Sample records for trap spring field

  1. Identification of crude oil source facies in Railroad Valley, Nevada, using multivariate analysis of crude oil and hydrous pyrolysis data from the Meridian Spencer Federal 32-29 well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conlan, L.M.; Francis, R.D.

    Comparison of biological markers of a hydrous pyrolyzate of Mississippian-Chainman Shale from the Meridian Spencer Federal 32-29 well with two crude oils produced from the same well and crude oils produced from Trap Springs, Grant Canyon, Bacon Flats, and Eagle Springs fields indicate the possibility of three distinct crude oil source facies within Railroad Valley, Nevada. The two crude oil samples produced in the Meridian Spencer Federal 32-29 well are from the Eocene Sheep Pass Formation (MSF-SP) at 10,570 ft and the Joana Limestone (MSF-J) at 13,943 ft; the pyrolyzate is from the Chainman Shale at 10,700 ft. The Chainmanmore » Shale pyrolyzate has a similar composition to oils produced in Trap Springs and Grant Canyon fields. Applying multivariate statistical analysis to biological marker data shows that the Chainman Shale is a possible source for oil produced at Trap Springs because of the similarities between Trap Springs oils and the Chainman Shale pyrolyzate. It is also apparent that MSF-SP and oils produced in the Eagle Springs field have been generated from a different source (probably the Sheep Pass Formation) because of the presence of gammacerane (C{sub 30}). MSF-J and Bacon Flats appear to be either sourced from a pre-Mississippian unit or from a different facies within the Chainman Shale because of the apparent differences between MSF-J and Chainman Shale pyrolyzate.« less

  2. Evaluation of various models of propane-powered mosquito traps.

    PubMed

    Kline, Daniel L

    2002-06-01

    Large cage and field studies were conducted to determine the efficacy of various models of propane-powered mosquito traps. These traps utilized counterflow technology in conjunction with catalytic combustion to produce attractants (carbon dioxide, water vapor, and heat) and a thermoelectric generator that converted excess heat into electricity for stand-alone operation. The cage studies showed that large numbers of Aedes aegypti and Ochlerotatus taeniorhynchus were captured and that each progressive model resulted in increased trapping efficiency. In several field studies against natural populations of mosquitoes two different propane traps were compared against two other trap systems, the professional (PRO) and counterflow geometry (CFG) traps. In these studies the propane traps consistently caught more mosquitoes than the PRO trap and significantly fewer mosquitoes than the CFG traps. The difference in collection size between the CFG and propane traps was due mostly to Anopheles crucians. In spring 1997 the CFG trap captured 3.6X more An. crucians than the Portable Propane (PP) model and in spring 1998 it captured 6.3X more An. crucians than the Mosquito Magnet Beta-1 (MMB-1) trap. Both the PP and MMB-1 captured slightly more Culex spp. than the CFG trap.

  3. Bespoke optical springs and passive force clamps from shaped dielectric particles

    NASA Astrophysics Data System (ADS)

    Simpson, S. H.; Phillips, D. B.; Carberry, D. M.; Hanna, S.

    2013-09-01

    By moulding optical fields, holographic optical tweezers are able to generate structured force fields with magnitudes and length scales of great utility for experiments in soft matter and biological physics. It has recently been noted that optically induced force fields are determined not only by the incident optical field, but by the shape and composition of the particles involved [Gluckstad J. Optical manipulation: sculpting the object. Nat Photonics 2011;5:7-8]. Indeed, there are desirable but simple attributes of a force field, such as orientational control, that cannot be introduced by sculpting optical fields alone. With this insight in mind, we show, theoretically, how relationships between force and displacement can be controlled by optimizing particle shapes. We exhibit a constant force optical spring, made from a tapered microrod and discuss methods by which it could be fabricated. In addition, we investigate the optical analogue of streamlining, and show how objects can be shaped so as to reduce the effects of radiation pressure, and hence switch from non-trapping to trapping regimes.

  4. Patrick Draw field, Wyoming - 1 seismic expression of subtle strat trap in Upper Cretaceous Almond

    USGS Publications Warehouse

    Ryder, Robert T.; Lee, Myung W.; Agena, Warren F.; Anderson, Robert C.

    1990-01-01

    The east flank of the Rock Springs uplift and the adjacent Wamsutter arch contain several large hydrocarbon accumulations. Among these accumulations are Patrick Draw field, which produces oil and gas from a stratigraphic trap in the Upper Cretaceous Almond formation, and Table Rock field, a faulted anticlinal trap that produces gas from multiple Tertiary, Mesozoic, and Paleozoic reservoirs. The principal petroleum reservoir in Patrick Draw field is a sandstone at the top of the Almond formation. This sandstone attains a maximum thickness of 35ft and piches out westward into relatively impervious silt-stone and shale that constitute the trapping facies. The objective of this investigation is to determine whether or not the stratigraphic trap at Patrick Draw can be detected on a 12 fold, common depth point seismic profile acquired by Forest Oil Corp. and its partners. The seismic line is 18.5 miles long and crosses Patrick Draw and Table Rock fields.

  5. A collapsible trap for capturing ruffe

    USGS Publications Warehouse

    Edwards, Andrew J.; Czypinski, Gary D.; Selgeby, James H.

    1998-01-01

    A modified version of the Windermere trap was designed, constructed, and tested for its effectiveness in capturing ruffe Gymnocephalus cernuus. The inexpensive, lightweight, collapsible trap was easily deployed and retrieved from a small boat. Field tests conducted at the St. Louis River estuary in western Lake Superior in spring 1995 and 1996 indicated that the trap was effective in capturing ruffe. Proportions of the ruffe in trap and bottom trawl catches were similar in 1995 and 1996. This trap could be a useful tool in surveillance, monitoring, or control programs for ruffe or similar species, either to augment existing sampling programs or especially in situations where gillnetting or bottom trawling are not feasible.

  6. High Speed Video Measurements of a Magneto-optical Trap

    NASA Astrophysics Data System (ADS)

    Horstman, Luke; Graber, Curtis; Erickson, Seth; Slattery, Anna; Hoyt, Chad

    2016-05-01

    We present a video method to observe the mechanical properties of a lithium magneto-optical trap. A sinusoidally amplitude-modulated laser beam perturbed a collection of trapped ce7 Li atoms and the oscillatory response was recorded with a NAC Memrecam GX-8 high speed camera at 10,000 frames per second. We characterized the trap by modeling the oscillating cold atoms as a damped, driven, harmonic oscillator. Matlab scripts tracked the atomic cloud movement and relative phase directly from the captured high speed video frames. The trap spring constant, with magnetic field gradient bz = 36 G/cm, was measured to be 4 . 5 +/- . 5 ×10-19 N/m, which implies a trap resonant frequency of 988 +/- 55 Hz. Additionally, at bz = 27 G/cm the spring constant was measured to be 2 . 3 +/- . 2 ×10-19 N/m, which corresponds to a resonant frequency of 707 +/- 30 Hz. These properties at bz = 18 G/cm were found to be 8 . 8 +/- . 5 ×10-20 N/m, and 438 +/- 13 Hz. NSF #1245573.

  7. Seismic model study of Patrick Draw field, Wyoming: a stratigraphic trap in the Upper Cretaceous Almond Formation

    USGS Publications Warehouse

    Anderson, Robert C.; Ryder, Robert T.

    1978-01-01

    The Patrick Draw field, located on the eastern flank of the Rock Springs uplift in the Washakie basin of southwestern Wyoming, was discovered in 1959 without the use of geophysical methods. The field is a classic example of a stratigraphic trap, where Upper Cretaceous porous sandstone units pinch out on a structural nose. Two-dimensional seismic modeling was used to construct the seismic waveform expressions of the Patrick Draw field, and to better understand how to explore for other 'Patrick Draw' fields. Interpretation of the model shows that the detection of the reservoir sand is very difficult, owing to a combination of acoustic contrasts and bed thickness. Because the model included other major stratigraphic units in the subsurface, several stratigraphic traps are suggested as potential exploration targets.

  8. Integrated Status and Effectiveness Monitoring Program; Expansion of Existing Smolt Trapping Program in Nason Creek, 2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prevatte, Scott A.

