Sample records for transverse wake function

  1. Wake measurements of a dechirper jaw with nonzero tilt angle

    NASA Astrophysics Data System (ADS)

    Bane, Karl; Guetg, Marc; Lutman, Alberto

    2018-05-01

    The RadiaBeam/SLAC dechirper at the Linac Coherent Light Source (LCLS) is being used as a fast kicker, by inducing transverse wakefields, to, e.g., facilitate Fresh-slice, two-color laser operation. The dechirper jaws are independently adjustable at both ends, and it is difficult to avoid leaving residual (longitudinal) tilt in them during setup. In this report we develop a model independent method of removing unknown tilt in a jaw. In addition, for a short uniform bunch passing by a single dechirper plate, we derive an explicit analytical formula for the transverse wake kick as function of average plate offset and tilt angle. We perform wake kick measurements for the different dechirper jaws of the RadiaBeam/SLAC dechirper, and find that the agreement between measurement and theory is excellent.

  2. Generating high-brightness electron beams via ionization injection by transverse colliding lasers in a plasma-wakefield accelerator.

    PubMed

    Li, F; Hua, J F; Xu, X L; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Chen, H B; Tang, C X; Lu, W; Joshi, C; Mori, W B; Gu, Y Q

    2013-07-05

    The production of ultrabright electron bunches using ionization injection triggered by two transversely colliding laser pulses inside a beam-driven plasma wake is examined via three-dimensional particle-in-cell simulations. The relatively low intensity lasers are polarized along the wake axis and overlap with the wake for a very short time. The result is that the residual momentum of the ionized electrons in the transverse plane of the wake is reduced, and the injection is localized along the propagation axis of the wake. This minimizes both the initial thermal emittance and the emittance growth due to transverse phase mixing. Simulations show that ultrashort (~8 fs) high-current (0.4 kA) electron bunches with a normalized emittance of 8.5 and 6 nm in the two planes, respectively, and a brightness of 1.7×10(19) A rad(-2) m(-2) can be obtained for realistic parameters.

  3. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness.

    PubMed

    Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi

    2017-06-12

    Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.

  4. Measurements of wake-induced electron beam deflection in a dechirper at the Linac Coherent Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemella, Johann; Bane, Karl; Fisher, Alan

    The RadiaBeam/SLAC dechirper, a structure consisting of pairs of flat, metallic, corrugated plates, has been installed just upstream of the undulators in the Linac Coherent Light Source (LCLS). As a dechirper, with the beam passing between the plates on axis, longitudinal wakefields are induced that can remove unwanted energy chirp in the beam. However, with the beam passing off axis, strong transverse wakes are also induced. This mode of operation has already been used for the production of intense, multicolor photon beams using the fresh-slice technique, and is being used to develop a diagnostic for attosecond bunch length measurements. Heremore » we measure, as a function of offset, the strength of the transverse wakefields that are excited between the two plates, and also for the case of the beam passing near to a single plate. We compare with analytical formulas from the literature, and find good agreement. As a result, this report presents the first systematic measurements of the transverse wake strength in a dechirper, one that has been excited by a bunch with the short pulse duration and high energy found in an x-ray free electron laser.« less

  5. Measurements of wake-induced electron beam deflection in a dechirper at the Linac Coherent Light Source

    DOE PAGES

    Zemella, Johann; Bane, Karl; Fisher, Alan; ...

    2017-10-19

    The RadiaBeam/SLAC dechirper, a structure consisting of pairs of flat, metallic, corrugated plates, has been installed just upstream of the undulators in the Linac Coherent Light Source (LCLS). As a dechirper, with the beam passing between the plates on axis, longitudinal wakefields are induced that can remove unwanted energy chirp in the beam. However, with the beam passing off axis, strong transverse wakes are also induced. This mode of operation has already been used for the production of intense, multicolor photon beams using the fresh-slice technique, and is being used to develop a diagnostic for attosecond bunch length measurements. Heremore » we measure, as a function of offset, the strength of the transverse wakefields that are excited between the two plates, and also for the case of the beam passing near to a single plate. We compare with analytical formulas from the literature, and find good agreement. As a result, this report presents the first systematic measurements of the transverse wake strength in a dechirper, one that has been excited by a bunch with the short pulse duration and high energy found in an x-ray free electron laser.« less

  6. Analytical formulas for short bunch wakes in a flat dechirper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bane, Karl; Stupakov, Gennady; Zagorodnov, Igor

    2016-08-04

    We develop analytical models of the longitudinal and transverse wakes, on and off axis for a flat, corrugated beam pipe with realistic parameters, and then compare them with numerical calculations, and generally find good agreement. These analytical “first order” formulas approximate the droop at the origin of the longitudinal wake and of the slope of the transverse wakes; they represent an improvement in accuracy over earlier, “zeroth order” formulas. In example calculations for the RadiaBeam/LCLS dechirper using typical parameters, we find a 16% droop in the energy chirp at the bunch tail compared to simpler calculations. As a result, withmore » the beam moved to 200 μm from one jaw in one dechirper section, one can achieve a 3 MV transverse kick differential over a 30 μm length.« less

  7. Transverse Mode Coupling Instability of the Bunch with Oscillating Wake Field and Space Charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balbekov, V.

    Transverse mode coupling instability of a single bunch caused by oscillating wake field is considered in the paper. The instability threshold is found at different frequencies of the wake with space charge tune shift taken into account. The wake phase advance in the bunch length from 0 up tomore » $$4\\pi$$ is investigated. It is shown that the space charge can push the instability threshold up or down dependent on the phase advance. Transition region is investigated thoroughly, and simple asymptotic formulas for the threshold are represented.« less

  8. Kelvin-Mach Wake in a Two-Dimensional Fermi Sea

    NASA Astrophysics Data System (ADS)

    Kolomeisky, Eugene B.; Straley, Joseph P.

    2018-06-01

    The dispersion law for plasma oscillations in a two-dimensional electron gas in the hydrodynamic approximation interpolates between Ω ∝√{q } and Ω ∝q dependences as the wave vector q increases. As a result, downstream of a charged impurity in the presence of a uniform supersonic electric current flow, a wake pattern of induced charge density and potential is formed whose geometry is controlled by the Mach number M . For 1 √{2 }. These wakes also trail an external charge, traveling supersonically, a fixed distance away from the electron gas.

  9. Determination of real-time predictors of the wind turbine wake meandering

    NASA Astrophysics Data System (ADS)

    Muller, Yann-Aël; Aubrun, Sandrine; Masson, Christian

    2015-03-01

    The present work proposes an experimental methodology to characterize the unsteady properties of a wind turbine wake, called meandering, and particularly its ability to follow the large-scale motions induced by large turbulent eddies contained in the approach flow. The measurements were made in an atmospheric boundary layer wind tunnel. The wind turbine model is based on the actuator disc concept. One part of the work has been dedicated to the development of a methodology for horizontal wake tracking by mean of a transverse hot wire rake, whose dynamic response is adequate for spectral analysis. Spectral coherence analysis shows that the horizontal position of the wake correlates well with the upstream transverse velocity, especially for wavelength larger than three times the diameter of the disc but less so for smaller scales. Therefore, it is concluded that the wake is actually a rather passive tracer of the large surrounding turbulent structures. The influence of the rotor size and downstream distance on the wake meandering is studied. The fluctuations of the lateral force and the yawing torque affecting the wind turbine model are also measured and correlated with the wake meandering. Two approach flow configurations are then tested: an undisturbed incoming flow (modelled atmospheric boundary layer) and a disturbed incoming flow, with a wind turbine model located upstream. Results showed that the meandering process is amplified by the presence of the upstream wake. It is shown that the coherence between the lateral force fluctuations and the horizontal wake position is significant up to length scales larger than twice the wind turbine model diameter. This leads to the conclusion that the lateral force is a better candidate than the upstream transverse velocity to predict in real time the meandering process, for either undisturbed (wake free) or disturbed incoming atmospheric flows.

  10. Transverse mode coupling instability threshold with space charge and different wakefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balbekov, V.

    Transverse mode coupling instability of a bunch with space charge and wake field is considered in frameworks of the boxcar model. Eigenfunctions of the bunch without wake are used as the basis for solution of the equations with the wake field included. Dispersion equation for the bunch eigentunes is obtained in the form of an infinite continued fraction. It is shown that influence of space charge on the instability essentially depends on the wake sign. In particular, threshold of the negative wake increases in absolute value until the space charge tune shift is rather small, and goes to zero atmore » higher space charge. The explanation of this behavior is developed by analysis of the bunch spectrum. As a result, a comparison of the results with published articles is represented.« less

  11. Transverse mode coupling instability threshold with space charge and different wakefields

    DOE PAGES

    Balbekov, V.

    2017-03-10

    Transverse mode coupling instability of a bunch with space charge and wake field is considered in frameworks of the boxcar model. Eigenfunctions of the bunch without wake are used as the basis for solution of the equations with the wake field included. Dispersion equation for the bunch eigentunes is obtained in the form of an infinite continued fraction. It is shown that influence of space charge on the instability essentially depends on the wake sign. In particular, threshold of the negative wake increases in absolute value until the space charge tune shift is rather small, and goes to zero atmore » higher space charge. The explanation of this behavior is developed by analysis of the bunch spectrum. As a result, a comparison of the results with published articles is represented.« less

  12. A comparison of wake characteristics of model and prototype buildings in transverse winds

    NASA Technical Reports Server (NTRS)

    Logan, E., Jr.; Phataraphruk, P.; Chang, J.

    1978-01-01

    Previously measured mean velocity and turbulence intensity profiles in the wake of a 26.8-m long building 3.2 m high and transverse to the wind direction in an atmospheric boundary layer several hundred meters thick were compared with profiles at corresponding stations downstream of a 1/50-scale model on the floor of a large meteorological wind tunnel in a boundary layer 0.61 m in thickness. The validity of using model wake data to predict full scale data was determined. Preliminary results are presented which indicate that disparities result from differences in relative depth of logarithmic layers, surface roughness, and the proximity of upstream obstacles.

  13. Directed high-power THz radiation from transverse laser wakefield excited in an electron density filament

    NASA Astrophysics Data System (ADS)

    Kalmykov, Serge; Englesbe, Alexander; Elle, Jennifer; Domonkos, Matthew; Schmitt-Sody, Andreas

    2017-10-01

    A tightly focused femtosecond, weakly relativistic laser pulse partially ionizes the ambient gas, creating a string (a ``filament'') of electron density, locally reducing the nonlinear index and compensating for the self-focusing effect caused by bound electrons. While maintaining the filament over many Rayleigh lengths, the pulse drives inside it a three-dimensional (3D) wave of charge separation - the plasma wake. If the pulse waist size is much smaller than the Langmuir wavelength, electron current in the wake is mostly transverse. Electrons, driven by the wake across the sharp radial boundary of the filament, lose coherence within 2-3 periods of wakefield oscillations, and the wake decays. The laser pulse is thus accompanied by a short-lived, almost aperiodic electron current coupled to the sharp index gradient. The comprehensive 3D hydrodynamic model shows that this structure emits a broad-band THz radiation, with the highest power emitted in the near-forward direction. The THz radiation pattern contains information on wake currents surrounding the laser pulse, thus serving as an all-optical diagnostic tool. The results are tested in cylindrical and full 3D PIC simulations using codes WAKE and EPOCH.

  14. Single bunch transverse instability in a circular accelerator with chromaticity and space charge

    DOE PAGES

    Balbekov, V.

    2015-10-21

    The transverse instability of a bunch in a circular accelerator is elaborated in this paper. A new tree-modes model is proposed and developed to describe the most unstable modes of the bunch. This simple and flexible model includes chromaticity and space charge, and can be used with any bunch and wake forms. The dispersion equation for the bunch eigentunes is obtained in form of a third-order algebraic equation. The known head-tail and TMCI modes appear as the limiting cases which are distinctly bounded at zero chromaticity only. It is shown that the instability parameters depend only slightly on the bunchmore » model but they are rather sensitive to the wake shape. In particular, space charge effects are investigated in the paper and it is shown that their influence depends on sign of wake field enhancing the bunch stability if the wake is negative. In addition, the resistive wall wake is considered in detail including a comparison of single and collective effects. A comparison of the results with earlier publications is carried out.« less

  15. A study of sound generation in subsonic rotors, volume 1

    NASA Technical Reports Server (NTRS)

    Chalupnik, J. D.; Clark, L. T.

    1975-01-01

    A model for the prediction of wake related sound generation by a single airfoil is presented. It is assumed that the net force fluctuation on an airfoil may be expressed in terms of the net momentum fluctuation in the near wake of the airfoil. The forcing function for sound generation depends on the spectra of the two point velocity correlations in the turbulent region near the airfoil trailing edge. The spectra of the two point velocity correlations were measured for the longitudinal and transverse components of turbulence in the wake of a 91.4 cm chord airfoil. A scaling procedure was developed using the turbulent boundary layer thickness. The model was then used to predict the radiated sound from a 5.1 cm chord airfoil. Agreement between the predicted and measured sound radiation spectra was good. The single airfoil results were extended to a rotor geometry, and various aerodynamic parameters were studied.

  16. Coherent structures in bypass transition induced by a cylinder wake

    NASA Astrophysics Data System (ADS)

    Pan, Chong; Wang, Jin Jun; Zhang, Pan Feng; Feng, Li Hao

    Flat-plate boundary layer transition induced by the wake vortex of a two-dimensional circular cylinder is experimentally investigated. Combined visualization and velocity measurements show a different transition route from the Klebanoff mode in free-stream turbulence-induced transition. This transition scenario is mainly characterized as: (i) generation of secondary transverse vortical structures near the flat plate surface in response to the von Kn vortex street of the cylinder; (ii) formation of hairpin vortices due to the secondary instability of secondary vortical structures; (iii) growth of hairpins which is accelerated by wake-vortex induction; (iv) formation of hairpin packets and the associated streaky structures. Detailed investigation shows that during transition the evolution dynamics and self-sustaining mechanisms of hairpins, hairpin packets and streaks are consistent with those in a turbulent boundary layer. The wake vortex mainly plays the role of generating and destabilizing secondary transverse vortices. After that, the internal mechanisms become dominant and lead to the setting up of a self-sustained turbulent boundary layer.

  17. Classification of Rotor Induced Shearing Events in the Near Wake of a Wind Turbine Array Boundary Layer

    NASA Astrophysics Data System (ADS)

    Smith, Sarah; Viggiano, Bianca; Ali, Naseem; Cal, Raul Bayoan

    2017-11-01

    Flow perturbation induced by a turbine rotor imposes considerable turbulence and shearing effects in the near wake of a turbine, altering the efficiency of subsequent units within a wind farm array. Previous methods have characterized near wake vorticity of a turbine and recovery distance of various turbine array configurations. This study aims to build on previous analysis with respect to a turbine rotor within an array and develop a model to examine stress events and energy contribution in the near wake due to rotational effects. Hot wire anemometry was employed downstream of a turbine centrally located in the third row of a 3x3 array. Data considered points planar to the rotor and included simultaneous streamwise and wall-normal velocities as well as concurrent streamwise and transverse velocities. Conditional analysis of Reynolds stresses induced by the rotor agree with former near wake research, and examination of stresses in terms of streamwise and transverse velocity components depicts areas of significant rotational effects. Continued analysis includes spectral decomposition and conditional statistics to further characterize shearing events at various points considering the swept area of the rotor.

  18. Calculation of longitudinal and transverse wake-field effects in dielectric structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gai, W.

    1989-01-01

    The electro-magnetic radiation of a charged particle passing through a dielectric structure has many applications to accelerator physics. Recently a new acceleration scheme, called the dielectric wake field accelerator, has been proposed. It also can be used as a pick up system for a storage ring because of its slow wave characteristics. In order to study these effects in detail, in this paper we will calculate the wake field effects produced in a dielectric structure by a charged particle. 8 refs., 2 figs.

  19. Vortex dynamics in the wake of a pivoted cylinder undergoing vortex-induced vibrations with elliptic trajectories

    NASA Astrophysics Data System (ADS)

    Marble, Erik; Morton, Christopher; Yarusevych, Serhiy

    2018-05-01

    Vortex-induced vibrations of a pivoted cylinder are investigated experimentally at a fixed Reynolds number of 3100, a mass ratio of 10.8, and a range of reduced velocities, 4.42 ≤ U^* ≤ 9.05. For these conditions, the cylinder traces elliptic trajectories, with the experimental conditions producing three out of four possible combinations of orbiting direction and primary axis alignment relative to the incoming flow. The study focuses on the quantitative analysis of wake topology and its relation to this type of structural response. Velocity fields were measured using time-resolved, two-component particle image velocimetry (TR-PIV). These results show that phase-averaged wake topology generally agrees with the Morse and Williamson (J Fluids Struct 25(4):697-712, 2009) shedding map for one-degree-of-freedom vortex-induced vibrations, with 2S, 2{P}o, and 2P shedding patterns observed within the range of reduced velocities studied here. Vortex tracking and vortex strength quantification are used to analyze the vortex shedding process and how it relates to cylinder response. In the case of 2S vortex shedding, vortices are shed when the cylinder is approaching the maximum transverse displacement and reaches the streamwise equilibrium. 2P vortices are shed approximately half a period earlier in the cylinder's elliptic trajectory. Leading vortices shed immediately after the peak in transverse oscillation and trailing vortices shed near the equilibrium of transverse oscillation. The orientation and direction of the cylinder's elliptic trajectory are shown to influence the timing of vortex shedding, inducing changes in the 2P wake topology.

  20. Self consistent hydrodynamic description of the plasma wake field excitation induced by a relativistic charged-particle beam in an unmagnetized plasma

    NASA Astrophysics Data System (ADS)

    Jovanović, Dušan; Fedele, Renato; De Nicola, Sergio; Akhter, Tamina; Belić, Milivoj

    2017-12-01

    A self-consistent nonlinear hydrodynamic theory is presented of the propagation of a long and thin relativistic electron beam, for a typical plasma wake field acceleration configuration in an unmagnetized and overdense plasma. The random component of the trajectories of the beam particles as well as of their velocity spread is modelled by an anisotropic temperature, allowing the beam dynamics to be approximated as a 3D adiabatic expansion/compression. It is shown that even in the absence of the nonlinear plasma wake force, the localisation of the beam in the transverse direction can be achieved owing to the nonlinearity associated with the adiabatic compression/rarefaction and a coherent stationary state is constructed. Numerical calculations reveal the possibility of the beam focussing and defocussing, but the lifetime of the beam can be significantly extended by the appropriate adjustments, so that transverse oscillations are observed, similar to those predicted within the thermal wave and Vlasov kinetic models.

  1. Efficiency of feedbacks for suppression of transverse instabilities of bunched beams

    DOE PAGES

    Burov, Alexey

    2016-08-05

    Which gain and phase have to be set for a bunch-by-bunch transverse damper, and at which chromaticity it is better to stay? Furthermore, these questions are considered for three models: the two-particle model with possible quadrupole wake, the author's Nested Head-Tail Vlasov solver with a broadband impedance, and the same with the LHC impedance model.

  2. Threshold of transverse mode coupling instability with arbitrary space charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balbekov, V.

    The threshold of the transverse mode coupling instability is calculated in framework of the square well model at arbitrary value of space charge tune shift. A new method of calculation is developed beyond the traditional expansion technique. The square, resistive, and exponential wakes are investigated. It is shown that the instability threshold goes up indefinitely when the tune shift increases. Finally, a comparison with conventional case of the parabolic potential well is performed.

  3. Threshold of transverse mode coupling instability with arbitrary space charge

    DOE PAGES

    Balbekov, V.

    2017-11-30

    The threshold of the transverse mode coupling instability is calculated in framework of the square well model at arbitrary value of space charge tune shift. A new method of calculation is developed beyond the traditional expansion technique. The square, resistive, and exponential wakes are investigated. It is shown that the instability threshold goes up indefinitely when the tune shift increases. Finally, a comparison with conventional case of the parabolic potential well is performed.

  4. Investigating wake patterns and propulsive frequencies of a flat plate under pitching motion

    NASA Astrophysics Data System (ADS)

    Moubogha Moubogha, Joseph; Astolfi, Jacques Andre

    Fundamental mechanisms of swimming are explored using a simple geometry device - flat plate - in pure-pitching motion in a hydrodynamic tunnel. The experiments are carried out at different Reynolds numbers based on the plate length c. Pitching motion is generated for reduced frequencies k between 0 and 2 and for an angular amplitude of 10 deg. Velocity fields are obtained in the wake of the plate using Particle Image Velocimetry and measurements of drag coefficients are estimated from mean velocity profiles. This study confirms the occurrence of a threshold oscillation frequency beyond which the plate enters a propulsive regime and the wake features organized structures. In this case an inversion of the typical Karman vortex street is observed. The evolution of mean transverse velocity profiles in the wake of the plate shows that the usual wake profile with velocity deficit - plate with drag - can be transformed into a jet - plate with thrust - above a certain reduced frequency. Phd Student Mechanical Engineering Departement.

  5. Observations of Excitation and Damping of Transversal Oscillations in Coronal Loops by AIA/SDO

    NASA Astrophysics Data System (ADS)

    Abedini, A.

    2018-02-01

    The excitation and damping of the transversal coronal loop oscillations and quantitative relation between damping time, damping property (damping time per period), oscillation amplitude, dissipation mechanism and the wake phenomena are investigated. The observed time series data with the Atmospheric Imaging Assembly (AIA) telescope on NASA's Solar Dynamics Observatory (SDO) satellite on 2015 March 2, consisting of 400 consecutive images with 12 s cadence in the 171 Å pass band is analyzed for evidence of transversal oscillations along the coronal loops by the Lomb-Scargle periodgram. In this analysis signatures of transversal coronal loop oscillations that are damped rapidly were found with dominant oscillation periods in the range of P=12.25 - 15.80 min. Also, damping times and damping properties of the transversal coronal loop oscillations at dominant oscillation periods are estimated in the range of {τd=11.76} - {21.46} min and {τd/P=0.86} - {1.49}, respectively. The observational results of this analysis show that damping properties decrease slowly with increasing amplitude of the oscillation, but the periods of the oscillations are not sensitive functions of the amplitude of the oscillations. The order of magnitude of the damping properties and damping times are in good agreement with previous findings and the theoretical prediction for damping of kink mode oscillations by the dissipation mechanism. Furthermore, oscillations of the loop segments attenuate with time roughly as t^{-α} and the magnitude values of α for 30 different segments change from 0.51 to 0.75.

  6. Transonic applications of the Wake Imaging System

    NASA Astrophysics Data System (ADS)

    Crowder, J. P.

    1982-09-01

    The extension of a rapid flow field survey method (wake imaging system) originally developed for low speed wind tunnel operation, to transonic wind tunnel applications is discussed. The advantage of the system, beside the simplicity and low cost of the data acquisition system, is that the probe position data are recorded as an optical image of the actual sensor and thus are unaffected by the inevitable deflections of the probe support. This permits traversing systems which are deliberately flexible and have unusual motions. Two transverse drive systems are described and several typical data images are given.

  7. Capturing relativistic wakefield structures in plasmas using ultrashort high-energy electrons as a probe

    DOE PAGES

    Zhang, C. J.; Hua, J. F.; Xu, X. L.; ...

    2016-07-11

    A new method capable of capturing coherent electric field structures propagating at nearly the speed of light in plasma with a time resolution as small as a few femtoseconds is proposed. This method uses a few femtoseconds long relativistic electron bunch to probe the wake produced in a plasma by an intense laser pulse or an ultra-short relativistic charged particle beam. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. This variation of probe density produces a snapshot of themore » wake that can directly give many useful information of the wake structure and its evolution. Furthermore, this snapshot allows detailed mapping of the longitudinal and transverse components of the wakefield. We develop a theoretical model for field reconstruction and verify it using 3-dimensional particle-in-cell (PIC) simulations. This model can accurately reconstruct the wakefield structure in the linear regime, and it can also qualitatively map the major features of nonlinear wakes. As a result, the capturing of the injection in a nonlinear wake is demonstrated through 3D PIC simulations as an example of the application of this new method.« less

  8. Hub vortex helical instability as the origin of wake meandering in the lee of a model wind-turbine

    NASA Astrophysics Data System (ADS)

    Viola, Francesco; Iungo, Giacomo Valerio; Camarri, Simone; Porte-Agel, Fernando; Gallaire, Francois

    2012-11-01

    Wind tunnel measurements were performed for the wake produced by a three-bladed wind turbine immersed in uniform flow. These tests show the presence of a vorticity structure in the near wake region mainly oriented along the streamwise direction, which is denoted as hub vortex. The hub vortex is characterized by oscillations with frequencies lower than the one connected to the rotational velocity of the rotor, which are ascribed to wake meandering by previous works. This phenomenon consists in transversal oscillations of the wind turbine wake, which are excited by the shedding of vorticity structures from the rotor disc acting as a bluff body. In this work temporal and spatial linear stability analyses of a wind turbine wake are performed on a base flow obtained through time-averaged wind tunnel velocity measurements. This study shows that the low frequency spectral component detected experimentally is the result of a convective instability of the hub vortex, which is characterized by a counter-winding single-helix structure. Simultaneous hot-wire measurements confirm the presence of a helicoidal unstable mode of the hub vortex with a streamwise wavenumber roughly equal to the one predicted from the linear instability analysis.

  9. Experimental study of the flow in the wake of a stationary sphere immersed in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    van Hout, René; Eisma, Jerke; Elsinga, Gerrit E.; Westerweel, Jerry

    2018-02-01

    In many applications, finite-sized particles are immersed in a turbulent boundary layer (TBL) and it is of interest to study wall effects on the instantaneous shedding of turbulence structures and associated mean velocity and Reynolds stress distributions. Here, 3D flow field dynamics in the wake of a prototypical, small sphere (D+=50 , 692

  10. Acceleration of on-axis and ring-shaped electron beams in wakefields driven by Laguerre-Gaussian pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guo-Bo; Key Laboratory for Laser Plasmas; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com

    2016-03-14

    The acceleration of electron beams with multiple transverse structures in wakefields driven by Laguerre-Gaussian pulses has been studied through three-dimensional (3D) particle-in-cell simulations. Under different laser-plasma conditions, the wakefield shows different transverse structures. In general cases, the wakefield shows a donut-like structure and it accelerates the ring-shaped hollow electron beam. When a lower plasma density or a smaller laser spot size is used, besides the donut-like wakefield, a central bell-like wakefield can also be excited. The wake sets in the center of the donut-like wake. In this case, both a central on-axis electron beam and a ring-shaped electron beam aremore » simultaneously accelerated. Further, reducing the plasma density or laser spot size leads to an on-axis electron beam acceleration only. The research is beneficial for some potential applications requiring special pulse beam structures, such as positron acceleration and collimation.« less

  11. Angular structure of jet quenching within a hybrid strong/weak coupling model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casalderrey-Solana, Jorge; Gulhan, Doga Can; Milhano, José Guilherme

    Within the context of a hybrid strong/weak coupling model of jet quenching, we study the modification of the angular distribution of the energy within jets in heavy ion collisions, as partons within jet showers lose energy and get kicked as they traverse the strongly coupled plasma produced in the collision. To describe the dynamics transverse to the jet axis, we add the effects of transverse momentum broadening into our hybrid construction, introducing a parameter K≡qˆ/T3K≡q^/T3 that governs its magnitude. We show that, because of the quenching of the energy of partons within a jet, even when K ≠ 0 themore » jets that survive with some specified energy in the final state are narrower than jets with that energy in proton-proton collisions. For this reason, many standard observables are rather insensitive to K. We also propose a new differential jet shape ratio observable in which the effects of transverse momentum broadening are apparent. We also analyze the response of the medium to the passage of the jet through it, noting that the momentum lost by the jet appears as the momentum of a wake in the medium. After freezeout this wake becomes soft particles with a broad angular distribution but with net momentum in the jet direction, meaning that the wake contributes to what is reconstructed as a jet. Thus, this effect must be included in any description of the angular structure of the soft component of a jet. We show that the particles coming from the response of the medium to the momentum and energy deposited in it leads to a correlation between the momentum of soft particles well separated from the jet in angle with the direction of the jet momentum, and find qualitative but not quantitative agreement with experimental data on observables designed to extract such a correlation. Generally, by confronting the results that we obtain upon introducing transverse momentum broadening and the response of the medium to the jet with available jet data, we highlight the importance of these processes for understanding the internal, soft, angular structure of high energy jets.« less

  12. Angular structure of jet quenching within a hybrid strong/weak coupling model

    DOE PAGES

    Casalderrey-Solana, Jorge; Gulhan, Doga Can; Milhano, José Guilherme; ...

    2017-03-27

    Within the context of a hybrid strong/weak coupling model of jet quenching, we study the modification of the angular distribution of the energy within jets in heavy ion collisions, as partons within jet showers lose energy and get kicked as they traverse the strongly coupled plasma produced in the collision. To describe the dynamics transverse to the jet axis, we add the effects of transverse momentum broadening into our hybrid construction, introducing a parameter K≡qˆ/T3K≡q^/T3 that governs its magnitude. We show that, because of the quenching of the energy of partons within a jet, even when K ≠ 0 themore » jets that survive with some specified energy in the final state are narrower than jets with that energy in proton-proton collisions. For this reason, many standard observables are rather insensitive to K. We also propose a new differential jet shape ratio observable in which the effects of transverse momentum broadening are apparent. We also analyze the response of the medium to the passage of the jet through it, noting that the momentum lost by the jet appears as the momentum of a wake in the medium. After freezeout this wake becomes soft particles with a broad angular distribution but with net momentum in the jet direction, meaning that the wake contributes to what is reconstructed as a jet. Thus, this effect must be included in any description of the angular structure of the soft component of a jet. We show that the particles coming from the response of the medium to the momentum and energy deposited in it leads to a correlation between the momentum of soft particles well separated from the jet in angle with the direction of the jet momentum, and find qualitative but not quantitative agreement with experimental data on observables designed to extract such a correlation. Generally, by confronting the results that we obtain upon introducing transverse momentum broadening and the response of the medium to the jet with available jet data, we highlight the importance of these processes for understanding the internal, soft, angular structure of high energy jets.« less

  13. Experimental Characterization of Electron-Beam-Driven Wakefield Modes in a Dielectric-Woodpile Cartesian Symmetric Structure

    NASA Astrophysics Data System (ADS)

    Hoang, P. D.; Andonian, G.; Gadjev, I.; Naranjo, B.; Sakai, Y.; Sudar, N.; Williams, O.; Fedurin, M.; Kusche, K.; Swinson, C.; Zhang, P.; Rosenzweig, J. B.

    2018-04-01

    Photonic structures operating in the terahertz (THz) spectral region enable the essential characteristics of confinement, modal control, and electric field shielding for very high gradient accelerators based on wakefields in dielectrics. We report here an experimental investigation of THz wakefield modes in a three-dimensional photonic woodpile structure. Selective control in exciting or suppressing of wakefield modes with a nonzero transverse wave vector is demonstrated by using drive beams of varying transverse ellipticity. Additionally, we show that the wakefield spectrum is insensitive to the offset position of strongly elliptical beams. These results are consistent with analytic theory and three-dimensional simulations and illustrate a key advantage of wakefield systems with Cartesian symmetry: the suppression of transverse wakes by elliptical beams.

  14. Structure Function Scaling Exponent and Intermittency in the Wake of a Wind Turbine Array

    NASA Astrophysics Data System (ADS)

    Aseyev, Aleksandr; Ali, Naseem; Cal, Raul

    2015-11-01

    Hot-wire measurements obtained in a 3 × 3 wind turbine array boundary layer are utilized to analyze high order structure functions, intermittency effects as well as the probability density functions of velocity increments at different scales within the energy cascade. The intermittency exponent is found to be greater in the far wake region in comparison to the near wake. At hub height, the intermittency exponent is found to be null. ESS scaling exponents of the second, fourth, and fifth order structure functions remain relatively constant as a function of height in the far-wake whereas in the near-wake these highly affected by the passage of the rotor thus showing a dependence on physical location. When comparing with proposed models, these generally over predict the structure functions in the far wake region. The pdf distributions in the far wake region display wider tails compared to the near wake region, and constant skewness hypothesis based on the local isotropy is verified in the wake. CBET-1034581.

  15. Influence of rotation on the near-wake development behind an impulsively started circular cylinder

    NASA Astrophysics Data System (ADS)

    Coutanceau, M.; Menard, C.

    1985-09-01

    A rotating body, travelling through a fluid in such a way that the rotation axis is at right angles to the translational path, experiences a transverse force, called the Magnus force. The present study is concerned with a rotating cylinder which is in a state of translational motion. In the considered case, the existence of a lift force may be explained easily on the basis of the theory of inviscid fluids. An experimental investigation provides new information regarding the mechanism of the near-wake development of the classical unsteady flow and the influence of the rotational effects. Attention is given to the experimental technique, aspects of flow topology and notation, the time development of the wake flow pattern, the time evolution of certain flow properties, the flow structure in the neighborhood of the front stagnation point, and the influence of the Reynolds number on flow establishment.

  16. Using hyperbolic Lagrangian coherent structures to investigate vortices in bioinspired fluid flows

    PubMed Central

    Green, Melissa A.; Rowley, Clarence W.; Smits, Alexander J.

    2010-01-01

    We use direct Lyapunov exponents to identify Lagrangian coherent structures (LCSs) in a bioinspired fluid flow: the wakes of rigid pitching panels with a trapezoidal planform geometry chosen to model idealized fish caudal fins. When compared with commonly used Eulerian criteria, the Lagrangian method has previously exhibited the ability to define structure boundaries without relying on a preselected threshold. In addition, qualitative changes in the LCS have previously been shown to correspond to physical changes in the vortex structure. For this paper, digital particle image velocimetry experiments were performed to obtain the time-resolved velocity fields for Strouhal numbers of 0.17 and 0.27. A classic reverse von Kármán vortex street pattern was observed along the midspan of the near wake at low Strouhal number, but at higher Strouhal number the complexity of the wake increased downstream of the trailing edge. The spanwise vortices spread transversely across the wake and lose coherence, and this event was shown to correspond to a qualitative change in the LCS at the same time and location. PMID:20370300

  17. Differences in 1D electron plasma wake field acceleration in MeV versus GeV and linear versus blowout regimes

    NASA Astrophysics Data System (ADS)

    Tsiklauri, David

    2018-03-01

    In some laboratory and most astrophysical situations, plasma wake-field acceleration of electrons is one dimensional, i.e., variation transverse to the beam's motion can be ignored. Thus, one dimensional, particle-in-cell (PIC), fully electromagnetic simulations of electron plasma wake field acceleration are conducted in order to study the differences in electron plasma wake field acceleration in MeV versus GeV and linear versus blowout regimes. First, we show that caution needs to be taken when using fluid simulations, as PIC simulations prove that an approximation for an electron bunch not to evolve in time for a few hundred plasma periods only applies when it is sufficiently relativistic. This conclusion is true irrespective of the plasma temperature. We find that in the linear regime and GeV energies, the accelerating electric field generated by the plasma wake is similar to the linear and MeV regimes. However, because GeV energy driving bunch stays intact for a much longer time, the final acceleration energies are much larger in the GeV energies case. In the GeV energy range and blowout regime, the wake's accelerating electric field is much larger in amplitude compared with the linear case and also plasma wake geometrical size is much larger. Thus, the correct positioning of the trailing bunch is needed to achieve the efficient acceleration. For the considered case, optimally, there should be approximately (90-100)c/ωpe distance between the trailing and driving electron bunches in the GeV blowout regime.

  18. Mechanistic aspects of fracture and R-curve behavior in elk antler bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Launey, Maximilien E.; Chen, Po-Yu; McKittrick, Joanna

    Bone is an adaptative material that is designed for different functional requirements; indeed, bones have a variety of properties depending on their role in the body. To understand the mechanical response of bone requires the elucidation of its structure-function relationships. Here, we examine the fracture toughness of compact bone of elk antler which is an extremely fast growing primary bone designed for a totally different function than human (secondary) bone. We find that antler in the transverse (breaking) orientation is one of the toughest biological materials known. Its resistance to fracture is achieved during crack growth (extrinsically) by a combinationmore » of gross crack deflection/twisting and crack bridging via uncracked 'ligaments' in the crack wake, both mechanisms activated by microcracking primarily at lamellar boundaries. We present an assessment of the toughening mechanisms acting in antler as compared to human cortical bone, and identify an enhanced role of inelastic deformation in antler which further contributes to its (intrinsic) toughness.« less

  19. Jet-Like Structures and Wake in Mg I (518 nm) Images of 1999 Leonid Storm Meteors

    NASA Technical Reports Server (NTRS)

    Taylor, M. J.; Murray, I. S.; Jenniskens, P.

    2000-01-01

    Small meteoric fragments are ejected at significant transverse velocities from some (up to approx. 8%) fast Leonid meteors. We reach this conclusion using low light intensified image measurements obtained during the 1999 Leonid Multi-Instrument Aircraft Campaign. High spatial resolution, narrow band image measurements of the Mg I emission at 518 nm have been used to clearly identify jet-like features in the meteor head that are the same as first observed in white light. We postulate that these unusual structures are caused by tiny meteoroid fragments (containing metallic grains) being rapidly ejected away from the core meteoroid as the constituent glue evaporates. Marked curvature observed in the jet-like filaments suggest that the parent meteoroids are spinning and as the whirling fragments are knocked away by the impinging air molecules, or by grain-grain collisions in the fragment ensemble, they ablate quickly generating an extended area of structured luminosity up to about 1-2 km from the meteoroid center. Fragments with smaller transverse velocity components are thought to be responsible for the associated beading evident in the wake of these unusual Leonid meteors.

  20. Doppler radar detection of vortex hazard indicators

    NASA Technical Reports Server (NTRS)

    Nespor, Jerald D.; Hudson, B.; Stegall, R. L.; Freedman, Jerome E.

    1994-01-01

    Wake vortex experiments were conducted at White Sands Missile Range, NM using the AN/MPS-39 Multiple Object Tracking Radar (MOTR). The purpose of these experiments was twofold. The first objective was to verify that radar returns from wake vortex are observed for some time after the passage of an aircraft. The second objective was to verify that other vortex hazard indicators such as ambient wind speed and direction could also be detected. The present study addresses the Doppler characteristics of wake vortex and clear air returns based upon measurements employing MOTR, a very sensitive C-Band phased array radar. In this regard, the experiment was conducted so that the spectral characteristics could be determined on a dwell to-dwell basis. Results are presented from measurements of the backscattered power (equivalent structure constant), radial velocity and spectral width when the aircraft flies transverse and axial to the radar beam. The statistics of the backscattered power and spectral width for each case are given. In addition, the scan strategy, experimental test procedure and radar parameters are presented.

  1. Interstellar matter near the Pleiades. IV - The wake of the Pleiades through the interstellar medium in Taurus

    NASA Technical Reports Server (NTRS)

    White, Richard E.; Bally, John

    1993-01-01

    A large emission 'cavity' whose bright rims extend about 5 deg eastward from the Pleiades, and is pressurized by the soft-UV radiation of the cluster, has been revealed by a mosaic of IRAS images; the emission cavity delineates the wake of the Pleiades as it moves supersonically through the ISM. Photoelectric heating is identified as the most likely agent of the cluster-cloud interaction generating a shock wave, and prompts the hypothesis that transverse expansion of heated gas near the cluster plays a crucial role in driving the shock. The cloud trajectory can be traced back to an origin in Gould's Belt some 15 Myr ago, in a blowout of gas into the Galactic halo.

  2. Short-range wakefields generated in the blowout regime of plasma-wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Stupakov, G.

    2018-04-01

    In the past, calculation of wakefields generated by an electron bunch propagating in a plasma has been carried out in linear approximation, where the plasma perturbation can be assumed small and plasma equations of motion linearized. This approximation breaks down in the blowout regime where a high-density electron driver expels plasma electrons from its path and creates a cavity void of electrons in its wake. In this paper, we develop a technique that allows us to calculate short-range longitudinal and transverse wakes generated by a witness bunch being accelerated inside the cavity. Our results can be used for studies of the beam loading and the hosing instability of the witness bunch in plasma-wakefield and laser-wakefield acceleration.

  3. On the Use of Surface Porosity to Reduce Unsteady Lift

    NASA Technical Reports Server (NTRS)

    Tinetti, Ana F.; Kelly, Jeffrey J.; Bauer, Steven X. S.; Thomas, Russell H.

    2001-01-01

    An innovative application of existing technology is proposed for attenuating the effects of transient phenomena, such as rotor-stator and rotor-strut interactions, linked to noise and fatigue failure in turbomachinery environments. A computational study was designed to assess the potential of passive porosity technology as a mechanism for alleviating interaction effects by reducing the unsteady lift developed on a stator airfoil subject to wake impingement. The study involved a typical high bypass fan Stator airfoil (solid baseline and several porous configurations), immersed in a free field and exposed to the effects of a transversely moving wake. It was found that, for the airfoil under consideration, the magnitude of the unsteady lift could be reduced more than 18% without incurring significant performance losses.

  4. Stratified wakes, the high Froude number approximation, and potential flow

    NASA Astrophysics Data System (ADS)

    Vasholz, David P.

    2011-12-01

    Properties of a steady wake generated by a body moving uniformly at constant depth through a stratified fluid are studied as a function of two parameters inserted into the linearized equations of motion. The first parameter, μ, multiplies the along-track gradient term in the source equation. When formal solutions for an arbitrary buoyancy frequency profile are written as eigenfunction expansions, one finds that the limit μ → 0 corresponds to a high Froude number approximation accompanied by a substantial reduction in the complexity of the calculation. For μ = 1, upstream effects are present and the eigenvalues correspond to critical speeds above which transverse waves disappear for any given mode. For sufficiently high modes, the high Froude number approximation is valid. The second tracer multiplies the square of the buoyancy frequency term in the linearized conservation of mass equation and enables direct comparisons with the limit of potential flow. Detailed results are given for the simplest possible profile, in which the buoyancy frequency is independent of depth; emphasis is placed upon quantities that can, in principle, be experimentally measured in a laboratory experiment. The vertical displacement field is written in terms of a stratified wake form factor {{H}} , which is the sum of a wavelike contribution that is non-zero downstream and an evanescent contribution that appears symmetrically upstream and downstream. First- and second-order cross-track moments of {{H}} are analyzed. First-order results predict enhanced upstream vertical displacements. Second-order results expand upon previous predictions of wavelike resonances and also predict evanescent resonance effects.

  5. Connectivity of Sleep- and Wake-Promoting Regions of the Human Hypothalamus During Resting Wakefulness.

    PubMed

    Boes, Aaron D; Fischer, David; Geerling, Joel C; Bruss, Joel; Saper, Clifford B; Fox, Michael D

    2018-05-29

    The hypothalamus is a central hub for regulating sleep-wake patterns, the circuitry of which has been investigated extensively in experimental animals. This work has identified a wake-promoting region in the posterior hypothalamus, with connections to other wake-promoting regions, and a sleep-promoting region in the anterior hypothalamus, with inhibitory projections to the posterior hypothalamus. It is unclear whether a similar organization exists in humans. Here, we use anatomical landmarks to identify homologous sleep and wake-promoting regions of the human hypothalamus and investigate their functional relationships using resting-state functional connectivity MRI in healthy awake participants. First, we identify a negative correlation (anticorrelation) between the anterior and posterior hypothalamus, two regions with opposing roles in sleep-wake regulation. Next, we show that hypothalamic connectivity predicts a pattern of regional sleep-wake changes previously observed in humans. Specifically, regions that are more positively correlated with the posterior hypothalamus and more negatively correlated with the anterior hypothalamus correspond to regions with the greatest change in cerebral blood flow between sleep-wake states. Taken together, these findings provide preliminary evidence relating a hypothalamic circuit investigated in animals to sleep-wake neuroimaging results in humans, with implications for our understanding of human sleep-wake regulation and the functional significance of anticorrelations.

  6. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.

    PubMed

    Li, Ningyu; Liu, Huanxing; Su, Yumin

    2017-01-01

    Numerical simulations are employed to study the hydrodynamics of self-propelled thunniform swimming. The swimmer is modeled as a tuna-like flexible body undulating with kinematics of thunniform type. The wake evolution follows the vortex structures arranged nearly vertical to the forward direction, vortex dipole formation resulting in the propulsion motion, and finally a reverse Kármán vortex street. We also carry out a systematic parametric study of various aspects of the fluid dynamics behind the freely swimming behavior, including the swimming speed, hydrodynamic forces, power requirement and wake vortices. The present results show that the fin thrust as well as swimming velocity is an increasing function of both tail undulating amplitude Ap and oscillating amplitude of the caudal fin θm. Whereas change on the propulsive performance with Ap is associated with the strength of wake vortices and the area of suction region on the fin, the swimming performance improves with θm due to the favorable tilting of the fin that make the pressure difference force more oriented toward the thrust direction. Moreover, the energy loss in the transverse direction and the power requirement increase with Ap but decrease with θm, and this indicates that for achieving a desired swimming speed increasing θm seems more efficiently than increasing Ap. Furthermore, we have compared the current simulations with the published experimental studies on undulatory swimming. Comparisons show that our work tackles the flow regime of natural thunniform swimmers and follows the principal scaling law of undulatory locomotion reported. Finally, this study enables a detailed quantitative analysis, which is difficult to obtain by experiments, of the force production of the thunniform mode as well as its connection to the self-propelled swimming kinematics and vortex wake structure. The current findings help provide insights into the swimming performance and mechanisms of self-propelled thunniform locomotion.

  7. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion

    PubMed Central

    Li, Ningyu; Liu, Huanxing

    2017-01-01

    Numerical simulations are employed to study the hydrodynamics of self-propelled thunniform swimming. The swimmer is modeled as a tuna-like flexible body undulating with kinematics of thunniform type. The wake evolution follows the vortex structures arranged nearly vertical to the forward direction, vortex dipole formation resulting in the propulsion motion, and finally a reverse Kármán vortex street. We also carry out a systematic parametric study of various aspects of the fluid dynamics behind the freely swimming behavior, including the swimming speed, hydrodynamic forces, power requirement and wake vortices. The present results show that the fin thrust as well as swimming velocity is an increasing function of both tail undulating amplitude Ap and oscillating amplitude of the caudal fin θm. Whereas change on the propulsive performance with Ap is associated with the strength of wake vortices and the area of suction region on the fin, the swimming performance improves with θm due to the favorable tilting of the fin that make the pressure difference force more oriented toward the thrust direction. Moreover, the energy loss in the transverse direction and the power requirement increase with Ap but decrease with θm, and this indicates that for achieving a desired swimming speed increasing θm seems more efficiently than increasing Ap. Furthermore, we have compared the current simulations with the published experimental studies on undulatory swimming. Comparisons show that our work tackles the flow regime of natural thunniform swimmers and follows the principal scaling law of undulatory locomotion reported. Finally, this study enables a detailed quantitative analysis, which is difficult to obtain by experiments, of the force production of the thunniform mode as well as its connection to the self-propelled swimming kinematics and vortex wake structure. The current findings help provide insights into the swimming performance and mechanisms of self-propelled thunniform locomotion. PMID:28362836

  8. Canopy wake measurements using multiple scanning wind LiDARs

    NASA Astrophysics Data System (ADS)

    Markfort, C. D.; Carbajo Fuertes, F.; Iungo, V.; Stefan, H. G.; Porte-Agel, F.

    2014-12-01

    Canopy wakes have been shown, in controlled wind tunnel experiments, to significantly affect the fluxes of momentum, heat and other scalars at the land and water surface over distances of ˜O(1 km), see Markfort et al. (EFM, 2013). However, there are currently no measurements of the velocity field downwind of a full-scale forest canopy. Point-based anemometer measurements of wake turbulence provide limited insight into the extent and details of the wake structure, whereas scanning Doppler wind LiDARs can provide information on how the wake evolves in space and varies over time. For the first time, we present measurements of the velocity field in the wake of a tall patch of forest canopy. The patch consists of two uniform rows of 40-meter tall deciduous, plane trees, which border either side of the Allée de Dorigny, near the EPFL campus. The canopy is approximately 250 m long, and it is approximately 40 m wide, along the direction of the wind. A challenge faced while making field measurements is that the wind rarely intersects a canopy normal to the edge. The resulting wake flow may be deflected relative to the mean inflow. Using multiple LiDARs, we measure the evolution of the wake due to an oblique wind blowing over the canopy. One LiDAR is positioned directly downwind of the canopy to measure the flow along the mean wind direction and the other is positioned near the canopy to evaluate the transversal component of the wind and how it varies with downwind distance from the canopy. Preliminary results show that the open trunk space near the base of the canopy results in a surface jet that can be detected just downwind of the canopy and farther downwind dissipates as it mixes with the wake flow above. A time-varying recirculation zone can be detected by the periodic reversal of the velocity near the surface, downwind of the canopy. The implications of canopy wakes for measurement and modeling of surface fluxes will be discussed.

  9. Canopy wake measurements using multiple scanning wind LiDARs

    NASA Astrophysics Data System (ADS)

    Markfort, Corey D.; Carbajo Fuertes, Fernando; Valerio Iungo, Giacomo; Stefan, Heinz; Porté-Agel, Fernando

    2014-05-01

    Canopy wakes have been shown, in controlled wind tunnel experiments, to significantly affect the fluxes of momentum, heat and other scalars at the land and water surface over distances of ~O(1 km), see Markfort et al. (EFM, 2013). However, there are currently no measurements of the velocity field downwind of a full-scale forest canopy. Point-based anemometer measurements of wake turbulence provide limited insight into the extent and details of the wake structure, whereas scanning Doppler wind LiDARs can provide information on how the wake evolves in space and varies over time. For the first time, we present measurements of the velocity field in the wake of a tall patch of forest canopy. The patch consists of two uniform rows of 35-meter tall deciduous, plane trees, which border either side of the Allée de Dorigny, near the EPFL campus. The canopy is approximately 250 m long, and it is 35 m wide, along the direction of the wind. A challenge faced while making field measurements is that the wind rarely intersects a canopy normal to the edge. The resulting wake flow may be deflected relative to the mean inflow. Using multiple LiDARs, we measure the evolution of the wake due to an oblique wind blowing over the canopy. One LiDAR is positioned directly downwind of the canopy to measure the flow along the mean wind direction and the other is positioned near the canopy to evaluate the transversal component of the wind and how it varies with downwind distance from the canopy. Preliminary results show that the open trunk space near the base of the canopy results in a surface jet that can be detected just downwind of the canopy and farther downwind dissipates as it mixes with the wake flow above. A time-varying recirculation zone can be detected by the periodic reversal of the velocity vector near the surface, downwind of the canopy. The implications of canopy wakes for measurement and modeling of surface fluxes will be discussed.

  10. Short-range wakefields generated in the blowout regime of plasma-wakefield acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stupakov, G.

    In the past, calculation of wakefields generated by an electron bunch propagating in a plasma has been carried out in linear approximation, where the plasma perturbation can be assumed small and plasma equations of motion linearized. This approximation breaks down in the blowout regime where a high-density electron driver expels plasma electrons from its path and creates a cavity void of electrons in its wake. Here in this paper, we develop a technique that allows us to calculate short-range longitudinal and transverse wakes generated by a witness bunch being accelerated inside the cavity. Our results can be used for studiesmore » of the beam loading and the hosing instability of the witness bunch in plasma-wakefield and laser-wakefield acceleration.« less

  11. Short-range wakefields generated in the blowout regime of plasma-wakefield acceleration

    DOE PAGES

    Stupakov, G.

    2018-04-02

    In the past, calculation of wakefields generated by an electron bunch propagating in a plasma has been carried out in linear approximation, where the plasma perturbation can be assumed small and plasma equations of motion linearized. This approximation breaks down in the blowout regime where a high-density electron driver expels plasma electrons from its path and creates a cavity void of electrons in its wake. Here in this paper, we develop a technique that allows us to calculate short-range longitudinal and transverse wakes generated by a witness bunch being accelerated inside the cavity. Our results can be used for studiesmore » of the beam loading and the hosing instability of the witness bunch in plasma-wakefield and laser-wakefield acceleration.« less

  12. Aerodynamics of gliding flight in common swifts.

    PubMed

    Henningsson, P; Hedenström, A

    2011-02-01

    Gliding flight performance and wake topology of a common swift (Apus apus L.) were examined in a wind tunnel at speeds between 7 and 11 m s(-1). The tunnel was tilted to simulate descending flight at different sink speeds. The swift varied its wingspan, wing area and tail span over the speed range. Wingspan decreased linearly with speed, whereas tail span decreased in a nonlinear manner. For each airspeed, the minimum glide angle was found. The corresponding sink speeds showed a curvilinear relationship with airspeed, with a minimum sink speed at 8.1 m s(-1) and a speed of best glide at 9.4 m s(-1). Lift-to-drag ratio was calculated for each airspeed and tilt angle combinations and the maximum for each speed showed a curvilinear relationship with airspeed, with a maximum of 12.5 at an airspeed of 9.5 m s(-1). Wake was sampled in the transverse plane using stereo digital particle image velocimetry (DPIV). The main structures of the wake were a pair of trailing wingtip vortices and a pair of trailing tail vortices. Circulation of these was measured and a model was constructed that showed good weight support. Parasite drag was estimated from the wake defect measured in the wake behind the body. Parasite drag coefficient ranged from 0.30 to 0.22 over the range of airspeeds. Induced drag was calculated and used to estimate profile drag coefficient, which was found to be in the same range as that previously measured on a Harris' hawk.

  13. Cortical–Subcortical Interactions in Hypersomnia Disorders: Mechanisms Underlying Cognitive and Behavioral Aspects of the Sleep–Wake Cycle

    PubMed Central

    Larson-Prior, Linda J.; Ju, Yo-El; Galvin, James E.

    2014-01-01

    Subcortical circuits mediating sleep–wake functions have been well characterized in animal models, and corroborated by more recent human studies. Disruptions in these circuits have been identified in hypersomnia disorders (HDs) such as narcolepsy and Kleine–Levin Syndrome, as well as in neurodegenerative disorders expressing excessive daytime sleepiness. However, the behavioral expression of sleep–wake functions is not a simple on-or-off state determined by subcortical circuits, but encompasses a complex range of behaviors determined by the interaction between cortical networks and subcortical circuits. While conceived as disorders of sleep, HDs are equally disorders of wake, representing a fundamental instability in neural state characterized by lapses of alertness during wake. These episodic lapses in alertness and wakefulness are also frequently seen in neurodegenerative disorders where electroencephalogram demonstrates abnormal function in cortical regions associated with cognitive fluctuations (CFs). Moreover, functional connectivity MRI shows instability of cortical networks in individuals with CFs. We propose that the inability to stabilize neural state due to disruptions in the sleep–wake control networks is common to the sleep and cognitive dysfunctions seen in hypersomnia and neurodegenerative disorders. PMID:25309500

  14. Asymptotic expansions for 2D symmetrical laminar wakes

    NASA Astrophysics Data System (ADS)

    Belan, Marco; Tordella, Daniela

    1999-11-01

    An extension of the well known asymptotic representation of the 2D laminar incompressible wake past a symmetrical body is presented. Using the thin free shear layer approximation we determined solutions in terms of infinite asymptotic expansions. These are power series of the streamwise space variable with fractional negative coefficients. The general n-th order term has been analytically established. Through analysis of the behaviour of the same expansions inserted into the Navier-Stokes equations, we verified the self-consistency of the approximation showing that at the third order the correction due to pressure variations identically vanishes while the contribution of the longitudinal diffusion is still two-three order of magnitude smaller than that of the transversal diffusion, depending on Re. When the procedure is applied to the Navier-Stokes equations, we showed that further mathematical difficulties do not arise. Where opportune one may thus easily shift to the complete model. Through a spatial multiscaling approach, a brief account on the stability properties of these expansions as representing the non parallel basic flow of 2D wakes will be given.

  15. Compressional and Shear Wakes in a 2D Dusty Plasma Crystal

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Goree, J.; Ma, Z. W.; Dubin, D. H. E.

    2001-10-01

    A 2D crystalline lattice can vibrate with two kinds of sound waves, compressional and shear (transverse), where the latter has a much slower sound speed. When these waves are excited by a moving supersonic disturbance, the superposition of the waves creates a Mach cone, i.e., a V-shaped wake. In our experiments, the supersonic disturbance was a moving spot of argon laser light, and this laser light applied a force, due to radiation pressure, on the particles. The beam was swept across the lattice in a controlled and repeatable manner. The particles were levitated in an argon rf discharge. By moving the laser spot faster than the shear sound speed c_t, but slower than the compressional sound speed c_l, we excited a shear wave Mach cone. Alternatively, by moving the laser spot faster than c_l, we excited both cones. In addition to Mach cones, we also observed a wake structure that arises from the compressional wave’s dispersion. We compare our results to Dubin’s theory (Phys. Plasmas 2000) and to molecular dynamics (MD) simulations.

  16. The effect of a longitudinal density gradient on electron plasma wake field acceleration

    NASA Astrophysics Data System (ADS)

    Tsiklauri, David

    2016-12-01

    Three-dimensional, particle-in-cell, fully electromagnetic simulations of electron plasma wake field acceleration in the blow-out regime are presented. Earlier results are extended by (i) studying the effect of a longitudinal density gradient, (ii) avoiding the use of a co-moving simulation box, (iii) inclusion of ion motion, and (iv) studying fully electromagnetic plasma wake fields. It is established that injecting driving and trailing electron bunches into a positive density gradient of 10-fold increasing density over 10 cm long lithium vapour plasma results in spatially more compact and three times larger, compared with the uniform density case, electric fields (-6.4×1010 V m-1), leading to acceleration of the trailing bunch up to 24.4 GeV (starting from an initial 20.4 GeV), with energy transfer efficiencies from the leading to trailing bunch of 75%. In the uniform density case, a -2.5×1010 V m-1 wake is created leading to acceleration of the trailing bunch up to 22.4 GeV, with energy transfer efficiencies of 65%. It is also established that injecting the electron bunches into a negative density gradient of 10-fold decreasing density over 10 cm long plasma results in spatially more spread and two and a half smaller electric fields (-1.0×1010 V m-1), leading to a weaker acceleration of the trailing bunch up to 21.4 GeV, with energy transfer efficiencies of 45%. Taking ion motions into consideration shows that in the plasma wake ion number density can increase over a few times the background value. It is also shown that transverse electromagnetic fields in a plasma wake are of the same order as the longitudinal (electrostatic) ones.

  17. Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day

    NASA Technical Reports Server (NTRS)

    Wyatt, J. K.; Ritz-De Cecco, A.; Czeisler, C. A.; Dijk, D. J.

    1999-01-01

    The interaction of homeostatic and circadian processes in the regulation of waking neurobehavioral functions and sleep was studied in six healthy young subjects. Subjects were scheduled to 15-24 repetitions of a 20-h rest/activity cycle, resulting in desynchrony between the sleep-wake cycle and the circadian rhythms of body temperature and melatonin. The circadian components of cognitive throughput, short-term memory, alertness, psychomotor vigilance, and sleep disruption were at peak levels near the temperature maximum, shortly before melatonin secretion onset. These measures exhibited their circadian nadir at or shortly after the temperature minimum, which in turn was shortly after the melatonin maximum. Neurobehavioral measures showed impairment toward the end of the 13-h 20-min scheduled wake episodes. This wake-dependent deterioration of neurobehavioral functions can be offset by the circadian drive for wakefulness, which peaks in the latter half of the habitual waking day during entrainment. The data demonstrate the exquisite sensitivity of many neurobehavioral functions to circadian phase and the accumulation of homeostatic drive for sleep.

  18. Vertical axis wind turbine wake in boundary layer flow in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Rolin, Vincent; Porté-Agel, Fernando

    2016-04-01

    A vertical axis wind turbine is placed in a boundary layer flow in a wind tunnel, and its wake is investigated. Measurements are performed using an x-wire to measure two components of velocity and turbulence statistics in the wake of the wind turbine. The study is performed at various heights and crosswind positions in order to investigate the full volume of the wake for a range of tip speed ratios. The velocity deficit and levels of turbulence in the wake are related to the performance of the turbine. The asymmetric incoming boundary layer flow causes the rate of recovery in the wake to change as a function of height. Higher shear between the wake and unperturbed flow occurs at the top edge of the wake, inducing stronger turbulence and mixing in this region. The difference in flow relative to the blades causes the velocity deficit and turbulence level to change as a function of crosswind position behind the rotor. The relative difference diminishes with increasing tip speed ratio. Therefore, the wake becomes more homogeneous as tip speed ratio increases.

  19. Emittance measurements of the CLIO electron beam

    NASA Astrophysics Data System (ADS)

    Chaput, R.; Devanz, G.; Joly, P.; Kergosien, B.; Lesrel, J.

    1997-02-01

    We have designed a setup to measure the transverse emittance at the CLIO accelerator exit, based on the "3 gradients" method. The beam transverse size is measured simply by scanning it with a steering coil across a fixed jaw and recording the transmitted current, at various quadrupole strengths. A code then performs a complete calculation of the emittance using the transfer matrix of the quadrupole instead of the usual classical lens approximation. We have studied the influence of various parameters on the emittance: Magnetic field on the e-gun and the peak current. We have also improved a little the emittance by replacing a mismatched pipe between the buncher and accelerating section to avoid wake-field effects; The resulting improvements of the emittance have led to an increase in the FEL emitted power.

  20. Experimental investigation of a reacting transverse jet in a high pressure oscillating vitiated crossflow

    NASA Astrophysics Data System (ADS)

    Fugger, Christopher A.

    Staged combustion is one design approach in a gas turbine engine to reduce pollutant emission levels. In axially staged combustion, portions of the air and fuel are injected downstream of a lean premixed low NOx primary combustion zone. The gas residence time at elevated temperatures is decreased resulting in lower thermal NOx, and the reduced oxygen and high temperature vitiated primary zone flow further help to reduce pollutant emissions and quickly complete combustion. One implementation of axially staged combustion is transverse fuel jet injection. An important consideration for staged combustion systems, though, is how the primary and secondary combustion zones can couple through the acoustic resonances of the chamber. These couplings can lead to additional source terms that pump energy into the resonant acoustic field and help sustain the high-amplitude combustor pressure oscillations. An understanding of these couplings is important so that it may be possible to design a secondary combustion system that provides inherent damping to the combustor system. To systematically characterize the coupling of a reacting jet in unsteady crossflow in detail, the effects of an an unsteady pressure flowfield and an unsteady velocity flowfield are separately investigated. An optically accessible resonant combustion chamber was designed and built as part of this work to generate a standing wave unsteady vitiated crossflow at a chamber pressure of 0.9 MPa. The location of transverse jet injection corresponds to one of two locations, where one location is the pressure node and the other location the pressure anti-node of the resonant chamber acoustic mode. The injection location is optically accessible, and the dynamic interactions between the transverse jet flow and the 1st and 2nd axial combustor modes are measured using 10 kHz OH-PLIF and 2D PIV. This document analyzes five test cases: two non-reacting jets and three reacting jets. All cases correspond to jet injection near a pressure node of the 1st axial combustor mode, where the dominant flowfield fluctuations are a time-varying crossflow velocity. For the non-reacting jets, the nominal jet-to-crossflow momentum flux ratio is 19. For the reacting jets, the nominal jet-to-crossflow momentum flux ratio is 6. Two cross sectional planes parallel to the jet injection wall are investigated: 1 and 2.7 jet diameters from the jet injection wall. The combustor crossflow high frequency wall mounted pressure data is given for each test case. The velocity and OH-PLIF data is presented as instantaneous snapshots, time and phase averaged flowfields, modal decompositions using Proper Orthogonal Decomposition and Dynamic Mode Decomposition, and a jet cycle analysis relative to the crossflow acoustic cycle. Analysis of the five test cases shows that the jet cross sectional velocity and OH-PLIF dynamics display a multitude of dynamics. These are often organized into shear layer dynamics and wake dynamics, but are not mutually exclusive. For large unsteady crossflow velocity oscillations at the 1st axial combustor mode, both dynamics show strong organization at the unsteady crossflow frequency. Deciphering these dynamics is complicated by the fact that the ostensible jet response to the time-varying crossflow is a time-varying jet penetration. This drives the jet toward and away from the jet injection wall. These motions are perpendicular to the laser sheet and creates significant out-of-plane motions. The amplitude of crossflow unsteadiness appears to play a role in the sharpness of the wake dynamics. For the non-reacting cases, the wake dynamics are strong and dominant spectral features in the flowfield. For the reacting cases, the wake dynamics are spectrally distinct in the lower amplitude crossflow unsteadiness case, but a large unsteady amplitude crossflow appears to suppress the spectral bands in the frequency range corresponding to wake vortex dynamics.

  1. Numerical Simulation of the Vortex-Induced Vibration of A Curved Flexible Riser in Shear Flow

    NASA Astrophysics Data System (ADS)

    Zhu, Hong-jun; Lin, Peng-zhi

    2018-06-01

    A series of fully three-dimensional (3D) numerical simulations of flow past a free-to-oscillate curved flexible riser in shear flow were conducted at Reynolds number of 185-1015. The numerical results obtained by the two-way fluid-structure interaction (FSI) simulations are in good agreement with the experimental results reported in the earlier study. It is further found that the frequency transition is out of phase not only in the inline (IL) and crossflow (CF) directions but also along the span direction. The mode competition leads to the non-zero nodes of the rootmean- square (RMS) amplitude and the relatively chaotic trajectories. The fluid-structure interaction is to some extent reflected by the transverse velocity of the ambient fluid, which reaches the maximum value when the riser reaches the equilibrium position. Moreover, the local maximum transverse velocities occur at the peak CF amplitudes, and the values are relatively large when the vibration is in the resonance regions. The 3D vortex columns are shed nearly parallel to the axis of the curved flexible riser. As the local Reynolds number increases from 0 at the bottom of the riser to the maximum value at the top, the wake undergoes a transition from a two-dimensional structure to a 3D one. More irregular small-scale vortices appeared at the wake region of the riser, undergoing large amplitude responses.

  2. Wake of a beam passing through a diffraction radiation target

    NASA Astrophysics Data System (ADS)

    Xiang, Dao; Huang, Wen-Hui; Lin, Yu-Zheng; Park, Sung-Ju; Ko, In Soo

    2008-02-01

    Diffraction radiation (DR) is one of the most promising candidates for electron beam diagnostics for International Linear Collider and x-ray free electron lasers due to its nonintercepting characteristic. One of the potential problems that may restrict its applications in real-time monitoring beam parameters is the wakefield generated by the presence of the DR target. In this paper, a comparative study of the wakefield and the backward DR (BDR) field is performed to clarify the relationship between them. The wakefield is studied with a particle-in-cell code MAGIC and the DR field is calculated based on virtual photon diffraction model. It is found that they have the same frequency spectrum and angular distribution, which indicates that the difference only exists in the subjective terminology. The longitudinal and transverse wake for a beam passing through a DR target is calculated for a general case when the beam’s velocity is smaller than that of light. The resulted emittance growth and energy spread growth due to the short range wakefield is estimated and found to be permissible. In real measurement where BDR propagates in the direction perpendicular to the trajectory, it may add a transverse kick to the beam as a requirement of momentum conservation. The kick is found to be large enough to degrade the performance of accelerator driven facilities and needs to be corrected.

  3. Oscillations in the wake of a flare blast wave

    NASA Astrophysics Data System (ADS)

    Tothova, D.; Innes, D. E.; Stenborg, G.

    2011-04-01

    Context. Oscillations of coronal loops in the Sun have been reported in both imaging and spectral observations at the onset of flares. Images reveal transverse oscillations, whereas spectra detect line-of-sight velocity or Doppler-shift oscillations. The Doppler-shift oscillations are commonly interpreted as longitudinal modes. Aims: Our aim is to investigate the relationship between loop dynamics and flows seen in TRACE 195 Å images and Doppler shifts observed by SUMER in Si iii 1113.2 Å and FeXIX 1118.1 Å at the time of a C.8-class limb flare and an associated CME. Methods: We carefully co-aligned the sequence of TRACE 195 Å images to structures seen in the SUMER Si iii, CaX, and FeXIX emission lines. Additionally, Hα observations of a lifting prominence associated with the flare and the coronal mass ejection (CME) are available in three bands around 6563.3 Å. They give constraints on the timing and geometry. Results: Large-scale Doppler-shift oscillations in FeXIX and transverse oscillations in intensity images were observed over a large region of the corona after the passage of a wide bright extreme-ultraviolet (EUV) disturbance, which suggests ionization, heating, and acceleration of hot plasma in the wake of a blast wave. The online movie associated to Fig. 2 is available at http://www.aanda.org and at http://www.mps.mpg.de/data/outgoing/tothova/movie.gif

  4. The energy allocation function of sleep: a unifying theory of sleep, torpor, and continuous wakefulness.

    PubMed

    Schmidt, Markus H

    2014-11-01

    The energy allocation (EA) model defines behavioral strategies that optimize the temporal utilization of energy to maximize reproductive success. This model proposes that all species of the animal kingdom share a universal sleep function that shunts waking energy utilization toward sleep-dependent biological investment. For endotherms, REM sleep evolved to enhance energy appropriation for somatic and CNS-related processes by eliminating thermoregulatory defenses and skeletal muscle tone. Alternating REM with NREM sleep conserves energy by decreasing the need for core body temperature defense. Three EA phenotypes are proposed: sleep-wake cycling, torpor, and continuous (or predominant) wakefulness. Each phenotype carries inherent costs and benefits. Sleep-wake cycling downregulates specific biological processes in waking and upregulates them in sleep, thereby decreasing energy demands imposed by wakefulness, reducing cellular infrastructure requirements, and resulting in overall energy conservation. Torpor achieves the greatest energy savings, but critical biological operations are compromised. Continuous wakefulness maximizes niche exploitation, but endures the greatest energy demands. The EA model advances a new construct for understanding sleep-wake organization in ontogenetic and phylogenetic domains. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation (Invited)

    NASA Astrophysics Data System (ADS)

    Xie, S.; Archer, C. L.

    2013-12-01

    In this study, a new large-eddy simulation code, the Wind Turbine and Turbulence Simulator (WiTTS), is developed to study the wake generated from a single wind turbine in the neutral ABL. The WiTTS formulation is based on a scale-dependent Lagrangian dynamical model of the sub-grid shear stress and uses actuator lines to simulate the effects of the rotating blades. WiTTS is first tested against wind tunnel experiments and then used to study the commonly-used assumptions of self-similarity and axis-symmetry of the wake under neutral conditions for a variety of wind speeds and turbine properties. The mean velocity deficit shows good self-similarity properties following a normal distribution in the horizontal plane at the hub-height level. Self-similarity is a less valid approximation in the vertical near the ground, due to strong wind shear and ground effects. The mean velocity deficit is strongly dependent on the thrust coefficient or induction factor. A new relationship is proposed to model the mean velocity deficit along the centerline at the hub-height level to fit the LES results piecewise throughout the wake. A logarithmic function is used in the near and intermediate wake regions whereas a power function is used in the far-wake. These two functions provide a better fit to both simulated and observed wind velocity deficits than other functions previously used in wake models such as WAsP. The wind shear and impact with the ground cause an anisotropy in the expansion of the wake such that the wake grows faster horizontally than vertically. The wake deforms upon impact with the ground and spreads laterally. WiTTS is also used to study the turbulence characteristics in the wake. Aligning with the mean wind direction, the streamwise component of turbulence intensity is the dominant among the three components and thus it is further studied. The highest turbulence intensity occurs near the top-tip level. The added turbulence intensity increases fast in the near-wake and reaches its maximum at about x/D ~ 5, then it gradually decreases further downstream. In the far-wake, the added turbulence intensity is primarily dependent on the induction factor and the ambient turbulence: it increases with the induction factor and ambient turbulence and it decays exponentially downstream. An analysis of the added TKE budget shows that production by shear and advection by the mean flow dominate throughout the wake, whereas dissipation and turbulent transport are less important. In the near-wake, TKE is entrained from the upper regions of the annular shear layer into the center of the wake. The nacelle causes a significant increase of production, advection, and dissipation in the near-wake. Wind shear and momentum fluxes are reduced in the lower part of the wake, thus TKE production is reduced at the bottom-tip level. In summary, we find that the WiTTS model, although applied to a simplified case of neutral stability with a single wind turbine, was able to offer new insights into wake properties, including non-symmetric wake growth and reduced vertical mixing near the ground.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grosso, G.; Nardin, G.; Morier-Genoud, F.

    Exciton polaritons have been shown to be an optimal system in order to investigate the properties of bosonic quantum fluids. We report here on the observation of dark solitons in the wake of engineered circular obstacles and their decay into streets of quantized vortices. Our experiments provide a time-resolved access to the polariton phase and density, which allows for a quantitative study of instabilities of freely evolving polaritons. The decay of solitons is quantified and identified as an effect of disorder-induced transverse perturbations in the dissipative polariton gas.

  7. Parallel computation of transverse wakes in linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Xiaowei; Ko, Kwok

    1996-11-01

    SLAC has proposed the detuned structure (DS) as one possible design to control the emittance growth of long bunch trains due to transverse wakefields in the Next Linear Collider (NLC). The DS consists of 206 cells with tapering from cell to cell of the order of few microns to provide Gaussian detuning of the dipole modes. The decoherence of these modes leads to two orders of magnitude reduction in wakefield experienced by the trailing bunch. To model such a large heterogeneous structure realistically is impractical with finite-difference codes using structured grids. The authors have calculated the wakefield in the DSmore » on a parallel computer with a finite-element code using an unstructured grid. The parallel implementation issues are presented along with simulation results that include contributions from higher dipole bands and wall dissipation.« less

  8. Endoplasmic reticulum stress in wake-active neurons progresses with aging.

    PubMed

    Naidoo, Nirinjini; Zhu, Jingxu; Zhu, Yan; Fenik, Polina; Lian, Jie; Galante, Ray; Veasey, Sigrid

    2011-08-01

    Fragmentation of wakefulness and sleep are expected outcomes of advanced aging. We hypothesize that wake neurons develop endoplasmic reticulum dyshomeostasis with aging, in parallel with impaired wakefulness. In this series of experiments, we sought to more fully characterize age-related changes in wakefulness and then, in relevant wake neuronal populations, explore functionality and endoplasmic reticulum homeostasis. We report that old mice show greater sleep/wake transitions in the active period with markedly shortened wake periods, shortened latencies to sleep, and less wake time in the subjective day in response to a novel social encounter. Consistent with sleep/wake instability and reduced social encounter wakefulness, orexinergic and noradrenergic wake neurons in aged mice show reduced c-fos response to wakefulness and endoplasmic reticulum dyshomeostasis with increased nuclear translocation of CHOP and GADD34. We have identified an age-related unfolded protein response injury to and dysfunction of wake neurons. It is anticipated that these changes contribute to sleep/wake fragmentation and cognitive impairment in aging. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  9. Parallel recovery of consciousness and sleep in acute traumatic brain injury.

    PubMed

    Duclos, Catherine; Dumont, Marie; Arbour, Caroline; Paquet, Jean; Blais, Hélène; Menon, David K; De Beaumont, Louis; Bernard, Francis; Gosselin, Nadia

    2017-01-17

    To investigate whether the progressive recuperation of consciousness was associated with the reconsolidation of sleep and wake states in hospitalized patients with acute traumatic brain injury (TBI). This study comprised 30 hospitalized patients (age 29.1 ± 13.5 years) in the acute phase of moderate or severe TBI. Testing started 21.0 ± 13.7 days postinjury. Consciousness level and cognitive functioning were assessed daily with the Rancho Los Amigos scale of cognitive functioning (RLA). Sleep and wake cycle characteristics were estimated with continuous wrist actigraphy. Mixed model analyses were performed on 233 days with the RLA (fixed effect) and sleep-wake variables (random effects). Linear contrast analyses were performed in order to verify if consolidation of the sleep and wake states improved linearly with increasing RLA score. Associations were found between scores on the consciousness/cognitive functioning scale and measures of sleep-wake cycle consolidation (p < 0.001), nighttime sleep duration (p = 0.018), and nighttime fragmentation index (p < 0.001). These associations showed strong linear relationships (p < 0.01 for all), revealing that consciousness and cognition improved in parallel with sleep-wake quality. Consolidated 24-hour sleep-wake cycle occurred when patients were able to give context-appropriate, goal-directed responses. Our results showed that when the brain has not sufficiently recovered a certain level of consciousness, it is also unable to generate a 24-hour sleep-wake cycle and consolidated nighttime sleep. This study contributes to elucidating the pathophysiology of severe sleep-wake cycle alterations in the acute phase of moderate to severe TBI. © 2016 American Academy of Neurology.

  10. Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during rapid eye movement sleep.

    PubMed

    Vanini, Giancarlo; Wathen, Bradley L; Lydic, Ralph; Baghdoyan, Helen A

    2011-02-16

    Studies using drugs that increase or decrease GABAergic transmission suggest that GABA in the pontine reticular formation (PRF) promotes wakefulness and inhibits rapid eye movement (REM) sleep. Cholinergic transmission in the PRF promotes REM sleep, and levels of endogenous acetylcholine (ACh) in the PRF are significantly greater during REM sleep than during wakefulness or non-REM (NREM) sleep. No previous studies have determined whether levels of endogenous GABA in the PRF vary as a function of sleep and wakefulness. This study tested the hypothesis that GABA levels in cat PRF are greatest during wakefulness and lowest during REM sleep. Extracellular GABA levels were measured during wakefulness, NREM sleep, REM sleep, and the REM sleep-like state (REM(Neo)) caused by microinjecting neostigmine into the PRF. GABA levels varied significantly as a function of sleep and wakefulness, and decreased significantly below waking levels during REM sleep (-42%) and REM(Neo) (-63%). The decrease in GABA levels during NREM sleep (22% below waking levels) was not statistically significant. Compared with NREM sleep, GABA levels decreased significantly during REM sleep (-27%) and REM(Neo) (-52%). Comparisons of REM sleep and REM(Neo) revealed no differences in GABA levels or cortical EEG power. GABA levels did not vary significantly as a function of dialysis site within the PRF. The inverse relationship between changes in PRF levels of GABA and ACh during REM sleep indicates that low GABAergic tone combined with high cholinergic tone in the PRF contributes to the generation of REM sleep.

  11. Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during REM sleep

    PubMed Central

    Vanini, Giancarlo; Wathen, Bradley L.; Lydic, Ralph; Baghdoyan, Helen A.

