obtain stationary solutions of the Euler equations with prescribed topology (see Arnold and Khesin in Topological methods in hydrodynamics. Applied mathematical sciences, vol. 125, Springer, Berlin, 1998; Moffatt in J. Fluid Mech. 159:359-378, 1985, Topological aspects of the dynamics of fluids and plasmas. NATO adv. sci. inst. ser. E, appl. sci., vol. 218, Kluwer, Dordrecht, 1992; Schonbek in Theory of the Navier-Stokes equations, Ser. adv. math. appl. sci., vol. 47, pp. 179-184, World Sci., Singapore, 1998; Vladimirov et al. in J. Fluid Mech. 390:127-150, 1999; Nishiyama in Bull. Inst. Math. Acad. Sin. (N.S.) 2:139-154, 2007).
NASA Astrophysics Data System (ADS)
Govindaraju, Parithi
Determining the optimal requirements for and design variable values of new systems, which operate along with existing systems to provide a set of overarching capabilities, as a single task is challenging due to the highly interconnected effects that setting requirements on a new system's design can have on how an operator uses this newly designed system. This task of determining the requirements and the design variable values becomes even more difficult because of the presence of uncertainties in the new system design and in the operational environment. This research proposed and investigated aspects of a framework that generates optimum design requirements of new, yet-to-be-designed systems that, when operating alongside other systems, will optimize fleet-level objectives while considering the effects of various uncertainties. Specifically, this research effort addresses the issues of uncertainty in the design of the new system through reliability-based design optimization methods, and uncertainty in the operations of the fleet through descriptive sampling methods and robust optimization formulations. In this context, fleet-level performance metrics result from using the new system alongside other systems to accomplish an overarching objective or mission. This approach treats the design requirements of a new system as decision variables in an optimization problem formulation that a user in the position of making an acquisition decision could solve. This solution would indicate the best new system requirements-and an associated description of the best possible design variable variables for that new system-to optimize the fleet level performance metric(s). Using a problem motivated by recorded operations of the United States Air Force Air Mobility Command for illustration, the approach is demonstrated first for a simplified problem that only considers demand uncertainties in the service network and the proposed methodology is used to identify the optimal design requirements and optimal aircraft sizing variables of new, yet-to-be-introduced aircraft. With this new aircraft serving alongside other existing aircraft, the fleet of aircraft satisfy the desired demand for cargo transportation, while maximizing fleet productivity and minimizing fuel consumption via a multi-objective problem formulation. The approach is then extended to handle uncertainties in both the design of the new system and in the operations of the fleet. The propagation of uncertainties associated with the conceptual design of the new aircraft to the uncertainties associated with the subsequent operations of the new and existing aircraft in the fleet presents some unique challenges. A computationally tractable hybrid robust counterpart formulation efficiently handles the confluence of the two types of domain-specific uncertainties. This hybrid formulation is tested on a larger route network problem to demonstrate the scalability of the approach. Following the presentation of the results obtained, a summary discussion indicates how decision-makers might use these results to set requirements for new aircraft that meet operational needs while balancing the environmental impact of the fleet with fleet-level performance. Comparing the solutions from the uncertainty-based and deterministic formulations via a posteriori analysis demonstrates the efficacy of the robust and reliability-based optimization formulations in addressing the different domain-specific uncertainties. Results suggest that the aircraft design requirements and design description determined through the hybrid robust counterpart formulation approach differ from solutions obtained from the simplistic deterministic approach, and leads to greater fleet-level fuel savings, when subjected to real-world uncertain scenarios (more robust to uncertainty). The research, though applied to a specific air cargo application, is technically agnostic in nature and can be applied to other facets of policy and acquisition management, to explore capability trade spaces for different vehicle systems, mitigate risks, define policy and potentially generate better returns on investment. Other domains relevant to policy and acquisition decisions could utilize the problem formulation and solution approach proposed in this dissertation provided that the problem can be split into a non-linear programming problem to describe the new system sizing and the fleet operations problem can be posed as a linear/integer programming problem.
49 CFR 40.199 - What problems always cause a drug test to be cancelled?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 1 2013-10-01 2013-10-01 false What problems always cause a drug test to be cancelled? 40.199 Section 40.199 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Problems in Drug Tests § 40.199 What problems always cause a drug test to be cancelled? (a...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 1 2013-10-01 2013-10-01 false What problem requires corrective action but does not result in the cancellation of a test? 40.208 Section 40.208 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Problems in Drug Tests § 40.208 What problem requires...
Cost and fuel consumption per nautical mile for two engine jet transports using OPTIM and TRAGEN
NASA Technical Reports Server (NTRS)
Wiggs, J. F.
1982-01-01
The cost and fuel consumption per nautical mile for two engine jet transports are computed using OPTIM and TRAGEN. The savings in fuel and direct operating costs per nautical mile for each of the different types of optimal trajectories over a standard profile are shown.
Acoustic design criteria in a general system for structural optimization
NASA Technical Reports Server (NTRS)
Brama, Torsten
1990-01-01
Passenger comfort is of great importance in most transport vehicles. For instance, in the new generation of regional turboprop aircraft, a low noise level is vital to be competitive on the market. The possibilities to predict noise levels analytically has improved rapidly in recent years. This will make it possible to take acoustic design criteria into account in early project stages. The development of the ASKA FE-system to include also acoustic analysis has been carried out at Saab Aircraft Division and the Aeronautical Research Institute of Sweden in a joint project. New finite elements have been developed to model the free fluid, porous damping materials, and the interaction between the fluid and structural degrees of freedom. The FE approach to the acoustic analysis is best suited for lower frequencies up to a few hundred Hz. For accurate analysis of interior cabin noise, large 3-D FE-models are built, but 2-D models are also considered to be useful for parametric studies and optimization. The interest is here focused on the introduction of an acoustic design criteria in the general structural optimization system OPTSYS available at the Saab Aircraft Division. The first implementation addresses a somewhat limited class of problems. The problems solved are formulated: Minimize the structural weight by modifying the dimensions of the structure while keeping the noise level in the cavity and other structural design criteria within specified limits.
Multiobjective optimization of temporal processes.
Song, Zhe; Kusiak, Andrew
2010-06-01
This paper presents a dynamic predictive-optimization framework of a nonlinear temporal process. Data-mining (DM) and evolutionary strategy algorithms are integrated in the framework for solving the optimization model. DM algorithms learn dynamic equations from the process data. An evolutionary strategy algorithm is then applied to solve the optimization problem guided by the knowledge extracted by the DM algorithm. The concept presented in this paper is illustrated with the data from a power plant, where the goal is to maximize the boiler efficiency and minimize the limestone consumption. This multiobjective optimization problem can be either transformed into a single-objective optimization problem through preference aggregation approaches or into a Pareto-optimal optimization problem. The computational results have shown the effectiveness of the proposed optimization framework.
The Problem of Size in Robust Design
NASA Technical Reports Server (NTRS)
Koch, Patrick N.; Allen, Janet K.; Mistree, Farrokh; Mavris, Dimitri
1997-01-01
To facilitate the effective solution of multidisciplinary, multiobjective complex design problems, a departure from the traditional parametric design analysis and single objective optimization approaches is necessary in the preliminary stages of design. A necessary tradeoff becomes one of efficiency vs. accuracy as approximate models are sought to allow fast analysis and effective exploration of a preliminary design space. In this paper we apply a general robust design approach for efficient and comprehensive preliminary design to a large complex system: a high speed civil transport (HSCT) aircraft. Specifically, we investigate the HSCT wing configuration design, incorporating life cycle economic uncertainties to identify economically robust solutions. The approach is built on the foundation of statistical experimentation and modeling techniques and robust design principles, and is specialized through incorporation of the compromise Decision Support Problem for multiobjective design. For large problems however, as in the HSCT example, this robust design approach developed for efficient and comprehensive design breaks down with the problem of size - combinatorial explosion in experimentation and model building with number of variables -and both efficiency and accuracy are sacrificed. Our focus in this paper is on identifying and discussing the implications and open issues associated with the problem of size for the preliminary design of large complex systems.
NASA Astrophysics Data System (ADS)
Janardhanan, S.; Datta, B.
2011-12-01
Surrogate models are widely used to develop computationally efficient simulation-optimization models to solve complex groundwater management problems. Artificial intelligence based models are most often used for this purpose where they are trained using predictor-predictand data obtained from a numerical simulation model. Most often this is implemented with the assumption that the parameters and boundary conditions used in the numerical simulation model are perfectly known. However, in most practical situations these values are uncertain. Under these circumstances the application of such approximation surrogates becomes limited. In our study we develop a surrogate model based coupled simulation optimization methodology for determining optimal pumping strategies for coastal aquifers considering parameter uncertainty. An ensemble surrogate modeling approach is used along with multiple realization optimization. The methodology is used to solve a multi-objective coastal aquifer management problem considering two conflicting objectives. Hydraulic conductivity and the aquifer recharge are considered as uncertain values. Three dimensional coupled flow and transport simulation model FEMWATER is used to simulate the aquifer responses for a number of scenarios corresponding to Latin hypercube samples of pumping and uncertain parameters to generate input-output patterns for training the surrogate models. Non-parametric bootstrap sampling of this original data set is used to generate multiple data sets which belong to different regions in the multi-dimensional decision and parameter space. These data sets are used to train and test multiple surrogate models based on genetic programming. The ensemble of surrogate models is then linked to a multi-objective genetic algorithm to solve the pumping optimization problem. Two conflicting objectives, viz, maximizing total pumping from beneficial wells and minimizing the total pumping from barrier wells for hydraulic control of saltwater intrusion are considered. The salinity levels resulting at strategic locations due to these pumping are predicted using the ensemble surrogates and are constrained to be within pre-specified levels. Different realizations of the concentration values are obtained from the ensemble predictions corresponding to each candidate solution of pumping. Reliability concept is incorporated as the percent of the total number of surrogate models which satisfy the imposed constraints. The methodology was applied to a realistic coastal aquifer system in Burdekin delta area in Australia. It was found that all optimal solutions corresponding to a reliability level of 0.99 satisfy all the constraints and as reducing reliability level decreases the constraint violation increases. Thus ensemble surrogate model based simulation-optimization was found to be useful in deriving multi-objective optimal pumping strategies for coastal aquifers under parameter uncertainty.