    2006-03-01

    In the fall of 2004, as one part of a Basin-Wide Monitoring Program developed by the Upper Columbia Regional Technical Team and Upper Columbia Salmon Recovery Board, the Yakama Nation Fisheries Resource Management program began monitoring downstream migration of ESA listed Upper Columbia River spring chinook salmon and Upper Columbia River steelhead in Nason Creek, a tributary to the Wenatchee River. This report summarizes juvenile spring chinook salmon and steelhead trout migration data collected in Nason Creek during 2005 and also incorporates data from 2004. We used species enumeration at the trap and efficiency trials to describe emigration timing andmore » to estimate population size. Data collection was divided into spring/early summer and fall periods with a break during the summer months occurring due to low stream flow. Trapping began on March 1st and was suspended on July 29th when stream flow dropped below the minimum (30 cfs) required to rotate the trap cone. The fall period began on September 28th with increased stream flow and ended on November 23rd when snow and ice began to accumulate on the trap. During the spring and early summer we collected 311 yearling (2003 brood) spring chinook salmon, 86 wild steelhead smolts and 453 steelhead parr. Spring chinook (2004 brood) outgrew the fry stage of fork length < 60 mm during June and July, 224 were collected at the trap. Mark-recapture trap efficiency trials were performed over a range of stream discharge stages whenever ample numbers of fish were being collected. A total of 247 spring chinook yearlings, 54 steelhead smolts, and 178 steelhead parr were used during efficiency trials. A statically significant relationship between stream discharge and trap efficiency has not been identified in Nason Creek, therefore a pooled trap efficiency was used to estimate the population size of both spring chinook (14.98%) and steelhead smolts (12.96%). We estimate that 2,076 ({+-} 119 95%CI) yearling spring chinook and 688 ({+-} 140 95%CI) steelhead smolts emigrated past the trap during the spring/early summer sample period along with 10,721 ({+-} 1,220 95%CI) steelhead parr. During the fall we collected 924 subyearling (2004 brood) spring chinook salmon and 1,008 steelhead parr of various size and age classes. A total of 732 spring chinook subyearlings and 602 steelhead parr were used during 13 mark-recapture trap efficiency trials. A pooled trap efficiency of 24.59% was used to calculate the emigration of spring chinook and 17.11% was used for steelhead parr during the period from September 28th through November 23rd. We estimate that 3758 ({+-} 92 95%CI) subyearling spring chinook and 5,666 ({+-} 414 95%CI) steelhead parr migrated downstream past the trap along with 516 ({+-} 42 95%CI) larger steelhead pre-smolts during the 2005 fall sample period.« less

  9. Bathymetric controls on sediment transport in the Hudson River estuary: Lateral asymmetry and frontal trapping

    USGS Publications Warehouse

    Ralston, David K.; Geyer, W. Rockwell; Warner, John C.

    2012-01-01

    Analyses of field observations and numerical model results have identified that sediment transport in the Hudson River estuary is laterally segregated between channel and shoals, features frontal trapping at multiple locations along the estuary, and varies significantly over the spring-neap tidal cycle. Lateral gradients in depth, and therefore baroclinic pressure gradient and stratification, control the lateral distribution of sediment transport. Within the saline estuary, sediment fluxes are strongly landward in the channel and seaward on the shoals. At multiple locations, bottom salinity fronts form at bathymetric transitions in width or depth. Sediment convergences near the fronts create local maxima in suspended-sediment concentration and deposition, providing a general mechanism for creation of secondary estuarine turbidity maxima at bathymetric transitions. The lateral bathymetry also affects the spring-neap cycle of sediment suspension and deposition. In regions with broad, shallow shoals, the shoals are erosional and the channel is depositional during neap tides, with the opposite pattern during spring tides. Narrower, deeper shoals are depositional during neaps and erosional during springs. In each case, the lateral transfer is from regions of higher to lower bed stress, and depends on the elevation of the pycnocline relative to the bed. Collectively, the results indicate that lateral and along-channel gradients in bathymetry and thus stratification, bed stress, and sediment flux lead to an unsteady, heterogeneous distribution of sediment transport and trapping along the estuary rather than trapping solely at a turbidity maximum at the limit of the salinity intrusion.

  10. Identification of environmental factors related to Claviceps purpurea ascospore production in perennial ryegrass seed fields and development of predictive models

    USDA-ARS?s Scientific Manuscript database

    Claviceps purpurea, the causal agent of ergot of perennial ryegrass seed crops, overwinters as sclerotia in the soil and releases airborne ascospores in the spring that infect flower ovaries and replace seed with sclerotia. Burkard spore traps were used to quantify the dispersal phenology and concen...

  11. Demonstrating the Principle of an rf Paul Ion Trap

    NASA Astrophysics Data System (ADS)

    Johnson, Andrew; Rabchuk, James

    2008-03-01

    An rf ion trap uses a time-varying electric field to trap charged ions. This is useful in applications related to quantum computing and mass spectroscopy. There are several mechanical devices described in the literature which have attempted to provide illustrative demonstrations of the principle of rf ion traps, including a mechanically-rotating ``saddle trap'' and the vertically-driven, inverted pendulum^1,2. Neither demonstration, however, successfully demonstrates BOTH the sinusoidal variation in the electric potential of the rf trap AND the parametric stability of the ions in the trap described by Mathieu's equation. We have modified a design of a one-dimensional ponderomotive trap^3 so that it satisfies both criteria for demonstrating the principle of an rf Paul trap. Our studies indicate that trapping stability is highly sensitive to fluxuations in the driving frequency. Results from the demonstration apparatus constructed by the authors will be presented. ^1 Rueckner, W., et al., ``Rotating saddle Paul trap,'' Am. J. Phys., 63 (2), February 1995. ^2 Friedman, M.H., et al., ``The inverted pendulum: A mechanical analogue of a quadrupole mass filter,'' Am. J. Phys., 50 (10), October 1982. ^3 Johnson, A.K. and Rabchuk, J.A., ``A One-Dimensional Ponderomotive Trap,'' ISAAPT 2007 spring meeting, WIU, March 30, 2007.

  12. Seasonal Terpene Variation in Needles of Pinus radiata (Pinales: Pinaceae) Trees Attacked by Tomicus piniperda (Coleoptera: Scolytinae) and the Effect of Limonene on Beetle Aggregation

    PubMed Central

    Romón, Pedro; Aparicio, Domitila; Palacios, Francisco; Iturrondobeitia, Juan Carlos; Hance, Thierry

    2017-01-01

    Abstract Concentrations of four monoterpenes were determined in needles of Pinus radiata (D.Don) (Pinales: Pinaceae) trees that were attacked or nonattacked by Tomicus piniperda (L.) (Coleoptera: Scolytinae). Compounds were identified and quantified by gas chromatography–mass spectrometry. The mean ambient temperature was obtained using climate-recording data loggers. The effect of limonene on field aggregation was also evaluated at three limonene release rates using Lindgren attractant-baited traps and trap logs. Attacked trees produced less α-pinene in March, July, and November than nonattacked trees, less β-pinene in July and November, and less limonene from May to November. Limonene reduced the attraction of T. piniperda to attractant-baited traps and trap logs. Results were linked to better responses to high temperatures, with respect to terpene contents, by the nonattacked trees after the spring attack. PMID:29117373

  13. Walla Walla River Fish Passage Operations Program, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronson, James P.

    2004-12-01

    In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survivalmore » of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2003-2004 project year, there were 379 adult summer steelhead (Oncorhynchus mykiss), 36 adult bull trout (Salvelinus confluentus); 108 adult and 3 jack spring chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway video counting window between December 21, 2003, and June 30, 2004. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. In addition, the old ladder trap was operated by the WWBNPME project in order to radio tag spring chinook adults. A total of 2 adult summer steelhead, 4 bull trout, and 23 adult spring chinook were enumerated at the west ladder at Nursery Bridge Dam during the trapping operations between May 6 and May 23, 2004. Operation of the Little Walla Walla River juvenile trap for trap and haul purposes was not necessary this year. The project transported adult spring chinook from Threemile Dam to the South Fork Walla Walla Brood Holding Facility. A total of 239 spring chinook were outplanted in August for natural spawning in the basin.« less

  14. Behavioral Response of the Brown Marmorated Stink Bug (Hemiptera: Pentatomidae) to Semiochemicals Deployed Inside and Outside Anthropogenic Structures During the Overwintering Period.