    2011-01-01

    Studies using drugs that increase or decrease GABAergic transmission suggest that GABA in the pontine reticular formation (PRF) promotes wakefulness and inhibits rapid eye movement (REM) sleep. Cholinergic transmission in the PRF promotes REM sleep, and levels of endogenous acetylcholine (ACh) in the PRF are significantly greater during REM sleep than during wakefulness or non-REM (NREM) sleep. No previous studies have determined whether levels of endogenous GABA in the PRF vary as a function of sleep and wakefulness. This study tested the hypothesis that GABA levels in cat PRF are greatest during wakefulness and lowest during REM sleep. Extracellular GABA levels were measured during wakefulness, NREM sleep, REM sleep, and the REM sleep-like state (REMNeo) caused by microinjecting neostigmine into the PRF. GABA levels varied significantly as a function of sleep and wakefulness, and decreased significantly below waking levels during REM sleep (−42%) and REMNeo (−63%). The decrease in GABA levels during NREM sleep (22% below waking levels) was not statistically significant. Compared to NREM sleep, GABA levels decreased significantly during REM sleep (−27%) and REMNeo (−52%). Comparisons of REM sleep and REMNeo revealed no differences in GABA levels or cortical EEG power. GABA levels did not vary significantly as a function of dialysis site within the PRF. The inverse relationship between changes in PRF levels of GABA and ACh during REM sleep indicates that low GABAergic tone combined with high cholinergic tone in the PRF contributes to the generation of REM sleep. PMID:21325533

  12. Low-dimensional modelling of a transient cylinder wake using double proper orthogonal decomposition

    NASA Astrophysics Data System (ADS)

    Siegel, Stefan G.; Seidel, J.?Rgen; Fagley, Casey; Luchtenburg, D. M.; Cohen, Kelly; McLaughlin, Thomas

    For the systematic development of feedback flow controllers, a numerical model that captures the dynamic behaviour of the flow field to be controlled is required. This poses a particular challenge for flow fields where the dynamic behaviour is nonlinear, and the governing equations cannot easily be solved in closed form. This has led to many versions of low-dimensional modelling techniques, which we extend in this work to represent better the impact of actuation on the flow. For the benchmark problem of a circular cylinder wake in the laminar regime, we introduce a novel extension to the proper orthogonal decomposition (POD) procedure that facilitates mode construction from transient data sets. We demonstrate the performance of this new decomposition by applying it to a data set from the development of the limit cycle oscillation of a circular cylinder wake simulation as well as an ensemble of transient forced simulation results. The modes obtained from this decomposition, which we refer to as the double POD (DPOD) method, correctly track the changes of the spatial modes both during the evolution of the limit cycle and when forcing is applied by transverse translation of the cylinder. The mode amplitudes, which are obtained by projecting the original data sets onto the truncated DPOD modes, can be used to construct a dynamic mathematical model of the wake that accurately predicts the wake flow dynamics within the lock-in region at low forcing amplitudes. This low-dimensional model, derived using nonlinear artificial neural network based system identification methods, is robust and accurate and can be used to simulate the dynamic behaviour of the wake flow. We demonstrate this ability not just for unforced and open-loop forced data, but also for a feedback-controlled simulation that leads to a 90% reduction in lift fluctuations. This indicates the possibility of constructing accurate dynamic low-dimensional models for feedback control by using unforced and transient forced data only.

  13. In two minds? Is schizophrenia a state 'trapped' between waking and dreaming?

    PubMed

    Llewellyn, Sue

    2009-10-01

    This paper proposes that schizophrenia is a state of mind/brain 'trapped' in-between waking and dreaming. Furthermore, it suggests that both waking and dreaming are functional. An in-between state would be disordered; neither waking nor dreaming would function properly, as the mind/brain would be attempting two, ultimately incompatible, sets of tasks simultaneously. In support of this hypothesis, evidence is synthesised across four different domains: the chemistry of the dreaming state; work on dreaming as functional for memory; the membrane theory of schizophrenia; and chaos theory. The brain produces itself; self-organizing through its modulatory systems. Differentiation between dreaming and waking is achieved through aminergic/cholinergic/dopaminergic reciprocity. Chaos theory indicates that self-organizing systems function most creatively on the 'edge of chaos'; a state which lies between order and disorder. In the mind/brain 'order' represents rigid differentiation between waking and dreaming, whereas 'disorder' results from their interpenetration. How could the latter occur? In sum, the causal sequence would be as follows. Genetic susceptibility to schizophrenia is expressed through fatty acid deficiencies which precipitate neuronal cell membrane abnormalities. In consequence, all neurotransmitter systems become disrupted. Ultimately, the reciprocal interaction between aminergic/cholinergic neuromodulation breaks down. Disrupted cholinergic input interferes with the reciprocal relationship between mesolimbic and mesocortical dopaminergic systems. Loss of reciprocity between aminergic, cholinergic and dopaminergic neuromodulation results in chronic interpenetration; a 'trapped' state, in-between waking and dreaming results. This would be 'schizophrenia'. Currently, imaging techniques do not capture dynamic neuromodulation, so this hypothesis cannot yet be tested inductively. However, the paper suggests that further evidence would be gained through a closer attention to the phenomenology of schizophrenia in the waking and dreaming states.

  14. Sleep Deprivation Reveals Altered Brain Perfusion Patterns in Somnambulism.

    PubMed

    Dang-Vu, Thien Thanh; Zadra, Antonio; Labelle, Marc-Antoine; Petit, Dominique; Soucy, Jean-Paul; Montplaisir, Jacques

    2015-01-01

    Despite its high prevalence, relatively little is known about the pathophysiology of somnambulism. Increasing evidence indicates that somnambulism is associated with functional abnormalities during wakefulness and that sleep deprivation constitutes an important drive that facilitates sleepwalking in predisposed patients. Here, we studied the neural mechanisms associated with somnambulism using Single Photon Emission Computed Tomography (SPECT) with 99mTc-Ethylene Cysteinate Dimer (ECD), during wakefulness and after sleep deprivation. Ten adult sleepwalkers and twelve controls with normal sleep were scanned using 99mTc-ECD SPECT in morning wakefulness after a full night of sleep. Eight of the sleepwalkers and nine of the controls were also scanned during wakefulness after a night of total sleep deprivation. Between-group comparisons of regional cerebral blood flow (rCBF) were performed to characterize brain activity patterns during wakefulness in sleepwalkers. During wakefulness following a night of total sleep deprivation, rCBF was decreased bilaterally in the inferior temporal gyrus in sleepwalkers compared to controls. Functional neural abnormalities can be observed during wakefulness in somnambulism, particularly after sleep deprivation and in the inferior temporal cortex. Sleep deprivation thus not only facilitates the occurrence of sleepwalking episodes, but also uncovers patterns of neural dysfunction that characterize sleepwalkers during wakefulness.

  15. Use of a pitot probe for determining wing section drag in flight

    NASA Technical Reports Server (NTRS)

    Saltzman, E. J.

    1975-01-01

    A wake traversing probe was used to obtain section drag and wake profile data from the wing of a sailplane. The transducer sensed total pressure defect in the wake as well as freestream total pressure on both sides of the sensing element when the probe moved beyond the wake. Profiles of wake total pressure defects plotted as a function of distance above and below the trailing edge plane were averaged for calculating section drag coefficients for flights at low dynamic pressures.

  16. Waking and Dreaming Need Profiles: An Exploratory Study of Adaptive Functioning.

    ERIC Educational Resources Information Center

    Hutchinson, Robert Linton, II

    Research has defined the various adaptive, compensatory and complementary functions of dreams. To investigate the evidence of adaptive functioning in the dream state, 30 medical students (21 males, 9 females) from St. George's University, Grenada, completed personal surveys, a waking psychological profile, and a dreaming psychological profile…

  17. Formal optimization of hovering performance using free wake lifting surface theory

    NASA Technical Reports Server (NTRS)

    Chung, S. Y.

    1986-01-01

    Free wake techniques for performance prediction and optimization of hovering rotor are discussed. The influence functions due to vortex ring, vortex cylinder, and source or vortex sheets are presented. The vortex core sizes of rotor wake vortices are calculated and their importance is discussed. Lifting body theory for finite thickness body is developed for pressure calculation, and hence performance prediction of hovering rotors. Numerical optimization technique based on free wake lifting line theory is presented and discussed. It is demonstrated that formal optimization can be used with the implicit and nonlinear objective or cost function such as the performance of hovering rotors as used in this report.

  18. Functional Polymorphisms in Dopaminergic Genes Modulate Neurobehavioral and Neurophysiological Consequences of Sleep Deprivation.

    PubMed

    Holst, Sebastian C; Müller, Thomas; Valomon, Amandine; Seebauer, Britta; Berger, Wolfgang; Landolt, Hans-Peter

    2017-04-10

    Sleep deprivation impairs cognitive performance and reliably alters brain activation in wakefulness and sleep. Nevertheless, the molecular regulators of prolonged wakefulness remain poorly understood. Evidence from genetic, behavioral, pharmacologic and imaging studies suggest that dopaminergic signaling contributes to the behavioral and electroencephalographic (EEG) consequences of sleep loss, although direct human evidence thereof is missing. We tested whether dopamine neurotransmission regulate sustained attention and evolution of EEG power during prolonged wakefulness. Here, we studied the effects of functional genetic variation in the dopamine transporter (DAT1) and the dopamine D 2 receptor (DRD2) genes, on psychomotor performance and standardized waking EEG oscillations during 40 hours of wakefulness in 64 to 82 healthy volunteers. Sleep deprivation consistently enhanced sleepiness, lapses of attention and the theta-to-alpha power ratio (TAR) in the waking EEG. Importantly, DAT1 and DRD2 genotypes distinctly modulated sleep loss-induced changes in subjective sleepiness, PVT lapses and TAR, according to inverted U-shaped relationships. Together, the data suggest that genetically determined differences in DAT1 and DRD2 expression modulate functional consequences of sleep deprivation, supporting the hypothesis that striato-thalamo-cortical dopaminergic pathways modulate the neurobehavioral and neurophysiological consequences of sleep loss in humans.

  19. Numerical Studies of Flow Past Two Side-by-Side Circular Cylinders

    NASA Astrophysics Data System (ADS)

    Shao, J.; Zhang, C.

    Multiple circular cylindrical configurations are widely used in engineering applications. The fluid dynamics of the flow around two identical circular cylinders in side-by-side arrangement has been investigated by both experiments and numerical simulations. The center-to-center transverse pitch ratio T/D plays an important role in determining the flow features. It is observed that for 1 < T/D < 1.1 to 1.2, a single vortex street is formed; for 1.2< T/D < 2 to 2.2, bi-stable narrow and wide wakes are formed; for 2.7< T/D < 4 or 5, anti-phase or in-phase vortex streets are formed. In the current study, the vortex structures of turbulent flows past two slightly heated side-by-side circular cylinders are investigated employing the large eddy simulation (LES). Simulations are performed using a commercial CFD software, FLUENT. The Smagorinsky-Lilly subgrid-scale model is employed for the large eddy simulation. The Reynolds number based on free-stream velocity and cylinder diameter is 5 800, which is in the subcritical regime. The transverse pitch ratio T/D = 3 is investigated. Laminar boundary layer, transition in shear layer, flow separation, large vortex structures and flow interference in the wake are all involved in the flow. Such complex flow features make the current study a challenging task. Both flow field and temperature field are investigated. The calculated results are analyzed and compared with experimental data. The simulation results are qualitatively in accordance with experimental observations. Two anti-phase vortex streets are obtained by the large-eddy simulation, which agrees with the experimental observation. At this transverse pitch ratio, these two cylinders behave as independent, isolated single cylinder in cross flow. The time-averaged streamwise velocity and temperature at x/D=10 are in good agreement with the experimental data. Figure1 displays the instantaneous spanwise vorticity at the center plane.

  20. Circadian Rhythm Sleep-Wake Disorders.

    PubMed

    Pavlova, Milena

    2017-08-01

    The endogenous circadian rhythms are one of the cardinal processes that control sleep. They are self-sustaining biological rhythms with a periodicity of approximately 24 hours that may be entrained by external zeitgebers (German for time givers), such as light, exercise, and meal times. This article discusses the physiology of the circadian rhythms, their relationship to neurologic disease, and the presentation and treatment of circadian rhythm sleep-wake disorders. Classic examples of circadian rhythms include cortisol and melatonin secretion, body temperature, and urine volume. More recently, the impact of circadian rhythm on several neurologic disorders has been investigated, such as the timing of occurrence of epileptic seizures as well as neurobehavioral functioning in dementia. Further updates include a more in-depth understanding of the symptoms, consequences, and treatment of circadian sleep-wake disorders, which may occur because of extrinsic misalignment with clock time or because of intrinsic dysfunction of the brain. An example of extrinsic misalignment occurs with jet lag during transmeridian travel or with intrinsic circadian rhythm sleep-wake disorders such as advanced or delayed sleep-wake phase disorders. In advanced sleep-wake phase disorder, which is most common in elderly individuals, sleep onset and morning arousal are undesirably early, leading to impaired evening function with excessive sleepiness and sleep-maintenance insomnia with early morning awakening. By contrast, delayed sleep-wake phase disorder is characterized by an inability to initiate sleep before the early morning hours, with subsequent delayed rise time, leading to clinical symptoms of severe sleep-onset insomnia coupled with excessive daytime sleepiness in the morning hours, as patients are unable to "sleep in" to attain sufficient sleep quantity. Irregular sleep-wake rhythm disorder is misentrainment with patches of brief sleep and wakefulness spread throughout the day, leading to unstable sleep and waking behavioral patterns and an entirely idiosyncratic sleep-wake schedule. Familiarity with these major circadian rhythm sleep-wake disorder phenotypes and their overlap with other neurologic disorders is essential for the neurologist so that clinicians may intervene and improve patient functioning and quality of life.

  1. Inlet Guide Vane Wakes Including Rotor Effects

    NASA Astrophysics Data System (ADS)

    Johnston, R. T.; Fleeter, S.

    2001-02-01

    Fundamental experiments are described directed at the investigation of forcing functions generated by an inlet guide vane (IGV) row, including interactions with the downstream rotor, for application to turbomachine forced response design systems. The experiments are performed in a high-speed research fan facility comprised of an IGV row upstream of a rotor. IGV-rotor axial spacing is variable, with the IGV row able to be indexed circumferentially, thereby allowing measurements to be made across several IGV wakes. With an IGV relative Mach number of 0.29, measurements include the IGV wake pressure and velocity fields for three IGV-rotor axial spacings. The decay characteristics of the IGV wakes are compared to the Majjigi and Gliebe empirical correlations. After Fourier decomposition, a vortical-potential gust splitting analysis is implemented to determine the vortical and potential harmonic wake gust forcing functions both upstream and downstream of the rotor. Higher harmonics of the vortical gust component of the IGV wakes are found to decay at a uniform rate due to viscous diffusion.

  2. Approaches to Measuring the Effects of Wake-Promoting Drugs: A Focus on Cognitive Function

    PubMed Central

    Edgar, Christopher J.; Pace-Schott, Edward F.; Wesnes, Keith A.

    2009-01-01

    Objectives In clinical drug development, wakefulness and wake-promotion maybe assessed by a large number of scales and questionnaires. Objective assessment of wakefulness is most commonly made using sleep latency/maintenance of wakefulness tests, polysomnography and/or behavioral measures. The purpose of the present review is to highlight the degree of overlap in the assessment of wakefulness and cognition, with consideration of assessment techniques and the underlying neurobiology of both concepts. Design Reviews of four key areas were conducted: commonly used techniques in the assessment of wakefulness; neurobiology of sleep/wake and cognition; targets of wake promoting and/or cognition enhancing drugs; and ongoing clinical trials investigating wake promoting effects. Results There is clear overlap between the assessment of wakefulness and cognition. There are common techniques which may be used to assess both concepts; aspects of the neurobiology of both concepts may be closely related; and wake promoting drugs may have nootropic properties (and vice-versa). Clinical trials of wake promoting drugs often, though not routinely, assess aspects of cognition. Conclusions Routine and broad assessment of cognition in the development of wake promoting drugs may reveal important nootropic effects, which are not secondary to alertness/wakefulness, whilst existing cognitive enhancers may have under explored or unknown wake promoting properties. PMID:19565524

  3. Sleep Deprivation Reveals Altered Brain Perfusion Patterns in Somnambulism

    PubMed Central

    Dang-Vu, Thien Thanh; Zadra, Antonio; Labelle, Marc-Antoine; Petit, Dominique; Soucy, Jean-Paul; Montplaisir, Jacques

    2015-01-01

    Background Despite its high prevalence, relatively little is known about the pathophysiology of somnambulism. Increasing evidence indicates that somnambulism is associated with functional abnormalities during wakefulness and that sleep deprivation constitutes an important drive that facilitates sleepwalking in predisposed patients. Here, we studied the neural mechanisms associated with somnambulism using Single Photon Emission Computed Tomography (SPECT) with 99mTc-Ethylene Cysteinate Dimer (ECD), during wakefulness and after sleep deprivation. Methods Ten adult sleepwalkers and twelve controls with normal sleep were scanned using 99mTc-ECD SPECT in morning wakefulness after a full night of sleep. Eight of the sleepwalkers and nine of the controls were also scanned during wakefulness after a night of total sleep deprivation. Between-group comparisons of regional cerebral blood flow (rCBF) were performed to characterize brain activity patterns during wakefulness in sleepwalkers. Results During wakefulness following a night of total sleep deprivation, rCBF was decreased bilaterally in the inferior temporal gyrus in sleepwalkers compared to controls. Conclusions Functional neural abnormalities can be observed during wakefulness in somnambulism, particularly after sleep deprivation and in the inferior temporal cortex. Sleep deprivation thus not only facilitates the occurrence of sleepwalking episodes, but also uncovers patterns of neural dysfunction that characterize sleepwalkers during wakefulness. PMID:26241047

  4. Beta EEG reflects sensory processing in active wakefulness and homeostatic sleep drive in quiet wakefulness.

    PubMed

    Grønli, Janne; Rempe, Michael J; Clegern, William C; Schmidt, Michelle; Wisor, Jonathan P

    2016-06-01

    Markers of sleep drive (<10 Hz; slow-wave activity and theta) have been identified in the course of slow-wave sleep and wakefulness. So far, higher frequencies in the waking electroencephalogram have not been examined thoroughly as a function of sleep drive. Here, electroencephalogram dynamics were measured in epochs of active wake (wake characterized by high muscle tone) or quiet wake (wake characterized by low muscle tone). It was hypothesized that the higher beta oscillations (15-35 Hz, measured by local field potential and electroencephalography) represent fundamentally different processes in active wake and quiet wake. In active wake, sensory stimulation elevated beta activity in parallel with gamma (80-90 Hz) activity, indicative of cognitive processing. In quiet wake, beta activity paralleled slow-wave activity (1-4 Hz) and theta (5-8 Hz) in tracking sleep need. Cerebral lactate concentration, a measure of cerebral glucose utilization, increased during active wake whereas it declined during quiet wake. Mathematical modelling of state-dependent dynamics of cortical lactate concentration was more precisely predictive when quiet wake and active wake were included as two distinct substates rather than a uniform state of wakefulness. The extent to which lactate concentration declined in quiet wake and increased in active wake was proportionate to the amount of beta activity. These data distinguish quiet wake from active wake. Quiet wake, particularly when characterized by beta activity, is permissive to metabolic and electrophysiological changes that occur in slow-wave sleep. These data urge further studies on state-dependent beta oscillations across species. © 2016 European Sleep Research Society.

  5. Evolution of Rotor Wake in Swirling Flow

    NASA Technical Reports Server (NTRS)

    El-Haldidi, Basman; Atassi, Hafiz; Envia, Edmane; Podboy, Gary

    2000-01-01

    A theory is presented for modeling the evolution of rotor wakes as a function of axial distance in swirling mean flows. The theory, which extends an earlier work to include arbitrary radial distributions of mean swirl, indicates that swirl can significantly alter the wake structure of the rotor especially at large downstream distances (i.e., for moderate to large rotor-stator spacings). Using measured wakes of a representative scale model fan stage to define the mean swirl and initial wake perturbations, the theory is used to predict the subsequent evolution of the wakes. The results indicate the sensitivity of the wake evolution to the initial profile and the need to have complete and consistent initial definition of both velocity and pressure perturbations.

  6. Wakefields in SLAC linac collimators

    DOE PAGES

    Novokhatski, A.; Decker, F. -J.; Smith, H.; ...

    2014-12-02

    When a beam travels near collimator jaws, it gets an energy loss and a transverse kick due to the backreaction of the beam field diffracted from the jaws. The effect becomes very important for an intense short bunch when a tight collimation of the background beam halo is required. In the Linac Coherent Light Source at SLAC a collimation system is used to protect the undulators from radiation due to particles in the beam halo. The halo is most likely formed from gun dark current or dark current in some of the accelerating sections. However, collimators are also responsible formore » the generation of wake fields. The wake field effect from the collimators not only brings an additional energy jitter and change in the trajectory of the beam, but it also rotates the beam on the phase plane, which consequently leads to a degradation of the performance of the Free Electron Laser at the Linac Coherent Light Source. In this paper, we describe a model of the wake field radiation in the SLAC linac collimators. We use the results of a numerical simulation to illustrate the model. Based on the model, we derive simple formulas for the bunch energy loss and the average kick. We also present results from experimental measurements that confirm our model.« less

  7. Wakefields of a Beam near a Single Plate in a Flat Dechirper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bane, Karl; Stupakov, Gennady

    At linac-based, X-ray free electron lasers (FELs), there is interest in streaking the beam by inducing the transverse wakes in a flat dechirper, by passing the beam near to one of its two jaws. For LCLS-II - as has already been done for LCLS-I - this way of using the dechirper will e.g. facilitate two-color and fresh slice schemes of running the FEL. With the beam a distance from the near wall of say b ~ 0.25 mm and from the far wall by ≳ 5 mm, the second wall will no longer affect the results. The physics will bemore » quite different from the two plate case: with two plates the impedance has a resonance spike whose frequency depends on the plate separation 2a; in the single plate case this parameter no longer exists. Formulas for the longitudinal, dipole, and quadrupole wakes for a beam off-axis between two dechirper plates, valid for the range of bunch lengths of interest in an X-ray FEL, are given in reference 3. By taking the proper limit, we can obtain the corresponding wakes for a beam close to one dechirper plate and far from the other. This is the task we perform in this note.« less

  8. Propeller tip and hub vortex dynamics in the interaction with a rudder

    NASA Astrophysics Data System (ADS)

    Felli, Mario; Falchi, Massimo

    2011-11-01

    In the present paper, the interaction mechanisms of the vortices shed by a single-screw propeller with a rudder installed in its wake are addressed; in particular, following the works by Felli et al. (Exp Fluids 6(1):1-11, 2006a, Exp Fluids 46(1):147-1641, 2009a, Proceedings of the 8th international symposium on particle image velocimetry: Piv09, Melbourne, 2009b), the attention is focused on the analysis of the evolution, instability, breakdown and recovering mechanisms of the propeller tip and hub vortices during the interaction with the rudder. To investigate these mechanisms in detail, a wide experimental activity consisting in time-resolved visualizations, velocity measurements by particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) along horizontal chordwise, vertical chordwise and transversal sections of the wake have been performed in the Cavitation Tunnel of the Italian Navy. Collected data allows to investigate the major flow features that distinguish the flow field around a rudder operating in the wake of a propeller, as, for example, the spiral breakdown of the vortex filaments, the rejoining mechanism of the tip vortices behind the rudder and the mechanisms governing the different spanwise misalignment of the vortex filaments in the pressure and suction sides of the appendage.

  9. Soliton instabilities and vortex street formation in a polariton quantum fluid.

    PubMed

    Grosso, G; Nardin, G; Morier-Genoud, F; Léger, Y; Deveaud-Plédran, B

    2011-12-09

    Exciton polaritons have been shown to be an optimal system in order to investigate the properties of bosonic quantum fluids. We report here on the observation of dark solitons in the wake of engineered circular obstacles and their decay into streets of quantized vortices. Our experiments provide a time-resolved access to the polariton phase and density, which allows for a quantitative study of instabilities of freely evolving polaritons. The decay of solitons is quantified and identified as an effect of disorder-induced transverse perturbations in the dissipative polariton gas.

  10. CISP: Simulation Platform for Collective Instabilities in the BRing of HIAF project

    NASA Astrophysics Data System (ADS)

    Liu, J.; Yang, J. C.; Xia, J. W.; Yin, D. Y.; Shen, G. D.; Li, P.; Zhao, H.; Ruan, S.; Wu, B.

    2018-02-01

    To simulate collective instabilities during the complicated beam manipulation in the BRing (Booster Ring) of HIAF (High Intensity heavy-ion Accelerator Facility) or other high intensity accelerators, a code, named CISP (Simulation Platform for Collective Instabilities), is designed and constructed in China's IMP (Institute of Modern Physics). The CISP is a scalable multi-macroparticle simulation platform that can perform longitudinal and transverse tracking when chromaticity, space charge effect, nonlinear magnets and wakes are included. And due to its well object-oriented design, the CISP is also a basic platform used to develop many other applications (like feedback). Several simulations, completed by the CISP in this paper, agree with analytical results very well, which shows that the CISP is fully functional now and it is a powerful platform for the further collective instability research in the BRing or other accelerators. In the future, the CISP can also be extended easily into a physics control system for HIAF or other facilities.

  11. A prominent role for amygdaloid complexes in the Variability in Heart Rate (VHR) during Rapid Eye Movement (REM) sleep relative to wakefulness.

    PubMed

    Desseilles, Martin; Vu, Thanh Dang; Laureys, Steven; Peigneux, Philippe; Degueldre, Christian; Phillips, Christophe; Maquet, Pierre

    2006-09-01

    Rapid eye movement sleep (REMS) is associated with intense neuronal activity, rapid eye movements, muscular atonia and dreaming. Another important feature in REMS is the instability in autonomic, especially in cardiovascular regulation. The neural mechanisms underpinning the variability in heart rate (VHR) during REMS are not known in detail, especially in humans. During wakefulness, the right insula has frequently been reported as involved in cardiovascular regulation but this might not be the case during REMS. We aimed at characterizing the neural correlates of VHR during REMS as compared to wakefulness and to slow wave sleep (SWS), the other main component of human sleep, in normal young adults, based on the statistical analysis of a set of H(2)(15)O positron emission tomography (PET) sleep data acquired during SWS, REMS and wakefulness. The results showed that VHR correlated more tightly during REMS than during wakefulness with the rCBF in the right amygdaloid complex. Moreover, we assessed whether functional relationships between amygdala and any brain area changed depending the state of vigilance. Only the activity within in the insula was found to covary with the amygdala, significantly more tightly during wakefulness than during REMS in relation to the VHR. The functional connectivity between the amygdala and the insular cortex, two brain areas involved in cardiovascular regulation, differs significantly in REMS as compared to wakefulness. This suggests a functional reorganization of central cardiovascular regulation during REMS.

  12. On the functional significance of c-fos induction during the sleep-waking cycle.

    PubMed

    Cirelli, C; Tononi, G

    2000-06-15

    A striking finding in recent years has been that the transition from sleep to waking is accompanied in many brain regions by a widespread activation of c-fos and other immediate-early genes (IEGs). IEGs are induced by various electrical or chemical signals to which neural cells are exposed and their protein products act as transcription factors to regulate the expression of other genes. After a few hours of sleep, the expression of these transcription factors in the brain is absent or restricted to very few cells. However, after a few hours of spontaneous waking or sleep deprivation, the expression of c-fos and other IEGs is high in cerebral cortex, hypothalamus, septum, and several thalamic and brainstem nuclei. While cells expressing c-fos during waking are widely distributed, they represent only a subset of all neurons in any given area. These observations raise several questions: Why is c-fos expressed during waking and not during sleep? Is waking always accompanied by c-fos induction? Which subset of cells express c-fos during waking and why only a subset? Once c-fos has been induced, what are the functional consequences of its activation? In this review, we summarize our current understanding of the meaning of c-fos activation in the brain in relation to the sleep-waking cycle and suggest that c-fos induction in the cerebral cortex during waking might be related to the occurrence of plastic phenomena.

  13. Wind flow characteristics in the wakes of large wind turbines. Volume 1: Analytical model development

    NASA Technical Reports Server (NTRS)

    Eberle, W. R.

    1981-01-01

    A computer program to calculate the wake downwind of a wind turbine was developed. Turbine wake characteristics are useful for determining optimum arrays for wind turbine farms. The analytical model is based on the characteristics of a turbulent coflowing jet with modification for the effects of atmospheric turbulence. The program calculates overall wake characteristics, wind profiles, and power recovery for a wind turbine directly in the wake of another turbine, as functions of distance downwind of the turbine. The calculation procedure is described in detail, and sample results are presented to illustrate the general behavior of the wake and the effects of principal input parameters.

  14. Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity

    DOE PAGES

    Clayton, C. E.; Adli, E.; Allen, J.; ...

    2016-08-16

    The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.).more » Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m –1 to a similar degree of accuracy. Lastly, these results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity.« less

  15. Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity

    PubMed Central

    Clayton, C. E.; Adli, E.; Allen, J.; An, W.; Clarke, C. I.; Corde, S.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Xu, X.; Yakimenko, V.

    2016-01-01

    The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m−1 to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity. PMID:27527569

  16. Wind tunnel measurements of three-dimensional wakes of buildings. [for aircraft safety applications

    NASA Technical Reports Server (NTRS)

    Logan, E., Jr.; Lin, S. H.

    1982-01-01

    Measurements relevant to the effect of buildings on the low level atmospheric boundary layer are presented. A wind tunnel experiment was undertaken to determine the nature of the flow downstream from a gap between two transversely aligned, equal sized models of rectangular cross section. These building models were immersed in an equilibrium turbulent boundary layer which was developed on a smooth floor in a zero longitudinal pressure gradient. Measurements with an inclined (45 degree) hot-wire were made at key positions downstream of models arranged with a large, small, and no gap between them. Hot-wire theory is presented which enables computation of the three mean velocity components, U, V and W, as well as Reynolds stresses. These measurements permit understanding of the character of the wake downstream of laterally spaced buildings. Surface streamline patterns obtained by the oil film method were used to delineate the separation region to the rear of the buildings for a variety of spacings.

  17. On the investigation of cascade and turbomachinery rotor wake characteristics

    NASA Technical Reports Server (NTRS)

    Raj, R.; Lakshminarayana, B.

    1975-01-01

    The objective of the investigation reported in this thesis is to study the characteristics of a turbomachinery rotor wake, both analytically and experimentally. The constitutive equations for the rotor wake are developed using generalized tensors and a non-inertial frame of reference. Analytical and experimental investigation is carried out in two phases; the first phase involved the study of a cascade wake in the absence of rotation and three dimensionality. In the second phase the wake of a rotor is studied. Simplified two- and three-dimensional models are developed for the prediction of the mean velocity profile of the cascade and the rotor wake, respectively, using the principle of self-similarity. The effect of various major parameters of the rotor and the flow geometry is studied on the development of a rotor wake. Laws governing the decay of the wake velocity defect in a cascade and rotor wake as a function of downstream distance from the trailing edge, pressure gradient and other parameters are derived.

  18. Deep sleep divides the cortex into opposite modes of anatomical-functional coupling.

    PubMed

    Tagliazucchi, Enzo; Crossley, Nicolas; Bullmore, Edward T; Laufs, Helmut

    2016-11-01

    The coupling of anatomical and functional connectivity at rest suggests that anatomy is essential for wake-typical activity patterns. Here, we study the development of this coupling from wakefulness to deep sleep. Globally, similarity between whole-brain anatomical and functional connectivity networks increased during deep sleep. Regionally, we found differential coupling: during sleep, functional connectivity of primary cortices resembled more the underlying anatomical connectivity, while we observed the opposite in associative cortices. Increased anatomical-functional similarity in sensory areas is consistent with their stereotypical, cross-modal response to the environment during sleep. In distinction, looser coupling-relative to wakeful rest-in higher order integrative cortices suggests that sleep actively disrupts default patterns of functional connectivity in regions essential for the conscious access of information and that anatomical connectivity acts as an anchor for the restoration of their functionality upon awakening.

  19. Eyes Open on Sleep and Wake: In Vivo to In Silico Neural Networks

    PubMed Central

    Vanvinckenroye, Amaury; Vandewalle, Gilles; Chellappa, Sarah L.

    2016-01-01

    Functional and effective connectivity of cortical areas are essential for normal brain function under different behavioral states. Appropriate cortical activity during sleep and wakefulness is ensured by the balanced activity of excitatory and inhibitory circuits. Ultimately, fast, millisecond cortical rhythmic oscillations shape cortical function in time and space. On a much longer time scale, brain function also depends on prior sleep-wake history and circadian processes. However, much remains to be established on how the brain operates at the neuronal level in humans during sleep and wakefulness. A key limitation of human neuroscience is the difficulty in isolating neuronal excitation/inhibition drive in vivo. Therefore, computational models are noninvasive approaches of choice to indirectly access hidden neuronal states. In this review, we present a physiologically driven in silico approach, Dynamic Causal Modelling (DCM), as a means to comprehend brain function under different experimental paradigms. Importantly, DCM has allowed for the understanding of how brain dynamics underscore brain plasticity, cognition, and different states of consciousness. In a broader perspective, noninvasive computational approaches, such as DCM, may help to puzzle out the spatial and temporal dynamics of human brain function at different behavioural states. PMID:26885400

  20. Rise of an argon bubble in liquid steel in the presence of a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Jin, K.; Kumar, P.; Vanka, S. P.; Thomas, B. G.

    2016-09-01

    The rise of gaseous bubbles in viscous liquids is a fundamental problem in fluid physics, and it is also a common phenomenon in many industrial applications such as materials processing, food processing, and fusion reactor cooling. In this work, the motion of a single argon gas bubble rising in quiescent liquid steel under an external magnetic field is studied numerically using a Volume-of-Fluid method. To mitigate spurious velocities normally generated during numerical simulation of multiphase flows with large density differences, an improved algorithm for surface tension modeling, originally proposed by Wang and Tong ["Deformation and oscillations of a single gas bubble rising in a narrow vertical tube," Int. J. Therm. Sci. 47, 221-228 (2008)] is implemented, validated and used in the present computations. The governing equations are integrated by a second-order space and time accurate numerical scheme, and implemented on multiple Graphics Processing Units with high parallel efficiency. The motion and terminal velocities of the rising bubble under different magnetic fields are compared and a reduction in rise velocity is seen in cases with the magnetic field applied. The shape deformation and the path of the bubble are discussed. An elongation of the bubble along the field direction is seen, and the physics behind these phenomena is discussed. The wake structures behind the bubble are visualized and effects of the magnetic field on the wake structures are presented. A modified drag coefficient is obtained to include the additional resistance force caused by adding a transverse magnetic field.

  1. Rise of an argon bubble in liquid steel in the presence of a transverse magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, K.; Kumar, P.; Vanka, S. P., E-mail: spvanka@illinois.edu

    2016-09-15

    The rise of gaseous bubbles in viscous liquids is a fundamental problem in fluid physics, and it is also a common phenomenon in many industrial applications such as materials processing, food processing, and fusion reactor cooling. In this work, the motion of a single argon gas bubble rising in quiescent liquid steel under an external magnetic field is studied numerically using a Volume-of-Fluid method. To mitigate spurious velocities normally generated during numerical simulation of multiphase flows with large density differences, an improved algorithm for surface tension modeling, originally proposed by Wang and Tong [“Deformation and oscillations of a single gasmore » bubble rising in a narrow vertical tube,” Int. J. Therm. Sci. 47, 221–228 (2008)] is implemented, validated and used in the present computations. The governing equations are integrated by a second-order space and time accurate numerical scheme, and implemented on multiple Graphics Processing Units with high parallel efficiency. The motion and terminal velocities of the rising bubble under different magnetic fields are compared and a reduction in rise velocity is seen in cases with the magnetic field applied. The shape deformation and the path of the bubble are discussed. An elongation of the bubble along the field direction is seen, and the physics behind these phenomena is discussed. The wake structures behind the bubble are visualized and effects of the magnetic field on the wake structures are presented. A modified drag coefficient is obtained to include the additional resistance force caused by adding a transverse magnetic field.« less

  2. Sleep-wake disturbances in sporadic Creutzfeldt-Jakob disease.

    PubMed

    Landolt, H-P; Glatzel, M; Blättler, T; Achermann, P; Roth, C; Mathis, J; Weis, J; Tobler, I; Aguzzi, A; Bassetti, C L

    2006-05-09

    The prevalence and characteristics of sleep-wake disturbances in sporadic Creutzfeldt-Jakob disease (sCJD) are poorly understood. Seven consecutive patients with definite sCJD underwent a systematic assessment of sleep-wake disturbances, including clinical history, video-polysomnography, and actigraphy. Extent and distribution of neurodegeneration was estimated by brain autopsy in six patients. Western blot analyses enabling classification and quantification of the protease-resistant isoform of the prion protein, PrPSc, in thalamus and occipital cortex was available in four patients. Sleep-wake symptoms were observed in all patients, and were prominent in four of them. All patients had severe sleep EEG abnormalities with loss of sleep spindles, very low sleep efficiency, and virtual absence of REM sleep. The correlation between different methods to assess sleep-wake functions (history, polysomnography, actigraphy, videography) was generally poor. Brain autopsy revealed prominent changes in cortical areas, but only mild changes in the thalamus. No mutation of the PRNP gene was found. This study demonstrates in sporadic Creutzfeldt-Jakob disease, first, the existence of sleep-wake disturbances similar to those reported in fatal familial insomnia in the absence of prominent and isolated thalamic neuronal loss, and second, the need of a multimodal approach for the unambiguous assessment of sleep-wake functions in these patients.

  3. Objective Investigation of the Sleep-Wake Cycle in Adults with Intellectual Disabilities and Autistic Spectrum Disorders

    ERIC Educational Resources Information Center

    Hare, D. J.; Jones, S.; Evershed, K.

    2006-01-01

    Background: Disturbances in circadian rhythm functioning, as manifest in abnormal sleep-wake cycles, have been postulated to be present in people with autistic spectrum disorders (ASDs). To date, research into the sleep-wake cycle in people with ASDs has been primarily dependant on third-party data collection. Method: The utilization of…

  4. Experimental results on TMDs

    DOE PAGES

    None, None

    2016-06-13

    QCD factorisation for semi-inclusive deep inelastic scattering at low transverse momentum in the current-fragmentation region has been established recently, providing a rigorous basis to study the Transverse Momentum Dependent distribution and fragmentation functions (TMDs) of partons from Semi-Inclusive DIS data using different spin-dependent and spin-independent observables. The main focus of the experiments were the measurements of various single- and double-spin asymmetries in hadron electro-production (ep{up-arrow} --> ehX ) with unpolarised, longitudinally and transversely polarised targets. The joint use of a longitudinally polarised beam and longitudinally and transversely polarised targets allowed to measure double-spin asymmetries (DSA) related to leading-twist distribution functionsmore » describing the transverse momentum distribution of longitudinally and transversely polarised quarks in a longitudinally and transversely polarised nucleons (helicity and worm-gear TMDs). Furthermore, the single-spin asymmetries (SSA) measured with transversely polarised targets, provided access to specific leading-twist parton distribution functions: the transversity, the Sivers function and the so-called 'pretzelosity' function. In this review we present the current status and some future measurements of TMDs worldwide.« less

  5. Circadian Rhythm Sleep-Wake Disorders in Older Adults.

    PubMed

    Kim, Jee Hyun; Duffy, Jeanne F

    2018-03-01

    The timing, duration, and consolidation of sleep result from the interaction of the circadian timing system with a sleep-wake homeostatic process. When aligned and functioning optimally, this allows wakefulness throughout the day and a long consolidated sleep episode at night. Mismatch between the desired timing of sleep and the ability to fall and remain asleep is a hallmark of the circadian rhythm sleep-wake disorders. This article discusses changes in circadian regulation of sleep with aging; how age influences the prevalence, diagnosis, and treatment of circadian rhythm sleep-wake disorders; and how neurologic diseases in older patients affect circadian rhythms and sleep. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Why REM sleep? Clues beyond the laboratory in a more challenging world.

    PubMed

    Horne, Jim

    2013-02-01

    REM sleep (REM) seems more likely to prepare for ensuing wakefulness rather than provides recovery from prior wakefulness, as happens with 'deeper' nonREM. Many of REM's characteristics are 'wake-like' (unlike nonREM), including several common to feeding. These, with recent findings outside sleep, provide perspectives on REM beyond those from the laboratory. REM can interchange with a wakefulness involving motor output, indicating that REM's atonia is integral to its function. Wakefulness for 'wild' mammals largely comprises exploration; a complex opportunistic behaviour mostly for foraging, involving: curiosity, minimising risks, (emotional) coping, navigation, when (including circadian timing) to investigate new destinations; all linked to 'purposeful, goal directed movement'. REM reflects these adaptive behaviours (including epigenesis), masked in laboratories having constrained, safe, unchanging, unchallenging, featureless, exploration-free environments with ad lib food. Similarly masked may be REM's functions for today's humans living safe, routine lives, with easy food accessibility. In these respects animal and human REM studies are not sufficiently 'ecological'. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Circadian rhythms and sleep have additive effects on respiration in the rat

    PubMed Central

    Stephenson, Richard; Liao, Kiong Sen; Hamrahi, Hedieh; Horner, Richard L

    2001-01-01

    We tested two hypotheses: that respiration and metabolism are subject to circadian modulation in wakefulness, non-rapid-eye-movement (NREM) sleep and rapid-eye-movement (REM) sleep; and that the effects of sleep on breathing vary as a function of time of day.Electroencephalogram (EEG), neck electromyogram (EMG) and abdominal body temperature (Tb) were measured by telemetry in six male Sprague-Dawley rats. The EEG and EMG were used to identify sleep-wake states. Ventilation (V̇I) and metabolic rate (V̇CO2) were measured by plethysmography. Recordings were made over 24 h (12:12 h light:dark) when rats were in established states of wakefulness, NREM sleep and REM sleep.Statistically significant circadian rhythms were observed in V̇I and V̇CO2 in each of the wakefulness, NREM sleep and REM sleep states. Amplitudes and phases of the circadian rhythms were similar across sleep-wake states.The circadian rhythm in V̇I was mediated by a circadian rhythm in respiratory frequency (fR). Tidal volume (VT) was unaffected by time of day in all three sleep-wake states.The 24 h mean V̇I was significantly greater during wakefulness (363.5 ± 18.5 ml min−1) than during NREM sleep (284.8 ± 11.1 ml min−1) and REM sleep (276.1 ± 13.9 ml min−1). V̇CO2 and VT each significantly decreased from wakefulness to NREM sleep to REM sleep. fR was significantly lower in NREM sleep than in wakefulness and REM sleep.These data confirm that ventilation and metabolism exhibit circadian rhythms during wakefulness, and NREM and REM sleep, and refute the hypothesis that state-related effects on breathing vary as a function of time of day. We conclude that the effects of circadian rhythms and sleep-wake state on respiration and metabolic rate are additive in the rat. PMID:11579171

  8. Wakes behind surface-mounted obstacles: Impact of aspect ratio, incident angle, and surface roughness

    NASA Astrophysics Data System (ADS)

    Tobin, Nicolas; Chamorro, Leonardo P.

    2018-03-01

    The so-called wake-moment coefficient C˜h and lateral wake deflection of three-dimensional windbreaks are explored in the near and far wake. Wind-tunnel experiments were performed to study the functional dependence of C˜h with windbreak aspect ratio, incidence angle, and the ratio of the windbreak height and surface roughness (h /z0 ). Supported with the data, we also propose basic models for the wake deflection of the windbreak in the near and far fields. The near-wake model is based on momentum conservation considering the drag on the windbreak, whereas the far-wake counterpart is based on existing models for wakes behind surface-mounted obstacles. Results show that C˜h does not change with windbreak aspect ratios of 10 or greater; however, it may be lower for an aspect ratio of 5. C˜h is found to change roughly with the cosine of the incidence angle, and to depend strongly on h /z0 . The data broadly support the proposed wake-deflection models, though better predictions could be made with improved knowledge of the windbreak drag coefficient.

  9. Comparison of the Wake-up Test and Combined TES-MEP and CSEP Monitoring in Spinal Surgery.

    PubMed

    Chen, Bailing; Chen, Yuguang; Yang, Junlin; Xie, Denghui; Su, Haihua; Li, Fobao; Wan, Yong; Peng, Xinsheng; Zheng, Zhaomin

    2015-11-01

    A retrospective clinical analysis. The aim of this study was to compare the effectiveness of the wake-up test with that of combined monitoring of transcranial electrical stimulation motor evoked potentials (TES-MEP) and cortical somatosensory evoked potentials (CSEP) in spinal surgery. TES-MEP/CSEP combined monitoring is being increasingly recognized as the ideal approach to detect spinal neurophysiological compromise during spinal surgery; however, as a result the merit of the wake-up test is now in doubt. TES-MEP/CSEP combined monitoring was performed simultaneously in 426 patients who underwent spinal surgery at our department, and wake-up tests were conducted on 23 patients because of positive neurophysiological monitoring results with uncertain causes or persistent positive monitoring findings after all potential causes had been resolved. Preoperative and postoperative neurological examinations were performed as the gold standard to detect irreversible spinal function compromise. All data were collected to compare the efficiency of TES-MEP/CSEP combined monitoring with that of the wake-up test. Positive results of TES-MEP/CSEP combined monitoring were recorded in 64 cases. Among them, the positive monitoring findings agreed with the results of the neurological examination in 51 cases, and the monitoring results did not match that of neurological examination in 13 cases. No false-negative result was observed. The sensitivity of TES-MEP/CSEP monitoring was 100%, the specificity was 96.5%, and the Youden index was 0.965. Wake-up tests were conducted in 23 cases. In 8 patients the positive monitoring findings completely matched the postoperative neurological examination results. In contrast, in the other 15 cases with negative neurophysiological monitoring results, only 9 patients retained intact neurological function and 6 patients suffered compromised neurological function. The sensitivity of the wake-up test was 57.1%, the specificity was 100%, and the Youden index was 0.571. Combined TES-MEP and CSEP monitoring, with its high sensitivity and specificity, is an effective method for monitoring spinal function during surgery and should be the preferred choice. The wake-up test is a useful complementary method for monitoring because of its high specificity.

  10. Evolution of plasma wakes in density up- and down-ramps

    NASA Astrophysics Data System (ADS)

    Zhang, C. J.; Joshi, C.; Xu, X. L.; Mori, W. B.; Li, F.; Wan, Y.; Hua, J. F.; Pai, C. H.; Wang, J.; Lu, W.

    2018-02-01

    The time evolution of plasma wakes in density up- and down-ramps is examined through theory and particle-in-cell simulations. Motivated by observation of the reversal of a linear plasma wake in a plasma density upramp in a recent experiment (Zhang et al 2017 Phys. Rev. Lett. 119 064801) we have examined the behaviour of wakes in plasma ramps that always accompany any plasma source used for plasma-based acceleration. In the up-ramp case it is found that, after the passage of the drive pulse, the wavnumber/wavelength of the wake starts to decrease/increase with time until it eventually tends to zero/infinity, then the wake reverses its propagation direction and the wavenunber/wavelength of the wake begins to increase/shrink. The evolutions of the wavenumber and the phase velocity of the wake as functions of time are shown to be significantly different in the up-ramp and the down-ramp cases. In the latter case the wavenumber of the wake at a particular position in the ramp increases until the wake is eventually damped. It is also shown that the waveform of the wake at a particular time after being excited can be precisely controlled by tuning the initial plasma density profile, which may enable a new type of plasma-based ultrafast optics.

  11. Overview of experimental and conventional pharmacological approaches in the treatment of sleep and wake disorders.

    PubMed

    Renger, John J

    2008-01-01

    The fundamental purpose of sleep remains one of the most compelling questions yet to be answered in the area of neuroscience, if not all of biology. A pervasive behavior among members of the animal kingdom, the functional necessity of engaging regularly in sleep is best demonstrated by showing that failing to do so leads to a broad repertoire of pathological outcomes including cognitive, immunological, hormonal, and metabolic outcomes, among others. Indeed, an absolute requirement for sleep has been shown in studies that have demonstrated that continuous total deprivation of sleep for as short a period as 15 days is generally lethal in some species. The most common clinical sleep disorder, insomnia, is both a principal disease (primary insomnia) as well as a co-morbidity of a large number of other ostensibly unrelated diseases including chronic pain, attention deficit hyperactivity disorder, and depression. From a treatment perspective, restoring normal healthy sleep delivers subsequent benefits in waking cognitive function and mood with the potential for beneficial therapeutic impact on daily functioning across multiple diseases for which restorative healthy sleep is compromised. Our remarkable escalation in understanding the anatomy and physiology of sleep/wake control mechanisms provides new opportunities to modify the neurobiology of sleep and wake-related behaviors in novel and exciting ways. In parallel, expansion of sleep research into novel interfaces between sleep-wake biology and disease states is revealing additional extensive implications of lost sleep. Current investigational and conventional pharmacological approaches for the treatment of sleep and wake disorders are discussed based on their mechanism of action within the CNS and their effect on sleep and wake. This review of recent sleep biology and sleep pharmacology peers into the future of sleep therapeutics to highlight both mechanistic safety and functional outcomes as key for differentiating and establishing success for the next generation of arousal modifying therapeutics.

  12. Melatonin, The Pineal Gland and Circadian Rhythms

    DTIC Science & Technology

    1992-04-30

    physiological rhythms including locomotion, sleep/wake, thermoregulation , car- diovascular function and many endocrine processes. Among the rhythms under SCN...control of a wide array of behavioral and physiological rhythms including locomotion, sleep/wake, thermoregulation , cardiovascular function and many... reptiles and birds, overt rhythmicity results from the integration of multiple circadian oscillators within the pineal gland, eyes and the presumed

  13. Review of Idealized Aircraft Wake Vortex Models

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don

    2014-01-01

    Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.

  14. Using surface impedance for calculating wakefields in flat geometry

    DOE PAGES

    Bane, Karl; Stupakov, Gennady

    2015-03-18

    Beginning with Maxwell's equations and assuming only that the wall interaction can be approximated by a surface impedance, we derive formulas for the generalized longitudinal and transverse impedance in flat geometry, from which the wakefields can also be obtained. From the generalized impedances, by taking the proper limits, we obtain the normal longitudinal, dipole, and quad impedances in flat geometry. These equations can be applied to any surface impedance, such as the known dc, ac, and anomalous skin models of wall resistance, a model of wall roughness, or one for a pipe with small, periodic corrugations. We show that, formore » the particular case of dc wall resistance, the longitudinal impedance obtained here agrees with a known result in the literature, a result that was derived from a very general formula by Henke and Napoly. As an example, we apply our results to representative beam and machine parameters in the undulator region of LCLS-II and estimate the impact of the transverse wakes on the machine performance.« less

  15. SLEEP AND THE FUNCTIONAL CONNECTOME

    PubMed Central

    Picchioni, Dante; Duyn, Jeff H.; Horovitz, Silvina G.

    2013-01-01

    Sleep and the functional connectome are research areas with considerable overlap. Neuroimaging studies of sleep based on EEG-PET and EEG-fMRI are revealing the brain networks that support sleep, as well as networks that may support the roles and processes attributed to sleep. For example, phenomena such as arousal and consciousness are substantially modulated during sleep, and one would expect this modulation to be reflected in altered network activity. In addition, recent work suggests that sleep also has a number of adaptive functions that support waking activity. Thus the study of sleep may elucidate the circuits and processes that support waking function and complement information obtained from fMRI during waking conditions. In this review, we will discuss examples of this for memory, arousal, and consciousness after providing a brief background on sleep and on studying it with fMRI. PMID:23707592

  16. Turbulent axisymmetric swirling wake: equilibrium similarity solution and experiments with a wind turbine as wake generator

    NASA Astrophysics Data System (ADS)

    Wosnik, Martin; Dufresne, Nathaniel

    2013-11-01

    An analytical and experimental investigation of the turbulent axisymmetric swirling wake was carried out. An equilibrium similarity theory was derived that obtained scaling functions from conditions for similarity from the equations of motion, leading to a new scaling function for the decay of the swirling velocity component. Axial and azimuthal (swirl) velocity fields were measured in the wake of a single 3-bladed model wind turbine with rotor diameter of 0.91 m, up to 20 diameters downstream, using X-wire constant temperature hot-wire anemometry. The turbine was positioned in the free stream, near the entrance of the UNH Flow Physics Facility, which has a test section of 6m × 2.7m cross section and 72m length. Measurements were conducted at different rotor loading conditions with blade tip-speed ratios up to 2.8. At U∞ = 7 m/s, the Reynolds number based on turbine diameter was approximately 5 ×105 . Both mean velocity deficit and mean swirl were found to persist beyond 20 diameters downstream. First evidence for a new scaling function for the mean swirl, Wmax ~Uo3 / 2 ~x-1 was found. The similarity solution thus predicts that in the axisymmetric swirling wake mean swirl decays faster with x-1 than mean velocity deficit with x - 2 / 3.

  17. Performance and wake conditions of a rotor located in the wake of an obstacle

    NASA Astrophysics Data System (ADS)

    Naumov, I. V.; Kabardin, I. K.; Mikkelsen, R. F.; Okulov, V. L.; Sørensen, J. N.

    2016-09-01

    Obstacles like forests, ridges and hills can strongly affect the velocity profile in front of a wind turbine rotor. The present work aims at quantifying the influence of nearby located obstacles on the performance and wake characteristics of a downstream located wind turbine. Here the influence of an obstacle in the form of a cylindrical disk was investigated experimentally in a water flume. A model of a three-bladed rotor, designed using Glauert's optimum theory at a tip speed ratio λ = 5, was placed in the wake of a disk with a diameter close to the one of the rotor. The distance from the disk to the rotor was changed from 4 to 8 rotor diameters, with the vertical distance from the rotor axis varied 0.5 and 1 rotor diameters. The associated turbulent intensity of the incoming flow to the rotor changed 3 to '6% due to the influence of the disk wake. In the experiment, thrust characteristics and associated pulsations as a function of the incoming flow structures were measured by strain gauges. The flow condition in front of the rotor was measured with high temporal accuracy using LDA and power coefficients were determine as function of tip speed ratio for different obstacle positions. Furthermore, PIV measurements were carried out to study the development of the mean velocity deficit profiles of the wake behind the wind turbine model under the influence of the wake generated by the obstacle. By use of regression techniques to fit the velocity profiles it was possible to determine velocity deficits and estimate length scales of the wake attenuation.

  18. Analyzing Effects of Turbulence on Power Generation Using Wind Plant Monitoring Data: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.; Chowdhury, S.; Hodge, B. M.

    2014-01-01

    In this paper, a methodology is developed to analyze how ambient and wake turbulence affects the power generation of a single wind turbine within an array of turbines. Using monitoring data from a wind power plant, we selected two sets of wind and power data for turbines on the edge of the wind plant that resemble (i) an out-of-wake scenario (i.e., when the turbine directly faces incoming winds) and (ii) an in-wake scenario (i.e., when the turbine is under the wake of other turbines). For each set of data, two surrogate models were then developed to represent the turbine powermore » generation (i) as a function of the wind speed; and (ii) as a function of the wind speed and turbulence intensity. Support vector regression was adopted for the development of the surrogate models. Three types of uncertainties in the turbine power generation were also investigated: (i) the uncertainty in power generation with respect to the published/reported power curve, (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) under the same wind conditions, the turbine generates different power between the in-wake and out-of-wake scenarios, (ii) a turbine generally produces more power under the in-wake scenario than under the out-of-wake scenario, (iii) the power generation is sensitive to turbulence intensity even when the wind speed is greater than the turbine rated speed, and (iv) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.« less

  19. Effect of high current electron beam in a 30 MeV radio frequency linac for neutron-time-of-flight applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, B., E-mail: biswaranjan.nayak1@gmail.com; Acharya, S.; Rajawat, R. K.

    2016-01-15

    A high power pulsed radio frequency electron linac is designed by BARC, India to accelerate 30 MeV, 10 A, 10 ns beam for neutron-time-of-flight applications. It will be used as a neutron generator and will produce ∼10{sup 12}–10{sup 13} n/s. It is essential to reduce the beam instability caused by space charge effect and the beam cavity interaction. In this paper, the wakefield losses in the accelerating section due to bunch of RMS (Root mean square) length 2 mm (at the gun exit) is analysed. Loss and kick factors are numerically calculated using CST wakefield solver. Both the longitudinal and transverse wake potentialsmore » are incorporated in beam dynamics code ELEGANT to find the transverse emittance growth of the beam propagating through the linac. Beam loading effect is examined by means of numerical computation carried out in ASTRA code. Beam break up start current has been estimated at the end of the linac which arises due to deflecting modes excited by the high current beam. At the end, transverse beam dynamics of such high current beam has been analysed.« less

  20. Characterization of wind velocities in the wake of a full scale wind turbine using three ground-based synchronized WindScanners

    NASA Astrophysics Data System (ADS)

    Yazicioglu, Hasan; Angelou, Nikolas; Mikkelsen, Torben; José Trujillo, Juan

    2016-09-01

    The wind energy community is in need of detailed full-field measurements in the wake of wind turbines. Here, three dimensional(3D) wind vector field measurements obtained in the near-wake region behind a full-scale test turbine are presented. Specifically, the wake of a NEG Nordtank turbine, installed at Risoe test field, has been measured from 0 to 2 diameters downstream. For this, three ground-based synchronised short-range WindScanners and a spinner lidar have been used. The 3D wind velocity field has been reconstructed in horizontal and vertical planes crossing the hub. The 10-min mean values of the three wind components reveal detailed information regarding the wake properties while propagating downwind over flat terrain. Furthermore, the wake centre is tracked from the measurements and its meander is investigated as function of yaw misalignment of the turbine. The centre-line wake deficit is calculated both in a Nacelle and Moving Frame of Reference. The results can be used in quantitative validation of numerical wake models.

  1. The effect of intermittent fasting during Ramadan on sleep, sleepiness, cognitive function, and circadian rhythm.

    PubMed

    Qasrawi, Shaden O; Pandi-Perumal, Seithikurippu R; BaHammam, Ahmed S

    2017-09-01

    Studies have shown that experimental fasting can affect cognitive function, sleep, and wakefulness patterns. However, the effects of experimental fasting cannot be generalized to fasting during Ramadan due to its unique characteristics. Therefore, there has been increased interest in studying the effects of fasting during Ramadan on sleep patterns, daytime sleepiness, cognitive function, sleep architecture, and circadian rhythm. In this review, we critically discuss the current research findings in those areas during the month of Ramadan. Available data that controlled for sleep/wake schedule, sleep duration, light exposure, and energy expenditure do not support the notion that Ramadan intermittent fasting increases daytime sleepiness and alters cognitive function. Additionally, recent well-designed studies showed no effect of fasting on circadian rhythms. However, in non-constrained environments that do not control for lifestyle changes, studies have demonstrated sudden and significant delays in bedtime and wake time. Studies that controlled for environmental factors and sleep/wake schedule reported no significant disturbances in sleep architecture. Nevertheless, several studies have consistently reported that the main change in sleep architecture during fasting is a reduction in the proportion of REM sleep.

  2. Higher order moments, structure functions and spectral ratios in near- and far-wakes of a wind turbine array

    NASA Astrophysics Data System (ADS)

    Ali, Naseem; Aseyev, A.; McCraney, J.; Vuppuluri, V.; Abbass, O.; Al Jubaree, T.; Melius, M.; Cal, R. B.

    2014-11-01

    Hot-wire measurements obtained in a 3 × 3 wind turbine array boundary layer are utilized to analyze higher order statistics which include skewness, kurtosis as well as the ratios of structure functions and spectra. The ratios consist of wall-normal to streamwise components for both quantities. The aim is to understand the degree of anisotropy in the flow for the near- and far-wakes of the flow field where profiles at one diameter and five diameters are considered, respectively. The skewness at top tip for both wakes show a negative skewness while below the turbine canopy, this terms are positive. The kurtosis shows a Gaussian behavior in the near-wake immediately at hub-height. In addition, the effect due to the passage of the rotor in tandem with the shear layer at the top tip renders relatively high differences in the fourth order moment. The second order structure function and spectral ratios are found to exhibit anisotropic behavior at the top and bottom-tips for the large scales. Mixed structure functions and co-spectra are also considered in the context of isotropy.

  3. Why we forget our dreams: Acetylcholine and norepinephrine in wakefulness and REM sleep.

    PubMed

    Becchetti, Andrea; Amadeo, Alida

    2016-01-01

    The ascending fibers releasing norepinephrine and acetylcholine are highly active during wakefulness. In contrast, during rapid-eye-movement sleep, the neocortical tone is sustained mainly by acetylcholine. By comparing the different physiological features of the norepinephrine and acetylcholine systems in the light of the GANE (glutamate amplifies noradrenergic effects) model, we suggest how to interpret some functional differences between waking and rapid-eye-movement sleep.

  4. Modulation of the brain's functional network architecture in the transition from wake to sleep

    PubMed Central

    Larson-Prior, Linda J.; Power, Jonathan D.; Vincent, Justin L.; Nolan, Tracy S.; Coalson, Rebecca S.; Zempel, John; Snyder, Abraham Z.; Schlaggar, Bradley L.; Raichle, Marcus E.; Petersen, Steven E.

    2013-01-01

    The transition from quiet wakeful rest to sleep represents a period over which attention to the external environment fades. Neuroimaging methodologies have provided much information on the shift in neural activity patterns in sleep, but the dynamic restructuring of human brain networks in the transitional period from wake to sleep remains poorly understood. Analysis of electrophysiological measures and functional network connectivity of these early transitional states shows subtle shifts in network architecture that are consistent with reduced external attentiveness and increased internal and self-referential processing. Further, descent to sleep is accompanied by the loss of connectivity in anterior and posterior portions of the default-mode network and more locally organized global network architecture. These data clarify the complex and dynamic nature of the transitional period between wake and sleep and suggest the need for more studies investigating the dynamics of these processes. PMID:21854969

  5. RANS study of flow Characteristics Over flight deck of Simplified frigate Ship

    NASA Astrophysics Data System (ADS)

    Shukla, Shrish; Singh, Sidh Nath; Srinivasan, Balaji

    2014-11-01

    The combined operation of a ship and helicopter is ubiquitous in every naval organization. The operation of ship with the landing and takeoff of a helicopter over sea results in very complex flow phenomena due to presence of ship air wakes, strong velocity gradients and widely varying turbulence length scales. This complexity of flow is increased with the addition of helicopter downwash during landing and takeoff. The resultant flow is therefore very complicated and accurate prediction represents a computational challenge. We present Reynolds-averaged-Navier-Stokes (RANS) of turbulent flow over a simple frigate ship to gain insight into the flow phenomena over a flight deck. Flow conditions analysis is carried out numerically over the generic simplified frigate ship. Profiles of mean velocity across longitudinal and transverse plane have been analyzed along the ship. Further, we propose some design modifications in order to reduce pilot load and increase the ship helicopter operation limit (SHOL). Computational results for these modified designs are also presented and their efficacy in reducing the turbulence levels and recirculation zone in the ship air wakes is discussed. Graduate student.

  6. Linear analysis of active-medium two-beam accelerator

    NASA Astrophysics Data System (ADS)

    Voin, Miron; Schächter, Levi

    2015-07-01

    We present detailed development of the linear theory of wakefield amplification by active medium and its possible application to a two-beam accelerator (TBA) is discussed. A relativistic train of triggering microbunches traveling along a vacuum channel in an active medium confined by a cylindrical waveguide excites Cherenkov wake in the medium. The wake is a superposition of azimuthally symmetric transverse magnetic modes propagating along a confining waveguide, with a phase velocity equal to the velocity of the triggering bunches. The structure may be designed in such a way that the frequency of one of the modes is close to active-medium resonant frequency, resulting in amplification of the former and domination of a single mode far behind the trigger bunches. Another electron bunch placed in proper phase with the amplified wakefield may be accelerated by the latter. Importantly, the energy for acceleration is provided by the active medium and not the drive bunch as in a traditional TBA. Based on a simplified model, we analyze extensively the impact of various parameters on the wakefield amplification process.

  7. Evaluation of effectiveness of various devices for attenuation of trailing vortices based on model tests in a large towing basin

    NASA Technical Reports Server (NTRS)

    Kirkman, K. L.; Brown, C. E.; Goodman, A.

    1973-01-01

    The effectiveness of various candidate aircraft-wing devices for attenuation of trailing vortices generated by large aircraft is evaluated on basis of results of experiments conducted with a 0.03-scale model of a Boeing 747 transport aircraft using a technique developed at the HYDRONAUTICS Ship Model Basin. Emphasis is on the effects produced by these devices in the far-field (up to 8 kilometers downstream of full-scale generating aircraft) where the unaltered vortex-wakes could still be hazardous to small following aircraft. The evaluation is based primarily on quantitative measurements of the respective vortex velocity distributions made by means of hot-film probe traverses in a transverse plane at selected stations downstream. The effects of these altered wakes on rolling moment induced on a small following aircraft are also studied using a modified lifting-surface theory with a synthesized Gates Learjet as a typical example. Lift and drag measurements concurrently obtained in the model tests are used to appraise the effects of each device investigated on the performance characteristics of the generating aircraft.

  8. Wake vortex effects on parallel runway operations

    DOT National Transportation Integrated Search

    2003-01-06

    Aircraft wake vortex behavior in ground effect between two parallel runways at Frankfurt/Main International Airport was studied. The distance and time of vortex demise were examined as a function of crosswind, aircraft type, and a measure of atmosphe...

  9. Sleep-wake functions and quality of life in patients with subthalamic deep brain stimulation for Parkinson’s disease

    PubMed Central

    Eugster, Lukas; Oberholzer, Michael; Debove, Ines; Lachenmayer, M. Lenard; Mathis, Johannes; Pollo, Claudio; Schüpbach, W. M. Michael; Bassetti, Claudio L.

    2017-01-01

    Objectives Sleep-wake disturbances (SWD) are frequent in Parkinson’s disease (PD). The effect of deep brain stimulation (DBS) on SWD is poorly known. In this study we examined the subjective and objective sleep-wake profile and the quality of life (QoL) of PD patients in the context of subthalamic DBS. Patients and methods We retrospectively analyzed data from PD patients and candidates for DBS in the nucleus suthalamicus (STN). Pre-DBS, sleep-wake assessments included subjective and objective (polysomnography, vigilance tests and actigraphy) measures. Post-DBS, subjective measures were collected. QoL was assessed using the Parkinson’s Disease Questionnaire (PDQ-39) and the RAND SF-36-item Health Survey (RAND SF-36). Results Data from 74 PD patients (62% male, mean age 62.2 years, SD = 8.9) with a mean UPDRS-III (OFF) of 34.2 (SD = 14.8) and 11.8 (SD = 4.5) years under PD treatment were analyzed. Pre-DBS, daytime sleepiness, apathy, fatigue and depressive symptoms were present in 49%, 34%, 38% and 25% of patients respectively but not always as co-occurring symptoms. Sleep-wake disturbances were significantly correlated with QoL scores. One year after STN DBS, motor signs, QoL and sleepiness improved but apathy worsened. Changes in QoL were associated with changes in sleepiness and apathy but baseline sleep-wake functions were not predictive of STN DBS outcome. Conclusion In PD patients presenting for STN DBS, subjective and objective sleep-wake disturbances are common and have a negative impact on QoL before and after neurosurgery. Given the current preliminary evidence, prospective observational studies assessing subjective and objective sleep-wake variables prior to and after DBS are needed. PMID:29253029

  10. CONTROL OF SLEEP AND WAKEFULNESS

    PubMed Central

    Brown, Ritchie E.; Basheer, Radhika; McKenna, James T.; Strecker, Robert E.; McCarley, Robert W.

    2013-01-01

    This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making. PMID:22811426

  11. The character of sleep disturbances produced by multiple administrations of atropine the antagonist of brain muscarinic cholinergic system.

    PubMed

    Maglakelidze, N T; Chkhartishvili, E V; Mchedlidze, O M; Dzadzamiia, Sh Sh; Nachkebiia, N G

    2012-03-01

    Modification of brain muscarinic cholinergic system normal functioning can be considered as an appropriate strategy for the study of its role in sleep-wakefulness cycle basic mechanisms in general and in the course/maintenance of PS in particular. For this aim systemic application of muscarinic cholinoreceptors antagonists is significant because it gives possibility to modify functioning all of known five sub-types of muscarinic cholinoreceptors and to study the character of sleep disturbances in these conditions. Problem is very topical because the question about the intimate aspects of BMChS involvement in PS maintaining mechanisms still remains unsolved. In cats Atropine systemic administration was made once daily at 10:00 a.m. and continuous EEG registration of sleep-wakefulness cycle ultradian structure, lasting for 10 hour daily, was started immediately. In sum each animal received anti-muscarinic drugs for 12 times. Thereafter drug administrations were ceased and EEG registration of sleep-wakefulness cycle ultradian structure was continued during 10 consecutive days. On the basis of results obtained in these conditions we can conclude that brain muscarinic cholinergic system normal functioning is significant for basic mechanisms of sleep-wakefulness cycle. During wakefulness, at the level of neocortex and hippocampus, MChS supports only EEG activation, while it is one of the main factors in PS triggering and maintaining mechanisms.

  12. Broadband impedance calculations and single bunch instabilities estimations of of the HLS-II storage ring

    NASA Astrophysics Data System (ADS)

    Zhang, Qing-Kun; Wang, Lin; Li, Wei-Min; Gao, Wei-Wei

    2015-12-01

    The upgrade project of the Hefei Light Source storage ring is under way. In this paper, the broadband impedances of resistive wall and coated ceramic vacuum chamber are calculated using the analytic formula, and the wake fields and impedances of other designed vacuum chambers are simulated by CST code, and then a broadband impedance model is obtained. Using the theoretical formula, longitudinal and transverse single bunch instabilities are discussed. With the carefully-designed vacuum chamber, we find that the thresholds of the beam instabilities are higher than the beam current goal. Supported by Natural Science Foundation of China (11175182, 11175180)

  13. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC_LAB test facility

    NASA Astrophysics Data System (ADS)

    Shpakov, V.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A. R.; Zigler, A.

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC_LAB for such diagnostics tool, along with expected parameters of betatron radiation.

  14. Numerical performance analysis of acoustic Doppler velocity profilers in the wake of an axial-flow marine hydrokinetic turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ

    The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in suchmore » scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.« less

  15. Fatigue crack growth in unidirectional and cross-ply SCS-6/Timetal 21S titanium matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, D.J.

    1994-01-01

    Fatigue crack growth in unidirectional and cross-ply SCS-6/ Timetal(R) 21S titanium matrix composite was investigated. Fatigue crack growth tests were performed on (0){sub 4}, (90){sub 4}, and (0/90){sub s} center notch specimens. The (0){sub 4} and (0/90){sub s} fatigue crack growth rates decreased initially. Specimens removed prior to failure were polished to the first row of fibers and intact fibers in the wake of the matrix crack were observed. These bridging fibers reduced the stress intensity range that the matrix material was subjected to, thus reducing the crack growth rate. The crack growth rate eventually increased as fibers failed inmore » the crack wake but the fatigue crack growth rate was still much slower than that of unreinforced Timetal(R) 21S. A model was developed to study the mechanics of a cracked unidirectional composite with any combination of intact and broken fibers in the wake of a matrix crack. The model was correlated to fatigue crack growth rate tests. The model was verified by comparing predicted displacements near the crack surface with Elber gage (1.5 mm gage length extensometer) measurements. The fatigue crack growth rate for the (90){sub 4} specimens was faster than that of unreinforced Timetal(registered trademark) 21S. Elber gage displacement measurements were in agreement with linear elastic fracture mechanics predictions, suggesting that linear elastic fracture mechanics may be applicable to transversely loaded titanium matrix composites.« less

  16. Consciousness across Sleep and Wake: Discontinuity and Continuity of Memory Experiences As a Reflection of Consolidation Processes

    PubMed Central

    Horton, Caroline L.

    2017-01-01

    The continuity hypothesis (1) posits that there is continuity, of some form, between waking and dreaming mentation. A recent body of work has provided convincing evidence for different aspects of continuity, for instance that some salient experiences from waking life seem to feature in dreams over others, with a particular role for emotional arousal as accompanying these experiences, both during waking and while asleep. However, discontinuities have been somewhat dismissed as being either a product of activation-synthesis, an error within the consciousness binding process during sleep, a methodological anomaly, or simply as yet unexplained. This paper presents an overview of discontinuity within dreaming and waking cognition, arguing that disruptions of consciousness are as common a feature of waking cognition as of dreaming cognition, and that processes of sleep-dependent memory consolidation of autobiographical experiences can in part account for some of the discontinuities of sleeping cognition in a functional way. By drawing upon evidence of the incorporation, fragmentation, and reorganization of memories within dreams, this paper proposes a model of discontinuity whereby the fragmentation of autobiographical and episodic memories during sleep, as part of the consolidation process, render salient aspects of those memories subsequently available for retrieval in isolation from their contextual features. As such discontinuity of consciousness in sleep is functional and normal. PMID:28936183

  17. The flow of a dust particle by highly collisional drifting plasma

    NASA Astrophysics Data System (ADS)

    Grach, Veronika; Semenov, Vladimir; Trakhtengerts, Victor

    We present the study of the flow of a dust particle by a weakly ionized highly collisional drifting plasma. The charging of a conductive sphere and wake formation downstream and upstream of it is analyzed in the case of a strong external field l0 = E0 /(4πen0 ) λD a (E0 is the magnitude of the external field, n0 is plasma density, λD is Debye length and a is a radius of the sphere). Under such conditions, the effects of the space charge field and ionization-recombination processes play crucial role. The sphere charge and the spatial distributions of plasma ions and electrons are calculated nu-merically; analytical expressions are obtained for some limiting cases. We obtain that the size of the wake is determined by the external field and the recombination rate. At low recombination rates (α/(4πµ+,- ) 1, where α is the recombination coefficient, µ+,- are mobilities of positive and negative plasma particles) the longitudinal scale of wake is about 20l0 , at high recombina-tion rates the longitudinal scale is about l0 . The transverse scale of the wake is determined by the ratio of the mobilities and can reach several dust particle radii. It was also shown that the absolute value of the dust particle charge decreases with increasing recombination rate. The total electric charge (the sphere charge plus the plasma space charge) is shown to be zero in accordance with predictions of the theory of static currents in a conducting medium. On the basis of the obtained spatial distributions of charged plasma particles, the electrostatic potential around the sphere is calculated numerically. The interaction potential between two systems "particle+wake" is analyzed for arbitrary locations of such systems. We obtain that the potential can be attractive at moderate and large distances, if the particles are not aligned in the direction perpendicular to the external electric field. The results can be important in understanding intergrain interactions in weakly ionized highly collisional anisotropic dusty plasmas.

  18. Experimental hydrodynamics of swimming in fishes

    NASA Astrophysics Data System (ADS)

    Tytell, Eric Daniel

    2005-11-01

    The great diversity of fish body shapes suggests that they have adapted to different selective pressures. For many fishes, the pressures include hydrodynamic demands: swimming efficiently or accelerating rapidly, for instance. However, the hydrodynamic advantages or disadvantages to specific morphologies are poorly understood. In particular, eels have been considered inefficient swimmers, but they migrate long distances without feeding, a task that requires efficient swimming. This dissertation, therefore, begins with an examination of the swimming hydrodynamics of American eels, Anguilla rostrata, at steady swimming speeds from 0.5 to 2 body lengths (L) per second and during accelerations from -1.4 to 1.3 L s -2. The final chapter examines the hydrodynamic effects of body shape directly by describing three-dimensional flow around swimming bluegill sunfish, Lepomis macrochirus. In all chapters, flow is quantified using digital particle image velocimetry, and simultaneous kinematics are measured from high-resolution digital video. The wake behind a swimming eel in the horizontal midline plane is described first. Rather than producing a wake with fluid jets angled backwards, like in fishes such as sunfish, eels have a wake with exclusively lateral jets. The lack of downstream momentum indicates that eels balance the axial forces of thrust and drag evenly over time and over their bodies, and therefore do not change axial fluid momentum. This even balance, present at all steady swimming speeds, is probably due to the relatively uniform body shape of eels. As eels accelerate, thrust exceeds drag, axial momentum increases, and the wake approaches that of other fishes. During steady swimming, though, the lack of axial momentum prevents direct efficiency estimation. The effect of body shape was examined directly by measuring flow in multiple transverse planes along the body of bluegill sunfish swimming at 1.2 L s-1. The dorsal and anal fin, neglected in many previous studies of fish swimming, are shown to produce forces comparable to that of the caudal fin. Additionally, the caudal fin absorbs some of the energy from the vortices these fins shed, possibly augmenting its efficiency. Finally, an updated structure for the three-dimensional vortex wake of a sunfish is proposed.

  19. Ecological Momentary Assessment of Pain, Fatigue, Depressive, and Cognitive Symptoms Reveals Significant Daily Variability in Multiple Sclerosis.

    PubMed

    Kratz, Anna L; Murphy, Susan L; Braley, Tiffany J

    2017-11-01

    To describe the daily variability and patterns of pain, fatigue, depressed mood, and cognitive function in persons with multiple sclerosis (MS). Repeated-measures observational study of 7 consecutive days of home monitoring, including ecological momentary assessment (EMA) of symptoms. Multilevel mixed models were used to analyze data. General community. Ambulatory adults (N=107) with MS recruited through the University of Michigan and surrounding community. Not applicable. EMA measures of pain, fatigue, depressed mood, and cognitive function rated on a 0 to 10 scale, collected 5 times a day for 7 days. Cognitive function and depressed mood exhibited more stable within-person patterns than pain and fatigue, which varied considerably within person. All symptoms increased in intensity across the day (all P<.02), with fatigue showing the most substantial increase. Notably, this diurnal increase varied by sex and age; women showed a continuous increase from wake to bedtime, whereas fatigue plateaued after 7 pm for men (wake-bed B=1.04, P=.004). For the oldest subgroup, diurnal increases were concentrated to the middle of the day compared with younger subgroups, which showed an earlier onset of fatigue increase and sustained increases until bed time (wake-3 pm B=.04, P=.01; wake-7 pm B=.03, P=.02). Diurnal patterns of cognitive function varied by education; those with advanced college degrees showed a more stable pattern across the day, with significant differences compared with those with bachelor-level degrees in the evening (wake-7 pm B=-.47, P=.02; wake-bed B=-.45, P=.04). Findings suggest that chronic symptoms in MS are not static, even over a short time frame; rather, symptoms-fatigue and pain in particular-vary dynamically across and within days. Incorporation of EMA methods should be considered in the assessment of these chronic MS symptoms to enhance assessment and treatment strategies. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. Resting-state fMRI in sleeping infants more closely resembles adult sleep than adult wakefulness

    PubMed Central

    Snyder, Abraham Z.; Tagliazucchi, Enzo; Laufs, Helmut; Elison, Jed; Emerson, Robert W.; Shen, Mark D.; Wolff, Jason J.; Botteron, Kelly N.; Dager, Stephen; Estes, Annette M.; Evans, Alan; Gerig, Guido; Hazlett, Heather C.; Paterson, Sarah J.; Schultz, Robert T.; Styner, Martin A.; Zwaigenbaum, Lonnie; Schlaggar, Bradley L.

    2017-01-01

    Resting state functional magnetic resonance imaging (rs-fMRI) in infants enables important studies of functional brain organization early in human development. However, rs-fMRI in infants has universally been obtained during sleep to reduce participant motion artifact, raising the question of whether differences in functional organization between awake adults and sleeping infants that are commonly attributed to development may instead derive, at least in part, from sleep. This question is especially important as rs-fMRI differences in adult wake vs. sleep are well documented. To investigate this question, we compared functional connectivity and BOLD signal propagation patterns in 6, 12, and 24 month old sleeping infants with patterns in adult wakefulness and non-REM sleep. We find that important functional connectivity features seen during infant sleep closely resemble those seen during adult sleep, including reduced default mode network functional connectivity. However, we also find differences between infant and adult sleep, especially in thalamic BOLD signal propagation patterns. These findings highlight the importance of considering sleep state when drawing developmental inferences in infant rs-fMRI. PMID:29149191

  1. Resting-state fMRI in sleeping infants more closely resembles adult sleep than adult wakefulness.

    PubMed

    Mitra, Anish; Snyder, Abraham Z; Tagliazucchi, Enzo; Laufs, Helmut; Elison, Jed; Emerson, Robert W; Shen, Mark D; Wolff, Jason J; Botteron, Kelly N; Dager, Stephen; Estes, Annette M; Evans, Alan; Gerig, Guido; Hazlett, Heather C; Paterson, Sarah J; Schultz, Robert T; Styner, Martin A; Zwaigenbaum, Lonnie; Schlaggar, Bradley L; Piven, Joseph; Pruett, John R; Raichle, Marcus

    2017-01-01

    Resting state functional magnetic resonance imaging (rs-fMRI) in infants enables important studies of functional brain organization early in human development. However, rs-fMRI in infants has universally been obtained during sleep to reduce participant motion artifact, raising the question of whether differences in functional organization between awake adults and sleeping infants that are commonly attributed to development may instead derive, at least in part, from sleep. This question is especially important as rs-fMRI differences in adult wake vs. sleep are well documented. To investigate this question, we compared functional connectivity and BOLD signal propagation patterns in 6, 12, and 24 month old sleeping infants with patterns in adult wakefulness and non-REM sleep. We find that important functional connectivity features seen during infant sleep closely resemble those seen during adult sleep, including reduced default mode network functional connectivity. However, we also find differences between infant and adult sleep, especially in thalamic BOLD signal propagation patterns. These findings highlight the importance of considering sleep state when drawing developmental inferences in infant rs-fMRI.