Social Emotional Optimization Algorithm for Nonlinear Constrained Optimization Problems
NASA Astrophysics Data System (ADS)
Xu, Yuechun; Cui, Zhihua; Zeng, Jianchao
Nonlinear programming problem is one important branch in operational research, and has been successfully applied to various real-life problems. In this paper, a new approach called Social emotional optimization algorithm (SEOA) is used to solve this problem which is a new swarm intelligent technique by simulating the human behavior guided by emotion. Simulation results show that the social emotional optimization algorithm proposed in this paper is effective and efficiency for the nonlinear constrained programming problems.
Evolutionary optimization methods for accelerator design
NASA Astrophysics Data System (ADS)
Poklonskiy, Alexey A.
Many problems from the fields of accelerator physics and beam theory can be formulated as optimization problems and, as such, solved using optimization methods. Despite growing efficiency of the optimization methods, the adoption of modern optimization techniques in these fields is rather limited. Evolutionary Algorithms (EAs) form a relatively new and actively developed optimization methods family. They possess many attractive features such as: ease of the implementation, modest requirements on the objective function, a good tolerance to noise, robustness, and the ability to perform a global search efficiently. In this work we study the application of EAs to problems from accelerator physics and beam theory. We review the most commonly used methods of unconstrained optimization and describe the GATool, evolutionary algorithm and the software package, used in this work, in detail. Then we use a set of test problems to assess its performance in terms of computational resources, quality of the obtained result, and the tradeoff between them. We justify the choice of GATool as a heuristic method to generate cutoff values for the COSY-GO rigorous global optimization package for the COSY Infinity scientific computing package. We design the model of their mutual interaction and demonstrate that the quality of the result obtained by GATool increases as the information about the search domain is refined, which supports the usefulness of this model. We Giscuss GATool's performance on the problems suffering from static and dynamic noise and study useful strategies of GATool parameter tuning for these and other difficult problems. We review the challenges of constrained optimization with EAs and methods commonly used to overcome them. We describe REPA, a new constrained optimization method based on repairing, in exquisite detail, including the properties of its two repairing techniques: REFIND and REPROPT. We assess REPROPT's performance on the standard constrained optimization test problems for EA with a variety of different configurations and suggest optimal default parameter values based on the results. Then we study the performance of the REPA method on the same set of test problems and compare the obtained results with those of several commonly used constrained optimization methods with EA. Based on the obtained results, particularly on the outstanding performance of REPA on test problem that presents significant difficulty for other reviewed EAs, we conclude that the proposed method is useful and competitive. We discuss REPA parameter tuning for difficult problems and critically review some of the problems from the de-facto standard test problem set for the constrained optimization with EA. In order to demonstrate the practical usefulness of the developed method, we study several problems of accelerator design and demonstrate how they can be solved with EAs. These problems include a simple accelerator design problem (design a quadrupole triplet to be stigmatically imaging, find all possible solutions), a complex real-life accelerator design problem (an optimization of the front end section for the future neutrino factory), and a problem of the normal form defect function optimization which is used to rigorously estimate the stability of the beam dynamics in circular accelerators. The positive results we obtained suggest that the application of EAs to problems from accelerator theory can be very beneficial and has large potential. The developed optimization scenarios and tools can be used to approach similar problems.
A weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1989-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
A weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1990-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1991-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Application of perturbation theory to lattice calculations based on method of cyclic characteristics
NASA Astrophysics Data System (ADS)
Assawaroongruengchot, Monchai
Perturbation theory is a technique used for the estimation of changes in performance functionals, such as linear reaction rate ratio and eigenvalue affected by small variations in reactor core compositions. Here the algorithm of perturbation theory is developed for the multigroup integral neutron transport problems in 2D fuel assemblies with isotropic scattering. The integral transport equation is used in the perturbative formulation because it represents the interconnecting neutronic systems of the lattice assemblies via the tracking lines. When the integral neutron transport equation is used in the formulation, one needs to solve the resulting integral transport equations for the flux importance and generalized flux importance functions. The relationship between the generalized flux importance and generalized source importance functions is defined in order to transform the generalized flux importance transport equations into the integro-differential equations for the generalized adjoints. Next we develop the adjoint and generalized adjoint transport solution algorithms based on the method of cyclic characteristics (MOCC) in DRAGON code. In the MOCC method, the adjoint characteristics equations associated with a cyclic tracking line are formulated in such a way that a closed form for the adjoint angular function can be obtained. The MOCC method then requires only one cycle of scanning over the cyclic tracking lines in each spatial iteration. We also show that the source importance function by CP method is mathematically equivalent to the adjoint function by MOCC method. In order to speed up the MOCC solution algorithm, a group-reduction and group-splitting techniques based on the structure of the adjoint scattering matrix are implemented. A combined forward flux/adjoint function iteration scheme, based on the group-splitting technique and the common use of a large number of variables storing tracking-line data and exponential values, is proposed to reduce the computing time when both direct and adjoint solutions are required. A problem that arises for the generalized adjoint problem is that the direct use of the negative external generalized adjoint sources in the adjoint solution algorithm results in negative generalized adjoint functions. A coupled flux biasing/decontamination scheme is applied to make the generalized adjoint functions positive using the adjoint functions in such a way that it can be used for the multigroup rebalance technique. Next we consider the application of the perturbation theory to the reactor problems. Since the coolant void reactivity (CVR) is a important factor in reactor safety analysis, we have decided to select this parameter for optimization studies. We consider the optimization and adjoint sensitivity techniques for the adjustments of CVR at beginning of burnup cycle (BOC) and k eff at end of burnup cycle (EOC) for a 2D Advanced CANDU Reactor (ACR) lattice. The sensitivity coefficients are evaluated using the perturbation theory based on the integral transport equations. Three sets of parameters for CVR-BOC and keff-EOC adjustments are studied: (1) Dysprosium density in the central pin with Uranium enrichment in the outer fuel rings, (2) Dysprosium density and Uranium enrichment both in the central pin, and (3) the same parameters as in the first case but the objective is to obtain a negative checkerboard CVR at beginning of cycle (CBCVR-BOC). To approximate the sensitivity coefficient at EOC, we perform constant-power burnup/depletion calculations for 600 full power days (FPD) using a slightly perturbed nuclear library and the unperturbed neutron fluxes to estimate the variation of nuclide densities at EOC. Sensitivity analyses of CVR and eigenvalue are included in the study. In addition the optimization and adjoint sensitivity techniques are applied to the CBCVR-BOC and keff-EOC adjustment of the ACR lattices with Gadolinium in the central pin. Finally we apply these techniques to the CVR-BOC, CVR-EOC and keff-EOC adjustment of a CANDU lattice of which the burnup period is extended from 300 to 450 FPDs. The cases with the central pin containing either Dysprosium or Gadolinium in the natural Uranium are considered in our study. (Abstract shortened by UMI.)
49 CFR 40.203 - What problems cause a drug test to be cancelled unless they are corrected?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 1 2013-10-01 2013-10-01 false What problems cause a drug test to be cancelled unless they are corrected? 40.203 Section 40.203 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Problems in Drug Tests § 40.203 What problems cause a drug test to be...
Optimality conditions for the numerical solution of optimization problems with PDE constraints :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilo Valentin, Miguel Alejandro; Ridzal, Denis
2014-03-01
A theoretical framework for the numerical solution of partial di erential equation (PDE) constrained optimization problems is presented in this report. This theoretical framework embodies the fundamental infrastructure required to e ciently implement and solve this class of problems. Detail derivations of the optimality conditions required to accurately solve several parameter identi cation and optimal control problems are also provided in this report. This will allow the reader to further understand how the theoretical abstraction presented in this report translates to the application.
Understanding electrical conduction in lithium ion batteries through multi-scale modeling
NASA Astrophysics Data System (ADS)
Pan, Jie
Silicon (Si) has been considered as a promising negative electrode material for lithium ion batteries (LIBs) because of its high theoretical capacity, low discharge voltage, and low cost. However, the utilization of Si electrode has been hampered by problems such as slow ionic transport, large stress/strain generation, and unstable solid electrolyte interphase (SEI). These problems severely influence the performance and cycle life of Si electrodes. In general, ionic conduction determines the rate performance of the electrode, while electron leakage through the SEI causes electrolyte decomposition and, thus, causes capacity loss. The goal of this thesis research is to design Si electrodes with high current efficiency and durability through a fundamental understanding of the ionic and electronic conduction in Si and its SEI. Multi-scale physical and chemical processes occur in the electrode during charging and discharging. This thesis, thus, focuses on multi-scale modeling, including developing new methods, to help understand these coupled physical and chemical processes. For example, we developed a new method based on ab initio molecular dynamics to study the effects of stress/strain on Li ion transport in amorphous lithiated Si electrodes. This method not only quantitatively shows the effect of stress on ionic transport in amorphous materials, but also uncovers the underlying atomistic mechanisms. However, the origin of ionic conduction in the inorganic components in SEI is different from that in the amorphous Si electrode. To tackle this problem, we developed a model by separating the problem into two scales: 1) atomistic scale: defect physics and transport in individual SEI components with consideration of the environment, e.g., LiF in equilibrium with Si electrode; 2) mesoscopic scale: defect distribution near the heterogeneous interface based on a space charge model. In addition, to help design better artificial SEI, we further demonstrated a theoretical design of multicomponent SEIs by utilizing the synergetic effect found in the natural SEI. We show that the electrical conduction can be optimized by varying the grain size and volume fraction of two phases in the artificial multicomponent SEI.
FRANOPP: Framework for analysis and optimization problems user's guide
NASA Technical Reports Server (NTRS)
Riley, K. M.
1981-01-01
Framework for analysis and optimization problems (FRANOPP) is a software aid for the study and solution of design (optimization) problems which provides the driving program and plotting capability for a user generated programming system. In addition to FRANOPP, the programming system also contains the optimization code CONMIN, and two user supplied codes, one for analysis and one for output. With FRANOPP the user is provided with five options for studying a design problem. Three of the options utilize the plot capability and present an indepth study of the design problem. The study can be focused on a history of the optimization process or on the interaction of variables within the design problem.