    PubMed

    Morrison, William R; Acebes-Doria, Angelita; Ogburn, Emily; Kuhar, Thomas P; Walgenbach, James F; Bergh, J Christopher; Nottingham, Louis; Dimeglio, Anthony; Hipkins, Patricia; Leskey, Tracy C

    2017-06-01

    The brown marmorated stink bug, Halyomorpha halys (Stål), is an invasive species from Asia capable of causing severe agricultural damage. It can also be a nuisance pest when it enters and exits anthropogenic overwintering sites. In recent years, pheromone lures and traps for H. halys have been developed and used to monitor populations in field studies. To date, no study has investigated the applicability of these monitoring tools for use indoors by building residents during the overwintering period. Herein, we 1) assessed when in late winter (diapause) and spring (postdiapause) H. halys begins to respond to its pheromone (10,11-epoxy-1-bisabolen-3-ol), 2) evaluated whether pheromone-based tools can be used reliably for monitoring H. halys adults in unheated and heated buildings, and 3) elucidated the potential for indoor management using pheromone-baited traps. A 2-yr trapping study suggested that H. halys began to respond reliably to pheromone-baited traps after a critical photoperiod of 13.5 h in the spring. Captures before that point were not correlated with visual counts of bugs in buildings despite robust populations, suggesting currently available pheromone-baited traps were ineffective for surveillance of diapausing H. halys. Finally, because baited traps captured only 8-20% of the adult H. halys known to be present per location, they were not an effective indoor management tool for overwintering H. halys. Our study contributes important knowledge about the capacity of H. halys to perceive its pheromone during overwintering, and the ramifications thereof for building residents with nuisance problems. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  15. Convection currents enhancement of the spring constant in optical tweezers

    NASA Astrophysics Data System (ADS)

    Zenteno-Hernández, J. A.; Gómez-Vieyra, A.; Torres-Hurtado, S. A.; Ramirez-San-Juan, J. C.; Ramos-García, R.

    2016-09-01

    In this work we demonstrate the increasing of the trap stiffness (spring constant) constant of an optical trap of particles suspended in water by laser-induced convection currents. These currents are the result of thermal gradients created by a light absorption in a thin layer of hydrogenated amorphous silicon (a:Si-H) deposited at the bottom of cell. Since convection currents (and therefore drag forces) are symmetric around the beam focus particles trapped by the beam are further contained. Around the focus the drag force is directed upwards and partially compensated by radiation pressure depending on the laser power increasing the stiffness of the optical trapping increases significatively so a particle trapped could dragged (by moving the translation stage leaving the beam fixed) at velocities as high as 90μm/s without escaping the trap, whereas with no a:Si-H film, the particle escapes from the trap at lower velocities (30μm/s).

  16. Spatial displacement of a lure component can reduce catches of two nontarget species during spring monitoring of southern pine beetle

    Treesearch

    William P Shepherd; Brian T Sullivan

    2017-01-01

    Local outbreak risk for the southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Curculionidae),is forecast with a trapping survey conducted every spring throughout the southeastern United States. Traps baitedwith pine odors and components of the D. frontalis aggregation pheromone are used to obtain abundance estimates

  17. Generating Localized Nonlinear Excitations in the Fermi-Pasta-Ulam-Tsingou chains

    NASA Astrophysics Data System (ADS)

    Westley, Alexandra; Sen, Surajit

    Here, we will discuss properties of energy trapping in the decorated Fermi-Pasta-Ulam-Tsingou (FPUT) mass-spring chains with quadratic and quartic coupling terms. It is well-known that the FPUT system admits highly localized nonlinear excitations (LNE) which are stable for long periods of time. We seek to generate these LNEs at will by creating regions in the chain of stiffer or softer springs, or by placing mass impurities throughout. We will show that NLEs tend to coalesce in regions of stiff springs from random perturbations throughout the system. These locations may serve as extremely powerful energy traps or heat sinks in certain materials. Furthermore, we will demonstrate that this process occurs by means of trapping solitary (or anti-solitary) waves into tight spaces.

  18. Middle Jurassic incised valley fill (eolian/estuarine) and nearshore marine petroleum reservoirs, Powder River Basin

    USGS Publications Warehouse

    Ahlbrandt, T.S.; Fox, J.E.

    1997-01-01

    Paleovalleys incised into the Triassic Spearfish Formation (Chugwater equivalent) are filled with a vertical sequence of eolian, estuarine, and marine sandstones of the Middle Jurassic (Bathonian age) Canyon Springs Sandstone Member of the Sundance Formation. An outcrop exemplifying this is located at Red Canyon in the southern Black Hills, Fall River County, South Dakota. These paleovalleys locally have more than 300 ft of relief and are as much as several miles wide. Because they slope in a westerly direction, and Jurassic seas transgressed into the area from the west there was greater marine-influence and more stratigraphic complexity in the subsurface, to the west, as compared to the Black Hills outcrops. In the subsurface two distinctive reservoir sandstone beds within the Canyon Springs Sandstone Member fill the paleovalleys. These are the eolian lower Canyon Springs unit (LCS) and the estuarine upper Canyon Springs unit (UCS), separated by the marine "Limestone Marker" and estuarine "Brown Shale". The LCS and UCS contain significant proven hydrocarbon reservoirs in Wyoming (about 500 MMBO in-place in 9 fields, 188 MMBO produced through 1993) and are prospective in western South Dakota, western Nebraska and northern Colorado. Also prospective is the Callovian-age Hulett Sandstone Member which consists of multiple prograding shoreface to foreshore parasequences, as interpreted from the Red Canyon locality. Petrographic, outcrop and subsurface studies demonstrate the viability of both the Canyon Springs Sandstone and Hulett Sandstone members as superior hydrocarbon reservoirs in both stratigraphic and structural traps. Examples of fields with hydrocarbon production from the Canyon Springs in paleovalleys include Lance Creek field (56 MMBO produced) and the more recently discovered Red Bird field (300 MBO produced), both in Niobrara County, Wyoming. At Red Bird field the primary exploration target was the Pennsylvanian "Leo sands" of the Minnelusa Formation, and production from the Canyon Springs was not anticipated. Canyon Springs reservoirs are easily bypassed because they are relatively unconsolidated, underpressured, low-resistivity, and difficult to evaluate from petrophysics, drill-stem tests, or well cuttings.

  19. Seasonal Terpene Variation in Needles of Pinus radiata (Pinales: Pinaceae) Trees Attacked by Tomicus piniperda (Coleoptera: Scolytinae) and the Effect of Limonene on Beetle Aggregation.

    PubMed

    Romón, Pedro; Aparicio, Domitila; Palacios, Francisco; Iturrondobeitia, Juan Carlos; Hance, Thierry; Goldarazena, Arturo

    2017-09-01

    Concentrations of four monoterpenes were determined in needles of Pinus radiata (D.Don) (Pinales: Pinaceae) trees that were attacked or nonattacked by Tomicus piniperda (L.) (Coleoptera: Scolytinae). Compounds were identified and quantified by gas chromatography-mass spectrometry. The mean ambient temperature was obtained using climate-recording data loggers. The effect of limonene on field aggregation was also evaluated at three limonene release rates using Lindgren attractant-baited traps and trap logs. Attacked trees produced less α-pinene in March, July, and November than nonattacked trees, less β-pinene in July and November, and less limonene from May to November. Limonene reduced the attraction of T. piniperda to attractant-baited traps and trap logs. Results were linked to better responses to high temperatures, with respect to terpene contents, by the nonattacked trees after the spring attack. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  20. Optical tweezers for the measurement of binding forces: system description and application for the study of E. coli adhesion

    NASA Astrophysics Data System (ADS)

    Fallman, Erik G.; Schedin, Staffan; Andersson, Magnus J.; Jass, Jana; Axner, Ove

    2003-06-01

    Optical tweezers together with a position sensitive detection system allows measurements of forces in the pN range between micro-sized biological objects. A prototype force measurement system has been constructed around in inverted microscope with an argon-ion pumped Ti:sapphire laser as light source for optical trapping. A trapped particle in the focus of the high numerical aperture microscope-objective behaves like an omni-directional mechanical spring if an external force displaces it. The displacement from the equilibrium position is a measure of the exerted force. For position detection of the trapped particle (polystyrene beads), a He-Ne laser beam is focused a small distance below the trapping focus. An image of the bead appears as a distinct spot in the far field, monitored by a photosensitive detector. The position data is converted to a force measurement by a calibration procedure. The system has been used for measuring the binding forces between E-coli bacterial adhesin and their receptor sugars.

  1. Investigating dormant-season application of pheromone in citrus to control overwintering and spring populations of Phyllocnistis citrella (Lepidoptera: Gracillariidae).