  2. LDV measurements of B-747 wake vortex characteristics

    DOT National Transportation Integrated Search

    1977-01-01

    In order to determine the behavior of the wake vortices of a B-747 at low : altitudes and to measure the vortex decay process behind the B-747 as a function : of altitude above ground, flap and spoiler settings and different flight configurations; a ...

  3. Individual differences in early adolescents' latent trait cortisol (LTC): Relation to early adversity.

    PubMed

    Stroud, Catherine B; Chen, Frances R; Doane, Leah D; Granger, Douglas A

    2016-09-01

    Substantial evidence suggests that youth who experience early adversity exhibit alterations in hypothalamic pituitary adrenal (HPA) axis functioning, thereby increasing risk for negative health outcomes. However, few studies have explored whether early adversity alters enduring trait indicators of HPA axis activity. Using objective contextual stress interviews with adolescents and their mothers to assess early adversity, we examined the cumulative impact of nine types of early adversity on early adolescents girls' latent trait cortisol (LTC). Adolescents (n = 122; M age = 12.39 years) provided salivary cortisol samples three times a day (waking, 30 min post-waking, and bedtime) over 3 days. Latent state-trait modeling indicated that the waking and 30 min post-waking samples contributed to a LTC factor. Moreover, greater early adversity was associated with a lower LTC level. Implications of LTC for future research examining the impact of early adversity on HPA axis functioning are discussed. © 2016 Wiley Periodicals, Inc. Dev Psychobiol 58:700-713, 2016. © 2016 Wiley Periodicals, Inc.

  4. Sleep-wake disturbances after traumatic brain injury.

    PubMed

    Ouellet, Marie-Christine; Beaulieu-Bonneau, Simon; Morin, Charles M

    2015-07-01

    Sleep-wake disturbances are extremely common after a traumatic brain injury (TBI). The most common disturbances are insomnia (difficulties falling or staying asleep), increased sleep need, and excessive daytime sleepiness that can be due to the TBI or other sleep disorders associated with TBI, such as sleep-related breathing disorder or post-traumatic hypersomnia. Sleep-wake disturbances can have a major effect on functional outcomes and on the recovery process after TBI. These negative effects can exacerbate other common sequelae of TBI-such as fatigue, pain, cognitive impairments, and psychological disorders (eg, depression and anxiety). Sleep-wake disturbances associated with TBI warrant treatment. Although evidence specific to patients with TBI is still scarce, cognitive-behavioural therapy and medication could prove helpful to alleviate sleep-wake disturbances in patients with a TBI. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Impact of Aspect Ratio, Incident Angle, and Surface Roughness on Windbreak Wakes

    NASA Astrophysics Data System (ADS)

    Tobin, Nicolas; Chamorro, Leonardo P.

    2017-11-01

    Wind-tunnel results are presented on the wakes behind three-dimensional windbreaks in a simulated atmospheric boundary layer. Sheltering by upwind windbreaks, and surface-mounted obstacles (SMOs) in general, is parameterized by the wake-moment coefficient C h , which is a complex function of obstacle geometry and flow conditions. Values of C h are presented for several windbreak aspect ratios, incident angles, and windbreak-height-to-surface-roughness ratios. Lateral wake deflection is further presented for several incident angles and aspect ratios, and compared to a simple analytical formulation including a near- and far-wake solution. It is found that C h does not change with aspect ratios of 10 or greater, though C h may be lower for an aspect ratio of 5. C h is found to change roughly with the cosine of the incident angle, and to depend strongly on windbreak-height-to-surface-roughness ratio. The data broadly support the proposed wake-deflection model.

  6. If waking and dreaming consciousness became de-differentiated, would schizophrenia result?

    PubMed

    Llewellyn, Sue

    2011-12-01

    If both waking and dreaming consciousness are functional, their de-differentiation would be doubly detrimental. Differentiation between waking and dreaming is achieved through neuromodulation. During dreaming, without external sensory data and with mesolimbic dopaminergic input, hyper-cholinergic input almost totally suppresses the aminergic system. During waking, with sensory gates open, aminergic modulation inhibits cholinergic and mesocortical dopaminergic suppresses mesolimbic. These neuromodulatory systems are reciprocally interactive and self-organizing. As a consequence of neuromodulatory reciprocity, phenomenologically, the self and the world that appear during dreaming differ from those that emerge during waking. As a result of self-organizing, the self and the world in both states are integrated. Some loss of self-organization would precipitate a degree of de-differentiation between waking and dreaming, resulting in a hybrid state which would be expressed heterogeneously, both neurobiologically and phenomenologically. As a consequence of progressive de-differentiation, certain identifiable psychiatric disorders may emerge. Ultimately, schizophrenia, a disorganized-fragmented self, may result. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Measurement of the Transverse Single-Spin Asymmetry in p↑+p →W±/Z0 at RHIC

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, X.; Huang, H. Z.; Huang, B.; Huang, T.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jentsch, A.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, C.; Li, Y.; Li, W.; Li, X.; Li, X.; Lin, T.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, R.; Ma, L.; Ma, G. L.; Ma, Y. G.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; McDonald, D.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, B.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, Z.; Sun, X. M.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, Y.; Wang, F.; Wang, Y.; Wang, H.; Wang, G.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, X.; Xie, W.; Xin, K.; Xu, N.; Xu, Y. F.; Xu, Z.; Xu, Q. H.; Xu, J.; Xu, H.; Yang, Q.; Yang, Y.; Yang, S.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, S.; Zhang, Z.; Zhang, S.; Zhang, J. B.; Zhang, Y.; Zhang, J.; Zhang, J.; Zhang, X. P.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-04-01

    We present the measurement of the transverse single-spin asymmetry of weak boson production in transversely polarized proton-proton collisions at √{s }=500 GeV by the STAR experiment at RHIC. The measured observable is sensitive to the Sivers function, one of the transverse-momentum-dependent parton distribution functions, which is predicted to have the opposite sign in proton-proton collisions from that observed in deep inelastic lepton-proton scattering. These data provide the first experimental investigation of the nonuniversality of the Sivers function, fundamental to our understanding of QCD.

  8. Clinical Pharmacology in Sleep Medicine

    PubMed Central

    Proctor, Ashley; Bianchi, Matt T.

    2012-01-01

    The basic treatment goals of pharmacological therapies in sleep medicine are to improve waking function by either improving sleep or by increasing energy during wakefulness. Stimulants to improve waking function include amphetamine derivatives, modafinil, and caffeine. Sleep aids encompass several classes, from benzodiazepine hypnotics to over-the-counter antihistamines. Other medications used in sleep medicine include those initially used in other disorders, such as epilepsy, Parkinson's disease, and psychiatric disorders. As these medications are prescribed or encountered by providers in diverse fields of medicine, it is important to recognize the distribution of adverse effects, drug interaction profiles, metabolism, and cytochrome substrate activity. In this paper, we review the pharmacological armamentarium in the field of sleep medicine to provide a framework for risk-benefit considerations in clinical practice. PMID:23213564

  9. Circadian Rhythms, Sleep Deprivation, and Human Performance

    PubMed Central

    Goel, Namni; Basner, Mathias; Rao, Hengyi; Dinges, David F.

    2014-01-01

    Much of the current science on, and mathematical modeling of, dynamic changes in human performance within and between days is dominated by the two-process model of sleep–wake regulation, which posits a neurobiological drive for sleep that varies homeostatically (increasing as a saturating exponential during wakefulness and decreasing in a like manner during sleep), and a circadian process that neurobiologically modulates both the homeostatic drive for sleep and waking alertness and performance. Endogenous circadian rhythms in neurobehavioral functions, including physiological alertness and cognitive performance, have been demonstrated using special laboratory protocols that reveal the interaction of the biological clock with the sleep homeostatic drive. Individual differences in circadian rhythms and genetic and other components underlying such differences also influence waking neurobehavioral functions. Both acute total sleep deprivation and chronic sleep restriction increase homeostatic sleep drive and degrade waking neurobehavioral functions as reflected in sleepiness, attention, cognitive speed, and memory. Recent evidence indicating a high degree of stability in neurobehavioral responses to sleep loss suggests that these trait-like individual differences are phenotypic and likely involve genetic components, including circadian genes. Recent experiments have revealed both sleep homeostatic and circadian effects on brain metabolism and neural activation. Investigation of the neural and genetic mechanisms underlying the dynamically complex interaction between sleep homeostasis and circadian systems is beginning. A key goal of this work is to identify biomarkers that accurately predict human performance in situations in which the circadian and sleep homeostatic systems are perturbed. PMID:23899598

  10. Laser Doppler Velocimeter Measurements of B-747 Wake Vortex Characteristics

    DOT National Transportation Integrated Search

    1977-09-01

    To determine the behavior of the wake vortices of a B-747 at low altitudes and to measure the vortex-decay process behind the B-747 as a function of altitude above ground, flap and spoiler settings, and different flight configurations, a B-747 aircra...

  11. Wake County Public School System Design Guidelines.

    ERIC Educational Resources Information Center

    Wake County Public School System, Raleigh, NC.

    The Wake County Public School System has published its guidelines for planning and design of functional, cost effective, and durable educational facilities that are attractive and enhance the students' educational experience. The guidelines present basic planning requirement and design criteria for the entire construction process, including: codes…

  12. Neuroligin-1 links neuronal activity to sleep-wake regulation.

    PubMed

    El Helou, Janine; Bélanger-Nelson, Erika; Freyburger, Marlène; Dorsaz, Stéphane; Curie, Thomas; La Spada, Francesco; Gaudreault, Pierre-Olivier; Beaumont, Éric; Pouliot, Philippe; Lesage, Frédéric; Frank, Marcos G; Franken, Paul; Mongrain, Valérie

    2013-06-11

    Maintaining wakefulness is associated with a progressive increase in the need for sleep. This phenomenon has been linked to changes in synaptic function. The synaptic adhesion molecule Neuroligin-1 (NLG1) controls the activity and synaptic localization of N-methyl-d-aspartate receptors, which activity is impaired by prolonged wakefulness. We here highlight that this pathway may underlie both the adverse effects of sleep loss on cognition and the subsequent changes in cortical synchrony. We found that the expression of specific Nlg1 transcript variants is changed by sleep deprivation in three mouse strains. These observations were associated with strain-specific changes in synaptic NLG1 protein content. Importantly, we showed that Nlg1 knockout mice are not able to sustain wakefulness and spend more time in nonrapid eye movement sleep than wild-type mice. These changes occurred with modifications in waking quality as exemplified by low theta/alpha activity during wakefulness and poor preference for social novelty, as well as altered delta synchrony during sleep. Finally, we identified a transcriptional pathway that could underlie the sleep/wake-dependent changes in Nlg1 expression and that involves clock transcription factors. We thus suggest that NLG1 is an element that contributes to the coupling of neuronal activity to sleep/wake regulation.

  13. Neuroligin-1 links neuronal activity to sleep-wake regulation

    PubMed Central

    El Helou, Janine; Bélanger-Nelson, Erika; Freyburger, Marlène; Dorsaz, Stéphane; Curie, Thomas; La Spada, Francesco; Gaudreault, Pierre-Olivier; Beaumont, Éric; Pouliot, Philippe; Lesage, Frédéric; Frank, Marcos G.; Franken, Paul; Mongrain, Valérie

    2013-01-01

    Maintaining wakefulness is associated with a progressive increase in the need for sleep. This phenomenon has been linked to changes in synaptic function. The synaptic adhesion molecule Neuroligin-1 (NLG1) controls the activity and synaptic localization of N-methyl-d-aspartate receptors, which activity is impaired by prolonged wakefulness. We here highlight that this pathway may underlie both the adverse effects of sleep loss on cognition and the subsequent changes in cortical synchrony. We found that the expression of specific Nlg1 transcript variants is changed by sleep deprivation in three mouse strains. These observations were associated with strain-specific changes in synaptic NLG1 protein content. Importantly, we showed that Nlg1 knockout mice are not able to sustain wakefulness and spend more time in nonrapid eye movement sleep than wild-type mice. These changes occurred with modifications in waking quality as exemplified by low theta/alpha activity during wakefulness and poor preference for social novelty, as well as altered delta synchrony during sleep. Finally, we identified a transcriptional pathway that could underlie the sleep/wake-dependent changes in Nlg1 expression and that involves clock transcription factors. We thus suggest that NLG1 is an element that contributes to the coupling of neuronal activity to sleep/wake regulation. PMID:23716671

  14. Direct Simulation and Theoretical Study of Sub- and Supersonic Wakes

    NASA Astrophysics Data System (ADS)

    Hickey, Jean-Pierre

    Wakes are constitutive components of engineering, aeronautical and geophysical flows. Despite their canonical nature, many fundamental questions surrounding wakes remain unanswered. The present work studies the nature of archetypal planar splitter-plate wakes in the sub- and supersonic regimes from a theoretical as well as a numerical perspective. A highly-parallelizable computational fluid dynamic solver was developed, from scratch, for the very-large scale direct numerical simulations of high-speed free shear flows. Wakes maintain a near indelible memory of their origins; thus, changes to the state of the flow on the generating body lead to multiple self-similar states in the far wake. To understand the source of the lack of universality, three distinct wake evolution scenarios are investigated in the incompressible limit: the Kelvin-Helmholtz transition, the bypass transition in an asymmetric wake and the initially turbulent wake. The multiplicity of self-similar states is the result of a plurality of far wake structural organizations, which maintains the memory of the flow. The structural organization is predicated on the presence or absence of near wake anti-symmetric perturbations (as a result of shedding, instability modes and/or trailing edge receptivity). The plurality of large-scale structural organization contrasts with the commonality observed in the mid-sized structures, which are dominated by inclined vortical rods, and not, as previously assumed, by horseshoe structures. The compressibility effects are a direct function of the maximal velocity defect in the wake and are therefore only important in the transitional region - the far wake having an essentially incompressible character. The compressibility simultaneously modifies the growth rate and wavelength of the primary instability mode with a concomitant effect on the emerging transitional structures. As a direct result, the spanwise rollers have an increasing ellipticity and cross-wake domain of influence with the increasing Mach number of the wake. Consequently, structural pairing - a key feature of wake transition - is inhibited at a critical Mach number, which greatly modifies the transitional dynamics. In idealized wakes, the increased stability caused by the compressibility effects leads to a vortex breakdown of secondary structures prior to the full transition of the principal mode. These findings open the door to novel mixing enhancement and flow control possibilities in the high-speed wake transition. Keywords: FLUID DYNAMICS, DIRECT NUMERICAL SIMULATIONS, FREE SHEAR FLOWS, TURBULENCE, NUMERICAL METHODS

  15. A quark model analysis of the transversity distribution

    NASA Astrophysics Data System (ADS)

    Scopetta, Sergio; Vento, Vicente

    1998-04-01

    The feasibility of measuring chiral-odd parton distribution functions in polarized Drell-Yan and semi-inclusive experiments has renewed theoretical interest in their study. Models of hadron structure have proven successful in describing the gross features of the chiral-even structure functions. Similar expectations motivated our study of the transversity parton distributions in the Isgur-Karl and MIT bag models. We confirm, by performing a NLO calculation, the diverse low x behaviors of the transversity and spin structure functions at the experimental scale and show that it is fundamentally a consequence of the different behaviors under evolution of these functions. The inequalities of Soffer establish constraints between data and model calculations of the chiral-odd transversity function. The approximate compatibility of our model calculations with these constraints confers credibility to our estimates.

  16. EEG microstates of wakefulness and NREM sleep.

    PubMed

    Brodbeck, Verena; Kuhn, Alena; von Wegner, Frederic; Morzelewski, Astrid; Tagliazucchi, Enzo; Borisov, Sergey; Michel, Christoph M; Laufs, Helmut

    2012-09-01

    EEG-microstates exploit spatio-temporal EEG features to characterize the spontaneous EEG as a sequence of a finite number of quasi-stable scalp potential field maps. So far, EEG-microstates have been studied mainly in wakeful rest and are thought to correspond to functionally relevant brain-states. Four typical microstate maps have been identified and labeled arbitrarily with the letters A, B, C and D. We addressed the question whether EEG-microstate features are altered in different stages of NREM sleep compared to wakefulness. 32-channel EEG of 32 subjects in relaxed wakefulness and NREM sleep was analyzed using a clustering algorithm, identifying the most dominant amplitude topography maps typical of each vigilance state. Fitting back these maps into the sleep-scored EEG resulted in a temporal sequence of maps for each sleep stage. All 32 subjects reached sleep stage N2, 19 also N3, for at least 1 min and 45 s. As in wakeful rest we found four microstate maps to be optimal in all NREM sleep stages. The wake maps were highly similar to those described in the literature for wakefulness. The sleep stage specific map topographies of N1 and N3 sleep showed a variable but overall relatively high degree of spatial correlation to the wake maps (Mean: N1 92%; N3 87%). The N2 maps were the least similar to wake (mean: 83%). Mean duration, total time covered, global explained variance and transition probabilities per subject, map and sleep stage were very similar in wake and N1. In wake, N1 and N3, microstate map C was most dominant w.r.t. global explained variance and temporal presence (ratio total time), whereas in N2 microstate map B was most prominent. In N3, the mean duration of all microstate maps increased significantly, expressed also as an increase in transition probabilities of all maps to themselves in N3. This duration increase was partly--but not entirely--explained by the occurrence of slow waves in the EEG. The persistence of exactly four main microstate classes in all NREM sleep stages might speak in favor of an in principle maintained large scale spatial brain organization from wakeful rest to NREM sleep. In N1 and N3 sleep, despite spectral EEG differences, the microstate maps and characteristics were surprisingly close to wakefulness. This supports the notion that EEG microstates might reflect a large scale resting state network architecture similar to preserved fMRI resting state connectivity. We speculate that the incisive functional alterations which can be observed during the transition to deep sleep might be driven by changes in the level and timing of activity within this architecture. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Experimental and Theoretical Study of a Rectangular Wing in a Vortical Wake at Low Speed

    NASA Technical Reports Server (NTRS)

    Smith, Willard G.; Lazzeroni, Frank A.

    1960-01-01

    A systematic study has been made, experimentally and theoretically, of the effects of a vortical wake on the aerodynamic characteristics of a rectangular wing at subsonic speed. The vortex generator and wing were mounted on a reflection plane to avoid body-wing interference. Vortex position, relative to the wing, was varied both in the spanwise direction and normal to the wing. Angle of attack of the wing was varied from -40 to +60. Both chordwise and spanwise pressure distributions were obtained with the wing in uniform and vortical flow fields. Stream surveys were made to determine the flow characteristics in the vortical wake. The vortex-induced lift was calculated by several theoretical methods including strip theory, reverse-flow theory, and reverse-flow theory including a finite vortex core. In addition, the Prandtl lifting-line theory and the Weissinger theory were used to calculate the spanwise distribution of vortex-induced loads. With reverse-flow theory, predictions of the interference lift were generally good, and with Weissinger's theory the agreement between the theoretical spanwise variation of induced load and the experimental variation was good. Results of the stream survey show that the vortex generated by a lifting surface of rectangular plan form tends to trail back streamwise from the tip and does not approach the theoretical location, or centroid of circulation, given by theory. This discrepancy introduced errors in the prediction of vortex interference, especially when the vortex core passed immediately outboard of the wing tip. The wake produced by the vortex generator in these tests was not fully rolled up into a circular vortex, and so lacked symmetry in the vertical direction of the transverse plane. It was found that the direction of circulation affected the induced loads on the wing either when the wing was at angle of attack or when the vortex was some distance away from the plane of the wing.

  18. Uncovering Physiologic Mechanisms of Circadian Rhythms and Sleep/Wake Regulation Through Mathematical Modeling

    DTIC Science & Technology

    2007-06-01

    the effects of rest -activity-work schedules and interventions on neurobehavioral function. In a symposium titled “Modeling Human Neurobehavioral...physio- logic basis of Process S. The mutually inhibitory neu- ronal populations, together with the surrogate Process S, have the potential to serve...as a function of both ta and φ (Czeisler et al., 1999). Briefly, by imposing a cyclic pattern of bed rest and wake time at a period, T, sufficiently

  19. Measurement of the Transverse Single-Spin Asymmetry in p ↑ + p → W ± / Z 0 at RHIC

    DOE PAGES

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...

    2016-04-01

    In this paper, we present the measurement of the transverse single-spin asymmetry of weak boson production in transversely polarized proton-proton collisions at √s = 500 GeV by the STAR experiment at RHIC. The measured observable is sensitive to the Sivers function, one of the transverse-momentum-dependent parton distribution functions, which is predicted to have the opposite sign in proton-proton collisions from that observed in deep inelastic lepton-proton scattering. In conclusion, these data provide the first experimental investigation of the nonuniversality of the Sivers function, fundamental to our understanding of QCD.

  20. Electron beam energy chirp control with a rectangular corrugated structure at the Linac Coherent Light Source

    DOE PAGES

    Zhang, Zhen; Bane, Karl; Ding, Yuantao; ...

    2015-01-30

    In this study, electron beam energy chirp is an important parameter that affects the bandwidth and performance of a linac-based, free-electron laser. In this paper we study the wakefields generated by a beam passing between at metallic plates with small corrugations, and then apply such a device as a passive dechirper for the Linac Coherent Light Source (LCLS) energy chirp control with a multi-GeV and femtosecond electron beam. Similar devices have been tested in several places at relatively low energies (~100 MeV) and with relatively long bunches (> 1ps). In the parameter regime of the LCLS dechirper, with the corrugationmore » size similar to the gap between the plates, the analytical solutions of the wakefields are no longer applicable, and we resort to a field matching program to obtain the wakes. Based on the numerical calculations, we fit the short-range, longitudinal wakes to simple formulas, valid over a large, useful parameter range. Finally, since the transverse wakefields - both dipole and quadrupole-are strong, we compute and include them in beam dynamics simulations to investigate the error tolerances when this device is introduced in the LCLS.« less

  1. Numerical studies of asymmetric adiabatic accretion flow - The effect of velocity gradients

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.; Fryxell, B. A.

    1989-01-01

    A numerical study of the time variation of the angular momentum and mass capture rates for a central object accreting from a uniform medium with a velocity gradient transverse to the direction of the mean flow is presented, covering a range of velocity asymmetries and Mach numbers in the incident flow. It is found that the mass accretion rate in a given evolutionary sequence varies in an irregular manner, with the matter accreting onto the central object from either a continuously moving accretion wake or from an accretion disk. The implications of the results from the study of short-term fluctuations observed in the pulse period and luminosity of X-ray pulsars are discussed.

  2. A vortex wake capturing method for potential flow calculations

    NASA Technical Reports Server (NTRS)

    Murman, E. M.; Stremel, P. M.

    1982-01-01

    A method is presented for modifying finite difference solutions of the potential equation to include the calculation of non-planar vortex wake features. The approach is an adaptation of Baker's 'cloud in cell' algorithm developed for the stream function-vorticity equations. The vortex wake is tracked in a Lagrangian frame of reference as a group of discrete vortex filaments. These are distributed to the Eulerian mesh system on which the velocity is calculated by a finite difference solution of the potential equation. An artificial viscosity introduced by the finite difference equations removes the singular nature of the vortex filaments. Computed examples are given for the two-dimensional time dependent roll-up of vortex wakes generated by wings with different spanwise loading distributions.

  3. Minimum-domain impulse theory for unsteady aerodynamic force

    NASA Astrophysics Data System (ADS)

    Kang, L. L.; Liu, L. Q.; Su, W. D.; Wu, J. Z.

    2018-01-01

    We extend the impulse theory for unsteady aerodynamics from its classic global form to finite-domain formulation then to minimum-domain form and from incompressible to compressible flows. For incompressible flow, the minimum-domain impulse theory raises the finding of Li and Lu ["Force and power of flapping plates in a fluid," J. Fluid Mech. 712, 598-613 (2012)] to a theorem: The entire force with discrete wake is completely determined by only the time rate of impulse of those vortical structures still connecting to the body, along with the Lamb-vector integral thereof that captures the contribution of all the rest disconnected vortical structures. For compressible flows, we find that the global form in terms of the curl of momentum ∇ × (ρu), obtained by Huang [Unsteady Vortical Aerodynamics (Shanghai Jiaotong University Press, 1994)], can be generalized to having an arbitrary finite domain, but the formula is cumbersome and in general ∇ × (ρu) no longer has discrete structures and hence no minimum-domain theory exists. Nevertheless, as the measure of transverse process only, the unsteady field of vorticity ω or ρω may still have a discrete wake. This leads to a minimum-domain compressible vorticity-moment theory in terms of ρω (but it is beyond the classic concept of impulse). These new findings and applications have been confirmed by our numerical experiments. The results not only open an avenue to combine the theory with computation-experiment in wide applications but also reveal a physical truth that it is no longer necessary to account for all wake vortical structures in computing the force and moment.

  4. Fine-Grained Parcellation of Brain Connectivity Improves Differentiation of States of Consciousness During Graded Propofol Sedation.

    PubMed

    Liu, Xiaolin; Lauer, Kathryn K; Ward, B Douglas; Roberts, Christopher J; Liu, Suyan; Gollapudy, Suneeta; Rohloff, Robert; Gross, William; Xu, Zhan; Chen, Guangyu; Binder, Jeffrey R; Li, Shi-Jiang; Hudetz, Anthony G

    2017-08-01

    Conscious perception relies on interactions between spatially and functionally distinct modules of the brain at various spatiotemporal scales. These interactions are altered by anesthesia, an intervention that leads to fading consciousness. Relatively little is known about brain functional connectivity and its anesthetic modulation at a fine spatial scale. Here, we used functional imaging to examine propofol-induced changes in functional connectivity in brain networks defined at a fine-grained parcellation based on a combination of anatomical and functional features. Fifteen healthy volunteers underwent resting-state functional imaging in wakeful baseline, mild sedation, deep sedation, and recovery of consciousness. Compared with wakeful baseline, propofol produced widespread, dose-dependent functional connectivity changes that scaled with the extent to which consciousness was altered. The dominant changes in connectivity were associated with the frontal lobes. By examining node pairs that demonstrated a trend of functional connectivity change between wakefulness and deep sedation, quadratic discriminant analysis differentiated the states of consciousness in individual participants more accurately at a fine-grained parcellation (e.g., 2000 nodes) than at a coarse-grained parcellation (e.g., 116 anatomical nodes). Our study suggests that defining brain networks at a high granularity may provide a superior imaging-based distinction of the graded effect of anesthesia on consciousness.

  5. Transversity 2005

    NASA Astrophysics Data System (ADS)

    Barone, Vincenzo; Ratcliffe, Philip G.

    Introduction. Purpose and status of the Italian Transversity Project / F. Bradamante -- Opening lecture. Transversity / M. Anselmino -- Experimental lectures. Azimuthal single-spin asymmetries from polarized and unpolarized hydrogen targets at HERMES / G. Schnell (for the HERMES Collaboration). Collins and Sivers asymmetries on the deuteron from COMPASS data / I. Horn (for the COMPASS Collaboration). First measurement of interference fragmentation on a transversely polarized hydrogen target / P. B. van der Nat (for the HERMES Collaboration). Two-hadron asymmetries at the COMPASS experiment / A. Mielech (for the COMPASS Collaboration). Measurements of chiral-odd fragmentation functions at Belle / R. Seidl ... [et al.]. Lambda asymmetries / A. Ferrero (for the COMPASS Collaboration). Transverse spin at PHENIX: results and prospects / C. Aidala (for the PHENIX Collaboration). Transverse spin and RHIC / L. Bland. Studies of transverse spin effects at JLab / H. Avakian ... [et al.] (for the CLAS Collaboration). Neutron transversity at Jefferson Lab / J. P. Chen ... [et al.] (for the Jefferson Lab Hall A Collaboration). PAX: polarized antiproton experiments / M. Contalbrigo. Single and double spin N-N interactions at GSI / M. Maggiora (for the ASSIA Collaboration). Spin filtering in storage rings / N. N. Nikolaev & F. F. Pavlov -- Theory lectures. Single-spin asymmetries and transversity in QCD / S. J. Brodsky. The relativistic hydrogen atom: a theoretical laboratory for structure functions / X. Artru & K. Benhizia. GPD's and SSA's / M. Burkardt. Time reversal odd distribution functions in chiral models / A. Drago. Soffer bound and transverse spin densities from lattice QCD / M. Diehl ... [et al.]. Single-spin asymmetries and Qiu-Sterman effect(s) / A. Bacchetta. Sivers function: SIDIS data, fits and predictions / M. Anselmino ... [et al.]. Twist-3 effects in semi-inclusive deep inelastic scattering / M. Schlegel, K. Goeke & A. Metz. Quark and gluon Sivers functions / I. Schmidt. Sivers effect in semi-inclusive deeply inelastic scattering and Drell-Yan / J. C. Collins ... [et al.]. Helicity formalism and spin asymmetries in hadronic processes / M. Anselmino ... [et al.]. Including Cahn and Sivers effects into event generators / A. Kotzinian. Comparing extractions of Sivers functions / M. Anselmino ... [et al.]. Anomalous Drell-Yan asymmetry from hadronic or QCD vacuum effects / D. Boer. "T-odd" effects in transverse spin and azimuthal asymmetries in SIDIS / L. P. Gamberg & G. R. Goldstein. T-odd effects in unpolarized Drell-Yan scattering / G. R. Goldstein & L. P. Gamberg. Alternative approaches to transversity: how convenient and feasible are they? / M. Radici. Relations between single and double transverse asymmetries / O. V. Teryaev. Cross sections, error bars and event distributions in simulated Drell-Yan azimuthal asymmetry measurements / A. Bianconi. Next-to-leading order QCD corrections for transversely polarized pp and p¯p collisions / A. Mukherjee, M. Stratmann & W. Vogelsang. Double transverse-spin asymmetries in Drell-Yan and J/[symbol] production from proton-antiproton collisions / M. Guzzi ... [et al.]. The quark-quark correlator: theory and phenomenology / E. Di Salvo. Chiral quark model spin filtering mechanism and hyperon polarization / S. M. Troshin & N. E. Tyurin -- Closing lecture. Where we've been ... and where we're going / G. Bunce.

  6. A flying hot wire study of the turbulent near wake of a circular cylinder at Reynolds number of 140,000. Ph.D. Thesis. Progress Report

    NASA Technical Reports Server (NTRS)

    Cantwell, B. J.

    1975-01-01

    The phenomenology was studied of the processes of vortex formation and transport in the near wake, at a Reynolds number sufficiently high to insure a fully turbulent wake, but low enough to insure a laminar separation. The apparatus developed for measuring this flow consisted of X-array hot wire probes mounted on the ends of a pair of whirling arms. A computer controlled data acquisition system was slaved to the position of the rotating arm and managed, monitored, edited, and recorded the vast profusion of data which is continuously poured out by the device. Results are presented which show the instantaneous velocity, intermittency, vorticity, and stress fields as a function of phase for the first six diameters of the near wake. The stresses in the near wake emerge as a concatenation of peaks and valleys, some the result of strong induced motions in the outer flow which cause free stream fluid to move rapidly inward toward the center of the wake, others the result of the random motions of the background turbulence.

  7. The GABA(A) receptor RDL acts in peptidergic PDF neurons to promote sleep in Drosophila.

    PubMed

    Chung, Brian Y; Kilman, Valerie L; Keath, J Russel; Pitman, Jena L; Allada, Ravi

    2009-03-10

    Sleep is regulated by a circadian clock that times sleep and wake to specific times of day and a homeostat that drives sleep as a function of prior wakefulness. To analyze the role of the circadian clock, we have used the fruit fly Drosophila. Flies display the core behavioral features of sleep, including relative immobility, elevated arousal thresholds, and homeostatic regulation. We assessed sleep-wake modulation by a core set of circadian pacemaker neurons that express the neuropeptide PDF. We find that disruption of PDF function increases sleep during the late night in light:dark and the first subjective day of constant darkness. Flies deploy genetic and neurotransmitter pathways to regulate sleep that are similar to those of their mammalian counterparts, including GABA. We find that RNA interference-mediated knockdown of the GABA(A) receptor gene, Resistant to dieldrin (Rdl), in PDF neurons reduces sleep, consistent with a role for GABA in inhibiting PDF neuron function. Patch-clamp electrophysiology reveals GABA-activated picrotoxin-sensitive chloride currents on PDF+ neurons. In addition, RDL is detectable most strongly on the large subset of PDF+ pacemaker neurons. These results suggest that GABAergic inhibition of arousal-promoting PDF neurons is an important mode of sleep-wake regulation in vivo.

  8. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation

    NASA Technical Reports Server (NTRS)

    Van Dongen, Hans P A.; Maislin, Greg; Mullington, Janet M.; Dinges, David F.

    2003-01-01

    OBJECTIVES: To inform the debate over whether human sleep can be chronically reduced without consequences, we conducted a dose-response chronic sleep restriction experiment in which waking neurobehavioral and sleep physiological functions were monitored and compared to those for total sleep deprivation. DESIGN: The chronic sleep restriction experiment involved randomization to one of three sleep doses (4 h, 6 h, or 8 h time in bed per night), which were maintained for 14 consecutive days. The total sleep deprivation experiment involved 3 nights without sleep (0 h time in bed). Each study also involved 3 baseline (pre-deprivation) days and 3 recovery days. SETTING: Both experiments were conducted under standardized laboratory conditions with continuous behavioral, physiological and medical monitoring. PARTICIPANTS: A total of n = 48 healthy adults (ages 21-38) participated in the experiments. INTERVENTIONS: Noctumal sleep periods were restricted to 8 h, 6 h or 4 h per day for 14 days, or to 0 h for 3 days. All other sleep was prohibited. RESULTS: Chronic restriction of sleep periods to 4 h or 6 h per night over 14 consecutive days resulted in significant cumulative, dose-dependent deficits in cognitive performance on all tasks. Subjective sleepiness ratings showed an acute response to sleep restriction but only small further increases on subsequent days, and did not significantly differentiate the 6 h and 4 h conditions. Polysomnographic variables and delta power in the non-REM sleep EEG-a putative marker of sleep homeostasis--displayed an acute response to sleep restriction with negligible further changes across the 14 restricted nights. Comparison of chronic sleep restriction to total sleep deprivation showed that the latter resulted in disproportionately large waking neurobehavioral and sleep delta power responses relative to how much sleep was lost. A statistical model revealed that, regardless of the mode of sleep deprivation, lapses in behavioral alertness were near-linearly related to the cumulative duration of wakefulness in excess of 15.84 h (s.e. 0.73 h). CONCLUSIONS: Since chronic restriction of sleep to 6 h or less per night produced cognitive performance deficits equivalent to up to 2 nights of total sleep deprivation, it appears that even relatively moderate sleep restriction can seriously impair waking neurobehavioral functions in healthy adults. Sleepiness ratings suggest that subjects were largely unaware of these increasing cognitive deficits, which may explain why the impact of chronic sleep restriction on waking cognitive functions is often assumed to be benign. Physiological sleep responses to chronic restriction did not mirror waking neurobehavioral responses, but cumulative wakefulness in excess of a 15.84 h predicted performance lapses across all four experimental conditions. This suggests that sleep debt is perhaps best understood as resulting in additional wakefulness that has a neurobiological "cost" which accumulates over time.

  9. Actigraphy assessments of circadian sleep-wake cycles in the Vegetative and Minimally Conscious States

    PubMed Central

    2013-01-01

    Background The Vegetative and Minimally Conscious States (VS; MCS) are characterized by absent or highly disordered signs of awareness alongside preserved sleep-wake cycles. According to international diagnostic guidelines, sleep-wake cycles are assessed by means of observations of variable periods of eye-opening and eye-closure. However, there is little empirical evidence for true circadian sleep-wake cycling in these patients, and there have been no large-scale investigations of the validity of this diagnostic criterion. Methods We measured the circadian sleep-wake rhythms of 55 VS and MCS patients by means of wrist actigraphy, an indirect method that is highly correlated with polysomnographic estimates of sleeping/waking. Results Contrary to the diagnostic guidelines, a significant proportion of patients did not exhibit statistically reliable sleep-wake cycles. The circadian rhythms of VS patients were significantly more impaired than those of MCS patients, as were the circadian rhythms of patients with non-traumatic injuries relative to those with traumatic injuries. The reliability of the circadian rhythms were significantly predicted by the patients' levels of visual and motor functioning, consistent with the putative biological generators of these rhythms. Conclusions The high variability across diagnoses and etiologies highlights the need for improved guidelines for the assessment of sleep-wake cycles in VS and MCS, and advocates the use of actigraphy as an inexpensive and non-invasive alternative. PMID:23347467

  10. Significance of the zero sum principle for circadian, homeostatic and allostatic regulation of sleep-wake state in the rat.

    PubMed

    Stephenson, Richard; Caron, Aimee M; Famina, Svetlana

    2016-12-01

    Sleep-wake behavior exhibits diurnal rhythmicity, rebound responses to acute total sleep deprivation (TSD), and attenuated rebounds following chronic sleep restriction (CSR). We investigated how these long-term patterns of behavior emerge from stochastic short-term dynamics of state transition. Male Sprague-Dawley rats were subjected to TSD (1day×24h, N=9), or CSR (10days×18h TSD, N=7) using a rodent walking-wheel apparatus. One baseline day and one recovery day following TSD and CSR were analyzed. The implications of the zero sum principle were evaluated using a Markov model of sleep-wake state transition. Wake bout duration (a combined function of the probability of wake maintenance and proportional representations of brief and long wake) was a key variable mediating the baseline diurnal rhythms and post-TSD responses of all three states, and the attenuation of the post-CSR rebounds. Post-NREM state transition trajectory was an important factor in REM rebounds. The zero sum constraint ensures that a change in any transition probability always affects bout frequency and cumulative time of at least two, and usually all three, of wakefulness, NREM and REM. Neural mechanisms controlling wake maintenance may play a pivotal role in regulation and dysregulation of all three states. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Next-to-leading order transverse momentum-weighted Sivers asymmetry in semi-inclusive deep inelastic scattering: The role of the three-gluon correlator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Ling -Yun; Kang, Zhong -Bo; Prokudin, Alexei

    2015-12-22

    Here, we study the Sivers asymmetry in semi-inclusive hadron production in deep inelastic scattering. We concentrate on the contribution from the photon-gluon fusion channel at O(α em 2α s), where three-gluon correlation functions play a major role within the twist-3 collinear factorization formalism. We establish the correspondence between such a formalism with three-gluon correlation functions and the usual transverse momentum-dependent (TMD) factorization formalism at moderate hadron transverse momenta. We derive the coefficient functions used in the usual TMD evolution formalism related to the quark Sivers function expansion in terms of the three-gluon correlation functions. We further perform the next-to-leading ordermore » calculation for the transverse momentum-weighted spin-dependent differential cross section and identify the off-diagonal contribution from the three-gluon correlation functions to the QCD collinear evolution of the twist-3 Qiu-Sterman function.« less

  12. Sleep, consciousness and the spontaneous and evoked electrical activity of the brain. Is there a cortical integrating mechanism?

    PubMed

    Evans, B M

    2003-02-01

    The physiological mechanisms that underlie consciousness and unconsciousness are the sleep/wake mechanisms. Deep sleep is a state of physiological reversible unconsciousness. The change from that state to wakefulness is mediated by the reticular activating mechanism. The reverse change from wakefulness to sleep is also an active process effected by an arousal inhibitory mechanism based on a partial blockade of the thalamus and upper brain stem, associated with thalamic sleep spindles and also with cortical sub-delta activity (<1 Hz). The deactivation of the thalamus has been demonstrated both electrically and by positron emission tomography during deep sleep. Normally, wakefulness is associated with instant awareness (defined as the ability to integrate all sensory information from the external environment and the internal environment of the body). Awareness may be a function of the thalamo-cortical network in the cerebral hemispheres, which forms the final path of the sleep/wake mechanism. Anatomical and physiological studies suggest that there may be a double thalamo-cortical network; one relating to cortical and thalamic areas with specific functions and the other global, involving all cortical areas and so-called 'non-specific' thalamic nuclei. The global system might function as a cortical integrating mechanism permitting the spread of information between the specific cortical areas and thus underlying awareness. The global system may also be responsible for much of the spontaneous and evoked electrical activity of the brain. The cognitive change between sleep and wakefulness is accompanied by changes in the autonomic system, the cerebral blood flow and cerebral metabolism. Awareness is an essential component of total consciousness (defined as continuous awareness of the external and internal environment, both past and present, together with the emotions arising from it). In addition to awareness, full consciousness requires short-term and explicit memory and intact emotional responses.

  13. A defect stream function, law of the wall/wake method for compressible turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Barnwell, Richard W.; Dejarnette, Fred R.; Wahls, Richard A.

    1989-01-01

    The application of the defect stream function to the solution of the two-dimensional, compressible boundary layer is examined. A law of the wall/law of the wake formulation for the inner part of the boundary layer is presented which greatly simplifies the computational task near the wall and eliminates the need for an eddy viscosity model in this region. The eddy viscosity model in the outer region is arbitrary. The modified Crocco temperature-velocity relationship is used as a simplification of the differential energy equation. Formulations for both equilibrium and nonequilibrium boundary layers are presented including a constrained zero-order form which significantly reduces the computational workload while retaining the significant physics of the flow. A formulation for primitive variables is also presented. Results are given for the constrained zero-order and second-order equilibrium formulations and are compared with experimental data. A compressible wake function valid near the wall has been developed from the present results.

  14. Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions.

    PubMed

    Burke, Tina M; Scheer, Frank A J L; Ronda, Joseph M; Czeisler, Charles A; Wright, Kenneth P

    2015-08-01

    Sleep inertia, sleep homeostatic and circadian processes modulate cognition, including reaction time, memory, mood and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-day-long study that included two 14-day-long 28-h forced desynchrony protocols to examine separate and interacting influences of sleep inertia, sleep homeostasis and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved during the first ~2-4 h of wakefulness (decreasing sleep inertia); worsened thereafter until scheduled bedtime (increasing sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~09:00 and ~21:00 hours, respectively, in individuals with a habitual wake time of 07:00 hours). The relative influences of sleep inertia, sleep homeostasis and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation and/or upon awakening from sleep. © 2015 European Sleep Research Society.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Jain, Rishabh; Hodge, Bri-Mathias

    A data-driven methodology is developed to analyze how ambient and wake turbulence affect the power generation of wind turbine(s). Using supervisory control and data acquisition (SCADA) data from a wind plant, we select two sets of wind velocity and power data for turbines on the edge of the plant that resemble (i) an out-of-wake scenario and (ii) an in-wake scenario. For each set of data, two surrogate models are developed to represent the turbine(s) power generation as a function of (i) the wind speed and (ii) the wind speed and turbulence intensity. Three types of uncertainties in turbine(s) power generationmore » are investigated: (i) the uncertainty in power generation with respect to the reported power curve; (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) the turbine(s) generally produce more power under the in-wake scenario than under the out-of-wake scenario with the same wind speed; and (ii) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.« less

  16. Modeling the effect of exogenous melatonin on the sleep-wake switch.

    PubMed

    Johnson, Nicholas; Jain, Gauray; Sandberg, Lianne; Sheets, Kevin

    2012-01-01

    According to the Centers for Disease Control and Prevention and the Institute of Medicine of the National Academies, insufficient sleep has become a public health epidemic. Approximately 50-70 million adults (20 years or older) suffer from some disorder of sleep and wakefulness, hindering daily functioning and adversely affecting health and longevity. Melatonin, a naturally produced hormone which plays a role in sleep-wake regulation, is currently offered as an over-the-counter sleep aid. However, the effects of melatonin on the sleep-wake cycle are incompletely understood. The goal of this modeling study was to incorporate the effects of exogenous melatonin administration into a mathematical model of the human sleep-wake switch. The model developed herein adds a simple kinetic model of the MT1 melatonin receptor to an existing model which simulates the interactions of different neuronal groups thought to be involved in sleep-wake regulation. Preliminary results were obtained by simulating the effects of an exogenous melatonin dose typical of over-the-counter sleep aids. The model predicted an increase in homeostatic sleep drive and a resulting alteration in circadian rhythm consistent with experimental results. The time of melatonin administration was also observed to have a strong influence on the sleep-wake effects elicited, which is also consistent with prior experimental findings.

  17. [Generation and functions of dreams].

    PubMed

    Medrano-Martínez, Pablo; Ramos-Platón, M José

    2014-10-16

    Over the last decade an ever-increasing number of articles have been published on dreams, which reflects the interest that several fields of neuroscience have in the topic. In this work we review the main scientific theories that have contributed to the body of knowledge on how they are produced and what function they serve. The article discusses the evolution of their scientific study, following a neurophysiological and neurocognitive approach. The first of these two methods seeks to determine the neurobiological mechanisms that generate them and the brain structures involved, while the second considers dreams to be a kind of cognition interacting with that of wake-fulness. Several different hypotheses about the function of dreams are examined, and more particularly those in which they are attributed with a role in the consolidation of memory and the regulation of emotional states. Although the exact mechanism underlying the generation of dreams has not been determined, neurobiological data highlight the importance of the pontine nuclei of the brainstem, several memory systems, the limbic system and the brain reward system and a number of neocortical areas. Neurocognitive data underline the relation between the cognitive and emotional processing that occurs during wakefulness and during sleep, as well as the influence of the surroundings on the content of dreams. With regard to their function, one point to be stressed is their adaptive value, since they contribute to the reprocessing of the information acquired in wakefulness and the control of the emotions. This suggests that dreams participate in the development of the cognitive capabilities.

  18. Epigenetic Regulation of Axonal Growth of Drosophila Pacemaker Cells by Histone Acetyltransferase Tip60 Controls Sleep

    PubMed Central

    Pirooznia, Sheila K.; Chiu, Kellie; Chan, May T.; Zimmerman, John E.; Elefant, Felice

    2012-01-01

    Tip60 is a histone acetyltransferase (HAT) enzyme that epigenetically regulates genes enriched for neuronal functions through interaction with the amyloid precursor protein (APP) intracellular domain. However, whether Tip60-mediated epigenetic dysregulation affects specific neuronal processes in vivo and contributes to neurodegeneration remains unclear. Here, we show that Tip60 HAT activity mediates axonal growth of the Drosophila pacemaker cells, termed “small ventrolateral neurons” (sLNvs), and their production of the neuropeptide pigment-dispersing factor (PDF) that functions to stabilize Drosophila sleep–wake cycles. Using genetic approaches, we show that loss of Tip60 HAT activity in the presence of the Alzheimer’s disease-associated APP affects PDF expression and causes retraction of the sLNv synaptic arbor required for presynaptic release of PDF. Functional consequence of these effects is evidenced by disruption of the sleep–wake cycle in these flies. Notably, overexpression of Tip60 in conjunction with APP rescues these sleep–wake disturbances by inducing overelaboration of the sLNv synaptic terminals and increasing PDF levels, supporting a neuroprotective role for dTip60 in sLNv growth and function under APP-induced neurodegenerative conditions. Our findings reveal a novel mechanism for Tip60 mediated sleep–wake regulation via control of axonal growth and PDF levels within the sLNv-encompassing neural network and provide insight into epigenetic-based regulation of sleep disturbances observed in neurodegenerative diseases like Alzheimer’s disease. PMID:22982579

  19. Calculation of the transverse parton distribution functions at next-to-next-to-leading order

    NASA Astrophysics Data System (ADS)

    Gehrmann, Thomas; Lübbert, Thomas; Yang, Li Lin

    2014-06-01

    We describe the perturbative calculation of the transverse parton distribution functions in all partonic channels up to next-to-next-to-leading order based on a gauge invariant operator definition. We demonstrate the cancellation of light-cone divergences and show that universal process-independent transverse parton distribution functions can be obtained through a refactorization. Our results serve as the first explicit higher-order calculation of these functions starting from first principles, and can be used to perform next-to-next-to-next-to-leading logarithmic q T resummation for a large class of processes at hadron colliders.

  20. A Generalized Framework for Reduced-Order Modeling of a Wind Turbine Wake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Nicholas; Viggiano, Bianca; Calaf, Marc

    A reduced-order model for a wind turbine wake is sought from large eddy simulation data. Fluctuating velocity fields are combined in the correlation tensor to form the kernel of the proper orthogonal decomposition (POD). Proper orthogonal decomposition modes resulting from the decomposition represent the spatially coherent turbulence structures in the wind turbine wake; eigenvalues delineate the relative amount of turbulent kinetic energy associated with each mode. Back-projecting the POD modes onto the velocity snapshots produces dynamic coefficients that express the amplitude of each mode in time. A reduced-order model of the wind turbine wake (wakeROM) is defined through a seriesmore » of polynomial parameters that quantify mode interaction and the evolution of each POD mode coefficients. The resulting system of ordinary differential equations models the wind turbine wake composed only of the large-scale turbulent dynamics identified by the POD. Tikhonov regularization is used to recalibrate the dynamical system by adding additional constraints to the minimization seeking polynomial parameters, reducing error in the modeled mode coefficients. The wakeROM is periodically reinitialized with new initial conditions found by relating the incoming turbulent velocity to the POD mode coefficients through a series of open-loop transfer functions. The wakeROM reproduces mode coefficients to within 25.2%, quantified through the normalized root-mean-square error. A high-level view of the modeling approach is provided as a platform to discuss promising research directions, alternate processes that could benefit stability and efficiency, and desired extensions of the wakeROM.« less

  1. The NASA Aircraft VOrtex Spacing System (AVOSS): Concept Demonstration Results and Future Direction

    NASA Technical Reports Server (NTRS)

    Rutishauser, David K.; OConnor, Cornelius J.

    2004-01-01

    Since the late 1990s the national airspace system has been recognized as approaching a capacity crisis. In the light of this condition, industry, government, user organizations, and educational institutions have been working on procedural and technological solutions to the problem. One aspect of system operations that holds potential for improvement is the separation criteria applied to aircraft for wake vortex avoidance. These criteria, applied when operations are conducted under instrument flight rules (IFR), were designed to represent safe spacing under weather conditions conducive to the longest wake hazards. It is well understood that wake behavior is dependent on meteorological conditions as well as the physical parameters of the generating aircraft. Under many ambient conditions, such as moderate crosswinds or turbulence, wake hazard durations are substantially reduced. To realize this reduction NASA has developed a proof-of-concept Aircraft VOrtex Spacing System (AVOSS). Successfully demonstrated in a realtime field demonstration during July 2000 at the Dallas Ft. Worth International Airport (DFW), AVOSS is a novel integration of weather sensors, wake sensors, and analytical wake prediction algorithms. AVOSS provides dynamic wake separation criteria that are a function of the ambient weather conditions for a particular airport, and the predicted wake behavior under those conditions. Wake sensing subsystems provide safety checks and validation for the predictions. The AVOSS was demonstrated in shadow mode; no actual spacing changes were applied to aircraft. This paper briefly reviews the system architecture and operation, reports the latest performance results from the DFW deployment, and describes the future direction of the project.

  2. Chronic sleep curtailment, even without extended (>16-h) wakefulness, degrades human vigilance performance.

    PubMed

    McHill, Andrew W; Hull, Joseph T; Wang, Wei; Czeisler, Charles A; Klerman, Elizabeth B

    2018-06-05

    Millions of individuals routinely remain awake for more than 18 h daily, which causes performance decrements. It is unknown if these functional impairments are the result of that extended wakefulness or from the associated shortened sleep durations. We therefore examined changes in objective reaction time performance and subjective alertness in a 32-d inpatient protocol in which participants were scheduled to wakefulness durations below 16 h while on a 20-h "day," with randomization into standard sleep:wake ratio (1:2) or chronic sleep restriction (CSR) ratio (1:3.3) conditions. This protocol allowed determination of the contribution of sleep deficiency independent of extended wakefulness, since individual episodes of wakefulness in the CSR condition were only 15.33 h in duration (less than the usual 16 h of wakefulness in a 24-h day) and sleep episodes were 4.67 h in duration each cycle. We found that chronic short sleep duration, even without extended wakefulness, doubled neurobehavioral reaction time performance and increased lapses of attention fivefold, yet did not uniformly decrease self-reported alertness. Further, these impairments in neurobehavioral performance were worsened during the circadian night and were not recovered during the circadian day, indicating that the deleterious effect from the homeostatic buildup of CSR is expressed even during the circadian promotion of daytime arousal. These findings reveal a fundamental aspect of human biology: Chronic insufficient sleep duration equivalent to 5.6 h of sleep opportunity per 24 h impairs neurobehavioral performance and self-assessment of alertness, even without extended wakefulness.

  3. Nonlinear Kinetic Instabilities in Plasma Wakes

    NASA Astrophysics Data System (ADS)

    Hutchinson, I. H.; Haakonsen, C. B.

    2015-12-01

    Relative motion of a plasma and an embedded perturbing solid objectproduces a plasma wake, which is kinetically unstable. For moons,asteroids, spacecraft, probes, and planets without a magnetosphere theresponse is dominantly electrostatic, although generally with abackground magnetic field. Using high-fidelity particle-in-cellsimulations, we have observed the development of kinetic instabilitiesand their non-linear consequences in representative wakes. We havealso explained the observations with semi-analytical non-lineartheory. The ion and electron distribution function shapes are stronglyperturbed in the wake region. The ions form two opposite beamsdirected inward along the guiding magnetic field, in part because ofthe attraction of the wake's electric potential well. The electrondistribution forms a notch or dimple (of reduced phase space density)localized in velocity to orbits that dwell near the wake axis (becauseof repulsion). Those orbits are de-energized by cross-field drift downthe potential-energy ridge. The resulting Langmuir instability spawnselectron holes. The holes that move faster than the ion beams areaccelerated out of the wake by its electrostatic field without growingsubstantially. Some holes, however, remain in the wake at essentiallyzero parallel velocity. They grow, as a result of the same mechanismthat formed the notch: cross-field drift from a lower to a higherdensity. When the density rises by a factor of order two or three,they grow large enough to perturb the ions, tap their free energy, anddisrupt the ion streams well before they would become ion-ionunstable. Crucially, these processes depend strongly on theion/electron mass ratio and require close to physical ratio (1836) insimulations, to reveal their characteristics. Electron holes arisingfrom these processes may be widely present and observable in spaceplasma wakes.

  4. Sleep-wake profiles predict longitudinal changes in manic symptoms and memory in young people with mood disorders.

    PubMed

    Robillard, Rébecca; Hermens, Daniel F; Lee, Rico S C; Jones, Andrew; Carpenter, Joanne S; White, Django; Naismith, Sharon L; Southan, James; Whitwell, Bradley; Scott, Elizabeth M; Hickie, Ian B

    2016-10-01

    Mood disorders are characterized by disabling symptoms and cognitive difficulties which may vary in intensity throughout the course of the illness. Sleep-wake cycles and circadian rhythms influence emotional regulation and cognitive functions. However, the relationships between the sleep-wake disturbances experienced commonly by people with mood disorders and the longitudinal changes in their clinical and cognitive profile are not well characterized. This study investigated associations between initial sleep-wake patterns and longitudinal changes in mood symptoms and cognitive functions in 50 young people (aged 13-33 years) with depression or bipolar disorder. Data were based on actigraphy monitoring conducted over approximately 2 weeks and clinical and neuropsychological assessment. As part of a longitudinal cohort study, these assessments were repeated after a mean follow-up interval of 18.9 months. No significant differences in longitudinal clinical changes were found between the participants with depression and those with bipolar disorder. Lower sleep efficiency was predictive of longitudinal worsening in manic symptoms (P = 0.007). Shorter total sleep time (P = 0.043) and poorer circadian rhythmicity (P = 0.045) were predictive of worsening in verbal memory. These findings suggest that some sleep-wake and circadian disturbances in young people with mood disorders may be associated with less favourable longitudinal outcomes, notably for subsequent manic symptoms and memory difficulties. © 2016 European Sleep Research Society.

  5. Longitudinal and transverse right ventricular function in pulmonary hypertension: cardiovascular magnetic resonance imaging study from the ASPIRE registry

    PubMed Central

    Rajaram, Smitha; Capener, Dave; Elliot, Charlie; Condliffe, Robin; Wild, Jim M.; Kiely, David G.

    2015-01-01

    Abstract Right ventricular (RV) function is a strong predictor of outcome in cardiovascular diseases. Two components of RV function, longitudinal and transverse motion, have been investigated in pulmonary hypertension (PH). However, their individual clinical significance remains uncertain. The aim of this study was to determine the factors associated with transverse and longitudinal RV motion in patients with PH. In 149 treatment-naive patients with PH and 16 patients with suspected PH found to have mean pulmonary arterial pressure of <20 mmHg, cardiovascular magnetic resonance imaging was performed within 24 hours of right heart catheterization. In patients with PH, fractional longitudinal motion (fractional tricuspid annulus to apex distance [f-TAAD]) was significantly greater than fractional transverse motion (fractional septum to free wall distance [f-SFD]; P = 0.002). In patients without PH, no significant difference between f-SFD and f-TAAD was identified (P = 0.442). Longitudinal RV motion was singularly associated with RV ejection fraction independent of age, invasive hemodynamics, and cardiac magnetic resonance measurements (P = 0.024). In contrast, transverse RV motion was independently associated with left ventricular eccentricity (P = 0.036) in addition to RV ejection fraction (P = 0.014). In conclusion, RV motion is significantly greater in the longitudinal direction in patients with PH, whereas patients without PH have equal contributions of transverse and longitudinal motion. Longitudinal RV motion is primarily associated with global RV pump function in PH. Transverse RV motion not only reflects global pump function but is independently influenced by ventricular interaction in patients with PH. PMID:26401257

  6. Longitudinal and transverse right ventricular function in pulmonary hypertension: cardiovascular magnetic resonance imaging study from the ASPIRE registry.

    PubMed

    Swift, Andrew J; Rajaram, Smitha; Capener, Dave; Elliot, Charlie; Condliffe, Robin; Wild, Jim M; Kiely, David G

    2015-09-01

    Right ventricular (RV) function is a strong predictor of outcome in cardiovascular diseases. Two components of RV function, longitudinal and transverse motion, have been investigated in pulmonary hypertension (PH). However, their individual clinical significance remains uncertain. The aim of this study was to determine the factors associated with transverse and longitudinal RV motion in patients with PH. In 149 treatment-naive patients with PH and 16 patients with suspected PH found to have mean pulmonary arterial pressure of <20 mmHg, cardiovascular magnetic resonance imaging was performed within 24 hours of right heart catheterization. In patients with PH, fractional longitudinal motion (fractional tricuspid annulus to apex distance [f-TAAD]) was significantly greater than fractional transverse motion (fractional septum to free wall distance [f-SFD]; P = 0.002). In patients without PH, no significant difference between f-SFD and f-TAAD was identified (P = 0.442). Longitudinal RV motion was singularly associated with RV ejection fraction independent of age, invasive hemodynamics, and cardiac magnetic resonance measurements (P = 0.024). In contrast, transverse RV motion was independently associated with left ventricular eccentricity (P = 0.036) in addition to RV ejection fraction (P = 0.014). In conclusion, RV motion is significantly greater in the longitudinal direction in patients with PH, whereas patients without PH have equal contributions of transverse and longitudinal motion. Longitudinal RV motion is primarily associated with global RV pump function in PH. Transverse RV motion not only reflects global pump function but is independently influenced by ventricular interaction in patients with PH.

  7. Markovian properties of wind turbine wakes within a 3x3 array

    NASA Astrophysics Data System (ADS)

    Melius, Matthew; Tutkun, Murat; Cal, Raúl Bayoán

    2012-11-01

    Wind turbine arrays have proven to be significant sources of renewable energy. Accurate projections of energy production is difficult to achieve because the wake of a wind turbine is highly intermittent and turbulent. Seeking to further the understanding of the downstream propagation of wind turbine wakes, a stochastic analysis of experimentally obtained turbulent flow data behind a wind turbine was performed. A 3x3 wind turbine array was constructed in the test section of a recirculating wind tunnel where X-wire anemometers were used to collect point velocity statistics. In this work, mathematics of the theory of Markovian processes are applied to obtain a statistical description of longitudinal velocity increments inside the turbine wake using conditional probability density functions. Our results indicate an existence of Markovian properties at scales on the order of the Taylor microscale, λ, which has also been observed and documented in different turbulent flows. This leads to characterization of the multi-point description of the wind turbine wakes using the most recent states of the flow.

  8. Subsidence of aircraft engine exhaust in the stratosphere: Implications for calculated ozone depletions

    NASA Technical Reports Server (NTRS)

    Rodriguez, J. M.; Shia, R.-L.; Ko, M. K. W.; Heisey, C. W.; Weistenstein, D. K.; Miake-Lye, R. C.; Kolb, C. E.

    1994-01-01

    The deposition altitude of nitrogen oxides and other exhaust species emitted by stratospheric aircraft is a crucial parameter in determining the impact of these emissions on stratospheric ozone. We have utilized a model for the wake of a High-Speed Civil Transport (HSCT) to estimate the enhancements in water and reductions in ozone in these wakes as a function of time. Radiative calculations indicate differential cooling rates as large as -5K/day at the beginning of the far-wake regime, mostly due to the enhanced water abundance. These cooling rates would imply a net sinking of the wakes of about 1.2 km after three days in the limit of no mixing. Calculated mid-latitude column ozone reductions due to emissions from a Mach 2.4 HSCT would then change from about -1% to -06%. However, more realistic calculations adopting moderate mixing for the wake reduce the net sinking to less than 0.2 km, making the impact of radiative subsidence negligible.

  9. Subsidence of aircraft engine exhaust in the stratosphere: Implications for calculated ozone depletions

    NASA Astrophysics Data System (ADS)

    Rodríguez, J. M.; Shia, R.-L.; Ko, M. K. W.; Heisey, C. W.; Weistenstein, D. K.; Miake-Lye, R. C.; Kolb, C. E.

    1994-01-01

    The deposition altitude of nitrogen oxides and other exhaust species emitted by stratospheric aircraft is a crucial parameter in determining the impact of these emissions on stratospheric ozone. We have utilized a model for the wake of a High-Speed Civil Transport (HSCT) to estimate the enhancements in water and reductions in ozone in these wakes as a function of time. Radiative calculations indicate differential cooling rates as large as -5K/day at the beginning of the far-wake regime, mostly due to the enhanced water abundance. These cooling rates would imply a net sinking of the wakes of about 1.2 km after three days in the limit of no mixing. Calculated mid-latitude column ozone reductions due to emissions from a Mach 2.4 HSCT would then change from about -1% to -0.6%. However, more realistic calculations adopting moderate mixing for the wake reduce the net sinking to less than 0.2 km, making the impact of radiative subsidence negligible.

  10. Preliminary rotor wake measurements with a laser velocimeter

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.; Rhodes, D. B.; Meyers, J. F.

    1983-01-01

    A laser velocimeter (LV) was used to determine rotor wake characteristics. The effect of various fuselage widths and rotor-fuselage spacings on time averaged and detailed time dependent rotor wake velocity characteristics was defined. Definition of time dependent velocity characteristics was attempted with the LV by associating a rotor azimuth position with each velocity measurement. Results were discouraging in that no apparent time dependent velocity characteristics could be discerned from the LV measurements. Since the LV is a relatively new instrument in the rotor wake measurement field, the cause of this lack of periodicity is as important as the basic research objectives. An attempt was made to identify the problem by simulated acquisition of LV-type data for a predicted rotor wake velocity time history. Power spectral density and autocorrelation function estimation techniques were used to substantiate the conclusion that the primary cause of the lack of time dependent velocity characteristics was the nonstationary flow condition generated by the periodic turbulence level that currently exists in the open throat configuration of the wind tunnel.

  11. SRC: Smart Reminder Clock

    NASA Astrophysics Data System (ADS)

    Kasim, Shahreen; Hafit, Hanayanti; Leong, Tan Hua; Hashim, Rathiah; Ruslai, Husni; Jahidin, Kamaruzzaman; Syafwan Arshad, Mohammad

    2016-11-01

    Nowadays, some people facing the problem to wake up in the morning. This was result to absence of the classes, meetings, and even exams. The aim of this project is to develop an android application that can force the user to wake up. The method used in this application are pedometer and Short Message Service (SMS) function. This application need the user to take their smartphone and walk about 10 steps to disable it, when the alarm clock is activated. After that, when the alarm clock was rang, this alarm application has automatically send a message to the users’ friends or parents phone to wake them up.

  12. Jet axes and universal transverse-momentum-dependent fragmentation

    NASA Astrophysics Data System (ADS)

    Neill, Duff; Scimemi, Ignazio; Waalewijn, Wouter J.

    2017-04-01

    We study the transverse momentum spectrum of hadrons in jets. By measuring the transverse momentum with respect to a judiciously chosen axis, we find that this observable is insensitive to (the recoil of) soft radiation. Furthermore, for small transverse momenta we show that the effects of the jet boundary factorize, leading to a new transverse-momentum-dependent (TMD) fragmentation function. In contrast to the usual TMD fragmentation functions, it does not involve rapidity divergences and is universal in the sense that it is independent of the type of process and number of jets. These results directly apply to sub-jets instead of hadrons. We discuss potential applications, which include studying nuclear modification effects in heavy-ion collisions and identifying boosted heavy resonances.

  13. Proteomic profiling of the rat cerebral cortex in sleep and waking.

    PubMed

    Cirelli, C; Pfister-Genskow, M; McCarthy, D; Woodbury, R; Tononi, G

    2009-09-01

    Transcriptomic studies have shown that hundreds of genes change their expression levels across the sleep/waking cycle, and found that waking-related and sleep-related mRNAs belong to different functional categories. Proteins, however, rather than DNA or RNA, carry out most of the cellular functions, and direct measurements of protein levels and activity are required to assess the effects of behavioral states on the overall functional state of the cell. Here we used surface-enhanced laser desorption-ionization (SELDI), followed by time-of-flight mass spectrometry, to obtain a large-scale profiling of the proteins in the rat cerebral cortex whose expression is affected by sleep, spontaneous waking, short (6 hours) and long (7 days) sleep deprivation. Each of the 94 cortical samples was profiled in duplicate on 4 different ProteinChip Array surfaces using 2 different matrix molecules. Overall, 1055 protein peaks were consistently detected in cortical samples and 15 candidate biomarkers were selected for identification based on significant changes in multiple conditions (conjunction analysis): 8 "sleep" peaks, 4 "waking" peaks, and 4 "long sleep deprivation" peaks. Four candidate biomarkers were purified and positively identified. The 3353 Da candidate sleep marker was identified as the 30 amino acid C-terminal fragment of rat histone H4. This region encompasses the osteogenic growth peptide, but a possible link between sleep and this peptide remains highly speculative. Two peaks associated with short and long sleep deprivation were identified as hemoglobin alpha1/2 and beta, respectively, while another peak associated with long sleep deprivation was identified as cytochrome C. The upregulation of hemoglobins and cytochrome C may be part of a cellular stress response triggered by even short periods of sleep loss.

  14. Novel insights in cough and breathing patterns of patients with idiopathic pulmonary fibrosis performing repeated 24-hour-respiratory polygraphies.

    PubMed

    Schertel, Anke; Funke-Chambour, Manuela; Geiser, Thomas; Brill, Anne-Kathrin

    2017-11-13

    The main symptoms of patients with idiopathic pulmonary fibrosis (IPF) are cough and dyspnea. IPF leads to a restrictive lung disorder impacting daytime and nocturnal breathing patterns. In this pilot study we assessed the course of day- and nighttime respiration, oxygenation, and cough over a period of 8 months as well as differences between wakefulness and sleep in IPF patients. Repetitive 24-h respiratory polygraphies (RP) and pulmonary function tests were performed at baseline and after 3, 4, 7 and 8 months. Cough-index, oxygenation parameters (SpO2, time with SpO2 < 90%, desaturation index), respiratory rate and heart rate were assessed for differences between wakefulness and sleep. The first and the last RP were compared to identify changes of these parameters over time. Statistical analyses were performed with Wilcoxon signed rank tests. Nine IPF patients (8 male, median age 67 years (IQR 60, 77) with 37 valid 24-h RPs were included. Eight patients (88.9%) received antifibrotic treatment. Cough was more prevalent during wakefulness with a median cough-index of 14.8/h (IQR 10.9, 16.8) and 1.6/h (IQR 1.3-2.8) during sleep, p = 0.0039. Oxygenation parameters showed no difference, while respiratory- and heart rate were significantly higher during wakefulness. Despite stable pulmonary function tests over 8 months, the initially elevated respiratory rate increased further during wakefulness (baseline RR median 25.7/min (IQR 19.8, 26.6) vs. RR median 32.2/min (IQR 26.5, 40.9) at follow-up, p = 0.0273). The other respiratory parameters remained stable over time. Cough in IPF patients is more prevalent during wakefulness than during sleep. Further studies with a larger sample size and longer a follow-up period are needed to evaluate the role of the respiratory rate during wakefulness as a potential clinical follow up parameter in IPF.

  15. Consciousness in waking and dreaming: the roles of neuronal oscillation and neuromodulation in determining similarities and differences.

    PubMed

    Kahn, D; Pace-Schott, E F; Hobson, J A

    1997-05-01

    State-dependent aspects of consciousness are explored with particular attention to waking and dreaming. First, those phenomenological differences between waking and dreaming that have been established through subjective reports are reviewed. These differences are robustly expressed in most aspects of consciousness including perception, attention, memory, emotion, orientation, and thought. Next, the roles of high frequency neuronal oscillation and neuromodulation are explored in waking and rapid eye movement sleep, the stage of sleep with which the most intense dreaming is associated. The high frequency neuronal oscillations serve similar functions in the wake and rapid eye movement states sleep but neuromodulation is very different in the two states. The collective high frequency oscillatory activity gives coherence to spatially separate neurons but, because of the different neuromodulation, the binding of sensory input in the wake state is very different from the binding of internally perceived input during rapid eye movement sleep. An explanatory model is presented which states that neuromodulation, as well as input source and brain activation level differentiate states of the brain, while the self-organized collective neuronal oscillations unify consciousness via long range correlations.

  16. State-dependent metabolic partitioning and energy conservation: A theoretical framework for understanding the function of sleep.

    PubMed

    Schmidt, Markus H; Swang, Theodore W; Hamilton, Ian M; Best, Janet A

    2017-01-01

    Metabolic rate reduction has been considered the mechanism by which sleep conserves energy, similar to torpor or hibernation. This mechanism of energy savings is in conflict with the known upregulation (compared to wake) of diverse functions during sleep and neglects a potential role in energy conservation for partitioning of biological operations by behavioral state. Indeed, energy savings as derived from state-dependent resource allocations have yet to be examined. A mathematical model is presented based on relative rates of energy deployment for biological processes upregulated during either wake or sleep. Using this model, energy savings from sleep-wake cycling over constant wakefulness is computed by comparing stable limit cycles for systems of differential equations. A primary objective is to compare potential energy savings derived from state-dependent metabolic partitioning versus metabolic rate reduction. Additionally, energy conservation from sleep quota and the circadian system are also quantified in relation to a continuous wake condition. As a function of metabolic partitioning, our calculations show that coupling of metabolic operations with behavioral state may provide comparatively greater energy savings than the measured decrease in metabolic rate, suggesting that actual energy savings derived from sleep may be more than 4-fold greater than previous estimates. A combination of state-dependent metabolic partitioning and modest metabolic rate reduction during sleep may enhance energy savings beyond what is achievable through metabolic partitioning alone; however, the relative contribution from metabolic partitioning diminishes as metabolic rate is decreased during the rest phase. Sleep quota and the circadian system further augment energy savings in the model. Finally, we propose that state-dependent resource allocation underpins both sleep homeostasis and the optimization of daily energy conservation across species. This new paradigm identifies an evolutionary selective advantage for the upregulation of central and peripheral biological processes during sleep, presenting a unifying construct to understand sleep function.

  17. Functional anatomy of the sleep-wakefulness cycle: wakefulness.

    PubMed

    Reinoso-Suárez, Fernando; de Andrés, Isabel; Garzón, Miguel

    2011-01-01

    Sleep is a necessary, diverse, periodic, and an active condition circadian and homeostatically regulated and precisely meshed with waking time into the sleep-wakefulness cycle (SWC). Photic retinal stimulation modulates the suprachiasmatic nucleus, which acts as the pacemaker for SWC rhythmicity. Both the light period and social cues adjust the internal clock, making the SWC a circadian, 24-h period in the adult human. Bioelectrical and behavioral parameters characterize the different phases of the SWC. For a long time, lesions and electrical stimulation of brain structures, as well as connection studies, were the main methods used to decipher the foundations of the functional anatomy of the SWC. That is why the first section of this review presents these early historical studies to then discuss the current state of our knowledge based on our understanding of the functional anatomy of the structures underlying the SWC. Supported by this description, we then present a detailed review and update of the structures involved in the phase of wakefulness (W), including their morphological, functional, and chemical characteristics, as well as their anatomical connections. The structures for W generation are known as the "ascending reticular activating system", and they keep and maintain the "thalamo-cerebral cortex unit" awake. This system originates from the neuronal groups located within the brainstem, hypothalamus, and basal forebrain, which use known neurotransmitters and whose neurons are more active during W than during the other SWC states. Thus, synergies among several of these neurotransmitters are necessary to generate the cortical and thalamic activation that is characteristic of the W state, with all the plastic qualities and nuances present in its different behavioral circumstances. Each one of the neurotransmitters exerts powerful influences on the information and cognitive processes as well as attentional, emotional, motivational, behavioral, and arousal states. The awake "thalamo-cerebral cortex unit" controls and adjusts the activation pattern through a top-down action on the subcortical cellular groups that are the origin of the "ascending reticular activating system".

  18. Sleep Related Changes in Blood Pressure in Hypocretin-Deficient Narcoleptic Mice

    PubMed Central

    Bastianini, Stefano; Silvani, Alessandro; Berteotti, Chiara; Elghozi, Jean-Luc; Franzini, Carlo; Lenzi, Pierluigi; Lo, Martire Viviana; Zoccoli, Giovanna

    2011-01-01

    Study Objectives: Although blood pressure during sleep and the difference in blood pressure between sleep and wakefulness carry prognostic information, little is known on their central neural mechanisms. Hypothalamic neurons releasing hypocretin (orexin) peptides control wake-sleep behavior and autonomic functions and are lost in narcolepsy-cataplexy. We investigated whether chronic lack of hypocretin signaling alters blood pressure during sleep. Design: Comparison of blood pressure as a function of the wake-sleep behavior between 2 different hypocretin-deficient mouse models and control mice with the same genetic background. Setting: N/A. Subjects: Hypocretin-ataxin3 transgenic mice with genetic ablation of hypocretin neurons (TG, n = 12); hypocretin gene knock-out mice (KO, n = 8); congenic wild-type controls (WT, n = 10). Interventions: Instrumentation with electrodes for sleep recordings and a telemetric blood pressure transducer. Measurements and Results: Blood pressure was significantly higher in either TG or KO than in WT during non–rapid eye movement sleep (NREMS; 4 ± 2 and 7 ± 2 mm Hg, respectively) and rapid eye movement sleep (REMS; 11 ± 2 and 12 ± 3 mm Hg, respectively), whereas it did not differ significantly between groups during wakefulness. Accordingly, the decrease in blood pressure between either NREMS or REMS and wakefulness was significantly blunted in TG and KO with respect to WT. Conclusions: Chronic lack of hypocretin signaling may entail consequences on blood pressure that are potentially adverse and that vary widely among wake-sleep states. Citation: Bastianini S; Silvani A; Berteotti C; Elghozi JL; Franzini C; Lenzi P; Lo Martire V; Zoccoli G. Sleep related changes in blood pressure in hypocretin-deficient narcoleptic mice. SLEEP 2011;34(2):213-218. PMID:21286242

  19. Sleep deprivation: Impact on cognitive performance

    PubMed Central

    Alhola, Paula; Polo-Kantola, Päivi

    2007-01-01

    Today, prolonged wakefulness is a widespread phenomenon. Nevertheless, in the field of sleep and wakefulness, several unanswered questions remain. Prolonged wakefulness can be due to acute total sleep deprivation (SD) or to chronic partial sleep restriction. Although the latter is more common in everyday life, the effects of total SD have been examined more thoroughly. Both total and partial SD induce adverse changes in cognitive performance. First and foremost, total SD impairs attention and working memory, but it also affects other functions, such as long-term memory and decision-making. Partial SD is found to influence attention, especially vigilance. Studies on its effects on more demanding cognitive functions are lacking. Coping with SD depends on several factors, especially aging and gender. Also interindividual differences in responses are substantial. In addition to coping with SD, recovering from it also deserves attention. Cognitive recovery processes, although insufficiently studied, seem to be more demanding in partial sleep restriction than in total SD. PMID:19300585

  20. Calculation of wakefields in 2D rectangular structures

    DOE PAGES

    Zagorodnov, I.; Bane, K. L. F.; Stupakov, G.

    2015-10-19

    We consider the calculation of electromagnetic fields generated by an electron bunch passing through a vacuum chamber structure that, in general, consists of an entry pipe, followed by some kind of transition or cavity, and ending in an exit pipe. We limit our study to structures having rectangular cross section, where the height can vary as function of longitudinal coordinate but the width and side walls remain fixed. For such structures, we derive a Fourier representation of the wake potentials through one-dimensional functions. A new numerical approach for calculating the wakes in such structures is proposed and implemented in themore » computer code echo(2d). The computation resource requirements for this approach are moderate and comparable to those for finding the wakes in 2D rotationally symmetric structures. Finally, we present numerical examples obtained with the new numerical code.« less

  1. Wake excited in plasma by an ultrarelativistic pointlike bunch

    DOE PAGES

    Stupakov, G.; Breizman, B.; Khudik, V.; ...