Evaluation of Genetic Algorithm Concepts Using Model Problems. Part 2; Multi-Objective Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2003-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of simple model problems. Several new features including a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all optimization problems attempted. The binning algorithm generally provides pareto front quality enhancements and moderate convergence efficiency improvements for most of the model problems. The gene-space transformation procedure provides a large convergence efficiency enhancement for problems with non-convoluted pareto fronts and a degradation in efficiency for problems with convoluted pareto fronts. The most difficult problems --multi-mode search spaces with a large number of genes and convoluted pareto fronts-- require a large number of function evaluations for GA convergence, but always converge.
Wu, Fei; Sioshansi, Ramteen
2017-05-25
Electric vehicles (EVs) hold promise to improve the energy efficiency and environmental impacts of transportation. However, widespread EV use can impose significant stress on electricity-distribution systems due to their added charging loads. This paper proposes a centralized EV charging-control model, which schedules the charging of EVs that have flexibility. This flexibility stems from EVs that are parked at the charging station for a longer duration of time than is needed to fully recharge the battery. The model is formulated as a two-stage stochastic optimization problem. The model captures the use of distributed energy resources and uncertainties around EV arrival timesmore » and charging demands upon arrival, non-EV loads on the distribution system, energy prices, and availability of energy from the distributed energy resources. We use a Monte Carlo-based sample-average approximation technique and an L-shaped method to solve the resulting optimization problem efficiently. We also apply a sequential sampling technique to dynamically determine the optimal size of the randomly sampled scenario tree to give a solution with a desired quality at minimal computational cost. Here, we demonstrate the use of our model on a Central-Ohio-based case study. We show the benefits of the model in reducing charging costs, negative impacts on the distribution system, and unserved EV-charging demand compared to simpler heuristics. Lastly, we also conduct sensitivity analyses, to show how the model performs and the resulting costs and load profiles when the design of the station or EV-usage parameters are changed.« less
NASA Technical Reports Server (NTRS)
Reuther, James; Alonso, Juan Jose; Rimlinger, Mark J.; Jameson, Antony
1996-01-01
This work describes the application of a control theory-based aerodynamic shape optimization method to the problem of supersonic aircraft design. The design process is greatly accelerated through the use of both control theory and a parallel implementation on distributed memory computers. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods. The resulting problem is then implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) Standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on higher order computational fluid dynamics methods (CFD). In our earlier studies, the serial implementation of this design method was shown to be effective for the optimization of airfoils, wings, wing-bodies, and complex aircraft configurations using both the potential equation and the Euler equations. In our most recent paper, the Euler method was extended to treat complete aircraft configurations via a new multiblock implementation. Furthermore, during the same conference, we also presented preliminary results demonstrating that this basic methodology could be ported to distributed memory parallel computing architectures. In this paper, our concern will be to demonstrate that the combined power of these new technologies can be used routinely in an industrial design environment by applying it to the case study of the design of typical supersonic transport configurations. A particular difficulty of this test case is posed by the propulsion/airframe integration.
Wireless Sensor Network Optimization: Multi-Objective Paradigm.
Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad
2015-07-20
Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.
NASA Technical Reports Server (NTRS)
Chen, Robert T. N.; Zhao, Yi-Yuan; Aiken, Edwin W. (Technical Monitor)
1995-01-01
Engine failure represents a major safety concern to helicopter operations, especially in the critical flight phases of takeoff and landing from/to small, confined areas. As a result, the JAA and FAA both certificate a transport helicopter as either Category-A or Category-B according to the ability to continue its operations following engine failures. A Category-B helicopter must be able to land safely in the event of one or all engine failures. There is no requirement, however, for continued flight capability. In contrast, Category-A certification, which applies to multi-engine transport helicopters with independent engine systems, requires that they continue the flight with one engine inoperative (OEI). These stringent requirements, while permitting its operations from rooftops and oil rigs and flight to areas where no emergency landing sites are available, restrict the payload of a Category-A transport helicopter to a value safe for continued flight as well as for landing with one engine inoperative. The current certification process involves extensive flight tests, which are potentially dangerous, costly, and time consuming. These tests require the pilot to simulate engine failures at increasingly critical conditions, Flight manuals based on these tests tend to provide very conservative recommendations with regard to maximum takeoff weight or required runway length. There are very few theoretical studies on this subject to identify the fundamental parameters and tradeoff factors involved. Furthermore, a capability for real-time generation of OEI optimal trajectories is very desirable for providing timely cockpit display guidance to assist the pilot in reducing his workload and to increase safety in a consistent and reliable manner. A joint research program involving NASA Ames Research Center, the FAA, and the University of Minnesota is being conducted to determine OEI optimal control strategies and the associated optimal,trajectories for continued takeoff (CTO), rejected takeoff (RTO), balked landing (BL), and continued landing (CL) for a twin engine helicopter in both VTOL and STOL terminal-area operations. This proposed paper will present the problem formulation, the optimal control solution methods, and the key results of the trajectory optimization studies for both STOL and VTOL OEI operations. In addition, new results concerning the recently developed methodology, which enable a real-time generation of optimal OEI trajectories, will be presented in the paper. This new real-time capability was developed to support the second piloted simulator investigation on cockpit displays for Category-A operations being scheduled for the NASA Ames Vertical Motion Simulator in June-August of 1995. The first VMS simulation was conducted in 1994 and reported.
Randomized shortest-path problems: two related models.
Saerens, Marco; Achbany, Youssef; Fouss, François; Yen, Luh
2009-08-01
This letter addresses the problem of designing the transition probabilities of a finite Markov chain (the policy) in order to minimize the expected cost for reaching a destination node from a source node while maintaining a fixed level of entropy spread throughout the network (the exploration). It is motivated by the following scenario. Suppose you have to route agents through a network in some optimal way, for instance, by minimizing the total travel cost-nothing particular up to now-you could use a standard shortest-path algorithm. Suppose, however, that you want to avoid pure deterministic routing policies in order, for instance, to allow some continual exploration of the network, avoid congestion, or avoid complete predictability of your routing strategy. In other words, you want to introduce some randomness or unpredictability in the routing policy (i.e., the routing policy is randomized). This problem, which will be called the randomized shortest-path problem (RSP), is investigated in this work. The global level of randomness of the routing policy is quantified by the expected Shannon entropy spread throughout the network and is provided a priori by the designer. Then, necessary conditions to compute the optimal randomized policy-minimizing the expected routing cost-are derived. Iterating these necessary conditions, reminiscent of Bellman's value iteration equations, allows computing an optimal policy, that is, a set of transition probabilities in each node. Interestingly and surprisingly enough, this first model, while formulated in a totally different framework, is equivalent to Akamatsu's model ( 1996 ), appearing in transportation science, for a special choice of the entropy constraint. We therefore revisit Akamatsu's model by recasting it into a sum-over-paths statistical physics formalism allowing easy derivation of all the quantities of interest in an elegant, unified way. For instance, it is shown that the unique optimal policy can be obtained by solving a simple linear system of equations. This second model is therefore more convincing because of its computational efficiency and soundness. Finally, simulation results obtained on simple, illustrative examples show that the models behave as expected.
Portable parallel stochastic optimization for the design of aeropropulsion components
NASA Technical Reports Server (NTRS)
Sues, Robert H.; Rhodes, G. S.
1994-01-01
This report presents the results of Phase 1 research to develop a methodology for performing large-scale Multi-disciplinary Stochastic Optimization (MSO) for the design of aerospace systems ranging from aeropropulsion components to complete aircraft configurations. The current research recognizes that such design optimization problems are computationally expensive, and require the use of either massively parallel or multiple-processor computers. The methodology also recognizes that many operational and performance parameters are uncertain, and that uncertainty must be considered explicitly to achieve optimum performance and cost. The objective of this Phase 1 research was to initialize the development of an MSO methodology that is portable to a wide variety of hardware platforms, while achieving efficient, large-scale parallelism when multiple processors are available. The first effort in the project was a literature review of available computer hardware, as well as review of portable, parallel programming environments. The first effort was to implement the MSO methodology for a problem using the portable parallel programming language, Parallel Virtual Machine (PVM). The third and final effort was to demonstrate the example on a variety of computers, including a distributed-memory multiprocessor, a distributed-memory network of workstations, and a single-processor workstation. Results indicate the MSO methodology can be well-applied towards large-scale aerospace design problems. Nearly perfect linear speedup was demonstrated for computation of optimization sensitivity coefficients on both a 128-node distributed-memory multiprocessor (the Intel iPSC/860) and a network of workstations (speedups of almost 19 times achieved for 20 workstations). Very high parallel efficiencies (75 percent for 31 processors and 60 percent for 50 processors) were also achieved for computation of aerodynamic influence coefficients on the Intel. Finally, the multi-level parallelization strategy that will be needed for large-scale MSO problems was demonstrated to be highly efficient. The same parallel code instructions were used on both platforms, demonstrating portability. There are many applications for which MSO can be applied, including NASA's High-Speed-Civil Transport, and advanced propulsion systems. The use of MSO will reduce design and development time and testing costs dramatically.
Uncertainty Aware Structural Topology Optimization Via a Stochastic Reduced Order Model Approach
NASA Technical Reports Server (NTRS)
Aguilo, Miguel A.; Warner, James E.
2017-01-01
This work presents a stochastic reduced order modeling strategy for the quantification and propagation of uncertainties in topology optimization. Uncertainty aware optimization problems can be computationally complex due to the substantial number of model evaluations that are necessary to accurately quantify and propagate uncertainties. This computational complexity is greatly magnified if a high-fidelity, physics-based numerical model is used for the topology optimization calculations. Stochastic reduced order model (SROM) methods are applied here to effectively 1) alleviate the prohibitive computational cost associated with an uncertainty aware topology optimization problem; and 2) quantify and propagate the inherent uncertainties due to design imperfections. A generic SROM framework that transforms the uncertainty aware, stochastic topology optimization problem into a deterministic optimization problem that relies only on independent calls to a deterministic numerical model is presented. This approach facilitates the use of existing optimization and modeling tools to accurately solve the uncertainty aware topology optimization problems in a fraction of the computational demand required by Monte Carlo methods. Finally, an example in structural topology optimization is presented to demonstrate the effectiveness of the proposed uncertainty aware structural topology optimization approach.