    PubMed

    Keathley, Craig P; Stelinski, Lukasz L; Lapointe, Stephen L

    2016-07-01

    The leafminer, Phyllocnistis citrella Stainton, reproduces on leaf flush during winter. Deployment of pheromone during winter could suppress moth populations in spring and summer more than a spring application alone. We tested the primary pheromone component of P. citrella, (Z,Z,E)-7,11,13-hexadecatrienal, released gradually over several months from elastomeric dispensers in a citrus grove in 6.4 ha main plots in winter and/or 3.2 ha subplots in spring (834 mg triene ha(-1) ) and evaluated moth catch and leaf mining. After winter treatment, dispensers provided >85% disruption of male moth catch in traps for 37 weeks, and after spring treatment they provided >92% disruption for 26 weeks, but there was only a 12% reduction in leaf infestation in spring. Two applications were no better than only a single application in spring. Disruption of moth catch was weaker in treated plots where traps were placed high (3.1 m) rather than low (1.6 m) in the tree canopy. Dispensers provided effective and persistent disruption of male catch in pheromone-baited monitoring traps but were minimally effective in reducing leaf infestation by P. citrella. Winter application of pheromone did not reduce leaf mining in spring compared with spring application alone. Tops of trees may have provided a refuge for mating. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  2. Fast shuttling of a particle under weak spring-constant noise of the moving trap

    NASA Astrophysics Data System (ADS)

    Lu, Xiao-Jing; Ruschhaupt, A.; Muga, J. G.

    2018-05-01

    We investigate the excitation of a quantum particle shuttled in a harmonic trap with weak spring-constant colored noise. The Ornstein-Uhlenbeck model for the noise correlation function describes a wide range of possible noises, in particular for short correlation times the white-noise limit examined by Lu et al. [Phys. Rev. A 89, 063414 (2014)], 10.1103/PhysRevA.89.063414 and, by averaging over correlation times, "1 /f flicker noise." We find expressions for the excitation energy in terms of static (independent of trap motion) and dynamical sensitivities, with opposite behavior with respect to shuttling time, and demonstrate that the excitation can be reduced by proper process timing and design of the trap trajectory.

  3. Corrigendum to ``Seasonality of vertical flux and sinking particle characteristics in an ice-free high arctic fjord - Different from subarctic fjords?'' [J. Mar. Syst. 154 (2016) 192-205

    NASA Astrophysics Data System (ADS)

    Wiedmann, Ingrid; Reigstad, Marit; Marquardt, Miriam; Vader, Anna; Gabrielsen, Tove M.

    2018-02-01

    In our original publication the particle volume flux was by mistake standardized to area A = sediment trap diameter2 ∗ pi instead of A = sediment trap radius2 ∗ pi (A being the opening of the sediment trap). In addition, the particle flux data from Spring II (30 m and 60 m) and Spring III (20 m) were standardized twice to deployment time, instead of to the deployment time and the sediment trap opening. These mistakes do not affect our conclusions, but we would like to present here the correct numbers for the result section 3.4, discussion section 4.3 and a revised Fig. 5.

  4. Supplement Analysis for the Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program EA (DOE/EA-1173/SA-01)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    2003-12-18

    The CTUIR and ODFW propose to expand their monitoring and evaluation for the Grande Ronde spring chinook supplementation program to take additional data on summer steelhead that are trapped at the existing adult collection weirs on the upper Grande Ronde River and Catherine Creek. The weirs are a movable design and are operated seasonally during the adult chinook migration. Bull trout and summer steelhead have been trapped at the weirs since 1997 incidental to the spring chinook broodstock collection activities. Minimal data is recorded on both species as a requirement of the ESA permits, and reported to USFWS and NOAAmore » Fisheries. This supplement analysis covers a minor expansion of the program to collect more extensive life history data on summer steelhead. The weir and trap will be installed 2-3 weeks earlier (early to mid-March) than was previously needed for the spring chinook broodstock collection in order to monitor the summer steelhead migration period. The adult steelhead will be captured in the traps, anesthetized, and measured. Data will be recorded on the date of capture, fork length, sex, markings, and maturity of the fish, and scale and punch tissue samples will be taken for genetic analyses.« less

  5. An inventory of terrestrial mammals at national parks in the Northeast Temperate Network and Sagamore Hill National Historic Site

    USGS Publications Warehouse

    Gilbert, Andrew T.; O'Connell, Allan F.; Annand, Elizabeth M.; Talancy, Neil W.; Sauer, John R.; Nichols, James D.

    2008-01-01

    An inventory of mammals was conducted during 2004 at nine national park sites in the Northeast Temperate Network (NETN): Acadia National Park (NP), Marsh-Billings-Rockefeller National Historical Park (NHP), Minute Man NHP, Morristown NHP, Roosevelt-Vanderbilt National Historic Site (NHS), Saint-Gaudens NHS, Saugus Iron Works NHS, Saratoga NHP, and Weir Farm NHS. Sagamore Hill NHS, part of the Northeast Coastal and Barrier Network (NCBN), was also surveyed. Each park except Acadia NP was sampled twice, once in the winter/spring and again in the summer/fall. During the winter/spring visit, indirect measure (IM) sampling arrays were employed at 2 to 16 stations and included sampling by remote cameras, cubby boxes (covered trackplates), and hair traps. IM stations were established and re-used during the summer/fall sampling period. Trapping was conducted at 2 to 12 stations at all parks except Acadia NP during the summer/fall period and consisted of arrays of small-mammal traps, squirrel-sized live traps, and some fox-sized live traps. We used estimation-based procedures and probabilistic sampling techniques to design this inventory. A total of 38 species was detected by IM sampling, trapping, and field observations. Species diversity (number of species) varied among parks, ranging from 8 to 24, with Minute Man NHP having the most species detected. Raccoon (Procyon lotor), Virginia Opossum (Didelphis virginiana), Fisher (Martes pennanti), and Domestic Cat (Felis silvestris) were the most common medium-sized mammals detected in this study and White-footed Mouse (Peromyscus leucopus), Northern Short-tailed Shrew (Blarina brevicauda), Deer Mouse (P. maniculatus), and Meadow Vole (Microtus pennsylvanicus) the most common small mammals detected. All species detected are considered fairly common throughout their range including the Fisher, which has been reintroduced in several New England states. We did not detect any state or federal endangered or threatened species.

  6. Aggregation pheromone of the cereal leaf beetle: field evaluation and emission from males in the laboratory.

    PubMed

    Rao, Sujaya; Cossé, Allard A; Zilkowski, Bruce W; Bartelt, Robert J

    2003-09-01

    The previously identified, male-specific compound of the cereal leaf beetle (CLB, Chrysomelidae; Oulema melanopus), (E)-8-hydroxy-6-methyl-6-octen-3-one, was studied further with respect to field activity and emission rate from male beetles. In a 5-week field experiment in Oregon, the compound was shown to function as an aggregation pheromone in attracting male and female CLBs migrating from overwintering sites in spring. Traps baited with the synthetic compound (500 microg per rubber septum) caught 3.3 times more CLBs than control traps. Lower doses of the pheromone (50 and 150 microg) were less attractive than the 500 microg dose. One relatively abundant, volatile compound from the host plant (oats), (Z)-3-hexenyl acetate, that elicited responses from beetle antennae was not attractive, either by itself or as a synergist of the pheromone. Both sexes were captured about equally for all treatments. We also measured daily pheromone emission by male beetles in the laboratory. Individual males feeding on oat seedlings under greenhouse conditions emitted as much as 6 microg per day, which is about 500 times higher than had been previously observed under incubator conditions. The pheromone emission rate was at least five times higher during the day than at night, and in one male, emission spanned a period of 28 d. The release rate of synthetic pheromone from the 500 microg septa was very similar to the maximum from single males; thus, future experiments should evaluate even higher doses. The field results indicate that the pheromone has potential as a monitoring tool for early detection of CLBs as they move from their overwintering sites into newly planted cereal crops in spring.

  7. Field Responses of Anopheles gambiae Complex (Diptera: Culicidae) in Liberia using Yeast-Generated Carbon Dioxide and Synthetic Lure-Baited Light Traps

    DTIC Science & Technology

    2013-07-01

    ofAnopheles gambiae sensu stricto (Giles), Anopheles melas Theobald and possibly Anopheles arabiensis Patton, although the presence and distribution of the...Liberia (Stojanovich and Scott 1966), of which An. gambiae (n 149) comprised 32% (Fig. 1), in- cluding a single An. melas (Table 2). An. gambiae s. s...other member of the An. gambiae complex captured in our studywasAn. melas , a brack- ish water species known to develop in semimonthly spring-tide pools

  8. Decoy trapping and rocket-netting for northern pintails in spring

    USGS Publications Warehouse

    Grand, James B.; Fondell, Thomas F.