    2016-10-05

    We study propagation of a relativistic electron bunch through a cold plasma assuming that the transverse and longitudinal dimensions of the bunch are much smaller than the plasma collisionless skin depth. Treating the bunch as a point charge and assuming that its charge is small, we derive a simplified system of equations for the plasma electrons and show that, through a simple rescaling of variables, the bunch charge can be eliminated from the equations. The equations demonstrate an ion cavity formed behind the driver. They are solved numerically and the scaling of the cavity parameters with the driver charge ismore » obtained. As a result, a numerical solution for the case of a positively charged driver is also found.« less

  2. Electron energy boosting in laser-wake-field acceleration with external magnetic field Bapprox1 T and laser prepulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosokai, Tomonao; Zhidkov, Alexei; Yamazaki, Atsushi

    2010-03-22

    Hundred-mega-electron-volt electron beams with quasi-monoenergetic distribution, and a transverse geometrical emittance as small as approx0.02 pi mm mrad are generated by low power (7 TW, 45 fs) laser pulses tightly focused in helium gas jets in an external static magnetic field, Bapprox1 T. Generation of monoenergetic beams strongly correlates with appearance of a straight, at least 2 mm length plasma channel in a short time before the main laser pulse and with the energy of copropagating picosecond pedestal pulses (PPP). For a moderate energy PPP, the multiple or staged electron self-injection in the channel gives several narrow peaks in themore » electron energy distribution.« less

  3. Next-to-leading order weighted Sivers asymmetry in semi-inclusive deep inelastic scattering: three-gluon correlator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Lingyun; Prokudin, Alexei; Kang, Zhong-Bo

    2015-09-01

    We study the three-gluon correlation function contribution to the Sivers asymmetry in semi-inclusive deep inelastic scattering. We first establish the matching between the usual twist-3 collinear factorization approach and transverse momentum dependent factorization formalism for the moderate transverse momentum region. We then derive the so-called coefficient functions used in the usual TMD evolution formalism. Finally, we perform the next-to-leading order calculation for the transverse-momentum-weighted spin-dependent differential cross section, from which we identify the QCD collinear evolution of the twist-3 Qiu-Sterman function: the off-diagonal contribution from the three-gluon correlation functions.

  4. Transverse vetoes with rapidity cutoff in SCET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornig, Andrew; Kang, Daekyoung; Makris, Yiannis

    We consider di-jet production in hadron collisions where a transverse veto is imposed on radiation for (pseudo-)rapidities in the central region only, where this central region is defined with rapidity cutoff. For the case where the transverse measurement (e.g., transverse energy or min p T for jet veto) is parametrically larger relative to the typical transverse momentum beyond the cutoff, the cross section is insensitive to the cutoff parameter and is factorized in terms of collinear and soft degrees of freedom. The virtuality for these degrees of freedom is set by the transverse measurement, as in typical transverse-momentum dependent observablesmore » such as Drell-Yan, Higgs production, and the event shape broadening. This paper focuses on the other region, where the typical transverse momentum below and beyond the cutoff is of similar size. In this region the rapidity cutoff further resolves soft radiation into (u)soft and soft-collinear radiation with different rapidities but identical virtuality. This gives rise to rapidity logarithms of the rapidity cutoff parameter which we resum using renormalization group methods. We factorize the cross section in this region in terms of soft and collinear functions in the framework of soft-collinear effective theory, then further refactorize the soft function as a convolution of the (u)soft and soft-collinear functions. All these functions are calculated at one-loop order. As an example, we calculate a differential cross section for a specific partonic channel, qq ' → qq ' , for the jet shape angularities and show that the refactorization allows us to resum the rapidity logarithms and significantly reduce theoretical uncertainties in the jet shape spectrum.« less

  5. Transverse vetoes with rapidity cutoff in SCET

    DOE PAGES

    Hornig, Andrew; Kang, Daekyoung; Makris, Yiannis; ...

    2017-12-11

    We consider di-jet production in hadron collisions where a transverse veto is imposed on radiation for (pseudo-)rapidities in the central region only, where this central region is defined with rapidity cutoff. For the case where the transverse measurement (e.g., transverse energy or min p T for jet veto) is parametrically larger relative to the typical transverse momentum beyond the cutoff, the cross section is insensitive to the cutoff parameter and is factorized in terms of collinear and soft degrees of freedom. The virtuality for these degrees of freedom is set by the transverse measurement, as in typical transverse-momentum dependent observablesmore » such as Drell-Yan, Higgs production, and the event shape broadening. This paper focuses on the other region, where the typical transverse momentum below and beyond the cutoff is of similar size. In this region the rapidity cutoff further resolves soft radiation into (u)soft and soft-collinear radiation with different rapidities but identical virtuality. This gives rise to rapidity logarithms of the rapidity cutoff parameter which we resum using renormalization group methods. We factorize the cross section in this region in terms of soft and collinear functions in the framework of soft-collinear effective theory, then further refactorize the soft function as a convolution of the (u)soft and soft-collinear functions. All these functions are calculated at one-loop order. As an example, we calculate a differential cross section for a specific partonic channel, qq ' → qq ' , for the jet shape angularities and show that the refactorization allows us to resum the rapidity logarithms and significantly reduce theoretical uncertainties in the jet shape spectrum.« less

  6. Measurements of the vortex wakes of a subsonic and supersonic transport model in the 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Rossow, V. J.; Corsiglia, V. R.; Phillippe, J. J.

    1974-01-01

    The rolling moment induced on aircraft models in the wake of a model of a subsonic transport and of a supersonic transport was measured as a function of angle of attack for several configurations. The tests are described and an analysis of the data is given in this memorandum.

  7. Waking Up on the Wrong Side of the Bed: The Effects of Stress Anticipation on Working Memory in Daily Life.

    PubMed

    Hyun, Jinshil; Sliwinski, Martin J; Smyth, Joshua M

    2018-05-15

    The aim of this study was to examine the association between stress anticipated for the upcoming day and cognitive function later on that day, and how this relationship differed across age. A diverse adult community sample (N = 240, age 25-65 years) completed ecological momentary assessment (EMA) reports for 2 weeks on a smartphone; each day they completed a morning survey upon waking, beeped surveys at five times during a day, and an end-of-day survey. Morning and end-of-day surveys included questions to measure stress anticipation, and each beeped survey included measures of stressful events, followed by a spatial working memory (WM) task. Results from multilevel models indicated that stress anticipation reported upon waking, but not on the previous night, was associated with deficit in WM performance later that day; importantly, this effect was over and above the effect of EMA-reported stress. The detrimental effect of stress anticipation upon waking was invariant across age. These findings suggest that anticipatory processes can produce harmful effects on cognitive functioning that are independent of everyday stress experiences. This may identify an important avenue to mitigate everyday cognitive lapses among older adults.

  8. Genetic and Anatomical Basis of the Barrier Separating Wakefulness and Anesthetic-Induced Unresponsiveness

    PubMed Central

    Hung, Hsiao-Tung; Koh, Kyunghee; Sowcik, Mallory; Sehgal, Amita; Kelz, Max B.

    2013-01-01

    A robust, bistable switch regulates the fluctuations between wakefulness and natural sleep as well as those between wakefulness and anesthetic-induced unresponsiveness. We previously provided experimental evidence for the existence of a behavioral barrier to transitions between these states of arousal, which we call neural inertia. Here we show that neural inertia is controlled by processes that contribute to sleep homeostasis and requires four genes involved in electrical excitability: Sh, sss, na and unc79. Although loss of function mutations in these genes can increase or decrease sensitivity to anesthesia induction, surprisingly, they all collapse neural inertia. These effects are genetically selective: neural inertia is not perturbed by loss-of-function mutations in all genes required for the sleep/wake cycle. These effects are also anatomically selective: sss acts in different neurons to influence arousal-promoting and arousal-suppressing processes underlying neural inertia. Supporting the idea that anesthesia and sleep share some, but not all, genetic and anatomical arousal-regulating pathways, we demonstrate that increasing homeostatic sleep drive widens the neural inertial barrier. We propose that processes selectively contributing to sleep homeostasis and neural inertia may be impaired in pathophysiological conditions such as coma and persistent vegetative states. PMID:24039590

  9. Transverse radius dependence for transverse velocity and elliptic flow in intermediate energy HIC

    NASA Astrophysics Data System (ADS)

    Yan, Ting-Zhi; Li, Shan

    2011-05-01

    The mean transverse velocity and elliptic flow of light fragments (A <= 2) as a function of transverse radius are studied for 25 MeV/nucleon 64Cu+64Cu collisions with impact parameters 3-5 fm by the isospin-dependent quantum molecular dynamics model. By comparison between the in-plane and the out-of-plane transverse velocities, the elliptic flow dependence on the transverse radius can be understood qualitatively, and variation of the direction of the resultant force on the fragments can be investigated qualitatively.

  10. Effects of Surface Nonuniformities on the Mean Transverse Energy from Photocathodes

    NASA Astrophysics Data System (ADS)

    Karkare, Siddharth; Bazarov, Ivan

    2015-08-01

    The performance of photoinjectors is limited by the lowest value of the mean transverse energy of the electrons obtained from photocathodes. The factors that influence the mean transverse energy are poorly understood. In this paper, we develop models to calculate the effect of spatial work-function variations and subnanometer-scale roughness and surface defects on the mean transverse energy. We show that these can limit the lowest value of mean transverse energy achieved and that atomically perfect surfaces will be required to further reduce the mean transverse energy obtained from photocathodes.

  11. Ship Air Wake Detection Using a Small Fixed Wing Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Phelps, David M.

    A ship's air wake is dynamically detected using an airborne inertial measurement unit (IMU) and global positioning system (GPS) attached to a fixed wing unmanned aerial system. A fixed wing unmanned aerial system (UAS) was flown through the air wake created by an underway 108 ft (32.9m) long research vessel in pre designated flight paths. The instrumented aircraft was used to validate computational fluid dynamic (CFD) simulations of naval ship air wakes. Computer models of the research ship and the fixed wing UAS were generated and gridded using NASA's TetrUSS software. Simulations were run using Kestrel, a Department of Defense CFD software to validate the physical experimental data collection method. Air wake simulations were run at various relative wind angles and speeds. The fixed wing UAS was subjected to extensive wind tunnel testing to generate a table of aerodynamic coefficients as a function of control surface deflections, angle of attack and sideslip. The wind tunnel experimental data was compared against similarly structured CFD experiments to validate the grid and model of fixed wing UAS. Finally, a CFD simulation of the fixed wing UAV flying through the generated wake was completed. Forces on the instrumented aircraft were calculated from the data collected by the IMU. Comparison of experimental and simulation data showed that the fixed wing UAS could detect interactions with the ship air wake.

  12. Follow-on Low Noise Fan Aerodynamic Study

    NASA Technical Reports Server (NTRS)

    Heidegger, Nathan J.; Hall, Edward J.; Delaney, Robert A.

    1999-01-01

    The focus of the project was to investigate the effects of turbulence models on the prediction of rotor wake structures. The Advanced Ducted Propfan Analysis (ADPAC) code was modified through the incorporation of the Spalart-Allmaras one-equation turbulence model. Suitable test cases were solved numerically using ADPAC employing the Spalart-Allmaras turbulence model and another prediction code for comparison. A near-wall spacing study was also completed to determine the adequate spacing of the first computational cell off the wall. Solutions were also collected using two versions of the algebraic Baldwin-Lomax turbulence model in ADPAC. The effects of the turbulence model on the rotor wake definition was examined by obtaining ADPAC solutions for the Low Noise Fan rotor-only steady-flow case using the standard algebraic Baldwin-Lomax turbulence model, a modified version of the Baldwin-Lomax turbulence model and the one-equation Spalart-Allmaras turbulence model. The results from the three different turbulence modeling techniques were compared with each other and the available experimental data. These results include overall rotor performance, spanwise exit profiles, and contours of axial velocity taken along constant axial locations and along blade-to-blade surfaces. Wake characterizations were also performed on the experimental and ADPAC predicted results including the definition of a wake correlation function. Correlations were evaluated for wake width and wake depth. Similarity profiles of the wake shape were also compared between all numerical solutions and experimental data.

  13. Power law versus exponential state transition dynamics: application to sleep-wake architecture.

    PubMed

    Chu-Shore, Jesse; Westover, M Brandon; Bianchi, Matt T

    2010-12-02

    Despite the common experience that interrupted sleep has a negative impact on waking function, the features of human sleep-wake architecture that best distinguish sleep continuity versus fragmentation remain elusive. In this regard, there is growing interest in characterizing sleep architecture using models of the temporal dynamics of sleep-wake stage transitions. In humans and other mammals, the state transitions defining sleep and wake bout durations have been described with exponential and power law models, respectively. However, sleep-wake stage distributions are often complex, and distinguishing between exponential and power law processes is not always straightforward. Although mono-exponential distributions are distinct from power law distributions, multi-exponential distributions may in fact resemble power laws by appearing linear on a log-log plot. To characterize the parameters that may allow these distributions to mimic one another, we systematically fitted multi-exponential-generated distributions with a power law model, and power law-generated distributions with multi-exponential models. We used the Kolmogorov-Smirnov method to investigate goodness of fit for the "incorrect" model over a range of parameters. The "zone of mimicry" of parameters that increased the risk of mistakenly accepting power law fitting resembled empiric time constants obtained in human sleep and wake bout distributions. Recognizing this uncertainty in model distinction impacts interpretation of transition dynamics (self-organizing versus probabilistic), and the generation of predictive models for clinical classification of normal and pathological sleep architecture.

  14. Nonlinear dynamics and intermittency in a turbulent reacting wake with density ratio as bifurcation parameter

    NASA Astrophysics Data System (ADS)

    Suresha, Suhas; Sujith, R. I.; Emerson, Benjamin; Lieuwen, Tim

    2016-10-01

    The flame or flow behavior of a turbulent reacting wake is known to be fundamentally different at high and low values of flame density ratio (ρu/ρb ), as the flow transitions from globally stable to unstable. This paper analyzes the nonlinear dynamics present in a bluff-body stabilized flame, and identifies the transition characteristics in the wake as ρu/ρb is varied over a Reynolds number (based on the bluff-body lip velocity) range of 1000-3300. Recurrence quantification analysis (RQA) of the experimentally obtained time series of the flame edge fluctuations reveals that the time series is highly aperiodic at high values of ρu/ρb and transitions to increasingly correlated or nearly periodic behavior at low values. From the RQA of the transverse velocity time series, we observe that periodicity in the flame oscillations are related to periodicity in the flow. Therefore, we hypothesize that this transition from aperiodic to nearly periodic behavior in the flame edge time series is a manifestation of the transition in the flow from globally stable, convective instability to global instability as ρu/ρb decreases. The recurrence analysis further reveals that the transition in periodicity is not a sudden shift; rather it occurs through an intermittent regime present at low and intermediate ρu/ρb . During intermittency, the flow behavior switches between aperiodic oscillations, reminiscent of a globally stable, convective instability, and periodic oscillations, reminiscent of a global instability. Analysis of the distribution of the lengths of the periodic regions in the intermittent time series and the first return map indicate the presence of type-II intermittency.

  15. Sleep loss and structural plasticity.

    PubMed

    Areal, Cassandra C; Warby, Simon C; Mongrain, Valérie

    2017-06-01

    Wakefulness and sleep are dynamic states during which brain functioning is modified and shaped. Sleep loss is detrimental to many brain functions and results in structural changes localized at synapses in the nervous system. In this review, we present and discuss some of the latest observations of structural changes following sleep loss in some vertebrates and insects. We also emphasize that these changes are region-specific and cell type-specific and that, most importantly, these structural modifications have functional roles in sleep regulation and brain functions. Selected mechanisms driving structural modifications occurring with sleep loss are also discussed. Overall, recent research highlights that extending wakefulness impacts synapse number and shape, which in turn regulate sleep need and sleep-dependent learning/memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Sleep-Wake Functioning Along the Cancer Continuum: Focus Group Results From the Patient-Reported Outcomes Measurement Information System (PROMIS™)

    PubMed Central

    Flynn, Kathryn E.; Shelby, Rebecca A.; Mitchell, Sandra A.; Fawzy, Maria R.; Hardy, N. Chantelle; Husain, Aatif M.; Keefe, Francis J.; Krystal, Andrew D.; Porter, Laura S.; Reeve, Bryce B.; Weinfurt, Kevin P.

    2009-01-01

    Objective Cancer and its treatments disturb sleep-wake functioning; however, there is little information available on the characteristics and consequences of sleep problems associated with cancer. As part of an effort to improve measurement of sleep-wake functioning, we explored the scope of difficulties with sleep in a diverse group of patients diagnosed with cancer. Methods We conducted 10 focus groups with patients recruited from the Duke University tumor registry and oncology/hematology clinics. Separate groups were held with patients scheduled to begin or currently undergoing treatment for breast, prostate, lung, colorectal, hematological, and other cancer types and with patients who were in posttreatment follow-up. The content of the focus group discussions was transcribed and analyzed for major themes by independent coders. Results Participants reported causes of sleep disturbance common in other populations, such as pain and restless legs, but they also reported causes that may be unique to cancer populations, including abnormal dreams, anxiety about cancer diagnosis and recurrence, night sweats, and problems with sleep positioning. Many participants felt that sleep problems reduced their productivity, concentration, social interactions, and overall quality of life. Many also shared beliefs about the increased importance of sleep when fighting cancer. Conclusions The findings underscore the need for interventions that minimize the negative impact of cancer and its treatments on sleep. This study will inform efforts now underway to develop a patient-reported measure of sleep-wake functioning that reflects the breadth of concepts considered important by patients with cancer. PMID:20013938

  17. Sleep disturbance relates to neuropsychological functioning in late-life depression.

    PubMed

    Naismith, Sharon L; Rogers, Naomi L; Lewis, Simon J G; Terpening, Zoë; Ip, Tony; Diamond, Keri; Norrie, Louisa; Hickie, Ian B

    2011-07-01

    Sleep-wake disturbance in older people is a risk factor for depression onset and recurrence. The aim of this study was to determine if objective sleep-wake disturbance in late-life depression relates to neuropsychological functioning. Forty-four older patients with a lifetime history of major depression and 22 control participants underwent psychiatric, medical and neuropsychological assessments. Participants completed self-report sleep measures, sleep diaries and wore wrist actigraphy for two weeks. Outcome measures included sleep latency, the number and duration of nocturnal awakenings and the overall sleep efficiency. Patients with depression had a greater duration of nocturnal awakenings and poorer sleep efficiency, in comparison to control participants. Sleep disturbance in patients was associated with greater depression severity and later ages of depression onset. It also related to poorer psychomotor speed, poorer verbal and visual learning, poorer semantic fluency as well as poorer performance on tests of executive functioning. These relationships largely remained significant after controlling for depression and estimated apnoea severity. This sample had only mild levels of depression severity and results require replication in patients with moderate to severe depression. The inclusion of polysomnography and circadian markers would be useful to delineate the specific features of sleep-wake disturbance that are critical to cognitive performance. Sleep-wake disturbance in older patients with depression is related to neuropsychological functioning and to later ages of illness onset. This study suggests that common neurobiological changes may underpin these disease features, which may, in turn, warrant early identification and management. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Studies of Transverse Momentum Dependent Parton Distributions and Bessel Weighting

    NASA Astrophysics Data System (ADS)

    Gamberg, Leonard

    2015-04-01

    We present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. Advantages of employing Bessel weighting are that transverse momentum weighted asymmetries provide a means to disentangle the convolutions in the cross section in a model independent way. The resulting compact expressions immediately connect to work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions. As a test case, we apply the procedure to studies of the double longitudinal spin asymmetry in SIDIS using a dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations. Bessel weighting provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs. Work is supported by the U.S. Department of Energy under Contract No. DE-FG02-07ER41460.

  19. Studies of Transverse Momentum Dependent Parton Distributions and Bessel Weighting

    NASA Astrophysics Data System (ADS)

    Gamberg, Leonard

    2015-10-01

    We present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. Advantages of employing Bessel weighting are that transverse momentum weighted asymmetries provide a means to disentangle the convolutions in the cross section in a model independent way. The resulting compact expressions immediately connect to work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions. As a test case, we apply the procedure to studies of the double longitudinal spin asymmetry in SIDIS using a dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations. Bessel weighting provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs. Work is supported by the U.S. Department of Energy under Contract No. DE-FG02-07ER41460.

  20. How does tissue preparation affect skeletal muscle transverse isotropy?

    PubMed Central

    Wheatley, Benjamin B.; Odegard, Gregory M.; Kaufman, Kenton R.; Haut Donahue, Tammy L.

    2016-01-01

    The passive tensile properties of skeletal muscle play a key role in its physiological function. Previous research has identified conflicting reports of muscle transverse isotropy, with some data suggesting the longitudinal direction is stiffest, while others show the transverse direction is stiffest. Accurate constitutive models of skeletal muscle must be employed to provide correct recommendations for and observations of clinical methods. The goal of this work was to identify transversely isotropic tensile muscle properties as a function of post mortem handling. Six pairs of tibialis anterior muscles were harvested from Giant Flemish rabbits and split into two groups: fresh testing (within four hours post mortem), and non-fresh testing (subject to delayed testing and a freeze/thaw cycle). Longitudinal and transverse samples were removed from each muscle and tested to identify tensile modulus and relaxation behavior. Longitudinal non-fresh samples exhibited a higher initial modulus value and faster relaxation than longitudinal fresh, transverse fresh, and transverse rigor samples (p<0.05), while longitudinal fresh samples were less stiff at lower strain levels than longitudinal non-fresh, transverse fresh, and transverse non-fresh samples (p<0.05), but exhibited more nonlinear behavior. While fresh skeletal muscle exhibits a higher transverse modulus than longitudinal modulus, discrepancies in previously published data may be the result of a number of differences in experimental protocol. Constitutive modeling of fresh muscle should reflect these data by identifying the material as truly transversely isotropic and not as an isotropic matrix reinforced with fibers. PMID:27425557

  1. Ultra-low emittance electron beam generation using ionization injection in a plasma beatwave accelerator

    NASA Astrophysics Data System (ADS)

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Leemans, Wim

    2017-10-01

    Ultra-low emittance beams can be generated using ionization injection of electrons into a wakefield excited by a plasma beatwave accelerator. This all-optical method of electron beam generation uses three laser pulses of different colors. Two long-wavelength laser pulses, with frequency difference equal to the plasma frequency, resonantly drive a plasma wave without fully ionizing a gas. A short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the beating long-wavelength lasers, ionizes a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wakefield. Using the beating of long-wavelength pulses to generate the wakefield enables atomically-bound electrons to remain at low ionization potentials, reducing the required amplitude of the ionization pulse, and, hence, the initial transverse momentum and emittance of the injected electrons. An example is presented using two lines of a CO2 laser to form a plasma beatwave accelerator to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection. Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  2. Reduction of Wake-Stator Interaction Noise Using Passive Porosity

    NASA Technical Reports Server (NTRS)

    Tinetti, Ana F.; Kelly, Jeffrey J.; Thomas, Russell H.; Bauer, Steven X. S.

    2002-01-01

    The present study was conducted to assess the potential of Passive Porosity Technology as a mechanism to reduce interaction noise in turbomachinery by reducing the fluctuating forces acting on the vane surfaces. To do so, a typical fan stator airfoil was subjected to the effects of a transversely moving wake; time histories of the primitive aerodynamic variables, obtained from Computational Fluid Dynamics (CFD) solutions, were then input into an acoustic prediction code. This procedure was performed on the solid airfoil to obtain a baseline, and on a series of porous configurations in order to isolate those that yield maximum noise reductions without compromising the aerodynamic performance of the stator. It was found that communication between regions of high pressure differential - made possible by the use of passive porosity - is necessary to significantly alter the noise radiation pattern of the stator airfoil. In general, noise reductions were obtained for those configurations incorporating passive porosity in the region between x/c is approximately 0.15 on the suction side of the airfoil and x/c is approximately 0.20 on the pressure side. Reductions in overall radiated noise of approximately 1.0 dB were obtained. The noise benefit increased to about 2.5 dB when the effects of loading noise alone were considered.

  3. Betatron x-ray radiation from laser-plasma accelerators driven by femtosecond and picosecond laser systems

    NASA Astrophysics Data System (ADS)

    Albert, F.; Lemos, N.; Shaw, J. L.; King, P. M.; Pollock, B. B.; Goyon, C.; Schumaker, W.; Saunders, A. M.; Marsh, K. A.; Pak, A.; Ralph, J. E.; Martins, J. L.; Amorim, L. D.; Falcone, R. W.; Glenzer, S. H.; Moody, J. D.; Joshi, C.

    2018-05-01

    A comparative experimental study of betatron x-ray radiation from laser wakefield acceleration in the blowout and self-modulated regimes is presented. Our experiments use picosecond duration laser pulses up to 150 J (self-modulated regime) and 60 fs duration laser pulses up to 10 J (blowout regime), for plasmas with electronic densities on the order of 1019 cm-3. In the self-modulated regime, where betatron radiation has been very little studied compared to the blowout regime, electrons accelerated in the wake of the laser pulse are subject to both the longitudinal plasma and transverse laser electrical fields. As a result, their motion within the wake is relatively complex; consequently, the experimental and theoretical properties of the x-ray source based on self-modulation differ from the blowout regime of laser wakefield acceleration. In our experimental configuration, electrons accelerated up to about 250 MeV and betatron x-ray spectra with critical energies of about 10-20 keV and photon fluxes between 108 and 1010 photons/eV Sr are reported. Our experiments open the prospect of using betatron x-ray radiation for applications, and the source is competitive with current x-ray backlighting methods on multi-kilojoule laser systems.

  4. Self-propulsion of a pitching foil

    NASA Astrophysics Data System (ADS)

    Das, Anil; Shukla, Ratnesh; Govardhan, Raghuraman

    2017-11-01

    Undulatory motions serve as a fundamental mechanism for bio-locomotion at moderate and high Reynolds numbers. An understanding of the interactions between self-propelling undulatory motions and the surrounding fluid, not only provides insight into the efficiency of bio-locomotion, but also yields valuable pointers for the design of autonomous under-water and micro-aerial vehicles. Here, we investigate a simplified model of a self-propelling pitching foil that undergoes time-periodic oscillations about its quarter chord. We consider two-dimensional configurations in which the foil is free to propel along only longitudinal and both transverse and longitudinal directions. In both the configurations, the time-averaged self-propelling velocity increases monotonically with the Reynolds number Re (based on trailing edge speed and chord as the characteristic velocity and length). The rate of increase is particularly pronounced in the low Re regime (Re <400) over which the closely-spaced wake vortices dissipate within a few chord lengths. At moderate and high Re, the wake exhibits increasingly complex structure in both the configurations. For a fixed Re, the foil with a single translational degree of freedom propels at a higher speed for a higher input power requirement. Differences between the two configurations will be discussed within the context of undulatory self-propulsion observed in nature.

  5. Rotor noise due to blade-turbulence interaction

    NASA Astrophysics Data System (ADS)

    Ishimaru, K.

    1983-01-01

    The time-averaged intensity density function of the acoustic radiation from rotating blades is derived by replacing blades with rotating dipoles. This derivation is done under the following turbulent inflow conditions: turbulent ingestion with no inlet strut wakes, inflow turbulence elongation and contraction with no inlet strut wakes, and inlet strut wakes. Dimensional analysis reveals two non-dimensional parameters which play important roles in generating the blade-passing frequency tone and its multiples. The elongation and contraction of inflow turbulence has a strong effect on the generation of the blade-passing frequency tone and its multiples. Increasing the number of rotor blades widens the peak at the blade-passing frequency and its multiples. Increasing the rotational speed widens the peak under the condition that the non-dimensional parameter involving the rotational speed is fixed. The number of struts and blades should be chosen so that (the least common multiple of them)-(rotational speed) is in the cutoff range of Sears' function, in order to minimize the effect of the mean flow deficit on the time averaged intensity density function.

  6. A search for two types of transverse excitations in liquid polyvalent metals at ambient pressure: An ab initio molecular dynamics study of collective excitations in liquid Al, Tl and Ni

    NASA Astrophysics Data System (ADS)

    Bryk, Taras; Demchuk, Taras; Jakse, Noël; Wax, Jean-François

    2018-02-01

    Recent findings of pressure-induced emergence of unusual high-frequency contribution to transverse current spectral functions in several simple liquid metals at high pressures raised a question whether similar features can be observed in liquid metals at ambient conditions. We report here analysis of ab initio molecular dynamics-derived longitudinal (L) and transverse (T) current spectral functions and corresponding dispersions of collective excitations in liquid polyvalent metals Al, Tl, Ni. We have not found evidences of the second branch of high-frequency transverse modes in liquid Al and Ni, while in the case of liquid Tl they were clearly present in transverse dynamics. The vibrational density of states for liquid Tl has a pronounced high-frequency shoulder, which is located right in the frequency range of the second high-frequency transverse branch, while for liquid Al and Ni the vibrational density of states has only a weak indication of possible high-frequency shoulder. The origin of specific behavior of transverse excitations in liquid Tl is discussed.

  7. New Neuroscience Tools That Are Identifying the Sleep-Wake Circuit.

    PubMed

    Shiromani, Priyattam J; Peever, John H

    2017-04-01

    The complexity of the brain is yielding to technology. In the area of sleep neurobiology, conventional neuroscience tools such as lesions, cell recordings, c-Fos, and axon-tracing methodologies have been instrumental in identifying the complex and intermingled populations of sleep- and arousal-promoting neurons that orchestrate and generate wakefulness, NREM, and REM sleep. In the last decade, new technologies such as optogenetics, chemogenetics, and the CRISPR-Cas system have begun to transform how biologists understand the finer details associated with sleep-wake regulation. These additions to the neuroscience toolkit are helping to identify how discrete populations of brain cells function to trigger and shape the timing and transition into and out of different sleep-wake states, and how glia partner with neurons to regulate sleep. Here, we detail how some of the newest technologies are being applied to understand the neural circuits underlying sleep and wake. Published by Oxford University Press on behalf of Sleep Research Society (SRS) 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  8. Measurement of the longitudinal, transverse, and longitudinal-transverse structure functions in the {sup 2}H({ital e},{ital e}{prime}{ital p}){ital n} reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, D.; McIlvain, T.; Alarcon, R.

    1996-03-01

    We have separated the longitudinal ({ital f}{sub 00}), transverse ({ital f}{sub 11}), and longitudinal-transverse interference ({ital f}{sub 01}) structure functions in the {sup 2}H({ital e},{ital e}{prime}{ital p}){ital n} reaction at {ital q}{searrow}{parallel}{approx_equal} 400 MeV/{ital c} and {omega}{approx_equal}110 MeV. A nonrelativistic calculation which includes effects due to final state interactions, meson exchange currents, and isobar configurations agrees with the measured {ital f}{sub 11} and {ital f}{sub 01} but overpredicts {ital f}{sub 00} by 25{percent} (2{sigma}). The data are also compared to the results of previous structure function measurements. {copyright} {ital 1996 The American Physical Society.}

  9. Ultrastructural evidence for synaptic scaling across the wake/sleep cycle.

    PubMed

    de Vivo, Luisa; Bellesi, Michele; Marshall, William; Bushong, Eric A; Ellisman, Mark H; Tononi, Giulio; Cirelli, Chiara

    2017-02-03

    It is assumed that synaptic strengthening and weakening balance throughout learning to avoid runaway potentiation and memory interference. However, energetic and informational considerations suggest that potentiation should occur primarily during wake, when animals learn, and depression should occur during sleep. We measured 6920 synapses in mouse motor and sensory cortices using three-dimensional electron microscopy. The axon-spine interface (ASI) decreased ~18% after sleep compared with wake. This decrease was proportional to ASI size, which is indicative of scaling. Scaling was selective, sparing synapses that were large and lacked recycling endosomes. Similar scaling occurred for spine head volume, suggesting a distinction between weaker, more plastic synapses (~80%) and stronger, more stable synapses. These results support the hypothesis that a core function of sleep is to renormalize overall synaptic strength increased by wake. Copyright © 2017, American Association for the Advancement of Science.

  10. Numerical simulation of steady and unsteady viscous flow in turbomachinery using pressure based algorithm

    NASA Astrophysics Data System (ADS)

    Lakshminarayana, B.; Ho, Y.; Basson, A.

    1993-07-01

    The objective of this research is to simulate steady and unsteady viscous flows, including rotor/stator interaction and tip clearance effects in turbomachinery. The numerical formulation for steady flow developed here includes an efficient grid generation scheme, particularly suited to computational grids for the analysis of turbulent turbomachinery flows and tip clearance flows, and a semi-implicit, pressure-based computational fluid dynamics scheme that directly includes artificial dissipation, and is applicable to both viscous and inviscid flows. The values of these artificial dissipation is optimized to achieve accuracy and convergency in the solution. The numerical model is used to investigate the structure of tip clearance flows in a turbine nozzle. The structure of leakage flow is captured accurately, including blade-to-blade variation of all three velocity components, pitch and yaw angles, losses and blade static pressures in the tip clearance region. The simulation also includes evaluation of such quantities of leakage mass flow, vortex strength, losses, dominant leakage flow regions and the spanwise extent affected by the leakage flow. It is demonstrated, through optimization of grid size and artificial dissipation, that the tip clearance flow field can be captured accurately. The above numerical formulation was modified to incorporate time accurate solutions. An inner loop iteration scheme is used at each time step to account for the non-linear effects. The computation of unsteady flow through a flat plate cascade subjected to a transverse gust reveals that the choice of grid spacing and the amount of artificial dissipation is critical for accurate prediction of unsteady phenomena. The rotor-stator interaction problem is simulated by starting the computation upstream of the stator, and the upstream rotor wake is specified from the experimental data. The results show that the stator potential effects have appreciable influence on the upstream rotor wake. The predicted unsteady wake profiles are compared with the available experimental data and the agreement is good. The numerical results are interpreted to draw conclusions on the unsteady wake transport mechanism in the blade passage.

  11. Brain reactivity differentiates subjects with high and low dream recall frequencies during both sleep and wakefulness.

    PubMed

    Eichenlaub, Jean-Baptiste; Bertrand, Olivier; Morlet, Dominique; Ruby, Perrine

    2014-05-01

    The neurophysiological correlates of dreaming remain unclear. According to the "arousal-retrieval" model, dream encoding depends on intrasleep wakefulness. Consistent with this model, subjects with high and low dream recall frequency (DRF) report differences in intrasleep awakenings. This suggests a possible neurophysiological trait difference between the 2 groups. To test this hypothesis, we compared the brain reactivity (evoked potentials) of subjects with high (HR, N = 18) and low (LR, N = 18) DRF during wakefulness and sleep. During data acquisition, the subjects were presented with sounds to be ignored (first names randomly presented among pure tones) while they were watching a silent movie or sleeping. Brain responses to first names dramatically differed between the 2 groups during both sleep and wakefulness. During wakefulness, the attention-orienting brain response (P3a) and a late parietal response were larger in HR than in LR. During sleep, we also observed between-group differences at the latency of the P3a during N2 and at later latencies during all sleep stages. Our results demonstrate differences in the brain reactivity of HR and LR during both sleep and wakefulness. These results suggest that the ability to recall dreaming is associated with a particular cerebral functional organization, regardless of the state of vigilance.

  12. Dispositional mindfulness predicts attenuated waking salivary cortisol levels in cancer survivors: a latent growth curve analysis.

    PubMed

    Garland, Eric L; Beck, Anna C; Lipschitz, David L; Nakamura, Yoshio

    2015-06-01

    Cancer survivors experience significant stress and diminished well-being long after treatment. Dispositional mindfulness is linked with salutary coping with stress and enhanced well-being, with potentially beneficial effects on stress-related hormones. In the present study, we evaluated dispositional mindfulness as a predictor of changes in waking salivary cortisol levels among a sample of cancer survivors. Mindfulness, well-being, and saliva samples were collected at baseline and at 4- and 12-week follow-ups. Latent growth curve analysis was conducted to examine baseline dispositional mindfulness as a predictor of changes in waking salivary cortisol over time, and regression analyses examined associations between well-being and cortisol. Findings indicated that cancer survivors who reported lower baseline levels of dispositional mindfulness exhibited increases in waking cortisol over time, whereas those who reported higher baseline dispositional mindfulness showed comparatively stable waking cortisol over the study period. Furthermore, increases in waking cortisol were associated with decreased well-being over the study period. This study provides preliminary evidence that cancer survivors with higher levels of dispositional mindfulness may be buffered from deleterious changes in cortisol secretion. Enhanced dispositional mindfulness may promote salutary neuroendocrine function among cancer survivors and thereby improve well-being during the survivorship process.

  13. Choline acetyltransferase expression during periods of behavioral activity and across natural sleep-wake states in the basal forebrain.

    PubMed

    Greco, M A; McCarley, R W; Shiromani, P J

    1999-01-01

    The present study examined whether the expression of the messenger RNA encoding the protein responsible for acetylcholine synthesis is associated with sleep-wakefulness. Choline acetyltransferase messenger RNA levels were analysed using a semi-quantitative assay in which reverse transcription was coupled to complementary DNA amplification using the polymerase chain reaction. To examine the relationship between steady-state messenger RNA and behavioral activity, rats were killed during the day (4.00 p.m.) or night (4.00 a.m.), and tissue from the vertical and horizontal limbs of the diagonal bands of Broca was analysed. Choline acetyltransferase messenger RNA levels were higher during the day than during the night. The second study examined more closely the association between choline acetyltransferase messenger RNA levels and individual bouts of wakefulness, slow-wave sleep or rapid eye movement sleep. Choline acetyltransferase messenger RNA levels were low during wakefulness, intermediate in slow-wave sleep and high during rapid eye movement sleep. In contrast, protein activity, measured at a projection site of cholinergic neurons of the basal forebrain, was higher during wakefulness than during sleep. These findings suggest that choline acetyltransferase protein and messenger RNA levels exhibit an inverse relationship during sleep and wakefulness. The increased messenger RNA expression during sleep is consistent with a restorative function of sleep.

  14. Modeling resting-state functional networks when the cortex falls asleep: local and global changes.

    PubMed

    Deco, Gustavo; Hagmann, Patric; Hudetz, Anthony G; Tononi, Giulio

    2014-12-01

    The transition from wakefulness to sleep represents the most conspicuous change in behavior and the level of consciousness occurring in the healthy brain. It is accompanied by similarly conspicuous changes in neural dynamics, traditionally exemplified by the change from "desynchronized" electroencephalogram activity in wake to globally synchronized slow wave activity of early sleep. However, unit and local field recordings indicate that the transition is more gradual than it might appear: On one hand, local slow waves already appear during wake; on the other hand, slow sleep waves are only rarely global. Studies with functional magnetic resonance imaging also reveal changes in resting-state functional connectivity (FC) between wake and slow wave sleep. However, it remains unclear how resting-state networks may change during this transition period. Here, we employ large-scale modeling of the human cortico-cortical anatomical connectivity to evaluate changes in resting-state FC when the model "falls asleep" due to the progressive decrease in arousal-promoting neuromodulation. When cholinergic neuromodulation is parametrically decreased, local slow waves appear, while the overall organization of resting-state networks does not change. Furthermore, we show that these local slow waves are structured macroscopically in networks that resemble the resting-state networks. In contrast, when the neuromodulator decrease further to very low levels, slow waves become global and resting-state networks merge into a single undifferentiated, broadly synchronized network. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions

    NASA Astrophysics Data System (ADS)

    Hautmann, F.; Jung, H.; Krämer, M.; Mulders, P. J.; Nocera, E. R.; Rogers, T. C.; Signori, A.

    2014-12-01

    Transverse-momentum-dependent distributions (TMDs) are extensions of collinear parton distributions and are important in high-energy physics from both theoretical and phenomenological points of view. In this manual we introduce the library , a tool to collect transverse-momentum-dependent parton distribution functions (TMD PDFs) and fragmentation functions (TMD FFs) together with an online plotting tool, TMDplotter. We provide a description of the program components and of the different physical frameworks the user can access via the available parameterisations.

  16. TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions.

    PubMed

    Hautmann, F; Jung, H; Krämer, M; Mulders, P J; Nocera, E R; Rogers, T C; Signori, A

    Transverse-momentum-dependent distributions (TMDs) are extensions of collinear parton distributions and are important in high-energy physics from both theoretical and phenomenological points of view. In this manual we introduce the library [Formula: see text], a tool to collect transverse-momentum-dependent parton distribution functions (TMD PDFs) and fragmentation functions (TMD FFs) together with an online plotting tool, TMDplotter. We provide a description of the program components and of the different physical frameworks the user can access via the available parameterisations.

  17. Age-related changes in sleep-wake rhythm in dog.

    PubMed

    Takeuchi, Takashi; Harada, Etsumori

    2002-10-17

    To investigate a sleep-wake rhythm in aged dogs, a radio-telemetry monitoring was carried out for 24 h. Electrodes and telemetry device were surgically implanted in four aged dogs (16-18 years old) and four young dogs (3-4 years old). Electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG) were recorded simultaneously as parameters to determine vigilance states and an autonomic nervous function. Wakefulness, slow wave sleep (SWS) and paradoxical sleep (PS) were identified according to the EEG and EMG pattern. We also examined whether absolute powers and the low frequency-to-high frequency ratio (LF/HF) derived from the heart rate variability power spectrum could detect shifts in autonomic balance correlated with aging. The aged dogs showed a marked reduction of PS and a fragmentation of wakefulness in the daytime and a sleep disruption in the night. The pattern of 24 h sleep and waking was dramatically altered in the aged dog. It was characterized by an increase in the total amount of time spent in SWS during the daytime followed by an increasing of time spent in wakefulness during the night. Furthermore, LF/HF ratio showed a very low amplitude of variance throughout the day in the aged dog. These results suggest that the aged dog is a useful model to investigate sleep disorders in human such as daytime drowsiness, difficulties in sleep maintenance. The abnormality in sleep-wake cycle might be reflected by the altered autonomic balance in the aged dogs.

  18. Hypothalamic Tuberomammillary Nucleus Neurons: Electrophysiological Diversity and Essential Role in Arousal Stability.

    PubMed

    Fujita, Akie; Bonnavion, Patricia; Wilson, Miryam H; Mickelsen, Laura E; Bloit, Julien; de Lecea, Luis; Jackson, Alexander C

    2017-09-27

    Histaminergic (HA) neurons, found in the posterior hypothalamic tuberomammillary nucleus (TMN), extend fibers throughout the brain and exert modulatory influence over numerous physiological systems. Multiple lines of evidence suggest that the activity of HA neurons is important in the regulation of vigilance despite the lack of direct, causal evidence demonstrating its requirement for the maintenance of arousal during wakefulness. Given the strong correlation between HA neuron excitability and behavioral arousal, we investigated both the electrophysiological diversity of HA neurons in brain slices and the effect of their acute silencing in vivo in male mice. For this purpose, we first validated a transgenic mouse line expressing cre recombinase in histidine decarboxylase-expressing neurons ( Hdc -Cre) followed by a systematic census of the membrane properties of both HA and non-HA neurons in the ventral TMN (TMNv) region. Through unsupervised hierarchical cluster analysis, we found electrophysiological diversity both between TMNv HA and non-HA neurons, and among HA neurons. To directly determine the impact of acute cessation of HA neuron activity on sleep-wake states in awake and behaving mice, we examined the effects of optogenetic silencing of TMNv HA neurons in vivo We found that acute silencing of HA neurons during wakefulness promotes slow-wave sleep, but not rapid eye movement sleep, during a period of low sleep pressure. Together, these data suggest that the tonic firing of HA neurons is necessary for the maintenance of wakefulness, and their silencing not only impairs arousal but is sufficient to rapidly and selectively induce slow-wave sleep. SIGNIFICANCE STATEMENT The function of monoaminergic systems and circuits that regulate sleep and wakefulness is often disrupted as part of the pathophysiology of many neuropsychiatric disorders. One such circuit is the posterior hypothalamic histamine (HA) system, implicated in supporting wakefulness and higher brain function, but has been difficult to selectively manipulate owing to cellular heterogeneity in this region. Here we use a transgenic mouse to interrogate both the characteristic firing properties of HA neurons and their specific role in maintaining wakefulness. Our results demonstrate that the acute, cell type-specific silencing of HA neurons during wakefulness is sufficient to not only impair arousal but to rapidly and selectively induce slow-wave sleep. This work furthers our understanding of HA-mediated mechanisms that regulate behavioral arousal. Copyright © 2017 the authors 0270-6474/17/379575-19$15.00/0.

  19. Hypothalamic Tuberomammillary Nucleus Neurons: Electrophysiological Diversity and Essential Role in Arousal Stability

    PubMed Central

    Fujita, Akie; Mickelsen, Laura E.; Bloit, Julien

    2017-01-01

    Histaminergic (HA) neurons, found in the posterior hypothalamic tuberomammillary nucleus (TMN), extend fibers throughout the brain and exert modulatory influence over numerous physiological systems. Multiple lines of evidence suggest that the activity of HA neurons is important in the regulation of vigilance despite the lack of direct, causal evidence demonstrating its requirement for the maintenance of arousal during wakefulness. Given the strong correlation between HA neuron excitability and behavioral arousal, we investigated both the electrophysiological diversity of HA neurons in brain slices and the effect of their acute silencing in vivo in male mice. For this purpose, we first validated a transgenic mouse line expressing cre recombinase in histidine decarboxylase-expressing neurons (Hdc-Cre) followed by a systematic census of the membrane properties of both HA and non-HA neurons in the ventral TMN (TMNv) region. Through unsupervised hierarchical cluster analysis, we found electrophysiological diversity both between TMNv HA and non-HA neurons, and among HA neurons. To directly determine the impact of acute cessation of HA neuron activity on sleep–wake states in awake and behaving mice, we examined the effects of optogenetic silencing of TMNv HA neurons in vivo. We found that acute silencing of HA neurons during wakefulness promotes slow-wave sleep, but not rapid eye movement sleep, during a period of low sleep pressure. Together, these data suggest that the tonic firing of HA neurons is necessary for the maintenance of wakefulness, and their silencing not only impairs arousal but is sufficient to rapidly and selectively induce slow-wave sleep. SIGNIFICANCE STATEMENT The function of monoaminergic systems and circuits that regulate sleep and wakefulness is often disrupted as part of the pathophysiology of many neuropsychiatric disorders. One such circuit is the posterior hypothalamic histamine (HA) system, implicated in supporting wakefulness and higher brain function, but has been difficult to selectively manipulate owing to cellular heterogeneity in this region. Here we use a transgenic mouse to interrogate both the characteristic firing properties of HA neurons and their specific role in maintaining wakefulness. Our results demonstrate that the acute, cell type-specific silencing of HA neurons during wakefulness is sufficient to not only impair arousal but to rapidly and selectively induce slow-wave sleep. This work furthers our understanding of HA-mediated mechanisms that regulate behavioral arousal. PMID:28874450

  20. QCD evolution of the Sivers function

    NASA Astrophysics Data System (ADS)

    Aybat, S. M.; Collins, J. C.; Qiu, J. W.; Rogers, T. C.

    2012-02-01

    We extend the Collins-Soper-Sterman (CSS) formalism to apply it to the spin dependence governed by the Sivers function. We use it to give a correct numerical QCD evolution of existing fixed-scale fits of the Sivers function. With the aid of approximations useful for the nonperturbative region, we present the results as parametrizations of a Gaussian form in transverse-momentum space, rather than in the Fourier conjugate transverse coordinate space normally used in the CSS formalism. They are specifically valid at small transverse momentum. Since evolution has been applied, our results can be used to make predictions for Drell-Yan and semi-inclusive deep inelastic scattering at energies different from those where the original fits were made. Our evolved functions are of a form that they can be used in the same parton-model factorization formulas as used in the original fits, but now with a predicted scale dependence in the fit parameters. We also present a method by which our evolved functions can be corrected to allow for twist-3 contributions at large parton transverse momentum.

  1. Transversely Isotropic Hyperelastic Constitutive Model of Short Fiber Reinforced EPDM Based on Tensor Function

    NASA Astrophysics Data System (ADS)

    Feng, Q. L.; Li, C.; Liao, Y. F.

    2017-12-01

    Short fiber reinforced EPDM is a new kind of composite material used in solid rocket motor winding and coating. It has relatively large deformation under the small stress condition, and the physical non-linear characteristic is obvious. Due to the addition of fiber in the specific direction of the rubber, the macroscopic mechanical properties are expressed as transversely isotropic properties. In order to describe the mechanical behavior under the impact and vibration, the transversely isotropic hyperelastic constitutive model based on tensor function is proposed. The symmetry of the transversely isotropic incompressible material limits the stress tensor ‘ K ’ to be characterized as a function of 5 tensor invariants and 4 scalar invariants. The third power constitutive equations of the model give 12 independent elastic constants of the transversely isotropic nonlinear elastic material. The experimental results show that the non-zero elastic constants are different in the fiber direction and at the different strain rate. Number and value of adiabatic layer and related products R & D has a reference value.

  2. Extraction of quark transversity distribution and Collins fragmentation functions with QCD evolution

    DOE PAGES

    Kang, Zhong-Bo; Prokudin, Alexei; Sun, Peng; ...

    2016-01-13

    In this paper, we study the transverse momentum dependent (TMD) evolution of the Collins azimuthal asymmetries in e +e - annihilations and semi-inclusive hadron production in deep inelastic scattering (SIDIS) processes. All the relevant coefficients are calculated up to the next-to-leading logarithmic (NLL) order accuracy. By applying the TMD evolution at the approximate NLL order in the Collins- Soper-Sterman (CSS) formalism, we extract transversity distributions for u and d quarks and Collins fragmentation functions from current experimental data by a global analysis of the Collins asymmetries in back-to-back di-hadron productions in e +e - annihilations measured by BELLE and BABARmore » Collaborations and SIDIS data from HERMES, COMPASS, and JLab HALL A experiments. The impact of the evolution effects and the relevant theoretical uncertainties are discussed. We further discuss the TMD interpretation for our results, and illustrate the unpolarized quark distribution, transversity distribution, unpolarized quark fragmentation and Collins fragmentation functions depending on the transverse momentum and the hard momentum scale. Finally, we give predictions and discuss impact of future experiments.« less

  3. Extraction of quark transversity distribution and Collins fragmentation functions with QCD evolution

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo; Prokudin, Alexei; Sun, Peng; Yuan, Feng

    2016-01-01

    We study the transverse-momentum-dependent (TMD) evolution of the Collins azimuthal asymmetries in e+e- annihilations and semi-inclusive hadron production in deep inelastic scattering processes. All the relevant coefficients are calculated up to the next-to-leading-logarithmic-order accuracy. By applying the TMD evolution at the approximate next-to-leading-logarithmic order in the Collins-Soper-Sterman formalism, we extract transversity distributions for u and d quarks and Collins fragmentation functions from current experimental data by a global analysis of the Collins asymmetries in back-to-back dihadron productions in e+e- annihilations measured by BELLE and BABAR collaborations and semi-inclusive hadron production in deep inelastic scattering data from HERMES, COMPASS, and JLab HALL A experiments. The impact of the evolution effects and the relevant theoretical uncertainties are discussed. We further discuss the TMD interpretation for our results and illustrate the unpolarized quark distribution, transversity distribution, unpolarized quark fragmentation, and Collins fragmentation functions depending on the transverse momentum and the hard momentum scale. We make detailed predictions for future experiments and discuss their impact.

  4. Extraction of quark transversity distribution and Collins fragmentation functions with QCD evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Zhong-Bo; Prokudin, Alexei; Sun, Peng

    In this paper, we study the transverse momentum dependent (TMD) evolution of the Collins azimuthal asymmetries in e +e - annihilations and semi-inclusive hadron production in deep inelastic scattering (SIDIS) processes. All the relevant coefficients are calculated up to the next-to-leading logarithmic (NLL) order accuracy. By applying the TMD evolution at the approximate NLL order in the Collins- Soper-Sterman (CSS) formalism, we extract transversity distributions for u and d quarks and Collins fragmentation functions from current experimental data by a global analysis of the Collins asymmetries in back-to-back di-hadron productions in e +e - annihilations measured by BELLE and BABARmore » Collaborations and SIDIS data from HERMES, COMPASS, and JLab HALL A experiments. The impact of the evolution effects and the relevant theoretical uncertainties are discussed. We further discuss the TMD interpretation for our results, and illustrate the unpolarized quark distribution, transversity distribution, unpolarized quark fragmentation and Collins fragmentation functions depending on the transverse momentum and the hard momentum scale. Finally, we give predictions and discuss impact of future experiments.« less

  5. Non Benzodiazepines Hypnotics: Another Way to Induce Sleep

    DTIC Science & Technology

    2000-03-01

    caused by disruption environment and we feel intuitively that it must fulfil of circadian rhythm . Another factor that disrupts some restorative function...Many circadian rhythms are circadian rhythms is the conduct of nocturnal operations, linked tightly to our sleep/wake cycle. An adequate a current...The perfect hypnotic should act brain activity and metabolism (38). rapidly, have a short duration of action, not lead to Arousal and wakefulness seem

  6. Objective sleep disturbances are associated with greater waking resting-state connectivity between the retrosplenial cortex/ hippocampus and various nodes of the default mode network.

    PubMed

    Regen, Wolfram; Kyle, Simon D; Nissen, Christoph; Feige, Bernd; Baglioni, Chiara; Hennig, Jürgen; Riemann, Dieter; Spiegelhalder, Kai

    2016-08-01

    Psychological models highlight the bidirectional role of self-referential processing, introspection, worry and rumination in the development and maintenance of insomnia; however, little is known about the underlying neural substrates. Default mode network (DMN) functional connectivity has been previously linked to these cognitive processes. We used fMRI to investigate waking DMN functional connectivity in a well-characterized sample of patients with primary insomnia (PI) and good sleeper controls. We included 20 patients with PI (8 men and 12 women, mean age 42.7 ± 13.4 yr) and 20 controls (8 men and 12 women, mean age 44.1 ± 10.6 yr) in our study. While no between-group differences in waking DMN connectivity were observed, exploratory analyses across all participants suggested that greater waking connectivity between the retrosplenial cortex/hippocampus and various nodes of the DMN was associated with lower sleep efficiency, lower amounts of rapid eye movement sleep and greater sleep-onset latency. Owing to the cross-sectional nature of the study, conclusions about causality cannot be drawn. As sleep disturbances represent a transdiagnostic symptom that is characteristic of nearly all psychiatric disorders, our results may hold particular relevance to previous findings of increased DMN connectivity levels in patients with psychiatric disorders.

  7. Statistical physics approaches to quantifying sleep-stage transitions

    NASA Astrophysics Data System (ADS)

    Lo, Chung-Chuan

    Sleep can be viewed as a sequence of transitions in a very complex neuronal system. Traditionally, studies of the dynamics of sleep control have focused on the circadian rhythm of sleep-wake transitions or on the ultradian rhythm of the sleep cycle. However, very little is known about the mechanisms responsible for the time structure or even the statistics of the rapid sleep-stage transitions that appear without periodicity. I study the time dynamics of sleep-wake transitions for different species, including humans, rats, and mice, and find that the wake and sleep episodes exhibit completely different behaviors: the durations of wake episodes are characterized by a scale-free power-law distribution, while the durations of sleep episodes have an exponential distribution with a characteristic time scale. The functional forms of the distributions of the sleep and wake durations hold for human subjects of different ages and for subjects with sleep apnea. They also hold for all the species I investigate. Surprisingly, all species have the same power-law exponent for the distribution of wake durations, but the exponential characteristic time of the distribution of sleep durations changes across species. I develop a stochastic model which accurately reproduces our empirical findings. The model suggests that the difference between the dynamics of the sleep and wake states arises from the constraints on the number of microstates in the sleep-wake system. I develop a measure of asymmetry in sleep-stage transitions using a transition probability matrix. I find that both normal and sleep apnea subjects are characterized by two types of asymmetric sleep-stage transition paths, and that the sleep apnea group exhibits less asymmetry in the sleep-stage transitions.

  8. RGS Proteins and Gαi2 Modulate Sleep, Wakefulness, and Disruption of Sleep/ Wake States after Isoflurane and Sevoflurane Anesthesia.

    PubMed

    Zhang, Hao; Wheat, Heather; Wang, Peter; Jiang, Sha; Baghdoyan, Helen A; Neubig, Richard R; Shi, X Y; Lydic, Ralph

    2016-02-01

    This study tested the hypothesis that Regulators of G protein Signaling (RGS) proteins contribute to the regulation of wakefulness, non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep, and to sleep disruption caused by volatile anesthetics. The three groups used in this study included wild-type (WT; n = 7) mice and knock-in mice that were heterozygous (+/GS; n = 7) or homozygous (GS/GS; n = 7) for an RGS-insensitive allele that causes prolonged Gαi2 signaling. Mice were implanted with electrodes for recording sleep and conditioned for 1 week or more to sleep in the laboratory. Using within and between groups designs, 24-h recordings of wakefulness, NREM sleep, and REM sleep were compared across three interventions: (1) baseline (control) and after 3 h of being anesthetized with (2) isoflurane or (3) sevoflurane. Baseline recordings during the light phase revealed that relative to WT mice, homozygous RGS-insensitive (GS/GS) mice exhibit significantly increased wakefulness and decreased NREM and REM sleep. During the dark phase, these state-specific differences remained significant but reversed direction of change. After cessation of isoflurane and sevoflurane anesthesia there was a long-lasting and significant disruption of sleep and wakefulness. The durations of average episodes of wakefulness, NREM sleep, and REM sleep were significantly altered as a function of genotype and isoflurane and sevoflurane anesthesia. RGS proteins and Gαi2 play a significant role in regulating states of wakefulness, NREM sleep, and REM sleep. Genotype-specific differences demonstrate that RGS proteins modulate sleep disruption caused by isoflurane and sevoflurane anesthesia. The results also support the conclusion that isoflurane and sevoflurane anesthesia do not satisfy the homeostatic drive for sleep. © 2016 Associated Professional Sleep Societies, LLC.

  9. Rapidity dependence of proton cumulants and correlation functions

    DOE PAGES

    Bzdak, Adam; Koch, Volker

    2017-11-13

    The dependence of multiproton correlation functions and cumulants on the acceptance in rapidity and transverse momentum is studied. Here, we found that the preliminary data of various cumulant ratios are consistent, within errors, with rapidity and transverse momentum-independent correlation functions. But, rapidity correlations which moderately increase with rapidity separation between protons are slightly favored. We propose to further explore the rapidity dependence of multiparticle correlation functions by measuring the dependence of the integrated reduced correlation functions as a function of the size of the rapidity window.

  10. Rapidity dependence of proton cumulants and correlation functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzdak, Adam; Koch, Volker

    The dependence of multiproton correlation functions and cumulants on the acceptance in rapidity and transverse momentum is studied. Here, we found that the preliminary data of various cumulant ratios are consistent, within errors, with rapidity and transverse momentum-independent correlation functions. But, rapidity correlations which moderately increase with rapidity separation between protons are slightly favored. We propose to further explore the rapidity dependence of multiparticle correlation functions by measuring the dependence of the integrated reduced correlation functions as a function of the size of the rapidity window.

  11. Bound-nucleon response functions from the reaction /sup 40/Ca(e,e'p)/sup 39/K and nuclear-medium effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reffay-Pikeroen, D.; Bernheim, M.; Boffi, S.

    1988-02-29

    Longitudinal and transverse structure functions for the quasielastic reaction /sup 40/Ca(e,e'p)/sup 39/K/sup */ have been obtained. Their q dependences appear like those for free nucleons. However, the ratio of the longitudinal to transverse structure functions is found reduced by 30% relative to theoretical calculations.

  12. Linear instability in the wake of an elliptic wing

    NASA Astrophysics Data System (ADS)

    He, Wei; Tendero, Juan Ángel; Paredes, Pedro; Theofilis, Vassilis

    2017-12-01

    Linear global instability analysis has been performed in the wake of a low aspect ratio three-dimensional wing of elliptic cross section, constructed with appropriately scaled Eppler E387 airfoils. The flow field over the airfoil and in its wake has been computed by full three-dimensional direct numerical simulation at a chord Reynolds number of Rec=1750 and two angles of attack, {AoA}=0° and 5°. Point-vortex methods have been employed to predict the inviscid counterpart of this flow. The spatial BiGlobal eigenvalue problem governing linear small-amplitude perturbations superposed upon the viscous three-dimensional wake has been solved at several axial locations, and results were used to initialize linear PSE-3D analyses without any simplifying assumptions regarding the form of the trailing vortex system, other than weak dependence of all flow quantities on the axial spatial direction. Two classes of linearly unstable perturbations were identified, namely stronger-amplified symmetric modes and weaker-amplified antisymmetric disturbances, both peaking at the vortex sheet which connects the trailing vortices. The amplitude functions of both classes of modes were documented, and their characteristics were compared with those delivered by local linear stability analysis in the wake near the symmetry plane and in the vicinity of the vortex core. While all linear instability analysis approaches employed have delivered qualitatively consistent predictions, only PSE-3D is free from assumptions regarding the underlying base flow and should thus be employed to obtain quantitative information on amplification rates and amplitude functions in this class of configurations.

  13. The effects of turbulence on droplet drag and secondary droplet breakup

    NASA Technical Reports Server (NTRS)

    Song, Y.-H.; Coy, E.; Greenfield, S.; Ondas, M.; Prevish, T.; Spegar, T.; Santavicca, D.

    1994-01-01

    The objective of this research is to obtain an improved understanding of the behavior of droplets in vaporizing sprays, particularly under conditions typical of those in high pressure rocket sprays. Experiments are conducted in a variety of high pressure, high temperature, optically-accessible flow systems, including one which is capable of operation at pressures up to 70 atm, temperatures up to 600 K, gas velocities up to 30 m/sec and turbulence intensities up to 40 percent. Single droplets, 50 to 500 micron in diameter, are produced by an aerodynamic droplet generator and transversely injected into the flow. Measurements are made of the droplet position, size, velocity and temperature and of the droplet's vapor wake from which droplet drag, dispersion, heating, vaporization and breakup are characterized.

  14. A rational approach to the use of Prandtl's mixing length model in free turbulent shear flow calculations

    NASA Technical Reports Server (NTRS)

    Rudy, D. H.; Bushnell, D. M.

    1973-01-01

    Prandtl's basic mixing length model was used to compute 22 test cases on free turbulent shear flows. The calculations employed appropriate algebraic length scale equations and single values of mixing length constant for planar and axisymmetric flows, respectively. Good agreement with data was obtained except for flows, such as supersonic free shear layers, where large sustained sensitivity changes occur. The inability to predict the more gradual mixing in these flows is tentatively ascribed to the presence of a significant turbulence-induced transverse static pressure gradient which is neglected in conventional solution procedures. Some type of an equation for length scale development was found to be necessary for successful computation of highly nonsimilar flow regions such as jet or wake development from thick wall flows.

  15. Staging of laser-plasma accelerators

    DOE PAGES

    Steinke, S.; van Tilborg, J.; Benedetti, C.; ...

    2016-05-02

    We present results of an experiment where two laser-plasma-accelerator stages are coupled at a short distance by a plasma mirror. Stable electron beams from the first stage were used to longitudinally probe the dark-current-free, quasi-linear wakefield excited by the laser of the second stage. Changing the arrival time of the electron beam with respect to the second stage laser pulse allowed reconstruction of the temporal wakefield structure, determination of the plasma density, and inference of the length of the electron beam. The first stage electron beam could be focused by an active plasma lens to a spot size smaller thanmore » the transverse wake size at the entrance of the second stage. Furthermore, this permitted electron beam trapping, verified by a 100 MeV energy gain.« less

  16. Hydrodynamic function of dorsal fins in spiny dogfish and bamboo sharks during steady swimming.

    PubMed

    Maia, Anabela; Lauder, George V; Wilga, Cheryl D

    2017-11-01

    A key feature of fish functional design is the presence of multiple fins that allow thrust vectoring and redirection of fluid momentum to contribute to both steady swimming and maneuvering. A number of previous studies have analyzed the function of dorsal fins in teleost fishes in this context, but the hydrodynamic function of dorsal fins in freely swimming sharks has not been analyzed, despite the potential for differential functional roles between the anterior and posterior dorsal fins. Previous anatomical research has suggested a primarily stabilizing role for shark dorsal fins. We evaluated the generality of this hypothesis by using time-resolved particle image velocimetry to record water flow patterns in the wake of both the anterior and posterior dorsal fins in two species of freely swimming sharks: bamboo sharks ( Chiloscyllium plagiosum ) and spiny dogfish ( Squalus acanthias ). Cross-correlation analysis of consecutive images was used to calculate stroke-averaged mean longitudinal and lateral velocity components, and vorticity. In spiny dogfish, we observed a velocity deficit in the wake of the first dorsal fin and flow acceleration behind the second dorsal fin, indicating that the first dorsal fin experiences net drag while the second dorsal fin can aid in propulsion. In contrast, the wake of both dorsal fins in bamboo sharks displayed increased net flow velocity in the majority of trials, reflecting a thrust contribution to steady swimming. In bamboo sharks, fluid flow in the wake of the second dorsal fin had higher absolute average velocity than that for first dorsal fin, and this may result from a positive vortex interaction between the first and second dorsal fins. These data suggest that the first dorsal fin in spiny dogfish has primarily a stabilizing function, while the second dorsal fin has a propulsive function. In bamboo sharks, both dorsal fins can contribute thrust and should be considered as propulsive adjuncts to the body during steady swimming. The function of shark dorsal fins can thus differ considerably among fins and species, and is not limited to a stabilizing role. © 2017. Published by The Company of Biologists Ltd.

  17. Aerodynamic interference effects on tilting proprotor aircraft. [using the Green function method

    NASA Technical Reports Server (NTRS)

    Soohoo, P.; Morino, L.; Noll, R. B.; Ham, N. D.

    1977-01-01

    The Green's function method was used to study tilting proprotor aircraft aerodynamics with particular application to the problem of the mutual interference of the wing-fuselage-tail-rotor wake configuration. While the formulation is valid for fully unsteady rotor aerodynamics, attention was directed to steady state aerodynamics, which was achieved by replacing the rotor with the actuator disk approximation. The use of an actuator disk analysis introduced a mathematical singularity into the formulation; this problem was studied and resolved. The pressure distribution, lift, and pitching moment were obtained for an XV-15 wing-fuselage-tail rotor configuration at various flight conditions. For the flight configurations explored, the effects of the rotor wake interference on the XV-15 tilt rotor aircraft yielded a reduction in the total lift and an increase in the nose-down pitching moment. This method provides an analytical capability that is simple to apply and can be used to investigate fuselage-tail rotor wake interference as well as to explore other rotor design problem areas.

  18. Cholinergic Neurons in the Basal Forebrain Promote Wakefulness by Actions on Neighboring Non-Cholinergic Neurons: An Opto-Dialysis Study.

    PubMed

    Zant, Janneke C; Kim, Tae; Prokai, Laszlo; Szarka, Szabolcs; McNally, James; McKenna, James T; Shukla, Charu; Yang, Chun; Kalinchuk, Anna V; McCarley, Robert W; Brown, Ritchie E; Basheer, Radhika

    2016-02-10

    Understanding the control of sleep-wake states by the basal forebrain (BF) poses a challenge due to the intermingled presence of cholinergic, GABAergic, and glutamatergic neurons. All three BF neuronal subtypes project to the cortex and are implicated in cortical arousal and sleep-wake control. Thus, nonspecific stimulation or inhibition studies do not reveal the roles of these different neuronal types. Recent studies using optogenetics have shown that "selective" stimulation of BF cholinergic neurons increases transitions between NREM sleep and wakefulness, implicating cholinergic projections to cortex in wake promotion. However, the interpretation of these optogenetic experiments is complicated by interactions that may occur within the BF. For instance, a recent in vitro study from our group found that cholinergic neurons strongly excite neighboring GABAergic neurons, including the subset of cortically projecting neurons, which contain the calcium-binding protein, parvalbumin (PV) (Yang et al., 2014). Thus, the wake-promoting effect of "selective" optogenetic stimulation of BF cholinergic neurons could be mediated by local excitation of GABA/PV or other non-cholinergic BF neurons. In this study, using a newly designed opto-dialysis probe to couple selective optical stimulation with simultaneous in vivo microdialysis, we demonstrated that optical stimulation of cholinergic neurons locally increased acetylcholine levels and increased wakefulness in mice. Surprisingly, the enhanced wakefulness caused by cholinergic stimulation was abolished by simultaneous reverse microdialysis of cholinergic receptor antagonists into BF. Thus, our data suggest that the wake-promoting effect of cholinergic stimulation requires local release of acetylcholine in the basal forebrain and activation of cortically projecting, non-cholinergic neurons, including the GABAergic/PV neurons. Optogenetics is a revolutionary tool to assess the roles of particular groups of neurons in behavioral functions, such as control of sleep and wakefulness. However, the interpretation of optogenetic experiments requires knowledge of the effects of stimulation on local neurotransmitter levels and effects on neighboring neurons. Here, using a novel "opto-dialysis" probe to couple optogenetics and in vivo microdialysis, we report that optical stimulation of basal forebrain (BF) cholinergic neurons in mice increases local acetylcholine levels and wakefulness. Reverse microdialysis of cholinergic antagonists within BF prevents the wake-promoting effect. This important result challenges the prevailing dictum that BF cholinergic projections to cortex directly control wakefulness and illustrates the utility of "opto-dialysis" for dissecting the complex brain circuitry underlying behavior. Copyright © 2016 the authors 0270-6474/16/362058-11$15.00/0.

  19. Cholinergic Neurons in the Basal Forebrain Promote Wakefulness by Actions on Neighboring Non-Cholinergic Neurons: An Opto-Dialysis Study

    PubMed Central

    Zant, Janneke C.; Kim, Tae; Prokai, Laszlo; Szarka, Szabolcs; McNally, James; McKenna, James T.; Shukla, Charu; Yang, Chun; Kalinchuk, Anna V.; McCarley, Robert W.; Brown, Ritchie E.

    2016-01-01

    Understanding the control of sleep–wake states by the basal forebrain (BF) poses a challenge due to the intermingled presence of cholinergic, GABAergic, and glutamatergic neurons. All three BF neuronal subtypes project to the cortex and are implicated in cortical arousal and sleep–wake control. Thus, nonspecific stimulation or inhibition studies do not reveal the roles of these different neuronal types. Recent studies using optogenetics have shown that “selective” stimulation of BF cholinergic neurons increases transitions between NREM sleep and wakefulness, implicating cholinergic projections to cortex in wake promotion. However, the interpretation of these optogenetic experiments is complicated by interactions that may occur within the BF. For instance, a recent in vitro study from our group found that cholinergic neurons strongly excite neighboring GABAergic neurons, including the subset of cortically projecting neurons, which contain the calcium-binding protein, parvalbumin (PV) (Yang et al., 2014). Thus, the wake-promoting effect of “selective” optogenetic stimulation of BF cholinergic neurons could be mediated by local excitation of GABA/PV or other non-cholinergic BF neurons. In this study, using a newly designed opto-dialysis probe to couple selective optical stimulation with simultaneous in vivo microdialysis, we demonstrated that optical stimulation of cholinergic neurons locally increased acetylcholine levels and increased wakefulness in mice. Surprisingly, the enhanced wakefulness caused by cholinergic stimulation was abolished by simultaneous reverse microdialysis of cholinergic receptor antagonists into BF. Thus, our data suggest that the wake-promoting effect of cholinergic stimulation requires local release of acetylcholine in the basal forebrain and activation of cortically projecting, non-cholinergic neurons, including the GABAergic/PV neurons. SIGNIFICANCE STATEMENT Optogenetics is a revolutionary tool to assess the roles of particular groups of neurons in behavioral functions, such as control of sleep and wakefulness. However, the interpretation of optogenetic experiments requires knowledge of the effects of stimulation on local neurotransmitter levels and effects on neighboring neurons. Here, using a novel “opto-dialysis” probe to couple optogenetics and in vivo microdialysis, we report that optical stimulation of basal forebrain (BF) cholinergic neurons in mice increases local acetylcholine levels and wakefulness. Reverse microdialysis of cholinergic antagonists within BF prevents the wake-promoting effect. This important result challenges the prevailing dictum that BF cholinergic projections to cortex directly control wakefulness and illustrates the utility of “opto-dialysis” for dissecting the complex brain circuitry underlying behavior. PMID:26865627

  20. Expression of interferon-inducible chemokines and sleep/wake changes during early encephalitis in experimental African trypanosomiasis.

    PubMed

    Laperchia, Claudia; Tesoriero, Chiara; Seke-Etet, Paul F; La Verde, Valentina; Colavito, Valeria; Grassi-Zucconi, Gigliola; Rodgers, Jean; Montague, Paul; Kennedy, Peter G E; Bentivoglio, Marina

    2017-08-01

    Human African trypanosomiasis or sleeping sickness, caused by the parasite Trypanosoma brucei, leads to neuroinflammation and characteristic sleep/wake alterations. The relationship between the onset of these alterations and the development of neuroinflammation is of high translational relevance, but remains unclear. This study investigates the expression of interferon (IFN)-γ and IFN-inducible chemokine genes in the brain, and the levels of CXCL10 in the serum and cerebrospinal fluid prior to and during the encephalitic stage of trypanosome infection, and correlates these with sleep/wake changes in a rat model of the disease. The expression of genes encoding IFN-γ, CXCL9, CXCL10, and CXCL11 was assessed in the brain of rats infected with Trypanosoma brucei brucei and matched controls using semi-quantitative end-point RT-PCR. Levels of CXCL10 in the serum and cerebrospinal fluid were determined using ELISA. Sleep/wake states were monitored by telemetric recording. Using immunohistochemistry, parasites were found in the brain parenchyma at 14 days post-infection (dpi), but not at 6 dpi. Ifn-γ, Cxcl9, Cxcl10 and Cxcl11 mRNA levels showed moderate upregulation by 14 dpi followed by further increase between 14 and 21 dpi. CXCL10 concentration in the cerebrospinal fluid increased between 14 and 21 dpi, preceded by a rise in the serum CXCL10 level between 6 and 14 dpi. Sleep/wake pattern fragmentation was evident at 14 dpi, especially in the phase of wake predominance, with intrusion of sleep episodes into wakefulness. The results show a modest increase in Cxcl9 and Cxcl11 transcripts in the brain and the emergence of sleep/wake cycle fragmentation in the initial encephalitic stage, followed by increases in Ifn-γ and IFN-dependent chemokine transcripts in the brain and of CXCL10 in the cerebrospinal fluid. The latter parameter and sleep/wake alterations could provide combined humoral and functional biomarkers of the early encephalitic stage in African trypanosomiasis.

  1. Local Use-Dependent Sleep in Wakefulness Links Performance Errors to Learning

    PubMed Central

    Quercia, Angelica; Zappasodi, Filippo; Committeri, Giorgia; Ferrara, Michele

    2018-01-01

    Sleep and wakefulness are no longer to be considered as discrete states. During wakefulness brain regions can enter a sleep-like state (off-periods) in response to a prolonged period of activity (local use-dependent sleep). Similarly, during nonREM sleep the slow-wave activity, the hallmark of sleep plasticity, increases locally in brain regions previously involved in a learning task. Recent studies have demonstrated that behavioral performance may be impaired by off-periods in wake in task-related regions. However, the relation between off-periods in wake, related performance errors and learning is still untested in humans. Here, by employing high density electroencephalographic (hd-EEG) recordings, we investigated local use-dependent sleep in wake, asking participants to repeat continuously two intensive spatial navigation tasks. Critically, one task relied on previous map learning (Wayfinding) while the other did not (Control). Behaviorally awake participants, who were not sleep deprived, showed progressive increments of delta activity only during the learning-based spatial navigation task. As shown by source localization, delta activity was mainly localized in the left parietal and bilateral frontal cortices, all regions known to be engaged in spatial navigation tasks. Moreover, during the Wayfinding task, these increments of delta power were specifically associated with errors, whose probability of occurrence was significantly higher compared to the Control task. Unlike the Wayfinding task, during the Control task neither delta activity nor the number of errors increased progressively. Furthermore, during the Wayfinding task, both the number and the amplitude of individual delta waves, as indexes of neuronal silence in wake (off-periods), were significantly higher during errors than hits. Finally, a path analysis linked the use of the spatial navigation circuits undergone to learning plasticity to off periods in wake. In conclusion, local sleep regulation in wakefulness, associated with performance failures, could be functionally linked to learning-related cortical plasticity. PMID:29666574

  2. The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs

    PubMed Central

    Carhart-Harris, Robin L.; Leech, Robert; Hellyer, Peter J.; Shanahan, Murray; Feilding, Amanda; Tagliazucchi, Enzo; Chialvo, Dante R.; Nutt, David

    2014-01-01

    Entropy is a dimensionless quantity that is used for measuring uncertainty about the state of a system but it can also imply physical qualities, where high entropy is synonymous with high disorder. Entropy is applied here in the context of states of consciousness and their associated neurodynamics, with a particular focus on the psychedelic state. The psychedelic state is considered an exemplar of a primitive or primary state of consciousness that preceded the development of modern, adult, human, normal waking consciousness. Based on neuroimaging data with psilocybin, a classic psychedelic drug, it is argued that the defining feature of “primary states” is elevated entropy in certain aspects of brain function, such as the repertoire of functional connectivity motifs that form and fragment across time. Indeed, since there is a greater repertoire of connectivity motifs in the psychedelic state than in normal waking consciousness, this implies that primary states may exhibit “criticality,” i.e., the property of being poised at a “critical” point in a transition zone between order and disorder where certain phenomena such as power-law scaling appear. Moreover, if primary states are critical, then this suggests that entropy is suppressed in normal waking consciousness, meaning that the brain operates just below criticality. It is argued that this entropy suppression furnishes normal waking consciousness with a constrained quality and associated metacognitive functions, including reality-testing and self-awareness. It is also proposed that entry into primary states depends on a collapse of the normally highly organized activity within the default-mode network (DMN) and a decoupling between the DMN and the medial temporal lobes (which are normally significantly coupled). These hypotheses can be tested by examining brain activity and associated cognition in other candidate primary states such as rapid eye movement (REM) sleep and early psychosis and comparing these with non-primary states such as normal waking consciousness and the anaesthetized state. PMID:24550805

  3. The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs.

    PubMed

    Carhart-Harris, Robin L; Leech, Robert; Hellyer, Peter J; Shanahan, Murray; Feilding, Amanda; Tagliazucchi, Enzo; Chialvo, Dante R; Nutt, David

    2014-01-01

    Entropy is a dimensionless quantity that is used for measuring uncertainty about the state of a system but it can also imply physical qualities, where high entropy is synonymous with high disorder. Entropy is applied here in the context of states of consciousness and their associated neurodynamics, with a particular focus on the psychedelic state. The psychedelic state is considered an exemplar of a primitive or primary state of consciousness that preceded the development of modern, adult, human, normal waking consciousness. Based on neuroimaging data with psilocybin, a classic psychedelic drug, it is argued that the defining feature of "primary states" is elevated entropy in certain aspects of brain function, such as the repertoire of functional connectivity motifs that form and fragment across time. Indeed, since there is a greater repertoire of connectivity motifs in the psychedelic state than in normal waking consciousness, this implies that primary states may exhibit "criticality," i.e., the property of being poised at a "critical" point in a transition zone between order and disorder where certain phenomena such as power-law scaling appear. Moreover, if primary states are critical, then this suggests that entropy is suppressed in normal waking consciousness, meaning that the brain operates just below criticality. It is argued that this entropy suppression furnishes normal waking consciousness with a constrained quality and associated metacognitive functions, including reality-testing and self-awareness. It is also proposed that entry into primary states depends on a collapse of the normally highly organized activity within the default-mode network (DMN) and a decoupling between the DMN and the medial temporal lobes (which are normally significantly coupled). These hypotheses can be tested by examining brain activity and associated cognition in other candidate primary states such as rapid eye movement (REM) sleep and early psychosis and comparing these with non-primary states such as normal waking consciousness and the anaesthetized state.

  4. Sleep-Wake Disturbances in Sedentary Community-Dwelling Elders With Functional Limitations

    PubMed Central

    Vaz Fragoso, Carlos A.; Miller, Michael E.; Fielding, Roger A.; King, Abby C.; Kritchevsky, Stephen B.; McDermott, Mary M.; Myers, Valerie; Newman, Anne B.; Pahor, Marco; Gill, Thomas M.