A Kind of Nonlinear Programming Problem Based on Mixed Fuzzy Relation Equations Constraints
NASA Astrophysics Data System (ADS)
Li, Jinquan; Feng, Shuang; Mi, Honghai
In this work, a kind of nonlinear programming problem with non-differential objective function and under the constraints expressed by a system of mixed fuzzy relation equations is investigated. First, some properties of this kind of optimization problem are obtained. Then, a polynomial-time algorithm for this kind of optimization problem is proposed based on these properties. Furthermore, we show that this algorithm is optimal for the considered optimization problem in this paper. Finally, numerical examples are provided to illustrate our algorithms.
Geometrical optics and optimal transport.
Rubinstein, Jacob; Wolansky, Gershon
2017-10-01
The Fermat principle is generalized to a system of rays. It is shown that all the ray mappings that are compatible with two given intensities of a monochromatic wave, measured at two planes, are stationary points of a canonical functional, which is the weighted average of the actions of all the rays. It is further shown that there exist at least two stationary points for this functional, implying that in the geometrical optics regime the phase from intensity problem has inherently more than one solution. The caustic structures of all the possible ray mappings are analyzed. A number of simulations illustrate the theoretical considerations.
NASA Technical Reports Server (NTRS)
Stanford, Bret K.; Jutte, Christine V.
2016-01-01
A series of aeroelastic optimization problems are solved on a high aspect ratio wingbox of the Common Research Model, in an effort to minimize structural mass under coupled stress, buckling, and flutter constraints. Two technologies are of particular interest: tow steered composite laminate skins and curvilinear stiffeners. Both methods are found to afford feasible reductions in mass over their non-curvilinear structural counterparts, through both distinct and shared mechanisms for passively controlling aeroelastic performance. Some degree of diminishing returns are seen when curvilinear stiffeners and curvilinear fiber tow paths are used simultaneously.
A feedback control model for network flow with multiple pure time delays
NASA Technical Reports Server (NTRS)
Press, J.
1972-01-01
A control model describing a network flow hindered by multiple pure time (or transport) delays is formulated. Feedbacks connect each desired output with a single control sector situated at the origin. The dynamic formulation invokes the use of differential difference equations. This causes the characteristic equation of the model to consist of transcendental functions instead of a common algebraic polynomial. A general graphical criterion is developed to evaluate the stability of such a problem. A digital computer simulation confirms the validity of such criterion. An optimal decision making process with multiple delays is presented.
New approach based on tetrahedral-mesh geometry for accurate 4D Monte Carlo patient-dose calculation
NASA Astrophysics Data System (ADS)
Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Kim, Seonghoon; Sohn, Jason W.
2015-02-01
In the present study, to achieve accurate 4D Monte Carlo dose calculation in radiation therapy, we devised a new approach that combines (1) modeling of the patient body using tetrahedral-mesh geometry based on the patient’s 4D CT data, (2) continuous movement/deformation of the tetrahedral patient model by interpolation of deformation vector fields acquired through deformable image registration, and (3) direct transportation of radiation particles during the movement and deformation of the tetrahedral patient model. The results of our feasibility study show that it is certainly possible to construct 4D patient models (= phantoms) with sufficient accuracy using the tetrahedral-mesh geometry and to directly transport radiation particles during continuous movement and deformation of the tetrahedral patient model. This new approach not only produces more accurate dose distribution in the patient but also replaces the current practice of using multiple 3D voxel phantoms and combining multiple dose distributions after Monte Carlo simulations. For routine clinical application of our new approach, the use of fast automatic segmentation algorithms is a must. In order to achieve, simultaneously, both dose accuracy and computation speed, the number of tetrahedrons for the lungs should be optimized. Although the current computation speed of our new 4D Monte Carlo simulation approach is slow (i.e. ~40 times slower than that of the conventional dose accumulation approach), this problem is resolvable by developing, in Geant4, a dedicated navigation class optimized for particle transportation in tetrahedral-mesh geometry.
NASA Astrophysics Data System (ADS)
Dement'eva, Marina
2017-10-01
The paper presents the results of a comparative analysis of two fundamentally different methods for planning capital repairs of objects of transport infrastructure and residential development. The first method was based on perspective long-term plans. Normative service life were the basis for planning the periodicity of repairs. The second method was based on the performance of repairs in fact of the onset of the malfunction. Problems of financing repair work, of the uneven aging of constructs and engineering systems, different wear mechanism in different conditions of exploitation, absence of methods of planning repairs of administrative and production buildings (depots, stations, etc.) justify the need to optimize methods of planning the repair and the relevance of this paper. The aim of the study was to develop the main provisions of an integrated technique for planning the capital repair of buildings of any functional purpose, which combines the advantages of each of the discussed planning methods. For this purpose, the consequences of technical and economic risk were analyzed of the buildings, including stations, depots, transport transfer hubs, administrative buildings, etc when choosing different planning methods. One of the significant results of the study is the possibility of justifying the optimal period of capital repairs on the basis of the proposed technical and economic criteria. The adjustment of the planned repair schedule is carried out taking into account the reliability and cost-effectiveness of the exploitation process.
NASA Astrophysics Data System (ADS)
Bagchi, Prosenjit
2016-11-01
In this talk, two problems in multiphase biological flows will be discussed. The first is the direct numerical simulation of whole blood and drug particulates in microvascular networks. Blood in microcirculation behaves as a dense suspension of heterogeneous cells. The erythrocytes are extremely deformable, while inactivated platelets and leukocytes are nearly rigid. A significant progress has been made in recent years in modeling blood as a dense cellular suspension. However, many of these studies considered the blood flow in simple geometry, e.g., straight tubes of uniform cross-section. In contrast, the architecture of a microvascular network is very complex with bifurcating, merging and winding vessels, posing a further challenge to numerical modeling. We have developed an immersed-boundary-based method that can consider blood cell flow in physiologically realistic and complex microvascular network. In addition to addressing many physiological issues related to network hemodynamics, this tool can be used to optimize the transport properties of drug particulates for effective organ-specific delivery. Our second problem is pseudopod-driven motility as often observed in metastatic cancer cells and other amoeboid cells. We have developed a multiscale hydrodynamic model to simulate such motility. We study the effect of cell stiffness on motility as the former has been considered as a biomarker for metastatic potential. Funded by the National Science Foundation.
Supersonic transport grid generation, validation, and optimization
NASA Technical Reports Server (NTRS)
Aaronson, Philip G.
1995-01-01
The ever present demand for reduced flight times has renewed interest in High Speed Civil Transports (HSCT). The need for an HSCT becomes especially apparent when the long distance, over-sea, high growth Pacific rim routes are considered. Crucial to any successful HSCT design are minimal environmental impact and economic viability. Vital is the transport's aerodynamic efficiency, ultimately effecting both the environmental impact and the operating cost. Optimization, including numerical optimization, coupled with the use of computational fluid dynamics (CFD) technology, has and will offer a significant improvement beyond traditional methods.
Fabrication of Semi-quasi Solid DSSC using Spiro Material as Hole Transport Material
NASA Astrophysics Data System (ADS)
Safriani, L.; Primawati, W. P.; Mulyana, C.; Susilawati, T.; Aprilia, A.
2017-05-01
Dye Sensitized Solar Cells (DSSC) has been emerging a promising development in recent years. DSSC is a low-cost solar cell belonging to the third generation of solar cells. However, the conversion efficiency of DSSC is still far behind compared to silicon based solar cells. To produce long stability of DSSC, the used of solid state electrolyte is recommended instead of liquid electrolyte, though solid state DSSC also has problem relating to a lack of pore-filling hole transport material into mesoporous TiO2. In this work an attempt to improve performance of DSSC has been done by adding hole transport material into mesoporous TiO2 layer and optimizing fabrication method. In the first part of the work, we used low Tg material spiro-TAD and spiro-TPD as hole transport material with mosalyte and hybrid polymer as gel electrolyte to obtain a semi-quasi solid DSSC. In the second part, we modified fabrication method by annealing process before spin-coated spiro material into dye-coated TiO2 substrate. Current-voltage measurement of semi-quasi solid DSSC was performed using halogen lamp. We found that the used of spiro-TPD as hole transport give the best power conversion efficiency η = 2.03% of semi-quasi solid DSSC.
Survey of horse transportation in Australia: issues and practices.
Padalino, B; Raidal, S L; Hall, E; Knight, P; Celi, P; Jeffcott, L; Muscatello, G
2016-10-01
To survey amateur and professional participants on equine transportation management, practices and outcomes in Australia. An online survey targeting people who organised horse movements at least monthly was made available to a broad cross-section of amateur and professional equine associations. Respondents were invited to provide demographic details and information relating to their routine transportation management practices and their experiences of issues relating to the transportation of horses. Of 797 usable responses involving approximately 17,000 horses and 313,000 individual horse transport events, transport-related behavioural problems were reported by 38% of respondents, particularly at loading. Transport-related health problems had been experienced during or after transportation by horses in the care of 67% of respondents. The most common problems reported were traumatic injuries (45.0%), diarrhoea (20.0%), muscular problems (13.0%), respiratory problems (12.3%), overheating (10.5%) and colic (10.3%). In the 2 years reviewed in the survey, 9.4% of participants reported at least one case of transport-associated pneumonia and 35 horses had died, most commonly from fractures, colic or pneumonia. Although respondents identifying as amateurs transported horses less frequently and over shorter distances, the incidence of transport-related problems was similar between amateurs and professionals. Respondents reported specific precautions before, during and after transportation, although management was often not compliant with the Australian Code of horse transportation. Responses indicated that there remains a substantial risk of adverse welfare and health outcomes for horses transported in Australia and management practices reported may not be compliant with current recommendations for transportation. © 2016 Australian Veterinary Association.
Mathematical and Numerical Techniques in Energy and Environmental Modeling
NASA Astrophysics Data System (ADS)
Chen, Z.; Ewing, R. E.