    1994-01-01

    Decoy traps and rocket-nets were compared for capturing Northern Pintails (Anas acuta: hereafter pintails) during May 1991 on the Yukon Flats, Alaska. Males were captured at similar rates using both methods (1.38 vs. 1.07 males/trap d, respectively), but baited rocket-nets were more efficient than decoy traps for capturing females (0.52 vs. 0.12 females/trap d). There were no significant differences in masses of pintails captured by each method.

  9. Relative abundance and lengths of Kendall Warm Springs dace captured from different habitats in a specially designed trap

    USGS Publications Warehouse

    Gryska, A.D.; Hubert, W.A.; Gerow, K.G.

    1998-01-01

    A trap was designed to capture endangered Kendall Warm Springs dace Rhinichthys osculus thermalis (a subspecies of speckled dace Rhinichthys osculus) without being destructive to the habitat of the fish in Kendall Warm Springs Creek, Wyoming. Four experiments were conducted to determine differences in catch per unit effort (CPUE) and length frequencies of fish among differing habitat types. The CPUE was highest in channel habitats with current, and one experiment indicated that it was particularly high at vertical interfaces with vegetation. Longer fish were captured in channel habitats away from vegetation than in vegetated areas. The CPUE was significantly greater during the day than at night during one experiment, but no significant differences were observed among the other three experiments. The traps were easy and inexpensive to construct, could be used in a variety of stream habitats, and may have applications in other small streams for sampling small, benthic fishes.

  10. Optical tweezers based force measurement system for quantitating binding interactions: system design and application for the study of bacterial adhesion.

    PubMed

    Fällman, Erik; Schedin, Staffan; Jass, Jana; Andersson, Magnus; Uhlin, Bernt Eric; Axner, Ove

    2004-06-15

    An optical force measurement system for quantitating forces in the pN range between micrometer-sized objects has been developed. The system was based upon optical tweezers in combination with a sensitive position detection system and constructed around an inverted microscope. A trapped particle in the focus of the high numerical aperture microscope-objective behaves like an omnidirectional mechanical spring in response to an external force. The particle's displacement from the equilibrium position is therefore a direct measure of the exerted force. A weak probe laser beam, focused directly below the trapping focus, was used for position detection of the trapped particle (a polystyrene bead). The bead and the condenser focus the light to a distinct spot in the far field, monitored by a position sensitive detector. Various calibration procedures were implemented in order to provide absolute force measurements. The system has been used to measure the binding forces between Escherichia coli bacterial adhesins and galabiose-functionalized beads.

  11. A decoy trap for breeding-season mallards in North Dakota

    USGS Publications Warehouse

    Sharp, D.E.; Lokemoen, J.T.

    1987-01-01

    A modified decoy trap was effective for capturing wild adult male and female mallards (Anas platyrhynchos) during the 1980-81 breeding seasons in North Dakota. Key features contributing to the trap's success included a central decoy cylinder, large capture compartments with spring-door openings, an adjustable trigger mechanism with a balanced door attachment that was resistant to trap movement, and the use of F1, wild-stock or game-farm female decoys.

  12. Investigations into the Early Life-history of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Basin, Annual Report 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reischauer, Alyssa; Monzyk, Frederick; Van Dyke, Erick

    2003-06-01

    We determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout Oncorhynchus mykiss using rotary screw traps on four streams in the Grande Ronde River basin during the 2001 migratory year (MY 2001) from 1 July 2000 through 30 June 2001. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O. mykiss could be distinguished. An 'early' migrant group left upper rearing areas from 1 July 2000 through 29 January 2001 with a peak in the fall. A 'late' migrant group descended from upper rearing areas from 30more » January 2001 through 30 June 2001 with a peak in the spring. The migrant population of juvenile spring chinook salmon in the upper Grande Ronde River in MY 2001 was very low in comparison to previous migratory years. We estimated 51 juvenile spring chinook migrated out of upper rearing areas with approximately 12% of the migrant population leaving as early migrants to overwinter downstream. In the same migratory year, we estimated 16,067 O. mykiss migrants left upper rearing areas with approximately 4% of these fish descending the upper Grande Ronde River as early migrants. At the Catherine Creek trap, we estimated 21,937 juvenile spring chinook migrants in MY 2001. Of these migrants, 87% left upper rearing areas early to overwinter downstream. We also estimated 20,586 O. mykiss migrants in Catherine Creek with 44% leaving upper rearing areas early to overwinter downstream. At the Lostine River trap, we estimated 13,610 juvenile spring chinook migrated out of upper rearing areas with approximately 77% migrating early. We estimated 16,690 O. mykiss migrated out of the Lostine River with approximately 46% descending the river as early migrants. At the Minam River trap, we estimated 28,209 juvenile spring chinook migrated out of the river with 36% migrating early. During the same period, we estimated 28,113 O. mykiss with approximately 14% of these fish leaving as early migrants. Juvenile spring chinook salmon PIT-tagged at trap sites in the fall and in upper rearing areas during winter were used to compare migration timing and survival to Lower Granite Dam of the early and late migrant groups. Juvenile spring chinook tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 4 May to 20 May 2001, with a median passage date of 17 May. Too few fish were collected and tagged to conduct detection rate and survival comparisons between migrant groups. PIT-tagged salmon from Catherine Creek trap were detected at Lower Granite Dam from 27 April to 13 July 2001. Early migrants were detected significantly earlier (median = 10 May) than late migrants (median = 1 June). Also, early migrants from Catherine Creek were detected at a significantly higher rate than fish tagged in upper rearing areas in the winter, suggesting better survival for fish that migrated out of upper rearing areas in the fall. Juvenile spring chinook salmon from the Lostine River were detected at Lower Granite Dam from 2 April through 4 July 2001. Early migrants were detected significantly earlier (median = 27 April) than late migrants (median = 14 May). However, there was no difference in detection rates between early and late migrants. Survival probabilities showed similar patterns as dam detection rates. Juvenile spring chinook salmon from the Minam River were detected at Lower Granite Dam from 8 April through 18 August 2001. Early migrants were detected significantly earlier (median = 28 April) than late migrants (median = 14 May). Late migrants from the Minam River were tagged at the trap in the spring. Spring chinook salmon parr PIT-tagged in summer 2000 on Catherine Creek and the Imnaha, Lostine, and Minam rivers were detected at Lower Granite Dam over an 87 d period from 8 April to 3 July 2001. The migratory period of individual populations ranged from 51 d (Imnaha River) to 67 d (Catherine Creek) in length. Median dates of migration ranged from 30 April (Imnaha River) to 17 May (Catherine Creek). Detection rates differed between populations with Catherine Creek spring chinook salmon detected at the lowest rate (8.2%). Imnaha, Lostine, and Minam detection rates were not significantly different from each other. A similar pattern was seen for survival probabilities. Using mark-and-recapture and scale-aging techniques, we determined the population size and age-structure of spring chinook salmon parr in Catherine Creek and the Lostine River during the summer of 2001. In Catherine Creek, we estimated that 986 mature age-1 parr (precocious males) and 15,032 immature age-0 parr were present during August 2001. We estimated there were 7.5 mature male parr for every anadromous female spawner in Catherine Creek in 2001. We estimated 33,086 immature, age-0 parr inhabited the Lostine River in August 2001.« less

  13. Mesoscale eddies and T richodesmium spp. distributions in the southwestern North Atlantic

    PubMed Central

    McGillicuddy, Dennis J.; Flierl, Glenn R.; Davis, Cabell S.; Dyhrman, Sonya T.; Waterbury, John B.

    2015-01-01

    Abstract Correlations of Trichodesmium colony abundance with the eddy field emerged in two segments of Video Plankton Recorder observations made in the southwestern North Atlantic during fall 2010 and spring 2011. In fall 2010, local maxima in abundance were observed in cyclones. We hypothesized surface Ekman transport convergence as a mechanism for trapping buoyant colonies in cyclones. Idealized models supported the potential of this process to influence the distribution of buoyant colonies over time scales of several months. In spring 2011, the highest vertically integrated colony abundances were observed in anticyclones. These peaks in abundance correlated with anomalously fresh water, suggesting riverine input as a driver of the relationship. These contrasting results in cyclones and anticyclones highlight distinct mechanisms by which mesoscale eddies can influence the abundance and distribution of Trichodesmium populations of the southwestern North Atlantic. PMID:26937328

  14. Longitudinal variation in lateral trapping of fine sediment in tidal estuaries: observations and a 3D exploratory model

    NASA Astrophysics Data System (ADS)

    Chen, Wei; de Swart, Huib E.