    2014-01-01

    OBJECTIVES To evaluate sleep-wake disturbances in sedentary community-dwelling elders with functional limitations. DESIGN Cross-sectional. SETTING Lifestyle Interventions and Independence in Elder (LIFE) Study. PARTICIPANTS 1635 community-dwelling persons, mean age 78.9, who spent <20 minutes/week in the past month of regular physical activity and <125 minutes/week of moderate physical activity, and had a Short Physical Performance Battery (SPPB) score <10. MEASUREMENTS Mobility was evaluated by the 400-meter walk time (slow gait speed defined as <0.8 m/s) and SPPB score (≤7 defined moderate-to-severe mobility impairment). Physical inactivity was defined by sedentary time, as percent of accelerometry wear time with activity <100 counts/min); top quartile established high sedentary time. Sleep-wake disturbances were evaluated by the Insomnia Severity Index (ISI) (range 0–28; ≥8 defined insomnia), Epworth Sleepiness Scale (ESS) (range 0–24; ≥10 defined daytime drowsiness), Pittsburgh Sleep Quality Index (PSQI) (range 0–21; >5 defined poor sleep quality), and Berlin Questionnaire (high risk of sleep apnea). RESULTS Prevalence rates were 43.5% for slow gait speed and 44.7% for moderate-to-severe mobility impairment, with 77.0% of accelerometry wear time spent as sedentary time. Prevalence rates were 33.0% for insomnia, 18.1% for daytime drowsiness, 47.8% for poor sleep quality, and 32.9% for high risk of sleep apnea. Participants with insomnia, daytime drowsiness, and poor sleep quality had mean values of 12.1 for ISI, 12.5 for ESS, and 9.2 for PSQI, respectively. In adjusted models, measures of mobility and physical inactivity were generally not associated with sleep-wake disturbances, using continuous or categorical variables. CONCLUSION In a large sample of sedentary community-dwelling elders with functional limitations, sleep-wake disturbances were prevalent but only mildly severe, and were generally not associated with mobility impairment or physical inactivity. PMID:24889836

  5. The sleep of healthy people--a diary study

    NASA Technical Reports Server (NTRS)

    Monk, T. H.; Buysse, D. J.; Rose, L. R.; Hall, J. A.; Kupfer, D. J.

    2000-01-01

    To provide baseline data for various research studies at the University of Pittsburgh over a 10-year period, 266 healthy subjects (144 male, 122 female, aged 20-50 years) meeting certain criteria each completed a 14-night sleep diary. For each night, the diary allowed the subjective measurement of bedtime, wake time, time in bed (TIB), sleep efficiency, number of minutes of wake after sleep onset (WASO), alertness on awakening, and percentage of morning needing an alarm (or a person functioning as one). Weeknight versus weekend night differences in TIB (TIBdiff), weekday altertness, and reliance on alarms were examined as possible indicators of sleep debt. In addition, general descriptive data were tabulated. On average, bedtimes were at 23:48 and wake times at 07:23, yielding a mean TIB of 7 hours 35 minutes. As expected, bedtimes and wake times were later on weekend nights than on weeknights. Bedtimes were 26 minutes later, wake times 53 minutes later, yielding a mean weekend TIB increase of 27 minutes. Overall, subjects perceived their sleep latency to be 10.5 minutes, reported an average of one awakening during the night (with an average of 6.4 minutes of WASO), had a diary sleep efficiency of 96.3%, and awoke with an alterness rating of 69.5%. These variables differed little between weeknight and weekend nights. Subjects used an alarm (or a person functioning as an alarm) on 60.9% nights overall, 68.3% on weeknights, 42.5% on weekends. When TIBdiff was used as an estimate of sleep debt (comparing subjects with TIBdiff > 75 minutes with those with a TIBdiff < 30 minutes), the group with more "catch-up sleep" on weekends had shorter weeknight TIB durations (by about 24 minutes) and relied more on an alarm for weekday waking (by about 22%), indicating the possible utility of these variables as sleep debt indices.

  6. Pressure-induced emergence of unusually high-frequency transverse excitations in a liquid alkali metal: Evidence of two types of collective excitations contributing to the transverse dynamics at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryk, Taras; Lviv Polytechnic National University, 12 S. Bandera Street, UA-79013 Lviv; Ruocco, G.

    Unlike phonons in crystals, the collective excitations in liquids cannot be treated as propagation of harmonic displacements of atoms around stable local energy minima. The viscoelasticity of liquids, reflected in transition from the adiabatic to elastic high-frequency speed of sound and in absence of the long-wavelength transverse excitations, results in dispersions of longitudinal (L) and transverse (T) collective excitations essentially different from the typical phonon ones. Practically, nothing is known about the effect of high pressure on the dispersion of collective excitations in liquids, which causes strong changes in liquid structure. Here dispersions of L and T collective excitations inmore » liquid Li in the range of pressures up to 186 GPa were studied by ab initio simulations. Two methodologies for dispersion calculations were used: direct estimation from the peak positions of the L/T current spectral functions and simulation-based calculations of wavenumber-dependent collective eigenmodes. It is found that at ambient pressure, the longitudinal and transverse dynamics are well separated, while at high pressures, the transverse current spectral functions, density of vibrational states, and dispersions of collective excitations yield evidence of two types of propagating modes that contribute strongly to transverse dynamics. Emergence of the unusually high-frequency transverse modes gives evidence of the breakdown of a regular viscoelastic theory of transverse dynamics, which is based on coupling of a single transverse propagating mode with shear relaxation. The explanation of the observed high-frequency shift above the viscoelastic value is given by the presence of another branch of collective excitations. With the pressure increasing, coupling between the two types of collective excitations is rationalized within a proposed extended viscoelastic model of transverse dynamics.« less

  7. A new hydrodynamic prediction of the peak heat flux from horizontal cylinders in low speed upflow

    NASA Technical Reports Server (NTRS)

    Ungar, E. K.; Eichhorn, R.

    1988-01-01

    Flow-boiling data have been obtained for horizontal cylinders in saturated acetone, isopropanol, and water, yielding heat flux vs. wall superheat boiling curves for the organic liquids. A region of low speed upflow is identified in which long cylindrical bubbles break off from the wake with regular frequency. The Strouhal number of bubble breakoff is a function only of the Froude number in any liquid, and the effective wake thickness in all liquids is a function of the density ratio and the Froude number. A low speed flow boiling burnout prediction procedure is presented which yields accurate results in widely dissimilar liquids.

  8. High CO2/H+ dialysis in the caudal ventrolateral medulla (Loeschcke's area) increases ventilation in wakefulness.

    PubMed

    da Silva, Glauber S F; Li, Aihua; Nattie, Eugene

    2010-04-15

    Central chemoreception, the detection of CO(2)/H(+) within the brain and the resultant effect on ventilation, was initially localized at two areas on the ventrolateral medulla, one rostral (rVLM-Mitchell's) the other caudal (cVLM-Loeschcke's), by surface application of acidic solutions in anesthetized animals. Focal dialysis of a high CO(2)/H(+) artificial cerebrospinal fluid (aCSF) that produced a milder local pH change in unanesthetized rats (like that with a approximately 6.6mm Hg increase in arterial P(CO2)) delineated putative chemoreceptor regions for the rVLM at the retrotrapezoid nucleus and the rostral medullary raphe that function predominantly in wakefulness and sleep, respectively. Here we ask if chemoreception in the cVLM can be detected by mild focal stimulation and if it functions in a state dependent manner. At responsive sites just beneath Loeschcke's area, ventilation was increased by, on average, 17% (P<0.01) only in wakefulness. These data support our hypothesis that central chemoreception is a distributed property with some sites functioning in a state dependent manner. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Functions and Mechanism of Sleep in Flies and Mammals

    DTIC Science & Technology

    2005-02-01

    laboratory who is pursuing the aim. Aim 1: To identify the molecular targets of the wakefulness-promoting drug modafinil using forward genetics in...effects of many sleep modulating compounds are thought to be conserved. Our initial intention was to investigate the effects of Modafinil on fly sleep...Hendricks, J. C., Kirk, D., Panckeri, K., Miller, M. S., and Pack, A. I. (2003). Modafinil maintains waking in the fruit fly drosophila melanogaster. Sleep

  10. Sleep Duration Varies as a Function of Glutamate and GABA in Rat Pontine Reticular Formation

    PubMed Central

    Watson, Christopher J.; Lydic, Ralph; Baghdoyan, Helen A.

    2011-01-01

    The oral part of the pontine reticular formation (PnO) is a component of the ascending reticular activating system and plays a role in the regulation of sleep and wakefulness. The PnO receives glutamatergic and GABAergic projections from many brain regions that regulate behavioral state. Indirect, pharmacological evidence has suggested that glutamatergic and GABAergic signaling within the PnO alters traits that characterize wakefulness and sleep. No previous studies have simultaneously measured endogenous glutamate and GABA from rat PnO in relation to sleep and wakefulness. The present study utilized in vivo microdialysis coupled on-line to capillary electrophoresis with laser-induced fluorescence to test the hypothesis that concentrations of glutamate and GABA in the PnO vary across the sleep/wake cycle. Concentrations of glutamate and GABA were significantly higher during wakefulness than during NREM sleep and REM sleep. Regression analysis revealed that decreases in glutamate and GABA accounted for a significant portion of the variance in the duration of NREM sleep and REM sleep episodes. These data provide novel support for the hypothesis that endogenous glutamate and GABA in the PnO contribute to the regulation of sleep duration. PMID:21679185

  11. The temporal structure of behaviour and sleep homeostasis.

    PubMed

    Vyazovskiy, Vladyslav V; Tobler, Irene

    2012-01-01

    The amount and architecture of vigilance states are governed by two distinct processes, which occur at different time scales. The first, a slow one, is related to a wake/sleep dependent homeostatic Process S, which occurs on a time scale of hours, and is reflected in the dynamics of NREM sleep EEG slow-wave activity. The second, a fast one, is manifested in a regular alternation of two sleep states--NREM and REM sleep, which occur, in rodents, on a time scale of ~5-10 minutes. Neither the mechanisms underlying the time constants of these two processes--the slow one and the fast one, nor their functional significance are understood. Notably, both processes are primarily apparent during sleep, while their potential manifestation during wakefulness is obscured by ongoing behaviour. Here, we find, in mice provided with running wheels, that the two sleep processes become clearly apparent also during waking at the level of behavior and brain activity. Specifically, the slow process was manifested in the total duration of waking periods starting from dark onset, while the fast process was apparent in a regular occurrence of running bouts during the waking periods. The dynamics of both processes were stable within individual animals, but showed large interindividual variability. Importantly, the two processes were not independent: the periodic structure of waking behaviour (fast process) appeared to be a strong predictor of the capacity to sustain continuous wakefulness (slow process). The data indicate that the temporal organization of vigilance states on both the fast and the slow time scales may arise from a common neurophysiologic mechanism.

  12. Wind Farm Layout Optimization through a Crossover-Elitist Evolutionary Algorithm performed over a High Performing Analytical Wake Model

    NASA Astrophysics Data System (ADS)

    Kirchner-Bossi, Nicolas; Porté-Agel, Fernando

    2017-04-01

    Wind turbine wakes can significantly disrupt the performance of further downstream turbines in a wind farm, thus seriously limiting the overall wind farm power output. Such effect makes the layout design of a wind farm to play a crucial role on the whole performance of the project. An accurate definition of the wake interactions added to a computationally compromised layout optimization strategy can result in an efficient resource when addressing the problem. This work presents a novel soft-computing approach to optimize the wind farm layout by minimizing the overall wake effects that the installed turbines exert on one another. An evolutionary algorithm with an elitist sub-optimization crossover routine and an unconstrained (continuous) turbine positioning set up is developed and tested over an 80-turbine offshore wind farm over the North Sea off Denmark (Horns Rev I). Within every generation of the evolution, the wind power output (cost function) is computed through a recently developed and validated analytical wake model with a Gaussian profile velocity deficit [1], which has shown to outperform the traditionally employed wake models through different LES simulations and wind tunnel experiments. Two schemes with slightly different perimeter constraint conditions (full or partial) are tested. Results show, compared to the baseline, gridded layout, a wind power output increase between 5.5% and 7.7%. In addition, it is observed that the electric cable length at the facilities is reduced by up to 21%. [1] Bastankhah, Majid, and Fernando Porté-Agel. "A new analytical model for wind-turbine wakes." Renewable Energy 70 (2014): 116-123.

  13. Later endogenous circadian temperature nadir relative to an earlier wake time in older people

    NASA Technical Reports Server (NTRS)

    Duffy, J. F.; Dijk, D. J.; Klerman, E. B.; Czeisler, C. A.

    1998-01-01

    The contribution of the circadian timing system to the age-related advance of sleep-wake timing was investigated in two experiments. In a constant routine protocol, we found that the average wake time and endogenous circadian phase of 44 older subjects were earlier than that of 101 young men. However, the earlier circadian phase of the older subjects actually occurred later relative to their habitual wake time than it did in young men. These results indicate that an age-related advance of circadian phase cannot fully account for the high prevalence of early morning awakening in healthy older people. In a second study, 13 older subjects and 10 young men were scheduled to a 28-h day, such that they were scheduled to sleep at many circadian phases. Self-reported awakening from scheduled sleep episodes and cognitive throughput during the second half of the wake episode varied markedly as a function of circadian phase in both groups. The rising phase of both rhythms was advanced in the older subjects, suggesting an age-related change in the circadian regulation of sleep-wake propensity. We hypothesize that under entrained conditions, these age-related changes in the relationship between circadian phase and wake time are likely associated with self-selected light exposure at an earlier circadian phase. This earlier exposure to light could account for the earlier clock hour to which the endogenous circadian pacemaker is entrained in older people and thereby further increase their propensity to awaken at an even earlier time.

  14. Dysregulated diurnal cortisol pattern is associated with glucocorticoid resistance in women with major depressive disorder

    PubMed Central

    Jarcho, Michael R.; Slavich, George M.; Tylova-Stein, Hana; Wolkowitz, Owen M.; Burke, Heather M.

    2013-01-01

    Dysfunction of the hypothalamic–pituitary–adrenal (HPA) axis is believed to play a role in the pathophysiology of depression. To investigate mechanisms that may underlie this effect, we examined several indices of HPA axis function – specifically, diurnal cortisol slope, cortisol awakening response, and suppression of cortisol release following dexamethasone administration – in 26 pre-menopausal depressed women and 23 never depressed women who were matched for age and body mass index. Salivary cortisol samples were collected at waking, 30 min after waking, and at bedtime over three consecutive days. On the third day, immediately after the bedtime sample, participants ingested a 0.5 mg dexamethasone tablet; they then collected cortisol samples at waking and 30 min after waking the following morning. As predicted, depressed women exhibited flatter diurnal cortisol rhythms and more impaired suppression of cortisol following dexamethasone administration than non-depressed women over the three sampling days. In addition, flatter diurnal cortisol slopes were associated with reduced cortisol response to dexamethasone treatment, both for all women and for depressed women when considered separately. Finally, greater self-reported depression severity was associated with flatter diurnal cortisol slopes and with less dexamethasone-related cortisol suppression for depressed women. Depression in women thus appears to be characterized by altered HPA axis functioning, as indexed by flatter diurnal cortisol slopes and an associated impaired sensitivity of cortisol to dexamethasone. Given that altered HPA axis functioning has been implicated in several somatic conditions, the present findings may be relevant for understanding the pathophysiology of both depression and depression-related physical disease. PMID:23410758

  15. Time correlation functions of simple liquids: A new insight on the underlying dynamical processes

    NASA Astrophysics Data System (ADS)

    Garberoglio, Giovanni; Vallauri, Renzo; Bafile, Ubaldo

    2018-05-01

    Extensive molecular dynamics simulations of liquid sodium have been carried out to evaluate correlation functions of several dynamical quantities. We report the results of a novel analysis of the longitudinal and transverse correlation functions obtained by evaluating directly their self- and distinct contributions at different wavevectors k. It is easily recognized that the self-contribution remains close to its k → 0 limit, which turns out to be exactly the autocorrelation function of the single particle velocity. The wavevector dependence of the longitudinal and transverse spectra and their self- and distinct parts is also presented. By making use of the decomposition of the velocity autocorrelation spectrum in terms of longitudinal and transverse parts, our analysis is able to recognize the effect of different dynamical processes in different frequency ranges.

  16. Correction of the transverse discrepancy-induced spontaneous mandibular protrusion in Class II Division 1 adolescent patients.

    PubMed

    Yu, Yanfang; Wu, Mengjie; Chen, Xuepeng; Li, Wen

    2016-11-01

    A Class Il malocclusion is the most frequent sagittal skeletal disharmony presenting for orthodontic treatment. A transverse interarch discrepancy ITID) may be considered as a possible functional cause of a Class 11 relationship. The purpose of the present study was to determine transverse interarch width dimensions before and after orthodontic therapy and their possible relationship with increased mandibular projection following treatment. The sample included 40 adolescent patients who were divided into two groups, one possessing and one without a transverse discrepancy. Interarch width differences (including ICWD, IPWD, IMWD, IAWD) were measured before and after treatment, and Pogonion (Pog) to Nasion (NJ perpendicular was similarly measured in each group. The differences in arch and alveolar width dimensions between the two groups (including ICWD, IPWDI, IPWDII, IMWD, IAWD) before treatment were statistically significant (p < 0.05). A comparison of Pog to N perpendicular between the two groups showed that mandibular protrusion after treatment in the transverse discrepancy group was 2.6 ± 1.3 mm, while mandibular protrusion after treatment in the group without a transverse discrepancy was 0.6 ±0.3 mm. The statistical comparison showed that the differences were significant (p < 0.01). A transverse interarch discrepancy may have a functional relationship with mandible retrusion. If a transverse discrepancy is corrected via orthodontic treatment, the mandible may spontaneously protrude.

  17. Quasi-monoenergetic electron acceleration in relativistic laser-plasmas

    NASA Astrophysics Data System (ADS)

    Pukhov, Alexander; Gordienko, Sergei; Seredov, Vasili; Kostyukov, Igor

    2009-03-01

    Using Particle-in-Cell simulations as well as analytical theory we study electron acceleration in underdense plasmas both in the Bubble regime and in the weakly relativistic periodic wake fields. In the Bubble regime, electron trapping is taken as a function of the propagated distance. The number of trapped electrons depends on the effective phase velocity of the X-point at the rear of the Bubble. For the weakly relativistic periodic wakes, we show that the phase synchronism between the wake and the relativistic electrons can be maintained over very long distances when the plasma density is tapered properly. Moreover, one can use layered plasmas to control and improve the accelerated beam quality. To cite this article: A. Pukhov et al., C. R. Physique 10 (2009).

  18. Oscillations, neural computations and learning during wake and sleep.

    PubMed

    Penagos, Hector; Varela, Carmen; Wilson, Matthew A

    2017-06-01

    Learning and memory theories consider sleep and the reactivation of waking hippocampal neural patterns to be crucial for the long-term consolidation of memories. Here we propose that precisely coordinated representations across brain regions allow the inference and evaluation of causal relationships to train an internal generative model of the world. This training starts during wakefulness and strongly benefits from sleep because its recurring nested oscillations may reflect compositional operations that facilitate a hierarchical processing of information, potentially including behavioral policy evaluations. This suggests that an important function of sleep activity is to provide conditions conducive to general inference, prediction and insight, which contribute to a more robust internal model that underlies generalization and adaptive behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Age-related changes in neocortical high-voltage spindles and alpha EEG power during quiet waking in rats.

    PubMed

    Moyanova, Slavianka G; Kirov, Roumen K; Kortenska, Lidia V

    2002-04-01

    Age-related changes in neocortical high-voltage spindle (HVS) and in electroencephalographic (EEG) alpha power were examined in young (3.0 to 4.6 months), middle-aged (10.2 to 13.8 months), and old (21.5 to 24.0 months) male Wistar rats during quiet waking. Whereas the duration of quiet waking stage did not change as a function of age, a significant increase in HVS amount and EEG alpha peak power was observed in the middle-aged rats with only a tendency for a further enhancement in the old animals. An additional analysis showed that the elevation of alpha power is associated with age rather than with HVS activity.

  20. Middle-preserving pancreatectomy for advanced transverse colon cancer invading the duodenun and non-functioning endocrine tumor in the pancreatic tail.

    PubMed

    Noda, Hiroshi; Kato, Takaharu; Kamiyama, Hidenori; Toyama, Nobuyuki; Konishi, Fumio

    2011-02-01

    A 73-year-old female was referred to our hospital with a diagnosis of advanced transverse colon cancer with severe anemia and body weight loss. Preoperative evaluations, including colonoscopy, gastroduodenoscopy, and computed tomography, revealed not only a transverse colon cancer massively invading the duodenum, but also a non-functioning endocrine tumor in the pancreatic tail. We performed middle-preserving pancreatectomy (MPP) with right hemicolectomy for these tumors with a curative intent. After the resection, about 6 cm of the body of the pancreas was preserved, and signs of diabetes mellitus have not appeared. The postoperative course was complicated by a grade B pancreatic fistula, but this was successfully treated with conservative management. After a 33-day hospital stay, the patient returned to daily life without signs of pancreatic exocrine insufficiency. Although the long-term follow-up of the patient is indispensable, in this case, MPP might be able to lead to the curative resection of transverse colon cancer massively invading the duodenum and non-functioning endocrine tumor in the pancreatic tail with preservation of pancreatic function.

  1. Drosophila Neuropeptide F Signaling Independently Regulates Feeding and Sleep-Wake Behavior.

    PubMed

    Chung, Brian Y; Ro, Jennifer; Hutter, Sabine A; Miller, Kylie M; Guduguntla, Lakshmi S; Kondo, Shu; Pletcher, Scott D

    2017-06-20

    Proper regulation of sleep-wake behavior and feeding is essential for organismal health and survival. While previous studies have isolated discrete neural loci and substrates important for either sleep or feeding, how the brain is organized to coordinate both processes with respect to one another remains poorly understood. Here, we provide evidence that the Drosophila Neuropeptide F (NPF) network forms a critical component of both adult sleep and feeding regulation. Activation of NPF signaling in the brain promotes wakefulness and adult feeding, likely through its cognate receptor NPFR. Flies carrying a loss-of-function NPF allele do not suppress sleep following prolonged starvation conditions, suggesting that NPF acts as a hunger signal to keep the animal awake. NPF-expressing cells, specifically those expressing the circadian photoreceptor cryptochrome, are largely responsible for changes to sleep behavior caused by NPF neuron activation, but not feeding, demonstrating that different NPF neurons separately drive wakefulness and hunger. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Operational implications of some NACA/NASA rotary wing induced velocity studies

    NASA Technical Reports Server (NTRS)

    Heyson, H. H.

    1980-01-01

    Wind tunnel measurements show that the wake of a rotor, except at near-hovering speeds, is not like that of a propeller. The wake is more like that of a wing except that, because of the slow speeds, the wake velocities may be much greater. The helicopter can produce a wake hazard to following light aircraft that is disproportionately great compared to an equivalent fixed-wing aircraft. This hazard should be recognized by both pilots and airport controllers when operating in congested areas. Even simple momentum theory shows that, in autorotation and partial-power descent, the required power is a complex function of both airspeed and descent angle. The nonlinear characteristic, together with an almost total lack of usable instrumentation at low airspeeds, has led to numerous power-settling accidents. The same theory shows that there is a minimum forward speed at which a rotor can autorotate. Neglect of, or inadequate appraisal of this minimum speed has also led to numerous accidents. Ground effect and the problems it creates is discussed.

  3. Experimental investigation of the turbulent axisymmetric wake with rotation generated by a wind turbine

    NASA Astrophysics Data System (ADS)

    Dufresne, Nathaniel P.

    An experimental investigation of the axial and azimuthal (swirl) velocity field in the wake of a single 3-bladed wind turbine with rotor diameter of 0.91m was conducted, up to 20 diameters downstream. The turbine was positioned in the free stream, near the entrance of the 6m x 2.7m cross section of the University of New Hampshire (UNH) Flow Physics Facility. Velocity measurements were conducted at different rotor loading conditions with blade tip-speed ratios from 2.0 to 2.8. A Pitot-static tube and constant temperature hot-wire anemometer with a multi-wire sensor were used to measure velocity fields. An equilibrium similarity theory for the turbulent axisymmetric wake with rotation was outlined, and first evidence for a new scaling function for the mean swirling velocity component, Wmax ∝ x-1 ∝ U3/2o a was found; where W represents swirl, x represents downstream distance, and Uo, represents the centerline velocity deficit in the wake.

  4. Wind Plant Power Optimization through Yaw Control using a Parametric Model for Wake Effects -- A CFD Simulation Study

    DOE PAGES

    Gebraad, P. M. O.; Teeuwisse, F. W.; van Wingerden, J. W.; ...

    2016-01-01

    This article presents a wind plant control strategy that optimizes the yaw settings of wind turbines for improved energy production of the whole wind plant by taking into account wake effects. The optimization controller is based on a novel internal parametric model for wake effects, called the FLOw Redirection and Induction in Steady-state (FLORIS) model. The FLORIS model predicts the steady-state wake locations and the effective flow velocities at each turbine, and the resulting turbine electrical energy production levels, as a function of the axial induction and the yaw angle of the different rotors. The FLORIS model has a limitedmore » number of parameters that are estimated based on turbine electrical power production data. In high-fidelity computational fluid dynamics simulations of a small wind plant, we demonstrate that the optimization control based on the FLORIS model increases the energy production of the wind plant, with a reduction of loads on the turbines as an additional effect.« less

  5. Measurement of the tt¯ production cross-section as a function of jet multiplicity and jet transverse momentum in 7 TeV proton-proton collisions with the ATLAS detector

    DOE PAGES

    Aad, G.

    2015-01-08

    Tmore » he t t ¯ production cross-section dependence on jet multiplicity and jet transverse momentum is reported for proton-proton collisions at a centre-of-mass energy of 7 eV in the single-lepton channel. his data was collected with the ALAS detector at the CERN Large Hadron Collider and comprise the full 2011 data sample corresponding to an integrated luminosity of 4.6 fb –1. Differential cross-sections are presented as a function of the jet multiplicity for up to eight jets using jet transverse momentum thresholds of 25, 40, 60, and 80 GeV, and as a function of jet transverse momentum up to the fifth jet. he results are shown after background subtraction and corrections for all known detector effects, within a kinematic range closely matched to the experimental acceptance. Several QCD-based Monte Carlo models are compared with the results. Sensitivity to the parton shower modelling is found at the higher jet multiplicities, at high transverse momentum of the leading jet and in the transverse momentum spectrum of the fifth leading jet. As a result, the MC@NLO+HERWIG MC is found to predict too few events at higher jet multiplicities.« less

  6. Measurement of the tt¯ production cross-section as a function of jet multiplicity and jet transverse momentum in 7 TeV proton-proton collisions with the ATLAS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aad, G.

    Tmore » he t t ¯ production cross-section dependence on jet multiplicity and jet transverse momentum is reported for proton-proton collisions at a centre-of-mass energy of 7 eV in the single-lepton channel. his data was collected with the ALAS detector at the CERN Large Hadron Collider and comprise the full 2011 data sample corresponding to an integrated luminosity of 4.6 fb –1. Differential cross-sections are presented as a function of the jet multiplicity for up to eight jets using jet transverse momentum thresholds of 25, 40, 60, and 80 GeV, and as a function of jet transverse momentum up to the fifth jet. he results are shown after background subtraction and corrections for all known detector effects, within a kinematic range closely matched to the experimental acceptance. Several QCD-based Monte Carlo models are compared with the results. Sensitivity to the parton shower modelling is found at the higher jet multiplicities, at high transverse momentum of the leading jet and in the transverse momentum spectrum of the fifth leading jet. As a result, the MC@NLO+HERWIG MC is found to predict too few events at higher jet multiplicities.« less

  7. Ganymede's magnetosphere: Magnetometer overview

    NASA Astrophysics Data System (ADS)

    Kivelson, M. G.; Warnecke, J.; Bennett, L.; Joy, S.; Khurana, K. K.; Linker, J. A.; Russell, C. T.; Walker, R. J.; Polanskey, C.

    1998-09-01

    Ganymede presents a unique example of an internally magnetized moon whose intrinsic magnetic field excludes the plasma present at its orbit, thereby forming a magnetospheric cavity. We describe some of the properties of this mini-magnetosphere, embedded in a sub-Alfvénic flow and formed within a planetary magnetosphere. A vacuum superposition model (obtained by adding the internal field of Ganymede to the field imposed by Jupiter) organizes the data acquired by the Galileo magnetometer on four close passes in a useful, intuitive fashion. The last field line that links to Ganymede at both ends extends to ~2 Ganymede radii, and the transverse scale of the magnetosphere is ~5.5 Ganymede radii. Departures from this simple model arise from currents flowing in the Alfvén wings and elsewhere on the magnetopause. The four passes give different cuts through the magnetosphere from which we develop a geometric model for the magnetopause surface as a function of the System III location of Ganymede. On one of the passes, Ganymede was located near the center of Jupiter's plasma disk. For this pass we identify probable Kelvin-Helmholtz surface waves on the magnetopause. After entering the relatively low-latitude upstream magnetosphere, Galileo apparently penetrated the region of closed field lines (ones that link to Ganymede at both ends), where we identify predominantly transverse fluctuations at frequencies reasonable for field line resonances. We argue that magnetic field measurements, when combined with flow measurements, show that reconnection is extremely efficient. Downstream reconnection, consequently, may account for heated plasma observed in a distant crossing of Ganymede's wake. We note some of the ways in which Ganymede's unusual magnetosphere corresponds to familiar planetary magnetospheres (viz., the magnetospheric topology and an electron ring current). We also comment on some of the ways in which it differs from familiar planetary magnetospheres (viz., relative stability and predictability of upstream plasma and field conditions, absence of a magnetotail plasma sheet and of a plasmasphere, and probable instability of the ring current).

  8. Integral formulae of the canonical correlation functions for the one dimensional transverse Ising model

    NASA Astrophysics Data System (ADS)

    Inoue, Makoto

    2017-12-01

    Some new formulae of the canonical correlation functions for the one dimensional quantum transverse Ising model are found by the ST-transformation method using a Morita's sum rule and its extensions for the two dimensional classical Ising model. As a consequence we obtain a time-independent term of the dynamical correlation functions. Differences of quantum version and classical version of these formulae are also discussed.

  9. Amygdala Lesions Reduce Cataplexy in Orexin KO mice

    PubMed Central

    Burgess, C.R.; Oishi, Y.; Mochizuki, T.; Peever, J.H.; Scammell, T.E.

    2013-01-01

    Narcolepsy is characterized by excessive sleepiness and cataplexy, sudden episodes of muscle weakness during waking that are thought to be an intrusion of REM sleep muscle atonia into wakefulness. One of the most striking aspects of cataplexy is that it is often triggered by strong, generally positive emotions, but little is known about the neural pathways through which positive emotions trigger muscle atonia. We hypothesized that the amygdala is functionally important for cataplexy because the amygdala has a role in processing emotional stimuli and it contains neurons that are active during cataplexy. Using anterograde and retrograde tracing in mice, we found that GABAergic neurons in the central nucleus of the amygdala heavily innervate neurons that maintain waking muscle tone such as those in the ventrolateral periaqueductal grey, lateral pontine tegmentum, locus coeruleus, and dorsal raphe. We then found that bilateral, excitotoxic lesions of the amygdala markedly reduced cataplexy in orexin knockout mice, a model of narcolepsy. These lesions did not alter basic sleep/wake behavior, but substantially reduced the triggering of cataplexy. Lesions also reduced the cataplexy events triggered by conditions associated with high arousal and positive emotions (i.e., wheel running and chocolate). These observations demonstrate that the amygdala is a functionally important part of the circuitry underlying cataplexy and suggest that increased amygdala activity in response to emotional stimuli could directly trigger cataplexy by inhibiting brainstem regions that suppress muscle atonia. PMID:23739970

  10. Amygdala lesions reduce cataplexy in orexin knock-out mice.

    PubMed

    Burgess, Christian R; Oishi, Yo; Mochizuki, Takatoshi; Peever, John H; Scammell, Thomas E

    2013-06-05

    Narcolepsy is characterized by excessive sleepiness and cataplexy, sudden episodes of muscle weakness during waking that are thought to be an intrusion of rapid eye movement sleep muscle atonia into wakefulness. One of the most striking aspects of cataplexy is that it is often triggered by strong, generally positive emotions, but little is known about the neural pathways through which positive emotions trigger muscle atonia. We hypothesized that the amygdala is functionally important for cataplexy because the amygdala has a role in processing emotional stimuli and it contains neurons that are active during cataplexy. Using anterograde and retrograde tracing in mice, we found that GABAergic neurons in the central nucleus of the amygdala heavily innervate neurons that maintain waking muscle tone such as those in the ventrolateral periaqueductal gray, lateral pontine tegmentum, locus ceruleus, and dorsal raphe. We then found that bilateral, excitotoxic lesions of the amygdala markedly reduced cataplexy in orexin knock-out mice, a model of narcolepsy. These lesions did not alter basic sleep-wake behavior but substantially reduced the triggering of cataplexy. Lesions also reduced the cataplexy events triggered by conditions associated with high arousal and positive emotions (i.e., wheel running and chocolate). These observations demonstrate that the amygdala is a functionally important part of the circuitry underlying cataplexy and suggest that increased amygdala activity in response to emotional stimuli could directly trigger cataplexy by inhibiting brainstem regions that suppress muscle atonia.

  11. Vegetative state is a pejorative term.

    PubMed

    Machado, Calixto; Estévez, Mario; Carrick, Frederick R; Rodríguez, Rafael; Pérez-Nellar, Jesús; Chinchilla, Mauricio; Machado, Yanín; Pérez-Hoz, Grisel; Carballo, Maylén; Fleitas, Marcia; Pando, Alejandro

    2012-01-01

    The term persistent vegetative state (PVS) refers to the only circumstance in which an apparent dissociation of both components of consciousness is found, characterized by preservation of wakefulness with an apparent loss of awareness. Several authors have recently demonstrated by functional neuroimaging studies that a small subset of unresponsive "vegetative" patients may show unambiguous signs of consciousness and command following that is inaccessible to clinical examination at the bedside. The term "estado vegetativo" used in Spanish to describe the PVS syndrome by physicians came from the English-Spanish translation. The Spanish term "vegetativo" is related to unconscious vital functions, and "vegetal" is relative to plants. According to our experience, when a physician informs to patients' relatives that his/her family member's diagnosis is a "estado vegetativo", they understand the he/she is no more a human being, that there is no hope of recovery. The European Task Force on Disorders of Consciousness has recently proposed a new term, unresponsive wakefulness syndrome (UWS), to assist society in avoiding the depreciatory term vegetative state. Our group has embraced the use of the new term UWS and might suggest that we change our concept and use of the term MCS to minimally responsive wakefulness state (MRWS), or minimally aware wakefulness state (MAWS). Medical terms must be current and avoid any pejorative description of patients, which will promote our abilities to serve humankind and challenge neuroscientists to offer society new and realistic hopes for neurorehabilitation.

  12. p × n-Type Transverse Thermoelectrics: A Novel Type of Thermal Management Material

    NASA Astrophysics Data System (ADS)

    Tang, Yang; Cui, Boya; Zhou, Chuanle; Grayson, Matthew

    2015-06-01

    In this paper we review the recently identified p × n-type transverse thermoelectrics and study the thermoelectric properties of the proposed candidate materials. Anisotropic electron and hole conductivity arise from either an artificially engineered band structure or from appropriately anisotropic crystals, and result in orthogonal p-type and n-type directional Seebeck coefficients, inducing a non-zero off-diagonal transverse Seebeck coefficient with appropriately oriented currents. Such materials have potential for new applications of thermoelectric materials in transverse Peltier cooling and transverse thermal energy harvesting. In this paper we review general transverse thermoelectric phenomena to identify advantages of p × n-type transverse thermoelectrics compared with previously studied transverse thermoelectric phenomena. An intuitive overview of the band structure of one such p × n-material, the InAs/GaSb type-II superlattice, is introduced, and the plot of thermoelectric performance as a function of superlattice structure is calculated, as an example of how band structures can be optimized for the best transverse thermoelectric performance.

  13. A transversal approach to predict gene product networks from ontology-based similarity

    PubMed Central

    Chabalier, Julie; Mosser, Jean; Burgun, Anita

    2007-01-01

    Background Interpretation of transcriptomic data is usually made through a "standard" approach which consists in clustering the genes according to their expression patterns and exploiting Gene Ontology (GO) annotations within each expression cluster. This approach makes it difficult to underline functional relationships between gene products that belong to different expression clusters. To address this issue, we propose a transversal analysis that aims to predict functional networks based on a combination of GO processes and data expression. Results The transversal approach presented in this paper consists in computing the semantic similarity between gene products in a Vector Space Model. Through a weighting scheme over the annotations, we take into account the representativity of the terms that annotate a gene product. Comparing annotation vectors results in a matrix of gene product similarities. Combined with expression data, the matrix is displayed as a set of functional gene networks. The transversal approach was applied to 186 genes related to the enterocyte differentiation stages. This approach resulted in 18 functional networks proved to be biologically relevant. These results were compared with those obtained through a standard approach and with an approach based on information content similarity. Conclusion Complementary to the standard approach, the transversal approach offers new insight into the cellular mechanisms and reveals new research hypotheses by combining gene product networks based on semantic similarity, and data expression. PMID:17605807

  14. A Model of Anode Sheath Potential Evolution in a Transverse Magnetic Field

    NASA Astrophysics Data System (ADS)

    Foster, John E.; Gallimore, Alec D.

    1996-11-01

    It has been conjectured that the growth in the magnitude of the anode fall voltage with changing transverse magnetic field is a function of the ratio of available transverse current to the discharge current. It has been postulated that at small values of this ratio, the anode fall voltage and thus the near-anode electric field increases in order to assure that the prescribed discharge is maintained.footnote H. Hugel, IEEE Tran. Plas. Sci., PS-8,4, 1980 In this present work, a model is presented which predicts the behavior of the anode fall voltage as a function of transverse magnetic field. The model attempts to explain why the anode fall voltage depends so strongly on this ratio. In addition, it is further shown that because of the current ratio's strong dependence on local electron number density, ultimately it is the changes in near-anode ionization processes with varying transverse magnetic field that control the anode fall voltage.

  15. The transverse momentum dependence of charged kaon Bose–Einstein correlations in the SELEX experiment

    DOE PAGES

    Nigmatkulov, G. A.; et al.

    2015-12-18

    We report the measurement of the one-dimensional charged kaon correlation functions using 600 GeV/c Σ –, π – and 540 GeV/C ρ beams from the SELEX (E781) experiment at the Fermilab Tevatron. K ±K ± correlation functions are studied for three transverse pair momentum, kT, ranges and parameterized by a Gaussian form. The emission source radii, R, and the correlation strength, λ, are extracted. Furthermore, the analysis shows a decrease of the source radii with increasing kaon transverse pair momentum for all beam types.

  16. Dynamics and mixing mechanism of transverse jet injection into a supersonic combustor with cavity flameholder

    NASA Astrophysics Data System (ADS)

    Liu, Chaoyang; Zhao, Yanhui; Wang, Zhenguo; Wang, Hongbo; Sun, Mingbo

    2017-07-01

    The interaction between sonic transverse jet and supersonic crossflow coupled with a cavity flameholder is investigated using large eddy simulation (LES), where the compressible flow dynamics and fuel mixing mechanism are analyzed emphatically. An adaptive central-upwind 6th-order weighted essentially non-oscillatory (WENO-CU6) scheme along with multi-threaded and multi-process MPI/OpenMP parallel is adopted to improve the accuracy and parallel efficiency of the solver. This simulation aims to reproduce the flow conditions in the experiment, and the results show fairly good agreement with the experimental data for distributions of streamwise and normal velocity components. Instantaneous structures such as the shock, large scale vortices and recirculation zone are identified, and their spatial deformation and temporal evolution are presented to reveal the effect on the subsequent mixing. Then some time-averaged and statistical results are obtained to explain the interesting phenomenon observed in the experiment, that there are two pairs of counter-rotating streamwise vortices existing in and above the cavity with the same rotation direction. The above pair is induced by the transverse momentum of jet in supersonic crossflow, which is so-called counter-rotating vortices (CRVs) in the flat-plate injection. On account of the entrainment, the reflux in the cavity transports to the core of jet wakes, and then another pair of counter-rotating streamwise vortices is formed below with the effect of cavity. A pair of trailing CRVs is generated at the trailing edge of cavity, and the turbulent kinetic energy (TKE) here is obviously higher than that in other regions. To some extent, the cavity can enhance the mixing, but will not bring excess total pressure loss.

  17. Nonlinearity of the forward-backward correlation function in the model with string fusion

    NASA Astrophysics Data System (ADS)

    Vechernin, Vladimir

    2017-12-01

    The behavior of the forward-backward correlation functions and the corresponding correlation coefficients between multiplicities and transverse momenta of particles produced in high energy hadronic interactions is analyzed by analytical and MC calculations in the models with and without string fusion. The string fusion is taking into account in simplified form by introducing the lattice in the transverse plane. The results obtained with two alternative definitions of the forward-backward correlation coefficient are compared. It is shown that the nonlinearity of correlation functions increases with the width of observation windows, leading at small string density to a strong dependence of correlation coefficient value on the definition. The results of the modeling enable qualitatively to explain the experimentally observed features in the behavior of the correlation functions between multiplicities and mean transverse momenta at small and large multiplicities.

  18. Sleep, Fatigue, and Problems with Cognitive Function in Adults Living with HIV

    PubMed Central

    Gay, Caryl L.; Lee, Kathryn A.

    2015-01-01

    Up to 50% of people living with HIV have some neurocognitive impairment. We examined associations of sleep and fatigue with self-reported cognitive problems in 268 adults living with HIV. Multivariate regression was used to examine associations between cognitive problems, self-reported sleep quality, actigraphy-measured total sleep time and wake after sleep onset, and fatigue severity. Poorer self-reported sleep quality (p < .001), short or long total sleep time (< 7 or > 8 vs. 7–8 hours, p = .015), and greater fatigue (p < .001) were associated with lower self-reported cognitive function scores after controlling for demographic and clinical characteristics. However, objective measure of wake after sleep onset was unrelated to self-reported cognitive function scores. Findings suggest that assessing and treating poor sleep and complaints about fatigue would be areas for intervention that could have a greater impact on improving cognition function than interventions that only target cognitive problems. PMID:26547298

  19. Rotor Noise due to Blade-Turbulence Interaction.

    NASA Astrophysics Data System (ADS)

    Ishimaru, Kiyoto

    The time-averaged intensity density function of the acoustic radiation from rotating blades is derived by replacing blades with rotating dipoles. This derivation is done under the following turbulent inflow conditions: turbulent ingestion with no inlet strut wakes, inflow turbulence elongation and contraction with no inlet strut wakes, and inlet strut wakes. Dimensional analysis reveals two non-dimensional parameters which play important roles in generating the blade-passing frequency tone and its multiples. The elongation and contraction of inflow turbulence has a strong effect on the generation of the blade-passing frequency tone and its multiples. Increasing the number of rotor blades widens the peak at the blade-passing frequency and its multiples. Increasing the rotational speed widens the peak under the condition that the non-dimensional parameter involving the rotational speed is fixed. The number of struts and blades should be chosen so that (the least common multiple of them)(.)(rotational speed) is in the cutoff range of Sears' function, in order to minimize the effect of the mean flow deficit on the time averaged intensity density function. The acoustic intensity density function is not necessarily stationary even if the inflow turbulence is homogeneous and isotropic. The time variation of the propagation path due to the rotation should be considered in the computation of the intensity density function; for instance, in the present rotor specification, the rotor radius is about 0.3 m and the rotational speed Mach number is about 0.2.

  20. Sleep inertia, sleep homeostatic, and circadian influences on higher-order cognitive functions

    PubMed Central

    Ronda, Joseph M.; Czeisler, Charles A.; Wright, Kenneth P.

    2016-01-01

    Summary Sleep inertia, sleep homeostatic, and circadian processes modulate cognition, including reaction time, memory, mood, and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-daylong study that included two 14-daylong 28h forced desynchrony protocols, to examine separate and interacting influences of sleep inertia, sleep homeostasis, and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved over the first ~2-4h of wakefulness (sleep inertia); worsened thereafter until scheduled bedtime (sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~9AM and ~9PM respectively, in individuals with a habitual waketime of 7AM). The relative influences of sleep inertia, sleep homeostasis, and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation, and/or upon awakening from sleep. PMID:25773686

  1. Retinogeniculate transmission in wakefulness.

    PubMed

    Weyand, Theodore G

    2007-08-01

    Despite popular belief that the primary function of the thalamus is to "gate" sensory inputs by state, few studies have attempted to directly characterize the efficacy of such gating in the awake, behaving animal. I measured the efficacy of retinogeniculate transmission in the awake cat by taking advantage of the fact that many neurons in the lateral geniculate nucleus (LGN) are dominated by a single retinal input, and that this input produces a distinct event known as the S-potential. Retinal input failed to produce an LGN action potential half of the time. However, success or failure was powerfully tied to the recency of the S-potential. Short intervals tend to be successful and long intervals unsuccessful. For four of 12 neurons, the probability that a given S-potential could cause a spike exceeded 90% if that S-potential was preceded by an S-potential within the previous 10 ms (100 Hz). Whereas this temporal influence on efficacy has been demonstrated extensively in anesthetized animals, wakefulness is different in several ways. Overall efficacy is better in wakefulness than in anesthesia, the durations of facilitating effects are briefer in wakefulness, efficacy of long intervals is superior in wakefulness, and the temporal dependence can be briefly disrupted by altering background illumination. The last two observations may be particularly significant. Increased success at long intervals in wakefulness provides additional evidence that the spike code of the anesthetized animal is not the spike code of the awake animal. Altering retinogeniculate efficacy by altering visual conditions undermines the influence inter-S-potential interval might have in determining efficacy in the real world. Finally, S-potential amplitude, duration, and even slope are dynamic and systematic within wakefulness; providing further support that the S-potential is the extracellular signature of the retinal EPSP.

  2. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity–wake interference region

    PubMed Central

    BORAZJANI, IMAN; SOTIROPOULOS, FOTIS

    2009-01-01

    We investigate numerically vortex-induced vibrations (VIV) of two identical two-dimensional elastically mounted cylinders in tandem in the proximity–wake interference regime at Reynolds number Re = 200 for systems having both one (transverse vibrations) and two (transverse and in-line) degrees of freedom (1-DOF and 2-DOF, respectively). For the 1-DOF system the computed results are in good qualitative agreement with available experiments at higher Reynolds numbers. Similar to these experiments our simulations reveal: (1) larger amplitudes of motion and a wider lock-in region for the tandem arrangement when compared with an isolated cylinder; (2) that at low reduced velocities the vibration amplitude of the front cylinder exceeds that of the rear cylinder; and (3) that above a threshold reduced velocity, large-amplitude VIV are excited for the rear cylinder with amplitudes significantly larger than those of the front cylinder. By analysing the simulated flow patterns we identify the VIV excitation mechanisms that lead to such complex responses and elucidate the near-wake vorticity dynamics and vortex-shedding modes excited in each case. We show that at low reduced velocities vortex shedding provides the initial excitation mechanism, which gives rise to a vertical separation between the two cylinders. When this vertical separation exceeds one cylinder diameter, however, a significant portion of the incoming flow is able to pass through the gap between the two cylinders and the gap-flow mechanism starts to dominate the VIV dynamics. The gap flow is able to periodically force either the top or the bottom shear layer of the front cylinder into the gap region, setting off a series of very complex vortex-to-vortex and vortex-to-cylinder interactions, which induces pressure gradients that result in a large oscillatory force in phase with the vortex shedding and lead to the experimentally observed larger vibration amplitudes. When the vortex shedding is the dominant mechanism the front cylinder vibration amplitude is larger than that of the rear cylinder. The reversing of this trend above a threshold reduced velocity is associated with the onset of the gap flow. The important role of the gap flow is further illustrated via a series of simulations for the 2-DOF system. We show that when the gap-flow mechanism is triggered, the 2-DOF system can develop and sustain large VIV amplitudes comparable to those observed in the corresponding (same reduced velocity) 1-DOF system. For sufficiently high reduced velocities, however, the two cylinders in the 2-DOF system approach each other, thus significantly reducing the size of the gap region. In such cases the gap flow is entirely eliminated, and the two cylinders vibrate together as a single body with vibration amplitudes up to 50% lower than the amplitudes of the corresponding 1-DOF in which the gap flow is active. Three-dimensional simulations are also carried out to examine the adequacy of two-dimensional simulations for describing the dynamic response of the tandem system at Re = 200. It is shown that even though the wake transitions to a weakly three-dimensional state when the gap flow is active, the three-dimensional modes are too weak to affect the dynamic response of the system, which is found to be identical to that obtained from the two-dimensional computations. PMID:19693281

  3. Sleep Dependent Memory Consolidation in Children with Autism Spectrum Disorder.

    PubMed

    Maski, Kiran; Holbrook, Hannah; Manoach, Dara; Hanson, Ellen; Kapur, Kush; Stickgold, Robert

    2015-12-01

    Examine the role of sleep in the consolidation of declarative memory in children with autism spectrum disorder (ASD). Case-control study. Home-based study with sleep and wake conditions. Twenty-two participants with ASD and 20 control participants between 9 and 16 y of age. Participants were trained to criterion on a spatial declarative memory task and then given a cued recall test. Retest occurred after a period of daytime wake (Wake) or a night of sleep (Sleep) with home-based polysomnography; Wake and Sleep conditions were counterbalanced. Children with ASD had poorer sleep efficiency than controls, but other sleep macroarchitectural and microarchitectural measures were comparable after controlling for age and medication use. Both groups demonstrated better memory consolidation across Sleep than Wake, although participants with ASD had poorer overall memory consolidation than controls. There was no interaction between group and condition. The change in performance across sleep, independent of medication and age, showed no significant relationships with any specific sleep parameters other than total sleep time and showed a trend toward less forgetting in the control group. This study shows that despite their more disturbed sleep quality, children with autism spectrum disorder (ASD) still demonstrate more stable memory consolidation across sleep than in wake conditions. The findings support the importance of sleep for stabilizing memory in children with and without neurodevelopmental disabilities. Our results suggest that improving sleep quality in children with ASD could have direct benefits to improving their overall cognitive functioning. © 2015 Associated Professional Sleep Societies, LLC.

  4. Characteristics of Low-Frequency Waves at the Lunar Wake Boundary

    NASA Astrophysics Data System (ADS)

    Leisner, J. S.; Glassmeier, K.; Constantinescu, D. O.; Halekas, J. S.; Fornacon, K.

    2013-12-01

    The Moon has generally been considered to be a simple absorbing body that does not have a complex interaction with the solar wind. Recent studies using Kaguya and Chandrayaan, however, how demonstrated that this is not the case. The ARTEMIS spacecraft (formerly THEMIS-B and -C) entered lunar orbit in July 2011 and now provide an opportunity to make robust, long-term observations of this plasma interaction. During a November 2012 wake crossing, when the IMF was steady and nearly radial, Halekas et al. [2013] documented a previously unseen feature of the Moon environment. As ARTEMIS P2 approached the wake, it observed low-amplitude fast magnetonic waves that were convected from upstream; inside the rarefaction region, the compressional strength of these waves intensified; and through the wake boundary, the waves changed from correlated to anti-correlated density and field fluctuations. Halekas et al. explained this structure as the superposition of the magnetosonic waves and lateral wake motion driven by the same. In this study, we use wake observations through the ARTEMIS mission to characterize the presence and behavior of these waves as a function of the solar wind and IMF conditions and of spacecraft location relative to the Moon. With this survey, we test the Halekas et al. predictions that these phenomena will be most common during radial IMF conditions, but will still be observable in oblique fields. Finally, we discuss what implications these results have for the more common situation where a bow shock is present.

  5. Virtual reality and consciousness inference in dreaming

    PubMed Central

    Hobson, J. Allan; Hong, Charles C.-H.; Friston, Karl J.

    2014-01-01

    This article explores the notion that the brain is genetically endowed with an innate virtual reality generator that – through experience-dependent plasticity – becomes a generative or predictive model of the world. This model, which is most clearly revealed in rapid eye movement (REM) sleep dreaming, may provide the theater for conscious experience. Functional neuroimaging evidence for brain activations that are time-locked to rapid eye movements (REMs) endorses the view that waking consciousness emerges from REM sleep – and dreaming lays the foundations for waking perception. In this view, the brain is equipped with a virtual model of the world that generates predictions of its sensations. This model is continually updated and entrained by sensory prediction errors in wakefulness to ensure veridical perception, but not in dreaming. In contrast, dreaming plays an essential role in maintaining and enhancing the capacity to model the world by minimizing model complexity and thereby maximizing both statistical and thermodynamic efficiency. This perspective suggests that consciousness corresponds to the embodied process of inference, realized through the generation of virtual realities (in both sleep and wakefulness). In short, our premise or hypothesis is that the waking brain engages with the world to predict the causes of sensations, while in sleep the brain’s generative model is actively refined so that it generates more efficient predictions during waking. We review the evidence in support of this hypothesis – evidence that grounds consciousness in biophysical computations whose neuronal and neurochemical infrastructure has been disclosed by sleep research. PMID:25346710

  6. Virtual reality and consciousness inference in dreaming.

    PubMed

    Hobson, J Allan; Hong, Charles C-H; Friston, Karl J

    2014-01-01

    This article explores the notion that the brain is genetically endowed with an innate virtual reality generator that - through experience-dependent plasticity - becomes a generative or predictive model of the world. This model, which is most clearly revealed in rapid eye movement (REM) sleep dreaming, may provide the theater for conscious experience. Functional neuroimaging evidence for brain activations that are time-locked to rapid eye movements (REMs) endorses the view that waking consciousness emerges from REM sleep - and dreaming lays the foundations for waking perception. In this view, the brain is equipped with a virtual model of the world that generates predictions of its sensations. This model is continually updated and entrained by sensory prediction errors in wakefulness to ensure veridical perception, but not in dreaming. In contrast, dreaming plays an essential role in maintaining and enhancing the capacity to model the world by minimizing model complexity and thereby maximizing both statistical and thermodynamic efficiency. This perspective suggests that consciousness corresponds to the embodied process of inference, realized through the generation of virtual realities (in both sleep and wakefulness). In short, our premise or hypothesis is that the waking brain engages with the world to predict the causes of sensations, while in sleep the brain's generative model is actively refined so that it generates more efficient predictions during waking. We review the evidence in support of this hypothesis - evidence that grounds consciousness in biophysical computations whose neuronal and neurochemical infrastructure has been disclosed by sleep research.

  7. Bootstrapping rapidity anomalous dimensions for transverse-momentum resummation

    DOE PAGES

    Li, Ye; Zhu, Hua Xing

    2017-01-11

    Soft function relevant for transverse-momentum resummation for Drell-Yan or Higgs production at hadron colliders are computed through to three loops in the expansion of strong coupling, with the help of bootstrap technique and supersymmetric decomposition. The corresponding rapidity anomalous dimension is extracted. Furthermore, an intriguing relation between anomalous dimensions for transverse-momentum resummation and threshold resummation is found.

  8. Region-Specific Dissociation between Cortical Noradrenaline Levels and the Sleep/Wake Cycle

    PubMed Central

    Bellesi, Michele; Tononi, Giulio; Cirelli, Chiara; Serra, Pier Andrea

    2016-01-01

    Study Objectives: The activity of the noradrenergic system of the locus coeruleus (LC) is high in wake and low in sleep. LC promotes arousal and EEG activation, as well as attention, working memory, and cognitive flexibility. These functions rely on prefrontal cortex and are impaired by sleep deprivation, but the extent to which LC activity changes during wake remains unclear. Moreover, it is unknown whether noradrenergic neurons can sustain elevated firing during extended wake. Recent studies show that relative to LC neurons targeting primary motor cortex (M1), those projecting to medial prefrontal cortex (mPFC) have higher spontaneous firing rates and are more excitable. These results suggest that noradrenaline (NA) levels should be higher in mPFC than M1, and that during prolonged wake LC cells targeting mPFC may fatigue more, but direct evidence is lacking. Methods: We performed in vivo microdialysis experiments in adult (9–10 weeks old) C57BL/6 mice implanted for chronic electroencephalographic recordings. Cortical NA levels were measured during spontaneous sleep and wake (n = 8 mice), and in the course of sleep deprivation (n = 6). Results: We found that absolute NA levels are higher in mPFC than in M1. Moreover, in both areas they decline during sleep and increase during wake, but these changes are faster in M1 than mPFC. Finally, by the end of sleep deprivation NA levels decline only in mPFC. Conclusions: Locus coeruleus (LC) neurons targeting prefrontal cortex may fatigue more markedly, or earlier, than other LC cells, suggesting one of the mechanisms underlying the cognitive impairment and the increased sleep presure associated with sleep deprivation. Commentary: A commentary on this article appears in this issue on page 11. Citation: Bellesi M, Tononi G, Cirelli C, Serra PA. Region-specific dissociation between cortical noradrenaline levels and the sleep/wake cycle. SLEEP 2016;39(1):143–154. PMID:26237776

  9. Global QCD Analysis of the Nucleon Tensor Charge with Lattice QCD Constraints

    NASA Astrophysics Data System (ADS)

    Shows, Harvey, III; Melnitchouk, Wally; Sato, Nobuo

    2017-09-01

    By studying the parton distribution functions (PDFs) of a nucleon, we probe the partonic scale of nature, exploring what it means to be a nucleon. In this study, we are interested in the transversity PDF-the least studied of the three collinear PDFs. By conducting a global analysis on experimental data from semi-inclusive deep inelastic scattering (SIDIS), as well as single-inclusive e+e- annihilation (SIA), we extract the fit parameters needed to describe the transverse moment dependent (TMD) transversity PDF, as well as the Collins fragmentation function. Once the collinear transversity PDF is obtained by integrating the extracted TMD PDF, we wish to resolve discrepancies between lattice QCD calculations and phenomenological extractions of the tensor charge from data. Here we show our results for the transversity distribution and tensor charge. Using our method of iterative Monte Carlo, we now have a more robust understanding of the transversity PDF. With these results we are able to progress in our understanding of TMD PDFs, as well as testify to the efficacy of current lattice QCD calculations. This work is made possible through support from NSF award 1659177 to Old Dominion University.

  10. Radially polarized, half-cycle, attosecond pulses from laser wakefields through coherent synchrotronlike radiation.

    PubMed

    Li, F Y; Sheng, Z M; Chen, M; Yu, L L; Meyer-ter-Vehn, J; Mori, W B; Zhang, J

    2014-10-01

    Attosecond bursts of coherent synchrotronlike radiation are found when driving ultrathin relativistic electron disks in a quasi-one-dimensional regime of wakefield acceleration, in which the laser waist is larger than the wake wavelength. The disks of overcritical density shrink radially due to focusing wakefields, thus providing the transverse currents for the emission of an intense, radially polarized, half-cycle pulse of about 100 attoseconds in duration. The electromagnetic pulse first focuses to a peak intensity (7×10(20)W/cm(2)) 10 times larger than the driving pulse and then emerges as a conical beam. Basic dynamics of the radiative process are derived analytically and in agreement with particle-in-cell simulations. By making use of gas targets instead of solids to form the ultrathin disks, this method allows for high repetition rates required for applications.

  11. Energetics of oscillating lifting surfaces using integral conservation laws

    NASA Technical Reports Server (NTRS)

    Ahmadi, Ali R.; Widnall, Sheila E.

    1987-01-01

    The energetics of oscillating flexible lifting surfaces in two and three dimensions is calculated by the use of integral conservation laws in inviscid incompressible flow for general and harmonic transverse oscillations. Total thrust is calculated from the momentum theorem and energy loss rate due to vortex shedding in the wake from the principle of conservation of mechanical energy. Total power required to maintain the oscillations and hydrodynamic efficiency are also determined. In two dimensions, the results are obtained in closed form. In three dimensions, the distribution of vorticity on the lifting surface is also required as input to the calculations. Thus, unsteady lifting-surface theory must be used as well. The analysis is applicable to oscillating lifting surfaces of arbitrary planform, aspect ratio, and reduced frequency and does not require calculation of the leading-edge thrust.

  12. DYNAMICS OF SELF-GRAVITY WAKES IN DENSE PLANETARY RINGS. I. PITCH ANGLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michikoshi, Shugo; Kokubo, Eiichiro; Fujii, Akihiko

    2015-10-20

    We investigate the dynamics of self-gravity wakes in dense planetary rings. In particular, we examine how the pitch angles of self-gravity wakes depend on ring parameters using N-body simulations. We calculate the pitch angles using the two-dimensional autocorrelation function of the ring surface density. We obtain the pitch angles for the inner and outer parts of the autocorrelation function separately. We confirm that the pitch angles are 15°–30° for reasonable ring parameters, which are consistent with previous studies. We find that the inner pitch angle increases with the Saturnicentric distance, while it barely depends on the optical depth and themore » restitution coefficient of ring particles. The increase of the inner pitch angle with the Saturnicentric distance is consistent with the observations of the A ring. The outer pitch angle does not have a clear dependence on any ring parameters and is about 10°–15°. This value is consistent with the pitch angle of spiral arms in collisionless systems.« less

  13. Neurobiological Mechanisms for the Regulation of Mammalian Sleep-Wake Behavior: Reinterpretation of Historical Evidence and Inclusion of Contemporary Cellular and Molecular Evidence

    PubMed Central

    Datta, Subimal; MacLean, Robert Ross

    2007-01-01

    At its most basic level, the function of mammalian sleep can be described as a restorative process of the brain and body; recently, however, progressive research has revealed a host of vital functions to which sleep is essential. Although many excellent reviews on sleep behavior have been published, none have incorporated contemporary studies examining the molecular mechanisms that govern the various stages of sleep. Utilizing a holistic approach, this review is focused on the basic mechanisms involved in the transition from wakefulness, initiation of sleep and the subsequent generation of slow-wave sleep and rapid eye movement (REM) sleep. Additionally, using recent molecular studies and experimental evidence that provides a direct link to sleep as a behavior, we have developed a new model, the Cellular-Molecular-Network model, explaining the mechanisms responsible for regulating REM sleep. By analyzing the fundamental neurobiological mechanisms responsible for the generation and maintenance of sleep-wake behavior in mammals, we intend to provide a broader understanding of our present knowledge in the field of sleep research. PMID:17445891

  14. Expression of interferon-inducible chemokines and sleep/wake changes during early encephalitis in experimental African trypanosomiasis

    PubMed Central

    Seke-Etet, Paul F.; La Verde, Valentina; Colavito, Valeria; Grassi-Zucconi, Gigliola; Rodgers, Jean; Montague, Paul; Bentivoglio, Marina

    2017-01-01

    Background Human African trypanosomiasis or sleeping sickness, caused by the parasite Trypanosoma brucei, leads to neuroinflammation and characteristic sleep/wake alterations. The relationship between the onset of these alterations and the development of neuroinflammation is of high translational relevance, but remains unclear. This study investigates the expression of interferon (IFN)-γ and IFN-inducible chemokine genes in the brain, and the levels of CXCL10 in the serum and cerebrospinal fluid prior to and during the encephalitic stage of trypanosome infection, and correlates these with sleep/wake changes in a rat model of the disease. Methodology/Principal findings The expression of genes encoding IFN-γ, CXCL9, CXCL10, and CXCL11 was assessed in the brain of rats infected with Trypanosoma brucei brucei and matched controls using semi-quantitative end-point RT-PCR. Levels of CXCL10 in the serum and cerebrospinal fluid were determined using ELISA. Sleep/wake states were monitored by telemetric recording. Using immunohistochemistry, parasites were found in the brain parenchyma at 14 days post-infection (dpi), but not at 6 dpi. Ifn-γ, Cxcl9, Cxcl10 and Cxcl11 mRNA levels showed moderate upregulation by 14 dpi followed by further increase between 14 and 21 dpi. CXCL10 concentration in the cerebrospinal fluid increased between 14 and 21 dpi, preceded by a rise in the serum CXCL10 level between 6 and 14 dpi. Sleep/wake pattern fragmentation was evident at 14 dpi, especially in the phase of wake predominance, with intrusion of sleep episodes into wakefulness. Conclusions/Significance The results show a modest increase in Cxcl9 and Cxcl11 transcripts in the brain and the emergence of sleep/wake cycle fragmentation in the initial encephalitic stage, followed by increases in Ifn-γ and IFN-dependent chemokine transcripts in the brain and of CXCL10 in the cerebrospinal fluid. The latter parameter and sleep/wake alterations could provide combined humoral and functional biomarkers of the early encephalitic stage in African trypanosomiasis. PMID:28821016

  15. Aircraft propeller induced structure-borne noise

    NASA Technical Reports Server (NTRS)

    Unruh, James F.

    1989-01-01

    A laboratory-based test apparatus employing components typical of aircraft construction was developed that would allow the study of structure-borne noise transmission due to propeller induced wake/vortex excitation of in-wake structural appendages. The test apparatus was employed to evaluate several aircraft installation effects (power plant placement, engine/nacelle mass loading, and wing/fuselage attachment methods) and several structural response modifications for structure-borne noise control (the use of wing blocking mass/fuel, wing damping treaments, and tuned mechanical dampers). Most important was the development of in-flight structure-borne noise transmission detection techniques using a combination of ground-based frequency response function testing and in-flight structural response measurement. Propeller wake/vortex excitation simulation techniques for improved ground-based testing were also developed to support the in-flight structure-borne noise transmission detection development.

  16. Neuronal substrates of sleep homeostasis; lessons from flies, rats and mice.

    PubMed

    Donlea, Jeffrey M; Alam, Md Noor; Szymusiak, Ronald

    2017-06-01

    Sleep homeostasis is a fundamental property of vigilance state regulation that is highly conserved across species. Neuronal systems and circuits that underlie sleep homeostasis are not well understood. In Drosophila, a neuronal circuit involving neurons in the ellipsoid body and in the dorsal Fan-shaped body is a candidate for both tracing sleep need during waking and translating it to increased sleep drive and expression. Sleep homeostasis in rats and mice involves multiple neuromodulators acting on multiple wake- and sleep-promoting neuronal systems. A functional central homeostat emerges from A 1 receptor mediated actions of adenosine on wake-promoting neurons in the basal forebrain and hypothalamus, and A 2A adenosine receptor-mediated actions on sleep-promoting neurons in the preoptic hypothalamus and nucleus accumbens. Copyright © 2017. Published by Elsevier Ltd.

  17. Spatial structure of kinetic energy spectra in LES simulations of flow in an offshore wind farm

    NASA Astrophysics Data System (ADS)

    Fruh, Wolf-Gerrit; Creech, Angus

    2017-04-01

    The evolution of wind turbine and wind farm wakes was investigated numerically for the case of Lillgrund wind farm consisting of a tightly packed array of 48 turbines. The simulations for a number of wind directions at a free wind speed of just under the rated wind speed in a neutrally stable atmosphere were carried out using Large-Eddy Simulations with the adaptive Finite-Element CFD solver Fluidity. The results were interpolated from the irregularly spaced mesh nodes onto a regular grid with comparable spatial resolution at horizontal slices at various heights. To investigate the development of the wake as the flow evolves through the array, spectra of the kinetic energy in sections perpendicular to the wind directions within the wake and to the sides of the array were calculated. This paper will present the key features and spectral slopes of the flow as a function of downstream distance from the front turbine through and beyond the array. The main focus will be on the modification of the spectra as the flow crosses a row of turbines followed by its decay in the run-up to the next row, but we will also present to wake decay of the wind farm wake downstream of the array.

  18. Measurements in an axisymmetric turbulent wake with rotation downstream of a model wind turbine

    NASA Astrophysics Data System (ADS)

    Dufresne, Nathaniel; Wosnik, Martin

    2012-11-01

    Energy production data from several of the existing offshore wind farms indicate that turbine arrays may enter a stall condition which can cause an overall energy production shortfall (which can exceed 10%). This deep array stall is (presumably) due to the wakes generated by turbines upstream interacting with turbine rotors downstream. It is hypothesized that there is a critical array spacing at which this stall occurs, but that this spacing is dependent on rotor thrust cT (which is determined by tip-speed ratio λ and power coefficient cP of the rotor), Reynolds number, upstream conditions, and possibly wall roughness. An experimental investigation of the axial and azimuthal velocity field measurements in the wake of a single 3-bladed wind turbine with rotor diameter of 0.91m was conducted. The turbine was positioned in the free stream, near the entrance of the 6m × 2.5m test section of the UNH FPF, which can achieve test section velocities of up to 15 m/s and Reynolds numbers δ+ = δuτ / ν ~ 30 , 000 . Hot-wire anemometry was used to obtain velocity field measurements. The data obtained will be used to examine similarity scaling functions for velocity, wake growth, and turbulence derived from an equilibrium similarity analysis of the far wake.

  19. Discrete Scale Invariance of Human Large EEG Voltage Deflections is More Prominent in Waking than Sleep Stage 2.

    PubMed

    Zorick, Todd; Mandelkern, Mark A

    2015-01-01

    Electroencephalography (EEG) is typically viewed through the lens of spectral analysis. Recently, multiple lines of evidence have demonstrated that the underlying neuronal dynamics are characterized by scale-free avalanches. These results suggest that techniques from statistical physics may be used to analyze EEG signals. We utilized a publicly available database of fourteen subjects with waking and sleep stage 2 EEG tracings per subject, and observe that power-law dynamics of critical-state neuronal avalanches are not sufficient to fully describe essential features of EEG signals. We hypothesized that this could reflect the phenomenon of discrete scale invariance (DSI) in EEG large voltage deflections (LVDs) as being more prominent in waking consciousness. We isolated LVDs, and analyzed logarithmically transformed LVD size probability density functions (PDF) to assess for DSI. We find evidence of increased DSI in waking, as opposed to sleep stage 2 consciousness. We also show that the signatures of DSI are specific for EEG LVDs, and not a general feature of fractal simulations with similar statistical properties to EEG. Removing only LVDs from waking EEG produces a reduction in power in the alpha and beta frequency bands. These findings may represent a new insight into the understanding of the cortical dynamics underlying consciousness.

  20. Sleep duration varies as a function of glutamate and GABA in rat pontine reticular formation.

    PubMed

    Watson, Christopher J; Lydic, Ralph; Baghdoyan, Helen A

    2011-08-01

    The oral part of the pontine reticular formation (PnO) is a component of the ascending reticular activating system and plays a role in the regulation of sleep and wakefulness. The PnO receives glutamatergic and GABAergic projections from many brain regions that regulate behavioral state. Indirect, pharmacological evidence has suggested that glutamatergic and GABAergic signaling within the PnO alters traits that characterize wakefulness and sleep. No previous studies have simultaneously measured endogenous glutamate and GABA from rat PnO in relation to sleep and wakefulness. The present study utilized in vivo microdialysis coupled on-line to capillary electrophoresis with laser-induced fluorescence to test the hypothesis that concentrations of glutamate and GABA in the PnO vary across the sleep/wake cycle. Concentrations of glutamate and GABA were significantly higher during wakefulness than during non-rapid eye movement sleep and rapid eye movement sleep. Regression analysis revealed that decreases in glutamate and GABA accounted for a significant portion of the variance in the duration of non-rapid eye movement sleep and rapid eye movement sleep episodes. These data provide novel support for the hypothesis that endogenous glutamate and GABA in the PnO contribute to the regulation of sleep duration. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  1. Transverse single-spin asymmetries: Challenges and recent progress

    DOE PAGES

    Metz, Andreas; Pitonyak, Daniel; Schafer, Andreas; ...

    2014-11-25

    In this study, transverse single-spin asymmetries are among the most intriguing observables in hadronic physics. Though such asymmetries were already measured for the first time about four decades ago, their origin is still under debate. Here we consider transverse single-spin asymmetries in semi-inclusive lepton–nucleon scattering, in nucleon–nucleon scattering, and in inclusive lepton–nucleon scattering. It is argued that, according to recent work, the single-spin asymmetries for those three processes may be simultaneously described in perturbative QCD, where the re-scattering of the active partons plays a crucial role. A comparison of single-spin asymmetries in different reactions can also shed light on themore » universality of transverse momentum dependent parton correlation functions. In particular, we discuss what existing data may tell us about the predicted process dependence of the Sivers function.« less

  2. Boer-Mulders effect in unpolarized SIDIS: An analysis of the COMPASS and HERMES data on the $$\\cos 2 \\phi$$ asymmetry

    DOE PAGES

    Vincenzo Barone; Melis, Stefano; Prokudin, Alexei

    2010-06-17

    We present a phenomenological analysis of themore » $$\\cos 2 \\phi$$ asymmetry recently measured by the COMPASS and HERMES collaborations in unpolarized semi-inclusive deep inelastic scattering. In the kinematical regimes explored by these experiments the asymmetry arises from transverse-spin and intrinsic transverse-momentum effects. We consider the leading-twist contribution, related to the so-called Boer-Mulders transverse-polarization distribution $$h_1^{\\perp}(x, k_T^2)$$, and the twist-4 Cahn contribution, involving unpolarized transverse-momentum distribution functions. We show that a reasonably good fit of the data is achieved with a Boer-Mulders function consistent with the main theoretical expectations. Lastly, our conclusion is that the COMPASS and HERMES measurements represent the first experimental evidence of the Boer-Mulders effect in SIDIS.« less

  3. The impact of preload reduction with head-up tilt testing on longitudinal and transverse left ventricular mechanics.

    PubMed

    Schneider, Caroline; Forsythe, Lynsey; Somauroo, John; George, Keith; Oxborough, David

    2018-01-03

    Left ventricular (LV) function is dependent on load, intrinsic contractility and relaxation with a variable impact on specific mechanics. Strain (ε) imaging allows the assessment of cardiac function however the direct relationship between volume and strain is currently unknown. The aim of this study was to establish the impact of preload reduction through head-up tilt (HUT) testing on simultaneous left ventricular (LV) longitudinal and transverse function and their respective contribution to volume change. A focused transthoracic echocardiogram was performed on 10 healthy male participants (23 ± 3 years,) in the supine position and following 1 min and 5 min of HUT testing. Raw temporal longitudinal ε (Ls) and transverse ε (Ts) values were exported and divided into 5% increments across the cardiac cycle and corresponding LV volumes were traced at each 5% increment. This provided simultaneous LV longitudinal and transverse ε and volume-loops (deformation-volume analysis - DVA). There was a leftward- shift of the ε -volume loop from supine to 1 min and 5 min of HUT, p<0.001). Moreover, longitudinal shortening was reduced (p<0.001) with a concomitant increase in transverse thickening from supine to 1min, which was further augmented at 5min (p=0.018). Preload reduction occurs within 1 minute of HUT but does not further reduce at 5 minutes. This decline is associated with a decrease in longitudinal ε and concomitant increase in transverse ε. Consequently, augmented transverse relaxation appears to be an important factor in the maintenance of LV filling in the setting of reduced preload. DVA provides information on the relative contribution of mechanics to a change in LV volume and may have a role in the assessment of clinical populations. © 2018 The authors.

  4. Neocortical 40 Hz oscillations during carbachol-induced rapid eye movement sleep and cataplexy.

    PubMed

    Torterolo, Pablo; Castro-Zaballa, Santiago; Cavelli, Matías; Chase, Michael H; Falconi, Atilio

    2016-02-01

    Higher cognitive functions require the integration and coordination of large populations of neurons in cortical and subcortical regions. Oscillations in the gamma band (30-45 Hz) of the electroencephalogram (EEG) have been involved in these cognitive functions. In previous studies, we analysed the extent of functional connectivity between cortical areas employing the 'mean squared coherence' analysis of the EEG gamma band. We demonstrated that gamma coherence is maximal during alert wakefulness and is almost absent during rapid eye movement (REM) sleep. The nucleus pontis oralis (NPO) is critical for REM sleep generation. The NPO is considered to exert executive control over the initiation and maintenance of REM sleep. In the cat, depending on the previous state of the animal, a single microinjection of carbachol (a cholinergic agonist) into the NPO can produce either REM sleep [REM sleep induced by carbachol (REMc)] or a waking state with muscle atonia, i.e. cataplexy [cataplexy induced by carbachol (CA)]. In the present study, in cats that were implanted with electrodes in different cortical areas to record polysomnographic activity, we compared the degree of gamma (30-45 Hz) coherence during REMc, CA and naturally-occurring behavioural states. Gamma coherence was maximal during CA and alert wakefulness. In contrast, gamma coherence was almost absent during REMc as in naturally-occurring REM sleep. We conclude that, in spite of the presence of somatic muscle paralysis, there are remarkable differences in cortical activity between REMc and CA, which confirm that EEG gamma (≈40 Hz) coherence is a trait that differentiates wakefulness from REM sleep. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Subjective perception of sleep benefit in Parkinson's disease: Valid or irrelevant?

    PubMed

    Lee, Will; Evans, Andrew; Williams, David R

    2017-09-01

    The phenomenon of sleep benefit (SB) in Parkinson's disease (PD), whereby waking motor function is improved despite no dopaminergic treatment overnight, is controversial. Previous studies suggested a significant discrepancy between subjective functional and objective motor improvement. The aim of this study was to determine how well subjective reporting of SB correlates with objective measures and if true motor improvement can be predicted by a standardized questionnaire. Ninety-two patients with PD participated. A structured questionnaire was developed to assess subjective SB. Quantitative motor assessment was performed using a validated smartphone application. Objective motor SB was considered to be present when the waking motor function was similar or superior to the daytime on-state. Twenty (22%) patients showed objective motor improvement on waking compared to end-of-dose. Most patients (77%) reported subjective SB without corresponding objective motor benefit. Our structured questionnaire could not predict Motor SB. The ability to delay morning medications and a perception of indifference or paradoxical worsening following the morning levodopa dose may suggest Motor SB. Most patients experience subjective SB with no measureable motor improvement. This perceived benefit could be related to non-motor improvement that is distinctly different to objective motor benefit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Multiplicity and transverse momentum evolution of charge-dependent correlations in pp, p-Pb, and Pb-Pb collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Böttger, S.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stefanek, G.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yasar, C.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2016-02-01

    We report on two-particle charge-dependent correlations in pp, p-Pb, and Pb-Pb collisions as a function of the pseudorapidity and azimuthal angle difference, Δ η and Δ \\varphi respectively. These correlations are studied using the balance function that probes the charge creation time and the development of collectivity in the produced system. The dependence of the balance function on the event multiplicity as well as on the trigger and associated particle transverse momentum (p_{{T}}) in pp, p-Pb, and Pb-Pb collisions at √{s_{NN}}= 7, 5.02, and 2.76 TeV, respectively, are presented. In the low transverse momentum region, for 0.2 < p_{{T}} < 2.0 GeV/ c, the balance function becomes narrower in both Δ η and Δ \\varphi directions in all three systems for events with higher multiplicity. The experimental findings favor models that either incorporate some collective behavior (e.g. AMPT) or different mechanisms that lead to effects that resemble collective behavior (e.g. PYTHIA8 with color reconnection). For higher values of transverse momenta the balance function becomes even narrower but exhibits no multiplicity dependence, indicating that the observed narrowing with increasing multiplicity at low p_{{T}} is a feature of bulk particle production.

  7. Flow Dominance and Factorization of Transverse Momentum Correlations in Pb-Pb Collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buitron, S. A. I.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crkovská, J.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Grull, F. R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mishra, T.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zimmermann, S.; Zinovjev, G.; Zmeskal, J.; Alice Collaboration

    2017-04-01

    We present the first measurement of the two-particle transverse momentum differential correlation function, P2≡⟨Δ pTΔ pT⟩/⟨pT⟩2, in Pb-Pb collisions at √{sN N }=2.76 TeV . Results for P2 are reported as a function of the relative pseudorapidity (Δ η ) and azimuthal angle (Δ φ ) between two particles for different collision centralities. The Δ ϕ dependence is found to be largely independent of Δ η for |Δ η |≥0.9 . In the 5% most central Pb-Pb collisions, the two-particle transverse momentum correlation function exhibits a clear double-hump structure around Δ φ =π (i.e., on the away side), which is not observed in number correlations in the same centrality range, and thus provides an indication of the dominance of triangular flow in this collision centrality. Fourier decompositions of P2, studied as a function of the collision centrality, show that correlations at |Δ η |≥0.9 can be well reproduced by a flow ansatz based on the notion that measured transverse momentum correlations are strictly determined by the collective motion of the system.