Mathematical models have been widely used to predict, understand, and optimize many complex physical processes, from semiconductor or pharmaceutical design to large-scale applications such as global weather models to astrophysics. In particular, simulation of environmental effects of air pollution is extensive. Here we address the need for using similar models to understand the fate and transport of groundwater contaminants and to design in situ remediation strategies. Three basic problem areas need to be addressed in the modeling and simulation of the flow of groundwater contamination. First, one obtains an effective model to describe the complex fluid/fluid and fluid/rock interactions that control the transport of contaminants in groundwater. This includes the problem of obtaining accurate reservoir descriptions at various length scales and modeling the effects of this heterogeneity in the reservoir simulators. Next, one develops accurate discretization techniques that retain the important physical properties of the continuous models. Finally, one develops efficient numerical solution algorithms that utilize the potential of the emerging computing architectures. We will discuss recent advances and describe the contribution of each of the papers in this book in these three areas. Keywords: reservoir simulation, mathematical models, partial differential equations, numerical algorithms
Remote quality monitoring in the banana chain
Jedermann, Reiner; Praeger, Ulrike; Geyer, Martin; Lang, Walter
2014-01-01
Quality problems occurring during or after sea transportation of bananas in refrigerated containers are mainly caused by insufficient cooling and non-optimal atmospheric conditions, but also by the heat generated by respiration activity. Tools to measure and evaluate these effects can largely help to reduce losses along the banana supply chain. The presented green life model provides a tool to predict the effect of deviating temperature, relative humidity, and CO2 and O2 gas concentrations on the storage stability of bananas. A second thermal model allows evaluation of the cooling efficiency, the effect of changes in packaging and stowage and the amount of respiration heat from the measured temperature curves. Spontaneous ripening causes higher respiration heat and CO2 production rate. The resulting risk for creation of hot spots increases in positions in which the respiration heat exceeds the available cooling capacity. In case studies on the transport of bananas from Costa Rica to Europe, we validated the models and showed how they can be applied to generate automated warning messages for containers with reduced banana green life or with temperature problems and also for remote monitoring of the ripening process inside the container. PMID:24797132
Remote quality monitoring in the banana chain.
Jedermann, Reiner; Praeger, Ulrike; Geyer, Martin; Lang, Walter
2014-06-13
Quality problems occurring during or after sea transportation of bananas in refrigerated containers are mainly caused by insufficient cooling and non-optimal atmospheric conditions, but also by the heat generated by respiration activity. Tools to measure and evaluate these effects can largely help to reduce losses along the banana supply chain. The presented green life model provides a tool to predict the effect of deviating temperature, relative humidity, and CO2 and O2 gas concentrations on the storage stability of bananas. A second thermal model allows evaluation of the cooling efficiency, the effect of changes in packaging and stowage and the amount of respiration heat from the measured temperature curves. Spontaneous ripening causes higher respiration heat and CO2 production rate. The resulting risk for creation of hot spots increases in positions in which the respiration heat exceeds the available cooling capacity. In case studies on the transport of bananas from Costa Rica to Europe, we validated the models and showed how they can be applied to generate automated warning messages for containers with reduced banana green life or with temperature problems and also for remote monitoring of the ripening process inside the container.
Consistent Adjoint Driven Importance Sampling using Space, Energy and Angle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peplow, Douglas E.; Mosher, Scott W; Evans, Thomas M
2012-08-01
For challenging radiation transport problems, hybrid methods combine the accuracy of Monte Carlo methods with the global information present in deterministic methods. One of the most successful hybrid methods is CADIS Consistent Adjoint Driven Importance Sampling. This method uses a deterministic adjoint solution to construct a biased source distribution and consistent weight windows to optimize a specific tally in a Monte Carlo calculation. The method has been implemented into transport codes using just the spatial and energy information from the deterministic adjoint and has been used in many applications to compute tallies with much higher figures-of-merit than analog calculations. CADISmore » also outperforms user-supplied importance values, which usually take long periods of user time to develop. This work extends CADIS to develop weight windows that are a function of the position, energy, and direction of the Monte Carlo particle. Two types of consistent source biasing are presented: one method that biases the source in space and energy while preserving the original directional distribution and one method that biases the source in space, energy, and direction. Seven simple example problems are presented which compare the use of the standard space/energy CADIS with the new space/energy/angle treatments.« less
Fast Optimization for Aircraft Descent and Approach Trajectory
NASA Technical Reports Server (NTRS)
Luchinsky, Dmitry G.; Schuet, Stefan; Brenton, J.; Timucin, Dogan; Smith, David; Kaneshige, John
2017-01-01
We address problem of on-line scheduling of the aircraft descent and approach trajectory. We formulate a general multiphase optimal control problem for optimization of the descent trajectory and review available methods of its solution. We develop a fast algorithm for solution of this problem using two key components: (i) fast inference of the dynamical and control variables of the descending trajectory from the low dimensional flight profile data and (ii) efficient local search for the resulting reduced dimensionality non-linear optimization problem. We compare the performance of the proposed algorithm with numerical solution obtained using optimal control toolbox General Pseudospectral Optimal Control Software. We present results of the solution of the scheduling problem for aircraft descent using novel fast algorithm and discuss its future applications.
Research on cutting path optimization of sheet metal parts based on ant colony algorithm
NASA Astrophysics Data System (ADS)
Wu, Z. Y.; Ling, H.; Li, L.; Wu, L. H.; Liu, N. B.
2017-09-01
In view of the disadvantages of the current cutting path optimization methods of sheet metal parts, a new method based on ant colony algorithm was proposed in this paper. The cutting path optimization problem of sheet metal parts was taken as the research object. The essence and optimization goal of the optimization problem were presented. The traditional serial cutting constraint rule was improved. The cutting constraint rule with cross cutting was proposed. The contour lines of parts were discretized and the mathematical model of cutting path optimization was established. Thus the problem was converted into the selection problem of contour lines of parts. Ant colony algorithm was used to solve the problem. The principle and steps of the algorithm were analyzed.
Color image analysis of contaminants and bacteria transport in porous media
NASA Astrophysics Data System (ADS)
Rashidi, Mehdi; Dehmeshki, Jamshid; Daemi, Mohammad F.; Cole, Larry; Dickenson, Eric
1997-10-01
Transport of contaminants and bacteria in aqueous heterogeneous saturated porous systems have been studied experimentally using a novel fluorescent microscopic imaging technique. The approach involves color visualization and quantification of bacterium and contaminant distributions within a transparent porous column. By introducing stained bacteria and an organic dye as a contaminant into the column and illuminating the porous regions with a planar sheet of laser beam, contaminant and bacterial transport processes through the porous medium can be observed and measured microscopically. A computer controlled color CCD camera is used to record the fluorescent images as a function of time. These images are recorded by a frame accurate high resolution VCR and are then analyzed using a color image analysis code written in our laboratories. The color images are digitized this way and simultaneous concentration and velocity distributions of both contaminant and bacterium are evaluated as a function of time and pore characteristics. The approach provides a unique dynamic probe to observe these transport processes microscopically. These results are extremely valuable in in-situ bioremediation problems since microscopic particle-contaminant- bacterium interactions are the key to understanding and optimization of these processes.
ATP-Binding Cassette Efflux Transporters in Human Placenta
Ni, Zhanglin; Mao, Qingcheng
2010-01-01
Pregnant women are often complicated with diseases including viral or bacterial infections, epilepsy, hypertension, or pregnancy-induced conditions such as depression and gestational diabetes that require treatment with medication. In addition, substance abuse during pregnancy remains a major public health problem. Many drugs used by pregnant women are off label without the necessary dose, efficacy, and safety data required for rational dosing regimens of these drugs. Thus, a major concern arising from the widespread use of drugs by pregnant women is the transfer of drugs across the placental barrier, leading to potential toxicity to the developing fetus. Knowledge regarding the ATP-binding cassette (ABC) efflux transporters, which play an important role in drug transfer across the placental barrier, is absolutely critical for optimizing the therapeutic strategy to treat the mother while protecting the fetus during pregnancy. Such transporters include P-glycoprotein (P-gp, gene symbol ABCB1), the breast cancer resistance protein (BCRP, gene symbol ABCG2), and the multidrug resistance proteins (MRPs, gene symbol ABCCs). In this review, we summarize the current knowledge with respect to developmental expression and regulation, membrane localization, functional significance, and genetic polymorphisms of these ABC transporters in the placenta and their relevance to fetal drug exposure and toxicity. PMID:21118087
Large-scale structural optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.
1983-01-01
Problems encountered by aerospace designers in attempting to optimize whole aircraft are discussed, along with possible solutions. Large scale optimization, as opposed to component-by-component optimization, is hindered by computational costs, software inflexibility, concentration on a single, rather than trade-off, design methodology and the incompatibility of large-scale optimization with single program, single computer methods. The software problem can be approached by placing the full analysis outside of the optimization loop. Full analysis is then performed only periodically. Problem-dependent software can be removed from the generic code using a systems programming technique, and then embody the definitions of design variables, objective function and design constraints. Trade-off algorithms can be used at the design points to obtain quantitative answers. Finally, decomposing the large-scale problem into independent subproblems allows systematic optimization of the problems by an organization of people and machines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Jianxin; Mei, Deqing, E-mail: meidq-127@zju.edu.cn; Yang, Keji
2014-08-14
In existing ultrasonic transportation methods, the long-range transportation of micro-particles is always realized in step-by-step way. Due to the substantial decrease of the driving force in each step, the transportation is lower-speed and stair-stepping. To improve the transporting velocity, a non-stepping ultrasonic transportation approach is proposed. By quantitatively analyzing the acoustic potential well, an optimal region is defined as the position, where the largest driving force is provided under the condition that the driving force is simultaneously the major component of an acoustic radiation force. To keep the micro-particle trapped in the optimal region during the whole transportation process, anmore » approach of optimizing the phase-shifting velocity and phase-shifting step is adopted. Due to the stable and large driving force, the displacement of the micro-particle is an approximately linear function of time, instead of a stair-stepping function of time as in the existing step-by-step methods. An experimental setup is also developed to validate this approach. Long-range ultrasonic transportations of zirconium beads with high transporting velocity were realized. The experimental results demonstrated that this approach is an effective way to improve transporting velocity in the long-range ultrasonic transportation of micro-particles.« less
NASA Astrophysics Data System (ADS)
Barabash, Yu. M.; Lyamets, A. K.