    2018-03-01

    This study investigates the longitudinal variation of lateral entrapment of suspended sediment, as is observed in some tidal estuaries. In particular, field data from the Yangtze Estuary are analysed, which reveal that in one cross-section, two maxima of suspended sediment concentration (SSC) occur close to the south and north sides, while in a cross-section 2 km down-estuary, only one SSC maximum on the south side is present. This pattern is found during both spring tide and neap tide, which are characterised by different intensities of turbulence. To understand longitudinal variation in lateral trapping of sediment, results of a new three-dimensional exploratory model are analysed. The hydrodynamic part contains residual flow due to fresh water input, density gradients and Coriolis force and due to channel curvature-induced leakage. Moreover, the model includes a spatially varying eddy viscosity that accounts for variation of intensity of turbulence over the spring-neap cycle. By imposing morphodynamic equilibrium, the two-dimensional distribution of sediment in the domain is obtained analytically by a novel procedure. Results reveal that the occurrence of the SSC maxima near the south side of both cross-sections is due to sediment entrapment by lateral density gradients, while the second SSC maximum near the north side of the first cross-section is by sediment transport due to curvature-induced leakage. Coriolis deflection of longitudinal flow also contributes the trapping of sediment near the north side. This mechanism is important in the upper estuary, where the flow due to lateral density gradients is weak.

  15. Microfabricated magnetic traps for single molecule manipulation and measurement

    NASA Astrophysics Data System (ADS)

    Mirowski, Elizabeth; Moreland, John; Russek, Stephen; Donahue, Michael

    2003-03-01

    We have microfabricated patterned magnetic thin film traps for capturing superparamagnetic beads in microfluidic cells. The traps are based on a novel concept of using a magnetic force microsope cantilever for transporting magnetic beads from one trap to another along the surface of a thin silicon nitride membrane. We specifically address the optimal design criteria for the traps. In addition, we present measurements of the forces on a bead (attached to a functionalized cantilever tip) as a function of its position near the trap. Equivalent spring constants of various trap geometries are extrapolated from the force measurements. The force measurements will be compared to micromagnetic modelling of the system as well as the Brownian motion of the bead in the trap.

  16. SEASON OF DELTAMETHRIN APPLICATION AFFECTS FLEA AND PLAGUE CONTROL IN WHITE-TAILED PRAIRIE DOG (CYNOMYS LEUCURUS) COLONIES, COLORADO, USA.

    PubMed

    Tripp, Daniel W; Streich, Sean P; Sack, Danielle A; Martin, Daniel J; Griffin, Karen A; Miller, Michael W

    2016-07-01

    In 2008 and 2009, we evaluated the duration of prophylactic deltamethrin treatments in white-tailed prairie dog ( Cynomys leucurus ) colonies and compared effects of autumn or spring dust application in suppressing flea numbers and plague. Plague occurred before and during our experiment. Overall, flea abundance tended to increase from May or June to September, but it was affected by deltamethrin treatment and plague dynamics. Success in trapping prairie dogs (animals caught/trap days) declined between June and September at all study sites. However, by September trap success on dusted sites (19%; 95% confidence interval [CI] 16-22%) was about 15-fold greater than on undusted control sites (1%; CI 0.3-4%; P≤0.0001). Applying deltamethrin dust as early as 12 mo prior seemed to afford some protection to prairie dogs. Our data showed that dusting even a portion of a prairie dog colony can prolong its persistence despite epizootic plague. Autumn dusting may offer advantages over spring in suppressing overwinter or early-spring flea activity, but timing should be adjusted to precede the annual decline in aboveground activity for hibernating prairie dog species. Large colony complexes or collections of occupied but fragmented habitat may benefit from dusting some sites in spring and others in autumn to maximize flea suppression in a portion of the complex or habitat year-round.

  17. Lateral variability of the estuarine turbidity maximum in a tidal strait: Chapter 24

    USGS Publications Warehouse

    Ganju, N.K.; Schoellhamer, D.H.; ,

    2008-01-01

    The behavior of the estuarine turbidity maximum (ETM) in response to freshwater flow, tidal forcing, and bed dynamics has been studied extensively by many researchers. However, the majority of investigations focus on the longitudinal position and strength of the ETM, which can vary over tidal, spring-neap, and seasonal timescales. ETMs may become longitudinally fixed due to bathymetric constraints, and thus the lateral position may vary significantly on differing timescales. Lateral dynamics of the ETM may affect contaminant uptake in biologically active regions, while local deposition patterns may be affected by the dominant lateral position. A longitudinally fixed ETM in Carquinez Strait, California, was studied to specifically investigate the dynamics of lateral ETM variability during April 2004. an abrupt topographical control on the north side restricts gravitational circulation resulting in convergence and particle trapping, creating the ETM. The cross-section was continuously monitored with two upward-looking velocity profilers and four optical backscatterance sensors. In addition, cross-sectional measurements over one tidal cycle were performed during a spring tide with boat-mounted velocity and water quality profilers. The lateral and vertical positions of the ETM center of mass varied by a maximum of 250 and 5 m, respectively (20% of width and 17% of depth) over the tidal timescale, while tidally averaged lateral and vertical positions varied substantially less (50 and 1 m, respectively). ETM position responded to tidal energy (Urms), with higher vertical position and a laterally centered position resulting from increased mixing during spring tides, and a northerly lateral position from decreased mixing during neap tides. Hydrodynamic and sediment transport modeling of this period reproduces the lateral and vertical movements of the ETM center of mass. Modeling results indicate increased gravitational circulation in the strait and enhanced particle trapping on the north side during neap tides, thus displacing the ETM center of mass to the north. The south side has no topographical control, and therefore no particle trapping mechanism exists on the south side. Secondary circulation is strengthened on spring tides, distributing near-bed sediment toward the south. The field and modeling results are in agreement with previous work in Carquinez Strait and further elucidate the strong lateral variation of the ETM, even in narrow, energetic tidal straits. ?? 2008 Elsevier B.V. All rights reserved.

  18. Modeling the impediment of methane ebullition bubbles by seasonal lake ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, S.; Walter Anthony, K. M.; Archer, D.

    Microbial methane (CH 4) ebullition (bubbling) from anoxic lake sediments comprises a globally significant flux to the atmosphere, but ebullition bubbles in temperate and polar lakes can be trapped by winter ice cover and later released during spring thaw. This "ice-bubble storage" (IBS) constitutes a novel mode of CH 4 emission. Before bubbles are encapsulated by downward-growing ice, some of their CH 4 dissolves into the lake water, where it may be subject to oxidation. We present field characterization and a model of the annual CH 4 cycle in Goldstream Lake, a thermokarst (thaw) lake in interior Alaska. We findmore » that summertime ebullition dominates annual CH 4 emissions to the atmosphere. Eighty percent of CH 4 in bubbles trapped by ice dissolves into the lake water column in winter, and about half of that is oxidized. The ice growth rate and the magnitude of the CH 4 ebullition flux are important controlling factors of bubble dissolution. Seven percent of annual ebullition CH 4 is trapped as IBS and later emitted as ice melts. In a future warmer climate, there will likely be less seasonal ice cover, less IBS, less CH 4 dissolution from trapped bubbles, and greater CH 4 emissions from northern lakes.« less

  19. Modeling the impediment of methane ebullition bubbles by seasonal lake ice

    DOE PAGES

    Greene, S.; Walter Anthony, K. M.; Archer, D.; ...

    2014-12-08

    Microbial methane (CH 4) ebullition (bubbling) from anoxic lake sediments comprises a globally significant flux to the atmosphere, but ebullition bubbles in temperate and polar lakes can be trapped by winter ice cover and later released during spring thaw. This "ice-bubble storage" (IBS) constitutes a novel mode of CH 4 emission. Before bubbles are encapsulated by downward-growing ice, some of their CH 4 dissolves into the lake water, where it may be subject to oxidation. We present field characterization and a model of the annual CH 4 cycle in Goldstream Lake, a thermokarst (thaw) lake in interior Alaska. We findmore » that summertime ebullition dominates annual CH 4 emissions to the atmosphere. Eighty percent of CH 4 in bubbles trapped by ice dissolves into the lake water column in winter, and about half of that is oxidized. The ice growth rate and the magnitude of the CH 4 ebullition flux are important controlling factors of bubble dissolution. Seven percent of annual ebullition CH 4 is trapped as IBS and later emitted as ice melts. In a future warmer climate, there will likely be less seasonal ice cover, less IBS, less CH 4 dissolution from trapped bubbles, and greater CH 4 emissions from northern lakes.« less

  20. Life history and populational aspects of the Eastern harvest mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunaway, P.B.