  8. Flow Dominance and Factorization of Transverse Momentum Correlations in Pb-Pb Collisions at the LHC.

    PubMed

    Adam, J; Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agrawal, N; Ahammed, Z; Ahmad, S; Ahn, S U; Aiola, S; Akindinov, A; Alam, S N; Albuquerque, D S D; Aleksandrov, D; Alessandro, B; Alexandre, D; Alfaro Molina, R; Alici, A; Alkin, A; Alme, J; Alt, T; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; An, M; Andrei, C; Andrews, H A; Andronic, A; Anguelov, V; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Anwar, R; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arnaldi, R; Arnold, O W; Arsene, I C; Arslandok, M; Audurier, B; Augustinus, A; Averbeck, R; Azmi, M D; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldisseri, A; Baral, R C; Barbano, A M; Barbera, R; Barile, F; Barioglio, L; Barnaföldi, G G; Barnby, L S; Barret, V; Bartalini, P; Barth, K; Bartke, J; Bartsch, E; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batista Camejo, A; Batyunya, B; Batzing, P C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bello Martinez, H; Bellwied, R; Beltran, L G E; Belyaev, V; Bencedi, G; Beole, S; Bercuci, A; Berdnikov, Y; Berenyi, D; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhat, I R; Bhati, A K; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biro, G; Biswas, R; Biswas, S; Blair, J T; Blau, D; Blume, C; Bock, F; Bogdanov, A; Boldizsár, L; Bombara, M; Bonora, M; Book, J; Borel, H; Borissov, A; Borri, M; Botta, E; Bourjau, C; Braun-Munzinger, P; Bregant, M; Broker, T A; Browning, T A; Broz, M; Brucken, E J; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buhler, P; Buitron, S A I; Buncic, P; Busch, O; Buthelezi, Z; Butt, J B; Buxton, J T; Cabala, J; Caffarri, D; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Capon, A A; Carena, F; Carena, W; Carnesecchi, F; Castillo Castellanos, J; Castro, A J; Casula, E A R; Ceballos Sanchez, C; Cerello, P; Cerkala, J; Chang, B; Chapeland, S; Chartier, M; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chauvin, A; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Cho, S; Chochula, P; Choi, K; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa Del Valle, Z; Connors, M E; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortés Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Crkovská, J; Crochet, P; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dahms, T; Dainese, A; Danisch, M C; Danu, A; Das, D; Das, I; Das, S; Dash, A; Dash, S; De, S; De Caro, A; de Cataldo, G; de Conti, C; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Souza, R D; Degenhardt, H F; Deisting, A; Deloff, A; Deplano, C; Dhankher, P; Di Bari, D; Di Mauro, A; Di Nezza, P; Di Ruzza, B; Diaz Corchero, M A; Dietel, T; Dillenseger, P; Divià, R; Djuvsland, Ø; Dobrin, A; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Drozhzhova, T; Dubey, A K; Dubla, A; Ducroux, L; Duggal, A K; Dupieux, P; Ehlers, R J; Elia, D; Endress, E; Engel, H; Epple, E; Erazmus, B; Erhardt, F; Espagnon, B; Esumi, S; Eulisse, G; Eum, J; Evans, D; Evdokimov, S; Fabbietti, L; Fabris, D; Faivre, J; Fantoni, A; Fasel, M; Feldkamp, L; Feliciello, A; Feofilov, G; Ferencei, J; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Feuillard, V J G; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Francisco, A; Frankenfeld, U; Fronze, G G; Fuchs, U; Furget, C; Furs, A; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A M; Gajdosova, K; Gallio, M; Galvan, C D; Gangadharan, D R; Ganoti, P; Gao, C; Garabatos, C; Garcia-Solis, E; Garg, K; Garg, P; Gargiulo, C; Gasik, P; Gauger, E F; Gay Ducati, M B; Germain, M; Ghosh, P; Ghosh, S K; Gianotti, P; Giubellino, P; Giubilato, P; Gladysz-Dziadus, E; Glässel, P; Goméz Coral, D M; Gomez Ramirez, A; Gonzalez, A S; Gonzalez, V; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Grabski, V; Graczykowski, L K; Graham, K L; Greiner, L; Grelli, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grion, N; Gronefeld, J M; Grosa, F; Grosse-Oetringhaus, J F; Grosso, R; Gruber, L; Grull, F R; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Guzman, I B; Haake, R; Hadjidakis, C; Hamagaki, H; Hamar, G; Hamon, J C; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Hellbär, E; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, F; Hess, B A; Hetland, K F; Hillemanns, H; Hippolyte, B; Hladky, J; Horak, D; Hosokawa, R; Hristov, P; Hughes, C; Humanic, T J; Hussain, N; Hussain, T; Hutter, D; Hwang, D S; Ilkaev, R; Inaba, M; Ippolitov, M; Irfan, M; Isakov, V; Islam, M S; Ivanov, M; Ivanov, V; Izucheev, V; Jacak, B; Jacazio, N; Jacobs, P M; Jadhav, M B; Jadlovska, S; Jadlovsky, J; Jahnke, C; Jakubowska, M J; Janik, M A; Jayarathna, P H S Y; Jena, C; Jena, S; Jercic, M; Jimenez Bustamante, R T; Jones, P G; Jusko, A; Kalinak, P; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karayan, L; Karpechev, E; Kebschull, U; Keidel, R; Keijdener, D L D; Keil, M; Mohisin Khan, M; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Khatun, A; Khuntia, A; Kielbowicz, M M; Kileng, B; Kim, D W; Kim, D J; Kim, D; Kim, H; Kim, J S; Kim, J; Kim, M; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, C; Klein, J; Klein-Bösing, C; Klewin, S; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Kofarago, M; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Kondratyuk, E; Konevskikh, A; Kopcik, M; Kour, M; Kouzinopoulos, C; Kovalenko, O; Kovalenko, V; Kowalski, M; Koyithatta Meethaleveedu, G; Králik, I; Kravčáková, A; Krivda, M; Krizek, F; Kryshen, E; Krzewicki, M; Kubera, A M; Kučera, V; Kuhn, C; Kuijer, P G; Kumar, A; Kumar, J; Kumar, L; Kumar, S; Kundu, S; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lapidus, K; Lara, C; Lardeux, A; Lattuca, A; Laudi, E; Lavicka, R; Lazaridis, L; Lea, R; Leardini, L; Lee, S; Lehas, F; Lehner, S; Lehrbach, J; Lemmon, R C; Lenti, V; Leogrande, E; León Monzón, I; Lévai, P; Li, S; Li, X; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Litichevskyi, V; Ljunggren, H M; Llope, W J; Lodato, D F; Loenne, P I; Loginov, V; Loizides, C; Loncar, P; Lopez, X; López Torres, E; Lowe, A; Luettig, P; Lunardon, M; Luparello, G; Lupi, M; Lutz, T H; Maevskaya, A; Mager, M; Mahajan, S; Mahmood, S M; Maire, A; Majka, R D; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Margutti, J; Marín, A; Markert, C; Marquard, M; Martin, N A; Martinengo, P; Martinez, J A L; Martínez, M I; Martínez García, G; Martinez Pedreira, M; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Mastroserio, A; Mathis, A M; Matyja, A; Mayer, C; Mazer, J; Mazzilli, M; Mazzoni, M A; Meddi, F; Melikyan, Y; Menchaca-Rocha, A; Meninno, E; Mercado Pérez, J; Meres, M; Mhlanga, S; Miake, Y; Mieskolainen, M M; Mihaylov, D; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Mishra, T; Miśkowiec, D; Mitra, J; Mitu, C M; Mohammadi, N; Mohanty, B; Montes, E; Moreira De Godoy, D A; Moreno, L A P; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Mühlheim, D; Muhuri, S; Mukherjee, M; Mulligan, J D; Munhoz, M G; Münning, K; Munzer, R H; Murakami, H; Murray, S; Musa, L; Musinsky, J; Myers, C J; Naik, B; Nair, R; Nandi, B K; Nania, R; Nappi, E; Naru, M U; Natal da Luz, H; Nattrass, C; Navarro, S R; Nayak, K; Nayak, R; Nayak, T K; Nazarenko, S; Nedosekin, A; Negrao De Oliveira, R A; Nellen, L; Nesbo, S V; Ng, F; Nicassio, M; Niculescu, M; Niedziela, J; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Noferini, F; Nomokonov, P; Nooren, G; Noris, J C C; Norman, J; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Ohlson, A; Okubo, T; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Oliver, M H; Onderwaater, J; Oppedisano, C; Orava, R; Oravec, M; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Ozdemir, M; Pachmayer, Y; Pacik, V; Pagano, D; Pagano, P; Paić, G; Pal, S K; Palni, P; Pan, J; Pandey, A K; Panebianco, S; Papikyan, V; Pappalardo, G S; Pareek, P; Park, J; Park, W J; Parmar, S; Passfeld, A; Paticchio, V; Patra, R N; Paul, B; Pei, H; Peitzmann, T; Peng, X; Pereira, L G; Pereira Da Costa, H; Peresunko, D; Perez Lezama, E; Peskov, V; Pestov, Y; Petráček, V; Petrov, V; Petrovici, M; Petta, C; Pezzi, R P; Piano, S; Pikna, M; Pillot, P; Pimentel, L O D L; Pinazza, O; Pinsky, L; Piyarathna, D B; Płoskoń, M; Planinic, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Poonsawat, W; Pop, A; Poppenborg, H; Porteboeuf-Houssais, S; Porter, J; Pospisil, J; Pozdniakov, V; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puccio, M; Puddu, G; Pujahari, P; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Raha, S; Rajput, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Rami, F; Rana, D B; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Ratza, V; Ravasenga, I; Read, K F; Redlich, K; Rehman, A; Reichelt, P; Reidt, F; Ren, X; Renfordt, R; Reolon, A R; Reshetin, A; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Ristea, C; Rodríguez Cahuantzi, M; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Ronchetti, F; Ronflette, L; Rosnet, P; Rossi, A; Roukoutakis, F; Roy, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Ryabov, Y; Rybicki, A; Saarinen, S; Sadhu, S; Sadovsky, S; Šafařík, K; Sahlmuller, B; Sahoo, B; Sahoo, P; Sahoo, R; Sahoo, S; Sahu, P K; Saini, J; Sakai, S; Saleh, M A; Salzwedel, J; Sambyal, S; Samsonov, V; Sandoval, A; Sarkar, D; Sarkar, N; Sarma, P; Sas, M H P; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schmidt, M O; Schmidt, M; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Šefčík, M; Seger, J E; Sekiguchi, Y; Sekihata, D; Selyuzhenkov, I; Senosi, K; Senyukov, S; Serradilla, E; Sett, P; Sevcenco, A; Shabanov, A; Shabetai, A; Shadura, O; Shahoyan, R; Shangaraev, A; Sharma, A; Sharma, A; Sharma, M; Sharma, M; Sharma, N; Sheikh, A I; Shigaki, K; Shou, Q; Shtejer, K; Sibiriak, Y; Siddhanta, S; Sielewicz, K M; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singhal, V; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Slupecki, M; Smirnov, N; Snellings, R J M; Snellman, T W; Song, J; Song, M; Soramel, F; Sorensen, S; Sozzi, F; Spiriti, E; Sputowska, I; Srivastava, B K; Stachel, J; Stan, I; Stankus, P; Stenlund, E; Stiller, J H; Stocco, D; Strmen, P; Suaide, A A P; Sugitate, T; Suire, C; Suleymanov, M; Suljic, M; Sultanov, R; Šumbera, M; Sumowidagdo, S; Suzuki, K; Swain, S; Szabo, A; Szarka, I; Szczepankiewicz, A; Szymanski, M; Tabassam, U; Takahashi, J; Tambave, G J; Tanaka, N; Tarhini, M; Tariq, M; Tarzila, M G; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terasaki, K; Terrevoli, C; Teyssier, B; Thakur, D; Thomas, D; Tieulent, R; Tikhonov, A; Timmins, A R; Toia, A; Tripathy, S; Trogolo, S; Trombetta, G; Trubnikov, V; Trzaska, W H; Trzeciak, B A; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ullaland, K; Umaka, E N; Uras, A; Usai, G L; Utrobicic, A; Vala, M; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vanat, T; Vande Vyvre, P; Varga, D; Vargas, A; Vargyas, M; Varma, R; Vasileiou, M; Vasiliev, A; Vauthier, A; Vázquez Doce, O; Vechernin, V; Veen, A M; Velure, A; Vercellin, E; Vergara Limón, S; Vernet, R; Vértesi, R; Vickovic, L; Vigolo, S; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Villatoro Tello, A; Vinogradov, A; Vinogradov, L; Virgili, T; Vislavicius, V; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Voscek, D; Vranic, D; Vrláková, J; Wagner, B; Wagner, J; Wang, H; Wang, M; Watanabe, D; Watanabe, Y; Weber, M; Weber, S G; Weiser, D F; Wessels, J P; Westerhoff, U; Whitehead, A M; Wiechula, J; Wikne, J; Wilk, G; Wilkinson, J; Willems, G A; Williams, M C S; Windelband, B; Witt, W E; Yalcin, S; Yang, P; Yano, S; Yin, Z; Yokoyama, H; Yoo, I-K; Yoon, J H; Yurchenko, V; Zaccolo, V; Zaman, A; Zampolli, C; Zanoli, H J C; Zaporozhets, S; Zardoshti, N; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhang, C; Zhang, Z; Zhao, C; Zhigareva, N; Zhou, D; Zhou, Y; Zhou, Z; Zhu, H; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zimmermann, M B; Zimmermann, S; Zinovjev, G; Zmeskal, J

    2017-04-21

    We present the first measurement of the two-particle transverse momentum differential correlation function, P_{2}≡⟨Δp_{T}Δp_{T}⟩/⟨p_{T}⟩^{2}, in Pb-Pb collisions at sqrt[s_{NN}]=2.76  TeV. Results for P_{2} are reported as a function of the relative pseudorapidity (Δη) and azimuthal angle (Δφ) between two particles for different collision centralities. The Δϕ dependence is found to be largely independent of Δη for |Δη|≥0.9. In the 5% most central Pb-Pb collisions, the two-particle transverse momentum correlation function exhibits a clear double-hump structure around Δφ=π (i.e., on the away side), which is not observed in number correlations in the same centrality range, and thus provides an indication of the dominance of triangular flow in this collision centrality. Fourier decompositions of P_{2}, studied as a function of the collision centrality, show that correlations at |Δη|≥0.9 can be well reproduced by a flow ansatz based on the notion that measured transverse momentum correlations are strictly determined by the collective motion of the system.

  9. Role of location-dependent transverse wind on root-mean-square bandwidth of temporal light-flux fluctuations in the turbulent atmosphere.

    PubMed

    Chen, Chunyi; Yang, Huamin

    2017-11-01

    The root-mean-square (RMS) bandwidth of temporal light-flux fluctuations is formulated for both plane and spherical waves propagating in the turbulent atmosphere with location-dependent transverse wind. Two path weighting functions characterizing the joint contributions of turbulent eddies and transverse winds at various locations toward the RMS bandwidth are derived. Based on the developed formulations, the roles of variations in both the direction and magnitude of transverse wind velocity with locations over a path on the RMS bandwidth are elucidated. For propagation paths between ground and space, comparisons of the RMS bandwidth computed based on the Bufton wind profile with that calculated by assuming a nominal constant transverse wind velocity are made to exemplify the effect that location dependence of transverse wind velocity has on the RMS bandwidth. Moreover, an expression for the weighted RMS transverse wind velocity has been derived, which can be used as a nominal constant transverse wind velocity over a path for accurately determining the RMS bandwidth.

  10. Rapidity, azimuthal, and multiplicity dependence of mean transverse momentum and transverse momentum correlations in {pi}{sup +}p and K{sup +}p collisions in {radical}(s)=22 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atayan, M.R.; Gulkanyan, H.; Bai Yuting

    Rapidity, azimuthal and multiplicity dependence of mean transverse momentum and transverse momentum correlations of charged particles is studied in {pi}{sup +}p and K{sup +}p collisions at 250 GeV/c incident beam momentum. For the first time, it is found that the rapidity dependence of the two-particle transverse momentum correlation is different from that of the mean transverse momentum, but both have similar multiplicity dependence. In particular, the transverse momentum correlations are boost invariant. This is similar to the recently found boost invariance of the charge balance function. A strong azimuthal dependence of the transverse momentum correlations originates from the constraint ofmore » energy-momentum conservation. The results are compared with those from the PYTHIA Monte Carlo generator. The similarities to and differences with the results from current heavy ion experiments are discussed.« less

  11. Measurement of the jet fragmentation function and transverse profile in proton–proton collisions at a center-of-mass energy of 7 TeV with the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2011-11-30

    The jet fragmentation function and transverse profile for jets with 25 GeV < p Tjet < 500 GeV and |η jet| < 1.2 produced in proton–proton collisions with a center-of-mass energy of 7 TeV are presented. The measurement is performed using data with an integrated luminosity of 36 pb –1. Jets are reconstructed and their momentum measured using calorimetric information. The momenta of the charged particle constituents are measured using the tracking system. The distributions corrected for detector effects are compared with various Monte Carlo event generators and generator tunes. Several of these choices show good agreement with the measuredmore » fragmentation function. Furthermore, none of these choices reproduce both the transverse profile and fragmentation function over the full kinematic range of the measurement.« less

  12. Acute Total and Chronic Partial Sleep Deprivation: Effects on Neurobehavioral Functions, Waking EEG and Renin-Angiotensin System

    NASA Technical Reports Server (NTRS)

    Dijk, Derk-Jan

    1999-01-01

    Total sleep deprivation leads to decrements in neurobehavioral performance and changes in electroencephalographic (EEG) oscillations as well as the incidence of slow eye movements ad detected in the electro-oculogram (EOG) during wakefulness. Although total sleep deprivation is a powerful tool to investigate the association of EEG/EOG and neurobehavioral decrements, sleep loss during space flight is usual only partial. Furthermore exposure to the microgravity environment leads to changes in sodium and volume homeostasis and associated renal and cardio-endocrine responses. Some of these changes can be induced in head down tilt bedrest studies. We integrate research tools and research projects to enhance the fidelity of the simulated conditions of space flight which are characterized by complexity and mutual interactions. The effectiveness of countermeasures and physiologic mechanisms underlying neurobehavioral changes and renal-cardio endocrine changes are investigated in Project 3 of the Human Performance Team and Project 3 of the Cardiovascular Alterations Team respectively. Although the. specific aims of these two projects are very different, they employ very similar research protocols. Thus, both projects investigate the effects of posture/bedrest and sleep deprivation (total or partial) on outcome measures relevant to their specific aims. The main aim of this enhancement grant is to exploit the similarities in research protocols by including the assessment of outcome variables relevant to the Renal-Cardio project in the research protocol of Project 3 of the Human Performance Team and by including the assessment of outcome variables relevant to the Quantitative EEG and Sleep Deprivation Project in the research protocols of Project 3 of the Cardiovascular Alterations team. In particular we will assess Neurobehavioral Function and Waking EEG in the research protocols of the renal-cardio endocrine project and renin-angiotensin and cardiac function in the research protocol of the Quantitative EEG and Waking Neurobehavioral Function project. This will allow us to investigate two additional specific aims: 1) Test the hypothesis that chronic partial sleep deprivation during a 17 day bed rest experiment results in deterioration of neurobehavioral function during waking and increases in EEG power density in the theta frequencies, especially in frontal areas of the brain, as well as the nonREM- REM cycle dependent modulation of heart-rate variability. 2) Test the hypothesis that acute total sleep deprivation modifies the circadian rhythm of the renin-angiotensin system, changes the acute responsiveness of this system to posture beyond what a microgravity environment alone does and affects the nonREM-REM cycle dependent modulation of heart-rate variability.

  13. Transverse momentum dependent (TMD) parton distribution functions: Status and prospects*

    DOE PAGES

    Angeles-Martinez, R.; Bacchetta, A.; Balitsky, Ian I.; ...

    2015-01-01

    In this study, we review transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of multi-scale problems in hadronic collisions. These include transverse momentum q T spectra of Higgs and vector bosons for low q T, and azimuthal correlations in the production of multiple jets associated with heavy bosons at large jet masses. We discuss computational tools for TMDs, and present the application of a new tool, TMD LIB, to parton density fits andmore » parameterizations.« less

  14. The transverse occipital ligament: anatomy and potential functional significance.

    PubMed

    Tubbs, R Shane; Griessenauer, Christoph J; McDaniel, Jenny Gober; Burns, Amanda M; Kumbla, Anjali; Cohen-Gadol, Aaron A

    2010-03-01

    Knowledge of the anatomy of ligaments that bind the craniocervical junction is important for treating patients with lesions of this region. Although the anatomy and function of these ligaments have been well described, those of the transverse occipital ligament (TOL) have remained enigmatic. To describe the anatomy and functions of the transverse occipital ligament. Via a posterior approach, 9 cadaveric specimens underwent dissection of the craniocervical junction with special attention to the presence and anatomy of the TOL. The TOL was identified in 77.8% of the specimens. The ligament was found to be rectangular with fibers running horizontally between the lateral aspects of the foramen magnum. The attachment of each ligament near the occipital condyle was consistent, and each ligament was found superior to the transverse portion of the cruciform ligament and inserted just posterior to the lateral attachment sites of the alar ligaments. The average width, length, and thickness of the TOL was 0.34, 1.94, and 0.13 cm, respectively. The TOL in some specimens also had connections to the alar and transverse ligaments. The TOL was found in the majority of our specimens. The possible functions of this ligament when attached to the alar ligaments include providing additional support to these structures in stabilizing lateral bending, flexion, and axial rotation of the head. Knowledge of this ligament may aid in further understanding craniocervical stability and help in differentiating normal from pathology via imaging modalities.

  15. Computational study of the effect of Reynolds number and motion trajectory asymmetry on the aerodynamics of a pitching airfoil at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Hammer, Patrick R.

    It is well established that natural flyers flap their wings to sustain flight due to poor performance of steady wing aerodynamics at low Reynolds number. Natural flyers also benefit from the propulsive force generated by flapping. Unsteady airfoils allow for simplified study of flapping wing aerodynamics. Limited previous work has suggested that both the Reynolds number and motion trajectory asymmetry play a non-negligible role in the resulting forces and wake structure of an oscillating airfoil. In this work, computations are performed to on this topic for a NACA 0012 airfoil purely pitching about its quarter-chord point. Two-dimensional computations are undertaken using the high-order, extensively validated FDL3DI Navier-Strokes solver developed at Wright-Patterson Air Force Base. The Reynolds number range of this study is 2,000-22,000, reduced frequencies as high as 16 are considered, and the pitching amplitude varies from 2° to 10°. In order to simulate the incompressible limit with the current compressible solver, freestream Mach numbers as low as 0.005 are used. The wake structure is accurately resolved using an overset grid approach. The results show that the streamwise force depends on Reynolds number such that the drag-to-thrust crossover reduced frequency decreases with increasing Reynolds number at a given amplitude. As the amplitude increases, the crossover reduced frequency decreases at a given Reynolds number. The crossover frequency data show good collapse for all pitching amplitudes considered when expressed as the Strouhal number based on trailing edge-amplitude for different Reynolds numbers. Appropriate scaling causes the thrust data to become nearly independent of Reynolds number and amplitude. An increase in propulsive efficiency is observed as the Reynolds number increases while less dependence is seen in the peak-to-peak lift and drag amplitudes. Reynolds number dependence is also seen for the wake structure. The crossover reduced frequency to produce a switch in the wake vortex configuration from von Karman (drag) to reverse von Karman (thrust) patterns decreases as the Reynolds number increases. As the pitching amplitude increases, more complex structures form in the wake, particularly at the higher Reynolds numbers considered. Although both the transverse and streamwise spacing depend on amplitude, the vortex array aspect ratio is nearly amplitude independent for each Reynolds number. Motion trajectory asymmetry produces a non-zero average lift and a decrease in average drag. Decomposition of the lift demonstrates that the majority of the average lift is a result of the component from average vortex (circulatory) lift. The average lift is positive at low reduced frequency, but as the reduced frequency increases at a given motion asymmetry, an increasing amount of negative lift occurs over a greater portion of the oscillation cycle, and eventually causes a switch in the sign of the lift. The maximum value, minimum value, and peak-to-peak amplitude of the lift and drag increase with increasing reduced frequency and asymmetry. The wake structure becomes complex with an asymmetric motion trajectory. A faster pitch-up produces a single positive vortex and one or more negative vortices, the number of which depends on the reduced frequency and asymmetry. When the airfoil motion trajectory is asymmetric, the vortex trajectories and properties in the wake exhibit asymmetric behavior.

  16. Study of transverse momenta of charged hadrons produced in ν p andbar vp charged current interactions

    NASA Astrophysics Data System (ADS)

    Jones, G. T.; Kennedy, B. W.; Middleton, R. P.; O'Neale, S. W.; Cooper, A. M.; Grant, A.; Klein, H.; Mittendorfer, J.; Morrison, D. R. O.; Parker, A.; Schmid, P.; Wachsmuth, H.; Hamisi, F.; Mobayyen, M. M.; Villalobos-Baillie, O.; Aderholz, M.; Deck, L.; Schmitz, N.; Wittek, W.; Corrigan, G.; Myatt, G.; Radojicic, D.; Retter, M.

    1984-06-01

    Data from a neutrino and antineutrino hydrogen experiment with BEBC are used to investigate transverse properties of the produced charged hadrons. Measurements are presented on average transverse momenta of charged pions as functions of Feynman- x and the hadronic mass, on the transverse momentum flow within an event and on jet-related quantities. The main features of the data are well described by the LUND model. The data favour a version of the model in which soft gluon effects are included and the primordial transverse momentum of the quarks in the proton is small. Effects from 1st order QCD (hard gluon emission) are negligible.

  17. First Extraction of Transversity from a Global Analysis of Electron-Proton and Proton-Proton Data

    NASA Astrophysics Data System (ADS)

    Radici, Marco; Bacchetta, Alessandro

    2018-05-01

    We present the first extraction of the transversity distribution in the framework of collinear factorization based on the global analysis of pion-pair production in deep-inelastic scattering and in proton-proton collisions with a transversely polarized proton. The extraction relies on the knowledge of dihadron fragmentation functions, which are taken from the analysis of electron-positron annihilation data. For the first time, the transversity is extracted from a global analysis similar to what is usually done for the spin-averaged and helicity distributions. The knowledge of transversity is important for, among other things, detecting possible signals of new physics in high-precision low-energy experiments.

  18. Wakefield potentials of corrugated structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novokhatski, A.

    A corrugated structure, which is used in “dechirper” devices, is usually a pipe or two plates with small corrugations (bumps) on the walls. There is a good single-mode description of the wake potentials excited by a relativistic bunch if the wave length of the mode is much longer than the distance between the bumps in the pipe. However, ultrashort bunches, which are now used in free electron lasers, excite much higher frequency fields and the corresponding wake potentials will be very different from the single-mode description. We have made analyses of these wake potentials based on a numerical solution ofmore » Maxwell’s equations. It was confirmed that the behavior of the wakefields of ultrashort bunches in corrugated structures is not much different from the fields excited usually in accelerating structures where the wake potentials are described by the exponential function. For a practical application we present results for the SLAC “dechirper.” We also carried out calculations for a similar device, that was installed and measured at the Pohang Accelerator Laboratory, Korea. As a result, we find very good agreement with the experimental results.« less

  19. Naps Enhance Executive Attention in Preschool-Aged Children.

    PubMed

    Cremone, Amanda; McDermott, Jennifer M; Spencer, Rebecca M C

    2017-09-01

    Executive attention is impaired following sleep loss in school-aged children, adolescents, and adults. Whether naps improve attention relative to nap deprivation in preschool-aged children is unknown. The aim of this study was to compare executive attention in preschool children following a nap and an interval of wake. Sixty-nine children, 35-70 months of age, completed a Flanker task to assess executive attention following a nap and an equivalent interval of wake. Overall, accuracy was greater after the nap compared with the wake interval. Reaction time(s) did not differ between the nap and wake intervals. Results did not differ between children who napped consistently and those who napped inconsistently, suggesting that naps benefit executive attention of preschoolers regardless of nap habituality. These results indicate that naps enhance attention in preschool children. As executive attention supports executive functioning and learning, nap promotion may improve early education outcomes. © The Author 2017. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  20. Wakefield potentials of corrugated structures

    DOE PAGES

    Novokhatski, A.

    2015-10-22

    A corrugated structure, which is used in “dechirper” devices, is usually a pipe or two plates with small corrugations (bumps) on the walls. There is a good single-mode description of the wake potentials excited by a relativistic bunch if the wave length of the mode is much longer than the distance between the bumps in the pipe. However, ultrashort bunches, which are now used in free electron lasers, excite much higher frequency fields and the corresponding wake potentials will be very different from the single-mode description. We have made analyses of these wake potentials based on a numerical solution ofmore » Maxwell’s equations. It was confirmed that the behavior of the wakefields of ultrashort bunches in corrugated structures is not much different from the fields excited usually in accelerating structures where the wake potentials are described by the exponential function. For a practical application we present results for the SLAC “dechirper.” We also carried out calculations for a similar device, that was installed and measured at the Pohang Accelerator Laboratory, Korea. As a result, we find very good agreement with the experimental results.« less

  1. Sleep directly following learning benefits consolidation of spatial associative memory.

    PubMed

    Talamini, Lucia M; Nieuwenhuis, Ingrid L C; Takashima, Atsuko; Jensen, Ole

    2008-04-01

    The last decade has brought forth convincing evidence for a role of sleep in non-declarative memory. A similar function of sleep in episodic memory is supported by various correlational studies, but direct evidence is limited. Here we show that cued recall of face-location associations is significantly higher following a 12-h retention interval containing sleep than following an equally long period of waking. Furthermore, retention is significantly higher over a 24-h sleep-wake interval than over an equally long wake-sleep interval. This difference occurs because retention during sleep was significantly better when sleep followed learning directly, rather than after a day of waking. These data demonstrate a beneficial effect of sleep on memory that cannot be explained solely as a consequence of reduced interference. Rather, our findings suggest a competitive consolidation process, in which the fate of a memory depends, at least in part, on its relative stability at sleep onset: Strong memories tend to be preserved, while weaker memories erode still further. An important aspect of memory consolidation may thus result from the removal of irrelevant memory "debris."

  2. The GABAA Receptor RDL Acts in Peptidergic PDF Neurons to Promote Sleep in Drosophila

    PubMed Central

    Chung, Brian Y.; Kilman, Valerie L.; Keath, J. Russel; Pitman, Jena L.; Allada, Ravi

    2011-01-01

    SUMMARY Sleep is regulated by a circadian clock that largely times sleep and wake to occur at specific times of day and a sleep homeostat that drives sleep as a function of duration of prior wakefulness[1]. To better understand the role of the circadian clock in sleep regulation, we have been using the fruit fly Drosophila melanogaster[2]. Fruit flies display all of the core behavioral features of sleep including relative immobility, elevated arousal thresholds and homeostatic regulation[2, 3]. We assessed sleep-wake modulation by a core set of 20 circadian pacemaker neurons that express the neuropeptide PDF. We find that PDF neuron ablation, loss of pdf or its receptor pdfr results in increased sleep during the late night in light:dark (LD) conditions and more prominent increases on the first subjective day of constant darkness (DD). Flies deploy similar genetic and neurotransmitter pathways to regulate sleep as their mammalian counterparts, including GABA[4]. We find that RNAi-mediated knockdown of the GABAA receptor gene, Resistant to dieldrin (Rdl), in PDF neurons, reduced sleep consistent with a role for GABA in inhibiting PDF neuron function. Patch clamp electrophysiology reveals GABA-activated picrotoxin-sensitive chloride currents on PDF+ neurons. In addition, RDL is detectable most strongly on the large subset of PDF+ pacemaker neurons. These results suggest that GABAergic inhibition of arousal promoting PDF neurons is an important mode of sleep-wake regulation in vivo. PMID:19230663

  3. Final 6D Muon Ionization Colling using Strong Focusing Quadrupoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, T. L.; Acosta, J. G.; Cremaldi, L. M.

    2016-11-15

    Abstract Low emittance muon beam lines and muon colliders are potentially a rich source of BSM physics for future exper- imenters. A muon beam normalized emittance of ax,y,z = (280, 280, 1570)µm has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to achieve a normalized transverse emittance of 100 µm and complete 6D cooling. The low beta regions, as low as 5 mm, produced by the quadrupoles are occupied by dense, low Z absorbers, such asmore » lithium hydride or beryllium, that cool the beam transversely. Equilibrium transverse emittance is linearly proportional to the transverse betatron function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 µm at the expense of longitudinal emittance for a high energy lepton collider. Cooling challenges include chromaticity correction, ssband overlap, quadrupole acceptance, and staying in phase with RF.« less

  4. The transverse momentum distribution of hadrons within jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Zhong -Bo; Liu, Xiaohui; Ringer, Felix

    We study the transverse momentum distribution of hadrons within jets, where the transverse momentum is defined with respect to the standard jet axis. We consider the case where the jet substructure measurement is performed for an inclusive jet sample pp → jet + X. We demonstrate that this observable provides new opportunities to study transverse momentum dependent fragmentation functions (TMDFFs) which are currently poorly constrained from data, especially for gluons. The factorization of the cross section is obtained within Soft Collinear Effective Theory (SCET), and we show that the relevant TMDFFs are the same as for the more traditional processesmore » semi-inclusive deep inelastic scattering (SIDIS) and electron-positron annihilation. Different than in SIDIS, the observable for the in-jet fragmentation does not depend on TMD parton distribution functions which allows for a cleaner and more direct probe of TMDFFs. We present numerical results and compare to available data from the LHC.« less

  5. Pseudoscalar Meson Electroproduction and Transversity

    NASA Astrophysics Data System (ADS)

    Goldstein, Gary R.; Liuti, Simonetta

    2011-02-01

    Exclusive meson leptoproduction from nucleons in the deeply virtual exchanged boson limit can be described by generalized parton distributions (GPDs). Including spin dependence in the description requires 8 independent quark-parton and gluon-parton functions. The chiral even subset of 4 quark-nucleon GPDs are related to nucleon form factors and to parton distribution functions. The chiral odd set of 4 quark-nucleon GPDs are related to transversity, the tensor charge, and other quantities related to transversity. Different meson or photon production processes access different combinations of GPDs. This is analyzed in terms of t-channel exchange quantum numbers, JPC and it is shown that pseudoscalar production can isolate chiral odd GPDs. There is a sensitive dependence in various cross sections and asymmetries on the tensor charge of the nucleon and other transversity parameters. In a second section, analyticity and completeness are shown to limit the partonic interpret ation of the GPDs in the ERBL region.

  6. The transverse momentum distribution of hadrons within jets

    DOE PAGES

    Kang, Zhong -Bo; Liu, Xiaohui; Ringer, Felix; ...

    2017-11-13

    We study the transverse momentum distribution of hadrons within jets, where the transverse momentum is defined with respect to the standard jet axis. We consider the case where the jet substructure measurement is performed for an inclusive jet sample pp → jet + X. We demonstrate that this observable provides new opportunities to study transverse momentum dependent fragmentation functions (TMDFFs) which are currently poorly constrained from data, especially for gluons. The factorization of the cross section is obtained within Soft Collinear Effective Theory (SCET), and we show that the relevant TMDFFs are the same as for the more traditional processesmore » semi-inclusive deep inelastic scattering (SIDIS) and electron-positron annihilation. Different than in SIDIS, the observable for the in-jet fragmentation does not depend on TMD parton distribution functions which allows for a cleaner and more direct probe of TMDFFs. We present numerical results and compare to available data from the LHC.« less

  7. Flow over a cylinder with a hinged-splitter plate

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Govardhan, R. N.; Arakeri, J. H.

    2009-05-01

    Previous work on rigid splitter plates in the wake of a bluff body has shown that the primary vortex shedding can be suppressed for sufficiently long splitter plates. In the present work, we study the problem of a hinged-splitter plate in the wake of a circular cylinder. The splitter plate can rotate about the hinge at the base of the cylinder due to the unsteady fluid forces acting on it, and hence the communication between the two sides of the wake is not totally disrupted as in the rigid splitter plate case. In our study, we investigate this problem in the limit where the stiffness and internal damping associated with the hinge are negligible, and the mass ratio of the splitter plate is small. The experiments show that the splitter plate oscillations increase with Reynolds numbers at low values of Re, and are found to reach a saturation amplitude level at higher Re, Re>4000. This type of saturation amplitude level that appears to continue indefinitely with Re, appears to be related to the fact that there is no structural restoring force, and has been observed previously for transversely oscillating cylinders with no restoring force. In the present case, the saturation tip amplitude level can be up to 0.45D, where D is the cylinder diameter. For this hinged-rigid splitter plate case, it is found that the splitter plate length to cylinder diameter ratio (L/D) is crucial in determining the character and magnitude of the oscillations. For small splitter plate lengths (L/D⩽3.0), the oscillations appear to be nearly periodic with tip amplitudes of about 0.45D nearly independent of L/D. The nondimensional oscillation frequencies (fD/U) on the other hand are found to continuously vary with L/D from fD/U≈0.2 at L/D=1 to fD/U≈0.1 at L/D=3. As the splitter plate length is further increased beyond L/D⩾4.0, the character of the splitter plate oscillations suddenly changes. The oscillations become aperiodic with much smaller amplitudes. In this long splitter plate regime, the spectra of the oscillations become broadband, and are reminiscent of the change in character of the wake oscillations seen in the earlier fixed-rigid splitter plate case for L/D⩾5.0. In the present case of the hinged-splitter plate, the sudden transition seen as the splitter plate length (L/D) is increased from 3 to 4 may be attributed to the fact that the wake vortices are no longer able to synchronize with the plate motions for larger splitter plate lengths. Hence, as observed in other vortex-induced vibration problems, the oscillations become aperiodic and the amplitude reduces dramatically.

  8. Histamine and motivation

    PubMed Central

    Torrealba, Fernando; Riveros, Maria E.; Contreras, Marco; Valdes, Jose L.

    2012-01-01

    Brain histamine may affect a variety of different behavioral and physiological functions; however, its role in promoting wakefulness has overshadowed its other important functions. Here, we review evidence indicating that brain histamine plays a central role in motivation and emphasize its differential involvement in the appetitive and consummatory phases of motivated behaviors. We discuss the inputs that control histaminergic neurons of the tuberomamillary nucleus (TMN) of the hypothalamus, which determine the distinct role of these neurons in appetitive behavior, sleep/wake cycles, and food anticipatory responses. Moreover, we review evidence supporting the dysfunction of histaminergic neurons and the cortical input of histamine in regulating specific forms of decreased motivation (apathy). In addition, we discuss the relationship between the histamine system and drug addiction in the context of motivation. PMID:22783171

  9. Mean dyadic Green's function for a two layer random medium

    NASA Technical Reports Server (NTRS)

    Zuniga, M. A.

    1981-01-01

    The mean dyadic Green's function for a two-layer random medium with arbitrary three-dimensional correlation functions has been obtained with the zeroth-order solution to the Dyson equation by applying the nonlinear approximation. The propagation of the coherent wave in the random medium is similar to that in an anisotropic medium with different propagation constants for the characteristic transverse electric and transverse magnetic polarizations. In the limit of a laminar structure, two propagation constants for each polarization are found to exist.

  10. Transverse parton distribution functions at next-to-next-to-leading order: the quark-to-quark case.

    PubMed

    Gehrmann, Thomas; Lübbert, Thomas; Yang, Li Lin

    2012-12-14

    We present a calculation of the perturbative quark-to-quark transverse parton distribution function at next-to-next-to-leading order based on a gauge invariant operator definition. We demonstrate for the first time that such a definition works beyond the first nontrivial order. We extract from our calculation the coefficient functions relevant for a next-to-next-to-next-to-leading logarithmic Q(T) resummation in a large class of processes at hadron colliders.

  11. Large-eddy simulations of wind-farm wake characteristics associated with a low-level jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Na, Ji Sung; Koo, Eunmo; Jin, Emilia Kyung

    Here, we performed a suite of flow simulations for a 12-wind-turbine array with varying inflow conditions and lateral spacings, and compared the impacts of the flow on velocity deficit and wake recovery. We imposed both laminar inflow and turbulent inflows, which contain turbulence for the Ekman layer and a low-level jet (LLJ) in the stable boundary layer. To solve the flow through the wind turbines and their wakes, we used a large-eddy simulation technique with an actuator-line method. We compared the time series for the velocity deficit at the first and rear columns to observe the temporal change in velocitymore » deficit for the entire wind farm. The velocity deficit at the first column for LLJ inflow was similar to that for laminar inflow. However, the magnitude of velocity deficit at the rear columns for the case with LLJ inflow was 11.9% greater because of strong wake recovery, which was enhanced by the vertical flux of kinetic energy associated with the LLJ. In order to observe the spatial transition and characteristics of wake recovery, we performed statistical analyses of the velocity at different locations for both the laminar and LLJ inflows. These studies indicated that strong wake recovery was present, and a kurtosis analysis showed that the probability density function for the streamwise velocity followed a Gaussian distribution. In a quadrant analysis of the Reynolds stress, we found that the ejection and sweep motions for the LLJ inflow case were greater than those for the laminar inflow case.« less

  12. What Sways People’s Judgment of Sleep Quality? A Quantitative Choice-Making Study With Good and Poor Sleepers

    PubMed Central

    Ramlee, Fatanah; Sanborn, Adam N.

    2017-01-01

    Abstract Study objectives: We conceptualized sleep quality judgment as a decision-making process and examined the relative importance of 17 parameters of sleep quality using a choice-based conjoint analysis. Methods: One hundred participants (50 good sleepers; 50 poor sleepers) were asked to choose between 2 written scenarios to answer 1 of 2 questions: “Which describes a better (or worse) night of sleep?”. Each scenario described a self-reported experience of sleep, stringing together 17 possible determinants of sleep quality that occur at different times of the day (day before, pre-sleep, during sleep, upon waking, day after). Each participant answered 48 questions. Logistic regression models were fit to their choice data. Results: Eleven of the 17 sleep quality parameters had a significant impact on the participants’ choices. The top 3 determinants of sleep quality were: Total sleep time, feeling refreshed (upon waking), and mood (day after). Sleep quality judgments were most influenced by factors that occur during sleep, followed by feelings and activities upon waking and the day after. There was a significant interaction between wake after sleep onset and feeling refreshed (upon waking) and between feeling refreshed (upon waking) and question type (better or worse night of sleep). Type of sleeper (good vs poor sleepers) did not significantly influence the judgments. Conclusions: Sleep quality judgments appear to be determined by not only what happened during sleep, but also what happened after the sleep period. Interventions that improve mood and functioning during the day may inadvertently also improve people’s self-reported evaluation of sleep quality. PMID:28525617

  13. N-Acetylmannosamine improves sleep-wake quality in middle-aged mice: relevance to autonomic nervous function.

    PubMed

    Kuwahara, Masayoshi; Ito, Koichi; Hayakawa, Koji; Yagi, Shintaro; Shiota, Kunio

    2015-01-01

    Aging is associated with a variety of physiological changes originating peripherally and centrally, including within the autonomic nervous system. Sleep-wake disturbances constitute reliable hallmarks of aging in several animal species and humans. Recent studies have been interested in N-acetylmannosamine (ManNAc) a potential therapeutic agent for improving quality of life, as well as preventing age-related cognitive decline. In this study, ManNAc (5.0 mg/ml) was administered in the drinking water of middle-aged male C57BL/6J mice (55 weeks old) for 7 days. Mice were housed under a 12:12 h light:dark cycle at 23-24 °C. We evaluated bio-behavioral activity using electrocardiogram, body temperature and locomotor activity recorded by an implanted telemetry transmitter. To estimate sleep-wake profile, surface electroencephalogram and electromyogram leads connected to a telemetry transmitter were also implanted in mice. Autonomic nervous activity was evaluated using power spectral analysis of heart rate variability. ManNAc-treated mice spent more time in a wakeful state and less time in slow wave sleep during the dark phase. Parasympathetic nervous activity was increased following ManNAc treatment, then the sympatho-vagal balance was shifted predominance of parasympathetic nervous system. Furthermore, improvement in sleep-wake pattern was associated with increased parasympathetic nervous activity. These results suggest that ManNAc treatment can improve bio-behavioral activity and sleep-wake quality in middle-aged mice. This may have implications for improving sleep patterns in elderly humans. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Advances and applications of ABCI

    NASA Astrophysics Data System (ADS)

    Chin, Y. H.

    1993-05-01

    ABCI (Azimuthal Beam Cavity Interaction) is a computer program which solves the Maxwell equations directly in the time domain when a Gaussian beam goes through an axi-symmetrical structure on or off axis. Many new features have been implemented in the new version of ABCI (presently version 6.6), including the 'moving mesh' and Napoly's method of calculation of wake potentials. The mesh is now generated only for the part of the structure inside a window and moves together with the window frame. This moving mesh option reduces the number of mesh points considerably, and very fine meshes can be used. Napoly's integration method makes it possible to compute wake potentials in a structure such as a collimator, where parts of the cavity material are at smaller radii than that of the beam pipes, in such a way that the contribution from the beam pipes vanishes. For the monopole wake potential, ABCI can be applied even to structures with unequal beam pipe radii. Furthermore, the radial mesh size can be varied over the structure, permitting use a fine mesh only where actually needed. With these improvements, the program allows computation of wake fields for structures far too complicated for older codes. Plots of a cavity shape and wake potentials can be obtained in the form of a Top Drawer file. The program can also calculate and plot the impedance of a structure and/or the distribution of the deposited energy as a function of the frequency from Fourier transforms of wake potentials. Its usefulness is illustrated by showing some numerical examples.

  15. Large-eddy simulations of wind-farm wake characteristics associated with a low-level jet

    DOE PAGES

    Na, Ji Sung; Koo, Eunmo; Jin, Emilia Kyung; ...

    2017-11-17

    Here, we performed a suite of flow simulations for a 12-wind-turbine array with varying inflow conditions and lateral spacings, and compared the impacts of the flow on velocity deficit and wake recovery. We imposed both laminar inflow and turbulent inflows, which contain turbulence for the Ekman layer and a low-level jet (LLJ) in the stable boundary layer. To solve the flow through the wind turbines and their wakes, we used a large-eddy simulation technique with an actuator-line method. We compared the time series for the velocity deficit at the first and rear columns to observe the temporal change in velocitymore » deficit for the entire wind farm. The velocity deficit at the first column for LLJ inflow was similar to that for laminar inflow. However, the magnitude of velocity deficit at the rear columns for the case with LLJ inflow was 11.9% greater because of strong wake recovery, which was enhanced by the vertical flux of kinetic energy associated with the LLJ. In order to observe the spatial transition and characteristics of wake recovery, we performed statistical analyses of the velocity at different locations for both the laminar and LLJ inflows. These studies indicated that strong wake recovery was present, and a kurtosis analysis showed that the probability density function for the streamwise velocity followed a Gaussian distribution. In a quadrant analysis of the Reynolds stress, we found that the ejection and sweep motions for the LLJ inflow case were greater than those for the laminar inflow case.« less

  16. The "Double" Tessier 7 Cleft: An Unusual Presentation of a Transverse Facial Cleft.

    PubMed

    Raveendran, Janani A; Chao, Jerry W; Rogers, Gary F; Boyajian, Michael J

    2018-07-01

    Congenital macrostomia, or Tessier number 7 cleft, is a rare craniofacial anomaly. We present a unique patient with bilateral macrostomia that consisted of a "double" transverse cleft on the left side and a single transverse cleft on the right side. A staged reconstructive approach was used to repair the "double" left-sided clefts. This staged technique produced a satisfactory aesthetic and functional outcome.

  17. Transverse Momentum Distributions of Electron in Simulated QED Model

    NASA Astrophysics Data System (ADS)

    Kaur, Navdeep; Dahiya, Harleen

    2018-05-01

    In the present work, we have studied the transverse momentum distributions (TMDs) for the electron in simulated QED model. We have used the overlap representation of light-front wave functions where the spin-1/2 relativistic composite system consists of spin-1/2 fermion and spin-1 vector boson. The results have been obtained for T-even TMDs in transverse momentum plane for fixed value of longitudinal momentum fraction x.

  18. Comparison of Transverse Intraosseous Loop Technique and Pull Out Suture for Reinsertion of the Flexor Digitorum Profundus tendon. A Retrospective Study.

    PubMed

    Rigó, István Zoltán; Røkkum, Magne

    2013-12-01

    We compared the results of two methods for reinsertion of flexor digitorum profundus tendons retrospectively. In 35 fingers of 29 patients pull-out suture and in 13 fingers of 11 patients transverse intraosseous loop technique was performed with a mean follow-up of 8 and 6 months, respectively. Eleven and nine fingers achieved "excellent" or "good" function according to Strickland and Glogovac at 8 weeks; 20 and ten at the last control in the pull-out and transverse intraosseous loop groups, respectively. The difference at 8 weeks was statistically significant in favour of the transverse intraosseous loop group. Ten patients underwent 12 complications in the pull-out group (four superficial infections; one rerupture, one PIP and one DIP joint contracture, one adhesion, two granulomas, one nail deformity and one carpal tunnel syndrome) and four of them were reoperated (one carpal tunnel release, one teno-arthrolysis and two resections of granuloma). There was no complication and no reoperation in the transverse intraosseous loop group, the difference being statistically significant for the former. In our study the transverse intraosseous loop technique seemed to be a safe alternative with possibly better functional results compared to the pull-out suture.

  19. Graph Theoretical Analysis of BOLD Functional Connectivity during Human Sleep without EEG Monitoring.

    PubMed

    Lv, Jun; Liu, Dongdong; Ma, Jing; Wang, Xiaoying; Zhang, Jue

    2015-01-01

    Functional brain networks of human have been revealed to have small-world properties by both analyzing electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) time series. In our study, by using graph theoretical analysis, we attempted to investigate the changes of paralimbic-limbic cortex between wake and sleep states. Ten healthy young people were recruited to our experiment. Data from 2 subjects were excluded for the reason that they had not fallen asleep during the experiment. For each subject, blood oxygen level dependency (BOLD) images were acquired to analyze brain network, and peripheral pulse signals were obtained continuously to identify if the subject was in sleep periods. Results of fMRI showed that brain networks exhibited stronger small-world characteristics during sleep state as compared to wake state, which was in consistent with previous studies using EEG synchronization. Moreover, we observed that compared with wake state, paralimbic-limbic cortex had less connectivity with neocortical system and centrencephalic structure in sleep. In conclusion, this is the first study, to our knowledge, has observed that small-world properties of brain functional networks altered when human sleeps without EEG synchronization. Moreover, we speculate that paralimbic-limbic cortex organization owns an efficient defense mechanism responsible for suppressing the external environment interference when humans sleep, which is consistent with the hypothesis that the paralimbic-limbic cortex may be functionally disconnected from brain regions which directly mediate their interactions with the external environment. Our findings also provide a reasonable explanation why stable sleep exhibits homeostasis which is far less susceptible to outside world.

  20. Effects of transverse shear deformation on buckling of laminated cylinders as a function of thickness and ply orientation

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    1987-01-01

    Buckling loads of thick-walled, orthotropic, simply-supported right circular cylinders are predicted using a new higher-order transverse shear deformation theory. The higher-order theory shows that, by more accurately accounting for transverse shear deformation effects, the predicted buckling load may be reduced by as much as 80 percent compared to predictions based on conventional transverse shear deformation theory. A parametric study of the effect of ply orientation on the buckling load of axially compressed cylinders indicates that laminates containing 0 deg plies are the most sensitive to transverse shear deformation effects. Interaction curves for buckling of cylinders with axial compressive and external pressure loadings indicate that buckling loads due to external pressure loadings are much less sensitive to transverse shear deformation effects than those due to axial compressive loadings.

  1. Transverse spin Seebeck effect versus anomalous and planar Nernst effects in Permalloy thin films.

    PubMed

    Schmid, M; Srichandan, S; Meier, D; Kuschel, T; Schmalhorst, J-M; Vogel, M; Reiss, G; Strunk, C; Back, C H

    2013-11-01

    Transverse magnetothermoelectric effects are studied in Permalloy thin films grown on MgO and GaAs substrates and compared to those grown on suspended SiN(x) membranes. The transverse voltage along platinum strips patterned on top of the Permalloy films is measured versus the external magnetic field as a function of the angle and temperature gradients. After the identification of the contribution of the planar and anomalous Nernst effects, we find an upper limit for the transverse spin Seebeck effect, which is several orders of magnitude smaller than previously reported.

  2. Connections between collinear and transverse-momentum-dependent polarized observables within the Collins–Soper–Sterman formalism

    DOE PAGES

    Gamberg, Leonard; Metz, Andreas; Pitonyak, Daniel; ...

    2018-03-15

    Here, we extend the improved Collins–Soper–Sterman (iCSS) W+Y construction recently presented in to the case of polarized observables, where we focus in particular on the Sivers effect in semi-inclusive deep-inelastic scattering. We further show how one recovers the expected leading-order collinear twist-3 result from a (weighted) q T-integral of the differential cross section. We are also able to demonstrate the validity of the well-known relation between the (TMD) Sivers function and the (collinear twist-3) Qiu–Sterman function within the iCSS framework. This relation allows for their interpretation as functions yielding the average transverse momentum of unpolarized quarks in a transversely polarizedmore » spin-1/2 target. We further outline how this study can be generalized to other polarized quantities.« less

  3. Connections between collinear and transverse-momentum-dependent polarized observables within the Collins–Soper–Sterman formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamberg, Leonard; Metz, Andreas; Pitonyak, Daniel

    Here, we extend the improved Collins–Soper–Sterman (iCSS) W+Y construction recently presented in to the case of polarized observables, where we focus in particular on the Sivers effect in semi-inclusive deep-inelastic scattering. We further show how one recovers the expected leading-order collinear twist-3 result from a (weighted) q T-integral of the differential cross section. We are also able to demonstrate the validity of the well-known relation between the (TMD) Sivers function and the (collinear twist-3) Qiu–Sterman function within the iCSS framework. This relation allows for their interpretation as functions yielding the average transverse momentum of unpolarized quarks in a transversely polarizedmore » spin-1/2 target. We further outline how this study can be generalized to other polarized quantities.« less

  4. Connections between collinear and transverse-momentum-dependent polarized observables within the Collins-Soper-Sterman formalism

    NASA Astrophysics Data System (ADS)

    Gamberg, Leonard; Metz, Andreas; Pitonyak, Daniel; Prokudin, Alexei

    2018-06-01

    We extend the improved Collins-Soper-Sterman (iCSS) W + Y construction recently presented in [1] to the case of polarized observables, where we focus in particular on the Sivers effect in semi-inclusive deep-inelastic scattering. We further show how one recovers the expected leading-order collinear twist-3 result from a (weighted) qT-integral of the differential cross section. We are also able to demonstrate the validity of the well-known relation between the (TMD) Sivers function and the (collinear twist-3) Qiu-Sterman function within the iCSS framework. This relation allows for their interpretation as functions yielding the average transverse momentum of unpolarized quarks in a transversely polarized spin-1/2 target. We further outline how this study can be generalized to other polarized quantities.

  5. Regulation of neuron-astrocyte metabolic coupling across the sleep-wake cycle.

    PubMed

    Petit, J-M; Magistretti, P J

    2016-05-26

    Over the last thirty years, a growing number of studies showed that astrocytes play a pivotal role in the energy support to synapses. More precisely, astrocytes adjust energy production to neuronal energy needs through different mechanisms grouped under the term "neurometabolic coupling" (NMC). In this review we describe these mechanisms of coupling and how they involve astrocytes. From a physiological point of view, these mechanisms of coupling are particularly important to ensure normal synaptic functioning when neurons undergo rapid and repetitive changes in the firing rate such as during the sleep/wake transitions. Investigations into brain energy metabolism during the sleep/wake cycle have been mainly focused on glucose (Gluc) consumption and on glycogen metabolism. However, the recent development of substrate-specific biosensors allowed measurements of the variation in extracellular levels of glutamate, Gluc and lactate (Lac) with a time resolution compatible with sleep stage duration. Together with gene expression data these experiments allowed to better define the variations of energy metabolite regulation across the sleep/wake cycle. The aim of this review is to bring into perspective the role of astrocytes and NMC in the regulation of the sleep/wake cycle. The data reviewed also suggest an important role of the astrocytic network. In addition, the role of astrocytes in NMC mechanisms is consistent with the "local and use dependent" sleep hypothesis. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. On the use of the indicial-function concept in the analysis of unsteady motions of wings and wing-tail combinations

    NASA Technical Reports Server (NTRS)

    Tobak, Murray

    1954-01-01

    The concept of indicial aerodynamic functions is applied to the analysis of the short-period pitching mode of aircraft. By the use of simple physical relationships associated with the indicial-function relationships concept, quantitative studies are made of the separate effects on the damping in pitch of changes in Mach number, aspect ratio, plan-form shape, and frequency. The concept is further shown to be of value in depicting physically the induced effects on a tail surface which follows in the wake of a starting forward surface. Considerable effort is devoted to the development of theoretical techniques whereby the transient response in lift at the tail to the wing wake may be estimated. Numerical results for several representative cases are presented, and these are analyzed to reassess the importance of the contribution to the rotary damping moment of the interference lift at the tail.

  7. Multiplicity and transverse momentum evolution of charge-dependent correlations in pp, p–Pb, and Pb–Pb collisions at the LHC

    DOE PAGES

    Adam, J.; Adamová, D.; Aggarwal, M. M.; ...

    2016-02-19

    Here, we report on two-particle charge-dependent correlations in pp, p–Pb, and Pb–Pb collisions as a function of the pseudorapidity and azimuthal angle difference, Δη and Δφ respectively. These correlations are studied using the balance function that probes the charge creation time and the development of collectivity in the produced system. The dependence of the balance function on the event multiplicity as well as on the trigger and associated particle transverse momentum (p T) in pp, p–Pb, and Pb–Pb collisions at √ sNN = 7, 5.02, and 2.76 TeV, respectively, are presented. In the low transverse momentum region, for 0.2

  8. Multiplicity and transverse momentum evolution of charge-dependent correlations in pp, p-Pb, and Pb-Pb collisions at the LHC.

    PubMed

    Adam, J; Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agrawal, N; Ahammed, Z; Ahn, S U; Aiola, S; Akindinov, A; Alam, S N; Aleksandrov, D; Alessandro, B; Alexandre, D; Alfaro Molina, R; Alici, A; Alkin, A; Almaraz, J R M; Alme, J; Alt, T; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arnaldi, R; Arnold, O W; Arsene, I C; Arslandok, M; Audurier, B; Augustinus, A; Averbeck, R; Azmi, M D; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldisseri, A; Baral, R C; Barbano, A M; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartalini, P; Barth, K; Bartke, J; Bartsch, E; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batista Camejo, A; Batyunya, B; Batzing, P C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bello Martinez, H; Bellwied, R; Belmont, R; Belmont-Moreno, E; Belyaev, V; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhat, I R; Bhati, A K; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biswas, R; Biswas, S; Bjelogrlic, S; Blair, J T; Blau, D; Blume, C; Bock, F; Bogdanov, A; Bøggild, H; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Borri, M; Bossú, F; Botta, E; Böttger, S; Bourjau, C; Braun-Munzinger, P; Bregant, M; Breitner, T; Broker, T A; Browning, T A; Broz, M; Brucken, E J; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Butt, J B; Buxton, J T; Caffarri, D; Cai, X; Caines, H; Calero Diaz, L; Caliva, A; Calvo Villar, E; Camerini, P; Carena, F; Carena, W; Carnesecchi, F; Castillo Castellanos, J; Castro, A J; Casula, E A R; Ceballos Sanchez, C; Cepila, J; Cerello, P; Cerkala, J; Chang, B; Chapeland, S; Chartier, M; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chelnokov, V; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Cho, S; Chochula, P; Choi, K; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa Del Valle, Z; Connors, M E; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortés Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Crochet, P; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dahms, T; Dainese, A; Danu, A; Das, D; Das, I; Das, S; Dash, A; Dash, S; De, S; De Caro, A; de Cataldo, G; de Conti, C; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; Deisting, A; Deloff, A; Dénes, E; Deplano, C; Dhankher, P; Di Bari, D; Di Mauro, A; Di Nezza, P; Diaz Corchero, M A; Dietel, T; Dillenseger, P; Divià, R; Djuvsland, Ø; Dobrin, A; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Drozhzhova, T; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Ehlers, R J; Elia, D; Engel, H; Epple, E; Erazmus, B; Erdemir, I; Erhardt, F; Espagnon, B; Estienne, M; Esumi, S; Eum, J; Evans, D; Evdokimov, S; Eyyubova, G; Fabbietti, L; Fabris, D; Faivre, J; Fantoni, A; Fasel, M; Feldkamp, L; Feliciello, A; Feofilov, G; Ferencei, J; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Feuillard, V J G; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Fleck, M G; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Frankenfeld, U; Fuchs, U; Furget, C; Furs, A; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A M; Gallio, M; Gangadharan, D R; Ganoti, P; Gao, C; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Gasik, P; Gauger, E F; Germain, M; Gheata, A; Gheata, M; Ghosh, P; Ghosh, S K; Gianotti, P; Giubellino, P; Giubilato, P; Gladysz-Dziadus, E; Glässel, P; Goméz Coral, D M; Gomez Ramirez, A; Gonzalez, V; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Grabski, V; Grachov, O A; Graczykowski, L K; Graham, K L; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gronefeld, J M; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Haake, R; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Hess, B A; Hetland, K F; Hillemanns, H; Hippolyte, B; Hosokawa, R; Hristov, P; Huang, M; Humanic, T J; Hussain, N; Hussain, T; Hutter, D; Hwang, D S; Ilkaev, R; Inaba, M; Ippolitov, M; Irfan, M; Ivanov, M; Ivanov, V; Izucheev, V; Jacobs, P M; Jadhav, M B; Jadlovska, S; Jadlovsky, J; Jahnke, C; Jakubowska, M J; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, C; Jena, S; Jimenez Bustamante, R T; Jones, P G; Jung, H; Jusko, A; Kalinak, P; Kalweit, A; Kamin, J; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karayan, L; Karpechev, E; Kebschull, U; Keidel, R; Keijdener, D L D; Keil, M; Mohisin Khan, M; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, D W; Kim, D J; Kim, D; Kim, H; Kim, J S; Kim, M; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, C; Klein, J; Klein-Bösing, C; Klewin, S; Kluge, A; Knichel, M L; Knospe, A G; Kobayashi, T; Kobdaj, C; Kofarago, M; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Kondratyuk, E; Konevskikh, A; Kopcik, M; Kour, M; Kouzinopoulos, C; Kovalenko, O; Kovalenko, V; Kowalski, M; Koyithatta Meethaleveedu, G; Králik, I; Kravčáková, A; Kretz, M; Krivda, M; Krizek, F; Kryshen, E; Krzewicki, M; Kubera, A M; Kučera, V; Kuhn, C; Kuijer, P G; Kumar, A; Kumar, J; Kumar, L; Kumar, S; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Ladron de Guevara, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lara, C; Lardeux, A; Lattuca, A; Laudi, E; Lea, R; Leardini, L; Lee, G R; Lee, S; Lehas, F; Lemmon, R C; Lenti, V; Leogrande, E; León Monzón, I; León Vargas, H; Leoncino, M; Lévai, P; Li, S; Li, X; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Lodato, D F; Loenne, P I; Loginov, V; Loizides, C; Lopez, X; López Torres, E; Lowe, A; Luettig, P; Lunardon, M; Luparello, G; Maevskaya, A; Mager, M; Mahajan, S; Mahmood, S M; Maire, A; Majka, R D; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manko, V; Manso, F; Manzari, V; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Margutti, J; Marín, A; Markert, C; Marquard, M; Martin, N A; Martin Blanco, J; Martinengo, P; Martínez, M I; Martínez García, G; Martinez Pedreira, M; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastroserio, A; Matyja, A; Mayer, C; Mazer, J; Mazzoni, M A; Mcdonald, D; Meddi, F; Melikyan, Y; Menchaca-Rocha, A; Meninno, E; Mercado Pérez, J; Meres, M; Miake, Y; Mieskolainen, M M; Mikhaylov, K; Milano, L; Milosevic, J; Minervini, L M; Mischke, A; Mishra, A N; Miśkowiec, D; Mitra, J; Mitu, C M; Mohammadi, N; Mohanty, B; Molnar, L; Montaño Zetina, L; Montes, E; Moreira De Godoy, D A; Moreno, L A P; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Mühlheim, D; Muhuri, S; Mukherjee, M; Mulligan, J D; Munhoz, M G; Munzer, R H; Murray, S; Musa, L; Musinsky, J; Naik, B; Nair, R; Nandi, B K; Nania, R; Nappi, E; Naru, M U; Natal da Luz, H; Nattrass, C; Nayak, K; Nayak, T K; Nazarenko, S; Nedosekin, A; Nellen, L; Ng, F; Nicassio, M; Niculescu, M; Niedziela, J; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Noferini, F; Nomokonov, P; Nooren, G; Noris, J C C; Norman, J; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Oh, S K; Ohlson, A; Okatan, A; Okubo, T; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Oliver, M H; Onderwaater, J; Oppedisano, C; Orava, R; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Ozdemir, M; Pachmayer, Y; Pagano, P; Paić, G; Pal, S K; Pan, J; Pandey, A K; Papcun, P; Papikyan, V; Pappalardo, G S; Pareek, P; Park, W J; Parmar, S; Passfeld, A; Paticchio, V; Patra, R N; Paul, B; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perez Lezama, E; Peskov, V; Pestov, Y; Petráček, V; Petrov, V; Petrovici, M; Petta, C; Piano, S; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Piyarathna, D B; Płoskoń, M; Planinic, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Poonsawat, W; Pop, A; Porteboeuf-Houssais, S; Porter, J; Pospisil, J; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puccio, M; Puddu, G; Pujahari, P; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Raha, S; Rajput, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Rami, F; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Read, K F; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reidt, F; Ren, X; Renfordt, R; Reolon, A R; Reshetin, A; Revol, J-P; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Ristea, C; Rocco, E; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Ronflette, L; Rosnet, P; Rossi, A; Roukoutakis, F; Roy, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Ryabov, Y; Rybicki, A; Sadovsky, S; Šafařík, K; Sahlmuller, B; Sahoo, P; Sahoo, R; Sahoo, S; Sahu, P K; Saini, J; Sakai, S; Saleh, M A; Salzwedel, J; Sambyal, S; Samsonov, V; Šándor, L; Sandoval, A; Sano, M; Sarkar, D; Scapparone, E; Scarlassara, F; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schuchmann, S; Schukraft, J; Schulc, M; Schuster, T; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Šefčík, M; Seger, J E; Sekiguchi, Y; Sekihata, D; Selyuzhenkov, I; Senosi, K; Senyukov, S; Serradilla, E; Sevcenco, A; Shabanov, A; Shabetai, A; Shadura, O; Shahoyan, R; Shangaraev, A; Sharma, A; Sharma, M; Sharma, M; Sharma, N; Shigaki, K; Shtejer, K; Sibiriak, Y; Siddhanta, S; Sielewicz, K M; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Slupecki, M; Smirnov, N; Snellings, R J M; Snellman, T W; Søgaard, C; Song, J; Song, M; Song, Z; Soramel, F; Sorensen, S; Sozzi, F; Spacek, M; Spiriti, E; Sputowska, I; Spyropoulou-Stassinaki, M; Stachel, J; Stan, I; Stefanek, G; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Strmen, P; Suaide, A A P; Sugitate, T; Suire, C; Suleymanov, M; Suljic, M; Sultanov, R; Šumbera, M; Szabo, A; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szymanski, M; Tabassam, U; Takahashi, J; Tambave, G J; Tanaka, N; Tangaro, M A; Tarhini, M; Tariq, M; Tarzila, M G; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terasaki, K; Terrevoli, C; Teyssier, B; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Toia, A; Trogolo, S; Trombetta, G; Trubnikov, V; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ullaland, K; Uras, A; Usai, G L; Utrobicic, A; Vajzer, M; Vala, M; Valencia Palomo, L; Vallero, S; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vanat, T; Vande Vyvre, P; Varga, D; Vargas, A; Vargyas, M; Varma, R; Vasileiou, M; Vasiliev, A; Vauthier, A; Vechernin, V; Veen, A M; Veldhoen, M; Velure, A; Venaruzzo, M; Vercellin, E; Vergara Limón, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Villatoro Tello, A; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Vislavicius, V; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, J; Wang, H; Wang, M; Watanabe, D; Watanabe, Y; Weber, M; Weber, S G; Weiser, D F; Wessels, J P; Westerhoff, U; Whitehead, A M; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Wilkinson, J; Williams, M C S; Windelband, B; Winn, M; Yaldo, C G; Yang, H; Yang, P; Yano, S; Yasar, C; Yin, Z; Yokoyama, H; Yoo, I-K; Yoon, J H; Yurchenko, V; Yushmanov, I; Zaborowska, A; Zaccolo, V; Zaman, A; Zampolli, C; Zanoli, H J C; Zaporozhets, S; Zardoshti, N; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zgura, I S; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhang, C; Zhang, Z; Zhao, C; Zhigareva, N; Zhou, D; Zhou, Y; Zhou, Z; Zhu, H; Zhu, J; Zichichi, A; Zimmermann, A; Zimmermann, M B; Zinovjev, G; Zyzak, M

    We report on two-particle charge-dependent correlations in pp, p-Pb, and Pb-Pb collisions as a function of the pseudorapidity and azimuthal angle difference, [Formula: see text] and [Formula: see text] respectively. These correlations are studied using the balance function that probes the charge creation time and the development of collectivity in the produced system. The dependence of the balance function on the event multiplicity as well as on the trigger and associated particle transverse momentum ([Formula: see text]) in pp, p-Pb, and Pb-Pb collisions at [Formula: see text] 7, 5.02, and 2.76 TeV, respectively, are presented. In the low transverse momentum region, for [Formula: see text] GeV/ c , the balance function becomes narrower in both [Formula: see text] and [Formula: see text] directions in all three systems for events with higher multiplicity. The experimental findings favor models that either incorporate some collective behavior (e.g. AMPT) or different mechanisms that lead to effects that resemble collective behavior (e.g. PYTHIA8 with color reconnection). For higher values of transverse momenta the balance function becomes even narrower but exhibits no multiplicity dependence, indicating that the observed narrowing with increasing multiplicity at low [Formula: see text] is a feature of bulk particle production.

  9. Flow through very porous screens

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.; Muramoto, K. K.

    1985-01-01

    Flow through and around screens with small resistance coefficient were analyzed. Both steady and oscillatory flows are considered, however, the case of a screen normal to the flow is treated. At second order in the asymptotic expansion the steady flow normal to the screen is nonuniform along the screen, due to components induced by the wake and by tangential drag. The third order pressure drop is nonuniform and the wake contains distributed vorticity, in addition to the vortex sheet along its boundary. The unsteady drag coefficient is found as a function of frequency.

  10. Casimir self-entropy of a spherical electromagnetic δ -function shell

    NASA Astrophysics Data System (ADS)

    Milton, Kimball A.; Kalauni, Pushpa; Parashar, Prachi; Li, Yang

    2017-10-01

    In this paper we continue our program of computing Casimir self-entropies of idealized electrical bodies. Here we consider an electromagnetic δ -function sphere ("semitransparent sphere") whose electric susceptibility has a transverse polarization with arbitrary strength. Dispersion is incorporated by a plasma-like model. In the strong-coupling limit, a perfectly conducting spherical shell is realized. We compute the entropy for both low and high temperatures. The transverse electric self-entropy is negative as expected, but the transverse magnetic self-entropy requires ultraviolet and infrared renormalization (subtraction), and, surprisingly, is only positive for sufficiently strong coupling. Results are robust under different regularization schemes. These rather surprising findings require further investigation.

  11. Transverse spin structure of the nucleon from lattice-QCD simulations.

    PubMed

    Göckeler, M; Hägler, Ph; Horsley, R; Nakamura, Y; Pleiter, D; Rakow, P E L; Schäfer, A; Schierholz, G; Stüben, H; Zanotti, J M

    2007-06-01

    We present the first calculation in lattice QCD of the lowest two moments of transverse spin densities of quarks in the nucleon. They encode correlations between quark spin and orbital angular momentum. Our dynamical simulations are based on two flavors of clover-improved Wilson fermions and Wilson gluons. We find significant contributions from certain quark helicity flip generalized parton distributions, leading to strongly distorted densities of transversely polarized quarks in the nucleon. In particular, based on our results and recent arguments by Burkardt [Phys. Rev. D 72, 094020 (2005)], we predict that the Boer-Mulders function h(1/1), describing correlations of transverse quark spin and intrinsic transverse momentum of quarks, is large and negative for both up and down quarks.

  12. Computation on collisionless steady-state plasma flow past a charged disk

    NASA Technical Reports Server (NTRS)

    Parker, L. W.

    1976-01-01

    A computer method is presented using the 'inside-out' approach, for predicting the structure of the disturbed zone near a moving body in space. The approach uses fewer simplifying assumptions than other available methods, and is applicable to large ranges of the values of body and plasma parameters. Two major advances concerning 3-dimensional bodies are that thermal motions of ions as well as of electrons are treated realistically by following their trajectories in the electric field, and the technique for achieving self-consistency is promising for very large bodies. Three sample solutions were obtained for a disk-shaped body, charged negatively to a potential 4kT/e. With ion Mach number 4, and equal ion and electron temperatures, the wakes of a relatively small body (radius 5 Debye lengths) and a relatively large body (radius 100 Debye lengths) both begin to fill up between 2 and 3 body radii downstream. For the large body there is in addition a potential well (about 6kT/e deep) behind the body. Increasing the ion Mach number to 8 for the large body causes the potential well to become wider and longer but not deeper. For the large body, the quasineutrality assumption is validated outside of a cone-shaped region in the very near wake. For the large as well as the small body, the disturbed zone behind the body extends transversely no more than 2 or 3 body radii, a result of significance for the design of spacecraft boom instrumentation.

  13. Transverse spin correlation function of the one-dimensional spin- {1}/{2} XY model

    NASA Astrophysics Data System (ADS)

    Tonegawa, Takashi

    1981-12-01

    The transverse spin pair correlation function pxn=< SxmSxm+ n>=< SxmSxm+ n> is calculated exactly in the thermodynamic limit of the system described by the one-dimensional, isotropic, spin- {1}/{2}, XY Hamiltonian H=-2J limit∑l=1N(S xlS xl+1+S ylS yl+1) . It is found that at absolute zero temperature ( T = 0), the correlation function ρ xn for n ≥ 0 is given by ρ x2p= {1}/{4}{2}/{π}2plimitΠj=1p-1{4j 2}/{4j 2-1 }2p-2jif n=2p , ρ x2p+1=± {1}/{4}{2}/{π}2p+1limitΠj=1p{4j 2}/{4j 2-1 }2p+2jif n=2p+1 , where the plus sign applies when J is positive and the minus sign applies when J is negative. From these the asymptotic behavior as n → ∞ of |ϱ xn| at T = 0 is derived to be |ρ xn| ˜ {a}/{n} with a = 0.147088⋯. For finite temperatures, ρ xn is calculated numerically. By using the results for ϱ xn, the transverse inverse correlation length and the wavenumber dependent transverse spin pair correlation function are also calculated exactly.

  14. The Effect of Flow Curvature on the Axisymmetric Wake

    NASA Astrophysics Data System (ADS)

    Holmes, Marlin; Naughton, Jonathan

    2016-11-01

    The swirling turbulent wake is a perturbation to the canonical axisymmetric turbulent wake. Past studies of the axisymmetric turbulent wake have increased understanding of wake Reynolds number influence on wake characteristics such as centerline wake velocity deficit and wake width. In comparison, the axisymmetric turbulent swirling wake has received little attention. Earlier work by our group has shown that the addition of swirl can change the characteristics of the wake. The goal of this current work is to examine how wake mean flow quantities are related to the wake Reynolds number and the swirl number, where the latter quantity is the ratio of the angular momentum flux to the axial momentum deficit flux. A custom designed swirling wake generator is used in a low turbulence intensity wind tunnel flow to study the turbulent swirling wake in isolation. Stereoscopic Particle Image Velocimetry is used to obtain three component velocity fields in the axial-radial plane. From this data, the wake Reynolds number, the swirl number, centerline velocity decay, wake width, and other relevant wake mean flow quantities are determined. Using these results, the impact of swirl on wake development is discussed. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0012671.

  15. X-ray Generation in Strongly Nonlinear Plasma Waves

    NASA Astrophysics Data System (ADS)

    Kiselev, S.; Pukhov, A.; Kostyukov, I.

    2004-09-01

    We show that a laser wake field in the “bubble” regime [

    A. Pukhov and J. Meyer-ter-Vehn Appl. Phys. BAPBOEM0946-2171 74, 355 (2002)10.1007/s003400200795
    ], works as a compact high-brightness source of x-rays. The self-trapped relativistic electrons make betatron oscillations in the transverse fields of the bubble and emit a bright broadband x-ray radiation with a maximum about 50 keV. The emission is confined to a small angle of about 0.1 rad. In addition, we make simulations of x-ray generation by an external 28.5 GeV electron bunch injected into the bubble. γ quanta with up to GeV energies are observed in the simulation in good agreement with analytical results. The energy conversion is efficient, leading to a significant stopping of the electron bunch over 5 mm interaction distance.

  16. The angular structure of jet quenching within a hybrid strong/weak coupling model

    NASA Astrophysics Data System (ADS)

    Casalderrey-Solana, Jorge; Gulhan, Doga Can; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna

    2017-08-01

    Building upon the hybrid strong/weak coupling model for jet quenching, we incorporate and study the effects of transverse momentum broadening and medium response of the plasma to jets on a variety of observables. For inclusive jet observables, we find little sensitivity to the strength of broadening. To constrain those dynamics, we propose new observables constructed from ratios of differential jet shapes, in which particles are binned in momentum, which are sensitive to the in-medium broadening parameter. We also investigate the effect of the back-reaction of the medium on the angular structure of jets as reconstructed with different cone radii R. Finally we provide results for the so called ;missing-pt;, finding a qualitative agreement between our model calculations and data in many respects, although a quantitative agreement is beyond our simplified treatment of the hadrons originating from the hydrodynamic wake.

  17. Electron injection and acceleration in the plasma bubble regime driven by an ultraintense laser pulse combined with using dense-plasma wall and block

    NASA Astrophysics Data System (ADS)

    Zhao, Xue-Yan; Xie, Bai-Song; Wu, Hai-Cheng; Zhang, Shan; Hong, Xue-Ren; Aimidula, Aimierding

    2012-03-01

    An optimizing and alternative scheme for electron injection and acceleration in the wake bubble driven by an ultraintense laser pulse is presented. In this scheme, the dense-plasma wall with an inner diameter matching the expected bubble size is placed along laser propagation direction. Meanwhile, a dense-plasma block dense-plasma is adhered inward transversely at some certain position of the wall. Particle-in-cell simulations are performed, which demonstrate that the block plays an important role in the first electron injection and acceleration. The result shows that a collimated electron bunch with a total number of about 4.04×108μm-1 can be generated and accelerated stably to 1.61 GeV peak energy with 2.6% energy spread. The block contributes about 50% to the accelerated electron injection bunch by tracing and sorting statistically the source.