2016-12-01
The structural and dynamical properties of biological macromolecules under non-equilibrium conditions determine the kinetics of their basic reaction to external stimuli. This kinetics is multiexponential in nature. This is due to the operation of various subsystems in the structure of macromolecules, as well as the effect of the basic reaction on the structure of macromolecules. The situation can be interpreted as a manifestation of the stationary states of macromolecules, which are represented by monoexponential components of the basic reaction (Monod-Wyman-Changeux model) Monod et al. (J Mol Cell Biol 12:88-118, 1965). The representation of multiexponential kinetics of the basic reaction in the form of a sum of exponential functions (A(t)={sum}_{i=1}^n{a}_i{e}^{-{k}_it}) is a multidimensional optimization problem. To solve this problem, a gradient method of optimization with software determination of the amount of exponents and reasonable calculation time is developed. This method is used to analyze the kinetics of photoinduced electron transport in the reaction centers (RC) of purple bacteria and the fluorescence induction in the granum thylakoid membranes which share a common function of converting light energy.
Are strategies in physics discrete? A remote controlled investigation
NASA Astrophysics Data System (ADS)
Heck, Robert; Sherson, Jacob F.; www. scienceathome. org Team; players Team
2017-04-01
In science, strategies are formulated based on observations, calculations, or physical insight. For any given physical process, often several distinct strategies are identified. Are these truly distinct or simply low dimensional representations of a high dimensional continuum of solutions? Our online citizen science platform www.scienceathome.org used by more than 150,000 people recently enabled finding solutions to fast, 1D single atom transport [Nature2016]. Surprisingly, player trajectories bunched into discrete solution strategies (clans) yielding clear, distinct physical insight. Introducing the multi-dimensional vector in the direction of other local maxima we locate narrow, high-yield ``bridges'' connecting the clans. This demonstrates for this problem that a continuum of solutions with no clear physical interpretation does in fact exist. Next, four distinct strategies for creating Bose-Einstein condensates were investigated experimentally: hybrid and crossed dipole trap configurations in combination with either large volume or dimple loading from a magnetic trap. We find that although each conventional strategy appears locally optimal, ``bridges'' can be identified. In a novel approach, the problem was gamified allowing 750 citizen scientists to contribute to the experimental optimization yielding nearly a factor two improvement in atom number.
Application of the gravity search algorithm to multi-reservoir operation optimization
NASA Astrophysics Data System (ADS)
Bozorg-Haddad, Omid; Janbaz, Mahdieh; Loáiciga, Hugo A.
2016-12-01
Complexities in river discharge, variable rainfall regime, and drought severity merit the use of advanced optimization tools in multi-reservoir operation. The gravity search algorithm (GSA) is an evolutionary optimization algorithm based on the law of gravity and mass interactions. This paper explores the GSA's efficacy for solving benchmark functions, single reservoir, and four-reservoir operation optimization problems. The GSA's solutions are compared with those of the well-known genetic algorithm (GA) in three optimization problems. The results show that the GSA's results are closer to the optimal solutions than the GA's results in minimizing the benchmark functions. The average values of the objective function equal 1.218 and 1.746 with the GSA and GA, respectively, in solving the single-reservoir hydropower operation problem. The global solution equals 1.213 for this same problem. The GSA converged to 99.97% of the global solution in its average-performing history, while the GA converged to 97% of the global solution of the four-reservoir problem. Requiring fewer parameters for algorithmic implementation and reaching the optimal solution in fewer number of functional evaluations are additional advantages of the GSA over the GA. The results of the three optimization problems demonstrate a superior performance of the GSA for optimizing general mathematical problems and the operation of reservoir systems.
NASA Astrophysics Data System (ADS)
Santosa, B.; Siswanto, N.; Fiqihesa
2018-04-01
This paper proposes a discrete Particle Swam Optimization (PSO) to solve limited-wait hybrid flowshop scheduing problem with multi objectives. Flow shop schedulimg represents the condition when several machines are arranged in series and each job must be processed at each machine with same sequence. The objective functions are minimizing completion time (makespan), total tardiness time, and total machine idle time. Flow shop scheduling model always grows to cope with the real production system accurately. Since flow shop scheduling is a NP-Hard problem then the most suitable method to solve is metaheuristics. One of metaheuristics algorithm is Particle Swarm Optimization (PSO), an algorithm which is based on the behavior of a swarm. Originally, PSO was intended to solve continuous optimization problems. Since flow shop scheduling is a discrete optimization problem, then, we need to modify PSO to fit the problem. The modification is done by using probability transition matrix mechanism. While to handle multi objectives problem, we use Pareto Optimal (MPSO). The results of MPSO is better than the PSO because the MPSO solution set produced higher probability to find the optimal solution. Besides the MPSO solution set is closer to the optimal solution
Constraint Optimization Literature Review
2015-11-01
COPs. 15. SUBJECT TERMS high-performance computing, mobile ad hoc network, optimization, constraint, satisfaction 16. SECURITY CLASSIFICATION OF: 17...Optimization Problems 1 2.1 Constraint Satisfaction Problems 1 2.2 Constraint Optimization Problems 3 3. Constraint Optimization Algorithms 9 3.1...Constraint Satisfaction Algorithms 9 3.1.1 Brute-Force search 9 3.1.2 Constraint Propagation 10 3.1.3 Depth-First Search 13 3.1.4 Local Search 18
A review of distributed parameter groundwater management modeling methods
Gorelick, Steven M.
1983-01-01
Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.
A Review of Distributed Parameter Groundwater Management Modeling Methods
NASA Astrophysics Data System (ADS)
Gorelick, Steven M.
1983-04-01
Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.
Development of a large-scale transportation optimization course.
DOT National Transportation Integrated Search
2011-11-01
"In this project, a course was developed to introduce transportation and logistics applications of large-scale optimization to graduate students. This report details what : similar courses exist in other universities, and the methodology used to gath...
Comparison of Optimal Design Methods in Inverse Problems
Banks, H. T.; Holm, Kathleen; Kappel, Franz
2011-01-01
Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher Information Matrix (FIM). A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criteria with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst-Pearl logistic population model [13], the standard harmonic oscillator model [13] and a popular glucose regulation model [16, 19, 29]. PMID:21857762
NASA Technical Reports Server (NTRS)
Gilyard, Glenn; Espana, Martin
1994-01-01
Increasing competition among airline manufacturers and operators has highlighted the issue of aircraft efficiency. Fewer aircraft orders have led to an all-out efficiency improvement effort among the manufacturers to maintain if not increase their share of the shrinking number of aircraft sales. Aircraft efficiency is important in airline profitability and is key if fuel prices increase from their current low. In a continuing effort to improve aircraft efficiency and develop an optimal performance technology base, NASA Dryden Flight Research Center developed and flight tested an adaptive performance seeking control system to optimize the quasi-steady-state performance of the F-15 aircraft. The demonstrated technology is equally applicable to transport aircraft although with less improvement. NASA Dryden, in transitioning this technology to transport aircraft, is specifically exploring the feasibility of applying adaptive optimal control techniques to performance optimization of redundant control effectors. A simulation evaluation of a preliminary control law optimizes wing-aileron camber for minimum net aircraft drag. Two submodes are evaluated: one to minimize fuel and the other to maximize velocity. This paper covers the status of performance optimization of the current fleet of subsonic transports. Available integrated controls technologies are reviewed to define approaches using active controls. A candidate control law for adaptive performance optimization is presented along with examples of algorithm operation.
Multiobjective optimization approach: thermal food processing.
Abakarov, A; Sushkov, Y; Almonacid, S; Simpson, R
2009-01-01
The objective of this study was to utilize a multiobjective optimization technique for the thermal sterilization of packaged foods. The multiobjective optimization approach used in this study is based on the optimization of well-known aggregating functions by an adaptive random search algorithm. The applicability of the proposed approach was illustrated by solving widely used multiobjective test problems taken from the literature. The numerical results obtained for the multiobjective test problems and for the thermal processing problem show that the proposed approach can be effectively used for solving multiobjective optimization problems arising in the food engineering field.
Energy-efficient container handling using hybrid model predictive control
NASA Astrophysics Data System (ADS)
Xin, Jianbin; Negenborn, Rudy R.; Lodewijks, Gabriel
2015-11-01
The performance of container terminals needs to be improved to adapt the growth of containers while maintaining sustainability. This paper provides a methodology for determining the trajectory of three key interacting machines for carrying out the so-called bay handling task, involving transporting containers between a vessel and the stacking area in an automated container terminal. The behaviours of the interacting machines are modelled as a collection of interconnected hybrid systems. Hybrid model predictive control (MPC) is proposed to achieve optimal performance, balancing the handling capacity and energy consumption. The underlying control problem is hereby formulated as a mixed-integer linear programming problem. Simulation studies illustrate that a higher penalty on energy consumption indeed leads to improved sustainability using less energy. Moreover, simulations illustrate how the proposed energy-efficient hybrid MPC controller performs under different types of uncertainties.
Stochastic Multi-Commodity Facility Location Based on a New Scenario Generation Technique
NASA Astrophysics Data System (ADS)
Mahootchi, M.; Fattahi, M.; Khakbazan, E.
2011-11-01
This paper extends two models for stochastic multi-commodity facility location problem. The problem is formulated as two-stage stochastic programming. As a main point of this study, a new algorithm is applied to efficiently generate scenarios for uncertain correlated customers' demands. This algorithm uses Latin Hypercube Sampling (LHS) and a scenario reduction approach. The relation between customer satisfaction level and cost are considered in model I. The risk measure using Conditional Value-at-Risk (CVaR) is embedded into the optimization model II. Here, the structure of the network contains three facility layers including plants, distribution centers, and retailers. The first stage decisions are the number, locations, and the capacity of distribution centers. In the second stage, the decisions are the amount of productions, the volume of transportation between plants and customers.
NASA Astrophysics Data System (ADS)
Rahman, Imran; Vasant, Pandian M.; Singh, Balbir Singh Mahinder; Abdullah-Al-Wadud, M.
2014-10-01
Recent researches towards the use of green technologies to reduce pollution and increase penetration of renewable energy sources in the transportation sector are gaining popularity. The development of the smart grid environment focusing on PHEVs may also heal some of the prevailing grid problems by enabling the implementation of Vehicle-to-Grid (V2G) concept. Intelligent energy management is an important issue which has already drawn much attention to researchers. Most of these works require formulation of mathematical models which extensively use computational intelligence-based optimization techniques to solve many technical problems. Higher penetration of PHEVs require adequate charging infrastructure as well as smart charging strategies. We used Gravitational Search Algorithm (GSA) to intelligently allocate energy to the PHEVs considering constraints such as energy price, remaining battery capacity, and remaining charging time.