    1968-01-01

    Reithrodontomys humulis in the Oak Ridge, TN, area is found mainly in certain habitats dominated by grasses and other herbaceous plants characteristic of early vegetational succession. Populations seldom are dense, but on a 4 ha, old-field area, trapping success ranged from about 4 to 18 individuals per 100 trap nights for 18 consecutive months. This population on the old-field area disappeared during severly cold weather in February-March of 1960, but a few individuals survived on a radioactive area. More females than males were captured in the periods June-November 1958 and May-November 1959, whereas more males were caught from December 1959more » to February 1960. However, the sex ratio was about equal over a period of a year or more. The reproductive season extended from about late spring to late fall, but breeding occurred during winters of some years. Litter sizes ranged from 1-8 (av. 3.4). Cannibalism and abandonment of litters were characteristic of newly caught females. Average weights for females during reproductive periods were consistently greater than average weights of males, but even during nonreproductive periods females weighed as much or more than males. Weights of trapped individuals ranged from 3-17 g. Mortality of nestlings appeared to be severe, but survival after leaving the nests seemed to be relatively long. 15 references, 5 figures, 4 tables.« less

  1. Modification of the coil-stretch transition by confinement

    NASA Astrophysics Data System (ADS)

    Doyle, Patick; Tang, Jing; Jones, Jeremy

    2010-03-01

    Large double stranded DNA are both a powerful system to study polymer dynamics at the single molecule level and also important molecules for genomic applications. While homogenous electric fields are routinely used to separate DNA in gels, DNA deformation in more complex fields has been less widely studied. We will demonstrate how micro/nanofluidic devices allow for the generation of electric fields with well-defined kinematics for trapping, stretching and then watching DNA relax back to equilibrium. The dimensions of the devices highly confine DNA and subsequently change both their conformation and dynamics. We will show how these confinements effects change the coil-stretch transition of a DNA being electrophoretically stretched in a purely elongational electrical field. We experimentally show that a two-stage coil stretch transition occurs and develop a simple dumbbell model which captures most of the relevant physics. We trace the origin of this phenomena to the modification of the effective spring law due to confinement.

  2. Salamander Saver

    ERIC Educational Resources Information Center

    Ilseman, Kelly; Hoffmann, Kristine

    2016-01-01

    On a spring morning in Maine, traps made of nets rise above vernal pools in a small wetland, ready to collect salamanders. The traps were designed by groups of rural and urban high school students from Maine and Massachusetts participating in the University of Maine Upward Bound Math Science Program (UBMS) at the university campus in Orono, Maine.…

  3. Walla Walla River Fish Passage Operations Program, 2000-2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, Brian C.; Duke, Bill B.

    2004-02-01

    In the late 1990's, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow measures, and initiating trap and haul efforts. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adultmore » and juvenile salmonids in the basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2000-2001 project year, there were 624 summer steelhead (Oncorhynchus mykiss), 24 bull trout (Salvelinus confluentus), and 47 spring chinook (O. tshawytscha) counted at the Nursery Bridge Dam adult trap between December 27, 2000 and June 7, 2001. The Little Walla Walla River juvenile trap was not operated this year. The project transported 1600 adult spring chinook from Ringold Springs Hatchery to the South Fork Walla Walla Brood Holding Facility and outplanted 1156 for natural spawning in the basin. The project also provided equipment for transportation of juveniles captured during the construction fish salvage at Nursery Bridge Dam.« less

  4. Does Passive Sampling Accurately Reflect the Bee (Apoidea: Anthophila) Communities Pollinating Apple and Sour Cherry Orchards?

    PubMed

    Gibbs, Jason; Joshi, Neelendra K; Wilson, Julianna K; Rothwell, Nikki L; Powers, Karen; Haas, Mike; Gut, Larry; Biddinger, David J; Isaacs, Rufus

    2017-06-01

    During bloom of spring orchard crops, bees are the primary providers of pollination service. Monitoring these insects for research projects is often done by timed observations or by direct aerial netting, but there has been increasing interest in blue vane traps as an efficient passive approach to collecting bees. Over multiple spring seasons in Michigan and Pennsylvania, orchards were monitored for wild bees using timed netting from crop flowers and blue vane traps. This revealed a distinctly different community of wild bees captured using the two methods, suggesting that blue vane traps can complement but cannot replace direct aerial netting. The bee community in blue vane traps was generally composed of nonpollinating species, which can be of interest for broader biodiversity studies. In particular, blue vane traps caught Eucera atriventris (Smith), Eucera hamata (Bradley), Bombus fervidus (F.), and Agapostemon virescens (F.) that were never collected from the orchard crop flowers during the study period. Captures of bee species in nets was generally stable across the 3 yr, whereas we observed significant declines in the abundance of Lasioglossum pilosum (Smith) and Eucera spp. trapped using blue vane traps during the project, suggesting local overtrapping of reproductive individuals. We conclude that blue vane traps are a useful tool for expanding insights into bee communities within orchard crop systems, but they should be used with great caution to avoid local extirpation of these important insects. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Nonlinearity and seasonal bias in an index of brushtail possum abundance

    USGS Publications Warehouse

    Forsyth, D.M.; Link, W.A.; Webster, R.; Nugent, G.; Warburton, B.

    2005-01-01

    Introduced brushtail possums (Trichosurus vulpecula) are a widespread pest of conservation and agriculture in New Zealand, and considerable effort has been expended controlling populations to low densities. A national protocol for monitoring the abundance of possums, termed trap catch index (TCI), was adopted in 1996. The TCI requires that lines of leghold traps set at 20-m spacing are randomly located in a management area. The traps are set for 3 fine nights and checked daily, and possums are killed and traps reset. The TCI is the mean percentage of trap nights that possums were caught, corrected for sprung traps and nontarget captures, with trap line as the sampling unit. We studied I forest and I farmland area in the North Island, New Zealand, to address concerns that TCI estimates may not be readily comparable because of seasonal changes in the capture probability of possums. We located blocks of 6 trap lines at each area and randomly trapped I line in each block in 3 seasons (summer, winter, and spring) in 2000 and 2001. We developed a model to allow for variation in local population size and nightly capture probability, and fitted the model using the Bayesian analysis software BUGS. Capture probability declined with increasing abundance of possums, generating a nonlinear TCI. Capture probability in farmland was lower during spring relative to winter and summer, and to forest during summer. In the absence of a proven and cost-effective alternative, our results support the continued use of the TCI for monitoring the abundance of possums in New Zealand. Seasonal biases in the TCI should be minimized by conducting repeat sampling in the same season.

  6. Characteristics of DNA methylation changes induced by traffic-related air pollution.

    PubMed

    Ding, Rui; Jin, Yongtang; Liu, Xinneng; Zhu, Ziyi; Zhang, Yuan; Wang, Ting; Xu, Yinchun

    2016-01-15

    Traffic-related air pollution (TRAP) is a potential risk factor for numerous respiratory disorders, including lung cancer, while alteration of DNA methylation may be one of the underlying mechanisms. However, the effects of TRAP mixtures on DNA methylation have not been investigated. We have studied the effects of brief or prolonged TRAP exposures on DNA methylation in the rat. The exposures were performed in spring and autumn, with identical study procedures. In each season, healthy Wistar rats were exposed to TRAP at for 4 h, 7 d, 14 d, or 28 d. Global DNA methylation (LINE-1 and Alu) and specific gene methylation (p16(CDKN2A), APC, and iNOS) in the DNA from blood and lung tissues were quantified by pyrosequencing. Multiple linear regression was applied to assess the influence of air pollutants on DNA methylation levels. The levels of PM2.5, PM10, and NO2 in the high and moderate groups were significantly higher than in the control group. The DNA methylation levels were not significantly different between spring and autumn. When spring and autumn data were analyzed together, PM2.5, PM10, and NO2 exposures were associated with changes in%5mC (95% CI) in LINE-1, iNOS, p16(CDKN2A), and APC ranging from -0.088 (-0.150, -0.026) to 0.102 (0.049, 0.154) per 1 μg/m(3) increase in the pollutant concentration. Prolonged exposure to a high level of TRAP was negatively associated with LINE-1 and iNOS methylation, and positively associated with APC methylations in the DNA from lung tissues but not blood. These findings show that TRAP exposure is associated with decreased methylation of LINE-1 and iNOS, and increased methylation of p16(CDKN2A) and APC. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Coil spring venting arrangement

    DOEpatents

    McCugh, R.M.

    1975-10-21

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed.