  18. Effects of carvedilol on structural and functional outcomes and plasma biomarkers in the mouse transverse aortic constriction heart failure model.

    PubMed

    Hampton, Caryn; Rosa, Raymond; Szeto, Daphne; Forrest, Gail; Campbell, Barry; Kennan, Richard; Wang, Shubing; Huang, Chin-Hu; Gichuru, Loise; Ping, Xiaoli; Shen, Xiaolan; Small, Kersten; Madwed, Jeffrey; Lynch, Joseph J

    2017-01-01

    Despite the widespread use of the mouse transverse aortic constriction heart failure model, there are no reports on the characterization of the standard-of-care agent carvedilol in this model. Left ventricular pressure overload was produced in mice by transverse aortic constriction between the innominate and left common carotid arteries. Carvedilol was administered at multiple dose levels (3, 10 and 30 mg/kg/day per os ; yielding end-study mean plasma concentrations of 0.002, 0.015 and 0.044 µM, respectively) in a therapeutic design protocol with treatment initiated after the manifestation of left ventricular remodeling at 3 weeks post transverse aortic constriction and continued for 10 weeks. Carvedilol treatment in transverse aortic constriction mice significantly decreased heart rate and left ventricular dP/dt (max) at all dose levels consistent with β-adrenoceptor blockade. The middle dose of carvedilol significantly decreased left ventricular weight, whereas the higher dose decreased total heart, left and right ventricular weight and wet lung weight compared to untreated transverse aortic constriction mice. The higher dose of carvedilol significantly increased cardiac performance as measured by ejection fraction and fractional shortening and decreased left ventricular end systolic volume consistent with the beneficial effect on cardiac function. End-study plasma sST-2 and Gal-3 levels did not differ among sham, transverse aortic constriction control and transverse aortic constriction carvedilol groups. Plasma b rain natriuretic peptide concentrations were elevated significantly in transverse aortic constriction control animals (~150%) compared to shams in association with changes in ejection fraction and heart weight and tended to decrease (~30%, p = 0.10-0.12) with the mid- and high-dose carvedilol treatment. A comparison of carvedilol hemodynamic and structural effects in the mouse transverse aortic constriction model versus clinical use indicates a strong agreement in effect profiles preclinical versus clinical, providing important translational validation for this widely used animal model. The present plasma brain natriuretic peptide biomarker findings support the measurement of plasma natriuretic peptides in the mouse transverse aortic constriction model to extend the translational utility of the model.

  19. Effects of carvedilol on structural and functional outcomes and plasma biomarkers in the mouse transverse aortic constriction heart failure model

    PubMed Central

    Hampton, Caryn; Rosa, Raymond; Szeto, Daphne; Forrest, Gail; Campbell, Barry; Kennan, Richard; Wang, Shubing; Huang, Chin-Hu; Gichuru, Loise; Ping, Xiaoli; Shen, Xiaolan; Small, Kersten; Madwed, Jeffrey; Lynch, Joseph J

    2017-01-01

    Introduction: Despite the widespread use of the mouse transverse aortic constriction heart failure model, there are no reports on the characterization of the standard-of-care agent carvedilol in this model. Methods: Left ventricular pressure overload was produced in mice by transverse aortic constriction between the innominate and left common carotid arteries. Carvedilol was administered at multiple dose levels (3, 10 and 30 mg/kg/day per os; yielding end-study mean plasma concentrations of 0.002, 0.015 and 0.044 µM, respectively) in a therapeutic design protocol with treatment initiated after the manifestation of left ventricular remodeling at 3 weeks post transverse aortic constriction and continued for 10 weeks. Results: Carvedilol treatment in transverse aortic constriction mice significantly decreased heart rate and left ventricular dP/dt (max) at all dose levels consistent with β-adrenoceptor blockade. The middle dose of carvedilol significantly decreased left ventricular weight, whereas the higher dose decreased total heart, left and right ventricular weight and wet lung weight compared to untreated transverse aortic constriction mice. The higher dose of carvedilol significantly increased cardiac performance as measured by ejection fraction and fractional shortening and decreased left ventricular end systolic volume consistent with the beneficial effect on cardiac function. End-study plasma sST-2 and Gal-3 levels did not differ among sham, transverse aortic constriction control and transverse aortic constriction carvedilol groups. Plasma brain natriuretic peptide concentrations were elevated significantly in transverse aortic constriction control animals (~150%) compared to shams in association with changes in ejection fraction and heart weight and tended to decrease (~30%, p = 0.10–0.12) with the mid- and high-dose carvedilol treatment. Conclusion: A comparison of carvedilol hemodynamic and structural effects in the mouse transverse aortic constriction model versus clinical use indicates a strong agreement in effect profiles preclinical versus clinical, providing important translational validation for this widely used animal model. The present plasma brain natriuretic peptide biomarker findings support the measurement of plasma natriuretic peptides in the mouse transverse aortic constriction model to extend the translational utility of the model. PMID:28491305

  20. Extraction of partonic transverse momentum distributions from semi-inclusive deep inelastic scattering and Drell-Yan data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pisano, Cristian; Bacchetta, Alessandro; Delcarro, Filippo

    We present a first attempt at a global fit of unpolarized quark transverse momentum dependent distribution and fragmentation functions from available data on semi-inclusive deep-inelastic scattering, Drell-Yan and $Z$ boson production processes. This analysis is performed in the low transverse momentum region, at leading order in perturbative QCD and with the inclusion of energy scale evolution effects at the next-to-leading logarithmic accuracy.

  1. Measurement of charged particle transverse momentum spectra in deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Aid, S.; Anderson, M.; Andreev, V.; Andrieu, B.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Beck, M.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Braunschweig, W.; Brisson, V.; Brückner, W.; Bruel, P.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Calvet, D.; Campbell, A. T.; Carli, T.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Cousinou, M.-C.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davis, C. L.; Delcourt, B.; De Roeck, A.; De Wolf, E. A.; Dirkmann, M.; Dixon, P.; Di Nezza, P.; Dlugosz, W.; Dollfus, C.; Donovan, K. T.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Erdmann, M.; Erdmann, W.; Fahr, A. B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Golec-Biernat, K.; Gonzalez-Pineiro, B.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Gruber, A.; Gruber, C.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, T.; Hampel, M.; Haynes, W. J.; Heinemann, B.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hewitt, K.; Hildesheim, W.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Ibbotson, M.; Itterbeck, H.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, D. M.; Jansen, T.; Jönson, L.; Johnson, D. P.; Jung, H.; Kalmus, P. I. P.; Kander, M.; Kant, D.; Kaschowitz, R.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kausch, M.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kolya, S. D.; Korbel, V.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Lacour, D.; Laforge, B.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehner, F.; Levonian, S.; Lindström, G.; Lindstroem, M.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Loch, P.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Liike, D.; Lytkin, L.; Magnussen, N.; Malinovski, E.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Newton, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nowak, G.; Noyes, G. W.; Nunnemann, T.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pope, G.; Povh, B.; Prell, S.; Rabbertz, K.; Rädel, G.; Reimer, P.; Reinshagen, S.; Rick, H.; Riepenhausen, F.; Riess, S.; Rizvi, E.; Robmann, P.; Roloff, P. H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schoeffel, L.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sefkow, F.; Sell, R.; Semenovy, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorni, I. O.; Smirnov, F.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Squinabol, F.; Steffen, F.; Steinberg, F.; Steiner, H.; Steinhart, J.; Stella, B.; Stellbergr, A.; Stier, P. J.; Stiewe, J.; Stöβlein, U.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Tagevˇský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thiebaux, C.; Thompson, G.; Tobien, N.; Todenhagen, R.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tutas, J.; Tzamariudaki, E.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Vandenplas, D.; Van Esch, P.; Van Mechelen, P.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wenger, A.; Wengler, T.; Werner, M.; West, L. R.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wobisch, M.; Wünsch, E.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; Zuber, K.; zurNedden, M.; Hl Collaboration

    1997-02-01

    Transverse momentum spectra of charged particles produced in deep inelastic scattering are measured as a function of the kinematic variables x and Q using the H1 detector at the epcollider HERA. The data are compared to different parton emission models, either with or without ordering of the emissions in transverse momentum. The data provide evidence for a relatively large amount of parton radiation between the current and the remnant systems.

  2. The Effect of Wind-Turbine Wakes on Summertime US Midwest Atmospheric Wind Profiles as Observed with Ground-Based Doppler Lidar

    NASA Astrophysics Data System (ADS)

    Rhodes, Michael E.; Lundquist, Julie K.

    2013-07-01

    We examine the influence of a modern multi-megawatt wind turbine on wind and turbulence profiles three rotor diameters (D) downwind of the turbine. Light detection and ranging (lidar) wind-profile observations were collected during summer 2011 in an operating wind farm in central Iowa at 20-m vertical intervals from 40 to 220 m above the surface. After a calibration period during which two lidars were operated next to each other, one lidar was located approximately 2D directly south of a wind turbine; the other lidar was moved approximately 3D north of the same wind turbine. Data from the two lidars during southerly flow conditions enabled the simultaneous capture of inflow and wake conditions. The inflow wind and turbulence profiles exhibit strong variability with atmospheric stability: daytime profiles are well-mixed with little shear and strong turbulence, while nighttime profiles exhibit minimal turbulence and considerable shear across the rotor disk region and above. Consistent with the observations available from other studies and with wind-tunnel and large-eddy simulation studies, measurable reductions in wake wind-speeds occur at heights spanning the wind turbine rotor (43-117 m), and turbulent quantities increase in the wake. In generalizing these results as a function of inflow wind speed, we find the wind-speed deficit in the wake is largest at hub height or just above, and the maximum deficit occurs when wind speeds are below the rated speed for the turbine. Similarly, the maximum enhancement of turbulence kinetic energy and turbulence intensity occurs at hub height, although observations at the top of the rotor disk do not allow assessment of turbulence in that region. The wind shear below turbine hub height (quantified here with the power-law coefficient) is found to be a useful parameter to identify whether a downwind lidar observes turbine wake or free-flow conditions. These field observations provide data for validating turbine-wake models and wind-tunnel observations, and for guiding assessments of the impacts of wakes on surface turbulent fluxes or surface temperatures downwind of turbines.

  3. Sleep Homeostatic and Waking Behavioral Phenotypes in Egr3-Deficient Mice Associated with Serotonin Receptor 5-HT2 Deficits

    PubMed Central

    Grønli, Janne; Clegern, William C.; Schmidt, Michelle A.; Nemri, Rahmi S.; Rempe, Michael J.; Gallitano, Amelia L.; Wisor, Jonathan P.

    2016-01-01

    Study Objective: The expression of the immediate early gene early growth response 3 (Egr3) is a functional marker of brain activity including responses to novelty, sustained wakefulness, and sleep. We examined the role of this gene in regulating wakefulness and sleep. Methods: Electroencephalogram/electromyogram (EEG/EMG) were recorded in Egr3-/- and wild-type (WT) mice during 24 h baseline, 6 h sleep disruption and 6 h recovery. Serotonergic signaling was assessed with 6 h EEG/EMG recordings after injections of nonselective 5-HT2 antagonist (clozapine), selective 5-HT2 antagonists (5-HT2A; MDL100907 and 5-HT2BC; SB206553) and a cocktail of both selective antagonists, administered in a randomized order to each animal. Results: Egr3-/- mice did not exhibit abnormalities in the timing of wakefulness and slow wave sleep (SWS); however, EEG dynamics in SWS (suppressed 1–3 Hz power) and in quiet wakefulness (elevated 3–8 Hz and 15–35 Hz power) differed in comparison to WT-mice. Egr3-/- mice showed an exaggerated response to sleep disruption as measured by active wakefulness, but with a blunted increase in homeostatic sleep drive (elevated 1–4 Hz power) relative to WT-mice. Egr3-/-mice exhibit greatly reduced sedative effects of clozapine at the electroencephalographic level. In addition, clozapine induced a previously undescribed dissociated state (low amplitude, low frequency EEG and a stable, low muscle tone) lasting up to 2 h in WT-mice. Egr3-/- mice did not exhibit this phenomenon. Selective 5-HT2A antagonist, alone or in combination with selective 5-HT2BC antagonist, caused EEG slowing coincident with behavioral quiescence in WT-mice but not in Egr3-/- mice. Conclusion: Egr3 has an essential role in regulating cortical arousal, wakefulness, and sleep, presumably by its regulation of 5-HT2 receptors. Citation: Grønli J, Clegern WC, Schmidt MA, Nemri RS, Rempe MJ, Gallitano AL, Wisor JP. Sleep homeostatic and waking behavioral phenotypes in Egr3-deficient mice associated with serotonin receptor 5-HT2 deficits. SLEEP 2016;39(12):2189–2199. PMID:28057087

  4. Multi-component wind measurements of wind turbine wakes performed with three LiDARs

    NASA Astrophysics Data System (ADS)

    Iungo, G. V.; Wu, Y.-T.; Porté-Agel, F.

    2012-04-01

    Field measurements of the wake flow produced from the interaction between atmospheric boundary layer and a wind turbine are performed with three wind LiDARs. The tested wind turbine is a 2 MW Enercon E-70 located in Collonges, Switzerland. First, accuracy of mean values and frequency resolution of the wind measurements are surveyed as a function of the number of laser rays emitted for each measurement. Indeed, measurements performed with one single ray allow maximizing sampling frequency, thus characterizing wake turbulence. On the other hand, if the number of emitted rays is increased accuracy of mean wind is increased due to the longer sampling period. Subsequently, two-dimensional measurements with a single LiDAR are carried out over vertical sections of the wind turbine wake and mean wake flow is obtained by averaging 2D measurements consecutively performed. The high spatial resolution of the used LiDAR allows characterizing in details velocity defect present in the central part of the wake and its downstream recovery. Single LiDAR measurements are also performed by staring the laser beam at fixed directions for a sampling period of about ten minutes and maximizing the sampling frequency in order to characterize wake turbulence. From these tests wind fluctuation peaks are detected in the wind turbine wake at blade top-tip height for different downstream locations. The magnitude of these turbulence peaks is generally reduced by moving downstream. This increased turbulence level at blade top-tip height observed for a real wind turbine has been already detected from previous wind tunnel tests and Large Eddy simulations, thus confirming the presence of a source of dangerous fatigue loads for following wind turbines within a wind farm. Furthermore, the proper characterization of wind fluctuations through LiDAR measurements is proved by the detection of the inertial subrange from spectral analysis of these velocity signals. Finally, simultaneous measurements with two LiDARs are performed over the mean vertical symmetry plane of the wind turbine wake, while a third LiDAR measures the incoming wind over a vertical plane parallel to the mean wind direction and lying outside of the wake. One LiDAR is placed in proximity of the wind turbine location and measures pointing downstream, whereas a second LiDAR is located along the mean wind direction at a downstream distance of 6.5 diameters and measures pointing upstream. For these measurements axial and vertical velocity components are retrieved only for measurement points where the two laser beams result to be roughly orthogonal. Statistics of the two velocity components show in the near wake at hub height strong flow fluctuations with magnitudes about 30% of the mean value, and a gradual reduction for downstream distances larger than three rotor diameters.

  5. What I make up when I wake up: anti-experience views and narrative fabrication of dreams.

    PubMed

    Rosen, Melanie G

    2013-01-01

    I propose a narrative fabrication thesis of dream reports, according to which dream reports are often not accurate representations of experiences that occur during sleep. I begin with an overview of anti-experience theses of Norman Malcolm and Daniel Dennett who reject the received view of dreams, that dreams are experiences we have during sleep which are reported upon waking. Although rejection of the first claim of the received view, that dreams are experiences that occur during sleep, is implausible, I evaluate in more detail the second assumption of the received view, that dream reports are generally accurate. I then propose a "narrative fabrication" view of dreams as an alternative to the received view. Dream reports are often confabulated or fabricated because of poor memory, bizarre dream content, and cognitive deficits. It is well documented that narratives can be altered between initial rapid eye movement sleep awakenings and subsequent reports. I argue that we have reason to suspect that initial reports are prone to inaccuracy. Experiments demonstrate that subjects rationalize strange elements in narratives, leaving out supernatural or bizarre components when reporting waking memories of stories. Inaccuracies in dream reports are exacerbated by rapid memory loss and bizarre dream content. Waking memory is a process of reconstruction and blending of elements, but unlike waking memory, we cannot reality-test for dream memories. Dream experiences involve imaginative elements, and dream content cannot be verified with external evidence. Some dreams may involve wake-like higher cognitive functions, such as lucid dreams. Such dreams are more likely to elicit accurate reports than cognitively deficient dreams. However, dream reports are generally less accurate than waking reports. I then propose methods which could verify the narrative fabrication view, and argue that although the theory cannot be tested with current methods, new techniques and technologies may be able to do so in the future.

  6. What I make up when I wake up: anti-experience views and narrative fabrication of dreams

    PubMed Central

    Rosen, Melanie G.

    2013-01-01

    I propose a narrative fabrication thesis of dream reports, according to which dream reports are often not accurate representations of experiences that occur during sleep. I begin with an overview of anti-experience theses of Norman Malcolm and Daniel Dennett who reject the received view of dreams, that dreams are experiences we have during sleep which are reported upon waking. Although rejection of the first claim of the received view, that dreams are experiences that occur during sleep, is implausible, I evaluate in more detail the second assumption of the received view, that dream reports are generally accurate. I then propose a “narrative fabrication” view of dreams as an alternative to the received view. Dream reports are often confabulated or fabricated because of poor memory, bizarre dream content, and cognitive deficits. It is well documented that narratives can be altered between initial rapid eye movement sleep awakenings and subsequent reports. I argue that we have reason to suspect that initial reports are prone to inaccuracy. Experiments demonstrate that subjects rationalize strange elements in narratives, leaving out supernatural or bizarre components when reporting waking memories of stories. Inaccuracies in dream reports are exacerbated by rapid memory loss and bizarre dream content. Waking memory is a process of reconstruction and blending of elements, but unlike waking memory, we cannot reality-test for dream memories. Dream experiences involve imaginative elements, and dream content cannot be verified with external evidence. Some dreams may involve wake-like higher cognitive functions, such as lucid dreams. Such dreams are more likely to elicit accurate reports than cognitively deficient dreams. However, dream reports are generally less accurate than waking reports. I then propose methods which could verify the narrative fabrication view, and argue that although the theory cannot be tested with current methods, new techniques and technologies may be able to do so in the future. PMID:23964260

  7. Sleep Homeostatic and Waking Behavioral Phenotypes in Egr3-Deficient Mice Associated with Serotonin Receptor 5-HT2 Deficits.

    PubMed

    Grønli, Janne; Clegern, William C; Schmidt, Michelle A; Nemri, Rahmi S; Rempe, Michael J; Gallitano, Amelia L; Wisor, Jonathan P

    2016-12-01

    The expression of the immediate early gene early growth response 3 ( Egr3 ) is a functional marker of brain activity including responses to novelty, sustained wakefulness, and sleep. We examined the role of this gene in regulating wakefulness and sleep. Electroencephalogram/electromyogram (EEG/EMG) were recorded in Egr3 -/- and wild-type (WT) mice during 24 h baseline, 6 h sleep disruption and 6 h recovery. Serotonergic signaling was assessed with 6 h EEG/EMG recordings after injections of nonselective 5-HT2 antagonist (clozapine), selective 5-HT2 antagonists (5-HT2A; MDL100907 and 5-HT2BC; SB206553) and a cocktail of both selective antagonists, administered in a randomized order to each animal. Egr3 -/- mice did not exhibit abnormalities in the timing of wakefulness and slow wave sleep (SWS); however, EEG dynamics in SWS (suppressed 1-3 Hz power) and in quiet wakefulness (elevated 3-8 Hz and 15-35 Hz power) differed in comparison to WT-mice. Egr3 -/- mice showed an exaggerated response to sleep disruption as measured by active wakefulness, but with a blunted increase in homeostatic sleep drive (elevated 1-4 Hz power) relative to WT-mice. Egr3 -/-mice exhibit greatly reduced sedative effects of clozapine at the electroencephalographic level. In addition, clozapine induced a previously undescribed dissociated state (low amplitude, low frequency EEG and a stable, low muscle tone) lasting up to 2 h in WT-mice. Egr3 -/- mice did not exhibit this phenomenon. Selective 5-HT2A antagonist, alone or in combination with selective 5-HT2BC antagonist, caused EEG slowing coincident with behavioral quiescence in WT-mice but not in Egr3 -/- mice. Egr3 has an essential role in regulating cortical arousal, wakefulness, and sleep, presumably by its regulation of 5-HT2 receptors. © 2016 Associated Professional Sleep Societies, LLC.

  8. The impact of preload reduction with head-up tilt testing on longitudinal and transverse left ventricular mechanics: a study utilizing deformation volume analysis

    PubMed Central

    Schneider, Caroline; Forsythe, Lynsey; Somauroo, John; George, Keith

    2018-01-01

    Background Left ventricular (LV) function is dependent on load, intrinsic contractility and relaxation with a variable impact on specific mechanics. Strain (ε) imaging allows the assessment of cardiac function; however, the direct relationship between volume and strain is currently unknown. The aim of this study was to establish the impact of preload reduction through head-up tilt (HUT) testing on simultaneous left ventricular (LV) longitudinal and transverse function and their respective contribution to volume change. Methods A focused transthoracic echocardiogram was performed on 10 healthy male participants (23 ± 3 years) in the supine position and following 1 min and 5 min of HUT testing. Raw temporal longitudinal ε (Ls) and transverse ε (Ts) values were exported and divided into 5% increments across the cardiac cycle and corresponding LV volumes were traced at each 5% increment. This provided simultaneous LV longitudinal and transverse ε and volume loops (deformation volume analysis – DVA). Results There was a leftward shift of the ε-volume loop from supine to 1 min and 5 min of HUT (P < 0.001). Moreover, longitudinal shortening was reduced (P < 0.001) with a concomitant increase in transverse thickening from supine to 1 min, which was further augmented at 5 min (P = 0.018). Conclusions Preload reduction occurs within 1 min of HUT but does not further reduce at 5 min. This decline is associated with a decrease in longitudinal ε and concomitant increase in transverse ε. Consequently, augmented transverse relaxation appears to be an important factor in the maintenance of LV filling in the setting of reduced preload. DVA provides information on the relative contribution of mechanics to a change in LV volume and may have a role in the assessment of clinical populations. PMID:29339401

  9. The impact of preload reduction with head-up tilt testing on longitudinal and transverse left ventricular mechanics: a study utilizing deformation volume analysis.

    PubMed

    Schneider, Caroline; Forsythe, Lynsey; Somauroo, John; George, Keith; Oxborough, David

    2018-03-01

    Left ventricular (LV) function is dependent on load, intrinsic contractility and relaxation with a variable impact on specific mechanics. Strain (ε) imaging allows the assessment of cardiac function; however, the direct relationship between volume and strain is currently unknown. The aim of this study was to establish the impact of preload reduction through head-up tilt (HUT) testing on simultaneous left ventricular (LV) longitudinal and transverse function and their respective contribution to volume change. A focused transthoracic echocardiogram was performed on 10 healthy male participants (23 ± 3 years) in the supine position and following 1 min and 5 min of HUT testing. Raw temporal longitudinal ε (Ls) and transverse ε (Ts) values were exported and divided into 5% increments across the cardiac cycle and corresponding LV volumes were traced at each 5% increment. This provided simultaneous LV longitudinal and transverse ε and volume loops (deformation volume analysis - DVA). There was a leftward shift of the ε-volume loop from supine to 1 min and 5 min of HUT ( P  < 0.001). Moreover, longitudinal shortening was reduced ( P  < 0.001) with a concomitant increase in transverse thickening from supine to 1 min, which was further augmented at 5 min ( P  = 0.018). Preload reduction occurs within 1 min of HUT but does not further reduce at 5 min. This decline is associated with a decrease in longitudinal ε and concomitant increase in transverse ε. Consequently, augmented transverse relaxation appears to be an important factor in the maintenance of LV filling in the setting of reduced preload. DVA provides information on the relative contribution of mechanics to a change in LV volume and may have a role in the assessment of clinical populations. © 2018 The authors.

  10. Backward propagating branch of surface waves in a semi-bounded streaming plasma system

    NASA Astrophysics Data System (ADS)

    Lim, Young Kyung; Lee, Myoung-Jae; Seo, Ki Wan; Jung, Young-Dae

    2017-06-01

    The influence of wake and magnetic field on the surface ion-cyclotron wave is kinetically investigated in a semi-bounded streaming dusty magnetoplasma in the presence of the ion wake-field. The analytic expressions of the frequency and the group velocity are derived by the plasma dielectric function with the spectral reflection condition. The result shows that the ion wake-field enhances the wave frequency and the group velocity of the surface ion-cyclotron wave in a semi-bounded dusty plasma. It is found that the frequency and the group velocity of the surface electrostatic-ion-cyclotron wave increase with an increase of the strength of the magnetic field. It is interesting to find out that the group velocity without the ion flow has the backward propagation mode in a semi-bounded dusty plasma. The variations due to the frequency and the group velocity of the surface ion-cyclotron wave are also discussed.

  11. Modelling lidar volume-averaging and its significance to wind turbine wake measurements

    NASA Astrophysics Data System (ADS)

    Meyer Forsting, A. R.; Troldborg, N.; Borraccino, A.

    2017-05-01

    Lidar velocity measurements need to be interpreted differently than conventional in-situ readings. A commonly ignored factor is “volume-averaging”, which refers to lidars not sampling in a single, distinct point but along its entire beam length. However, especially in regions with large velocity gradients, like the rotor wake, can it be detrimental. Hence, an efficient algorithm mimicking lidar flow sampling is presented, which considers both pulsed and continous-wave lidar weighting functions. The flow-field around a 2.3 MW turbine is simulated using Detached Eddy Simulation in combination with an actuator line to test the algorithm and investigate the potential impact of volume-averaging. Even with very few points discretising the lidar beam is volume-averaging captured accurately. The difference in a lidar compared to a point measurement is greatest at the wake edges and increases from 30% one rotor diameter (D) downstream of the rotor to 60% at 3D.

  12. On the use of the KMR unintegrated parton distribution functions

    NASA Astrophysics Data System (ADS)

    Golec-Biernat, Krzysztof; Staśto, Anna M.

    2018-06-01

    We discuss the unintegrated parton distribution functions (UPDFs) introduced by Kimber, Martin and Ryskin (KMR), which are frequently used in phenomenological analyses of hard processes with transverse momenta of partons taken into account. We demonstrate numerically that the commonly used differential definition of the UPDFs leads to erroneous results for large transverse momenta. We identify the reason for that, being the use of the ordinary PDFs instead of the cutoff dependent distribution functions. We show that in phenomenological applications, the integral definition of the UPDFs with the ordinary PDFs can be used.

  13. Sex differences in the circadian regulation of sleep and waking cognition in humans.

    PubMed

    Santhi, Nayantara; Lazar, Alpar S; McCabe, Patrick J; Lo, June C; Groeger, John A; Dijk, Derk-Jan

    2016-05-10

    The sleep-wake cycle and circadian rhythmicity both contribute to brain function, but whether this contribution differs between men and women and how it varies across cognitive domains and subjective dimensions has not been established. We examined the circadian and sleep-wake-dependent regulation of cognition in 16 men and 18 women in a forced desynchrony protocol and quantified the separate contributions of circadian phase, prior sleep, and elapsed time awake on cognition and sleep. The largest circadian effects were observed for reported sleepiness, mood, and reported effort; the effects on working memory and temporal processing were smaller. Although these effects were seen in both men and women, there were quantitative differences. The amplitude of the circadian modulation was larger in women in 11 of 39 performance measures so that their performance was more impaired in the early morning hours. Principal components analysis of the performance measures yielded three factors, accuracy, effort, and speed, which reflect core performance characteristics in a range of cognitive tasks and therefore are likely to be important for everyday performance. The largest circadian modulation was observed for effort, whereas accuracy exhibited the largest sex difference in circadian modulation. The sex differences in the circadian modulation of cognition could not be explained by sex differences in the circadian amplitude of plasma melatonin and electroencephalographic slow-wave activity. These data establish the impact of circadian rhythmicity and sex on waking cognition and have implications for understanding the regulation of brain function, cognition, and affect in shift-work, jetlag, and aging.

  14. Circadian preference modulates the neural substrate of conflict processing across the day.

    PubMed

    Schmidt, Christina; Peigneux, Philippe; Leclercq, Yves; Sterpenich, Virginie; Vandewalle, Gilles; Phillips, Christophe; Berthomier, Pierre; Berthomier, Christian; Tinguely, Gilberte; Gais, Steffen; Schabus, Manuel; Desseilles, Martin; Dang-Vu, Thanh; Salmon, Eric; Degueldre, Christian; Balteau, Evelyne; Luxen, André; Cajochen, Christian; Maquet, Pierre; Collette, Fabienne

    2012-01-01

    Human morning and evening chronotypes differ in their preferred timing for sleep and wakefulness, as well as in optimal daytime periods to cope with cognitive challenges. Recent evidence suggests that these preferences are not a simple by-product of socio-professional timing constraints, but can be driven by inter-individual differences in the expression of circadian and homeostatic sleep-wake promoting signals. Chronotypes thus constitute a unique tool to access the interplay between those processes under normally entrained day-night conditions, and to investigate how they impinge onto higher cognitive control processes. Using functional magnetic resonance imaging (fMRI), we assessed the influence of chronotype and time-of-day on conflict processing-related cerebral activity throughout a normal waking day. Sixteen morning and 15 evening types were recorded at two individually adapted time points (1.5 versus 10.5 hours spent awake) while performing the Stroop paradigm. Results show that interference-related hemodynamic responses are maintained or even increased in evening types from the subjective morning to the subjective evening in a set of brain areas playing a pivotal role in successful inhibitory functioning, whereas they decreased in morning types under the same conditions. Furthermore, during the evening hours, activity in a posterior hypothalamic region putatively involved in sleep-wake regulation correlated in a chronotype-specific manner with slow wave activity at the beginning of the night, an index of accumulated homeostatic sleep pressure. These results shed light into the cerebral mechanisms underlying inter-individual differences of higher-order cognitive state maintenance under normally entrained day-night conditions.

  15. Sex differences in the circadian regulation of sleep and waking cognition in humans

    PubMed Central

    Santhi, Nayantara; Lazar, Alpar S.; McCabe, Patrick J.; Lo, June C.; Groeger, John A.; Dijk, Derk-Jan

    2016-01-01

    The sleep–wake cycle and circadian rhythmicity both contribute to brain function, but whether this contribution differs between men and women and how it varies across cognitive domains and subjective dimensions has not been established. We examined the circadian and sleep–wake-dependent regulation of cognition in 16 men and 18 women in a forced desynchrony protocol and quantified the separate contributions of circadian phase, prior sleep, and elapsed time awake on cognition and sleep. The largest circadian effects were observed for reported sleepiness, mood, and reported effort; the effects on working memory and temporal processing were smaller. Although these effects were seen in both men and women, there were quantitative differences. The amplitude of the circadian modulation was larger in women in 11 of 39 performance measures so that their performance was more impaired in the early morning hours. Principal components analysis of the performance measures yielded three factors, accuracy, effort, and speed, which reflect core performance characteristics in a range of cognitive tasks and therefore are likely to be important for everyday performance. The largest circadian modulation was observed for effort, whereas accuracy exhibited the largest sex difference in circadian modulation. The sex differences in the circadian modulation of cognition could not be explained by sex differences in the circadian amplitude of plasma melatonin and electroencephalographic slow-wave activity. These data establish the impact of circadian rhythmicity and sex on waking cognition and have implications for understanding the regulation of brain function, cognition, and affect in shift-work, jetlag, and aging. PMID:27091961

  16. Topographic distribution of EEG alpha attractor correlation dimension values in wake and drowsy states in humans.

    PubMed

    Kalauzi, Aleksandar; Vuckovic, Aleksandra; Bojić, Tijana

    2015-03-01

    Organization of resting state cortical networks is of fundamental importance for the phenomenon of awareness, which is altered in the first part of hypnagogic period (Hori stages 1-4). Our aim was to investigate the change in brain topography pattern of EEG alpha attractor correlation dimension (CD) in the period of transition from Hori stage 1 to 4. EEG of ten healthy adult individuals was recorded in the wake and drowsy states, using a 14 channel average reference montage, from which 91 bipolar channels were derived and filtered in the wider alpha (6-14 Hz) range. Sixty 1s long epochs of each state and individual were subjected to CD calculation according to the Grassberger-Procaccia method. For such a collection of signals, two embedding dimensions, d={5, 10}, and 22 time delays τ=2-23 samples were explored. Optimal values were d=10 and τ=18, where both saturation and second zero crossing of the autocorrelation function occurred. Bipolar channel CD underwent a significant decrease during the transition and showed a positive linear correlation with electrode distance, stronger in the wake individuals. Topographic distribution of bipolar channels with above median CD changed from longitudinal anterior-posterior pattern (awake) to a more diagonal pattern, with localization in posterior regions (drowsiness). Our data are in line with the literature reporting functional segregation of neuronal assemblies in anterior and posterior regions during this transition. Our results should contribute to understanding of complex reorganization of the cortical part of alpha generators during the wake/drowsy transition. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Assessment of the ecological impacts of macroroughness elements in stream flows

    NASA Astrophysics Data System (ADS)

    Niayifar, Amin; Oldroyd, Holly J.; Perona, Paolo

    2017-04-01

    The environmental suitability of flow release rules is often assessed for different fish species by modeling (e.g., CASiMir and PHABSIM) Weighted Usable Area (WUA) curves. However, these models are not able to resolve the hydrodynamic at small scales, e.g. that induced by the presence of macroroughness (e.g., single stones), which yet determine relatively large wakes that may contribute significantly in terms of habitat suitability. The presence of stones generates sheltered zones (i.e., the wake), which are typically temporary stationary points for many fish species. By resting in these low velocity regions, fishes minimize energy expenditure, and can quickly move to nearby fast water to feed (Hayes and Jowett, 1994). Following the analytical model proposed by Negretti et al., (2006), we developed an analytical solution for the wake area behind the macroroughness elements. The total wake area in the river reach being monitored is a function of the streamflow, Q, and it is an actual Usable Area for fishes that can be used to correct the one computed by classic software such as PHABSIM or CASIMIR at each flow rate. By quantifying these wake areas we can therefore assess how the physical properties and number of such zones change in response to the changing hydrologic regime. In order to validate the concept, we selected a 400 meter reach from the Aare river in the center of Switzerland. The statistical distribution of macroroughness elements is obtained by taking orthorectified aerial photographs by drone surveys during low flow conditions. Then, the distribution of the wakes is obtained analytically as a derived distribution. This methodology allows to save computational costs and the time for detailed field surveys.

  18. Resting brain activity varies with dream recall frequency between subjects.

    PubMed

    Eichenlaub, Jean-Baptiste; Nicolas, Alain; Daltrozzo, Jérôme; Redouté, Jérôme; Costes, Nicolas; Ruby, Perrine

    2014-06-01

    Dreaming is still poorly understood. Notably, its cerebral underpinning remains unclear. Neuropsychological studies have shown that lesions in the temporoparietal junction (TPJ) and/or the white matter of the medial prefrontal cortex (MPFC) lead to the global cessation of dream reports, suggesting that these regions of the default mode network have key roles in the dreaming process (forebrain 'dream-on' hypothesis). To test this hypothesis, we measured regional cerebral blood flow (rCBF) using [(15)O]H2O positron emission tomography in healthy subjects with high and low dream recall frequencies (DRFs) during wakefulness (rest) and sleep (rapid eye movement (REM) sleep, N2, and N3). Compared with Low recallers (0.5 ± 0.3 dream recall per week in average), High recallers (5.2 ± 1.4) showed higher rCBF in the TPJ during REM sleep, N3, and wakefulness, and in the MPFC during REM sleep and wakefulness. We demonstrate that the resting states of High recallers and Low recallers differ during sleep and wakefulness. It coheres with previous ERP results and confirms that a high/low DRF is associated with a specific functional organization of the brain. These results support the forebrain 'dream-on' hypothesis and suggest that TPJ and MPFC are not only involved in dream recall during wakefulness but also have a role in dreaming during sleep (production and/or encoding). Increased activity in the TPJ and MPFC might promote the mental imagery and/or memory encoding of dreams. Notably, increased activity in TPJ might facilitate attention orienting toward external stimuli and promote intrasleep wakefulness, facilitating the encoding of the dreams in memory.

  19. What Sways People's Judgment of Sleep Quality? A Quantitative Choice-Making Study With Good and Poor Sleepers.

    PubMed

    Ramlee, Fatanah; Sanborn, Adam N; Tang, Nicole K Y

    2017-07-01

    We conceptualized sleep quality judgment as a decision-making process and examined the relative importance of 17 parameters of sleep quality using a choice-based conjoint analysis. One hundred participants (50 good sleepers; 50 poor sleepers) were asked to choose between 2 written scenarios to answer 1 of 2 questions: "Which describes a better (or worse) night of sleep?". Each scenario described a self-reported experience of sleep, stringing together 17 possible determinants of sleep quality that occur at different times of the day (day before, pre-sleep, during sleep, upon waking, day after). Each participant answered 48 questions. Logistic regression models were fit to their choice data. Eleven of the 17 sleep quality parameters had a significant impact on the participants' choices. The top 3 determinants of sleep quality were: Total sleep time, feeling refreshed (upon waking), and mood (day after). Sleep quality judgments were most influenced by factors that occur during sleep, followed by feelings and activities upon waking and the day after. There was a significant interaction between wake after sleep onset and feeling refreshed (upon waking) and between feeling refreshed (upon waking) and question type (better or worse night of sleep). Type of sleeper (good vs poor sleepers) did not significantly influence the judgments. Sleep quality judgments appear to be determined by not only what happened during sleep, but also what happened after the sleep period. Interventions that improve mood and functioning during the day may inadvertently also improve people's self-reported evaluation of sleep quality. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].

  20. PIV measurements in the near wakes of hollow cylinders with holes

    NASA Astrophysics Data System (ADS)

    Firat, Erhan; Ozkan, Gokturk M.; Akilli, Huseyin

    2017-05-01

    The wake flows behind fixed, hollow, rigid circular cylinders with two rows of holes connecting the front and rear stagnation lines were investigated using particle image velocimetry (PIV) for various combinations of three hole diameters, d = 0.1 D, 0.15 D, and 0.20 D, six hole-to-hole distances, l = 2 d, 3 d, 4 d, 5 d, 6 d, and 7 d, and ten angles of incidence ( α), from 0° to 45° in steps of 5°, at a Reynolds number of Re = 6,900. Time-averaged velocity distributions, instantaneous and time-averaged vorticity patterns, time-averaged streamline topology, and hot spots of turbulent kinetic energy occurred through the interaction of shear layers from the models were presented to show how the wake flow was modified by the presence of the self-issuing jets with various momentums emanating from the downstream holes. In general, as hole diameter which is directly related to jet momentum increased, the values of time-averaged wake characteristics (length of time-averaged recirculation region, vortex formation length, length of shear layers, and gap between the shear layers) increased. Irrespective to d and l tested, the values of the vortex formation length of the models are greater than that of the cylinder without hole (reference model). That is, vortex formation process was shifted downstream by aid of jets. It was found that time-averaged wake characteristics were very sensitive to α. As α increased, the variation of these characteristics can be modeled by exponential decay functions. The effect of l on the three-dimensional vortex shedding patterns in the near wake of the models was also discussed.

  1. Sleep Dependent Memory Consolidation in Children with Autism Spectrum Disorder

    PubMed Central

    Maski, Kiran; Holbrook, Hannah; Manoach, Dara; Hanson, Ellen; Kapur, Kush; Stickgold, Robert

    2015-01-01

    Study Objectives: Examine the role of sleep in the consolidation of declarative memory in children with autism spectrum disorder (ASD). Design: Case-control study. Setting: Home-based study with sleep and wake conditions. Participants: Twenty-two participants with ASD and 20 control participants between 9 and 16 y of age. Measurements and Results: Participants were trained to criterion on a spatial declarative memory task and then given a cued recall test. Retest occurred after a period of daytime wake (Wake) or a night of sleep (Sleep) with home-based polysomnography; Wake and Sleep conditions were counterbalanced. Children with ASD had poorer sleep efficiency than controls, but other sleep macroarchitectural and microarchitectural measures were comparable after controlling for age and medication use. Both groups demonstrated better memory consolidation across Sleep than Wake, although participants with ASD had poorer overall memory consolidation than controls. There was no interaction between group and condition. The change in performance across sleep, independent of medication and age, showed no significant relationships with any specific sleep parameters other than total sleep time and showed a trend toward less forgetting in the control group. Conclusion: This study shows that despite their more disturbed sleep quality, children with autism spectrum disorder (ASD) still demonstrate more stable memory consolidation across sleep than in wake conditions. The findings support the importance of sleep for stabilizing memory in children with and without neurodevelopmental disabilities. Our results suggest that improving sleep quality in children with ASD could have direct benefits to improving their overall cognitive functioning. Citation: Maski K, Holbrook H, Manoach D, Hanson E, Kapur K, Stickgold R. Sleep dependent memory consolidation in children with autism spectrum disorder. SLEEP 2015;38(12):1955–1963. PMID:26194566

  2. Pharmacological Validation of Candidate Causal Sleep Genes Identified in an N2 Cross

    PubMed Central

    Brunner, Joseph I.; Gotter, Anthony L.; Millstein, Joshua; Garson, Susan; Binns, Jacquelyn; Fox, Steven V.; Savitz, Alan T.; Yang, He S.; Fitzpatrick, Karrie; Zhou, Lili; Owens, Joseph R.; Webber, Andrea L.; Vitaterna, Martha H.; Kasarskis, Andrew; Uebele, Victor N.; Turek, Fred; Renger, John J.; Winrow, Christopher J.

    2013-01-01

    Despite the substantial impact of sleep disturbances on human health and the many years of study dedicated to understanding sleep pathologies, the underlying genetic mechanisms that govern sleep and wake largely remain unknown. Recently, we completed large scale genetic and gene expression analyses in a segregating inbred mouse cross and identified candidate causal genes that regulate the mammalian sleep-wake cycle, across multiple traits including total sleep time, amounts of REM, non-REM, sleep bout duration and sleep fragmentation. Here we describe a novel approach toward validating candidate causal genes, while also identifying potential targets for sleep-related indications. Select small molecule antagonists and agonists were used to interrogate candidate causal gene function in rodent sleep polysomnography assays to determine impact on overall sleep architecture and to evaluate alignment with associated sleep-wake traits. Significant effects on sleep architecture were observed in validation studies using compounds targeting the muscarinic acetylcholine receptor M3 subunit (Chrm3)(wake promotion), nicotinic acetylcholine receptor alpha4 subunit (Chrna4)(wake promotion), dopamine receptor D5 subunit (Drd5)(sleep induction), serotonin 1D receptor (Htr1d)(altered REM fragmentation), glucagon-like peptide-1 receptor (Glp1r)(light sleep promotion and reduction of deep sleep), and Calcium channel, voltage-dependent, T type, alpha 1I subunit (Cacna1i)(increased bout duration slow wave sleep). Taken together, these results show the complexity of genetic components that regulate sleep-wake traits and highlight the importance of evaluating this complex behavior at a systems level. Pharmacological validation of genetically identified putative targets provides a rapid alternative to generating knock out or transgenic animal models, and may ultimately lead towards new therapeutic opportunities. PMID:22091728

  3. Cognitive performance in adolescents with Delayed Sleep-Wake Phase Disorder: Treatment effects and a comparison with good sleepers.

    PubMed

    Richardson, C; Micic, G; Cain, N; Bartel, K; Maddock, B; Gradisar, M

    2018-06-01

    The present study aimed to investigate whether Australian adolescents with Delayed Sleep-Wake Phase Disorder have impaired cognitive performance and whether chronobiological treatment for Delayed Sleep-Wake Phase Disorder improves adolescents' sleep, daytime functioning and cognitive performance. Adolescents with Delayed Sleep-Wake Phase Disorder (mean = 15.68 ± 2.1 y, 62% f) reported significantly later sleep timing (d = 1.03-1.45), less total sleep time (d = 0.82) and greater daytime sleepiness (d = 2.66), fatigue (d = 0.63) and impairment (d = 2.41), compared to good sleeping adolescents (mean = 15.9 ± 2.4 y, 75% f). However, there were no significant between-group differences (all p > 0.05) in performance on the Operation Span (ηp 2  = 0.043), Digit Span (forwards: ηp 2  = 0.002, backwards: ηp 2  = 0.003), Letter Number Sequencing (ηp 2  < 0.001) (working memory) and Digit-Symbol Substitution Tasks (ηp 2  = 0.010) (processing speed). Adolescents with Delayed Sleep-Wake Phase Disorder went on to receive 3 weeks of light therapy. At 3 months post-treatment, adolescents with Delayed Sleep-Wake Phase Disorder reported significantly advanced sleep timing (d = 0.56-0.65), greater total sleep time (d = 0.52) and improved daytime sleepiness (d = 1.33), fatigue (d = 0.84) and impairment (d = 0.78). Performance on the Operation Span (d = 0.46), Letter Number Sequencing (d = 0.45) and Digit-Symbol Substitution tasks (d = 0.57) also significantly improved. Copyright © 2018. Published by Elsevier Ltd.

  4. Resting Brain Activity Varies with Dream Recall Frequency Between Subjects

    PubMed Central

    Eichenlaub, Jean-Baptiste; Nicolas, Alain; Daltrozzo, Jérôme; Redouté, Jérôme; Costes, Nicolas; Ruby, Perrine

    2014-01-01

    Dreaming is still poorly understood. Notably, its cerebral underpinning remains unclear. Neuropsychological studies have shown that lesions in the temporoparietal junction (TPJ) and/or the white matter of the medial prefrontal cortex (MPFC) lead to the global cessation of dream reports, suggesting that these regions of the default mode network have key roles in the dreaming process (forebrain ‘dream-on' hypothesis). To test this hypothesis, we measured regional cerebral blood flow (rCBF) using [15O]H2O positron emission tomography in healthy subjects with high and low dream recall frequencies (DRFs) during wakefulness (rest) and sleep (rapid eye movement (REM) sleep, N2, and N3). Compared with Low recallers (0.5±0.3 dream recall per week in average), High recallers (5.2±1.4) showed higher rCBF in the TPJ during REM sleep, N3, and wakefulness, and in the MPFC during REM sleep and wakefulness. We demonstrate that the resting states of High recallers and Low recallers differ during sleep and wakefulness. It coheres with previous ERP results and confirms that a high/low DRF is associated with a specific functional organization of the brain. These results support the forebrain ‘dream-on' hypothesis and suggest that TPJ and MPFC are not only involved in dream recall during wakefulness but also have a role in dreaming during sleep (production and/or encoding). Increased activity in the TPJ and MPFC might promote the mental imagery and/or memory encoding of dreams. Notably, increased activity in TPJ might facilitate attention orienting toward external stimuli and promote intrasleep wakefulness, facilitating the encoding of the dreams in memory. PMID:24549103

  5. Why does rem sleep occur? A wake-up hypothesis.

    PubMed

    Klemm, W R

    2011-01-01

    Brain activity differs in the various sleep stages and in conscious wakefulness. Awakening from sleep requires restoration of the complex nerve impulse patterns in neuronal network assemblies necessary to re-create and sustain conscious wakefulness. Herein I propose that the brain uses rapid eye movement (REM) to help wake itself up after it has had a sufficient amount of sleep. Evidence suggesting this hypothesis includes the facts that, (1) when first going to sleep, the brain plunges into Stage N3 (formerly called Stage IV), a deep abyss of sleep, and, as the night progresses, the sleep is punctuated by episodes of REM that become longer and more frequent toward morning, (2) conscious-like dreams are a reliable component of the REM state in which the dreamer is an active mental observer or agent in the dream, (3) the last awakening during a night's sleep usually occurs in a REM episode during or at the end of a dream, (4) both REM and awake consciousness seem to arise out of a similar brainstem ascending arousal system (5) N3 is a functionally perturbed state that eventually must be corrected so that embodied brain can direct adaptive behavior, and (6) cortico-fugal projections to brainstem arousal areas provide a way to trigger increased cortical activity in REM to progressively raise the sleeping brain to the threshold required for wakefulness. This paper shows how the hypothesis conforms to common experience and has substantial predictive and explanatory power regarding the phenomenology of sleep in terms of ontogeny, aging, phylogeny, abnormal/disease states, cognition, and behavioral physiology. That broad range of consistency is not matched by competing theories, which are summarized herein. Specific ways to test this wake-up hypothesis are suggested. Such research could lead to a better understanding of awake consciousness.

  6. Evidence for age-associated disinhibition of the wake drive provided by scoring principal components of the resting EEG spectrum in sleep-provoking conditions.

    PubMed

    Putilov, Arcady A; Donskaya, Olga G

    2016-01-01

    Age-associated changes in different bandwidths of the human electroencephalographic (EEG) spectrum are well documented, but their functional significance is poorly understood. This spectrum seems to represent summation of simultaneous influences of several sleep-wake regulatory processes. Scoring of its orthogonal (uncorrelated) principal components can help in separation of the brain signatures of these processes. In particular, the opposite age-associated changes were documented for scores on the two largest (1st and 2nd) principal components of the sleep EEG spectrum. A decrease of the first score and an increase of the second score can reflect, respectively, the weakening of the sleep drive and disinhibition of the opposing wake drive with age. In order to support the suggestion of age-associated disinhibition of the wake drive from the antagonistic influence of the sleep drive, we analyzed principal component scores of the resting EEG spectra obtained in sleep deprivation experiments with 81 healthy young adults aged between 19 and 26 and 40 healthy older adults aged between 45 and 66 years. At the second day of the sleep deprivation experiments, frontal scores on the 1st principal component of the EEG spectrum demonstrated an age-associated reduction of response to eyes closed relaxation. Scores on the 2nd principal component were either initially increased during wakefulness or less responsive to such sleep-provoking conditions (frontal and occipital scores, respectively). These results are in line with the suggestion of disinhibition of the wake drive with age. They provide an explanation of why older adults are less vulnerable to sleep deprivation than young adults.

  7. Heat Transfer to Anode of Arc as Function of Transverse Magnetic Field and Lateral Gas Flow Velocity

    NASA Astrophysics Data System (ADS)

    Zama, Yoshiyuki; Shiino, Toru; Ishii, Yoko; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    Gas tungsten arc welding has useful joining technology because of high-energy and high-current characteristics. It can be flexible from the transverse magnetic field and lateral gas flow velocity. In this case, the weld defect occurs. In this research, the heat transfer to the anode of the arc as a function of the transverse magnetic field and lateral gas flow velocity is elucidated. That magnetic flux density and lateral gas velocity were varied from 0 to 3 mT and 0 to 50?m?s -1, respectively. The axial plasma gas argon flow rates were 3?slm. A transverse magnetic field is applied to the arc using Helmholtz coil. The anode is used by a water-cooled copper plate, and the heat transfer is measured by temperature of cooled water. As a result, the arc is deflected by the Lorentz force and lateral gas convection. Thus, the heat transfer to the anode of the arc decreases with increasing the transverse magnetic field and lateral gas flow velocity. In addition, the heat transfer to the anode changes with different attachments modes. The lateral gas flow causes a convective heat loss from the arc to the chamber walls.

  8. Effects of the functional regulator III on transversal changes: a postero-anterior cephalometric and model study.

    PubMed

    Kilic, Nihat; Celikoglu, Mevlüt; Oktay, Hüsamettin

    2011-12-01

    Studies assessing the transversal treatment changes caused by the functional regulator III (FR-3) are limited in number. This clinical study was planned to analyse the transversal effects of the FR-3 appliance therapy. The treatment group consisted of 17 patients (8 males and 9 females) with Class III malocclusion, who were treated with the FR-3 appliance. The control group consisted of 17 subjects (7 males and 10 females) with a normal occlusion. Mean ages of the subjects were 10.73 and 10.66 years in the treatment and control groups, respectively. Postero-anterior radiographs and stone casts were obtained before (T1) and after (T2) treatment/observation. The results of the Student's t-test comparing initial values showed that maxillary dentoalveolar and skeletal widths are significantly larger in the control group than those in the treatment group. At the end of the treatment, significant transverse increments occurred only at the dentoalveolar level of the maxilla. The transversal changes in the mandible were not statistically significant. Buccal shields of FR-3 did not stimulate the growth of maxillary apical base but caused an enhanced and supplementary widening of maxillary dental and alveolar structures.

  9. Functional Division of Hippocampal Area CA1 Via Modulatory Gating of Entorhinal Cortical Inputs

    PubMed Central

    Ito, Hiroshi T.; Schuman, Erin M.

    2013-01-01

    The hippocampus receives two streams of information, spatial and nonspatial, via major afferent inputs from the medial (MEC) and lateral entorhinal cortexes (LEC). The MEC and LEC projections in the temporoammonic pathway are topographically organized along the transverse-axis of area CA1. The potential for functional segregation of area CA1, however, remains relatively unexplored. Here, we demonstrated differential novelty-induced c-Fos expression along the transverse-axis of area CA1 corresponding to topographic projections of MEC and LEC inputs. We found that, while novel place exposure induced a uniform c-Fos expression along the transverse-axis of area CA1, novel object exposure primarily activated the distal half of CA1 neurons. In hippocampal slices, we observed distinct presynaptic properties between LEC and MEC terminals, and application of either DA or NE produced a largely selective influence on one set of inputs (LEC). Finally, we demonstrated that differential c-Fos expression along the transverse axis of area CA1 was largely abolished by an antagonist of neuromodulatory receptors, clozapine. Our results suggest that neuromodulators can control topographic TA projections allowing the hippocampus to differentially encode new information along the transverse axis of area CA1. PMID:21240920

  10. Exclusive η electroproduction at W >2 GeV with CLAS and transversity generalized parton distributions

    NASA Astrophysics Data System (ADS)

    Bedlinskiy, I.; Kubarovsky, V.; Stoler, P.; Adhikari, K. P.; Akbar, Z.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kuhn, S. E.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Meziani, Z. E.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Torayev, B.; Turisini, M.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Yurov, M.; Zachariou, N.; Zhang, J.; Zonta, I.; CLAS Collaboration

    2017-03-01

    The cross section of the exclusive η electroproduction reaction e p →e'p'η was measured at Jefferson Laboratory with a 5.75 GeV electron beam and the CLAS detector. Differential cross sections d4σ /d t d Q2d xBd ϕη and structure functions σU=σT+ɛ σL,σT T , and σL T, as functions of t , were obtained over a wide range of Q2 and xB. The η structure functions are compared with those previously measured for π0 at the same kinematics. At low t , both π0 and η are described reasonably well by generalized parton distributions (GPDs) in which chiral-odd transversity GPDs are dominant. The π0 and η data, when taken together, can facilitate the flavor decomposition of the transversity GPDs.

  11. Highlights from COMPASS SIDIS and Drell-Yan programmes

    NASA Astrophysics Data System (ADS)

    Longo, R.; Compass Collaboration

    2017-03-01

    One of the main objectives of the COMPASS experiment at CERN is the study of transverse spin structure of the nucleon trough measurement of target spin (in)dependent azimuthal asymmetries in semi-inclusive deep inelastic scattering (SIDIS) and Drell-Yan (DY) processes with transversely polarized targets. Within the QCD parton model these azimuthal asymmetries give access to a set of transverse-momentum-dependent (TMD) parton distribution functions (PDF) which parameterize the spin structure of the nucleon. In the TMD framework of QCD it is predicted that the two naively time-reversal odd TMD PDFs, i.e. the quark Sivers functions and Boer-Mulders functions, have opposite sign when measured in SIDIS or DY. The experimental test of this fundamental prediction is a major challenge in hadron physics. COMPASS former SIDIS results and upcoming results from DY measurements give a unique and complementary input to address this and other important open issues in spin physics.

  12. Exclusive η electroproduction at W > 2 GeV with CLAS and transversity generalized parton distributions

    DOE PAGES

    Bedlinskiy, I.; Kubarovsky, V.; Stoler, P.; ...

    2017-03-10

    The cross section of the exclusive η electroproduction reaction ep → e'p'η was measured at Jefferson Laboratory with a 5.75 GeV electron beam and the CLAS detector. Differential cross sections d 4σ/dtdQ 2dx BdΦ η and structure functions σ U = σ T + εσ L, σ TT, and σ LT, as functions of t, were obtained over a wide range of Q 2 and x B. The η structure functions are compared with those previously measured for π 0 at the same kinematics. At low t, both π 0 and η are described reasonably well by generalized parton distributionsmore » (GPDs) in which chiral-odd transversity GPDs are dominant. As a result, the π 0 and η data, when taken together, can facilitate the flavor decomposition of the transversity GPDs.« less

  13. Measurement of exclusive π(0) electroproduction structure functions and their relationship to transverse generalized parton distributions.

    PubMed

    Bedlinskiy, I; Kubarovsky, V; Niccolai, S; Stoler, P; Adhikari, K P; Aghasyan, M; Amaryan, M J; Anghinolfi, M; Avakian, H; Baghdasaryan, H; Ball, J; Baltzell, N A; Battaglieri, M; Bennett, R P; Biselli, A S; Bookwalter, C; Boiarinov, S; Briscoe, W J; Brooks, W K; Burkert, V D; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Contalbrigo, M; Crede, V; D'Angelo, A; Daniel, A; Dashyan, N; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Doughty, D; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Fegan, S; Fleming, J A; Forest, T A; Fradi, A; Garçon, M; Gevorgyan, N; Giovanetti, K L; Girod, F X; Gohn, W; Gothe, R W; Graham, L; Griffioen, K A; Guegan, B; Guidal, M; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Heddle, D; Hicks, K; Holtrop, M; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jo, H S; Joo, K; Keller, D; Khandaker, M; Khetarpal, P; Kim, A; Kim, W; Klein, F J; Koirala, S; Kubarovsky, A; Kuhn, S E; Kuleshov, S V; Kvaltine, N D; Livingston, K; Lu, H Y; MacGregor, I J D; Mao, Y; Markov, N; Martinez, D; Mayer, M; McKinnon, B; Meyer, C A; Mineeva, T; Mirazita, M; Mokeev, V; Moutarde, H; Munevar, E; Munoz Camacho, C; Nadel-Turonski, P; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Pappalardo, L L; Paremuzyan, R; Park, K; Park, S; Pasyuk, E; Anefalos Pereira, S; Phelps, E; Pisano, S; Pogorelko, O; Pozdniakov, S; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Raue, B A; Ricco, G; Rimal, D; Ripani, M; Rosner, G; Rossi, P; Sabatié, F; Saini, M S; Salgado, C; Saylor, N; Schott, D; Schumacher, R A; Seder, E; Seraydaryan, H; Sharabian, Y G; Smith, G D; Sober, D I; Sokhan, D; Stepanyan, S S; Stepanyan, S; Strauch, S; Taiuti, M; Tang, W; Taylor, C E; Tian, Ye; Tkachenko, S; Ungaro, M; Vineyard, M F; Vlassov, A; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Weinstein, L B; Weygand, D P; Wood, M H; Zachariou, N; Zhang, J; Zhao, Z W; Zonta, I

    2012-09-14

    Exclusive π(0) electroproduction at a beam energy of 5.75 GeV has been measured with the Jefferson Lab CLAS spectrometer. Differential cross sections were measured at more than 1800 kinematic values in Q(2), x(B), t, and ϕ(π), in the Q(2) range from 1.0 to 4.6  GeV(2), -t up to 2  GeV(2), and x(B) from 0.1 to 0.58. Structure functions σ(T)+ϵσ(L), σ(TT), and σ(LT) were extracted as functions of t for each of 17 combinations of Q(2) and x(B). The data were compared directly with two handbag-based calculations including both longitudinal and transversity generalized parton distributions (GPDs). Inclusion of only longitudinal GPDs very strongly underestimates σ(T)+ϵσ(L) and fails to account for σ(TT) and σ(LT), while inclusion of transversity GPDs brings the calculations into substantially better agreement with the data. There is very strong sensitivity to the relative contributions of nucleon helicity-flip and helicity nonflip processes. The results confirm that exclusive π(0) electroproduction offers direct experimental access to the transversity GPDs.

  14. Measurement of Exclusive π0 Electroproduction Structure Functions and their Relationship to Transverse Generalized Parton Distributions

    NASA Astrophysics Data System (ADS)

    Bedlinskiy, I.; Kubarovsky, V.; Niccolai, S.; Stoler, P.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anghinolfi, M.; Avakian, H.; Baghdasaryan, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bennett, R. P.; Biselli, A. S.; Bookwalter, C.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Garçon, M.; Gevorgyan, N.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Gothe, R. W.; Graham, L.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Heddle, D.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kuhn, S. E.; Kuleshov, S. V.; Kvaltine, N. D.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Markov, N.; Martinez, D.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Anefalos Pereira, S.; Phelps, E.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ricco, G.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Saylor, N.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Ungaro, M.; Vineyard, M. F.; Vlassov, A.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2012-09-01

    Exclusive π0 electroproduction at a beam energy of 5.75 GeV has been measured with the Jefferson Lab CLAS spectrometer. Differential cross sections were measured at more than 1800 kinematic values in Q2, xB, t, and ϕπ, in the Q2 range from 1.0 to 4.6GeV2, -t up to 2GeV2, and xB from 0.1 to 0.58. Structure functions σT+ɛσL, σTT, and σLT were extracted as functions of t for each of 17 combinations of Q2 and xB. The data were compared directly with two handbag-based calculations including both longitudinal and transversity generalized parton distributions (GPDs). Inclusion of only longitudinal GPDs very strongly underestimates σT+ɛσL and fails to account for σTT and σLT, while inclusion of transversity GPDs brings the calculations into substantially better agreement with the data. There is very strong sensitivity to the relative contributions of nucleon helicity-flip and helicity nonflip processes. The results confirm that exclusive π0 electroproduction offers direct experimental access to the transversity GPDs.

  15. Nodal Green’s Function Method Singular Source Term and Burnable Poison Treatment in Hexagonal Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.A. Bingham; R.M. Ferrer; A.M. ougouag

    2009-09-01

    An accurate and computationally efficient two or three-dimensional neutron diffusion model will be necessary for the development, safety parameters computation, and fuel cycle analysis of a prismatic Very High Temperature Reactor (VHTR) design under Next Generation Nuclear Plant Project (NGNP). For this purpose, an analytical nodal Green’s function solution for the transverse integrated neutron diffusion equation is developed in two and three-dimensional hexagonal geometry. This scheme is incorporated into HEXPEDITE, a code first developed by Fitzpatrick and Ougouag. HEXPEDITE neglects non-physical discontinuity terms that arise in the transverse leakage due to the transverse integration procedure application to hexagonal geometry andmore » cannot account for the effects of burnable poisons across nodal boundaries. The test code being developed for this document accounts for these terms by maintaining an inventory of neutrons by using the nodal balance equation as a constraint of the neutron flux equation. The method developed in this report is intended to restore neutron conservation and increase the accuracy of the code by adding these terms to the transverse integrated flux solution and applying the nodal Green’s function solution to the resulting equation to derive a semi-analytical solution.« less

  16. Wake vortex properties and thrust production of a harmonically-pitching flexible airfoil at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Olson, David; Naguib, Ahmed; Koochesfahani, Manoochehr

    2017-11-01

    Many of the natural flyers have deformable wing structures and exhibit complex kinematics in order to produce lift and thrust. Replicating all of these conditions in the laboratory (or in simulations) is extremely difficult, and drawing explicit connections to basic unsteady aerodynamics models and theories is even more complicated. Therefore, simplified wing structure and kinematics are typically used to facilitate drawing out these connections. In this work, measurements are conducted using a rigid and a chordwise-flexible NACA 0009 airfoils when harmonically pitched about the quarter chord point. Molecular tagging velocimetry is used to characterize the wake and estimate the thrust based on the momentum integral equation as function of the reduced frequency and the pitching amplitude. The results obtained using the two different airfoils are compared in order to examine the influence of structural flexibility. Consistent with the literature, chordwise flexibility is found to enhance thrust production and the circulation of the vortices shed into the wake, for a certain range of frequencies and amplitudes. Additional characterizations are undertaken of the wake vortex structure and its scaling. This work was supported by AFOSR Award Number FA9550-10-1-0342.

  17. Use of Individual Flight Corridors to Avoid Vortex Wakes

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    2001-01-01

    Vortex wakes of aircraft pose a hazard to following aircraft until the energetic parts of their flow fields have decayed to a harmless level. It is suggested here that in-trail spacings between aircraft can be significantly and safely reduced by designing an individual, vortex-free flight corridor for each aircraft. Because each aircraft will then have its own flight corridor, which is free of vortex wakes while in use by the assigned aircraft, the time intervals between aircraft operations can be safely reduced to the order of seconds. The productivity of airports can then be substantially increased. How large the offset distances between operational corridors need to be to have them vortex free, and how airports need to be changed to accommodate an individual flight-corridor process for landing and takeoff operations, are explored. Estimates are then made of the productivity of an individual flight-corridor system as a function of the in-trail time interval between operations for various values of wake decay time, runway width, and the velocity of a sidewind. The results confirm the need for short time intervals between aircraft operations if smaller offset distances and increased productivity are to be achieved.

  18. Locus ceruleus control of state-dependent gene expression.

    PubMed

    Cirelli, Chiara; Tononi, Giulio

    2004-06-09

    Wakefulness and sleep are accompanied by changes in behavior and neural activity, as well as by the upregulation of different functional categories of genes. However, the mechanisms responsible for such state-dependent changes in gene expression are unknown. Here we investigate to what extent state-dependent changes in gene expression depend on the central noradrenergic (NA) system, which is active in wakefulness and reduces its firing during sleep. We measured the levels of approximately 5000 transcripts expressed in the cerebral cortex of control rats and in rats pretreated with DSP-4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine], a neurotoxin that removes the noradrenergic innervation of the cortex. We found that NA depletion reduces the expression of approximately 20% of known wakefulness-related transcripts. Most of these transcripts are involved in synaptic plasticity and in the cellular response to stress. In contrast, NA depletion increased the expression of the sleep-related gene encoding the translation elongation factor 2. These results indicate that the activity of the central NA system during wakefulness modulates neuronal transcription to favor synaptic potentiation and counteract cellular stress, whereas its inactivity during sleep may play a permissive role to enhance brain protein synthesis.

  19. Manipulating the sleep-wake cycle and circadian rhythms to improve clinical management of major depression

    PubMed Central

    2013-01-01

    Background Clinical psychiatry has always been limited by the lack of objective tests to substantiate diagnoses and a lack of specific treatments that target underlying pathophysiology. One area in which these twin failures has been most frustrating is major depression. Due to very considerable progress in the basic and clinical neurosciences of sleep-wake cycles and underlying circadian systems this situation is now rapidly changing. Discussion The development of specific behavioral or pharmacological strategies that target these basic regulatory systems is driving renewed clinical interest. Here, we explore the extent to which objective tests of sleep-wake cycles and circadian function - namely, those that measure timing or synchrony of circadian-dependent physiology as well as daytime activity and nighttime sleep patterns - can be used to identify a sub-class of patients with major depression who have disturbed circadian profiles. Summary Once this unique pathophysiology is characterized, a highly personalized treatment plan can be proposed and monitored. New treatments will now be designed and old treatments re-evaluated on the basis of their effects on objective measures of sleep-wake cycles, circadian rhythms and related metabolic systems. PMID:23521808

  20. Influence of the electron intrinsic magnetic moment on the transverse dielectric permittivity of degenerate electron gas

    NASA Astrophysics Data System (ADS)

    Maslov, S. A.; Bobrov, V. B.; Kirillin, A. V.; Trigger, S. A.

    2018-01-01

    Using the linear response theory, the transverse dielectric permittivity of a homogeneous and isotropic system of charged particles is considered. In the ideal gas approximation for the polarization function, an explicit analytical expression for the transverse permittivity of a degenerate electron plasma, which takes into account electron spin, is found. This result describes both the Landau diamagnetism and Pauli paramagnetism in electron plasma. The influence of the electron intrinsic magnetic moment on the spatial and frequency dispersion of the transverse dielectric permittivity of degenerate electron plasma is numerically studied, that is crucial for determining the optical characteristics of plasma.

  1. Calculation of Transverse-Momentum-Dependent Evolution for Sivers Transverse Single Spin Asymmetry Measurements

    NASA Astrophysics Data System (ADS)

    Aybat, S. Mert; Prokudin, Alexei; Rogers, Ted C.

    2012-06-01

    The Sivers transverse single spin asymmetry (TSSA) is calculated and compared at different scales using the transverse-momentum-dependent (TMD) evolution equations applied to previously existing extractions. We apply the Collins-Soper-Sterman (CSS) formalism, using the version recently developed by Collins. Our calculations rely on the universality properties of TMD functions that follow from the TMD-factorization theorem. Accordingly, the nonperturbative input is fixed by earlier experimental measurements, including both polarized semi-inclusive deep inelastic scattering (SIDIS) and unpolarized Drell-Yan (DY) scattering. It is shown that recent preliminary COMPASS measurements are consistent with the suppression prescribed by TMD evolution.

  2. Dynamic wake prediction and visualization with uncertainty analysis

    NASA Technical Reports Server (NTRS)

    Holforty, Wendy L. (Inventor); Powell, J. David (Inventor)

    2005-01-01

    A dynamic wake avoidance system utilizes aircraft and atmospheric parameters readily available in flight to model and predict airborne wake vortices in real time. A novel combination of algorithms allows for a relatively simple yet robust wake model to be constructed based on information extracted from a broadcast. The system predicts the location and movement of the wake based on the nominal wake model and correspondingly performs an uncertainty analysis on the wake model to determine a wake hazard zone (no fly zone), which comprises a plurality of wake planes, each moving independently from another. The system selectively adjusts dimensions of each wake plane to minimize spatial and temporal uncertainty, thereby ensuring that the actual wake is within the wake hazard zone. The predicted wake hazard zone is communicated in real time directly to a user via a realistic visual representation. In an example, the wake hazard zone is visualized on a 3-D flight deck display to enable a pilot to visualize or see a neighboring aircraft as well as its wake. The system substantially enhances the pilot's situational awareness and allows for a further safe decrease in spacing, which could alleviate airport and airspace congestion.

  3. Collins azimuthal asymmetries of hadron production inside jets

    DOE PAGES

    Kang, Zhong -Bo; Prokudin, Alexei; Ringer, Felix; ...

    2017-10-18

    Here, we investigate the Collins azimuthal asymmetry of hadrons produced inside jets in transversely polarized proton-proton collisions. Recently, the quark transversity distributions and the Collins fragmentation functions have been extracted within global analyses from data of the processes semi-inclusive deep inelastic scattering and electron-positron annihilation. We calculate the Collins azimuthal asymmetry for charged pions inside jets using these extractions for RHIC kinematics at center-of-mass energies of 200 and 500 GeV. We compare our results with recent data from the STAR Collaboration at RHIC and find good agreement, which confirms the universality of the Collins fragmentation functions. In addition, we furthermore » explore the impact of transverse momentum dependent evolution effects.« less

  4. Collins azimuthal asymmetries of hadron production inside jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Zhong -Bo; Prokudin, Alexei; Ringer, Felix

    Here, we investigate the Collins azimuthal asymmetry of hadrons produced inside jets in transversely polarized proton-proton collisions. Recently, the quark transversity distributions and the Collins fragmentation functions have been extracted within global analyses from data of the processes semi-inclusive deep inelastic scattering and electron-positron annihilation. We calculate the Collins azimuthal asymmetry for charged pions inside jets using these extractions for RHIC kinematics at center-of-mass energies of 200 and 500 GeV. We compare our results with recent data from the STAR Collaboration at RHIC and find good agreement, which confirms the universality of the Collins fragmentation functions. In addition, we furthermore » explore the impact of transverse momentum dependent evolution effects.« less

  5. WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING EAST WITH PHOTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING EAST WITH PHOTO SCALE CENTERED ON BUILDING (12/30/2008) - Wake Island Airfield, Terminal Building, West Side of Wake Avenue, Wake Island, Wake Island, UM

  6. Multi-particle correlations in transverse momenta from statistical clusters

    NASA Astrophysics Data System (ADS)

    Bialas, Andrzej; Bzdak, Adam

    2016-09-01

    We evaluate n-particle (n = 2 , 3 , 4 , 5) transverse momentum correlations for pions and kaons following from the decay of statistical clusters. These correlation functions could provide strong constraints on a possible existence of thermal clusters in the process of particle production.

  7. Studies of transverse momentum dependent parton distributions and Bessel weighting

    DOE PAGES

    Aghasyan, M.; Avakian, H.; De Sanctis, E.; ...

    2015-03-01

    In this paper we present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Montemore » Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy/Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.« less

  8. Adjustable patella grapple versus cannulated screw and cable technique for treatment of transverse patellar fractures.

    PubMed

    Yan, Ning; Yang, Anli; Liu, Xiaodong; Cai, Feng; Liu, Liang; Chang, Shimin

    2014-03-01

    Although the cannulated screw and cable (CSC) tension band technique is an effective method for fixation of transverse patellar fractures, it has shortcomings, such as extensive soft tissue damage, osseous substance damage, and complex manipulation. We conducted a retrospective comparison of the adjustable patella grapple (APG) technique and the CSC tension band technique. We retrospectively reviewed 78 patients with transverse patellar fractures (45 in the APG group and 33 in the CSC group). Follow-up was 18 months. Comparison criteria were operation time, fracture reduction, fracture healing time, the knee injury and osteoarthritis outcome score for knee function, and complications. The APG group showed shorter operation time and equal fracture reduction, fracture healing time, and knee function compared with the CSC group. Eleven patients in the APG group experienced skin irritation generated by implants. There was no complication in the CSC group. The APG technique should be considered as an alternative method for treatment of transverse patellar fractures.

  9. Studies of transverse momentum dependent parton distributions and Bessel weighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghasyan, M.; Avakian, H.; De Sanctis, E.

    In this paper we present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Montemore » Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy/Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.« less

  10. Generating Low Beta Regions with Quadrupoles for Final Muon Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acosta, J. G.; Cremaldi, L. M.; Hart, T. L.

    2017-05-01

    Muon beams and colliders are rich sources of new physics, if muons can be cooled. A normalized rms transverse muon emittance of 280 microns has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL, G4beamline, and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to approach a normalized transverse emittance of 100 microns and finish 6D muon cooling. The low beta regions produced by the quadrupoles are occupied by dense, low Z absorbers, such as lithium hydride or beryllium, that cool the beam. Equilibrium transverse emittancemore » is linearly proportional to the beta function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 microns at the expense of longitudinal emittance for a high energy lepton collider. Work remains to be done on chromaticity correction.« less

  11. The reinterpretation of dreams: an evolutionary hypothesis of the function of dreaming.

    PubMed

    Revonsuo, A

    2000-12-01

    Several theories claim that dreaming is a random by-product of REM sleep physiology and that it does not serve any natural function. Phenomenal dream content, however, is not as disorganized as such views imply. The form and content of dreams is not random but organized and selective: during dreaming, the brain constructs a complex model of the world in which certain types of elements, when compared to waking life, are underrepresented whereas others are over represented. Furthermore, dream content is consistently and powerfully modulated by certain types of waking experiences. On the basis of this evidence, I put forward the hypothesis that the biological function of dreaming is to simulate threatening events, and to rehearse threat perception and threat avoidance. To evaluate this hypothesis, we need to consider the original evolutionary context of dreaming and the possible traces it has left in the dream content of the present human population. In the ancestral environment human life was short and full of threats. Any behavioral advantage in dealing with highly dangerous events would have increased the probability of reproductive success. A dream-production mechanism that tends to select threatening waking events and simulate them over and over again in various combinations would have been valuable for the development and maintenance of threat-avoidance skills. Empirical evidence from normative dream content, children's dreams, recurrent dreams, nightmares, post traumatic dreams, and the dreams of hunter-gatherers indicates that our dream-production mechanisms are in fact specialized in the simulation of threatening events, and thus provides support to the threat simulation hypothesis of the function of dreaming.

  12. Adolescent Sleep and the Impact of Technology Use Before Sleep on Daytime Function.

    PubMed

    Johansson, Ann E E; Petrisko, Maria A; Chasens, Eileen R

    2016-01-01

    Technology has become pervasive in our culture, particularly among adolescents. The purpose of this study is to examine associations between use of technology before sleep and daytime function in adolescents. This study is a secondary analysis of respondents aged 13 to 21 years (N = 259) from the 2011 National Sleep Foundation's Sleep in America Poll. The survey included questions on demographics, sleep habits, and use of technology in the hour before bedtime. Daytime sleepiness was assessed with the Epworth Sleepiness Scale (ESS). Student's t-tests, Mann-Whitney U, and Fischer's exact tests were performed to detect differences in demographics, sleep duration, and technology use in the total sample, and between respondents with "adequate" compared to "inadequate" sleep. Correlations were calculated between technology frequency and daytime function. Adolescents had mean sleep duration of 7.3 ± 1.3 h. Almost all respondents (97%) used some form of technology before sleep. Increased technology use and the frequency of being awoken in the night by a cell phone were significantly associated with waking too early, waking unrefreshed, and daytime sleepiness (p < 0.05). Adolescents who reported "inadequate" sleep had shorter sleep duration, greater frequency of technology use before bedtime, feeling unrefreshed on waking, and greater daytime sleepiness than those reporting "adequate" sleep (all p-values < 0.05). Technology use before sleep by adolescents had negative consequences on nighttime sleep and on daytime function. Healthcare professionals who interact with adolescents should encourage technology to be curtailed before bedtime and for adolescents to value obtaining adequate sleep. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Three-dimensional structure of wind turbine wakes as measured by scanning lidar

    NASA Astrophysics Data System (ADS)

    Bodini, Nicola; Zardi, Dino; Lundquist, Julie K.

    2017-08-01

    The lower wind speeds and increased turbulence that are characteristic of turbine wakes have considerable consequences on large wind farms: turbines located downwind generate less power and experience increased turbulent loads. The structures of wakes and their downwind impacts are sensitive to wind speed and atmospheric variability. Wake characterization can provide important insights for turbine layout optimization in view of decreasing the cost of wind energy. The CWEX-13 field campaign, which took place between June and September 2013 in a wind farm in Iowa, was designed to explore the interaction of multiple wakes in a range of atmospheric stability conditions. Based on lidar wind measurements, we extend, present, and apply a quantitative algorithm to assess wake parameters such as the velocity deficits, the size of the wake boundaries, and the location of the wake centerlines. We focus on wakes from a row of four turbines at the leading edge of the wind farm to explore variations between wakes from the edge of the row (outer wakes) and those from turbines in the center of the row (inner wakes). Using multiple horizontal scans at different elevations, a three-dimensional structure of wakes from the row of turbines can be created. Wakes erode very quickly during unstable conditions and can in fact be detected primarily in stable conditions in the conditions measured here. During stable conditions, important differences emerge between the wakes of inner turbines and the wakes of outer turbines. Further, the strong wind veer associated with stable conditions results in a stretching of the wake structures, and this stretching manifests differently for inner and outer wakes. These insights can be incorporated into low-order wake models for wind farm layout optimization or for wind power forecasting.