Discontinuous Galerkin method for multicomponent chemically reacting flows and combustion
NASA Astrophysics Data System (ADS)
Lv, Yu; Ihme, Matthias
2014-08-01
This paper presents the development of a discontinuous Galerkin (DG) method for application to chemically reacting flows in subsonic and supersonic regimes under the consideration of variable thermo-viscous-diffusive transport properties, detailed and stiff reaction chemistry, and shock capturing. A hybrid-flux formulation is developed for treatment of the convective fluxes, combining a conservative Riemann-solver and an extended double-flux scheme. A computationally efficient splitting scheme is proposed, in which advection and diffusion operators are solved in the weak form, and the chemically stiff substep is advanced in the strong form using a time-implicit scheme. The discretization of the viscous-diffusive transport terms follows the second form of Bassi and Rebay, and the WENO-based limiter due to Zhong and Shu is extended to multicomponent systems. Boundary conditions are developed for subsonic and supersonic flow conditions, and the algorithm is coupled to thermochemical libraries to account for detailed reaction chemistry and complex transport. The resulting DG method is applied to a series of test cases of increasing physico-chemical complexity. Beginning with one- and two-dimensional multispecies advection and shock-fluid interaction problems, computational efficiency, convergence, and conservation properties are demonstrated. This study is followed by considering a series of detonation and supersonic combustion problems to investigate the convergence-rate and the shock-capturing capability in the presence of one- and multistep reaction chemistry. The DG algorithm is then applied to diffusion-controlled deflagration problems. By examining convergence properties for polynomial order and spatial resolution, and comparing these with second-order finite-volume solutions, it is shown that optimal convergence is achieved and that polynomial refinement provides advantages in better resolving the localized flame structure and complex flow-field features associated with multidimensional and hydrodynamic/thermo-diffusive instabilities in deflagration and detonation systems. Comparisons with standard third- and fifth-order WENO schemes are presented to illustrate the benefit of the DG scheme for application to detonation and multispecies flow/shock-interaction problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burchett, Deon L.; Chen, Richard Li-Yang; Phillips, Cynthia A.
This report summarizes the work performed under the project project Next-Generation Algo- rithms for Assessing Infrastructure Vulnerability and Optimizing System Resilience. The goal of the project was to improve mathematical programming-based optimization technology for in- frastructure protection. In general, the owner of a network wishes to design a network a network that can perform well when certain transportation channels are inhibited (e.g. destroyed) by an adversary. These are typically bi-level problems where the owner designs a system, an adversary optimally attacks it, and then the owner can recover by optimally using the remaining network. This project funded three years ofmore » Deon Burchett's graduate research. Deon's graduate advisor, Professor Jean-Philippe Richard, and his Sandia advisors, Richard Chen and Cynthia Phillips, supported Deon on other funds or volunteer time. This report is, therefore. essentially a replication of the Ph.D. dissertation it funded [12] in a format required for project documentation. The thesis had some general polyhedral research. This is the study of the structure of the feasi- ble region of mathematical programs, such as integer programs. For example, an integer program optimizes a linear objective function subject to linear constraints, and (nonlinear) integrality con- straints on the variables. The feasible region without the integrality constraints is a convex polygon. Careful study of additional valid constraints can significantly improve computational performance. Here is the abstract from the dissertation: We perform a polyhedral study of a multi-commodity generalization of variable upper bound flow models. In particular, we establish some relations between facets of single- and multi- commodity models. We then introduce a new family of inequalities, which generalizes traditional flow cover inequalities to the multi-commodity context. We present encouraging numerical results. We also consider the directed edge-failure resilient network design problem (DRNDP). This problem entails the design of a directed multi-commodity flow network that is capable of fulfilling a specified percentage of demands in the event that any G arcs are destroyed, where G is a constant parameter. We present a formulation of DRNDP and solve it in a branch-column-cut framework. We present computational results.« less
Replica analysis for the duality of the portfolio optimization problem
NASA Astrophysics Data System (ADS)
Shinzato, Takashi
2016-11-01
In the present paper, the primal-dual problem consisting of the investment risk minimization problem and the expected return maximization problem in the mean-variance model is discussed using replica analysis. As a natural extension of the investment risk minimization problem under only a budget constraint that we analyzed in a previous study, we herein consider a primal-dual problem in which the investment risk minimization problem with budget and expected return constraints is regarded as the primal problem, and the expected return maximization problem with budget and investment risk constraints is regarded as the dual problem. With respect to these optimal problems, we analyze a quenched disordered system involving both of these optimization problems using the approach developed in statistical mechanical informatics and confirm that both optimal portfolios can possess the primal-dual structure. Finally, the results of numerical simulations are shown to validate the effectiveness of the proposed method.
Replica analysis for the duality of the portfolio optimization problem.
Shinzato, Takashi
2016-11-01
In the present paper, the primal-dual problem consisting of the investment risk minimization problem and the expected return maximization problem in the mean-variance model is discussed using replica analysis. As a natural extension of the investment risk minimization problem under only a budget constraint that we analyzed in a previous study, we herein consider a primal-dual problem in which the investment risk minimization problem with budget and expected return constraints is regarded as the primal problem, and the expected return maximization problem with budget and investment risk constraints is regarded as the dual problem. With respect to these optimal problems, we analyze a quenched disordered system involving both of these optimization problems using the approach developed in statistical mechanical informatics and confirm that both optimal portfolios can possess the primal-dual structure. Finally, the results of numerical simulations are shown to validate the effectiveness of the proposed method.
A coupled electro-thermal Discontinuous Galerkin method
NASA Astrophysics Data System (ADS)
Homsi, L.; Geuzaine, C.; Noels, L.
2017-11-01
This paper presents a Discontinuous Galerkin scheme in order to solve the nonlinear elliptic partial differential equations of coupled electro-thermal problems. In this paper we discuss the fundamental equations for the transport of electricity and heat, in terms of macroscopic variables such as temperature and electric potential. A fully coupled nonlinear weak formulation for electro-thermal problems is developed based on continuum mechanics equations expressed in terms of energetically conjugated pair of fluxes and fields gradients. The weak form can thus be formulated as a Discontinuous Galerkin method. The existence and uniqueness of the weak form solution are proved. The numerical properties of the nonlinear elliptic problems i.e., consistency and stability, are demonstrated under specific conditions, i.e. use of high enough stabilization parameter and at least quadratic polynomial approximations. Moreover the prior error estimates in the H1-norm and in the L2-norm are shown to be optimal in the mesh size with the polynomial approximation degree.
NASA Technical Reports Server (NTRS)
Schlagheck, R. A.
1977-01-01
New planning techniques and supporting computer tools are needed for the optimization of resources and costs for space transportation and payload systems. Heavy emphasis on cost effective utilization of resources has caused NASA program planners to look at the impact of various independent variables that affect procurement buying. A description is presented of a category of resource planning which deals with Spacelab inventory procurement analysis. Spacelab is a joint payload project between NASA and the European Space Agency and will be flown aboard the Space Shuttle starting in 1980. In order to respond rapidly to the various procurement planning exercises, a system was built that could perform resource analysis in a quick and efficient manner. This system is known as the Interactive Resource Utilization Program (IRUP). Attention is given to aspects of problem definition, an IRUP system description, questions of data base entry, the approach used for project scheduling, and problems of resource allocation.
Reconstruction and restoration of historical buildings of transport infrastructure
NASA Astrophysics Data System (ADS)
Kareeva, Daria; Glazkova, Valeriya
2017-10-01
The aim of this article is to identify the main problems in the restoration of the historical objects. For this reason, it is rationally to collect and analyze the existing world experience of restoration. The information which was put together showed that there are some problems which are common and can be solved. In addition, the protection of the Monuments of Culture and Architecture Comittees always makes the restoration and reconstruction of the historical buildings complicated. By the examples of Germany, Italy and Russia it is shown that there are problems in organization, economy, planning and control. Engineers should think of and justify the methodology of organizing and monitoring of the restoration of the historical buildings. As a second solution, it will be possible to minimize time and financial costs through a favorable financial and legal background for investors and through the creation of a system of restoration work organizing. And for a faster process of restoration the imitation programs should be optimized for research and selection of the reconstruction technological and economic methods.
NASA Astrophysics Data System (ADS)
Shishebori, Davood; Babadi, Abolghasem Yousefi
2018-03-01
This study investigates the reliable multi-configuration capacitated logistics network design problem (RMCLNDP) under system disturbances, which relates to locating facilities, establishing transportation links, and also allocating their limited capacities to the customers conducive to provide their demand on the minimum expected total cost (including locating costs, link constructing costs, and also expected costs in normal and disturbance conditions). In addition, two types of risks are considered; (I) uncertain environment, (II) system disturbances. A two-level mathematical model is proposed for formulating of the mentioned problem. Also, because of the uncertain parameters of the model, an efficacious possibilistic robust optimization approach is utilized. To evaluate the model, a drug supply chain design (SCN) is studied. Finally, an extensive sensitivity analysis was done on the critical parameters. The obtained results show that the efficiency of the proposed approach is suitable and is worthwhile for analyzing the real practical problems.
Salcedo-Sanz, S; Del Ser, J; Landa-Torres, I; Gil-López, S; Portilla-Figueras, J A
2014-01-01
This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems.
Salcedo-Sanz, S.; Del Ser, J.; Landa-Torres, I.; Gil-López, S.; Portilla-Figueras, J. A.
2014-01-01
This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems. PMID:25147860
A Study on Optimal Sizing of Pipeline Transporting Equi-sized Particulate Solid-Liquid Mixture
NASA Astrophysics Data System (ADS)
Asim, Taimoor; Mishra, Rakesh; Pradhan, Suman; Ubbi, Kuldip
2012-05-01
Pipelines transporting solid-liquid mixtures are of practical interest to the oil and pipe industry throughout the world. Such pipelines are known as slurry pipelines where the solid medium of the flow is commonly known as slurry. The optimal designing of such pipelines is of commercial interests for their widespread acceptance. A methodology has been evolved for the optimal sizing of a pipeline transporting solid-liquid mixture. Least cost principle has been used in sizing such pipelines, which involves the determination of pipe diameter corresponding to the minimum cost for given solid throughput. The detailed analysis with regard to transportation of slurry having solids of uniformly graded particles size has been included. The proposed methodology can be used for designing a pipeline for transporting any solid material for different solid throughput.
Quantum Heterogeneous Computing for Satellite Positioning Optimization
NASA Astrophysics Data System (ADS)
Bass, G.; Kumar, V.; Dulny, J., III
2016-12-01
Hard optimization problems occur in many fields of academic study and practical situations. We present results in which quantum heterogeneous computing is used to solve a real-world optimization problem: satellite positioning. Optimization problems like this can scale very rapidly with problem size, and become unsolvable with traditional brute-force methods. Typically, such problems have been approximately solved with heuristic approaches; however, these methods can take a long time to calculate and are not guaranteed to find optimal solutions. Quantum computing offers the possibility of producing significant speed-up and improved solution quality. There are now commercially available quantum annealing (QA) devices that are designed to solve difficult optimization problems. These devices have 1000+ quantum bits, but they have significant hardware size and connectivity limitations. We present a novel heterogeneous computing stack that combines QA and classical machine learning and allows the use of QA on problems larger than the quantum hardware could solve in isolation. We begin by analyzing the satellite positioning problem with a heuristic solver, the genetic algorithm. The classical computer's comparatively large available memory can explore the full problem space and converge to a solution relatively close to the true optimum. The QA device can then evolve directly to the optimal solution within this more limited space. Preliminary experiments, using the Quantum Monte Carlo (QMC) algorithm to simulate QA hardware, have produced promising results. Working with problem instances with known global minima, we find a solution within 8% in a matter of seconds, and within 5% in a few minutes. Future studies include replacing QMC with commercially available quantum hardware and exploring more problem sets and model parameters. Our results have important implications for how heterogeneous quantum computing can be used to solve difficult optimization problems in any field.
NASA Technical Reports Server (NTRS)
Hill, Geoffrey A.; Olson, Erik D.
2004-01-01
Due to the growing problem of noise in today's air transportation system, there have arisen needs to incorporate noise considerations in the conceptual design of revolutionary aircraft. Through the use of response surfaces, complex noise models may be converted into polynomial equations for rapid and simplified evaluation. This conversion allows many of the commonly used response surface-based trade space exploration methods to be applied to noise analysis. This methodology is demonstrated using a noise model of a notional 300 passenger Blended-Wing-Body (BWB) transport. Response surfaces are created relating source noise levels of the BWB vehicle to its corresponding FAR-36 certification noise levels and the resulting trade space is explored. Methods demonstrated include: single point analysis, parametric study, an optimization technique for inverse analysis, sensitivity studies, and probabilistic analysis. Extended applications of response surface-based methods in noise analysis are also discussed.
Integrated fusion simulation with self-consistent core-pedestal coupling
Meneghini, O.; Snyder, P. B.; Smith, S. P.; ...
2016-04-20
In this study, accurate prediction of fusion performance in present and future tokamaks requires taking into account the strong interplay between core transport, pedestal structure, current profile and plasma equilibrium. An integrated modeling workflow capable of calculating the steady-state self- consistent solution to this strongly-coupled problem has been developed. The workflow leverages state-of-the-art components for collisional and turbulent core transport, equilibrium and pedestal stability. Validation against DIII-D discharges shows that the workflow is capable of robustly pre- dicting the kinetic profiles (electron and ion temperature and electron density) from the axis to the separatrix in good agreement with the experiments.more » An example application is presented, showing self-consistent optimization for the fusion performance of the 15 MA D-T ITER baseline scenario as functions of the pedestal density and ion effective charge Z eff.« less
Lunar lander conceptual design
NASA Technical Reports Server (NTRS)
Stecklein, J. M.; Petro, A. J.; Stump, W. R.; Adorjan, A. S.; Chambers, T. V.; Donofrio, M.; Hirasaki, J. K.; Morris, O. G.; Nudd, G.; Rawlings, R. P.
1992-01-01
This paper is a first look at the problems of building a lunar lander to support a small lunar surface base. A series of trade studies was performed to define the lander. The initial trades concerned choosing number of stages, payload mass, parking orbit altitude, and propellant type. Other important trades and issues included plane change capability, propellant loading and maintenance location, and reusability considerations. Given a rough baseline, the systems were then reviewed. A conceptual design was then produced. The process was carried through only one iteration. Many more iterations are needed. A transportation system using reusable, aerobraked orbital transfer vehicles (OTV's) is assumed. These OTV's are assumed to be based and maintained at a low Earth orbit (LEO) space station, optimized for transportation functions. Single- and two-stage OTV stacks are considered. The OTV's make the translunar injection (TLI), lunar orbit insertion (LOI), and trans-Earth injection (TEI) burns, as well as midcourse and perigee raise maneuvers.
Wireless Sensor Network Optimization: Multi-Objective Paradigm
Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad
2015-01-01
Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271
Lörincz, András; Póczos, Barnabás
2003-06-01
In optimizations the dimension of the problem may severely, sometimes exponentially increase optimization time. Parametric function approximatiors (FAPPs) have been suggested to overcome this problem. Here, a novel FAPP, cost component analysis (CCA) is described. In CCA, the search space is resampled according to the Boltzmann distribution generated by the energy landscape. That is, CCA converts the optimization problem to density estimation. Structure of the induced density is searched by independent component analysis (ICA). The advantage of CCA is that each independent ICA component can be optimized separately. In turn, (i) CCA intends to partition the original problem into subproblems and (ii) separating (partitioning) the original optimization problem into subproblems may serve interpretation. Most importantly, (iii) CCA may give rise to high gains in optimization time. Numerical simulations illustrate the working of the algorithm.
The design of multirate digital control systems
NASA Technical Reports Server (NTRS)
Berg, M. C.
1986-01-01
The successive loop closures synthesis method is the only method for multirate (MR) synthesis in common use. A new method for MR synthesis is introduced which requires a gradient-search solution to a constrained optimization problem. Some advantages of this method are that the control laws for all control loops are synthesized simultaneously, taking full advantage of all cross-coupling effects, and that simple, low-order compensator structures are easily accomodated. The algorithm and associated computer program for solving the constrained optimization problem are described. The successive loop closures , optimal control, and constrained optimization synthesis methods are applied to two example design problems. A series of compensator pairs are synthesized for each example problem. The succesive loop closure, optimal control, and constrained optimization synthesis methods are compared, in the context of the two design problems.
Aircraft symmetric flight optimization. [gradient techniques for supersonic aircraft control
NASA Technical Reports Server (NTRS)
Falco, M.; Kelley, H. J.
1973-01-01
Review of the development of gradient techniques and their application to aircraft optimal performance computations in the vertical plane of flight. Results obtained using the method of gradients are presented for attitude- and throttle-control programs which extremize the fuel, range, and time performance indices subject to various trajectory and control constraints, including boundedness of engine throttle control. A penalty function treatment of state inequality constraints which generally appear in aircraft performance problems is outlined. Numerical results for maximum-range, minimum-fuel, and minimum-time climb paths for a hypothetical supersonic turbojet interceptor are presented and discussed. In addition, minimum-fuel climb paths subject to various levels of ground overpressure intensity constraint are indicated for a representative supersonic transport. A variant of the Gel'fand-Tsetlin 'method of ravines' is reviewed, and two possibilities for further development of continuous gradient processes are cited - namely, a projection version of conjugate gradients and a curvilinear search.
NASA Astrophysics Data System (ADS)
Pang, Guofei; Perdikaris, Paris; Cai, Wei; Karniadakis, George Em
2017-11-01
The fractional advection-dispersion equation (FADE) can describe accurately the solute transport in groundwater but its fractional order has to be determined a priori. Here, we employ multi-fidelity Bayesian optimization to obtain the fractional order under various conditions, and we obtain more accurate results compared to previously published data. Moreover, the present method is very efficient as we use different levels of resolution to construct a stochastic surrogate model and quantify its uncertainty. We consider two different problem set ups. In the first set up, we obtain variable fractional orders of one-dimensional FADE, considering both synthetic and field data. In the second set up, we identify constant fractional orders of two-dimensional FADE using synthetic data. We employ multi-resolution simulations using two-level and three-level Gaussian process regression models to construct the surrogates.
Integrated aerodynamic-structural design of a forward-swept transport wing
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.; Grossman, Bernard; Kao, Pi-Jen; Polen, David M.; Sobieszczanski-Sobieski, Jaroslaw
1989-01-01
The introduction of composite materials is having a profound effect on aircraft design. Since these materials permit the designer to tailor material properties to improve structural, aerodynamic and acoustic performance, they require an integrated multidisciplinary design process. Futhermore, because of the complexity of the design process, numerical optimization methods are required. The utilization of integrated multidisciplinary design procedures for improving aircraft design is not currently feasible because of software coordination problems and the enormous computational burden. Even with the expected rapid growth of supercomputers and parallel architectures, these tasks will not be practical without the development of efficient methods for cross-disciplinary sensitivities and efficient optimization procedures. The present research is part of an on-going effort which is focused on the processes of simultaneous aerodynamic and structural wing design as a prototype for design integration. A sequence of integrated wing design procedures has been developed in order to investigate various aspects of the design process.
The optimal location of piezoelectric actuators and sensors for vibration control of plates
NASA Astrophysics Data System (ADS)
Kumar, K. Ramesh; Narayanan, S.
2007-12-01
This paper considers the optimal placement of collocated piezoelectric actuator-sensor pairs on a thin plate using a model-based linear quadratic regulator (LQR) controller. LQR performance is taken as objective for finding the optimal location of sensor-actuator pairs. The problem is formulated using the finite element method (FEM) as multi-input-multi-output (MIMO) model control. The discrete optimal sensor and actuator location problem is formulated in the framework of a zero-one optimization problem. A genetic algorithm (GA) is used to solve the zero-one optimization problem. Different classical control strategies like direct proportional feedback, constant-gain negative velocity feedback and the LQR optimal control scheme are applied to study the control effectiveness.