  14. Three-dimensional structure of wind turbine wakes as measured by scanning lidar

    DOE PAGES

    Bodini, Nicola; Zardi, Dino; Lundquist, Julie K.

    2017-08-14

    The lower wind speeds and increased turbulence that are characteristic of turbine wakes have considerable consequences on large wind farms: turbines located downwind generate less power and experience increased turbulent loads. The structures of wakes and their downwind impacts are sensitive to wind speed and atmospheric variability. Wake characterization can provide important insights for turbine layout optimization in view of decreasing the cost of wind energy. The CWEX-13 field campaign, which took place between June and September 2013 in a wind farm in Iowa, was designed to explore the interaction of multiple wakes in a range of atmospheric stability conditions.more » Based on lidar wind measurements, we extend, present, and apply a quantitative algorithm to assess wake parameters such as the velocity deficits, the size of the wake boundaries, and the location of the wake centerlines. We focus on wakes from a row of four turbines at the leading edge of the wind farm to explore variations between wakes from the edge of the row (outer wakes) and those from turbines in the center of the row (inner wakes). Using multiple horizontal scans at different elevations, a three-dimensional structure of wakes from the row of turbines can be created. Wakes erode very quickly during unstable conditions and can in fact be detected primarily in stable conditions in the conditions measured here. During stable conditions, important differences emerge between the wakes of inner turbines and the wakes of outer turbines. Further, the strong wind veer associated with stable conditions results in a stretching of the wake structures, and this stretching manifests differently for inner and outer wakes. As a result, these insights can be incorporated into low-order wake models for wind farm layout optimization or for wind power forecasting.« less

  15. Three-dimensional structure of wind turbine wakes as measured by scanning lidar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodini, Nicola; Zardi, Dino; Lundquist, Julie K.

    The lower wind speeds and increased turbulence that are characteristic of turbine wakes have considerable consequences on large wind farms: turbines located downwind generate less power and experience increased turbulent loads. The structures of wakes and their downwind impacts are sensitive to wind speed and atmospheric variability. Wake characterization can provide important insights for turbine layout optimization in view of decreasing the cost of wind energy. The CWEX-13 field campaign, which took place between June and September 2013 in a wind farm in Iowa, was designed to explore the interaction of multiple wakes in a range of atmospheric stability conditions.more » Based on lidar wind measurements, we extend, present, and apply a quantitative algorithm to assess wake parameters such as the velocity deficits, the size of the wake boundaries, and the location of the wake centerlines. We focus on wakes from a row of four turbines at the leading edge of the wind farm to explore variations between wakes from the edge of the row (outer wakes) and those from turbines in the center of the row (inner wakes). Using multiple horizontal scans at different elevations, a three-dimensional structure of wakes from the row of turbines can be created. Wakes erode very quickly during unstable conditions and can in fact be detected primarily in stable conditions in the conditions measured here. During stable conditions, important differences emerge between the wakes of inner turbines and the wakes of outer turbines. Further, the strong wind veer associated with stable conditions results in a stretching of the wake structures, and this stretching manifests differently for inner and outer wakes. As a result, these insights can be incorporated into low-order wake models for wind farm layout optimization or for wind power forecasting.« less

  16. Vortex wakes of a flapping foil in a flowing soap film

    NASA Astrophysics Data System (ADS)

    Schnipper, Teis; Andersen, Anders; Bohr, Tomas

    2008-11-01

    We present an experimental study of an oscillating, symmetric foil in a vertically flowing soap film. By varying frequency and amplitude of the oscillation we explore and visualize a variety of wake structures, including von Kármán wake, reverse von Kármán wake, 2P wake, and 2P+2S wake. We characterize the transition from the von Kármán wake (drag) to the reverse von Kármán wake (thrust) and discuss the results in relation to fish swimming. We visualize the time evolution of the vortex shedding in detail, identify the origins of the vortices comprising the wake, and propose a simple model to account for the transition from von Kármán like wakes to more exotic wake structures.

  17. Brain Basics: Understanding Sleep

    MedlinePlus

    ... slow, and muscles relax even further. Your body temperature drops and eye movements stop. Brain wave activity ... functions from daily fluctuations in wakefulness to body temperature, metabolism, and the release of hormones. They control ...

  18. Transverse spin-dependent azimuthal correlations of charged pion pairs measured in p↑ + p collisions at √{ s } = 500 GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adams, J. R.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bairathi, V.; Barish, K.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bryslawskyj, J.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Dedovich, T. G.; Deng, J.; Deppner, I. M.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fujita, J.; Fulek, L.; Gagliardi, C. A.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Herrmann, N.; Hirsch, A.; Horvat, S.; Huang, X.; Huang, H. Z.; Huang, T.; Huang, B.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kapukchyan, D.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kim, C.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Krauth, L.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, W.; Li, C.; Li, X.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, Y.; Liu, H.; Liu, F.; Liu, P.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Luo, S.; Ma, L.; Ma, Y. G.; Ma, G. L.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Mayes, D.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nemes, D. B.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seto, R.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Shen, W. Q.; Shi, S. S.; Shi, Z.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stewart, D. J.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, X.; Sun, X. M.; Sun, Y.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Tu, B.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, Y.; Wang, F.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, G.; Xie, W.; Xu, N.; Xu, Y. F.; Xu, Q. H.; Xu, Z.; Yang, Y.; Yang, C.; Yang, S.; Yang, Q.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J.; Zhang, S.; Zhang, J.; Zhang, S.; Zhang, Z.; Zhang, Y.; Zhang, L.; Zhang, X. P.; Zhao, J.; Zhong, C.; Zhou, C.; Zhou, L.; Zhu, X.; Zhu, Z.; Zyzak, M.

    2018-05-01

    The transversity distribution, which describes transversely polarized quarks in transversely polarized nucleons, is a fundamental component of the spin structure of the nucleon, and is only loosely constrained by global fits to existing semi-inclusive deep inelastic scattering (SIDIS) data. In transversely polarized p↑ + p collisions it can be accessed using transverse polarization dependent fragmentation functions which give rise to azimuthal correlations between the polarization of the struck parton and the final state scalar mesons. This letter reports on spin dependent di-hadron correlations measured by the STAR experiment. The new dataset corresponds to 25 pb-1 integrated luminosity of p↑ + p collisions at √{ s } = 500 GeV, an increase of more than a factor of ten compared to our previous measurement at √{ s } = 200 GeV. Non-zero asymmetries sensitive to transversity are observed at a Q2 of several hundred GeV and are found to be consistent with the former measurement and a model calculation. We expect that these data will enable an extraction of transversity with comparable precision to current SIDIS datasets but at much higher momentum transfers where subleading effects are suppressed.

  19. Quantitative EEG Monitoring of Vigilance: Effects of Sleep Deprivation, Circadian Phase and Sympathetic Activation

    NASA Technical Reports Server (NTRS)

    Dijk, Derk-Jan

    1999-01-01

    Shuttle astronauts typically sleep only 6 to 6.5 hours per day while in orbit. This sleep loss is related to recurrent sleep cycle shifting--due to mission-dependent orbital mechanics and mission duration requirements-- and associated circadian displacement of sleep, the operational demands of space flight, noise and space motion sickness. Such sleep schedules are known to produce poor subjective sleep quality, daytime sleepiness, reduced attention, negative mood, slower reaction times, and impaired daytime alertness. Countermeasures to allow crew members to obtain an adequate amount of sleep and maintain adequate levels of neurobehavioral performance are being developed and investigated. However, it is necessary to develop methods that allow effective and attainable in-flight monitoring of vigilance to evaluate the effectiveness of these countermeasures and to detect and predict online critical decrements in alertness/performance. There is growing evidence to indicate that sleep loss and associated decrements in neurobehavioral function are reflected in the spectral composition of the electroencephalogram (EEG) during wakefulness as well as in the incidence of slow eye movements recorded by the electro-oculogram (EOG). Further-more, our preliminary data indicated that these changes in the EEG during wakefulness are more pronounced when subjects are in a supine posture, which mimics some of the physiologic effects of microgravity. Therefore, we evaluate the following hypotheses: (1) that during a 40-hour period of wakefulness (i.e., one night of total sleep deprivation) neurobehavioral function deteriorates, the incidence of slow eye-movements and EEG power density in the theta frequencies increases especially in frontal areas of the brain; (2) that the sleep deprivation induced deterioration of neurobehavioral function and changes in the incidence of slow eye movements and the spectral composition of the EEG are more pronounced when subjects are in a supine position; and (3) that based on assessment of slow-eye movements and quantitative on-line topographical analyses of EEG during wakefulness an EEG and or EOG parameter can be derived/constructed which accurately predicts changes in neurobehavioral function.

  20. High Resolution WENO Simulation of 3D Detonation Waves

    DTIC Science & Technology

    2012-02-27

    pocket behind the detonation front was not observed in their results because the rotating transverse detonation completely consumed the unburned gas. Dou...three-dimensional detonations We add source terms (functions of x, y, z and t) to the PDE system so that the following functions are exact solutions to... detonation rotates counter-clockwise, opposite to that in [48]. It can be seen that, the triple lines and transverse waves collide with the walls, and strong

  1. Scaling analysis of Anderson localizing optical fibers

    NASA Astrophysics Data System (ADS)

    Abaie, Behnam; Mafi, Arash

    2017-02-01

    Anderson localizing optical fibers (ALOF) enable a novel optical waveguiding mechanism; if a narrow beam is scanned across the input facet of the disordered fiber, the output beam follows the transverse position of the incoming wave. Strong transverse disorder induces several localized modes uniformly spread across the transverse structure of the fiber. Each localized mode acts like a transmission channel which carries a narrow input beam along the fiber without transverse expansion. Here, we investigate scaling of transverse size of the localized modes of ALOF with respect to transverse dimensions of the fiber. Probability density function (PDF) of the mode-area is applied and it is shown that PDF converges to a terminal shape at transverse dimensions considerably smaller than the previous experimental implementations. Our analysis turns the formidable numerical task of ALOF simulations into a much simpler problem, because the convergence of mode-area PDF to a terminal shape indicates that a much smaller disordered fiber, compared to previous numerical and experimental implementations, provides all the statistical information required for the precise analysis of the fiber.

  2. Evaluation of Fast-Time Wake Vortex Models using Wake Encounter Flight Test Data

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; VanValkenburg, Randal L.; Bowles, Roland L.; Limon Duparcmeur, Fanny M.; Gloudesman, Thijs; van Lochem, Sander; Ras, Eelco

    2014-01-01

    This paper describes a methodology for the integration and evaluation of fast-time wake models with flight data. The National Aeronautics and Space Administration conducted detailed flight tests in 1995 and 1997 under the Aircraft Vortex Spacing System Program to characterize wake vortex decay and wake encounter dynamics. In this study, data collected during Flight 705 were used to evaluate NASA's fast-time wake transport and decay models. Deterministic and Monte-Carlo simulations were conducted to define wake hazard bounds behind the wake generator. The methodology described in this paper can be used for further validation of fast-time wake models using en-route flight data, and for determining wake turbulence constraints in the design of air traffic management concepts.

  3. Electromagnetic scaling functions within the Green's function Monte Carlo approach

    DOE PAGES

    Rocco, N.; Alvarez-Ruso, L.; Lovato, A.; ...

    2017-07-24

    We have studied the scaling properties of the electromagnetic response functions of 4He and 12C nuclei computed by the Green's function Monte Carlo approach, retaining only the one-body current contribution. Longitudinal and transverse scaling functions have been obtained in the relativistic and nonrelativistic cases and compared to experiment for various kinematics. The characteristic asymmetric shape of the scaling function exhibited by data emerges in the calculations in spite of the nonrelativistic nature of the model. The results are mostly consistent with scaling of zeroth, first, and second kinds. Our analysis reveals a direct correspondence between the scaling and the nucleon-densitymore » response functions. In conclusion, the scaling function obtained from the proton-density response displays scaling of the first kind, even more evidently than the longitudinal and transverse scaling functions« less

  4. Electromagnetic scaling functions within the Green's function Monte Carlo approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocco, N.; Alvarez-Ruso, L.; Lovato, A.

    We have studied the scaling properties of the electromagnetic response functions of 4He and 12C nuclei computed by the Green's function Monte Carlo approach, retaining only the one-body current contribution. Longitudinal and transverse scaling functions have been obtained in the relativistic and nonrelativistic cases and compared to experiment for various kinematics. The characteristic asymmetric shape of the scaling function exhibited by data emerges in the calculations in spite of the nonrelativistic nature of the model. The results are mostly consistent with scaling of zeroth, first, and second kinds. Our analysis reveals a direct correspondence between the scaling and the nucleon-densitymore » response functions. In conclusion, the scaling function obtained from the proton-density response displays scaling of the first kind, even more evidently than the longitudinal and transverse scaling functions« less

  5. Transverse colon volvulus in neurologicaly imparied patient as an emergency surgical condition: A case report.

    PubMed

    Miličković, Maja; Savić, Đorđe; Stanković, Nikola; Vukadin, Miroslav; Božić, Dejana

    2017-01-01

    Transverse colon volvulus is an uncommon cause of bowel obstruction in general. Predisposing factors are mental retardation, dysmotility disorders, chronic constipation and congenital megacolon. We presented transverse colon volvulus in a 16-year-old boy with cerebral palsy. Chronic constipation in neurologicaly impaired patient was a risk factor predisposing to volvulus. The patient was admitted to the hospital with enormous abdominal distension and acute respiratory insufficiency. A boy was emergently taken to the operating room for exploratory laparotomy. During the surgery, a 360º clockwise volvulus of the transverse colon was found. After reduction of volvulus, an enormous transverse colon was resected and colostomy was formed. In the postoperative period, despite the good functioning of stoma and intraabdominal normotension, numerous and long lasting respiratory problems developed. The patient was discharged from our institution after 8 months. Though very rare in pediatric group, the possibility of a transverse colon volvulus must be considered in the differential diagnosis of acute large bowel obstruction.

  6. Study of the time evolution of correlation functions of the transverse Ising chain with ring frustration by perturbative theory

    NASA Astrophysics Data System (ADS)

    Zheng, Zhen-Yu; Li, Peng

    2018-04-01

    We consider the time evolution of two-point correlation function in the transverse-field Ising chain (TFIC) with ring frustration. The time-evolution procedure we investigated is equivalent to a quench process in which the system is initially prepared in a classical kink state and evolves according to the time-dependent Schrödinger equation. Within a framework of perturbative theory (PT) in the strong kink phase, the evolution of the correlation function is disclosed to demonstrate a qualitatively new behavior in contrast to the traditional case without ring frustration.

  7. Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight

    PubMed Central

    2017-01-01

    Slotted wing tips of birds are commonly considered an adaptation to improve soaring performance, despite their presence in species that neither soar nor glide. We used particle image velocimetry to measure the airflow around the slotted wing tip of a jackdaw (Corvus monedula) as well as in its wake during unrestrained flight in a wind tunnel. The separated primary feathers produce individual wakes, confirming a multi-slotted function, in both gliding and flapping flight. The resulting multi-cored wingtip vortex represents a spreading of vorticity, which has previously been suggested as indicative of increased aerodynamic efficiency. Considering benefits of the slotted wing tips that are specific to flapping flight combined with the wide phylogenetic occurrence of this configuration, we propose the hypothesis that slotted wings evolved initially to improve performance in powered flight. PMID:28539482

  8. Plasma Wakefield Acceleration of an Intense Positron Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blue, B

    2004-04-21

    The Plasma Wakefield Accelerator (PWFA) is an advanced accelerator concept which possess a high acceleration gradient and a long interaction length for accelerating both electrons and positrons. Although electron beam-plasma interactions have been extensively studied in connection with the PWFA, very little work has been done with respect to positron beam-plasma interactions. This dissertation addresses three issues relating to a positron beam driven plasma wakefield accelerator. These issues are (a) the suitability of employing a positron drive bunch to excite a wake; (b) the transverse stability of the drive bunch; and (c) the acceleration of positrons by the plasma wakemore » that is driven by a positron bunch. These three issues are explored first through computer simulations and then through experiments. First, a theory is developed on the impulse response of plasma to a short drive beam which is valid for small perturbations to the plasma density. This is followed up with several particle-in-cell (PIC) simulations which study the experimental parameter (bunch length, charge, radius, and plasma density) range. Next, the experimental setup is described with an emphasis on the equipment used to measure the longitudinal energy variations of the positron beam. Then, the transverse dynamics of a positron beam in a plasma are described. Special attention is given to the way focusing, defocusing, and a tilted beam would appear to be energy variations as viewed on our diagnostics. Finally, the energy dynamics imparted on a 730 {micro}m long, 40 {micro}m radius, 28.5 GeV positron beam with 1.2 x 10{sup 10} particles in a 1.4 meter long 0-2 x 10{sup 14} e{sup -}/cm{sup 3} plasma is described. First the energy loss was measured as a function of plasma density and the measurements are compared to theory. Then, an energy gain of 79 {+-} 15 MeV is shown. This is the first demonstration of energy gain of a positron beam in a plasma and it is in good agreement with the predictions made by the 3-D PIC code. The work presented in this dissertation will show that plasma wakefield accelerators are an attractive technology for future particle accelerators.« less

  9. Resolution of Transverse Electron Beam Measurements using Optical Transition Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ischebeck, Rasmus; Decker, Franz-Josef; Hogan, Mark

    2005-06-22

    In the plasma wakefield acceleration experiment E-167, optical transition radiation is used to measure the transverse profile of the electron bunches before and after the plasma acceleration. The distribution of the electric field from a single electron does not give a point-like distribution on the detector, but has a certain extension. Additionally, the resolution of the imaging system is affected by aberrations. The transverse profile of the bunch is thus convolved with a point spread function (PSF). Algorithms that deconvolve the image can help to improve the resolution. Imaged test patterns are used to determine the modulation transfer function ofmore » the lens. From this, the PSF can be reconstructed. The Lucy-Richardson algorithm is used to deconvolute this PSF from test images.« less

  10. Substance P promotes sleep in the ventrolateral preoptic area of rats.

    PubMed

    Zhang, Gongliang; Wang, Liecheng; Liu, Huan; Zhang, Jingxing

    2004-12-03

    Substance P (SP) has been characterized as an excitatory neurotransmitter and/or neuromodulator in the peripheral and central nervous systems. It is involved in mediating various biological functions such as smooth muscle contraction, neuronal excitation, and pain transmission. Although Lieb et al. reported that intravenous infusion of SP into healthy men led to an increase of paradoxical sleep latency and time awake, little is known about the function and target of SP on sleep-wakefulness cycle in the central nervous system. The ventrolateral preoptic area (vLPO) plays an important role in modulation of sleep-wakefulness cycle. The present study investigated the effect of SP on sleep-wakefulness cycle in the vLPO of rats. Slow wave sleep (SWS) was enhanced after SP was microinjected into bilateral vLPO, while SP receptor antagonist, N-acetyl-l-tryptophan 3,5-bis(trifluoromethyl)-benzyl ester, led to the opposite effect. The effect induced by SP was blocked by U73122, a phospholipase C inhibitor. In addition, 3-mercaptopropionic acid, a glutamic acid decarboxylase inhibitor that inhibits gamma-aminobutyric acid (GABA) synthesis and release, blocked the SP-induced sleep-promoting effect in the vLPO. These results indicate that SP has sleep-promoting effect in the vLPO possibly by GABAergic neurons.

  11. Napping to renew learning capacity: enhanced encoding after stimulation of sleep slow oscillations.

    PubMed

    Antonenko, Daria; Diekelmann, Susanne; Olsen, Cathrin; Born, Jan; Mölle, Matthias

    2013-04-01

    As well as consolidating memory, sleep has been proposed to serve a second important function for memory, i.e. to free capacities for the learning of new information during succeeding wakefulness. The slow wave activity (SWA) that is a hallmark of slow wave sleep could be involved in both functions. Here, we aimed to demonstrate a causative role for SWA in enhancing the capacity for encoding of information during subsequent wakefulness, using transcranial slow oscillation stimulation (tSOS) oscillating at 0.75 Hz to induce SWA in healthy humans during an afternoon nap. Encoding following the nap was tested for hippocampus-dependent declarative materials (pictures, word pairs, and word lists) and procedural skills (finger sequence tapping). As compared with a sham stimulation control condition, tSOS during the nap enhanced SWA and significantly improved subsequent encoding on all three declarative tasks (picture recognition, cued recall of word pairs, and free recall of word lists), whereas procedural finger sequence tapping skill was not affected. Our results indicate that sleep SWA enhances the capacity for encoding of declarative materials, possibly by down-scaling hippocampal synaptic networks that were potentiated towards saturation during the preceding period of wakefulness. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  12. Jeans instability of rotating magnetized quantum plasma: Influence of radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, H., E-mail: hjoshi8525@yahoo.com; Pensia, R. K.

    2015-07-31

    The effect of radiative heat-loss function and rotation on the Jeans instability of quantum plasma is investigated. The basic set of equations for this problem is constructed by considering quantum magnetohydrodynamic (QMHD) model. Using normal mode analysis, the general dispersion relation is obtained. This dispersion relation is studied in both, longitudinal and transverse direction of propagations. In both case of longitudinal and transverse direction of propagation, the Jeans instability criterion is modified due to presence of radiative heat-loss function and quantum correction.

  13. Working under daylight intensity lamp: an occupational risk for developing circadian rhythm sleep disorder?

    PubMed

    Doljansky, J T; Kannety, H; Dagan, Y

    2005-01-01

    A 47-yr-old male was admitted to the Institute for Fatigue and Sleep Medicine complaining of severe fatigue and daytime sleepiness. His medical history included diagnosis of depression and chronic fatigue syndrome. Antidepressant drugs failed to improve his condition. He described a gradual evolvement of an irregular sleep-wake pattern within the past 20 yrs, causing marked distress and severe impairment of daily functioning. He had to change to a part-time position 7 yrs ago, because he was unable to maintain a regular full-time job schedule. A 10-day actigraphic record revealed an irregular sleep-wake pattern with extensive day-to-day variability in sleep onset time and sleep duration, and a 36 h sampling of both melatonin level and oral temperature (12 samples, once every 3 h) showed abnormal patterns, with the melatonin peak around noon and oral temperature peak around dawn. Thus, the patient was diagnosed as suffering from irregular sleep-wake pattern. Treatment with melatonin (5 mg, 2 h before bedtime) did not improve his condition. A further investigation of the patient's daily habits and environmental conditions revealed two important facts. First, his occupation required work under a daylight intensity lamp (professional diamond-grading equipment of more than 8000 lux), and second, since the patient tended to work late, the exposure to bright light occurred mostly at night. To recover his circadian rhythmicity and stabilize his sleep-wake pattern, we recommended combined treatment consisting of evening melatonin ingestion combined with morning (09:00 h) bright light therapy (0800 lux for 1 h) plus the avoidance of bright light in the evening. Another 10-day actigraphic study done only 1 wk after initiating the combined treatment protocol revealed stabilization of the sleep-wake pattern with advancement of sleep phase. In addition, the patient reported profound improvement in maintaining wakefulness during the day. This case study shows that chronic exposure to bright light at the wrong biological time, during the nighttime, may have serious effects on the circadian sleep-wake patterns and circadian time structure. Therefore, night bright light exposure must be considered to be a risk factor of previously unrecognized occupational diseases of altered circadian time structure manifested as irregularity of the 24 h sleep-wake cycle and melancholy.

  14. Spin asymmetries for vector boson production in polarized p + p collisions

    DOE PAGES

    Huang, Jin; Kang, Zhong-Bo; Vitev, Ivan; ...

    2016-01-28

    We study the cross section for vector boson (W ±/Z 0/γ more » $$\\star$$) production in polarized nucleon-nucleon collisions for low transverse momentum of the observed vector boson. For the case where one measures the transverse momentum and azimuthal angle of the vector bosons, we present the cross sections and the associated spin asymmetries in terms of transverse momentum dependent parton distribution functions (TMDs) at tree level within the TMD factorization formalism. To assess the feasibility of experimental measurements, we estimate the spin asymmetries forW ±/Z 0 boson production in polarized proton-proton collisions at the Relativistic Heavy Ion Collider by using current knowledge of the relevant TMDs. Here, we find that some of these asymmetries can be sizable if the suppression effect from TMD evolution is not too strong. The W program at RHIC can, thus, test and constrain spin theory by providing unique information on the universality properties of TMDs, TMD evolution, and the nucleon structure. For example, the single transverse spin asymmetries could be used to probe the well-known Sivers function f$$⊥q\\atop{1T}$$, as well as the transversal helicity distribution g$$q\\atop{1T}$$ via the parity-violating nature of W production.« less

  15. Dreaming as mind wandering: evidence from functional neuroimaging and first-person content reports.

    PubMed

    Fox, Kieran C R; Nijeboer, Savannah; Solomonova, Elizaveta; Domhoff, G William; Christoff, Kalina

    2013-01-01

    Isolated reports have long suggested a similarity in content and thought processes across mind wandering (MW) during waking, and dream mentation during sleep. This overlap has encouraged speculation that both "daydreaming" and dreaming may engage similar brain mechanisms. To explore this possibility, we systematically examined published first-person experiential reports of MW and dreaming and found many similarities: in both states, content is largely audiovisual and emotional, follows loose narratives tinged with fantasy, is strongly related to current concerns, draws on long-term memory, and simulates social interactions. Both states are also characterized by a relative lack of meta-awareness. To relate first-person reports to neural evidence, we compared meta-analytic data from numerous functional neuroimaging (PET, fMRI) studies of the default mode network (DMN, with high chances of MW) and rapid eye movement (REM) sleep (with high chances of dreaming). Our findings show large overlaps in activation patterns of cortical regions: similar to MW/DMN activity, dreaming and REM sleep activate regions implicated in self-referential thought and memory, including medial prefrontal cortex (PFC), medial temporal lobe structures, and posterior cingulate. Conversely, in REM sleep numerous PFC executive regions are deactivated, even beyond levels seen during waking MW. We argue that dreaming can be understood as an "intensified" version of waking MW: though the two share many similarities, dreams tend to be longer, more visual and immersive, and to more strongly recruit numerous key hubs of the DMN. Further, whereas MW recruits fewer PFC regions than goal-directed thought, dreaming appears to be characterized by an even deeper quiescence of PFC regions involved in cognitive control and metacognition, with a corresponding lack of insight and meta-awareness. We suggest, then, that dreaming amplifies the same features that distinguish MW from goal-directed waking thought.

  16. Self-organized dynamical complexity in human wakefulness and sleep: different critical brain-activity feedback for conscious and unconscious states.

    PubMed

    Allegrini, Paolo; Paradisi, Paolo; Menicucci, Danilo; Laurino, Marco; Piarulli, Andrea; Gemignani, Angelo

    2015-09-01

    Criticality reportedly describes brain dynamics. The main critical feature is the presence of scale-free neural avalanches, whose auto-organization is determined by a critical branching ratio of neural-excitation spreading. Other features, directly associated to second-order phase transitions, are: (i) scale-free-network topology of functional connectivity, stemming from suprathreshold pairwise correlations, superimposable, in waking brain activity, with that of ferromagnets at Curie temperature; (ii) temporal long-range memory associated to renewal intermittency driven by abrupt fluctuations in the order parameters, detectable in human brain via spatially distributed phase or amplitude changes in EEG activity. Herein we study intermittent events, extracted from 29 night EEG recordings, including presleep wakefulness and all phases of sleep, where different levels of mentation and consciousness are present. We show that while critical avalanching is unchanged, at least qualitatively, intermittency and functional connectivity, present during conscious phases (wakefulness and REM sleep), break down during both shallow and deep non-REM sleep. We provide a theory for fragmentation-induced intermittency breakdown and suggest that the main difference between conscious and unconscious states resides in the backwards causation, namely on the constraints that the emerging properties at large scale induce to the lower scales. In particular, while in conscious states this backwards causation induces a critical slowing down, preserving spatiotemporal correlations, in dreamless sleep we see a self-organized maintenance of moduli working in parallel. Critical avalanches are still present, and establish transient auto-organization, whose enhanced fluctuations are able to trigger sleep-protecting mechanisms that reinstate parallel activity. The plausible role of critical avalanches in dreamless sleep is to provide a rapid recovery of consciousness, if stimuli are highly arousing.

  17. Self-organized dynamical complexity in human wakefulness and sleep: Different critical brain-activity feedback for conscious and unconscious states

    NASA Astrophysics Data System (ADS)

    Allegrini, Paolo; Paradisi, Paolo; Menicucci, Danilo; Laurino, Marco; Piarulli, Andrea; Gemignani, Angelo

    2015-09-01

    Criticality reportedly describes brain dynamics. The main critical feature is the presence of scale-free neural avalanches, whose auto-organization is determined by a critical branching ratio of neural-excitation spreading. Other features, directly associated to second-order phase transitions, are: (i) scale-free-network topology of functional connectivity, stemming from suprathreshold pairwise correlations, superimposable, in waking brain activity, with that of ferromagnets at Curie temperature; (ii) temporal long-range memory associated to renewal intermittency driven by abrupt fluctuations in the order parameters, detectable in human brain via spatially distributed phase or amplitude changes in EEG activity. Herein we study intermittent events, extracted from 29 night EEG recordings, including presleep wakefulness and all phases of sleep, where different levels of mentation and consciousness are present. We show that while critical avalanching is unchanged, at least qualitatively, intermittency and functional connectivity, present during conscious phases (wakefulness and REM sleep), break down during both shallow and deep non-REM sleep. We provide a theory for fragmentation-induced intermittency breakdown and suggest that the main difference between conscious and unconscious states resides in the backwards causation, namely on the constraints that the emerging properties at large scale induce to the lower scales. In particular, while in conscious states this backwards causation induces a critical slowing down, preserving spatiotemporal correlations, in dreamless sleep we see a self-organized maintenance of moduli working in parallel. Critical avalanches are still present, and establish transient auto-organization, whose enhanced fluctuations are able to trigger sleep-protecting mechanisms that reinstate parallel activity. The plausible role of critical avalanches in dreamless sleep is to provide a rapid recovery of consciousness, if stimuli are highly arousing.

  18. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP FUTURE TRANSVERSITY MEASUREMENTS (VOLUME 29).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boer, D.; Grosse Perdekamp, M.

    2001-01-02

    The RIKEN-BNL Research Center workshop on ''Future Transversity Measurements'' was held at BNL from September 18-20, 2000. The main goal of the workshop was to explore future measurements of transversity distributions. This issue is of importance to the RHIC experiments, which will study polarized proton-proton collisions with great precision. One of the workshop's goals was to enhance interactions between the DIS community at HERA and the spin community at RHIC in this field. The workshop has been well received by the participants; the number of 69 registered participants demonstrates broad interest in the workshop's topics. The program contained 35 talksmore » and there was ample time for lively discussions. The program covered all recent work in the field and in addition some very elucidating educational talks were given. At the workshop the present status of the field was discussed and it has succeeded in stimulating new experimental and theoretical studies (e.g. model calculations for interference fragmentation functions (IFF), IFF analysis at DELPHI). It also functioned to focus attention on the open questions that need to be resolved for near future experiments. In general, the conclusions were optimistic, i.e. measuring the transversity functions seems to be possible, although some new experimental hurdles will have to be taken.« less

  19. Excitation of wakefields in a relativistically hot plasma created by dying non-linear plasma wakefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahai, A. A.; Katsouleas, T. C.; Gessner, S.

    2012-12-21

    We study the various physical processes and their timescales involved in the excitation of wakefields in relativistically hot plasma. This has relevance to the design of a high repetition-rate plasma wakefield collider in which the plasma has not had time to cool between bunches in addition to understanding the physics of cosmic jets in relativistically hot astrophysical plasmas. When the plasma is relativistically hot (plasma temperature near m{sub e}c{sup 2}), the thermal pressure competes with the restoring force of ion space charge and can reduce or even eliminate the accelerating field of a wake. We will investigate explicitly the casemore » where the hot plasma is created by a preceding Wakefield drive bunch 10's of picoseconds to many nanoseconds ahead of the next drive bunch. The relativistically hot plasma is created when the excess energy (not coupled to the driven e{sup -} bunch) in the wake driven by the drive e{sup -} bunch is eventually converted into thermal energy on 10's of picosecond timescale. We will investigate the thermalization and diffusion processes of this non-equilibrium plasma on longer time scales, including the effects of ambi-polar diffusion of ions driven by hot electron expansion, possible Columbic explosion of ions producing higher ionization states and ionization of surrounding neutral atoms via collisions with hot electrons. Preliminary results of the transverse and longitudinal wakefields at different timescales of separation between a first and second bunch are presented and a possible experiment to study this topic at the FACET facility is described.« less

  20. Transverse momentum dependent fragmenting jet functions with applications to quarkonium production

    DOE PAGES

    Bain, Reggie; Makris, Yiannis; Mehen, Thomas

    2016-11-23

    We introduce the transverse momentum dependent fragmenting jet function (TMDFJF), which appears in factorization theorems for cross sections for jets with an identified hadron. These are functions of z, the hadron’s longitudinal momentum fraction, and transverse momentum, p ⊥, relative to the jet axis. In the framework of Soft-Collinear Effective Theory (SCET) we derive the TMDFJF from both a factorized SCET cross section and the TMD fragmentation function defined in the literature. The TMDFJFs are factorized into distinct collinear and soft-collinear modes by matching onto SCET +. As TMD calculations contain rapidity divergences, both the renormalization group (RG) and rapiditymore » renormalization group (RRG) must be used to provide resummed calculations with next-to-leading-logarithm prime (NLL’) accuracy. We apply our formalism to the production of J/ψ within jets initiated by gluons. In this case the TMDFJF can be calculated in terms of NRQCD (Non-relativistic quantum chromodynamics) fragmentation functions. We find that when the J/ψ carries a significant fraction of the jet energy, the p T and z distributions differ for different NRQCD production mechanisms. Another observable with discriminating power is the average angle that the J/ψ makes with the jet axis.« less

  1. Coalescing Wind Turbine Wakes

    DOE PAGES

    Lee, S.; Churchfield, M.; Sirnivas, S.; ...

    2015-06-18

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the globalmore » meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a "triplet" structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. In conclusion, the turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions« less

  2. The Efficacy of Transverse Fixation and Early Exercise in the Treatment of Fourth Metacarpal Bone Fractures

    PubMed Central

    Moon, Suk-Ho; Kim, Hak-Soo; Jung, Sung-No

    2016-01-01

    Background Several techniques have been designed to treat fifth metacarpal fractures reported to be effective. However, these methods cannot be easily applied to the fourth metacarpal due to its central anatomical position. In this study, we sought to analyze the functional outcomes of patients who underwent transverse pinning for a fourth metacarpal bone fracture. Methods A total of 21 patients were selected and their charts were retrospectively reviewed. After fracture reduction, two transverse Kirchner wires were first inserted from the fifth metacarpal to the third metacarpal transversely at the distal part of the fractured bone, and then another two wires were inserted at the proximal part of the fractured bone. The splint was removed approximately one week postoperatively and the Kirchner wires were removed four to five weeks postoperatively. Patients started active and passive exercise one week after the operation. Pain visual analog scores, total active and passive motion, and the active and passive range of motion of the metacarpophalangeal joint and grip strength were evaluated. Results Dorsal angulation improved from a preoperative value of 44.2° to a postoperative value of 5.9°. Six weeks after surgery, functional recovery parameters, such as range of motion and grip strength, had improved to 98% of the function of the normal side. No major complication was observed. Conclusions We suggest that the transverse pinning of fourth metacarpal bone fractures is an effective treatment option that is less invasive than other procedures, easy to perform, requires no secondary surgery, minimizes joint and soft tissue injury, and allows early mobilization. PMID:27019812

  3. Combined effects of body position and sleep status on the cardiorespiratory stability of near-term infants.

    PubMed

    Oishi, Yoshihisa; Ohta, Hidenobu; Hirose, Takako; Nakaya, Sachiko; Tsuchiya, Keiji; Nakagawa, Machiko; Kusakawa, Isao; Sato, Toshihiro; Obonai, Toshimasa; Nishida, Hiroshi; Yoda, Hitoshi

    2018-06-11

    The purpose of this study was to determine the effects of body position (prone, supine and lateral) together with sleep status (wake and sleep) on the cardiorespiratory stability of near-term infants. A total of 53 infants (gestational age at birth 33.2 ± 3.5 weeks; birth weight 1,682 ± 521 g; gestational age at recording 38.6 ± 2.1 weeks; weight at recording: 2,273 ± 393 g) were monitored for 24 hours for clinically significant apnea (>15 seconds), bradycardia (<100 bpm), and oxygen desaturation (SpO 2  < 90%) in alternating body positions (prone, supine and lateral) by cardiorespiratory monitors and 3-orthogonal-axis accelerometers. Sleep status of the infants was also continuously monitored by actigraphs. No apnea was observed. During wake, severe bradycardia was most frequently observed in the lateral position while, during sleep, severe bradycardia was most frequently observed in the supine position. Desaturation was most frequently observed in the supine and lateral positions during both wake and sleep. Our study suggests that the cardiorespiratory stability of infants is significantly compromised by both body position and sleep status. During both wake and sleep, prone position induces the most stable cardiorespiratory functions of near-term infants.

  4. Modafinil for Clozapine-Treated Schizophrenia Patients: A Double-Blind, Placebo-Controlled Pilot Trial

    PubMed Central

    Freudenreich, Oliver; Henderson, David C.; Macklin, Eric A.; Evins, A. Eden; Fan, Xiaoduo; Cather, Cori; Walsh, Jared P.; Goff, Donald C.

    2016-01-01

    Background Patients with schizophrenia often suffer from cognitive deficits and negative symptoms that are poorly responsive to antipsychotics including clozapine. Clozapine-induced sedation can worsen cognition and impair social and occupational functioning. Objectives To evaluate the efficacy, tolerability, and safety of modafinil for negative symptoms, cognition, and wakefulness/fatigue in DSM-IV–diagnosed schizophrenia patients treated with clozapine. Method A double-blind, placebo-controlled, flexible-dosed 8-week pilot trial was conducted between September 2003 and September 2007, adding modafinil up to 300 mg/d to stabilized schizophrenia outpatients receiving clozapine. Psychopathology, cognition, and wakefulness/fatigue were assessed with standard rating scales. Results Thirty-five patients were randomly assigned to treatment with study drug and included in the analysis. Modafinil did not reduce negative symptoms or wakefulness/fatigue or improve cognition compared to placebo. Modafinil was well tolerated and did not worsen psychosis. Conclusions Results of this pilot trial do not support routine use of modafinil to treat negative symptoms, cognitive deficits, or wakefulness/fatigue in patients on clozapine. However, given our limited power to detect a treatment effect and the clear possibility of a type II error, larger trials are needed to resolve or refute a potential therapeutic effect of uncertain magnitude. Trial Registration clinicaltrials.gov Identifier: NCT00573417 PMID:19689921

  5. Wind tunnel measurements of the dilution of tailpipe emissions downstream of a car, a light-duty truck, and a heavy-duty truck tractor head.

    PubMed

    Chang, Victor W C; Hildemann, Lynn M; Chang, Cheng-hisn

    2009-06-01

    The particle and gaseous pollutants in vehicle exhaust emissions undergo rapid dilution with ambient air after exiting the tailpipe. The rate and extent of this dilution can greatly affect both the size evolution of primary exhaust particles and the potential for formation of ultrafine particles. Dilution ratios were measured inside of a wind tunnel in the region immediately downstream of the tailpipe using model vehicles (approximately one-fifth to one-seventh scale models) representing a light-duty truck, a passenger car, and a heavy-duty tractor head (without the trailer). A tracer gas (ethene) was released at a measured flow rate from the tailpipe, and 60 sampling probes placed downstream of the vehicle simultaneously sampled gas tracer concentrations in the near-wake (first few vehicle heights) and far-wake regions (beyond 10 vehicle heights). Tests using different tunnel wind speeds show the range of dilution ratios that can be expected as a function of vehicle type and downstream distance (i.e., time). The vehicle shape quite strongly influences dilution profiles in the near-wake region but is much less important in the far-wake region. The tractor generally produces higher dilution rates than the automobile and light-duty truck under comparable conditions.

  6. High-frequency oscillations in human and monkey neocortex during the wake-sleep cycle.

    PubMed

    Le Van Quyen, Michel; Muller, Lyle E; Telenczuk, Bartosz; Halgren, Eric; Cash, Sydney; Hatsopoulos, Nicholas G; Dehghani, Nima; Destexhe, Alain

    2016-08-16

    Beta (β)- and gamma (γ)-oscillations are present in different cortical areas and are thought to be inhibition-driven, but it is not known if these properties also apply to γ-oscillations in humans. Here, we analyze such oscillations in high-density microelectrode array recordings in human and monkey during the wake-sleep cycle. In these recordings, units were classified as excitatory and inhibitory cells. We find that γ-oscillations in human and β-oscillations in monkey are characterized by a strong implication of inhibitory neurons, both in terms of their firing rate and their phasic firing with the oscillation cycle. The β- and γ-waves systematically propagate across the array, with similar velocities, during both wake and sleep. However, only in slow-wave sleep (SWS) β- and γ-oscillations are associated with highly coherent and functional interactions across several millimeters of the neocortex. This interaction is specifically pronounced between inhibitory cells. These results suggest that inhibitory cells are dominantly involved in the genesis of β- and γ-oscillations, as well as in the organization of their large-scale coherence in the awake and sleeping brain. The highest oscillation coherence found during SWS suggests that fast oscillations implement a highly coherent reactivation of wake patterns that may support memory consolidation during SWS.

  7. The Transition from Thick to Thin Plate Wake Physics: Whither Vortex Shedding?

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2016-01-01

    The near and very near wake of a flat plate with a circular trailing edge is investigated with data from direct numerical simulations. Computations were performed for six different combinations of the Reynolds numbers based on plate thickness (D) and boundary layer momentum thickness upstream of the trailing edge (theta). Unlike the case of the cylinder, these Reynolds numbers are independent parameters for the flat plate. The separating boundary layers are turbulent in all the cases investigated. One objective of the study is to understand the changes in the wake vortex shedding process as the plate thickness is reduced (increasing theta/D). The value of D varies by a factor of 16 and that of theta by approximately 5 in the computations. Vortex shedding is vigorous in the low theta/D cases with a substantial decrease in shedding intensity in the large theta/D cases. Other shedding characteristics are also significantly altered with increasing theta/D. A visualization of the shedding process in the different cases is provided and discussed. The basic shedding mechanism is explored in depth. The effect of changing theta/D on the time-averaged, near-wake velocity statistics is also discussed. A functional relationship between the shedding frequency and the Reynolds numbers mentioned above is obtained.

  8. Accessing the nucleon transverse structure in inclusive deep inelastic scattering

    DOE PAGES

    Accardi, Alberto; Bacchetta, Alessandro

    2017-09-06

    Here, we revisit the standard analysis of inclusive Deep Inelastic Scattering off nucleons taking into account the fact that on-shell quarks cannot be present in the final state, but they rather decay into hadrons - a process that can be described in terms of suitable "jet" correlators. As a consequence, a spin-flip term associated with the invariant mass of the produced hadrons is generated non perturbatively and couples to the target's transversity distribution function. In inclusive cross sections, this provides an hitherto neglected and large contribution to the twist-3 part of the g 2 structure function, that can explain themore » discrepancy between recent calculations and fits of this quantity. It also provides an extension of the Burkhardt-Cottingham sum rule, putting constraints on the small-x behavior of the transversity function, as well as an extension of the Efremov-Teryaev-Leader sum rule, suggesting a novel way to measure the tensor charge of the proton.« less

  9. Freeze-out dynamics via charged kaon femtoscopy in sNN=200 GeV central Au + Au collisions

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E.; Averichev, G. S.; Balewski, J.; Banerjee, A.; Barnovska, Z.; Beavis, D. R.; Bellwied, R.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bhattarai; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bruna, E.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chung, P.; Chwastowski, J.; Codrington, M. J. M.; Corliss, R.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks; Ding, F.; Dion, A.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elnimr, M.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Fersch, R. G.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Gliske, S.; Grebenyuk, O. G.; Grosnick, D.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hajkova, O.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Hays-Wehle, J. P.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jena, C.; Judd, E. G.; Kabana, S.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Kikola, D. P.; Kiryluk, J.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Korsch, W.; Kotchenda, L.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lima, L. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Mioduszewski, S.; Mitrovski, M. K.; Mohammed, Y.; Mohanty, B.; Mondal, M. M.; Munhoz, M. G.; Mustafa, M. K.; Naglis, M.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nogach, L. V.; Novak, J.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Oliveira, R. A. N.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Plyku, D.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Powell, C. B.; Pruneau, C.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, B.; Schmitz, N.; Schuster, T. R.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shao, M.; Sharma, B.; Sharma, M.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; deSouza, U. G.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szanto de Toledo, A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Q.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, N.; Xu, Q. H.; Xu, W.; Xu, Y.; Xu, Z.; Yan; Yang, C.; Yang, Y.; Yang, Y.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.

    2013-09-01

    We present measurements of three-dimensional correlation functions of like-sign, low-transverse-momentum kaon pairs from sNN=200 GeV Au+Au collisions. A Cartesian surface-spherical harmonic decomposition technique was used to extract the kaon source function. The latter was found to have a three-dimensional Gaussian shape and can be adequately reproduced by Therminator event-generator simulations with resonance contributions taken into account. Compared to the pion one, the kaon source function is generally narrower and does not have the long tail along the pair transverse momentum direction. The kaon Gaussian radii display a monotonic decrease with increasing transverse mass mT over the interval of 0.55≤mT≤1.15 GeV/c2. While the kaon radii are adequately described by the mT -scaling in the outward and sideward directions, in the longitudinal direction the lowest mT value exceeds the expectations from a pure hydrodynamical model prediction.

  10. Transverse momentum dependent two-pion Bose-Einstein correlations in Au + Au collisions at 11.6 A (center-dot) GeV/c

    NASA Technical Reports Server (NTRS)

    Lee, J. H.

    1998-01-01

    Bose-Einstein correlations of (pi)(sup +)(pi)(sup +) and (pi)(sup -) (pi)(sup -) pairs collected by the BNL-E866 Forward Spectrometer in 11.6 A(center-dot)GeV/c Au + Au collisions have been measured. The data were analyzed using three-dimensional correlation functions parameterized by the Yano-Koonin-Potgoretskii and Bertsch-Pratt formalism to study transverse momentum dependent source parameters. Rapid decreases of longitudinal source radii and slower decreases in the transverse parameters with increasing transverse momentum were observed, which suggests a strong longitudinal and some transverse expansion. A freeze-out time (tau)(sub 0) was derived as 4.5--5 fm/c, under the assumption of the freeze-out temperature T = 130 MeV, and the duration of emission was found to be (delta)(tau) (approx) 2--4 fm/c.

  11. Nonextensive statistics and skin depth of transverse wave in collisional plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashemzadeh, M., E-mail: hashemzade@gmail.com

    Skin depth of transverse wave in a collisional plasma is studied taking into account the nonextensive electron distribution function. Considering the kinetic theory for charge particles and using the Bhatnagar-Gross-Krook collision model, a generalized transverse dielectric permittivity is obtained. The transverse dispersion relation in different frequency ranges is investigated. Obtaining the imaginary part of the wave vector from the dispersion relation, the skin depth for these frequency ranges is also achieved. Profiles of the skin depth show that by increasing the q parameter, the penetration depth decreases. In addition, the skin depth increases by increasing the electron temperature. Finally, itmore » is found that in the high frequency range and high electron temperature, the penetration depth decreases by increasing the collision frequency. In contrast, by increasing the collision frequency in a highly collisional frequency range, the skin depth of transverse wave increases.« less

  12. On the Effects of Wind Turbine Wake Skew Caused by Wind Veer: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, Matthew J; Sirnivas, Senu

    Because of Coriolis forces caused by the Earth's rotation, the structure of the atmospheric boundary layer often contains wind-direction change with height, also known as wind-direction veer. Under low turbulence conditions, such as in stably stratified atmospheric conditions, this veer can be significant, even across the vertical extent of a wind turbine's rotor disk. The veer then causes the wind turbine wake to skew as it advects downstream. This wake skew has been observed both experimentally and numerically. In this work, we attempt to examine the wake skewing process in some detail, and quantify how differently a skewed wake versusmore » a non skewed wake affects a downstream turbine. We do this by performing atmospheric large-eddy simulations to create turbulent inflow winds with and without veer. In the veer case, there is a roughly 8 degree wind direction change across the turbine rotor. We then perform subsequent large-eddy simulations using these inflow data with an actuator line rotor model to create wakes. The turbine modeled is a large, modern, offshore, multimegawatt turbine. We examine the unsteady wake data in detail and show that the skewed wake recovers faster than the non skewed wake. We also show that the wake deficit does not skew to the same degree that a passive tracer would if subject to veered inflow. Last, we use the wake data to place a hypothetical turbine 9 rotor diameters downstream by running aeroelastic simulations with the simulated wake data. We see differences in power and loads if this downstream turbine is subject to a skewed or non skewed wake. We feel that the differences observed between the skewed and nonskewed wake are important enough that the skewing effect should be included in engineering wake models.« less

  13. On the Effects of Wind Turbine Wake Skew Caused by Wind Veer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, Matthew J; Sirnivas, Senu

    Because of Coriolis forces caused by the Earth's rotation, the structure of the atmospheric boundary layer often contains wind-direction change with height, also known as wind-direction veer. Under low turbulence conditions, such as in stably stratified atmospheric conditions, this veer can be significant, even across the vertical extent of a wind turbine's rotor disk. The veer then causes the wind turbine wake to skew as it advects downstream. This wake skew has been observed both experimentally and numerically. In this work, we attempt to examine the wake skewing process in some detail, and quantify how differently a skewed wake versusmore » a non skewed wake affects a downstream turbine. We do this by performing atmospheric large-eddy simulations to create turbulent inflow winds with and without veer. In the veer case, there is a roughly 8 degree wind direction change across the turbine rotor. We then perform subsequent large-eddy simulations using these inflow data with an actuator line rotor model to create wakes. The turbine modeled is a large, modern, offshore, multimegawatt turbine. We examine the unsteady wake data in detail and show that the skewed wake recovers faster than the non skewed wake. We also show that the wake deficit does not skew to the same degree that a passive tracer would if subject to veered inflow. Last, we use the wake data to place a hypothetical turbine 9 rotor diameters downstream by running aeroelastic simulations with the simulated wake data. We see differences in power and loads if this downstream turbine is subject to a skewed or non skewed wake. We feel that the differences observed between the skewed and nonskewed wake are important enough that the skewing effect should be included in engineering wake models.« less

  14. Chronomics of pressure overload-induced cardiac hypertrophy in mice reveals altered day/night gene expression and biomarkers of heart disease.

    PubMed

    Tsimakouridze, Elena V; Straume, Marty; Podobed, Peter S; Chin, Heather; LaMarre, Jonathan; Johnson, Ron; Antenos, Monica; Kirby, Gordon M; Mackay, Allison; Huether, Patsy; Simpson, Jeremy A; Sole, Michael; Gadal, Gerard; Martino, Tami A

    2012-08-01

    There is critical demand in contemporary medicine for gene expression markers in all areas of human disease, for early detection of disease, classification, prognosis, and response to therapy. The integrity of circadian gene expression underlies cardiovascular health and disease; however time-of-day profiling in heart disease has never been examined. We hypothesized that a time-of-day chronomic approach using samples collected across 24-h cycles and analyzed by microarrays and bioinformatics advances contemporary approaches, because it includes sleep-time and/or wake-time molecular responses. As proof of concept, we demonstrate the value of this approach in cardiovascular disease using a murine Transverse Aortic Constriction (TAC) model of pressure overload-induced cardiac hypertrophy in mice. First, microarrays and a novel algorithm termed DeltaGene were used to identify time-of-day differences in gene expression in cardiac hypertrophy 8 wks post-TAC. The top 300 candidates were further analyzed using knowledge-based platforms, paring the list to 20 candidates, which were then validated by real-time polymerase chain reaction (RTPCR). Next, we tested whether the time-of-day gene expression profiles could be indicative of disease progression by comparing the 1- vs. 8-wk TAC. Lastly, since protein expression is functionally relevant, we monitored time-of-day cycling for the analogous cardiac proteins. This approach is generally applicable and can lead to new understanding of disease.

  15. Simulation of wind turbine wakes using the actuator line technique

    PubMed Central

    Sørensen, Jens N.; Mikkelsen, Robert F.; Henningson, Dan S.; Ivanell, Stefan; Sarmast, Sasan; Andersen, Søren J.

    2015-01-01

    The actuator line technique was introduced as a numerical tool to be employed in combination with large eddy simulations to enable the study of wakes and wake interaction in wind farms. The technique is today largely used for studying basic features of wakes as well as for making performance predictions of wind farms. In this paper, we give a short introduction to the wake problem and the actuator line methodology and present a study in which the technique is employed to determine the near-wake properties of wind turbines. The presented results include a comparison of experimental results of the wake characteristics of the flow around a three-bladed model wind turbine, the development of a simple analytical formula for determining the near-wake length behind a wind turbine and a detailed investigation of wake structures based on proper orthogonal decomposition analysis of numerically generated snapshots of the wake. PMID:25583862

  16. Transverse optic-like modes in binary liquids

    NASA Astrophysics Data System (ADS)

    Bryk, Taras; Mryglod, Ihor

    1999-10-01

    Generalized collective mode approach and MD simulations are applied for the study of transverse dynamics in a LJ fluid KrAr and a liquid alloy Mg 70Zn 30. The optic-like excitations, caused by the mass-concentration fluctuations, are found in both mixtures considered. Mode contributions into the total spectral function are investigated.

  17. Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs

    NASA Astrophysics Data System (ADS)

    Inoue, Shunya; Kashino, Junichi; Matsutani, Akihiro; Ohtsuki, Hideo; Miyashita, Takahiro; Koyama, Fumio

    2014-09-01

    We report on the design and fabrication of a highly angular dependent high contrast grating (HCG) mirror. The modeling and experiment on amorphous-Si/SiO2 HCG clearly show the large angular dependence of reflectivity, which enables single transverse-mode operations of large-area VCSELs. We fabricate 980 nm VCSELs with the angular dependent HCG functioning as a spatial frequency filter. We obtained the single transverse mode operation of the fabricated device in contrast to conventional VCSELs with semiconductor multilayer mirrors.

  18. Giant transversal particle diffusion in a longitudinal magnetic ratchet.

    PubMed

    Tierno, Pietro; Reimann, Peter; Johansen, Tom H; Sagués, Francesc

    2010-12-03

    We study the transversal motion of paramagnetic particles on a uniaxial garnet film, exhibiting a longitudinal ratchet effect in the presence of an oscillating magnetic field. Without the field, the thermal diffusion coefficient obtained by video microscopy is D(0) ≈ 3 × 10(-4)  μm2/s. With the field, the transversal diffusion exhibits a giant enhancement by almost four decades and a pronounced maximum as a function of the driving frequency. We explain the experimental findings with a theoretical interpretation in terms of random disorder effects within the magnetic film.

  19. Adolescent Sleep and the Impact of Technology Use Before Sleep on Daytime Function

    PubMed Central

    Johansson, Ann E. E.; Petrisko, Maria A.; Chasens, Eileen R.

    2016-01-01

    Purpose Technology has become pervasive in our culture, particularly among adolescents. The purpose of this study is to examine associations between use of technology before sleep and daytime function in adolescents. Design and Methods This study is a secondary analysis of respondents aged 13 to 21 years (N= 259) from the 2011 National Sleep Foundation’s Sleep in America Poll. The survey included questions on demographics, sleep habits, and use of technology in the hour before bedtime. Daytime sleepiness was assessed with the Epworth Sleepiness Scale (ESS). Student’s t-tests, Mann-Whitney U, and Fischer’s exact tests were performed to detect differences in demographics, sleep duration, and technology use in the total sample, and between respondents with “adequate” compared to “inadequate” sleep. Correlations were calculated between technology frequency and daytime function. Results Adolescents had mean sleep duration of 7.3±1.3 hours. Almost all respondents (97%) used some form of technology before sleep. Increased technology use and the frequency of being awoken in the night by a cell phone were significantly associated with waking too early, waking unrefreshed, and daytime sleepiness (p<0.05). Adolescents who reported “inadequate” sleep had shorter sleep duration, greater frequency of technology use before bedtime, feeling unrefreshed on waking, and greater daytime sleepiness than those reporting “adequate” sleep (all p-values<0.05). Conclusion Technology use before sleep by adolescents had negative consequences on nighttime sleep and on daytime function. Practice Implications Healthcare professionals who interact with adolescents should encourage technology to be curtailed before bedtime and for adolescents to value obtaining adequate sleep. PMID:27184356

  20. Recent NASA Wake-Vortex Flight Tests, Flow-Physics Database and Wake-Development Analysis

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.; Vijgen, Paul M.; Reimer, Heidi M.; Gallegos, Joey L.; Spalart, Philippe R.

    1998-01-01

    A series of flight tests over the ocean of a four engine turboprop airplane in the cruise configuration have provided a data set for improved understanding of wake vortex physics and atmospheric interaction. An integrated database has been compiled for wake characterization and validation of wake-vortex computational models. This paper describes the wake-vortex flight tests, the data processing, the database development and access, and results obtained from preliminary wake-characterization analysis using the data sets.

  1. Non-sedation versus sedation with a daily wake-up trial in critically ill patients receiving mechanical ventilation--effects on physical function: study protocol for a randomized controlled trial: a substudy of the NONSEDA trial.

    PubMed

    Nedergaard, Helene Korvenius; Jensen, Hanne Irene; Lauridsen, Jørgen T; Sjøgaard, Gisela; Toft, Palle

    2015-07-23

    Critically ill patients rapidly loose much of their muscle mass and strength. This can be attributed to prolonged admission, prolonged mechanical ventilation and increased mortality, and it can have a negative impact on the degree of independence and quality of life. In the NONSEDA trial we randomize critically ill patients to non-sedation or sedation with a daily wake-up trial during mechanical ventilation in the intensive care unit. It has never been assessed whether non-sedation affects physical function. The aim of this study is to assess the effects of non-sedation versus sedation with a daily wake-up trial on physical function after discharge from intensive care unit. Investigator-initiated, randomized, clinical, parallel-group, superiority trial, including 700 patients in total, with a substudy concerning 200 of these patients. Inclusion criteria will be intubated, mechanically ventilated patients with expected duration of mechanical ventilation >24 h. Exclusion criteria will be patients with severe head trauma, coma at admission or status epilepticus, patients treated with therapeutic hypothermia, patients with PaO2/FiO2<9 where sedation might be necessary to ensure sufficient oxygenation or placing the patient in a prone position. The experimental intervention will be non-sedation supplemented with pain management during mechanical ventilation. The control intervention will be sedation with a daily wake-up trial. The co-primary outcome will be quality of life regarding physical function (SF-36, physical component) and degree of independence in activities of daily living (Barthel Index), and this will be assessed for all 700 patients participating in the NONSEDA trial. The secondary outcomes, which will be assessed for the subpopulation of 200 NONSEDA patients in the trial site, Kolding, will be 6-min walking distance, handgrip strength, muscle size (ultrasonographic measurement of the rectus femoris muscle cross-sectional area) and biomechanical data on lower extremity function (maximal voluntary contraction, rate of force development and endurance). This study is the first to investigate the effect of no sedation during critical illness on physical function. If an effect is found, it will add important information on how to prevent muscle weakness following critical illness. The study has been approved by the relevant scientific ethics committee and is registered at ClinicalTrials.gov (ID: NCT02034942, 9 January 2014).

  2. A stochastic wind turbine wake model based on new metrics for wake characterization: A stochastic wind turbine wake model based on new metrics for wake characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doubrawa, Paula; Barthelmie, Rebecca J.; Wang, Hui

    Understanding the detailed dynamics of wind turbine wakes is critical to predicting the performance and maximizing the efficiency of wind farms. This knowledge requires atmospheric data at a high spatial and temporal resolution, which are not easily obtained from direct measurements. Therefore, research is often based on numerical models, which vary in fidelity and computational cost. The simplest models produce axisymmetric wakes and are only valid beyond the near wake. Higher-fidelity results can be obtained by solving the filtered Navier-Stokes equations at a resolution that is sufficient to resolve the relevant turbulence scales. This work addresses the gap between thesemore » two extremes by proposing a stochastic model that produces an unsteady asymmetric wake. The model is developed based on a large-eddy simulation (LES) of an offshore wind farm. Because there are several ways of characterizing wakes, the first part of this work explores different approaches to defining global wake characteristics. From these, a model is developed that captures essential features of a LES-generated wake at a small fraction of the cost. The synthetic wake successfully reproduces the mean characteristics of the original LES wake, including its area and stretching patterns, and statistics of the mean azimuthal radius. The mean and standard deviation of the wake width and height are also reproduced. This preliminary study focuses on reproducing the wake shape, while future work will incorporate velocity deficit and meandering, as well as different stability scenarios.« less

  3. Dissipation of turbulence in the wake of a wind turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundquist, J. K.; Bariteau, L.

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-ratemore » turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters D downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Furthermore. comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.« less

  4. Dissipation of Turbulence in the Wake of a Wind Turbine

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Bariteau, L.

    2015-02-01

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-rate turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.

  5. Dissipation of turbulence in the wake of a wind turbine

    DOE PAGES

    Lundquist, J. K.; Bariteau, L.

    2014-11-06

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-ratemore » turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters D downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Furthermore. comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.« less

  6. Sleep/wake firing patterns of human genioglossus motor units.

    PubMed

    Bailey, E Fiona; Fridel, Keith W; Rice, Amber D

    2007-12-01

    Although studies of the principal tongue protrudor muscle genioglossus (GG) suggest that whole muscle GG electromyographic (EMG) activities are preserved in nonrapid eye movement (NREM) sleep, it is unclear what influence sleep exerts on individual GG motor unit (MU) activities. We characterized the firing patterns of human GG MUs in wakefulness and NREM sleep with the aim of determining 1) whether the range of MU discharge patterns evident in wakefulness is preserved in sleep and 2) what effect the removal of the "wakefulness" input has on the magnitude of the respiratory modulation of MU activities. Microelectrodes inserted into the extrinsic tongue protrudor muscle, the genioglossus, were used to follow the discharge of single MUs. We categorized MU activities on the basis of the temporal relationship between the spike train and the respiration cycle and quantified the magnitude of the respiratory modulation of each MU using the eta (eta(2)) index, in wakefulness and sleep. The majority of MUs exhibited subtle increases or decreases in respiratory modulation but were otherwise unaffected by NREM sleep. In contrast, 30% of MUs exhibited marked sleep-associated changes in discharge frequency and respiratory modulation. We suggest that GG MUs should not be considered exclusively tonic or phasic; rather, the discharge pattern appears to be a flexible feature of GG activities in healthy young adults. Whether such flexibility is important in the response to changes in the chemical and/or mechanical environment and whether it is preserved as a function of aging or in individuals with obstructive sleep apnea are critical questions for future research.

  7. Discharge properties of upper airway motor units during wakefulness and sleep.

    PubMed

    Trinder, John; Jordan, Amy S; Nicholas, Christian L

    2014-01-01

    Upper airway muscle motoneurons, as assessed at the level of the motor unit, have a range of different discharge patterns, varying as to whether their activity is modulated in phase with the respiratory cycle, are predominantly inspiratory or expiratory, or are phasic as opposed to tonic. Two fundamental questions raised by this observation are: how are synaptic inputs from premotor neurons distributed over motoneurons to achieve these different discharge patterns; and how do different discharge patterns contribute to muscle function? We and others have studied the behavior of genioglossus (GG) and tensor palatini (TP) single motor units at transitions from wakefulness to sleep (sleep onset), from sleep to wakefulness (arousal from sleep), and during hypercapnia. Results indicate that decreases or increases in GG and TP muscle activity occur as a consequence of derecruitment or recruitment, respectively, of phasic and tonic inspiratory-modulated motoneurons, with only minor changes in rate coding. Further, sleep-wake state and chemical inputs to this "inspiratory system" appear to be mediated through the respiratory pattern generator. In contrast, phasic and tonic expiratory units and units with a purely tonic pattern, the "tonic system," are largely unaffected by sleep-wake state, and are only weakly influenced by chemical stimuli and the respiratory cycle. We speculate that the "inspiratory system" produces gross changes in upper airway muscle activity in response to changes in respiratory drive, while the "tonic system" fine tunes airway configuration with activity in this system being determined by local mechanical conditions. © 2014 Elsevier B.V. All rights reserved.

  8. Alteration of Daily and Circadian Rhythms following Dopamine Depletion in MPTP Treated Non-Human Primates

    PubMed Central

    Fifel, Karim; Vezoli, Julien; Dzahini, Kwamivi; Claustrat, Bruno; Leviel, Vincent; Kennedy, Henry; Procyk, Emmanuel; Dkhissi-Benyahya, Ouria; Gronfier, Claude; Cooper, Howard M.

    2014-01-01

    Disturbances of the daily sleep/wake cycle are common non-motor symptoms of Parkinson's disease (PD). However, the impact of dopamine (DA) depletion on circadian rhythms in PD patients or non-human primate (NHP) models of the disorder have not been investigated. We evaluated alterations of circadian rhythms in NHP following MPTP lesion of the dopaminergic nigro-striatal system. DA degeneration was assessed by in vivo PET ([11C]-PE2I) and post-mortem TH and DAT quantification. In a light∶dark cycle, control and MPTP-treated NHP both exhibit rest-wake locomotor rhythms, although DA-depleted NHP show reduced amplitude, decreased stability and increased fragmentation. In all animals, 6-sulphatoxymelatonin peaks at night and cortisol in early morning. When the circadian system is challenged by exposure to constant light, controls retain locomotor rest-wake and hormonal rhythms that free-run with stable phase relationships whereas in the DA-depleted NHP, locomotor rhythms are severely disturbed or completely abolished. The amplitude and phase relations of hormonal rhythms nevertheless remain unaltered. Use of a light-dark masking paradigm shows that expression of daily rest-wake activity in MPTP monkeys requires the stimulatory and inhibitory effects of light and darkness. These results suggest that following DA lesion, the central clock in the SCN remains intact but, in the absence of environmental timing cues, is unable to drive downstream rhythmic processes of striatal clock gene and dopaminergic functions that control locomotor output. These findings suggest that the circadian component of the sleep-wake disturbances in PD is more profoundly affected than previously assumed. PMID:24465981

  9. The ERP old-new effect: A useful indicator in studying the effects of sleep on memory retrieval processes.

    PubMed

    Mograss, Melodee; Godbout, Roger; Guillem, F

    2006-11-01

    To verify that the classic "Old/New" memory effect can be detected after a long delay, and to investigate the differential influence of declarative memory processes after normal sleep and daytime wake. The protocol is a variation of a more traditional study-recognition test used in event-related potential (ERP) studies in which sleep or wake is inserted between the learning and recognition session in order to verify the existence of the Old/New effect (ie, positive shift that occurs when stimuli are repeated). ERPs were recorded during the recognition-test session. The protocol was based on early work that compared the effect of sleep on memory without recording sleep. Data collection occurred in the outpatient sleep laboratory. Results from 13 subjects (6 men) aged between 21 and 39 years. The subjects performed the recognition memory test after sleep and daytime wake periods. More-accurate performance for the old (studied) stimuli occurred after the sleep session. Analysis of variance on correctly answered reaction times revealed a significant effect of condition (old/new) with no difference across session. A repeated-measure analysis revealed differences in "Old/New" effect, whereby the amplitude difference between the old and new items was larger after sleep than after wake. This effect of sleep was found in early frontal and later posterior ERP components, processes that represent strategic, contextual processing and facilitation of episodic memory. Memory representation was not different across sessions. These findings suggest that sleep and wake facilitate 2 components of memory unequally, ie, episodic recognition and memory representation functioning.

  10. Laboratory simulation of vehicle-plasma interaction in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Svenes, K. R.; Troim, J.

    1994-01-01

    We have performed simulations in a plasma chamber of the interaction between a stationary charged body and a streaming plasma. The plasma was set up so as to correspond to the conditions encountered in low Earth orbit (LEO). In this paper we will concentrate on the region of decreased ion density, downstream of the body, known as the `wake' region. The extent of the `near-wake' region (`closure distance') has been utilized to investigate the relative importance of the various factors influencing the formation of the complete wake region. As expected, both the Mach number and the body potential had a significant influence on the wake formation. In fact, it was verified that in the case of the circular disc the functional dependence of the closure distance on the Mach number and the body potential may be fitted to a semi-empirical form developed by Martin et al., (1991) on the basis of numerical simulations. However, it turned out that the general structure of the wake region as well as the closure distance was also very strongly dependent on the body geometry. This is due to the fact that both the magnitude and the distribution of the resulting electric fields are dependent both on the applied voltage and the geometry of the particular body. Hence, the path of the streaming plasma particles will be different for each of the various geometries. This has the consequence that any realistic simulation study of spacecraft-plasma interactions must take into account the detailed geometric specification of the particular system under consideration.

  11. The Dream as a Model for Psychosis: An Experimental Approach Using Bizarreness as a Cognitive Marker

    PubMed Central

    Scarone, Silvio; Manzone, Maria Laura; Gambini, Orsola; Kantzas, Ilde; Limosani, Ivan; D'Agostino, Armando; Hobson, J. Allan

    2008-01-01

    Many previous observers have reported some qualitative similarities between the normal mental state of dreaming and the abnormal mental state of psychosis. Recent psychological, tomographic, electrophysiological, and neurochemical data appear to confirm the functional similarities between these 2 states. In this study, the hypothesis of the dreaming brain as a neurobiological model for psychosis was tested by focusing on cognitive bizarreness, a distinctive property of the dreaming mental state defined by discontinuities and incongruities in the dream plot, thoughts, and feelings. Cognitive bizarreness was measured in written reports of dreams and in verbal reports of waking fantasies in 30 schizophrenics and 30 normal controls. Seven pictures of the Thematic Apperception Test (TAT) were administered as a stimulus to elicit waking fantasies, and all participating subjects were asked to record their dreams upon awakening. A total of 420 waking fantasies plus 244 dream reports were collected to quantify the bizarreness features in the dream and waking state of both subject groups. Two-way analysis of covariance for repeated measures showed that cognitive bizarreness was significantly lower in the TAT stories of normal subjects than in those of schizophrenics and in the dream reports of both groups. The differences between the 2 groups indicated that, under experimental conditions, the waking cognition of schizophrenic subjects shares a common degree of formal cognitive bizarreness with the dream reports of both normal controls and schizophrenics. Though very preliminary, these results support the hypothesis that the dreaming brain could be a useful experimental model for psychosis. PMID:17942480

  12. Interaction of sleep and emotional content on the production of false memories.

    PubMed

    McKeon, Shannon; Pace-Schott, Edward F; Spencer, Rebecca M C

    2012-01-01

    Sleep benefits veridical memories, resulting in superior recall relative to off-line intervals spent awake. Sleep also increases false memory recall in the Deese-Roediger-McDermott (DRM) paradigm. Given the suggestion that emotional veridical memories are prioritized for consolidation over sleep, here we examined whether emotion modulates sleep's effect on false memory formation. Participants listened to semantically related word lists lacking a critical lure representing each list's "gist." Free recall was tested after 12 hours containing sleep or wake. The Sleep group recalled more studied words than the Wake group but only for emotionally neutral lists. False memories of both negative and neutral critical lures were greater following sleep relative to wake. Morning and Evening control groups (20-minute delay) did not differ ruling out circadian accounts for these differences. These results support the adaptive function of sleep in both promoting the consolidation of veridical declarative memories and in extracting unifying aspects from memory details.

  13. Interaction of Sleep and Emotional Content on the Production of False Memories

    PubMed Central

    McKeon, Shannon; Pace-Schott, Edward F.; Spencer, Rebecca M. C.

    2012-01-01

    Sleep benefits veridical memories, resulting in superior recall relative to off-line intervals spent awake. Sleep also increases false memory recall in the Deese-Roediger-McDermott (DRM) paradigm. Given the suggestion that emotional veridical memories are prioritized for consolidation over sleep, here we examined whether emotion modulates sleep’s effect on false memory formation. Participants listened to semantically related word lists lacking a critical lure representing each list’s “gist.” Free recall was tested after 12 hours containing sleep or wake. The Sleep group recalled more studied words than the Wake group but only for emotionally neutral lists. False memories of both negative and neutral critical lures were greater following sleep relative to wake. Morning and Evening control groups (20-minute delay) did not differ ruling out circadian accounts for these differences. These results support the adaptive function of sleep in both promoting the consolidation of veridical declarative memories and in extracting unifying aspects from memory details. PMID:23145159

  14. Odd nitrogen production by meteoroids

    NASA Technical Reports Server (NTRS)

    Park, C.; Menees, G. P.

    1978-01-01

    The process by which odd nitrogen species (atomic nitrogen and nitric oxide) are formed during atmospheric entry of meteoroids is analyzed theoretically. An ablating meteoroid is assumed to be a point source of mass with a continuum regime evolving in its wake. The amounts of odd nitrogen species, produced by high-temperature reactions of air in the continuum wake, are calculated by numerical integration of chemical rate equations. Flow properties are assumed to be uniform across the wake, and 29 reactions involving five neutral species and five singly ionized species are considered, as well as vibrational and electron temperature nonequilibrium phenomena. The results, when they are summed over the observed mass, velocity, and entry-angle distribution of meteoroids, provide odd-nitrogen-species annual global production rates as functions of altitude. The peak production of nitric oxide is found to occur at an altitude of about 85 km; atomic nitrogen production peaks at about 95 km. The total annual rate for nitric oxide is 40 million kg; for atomic nitrogen it is 170 million kg.

  15. Neurofeedback in three patients in the state of unresponsive wakefulness.

    PubMed

    Keller, Ingo; Garbacenkaite, Ruta

    2015-12-01

    Some severely brain injured patients remain unresponsive, only showing reflex movements without any response to command. This syndrome has been named unresponsive wakefulness syndrome (UWS). The objective of the present study was to determine whether UWS patients are able to alter their brain activity using neurofeedback (NFB) technique. A small sample of three patients received a daily session of NFB for 3 weeks. We applied the ratio of theta and beta amplitudes as a feedback variable. Using an automatic threshold function, patients heard their favourite music whenever their theta/beta ratio dropped below the threshold. Changes in awareness were assessed weekly with the JFK Coma Recovery Scale-Revised for each treatment week, as well as 3 weeks before and after NFB. Two patients showed a decrease in their theta/beta ratio and theta-amplitudes during this period. The third patient showed no systematic changes in his EEG activity. The results of our study provide the first evidence that NFB can be used in patients in a state of unresponsive wakefulness.

  16. RANS Simulation (Virtual Blade Model [VBM]) of Single Full Scale DOE RM1 MHK Turbine

    DOE Data Explorer

    Javaherchi, Teymour; Aliseda, Alberto

    2013-04-10

    Attached are the .cas and .dat files along with the required User Defined Functions (UDFs) and look-up table of lift and drag coefficients for Reynolds Averaged Navier-Stokes (RANS) simulation of a single full scale DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. In this case study the flow field around and in the wake of the full scale DOE RM1 turbine is simulated using Blade Element Model (a.k.a Virtual Blade Model) by solving RANS equations coupled with k-\\omega turbulence closure model. It should be highlighted that in this simulation the actual geometry of the rotor blade is not modeled. The effect of turbine rotating blades are modeled using the Blade Element Theory. This simulation provides an accurate estimate for the performance of device and structure of it's turbulent far wake. Due to the simplifications implemented for modeling the rotating blades in this model, VBM is limited to capture details of the flow field in near wake region of the device.

  17. A Novel Population of Wake-Promoting GABAergic Neurons in the Ventral Lateral Hypothalamus.

    PubMed

    Venner, Anne; Anaclet, Christelle; Broadhurst, Rebecca Y; Saper, Clifford B; Fuller, Patrick M

    2016-08-22

    The largest synaptic input to the sleep-promoting ventrolateral preoptic area (VLPO) [1] arises from the lateral hypothalamus [2], a brain area associated with arousal [3-5]. However, the neurochemical identity of the majority of these VLPO-projecting neurons within the lateral hypothalamus (LH), as well as their function in the arousal network, remains unknown. Herein we describe a population of VLPO-projecting neurons in the LH that express the vesicular GABA transporter (VGAT; a marker for GABA-releasing neurons). In addition to the VLPO, these neurons also project to several other established sleep and arousal nodes, including the tuberomammillary nucleus, ventral periaqueductal gray, and locus coeruleus. Selective and acute chemogenetic activation of LH VGAT(+) neurons was profoundly wake promoting, whereas acute inhibition increased sleep. Because of its direct and massive inputs to the VLPO, this population may play a particularly important role in sleep-wake switching. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Are Cardiometabolic and Endocrine Abnormalities Linked to Sleep Difficulties in Schizophrenia? A Hypothesis Driven Review

    PubMed Central

    Robillard, Rébecca; Rogers, Naomi L.; Whitwell, Bradley G.

    2012-01-01

    Schizophrenia is a psychiatric disorder that includes symptoms such as hallucinations, disordered thoughts, disorganized or catatonic behaviour, cognitive dysfunction and sleep-wake disturbance. In addition to these symptoms, cardiometabolic dysfunction is common in patients with schizophrenia. While previously it has been thought that cardiometabolic symptoms in patients with schizophrenia were associated with medications used to manage this disorder, more recently it has been demonstrated that these symptoms are present in drug naive and unmedicated patients. Sleep-wake disturbance, resulting in chronic sleep loss has also been demonstrated to induce changes in cardiometabolic function. Chronic sleep loss has been associated with an increased risk for weight gain, obesity and cardiac and metabolic disorders, independent of other potentially contributing factors, such as smoking and body mass index. We hypothesise that the sleep-wake disturbance comorbid with schizophrenia may play a significant role in the high prevalence of cardiometabolic dysfunction observed in this patient population. Here we present a critical review of the evidence that supports this hypothesis. PMID:23429436

  19. Brain mechanisms that control sleep and waking

    NASA Astrophysics Data System (ADS)

    Siegel, Jerome

    This review paper presents a brief historical survey of the technological and early research that laid the groundwork for recent advances in sleep-waking research. A major advance in this field occurred shortly after the end of World War II with the discovery of the ascending reticular activating system (ARAS) as the neural source in the brain stem of the waking state. Subsequent research showed that the brain stem activating system produced cortical arousal via two pathways: a dorsal route through the thalamus and a ventral route through the hypothalamus and basal forebrain. The nuclei, pathways, and neurotransmitters that comprise the multiple components of these arousal systems are described. Sleep is now recognized as being composed of two very different states: rapid eye movements (REMs) sleep and non-REM sleep. The major findings on the neural mechanisms that control these two sleep states are presented. This review ends with a discussion of two current views on the function of sleep: to maintain the integrity of the immune system and to enhance memory consolidation.

  20. Transverse spin correlations of the random transverse-field Ising model

    NASA Astrophysics Data System (ADS)

    Iglói, Ferenc; Kovács, István A.

    2018-03-01

    The critical behavior of the random transverse-field Ising model in finite-dimensional lattices is governed by infinite disorder fixed points, several properties of which have already been calculated by the use of the strong disorder renormalization-group (SDRG) method. Here we extend these studies and calculate the connected transverse-spin correlation function by a numerical implementation of the SDRG method in d =1 ,2 , and 3 dimensions. At the critical point an algebraic decay of the form ˜r-ηt is found, with a decay exponent being approximately ηt≈2 +2 d . In d =1 the results are related to dimer-dimer correlations in the random antiferromagnetic X X chain and have been tested by numerical calculations using free-fermionic techniques.

Top