  8. Investigations into the Early History of Naturally Produced Spring Chinook Salmon in the Grand Ronde Basin : Fish Research Project Oregon : Annual Progress Report Project Period September 1, 1996 to August 31, 1997.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johasson, Brian C.; Tranquilli, J. Vincent; Keefe, MaryLouise

    1998-10-28

    We have documented two general life history strategies utilized by juvenile spring chinook salmon in the Grande Ronde River basin: (1) juveniles migrate downstream out of summer rearing areas in the fall, overwinter in river valley habitats, and begin their seaward migration in the spring, and (2) juveniles remain in summer rearing areas through the winter and begin seaward migration in the spring. In migration year 96-97, the patterns evident from migrant trap data were similar for the three Grande Ronde River populations studied, with 42% of the Lostine River migrants and 76% of the Catherine Creek migrants leaving uppermore » rearing areas in the fall. Contrary to past years, the majority (98%) of upper Grande Ronde River migrants moved out in the fall. Total trap catch for the upper Grande Ronde River was exceedingly low (29 salmon), indicating that patterns seen this year may be equivocal. As in previous years, approximately 99% of chinook salmon juveniles moved past our trap at the lower end of the Grande Ronde River valley in the spring, reiterating that juvenile chinook salmon overwinter within the Grande Ronde valley section of the river. PIT-tagged fish were recaptured at Grande Ronde River traps and mainstem dams. Recapture data showed that fish that overwintered in valley habitats left as smolts and arrived at Lower Granite Dam earlier than fish that overwintered in upstream rearing areas. Fish from Catherine Creek that overwintered in valley habitats were recaptured at the dams at a higher rate than fish that overwintered upstream. In this first year of data for the Lostine River, fish tagged during the fall migration were detected at a similar rate to fish that overwintered upstream. Abundance estimates for migration year 96-97 were 70 for the upper Grande Ronde River, 4,316 for the Catherine Creek, and 4,323 for the Lostine River populations. Although present in most habitats, juvenile spring chinook salmon were found in the greatest abundance in pool habitats, particularly alcove and backwater pools. These results were consistent for both summer and winter surveys.« less

  9. Inoculum Potential of Fusarium spp. Relates to Tillage and Straw Management in Norwegian Fields of Spring Oats

    PubMed Central

    Hofgaard, Ingerd S.; Seehusen, Till; Aamot, Heidi U.; Riley, Hugh; Razzaghian, Jafar; Le, Vinh H.; Hjelkrem, Anne-Grete R.; Dill-Macky, Ruth; Brodal, Guro

    2016-01-01

    The increased occurrence of Fusarium-mycotoxins in Norwegian cereals over the last decade, is thought to be caused by increased inoculum resulting from more cereal residues at the soil surface as a result of reduced tillage practices. In addition, weather conditions have increasingly promoted inoculum development and infection by Fusarium species. The objective of this work was to elucidate the influence of different tillage regimes (autumn plowing; autumn harrowing; spring plowing; spring harrowing) on the inoculum potential (IP) and dispersal of Fusarium spp. in spring oats. Tillage trials were conducted at two different locations in southeast Norway from 2010 to 2012. Oat residues from the previous year’s crop were collected within a week after sowing for evaluation. IP was calculated as the percentage of residues infested with Fusarium spp. multiplied by the proportion of the soil surface covered with residues. Fusarium avenaceum and F. graminearum were the most common Fusarium species recovered from oat residues. The IP of Fusarium spp. was significantly lower in plowed plots compared to those that were harrowed. Plowing in either the autumn or spring resulted in a low IP. Harrowing in autumn was more effective in reducing IP than the spring harrowing, and IP levels for the spring harrowed treatments were generally higher than all other tillage treatments examined. Surprisingly low levels of F. langsethiae were detected in the residues, although this species is a common pathogen of oat in Norway. The percentage of the residues infested with F. avenaceum, F. graminearum, F. culmorum, and F. langsethiae generally related to the quantity of DNA of the respective Fusarium species determined using quantitative PCR (qPCR). Fusarium dispersal, quantified by qPCR analysis of spore trap samples collected at and after heading, generally corresponded to the IP. Fusarium dispersal was also observed to increase after rainy periods. Our findings are in line with the general understanding that plowing is a means to reduce the IP of Fusarium spp. in cereal fields. The main inoculum source for F. langsethiae remains unclear. Our results will be useful in the development of forecasting tools to calculate the risk of Fusarium in cereals. PMID:27148236

  10. Boll weevil (Coleoptera: Curculionidae) response to and volatilization rates of grandlure when combined with varying doses of eugenol in the extended-life pheromone lure.

    PubMed

    Armstrong, J S

    2010-04-01

    Boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), trapping and pheromone quantitative analysis of extended-life pheromone lures manufactured with 0, 10, 20, and 30 mg of eugenol was conducted in the Rio Grande Valley of Texas under spring and summer conditions. Boll weevils responded positively to eugenol on one of 12 trapping weeks when densities were high, but when densities were low (<2 weevils trap(-1) wk(-1)), there were no significant differences in captures for any dosage of eugenol offered in a standard boll weevil trap. Weekly grandlure volatilization did not differ by eugenol dose but was significantly different when evaluated over three different trapping periods and by week within trapping period due to differences in ambient temperature. The amount of grandlure that remained after 4 wk in moderate temperatures of spring was 13.1 +/- 0.19 mg (55.7% of original 25 mg of content) compared with 5.5 +/- 0.15 mg remaining (22.8% of original 25 mg content) after for 4 wk in summer heat. Weekly volatilization of grandlure for the summer trapping period was 9.8 +/- 0.32 mg for the first week, declining steadily to 1.0 +/- 0.09 mg by the fourth week of age. The data indicate that at high summer temperatures >30 degrees C, accumulative grandlure loss per week may be too high, leaving too little residual grandlure to effectively attract boll weevils at the end of 3 wk of trapping. Eugenol plays no role in reserving or encouraging the release of grandlure, or in increasing boll weevil captures when boll weevil densities are low.

  11. Canyon effect and seasonal variability of deep-sea organisms in the NW Mediterranean: Synchronous, year-long captures of ;swimmers; from near-bottom sediment traps in a submarine canyon and its adjacent open slope

    NASA Astrophysics Data System (ADS)

    Romano, C.; Flexas, M. M.; Segura, M.; Román, S.; Bahamon, N.; Gili, J. M.; Sanchez-Vidal, A.; Martin, D.

    2017-11-01

    Numerous organisms, including both passive sinkers and active migrators, are captured in sediment traps together with sediments. By capturing these "swimmers", the traps become an extraordinarily tool to obtain relevant information on the biodiversity and dynamics of deep-sea organisms. Here we analyze near-bottom swimmers larger than 500 μm and their fluxes collected from eight near-bottom sediment traps installed on instrumented moorings deployed nearby Blanes Canyon (BC). Our data, obtained from November 2008 to October 2009 with a sampling rate of 15 days, constitutes the first year-long, continuous time series of the whole swimmers' community collected at different traps and bottom depths (from 300 m to 1800 m) inside a submarine canyon and on its adjacent open slope (OS). The traps captured 2155 specimens belonging to 70 taxa, with Crustacea (mainly Copepoda) and Annelida Polychaeta accounting for more than 90% of the total abundance. Almost half of the identified taxa (33) were only present in BC traps, where mean annual swimmer fluxes per trap were almost one order of magnitude higher than in the OS ones. Temporal variability in swimmer fluxes was more evident in BC than in OS. Fluxes dropped in winter (in coincidence with the stormy period in the region) and remained low until the following spring. In spring, there was a switch in taxa composition, including an increase of planktonic organisms. Additionally, we report drastic effects of extreme events, such as major storms, on deep-sea fauna. The impact of such extreme events along submarine canyon systems calls to rethink the influence of climate-driven phenomena on deep-sea ecosystems and, consequently, on their living resources.

  12. Umatilla River Fish Passage Operations Project : Annual Progress Report October 2007 - September 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronson, James P.; Loffink, Ken; Duke, Bill

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were enumerated at Threemile Dam from June 7, 2007 to August 11, 2008. A total of 3,133 summer steelhead (Oncorhynchus mykiss); 1,487 adult, 1,067 jack, and 999 subjack fall Chinook (O. tshawytscha); 5,140 adult and 150 jack coho (O. kisutch); and 2,009 adult, 517 jack, and 128 subjack spring Chinook (O. tshawytscha) were counted. All fish were enumerated at the east bank facility. Of the fish counted, 1,442 summer steelheadmore » and 88 adult and 84 jack spring Chinook were hauled upstream from Threemile Dam. There were 1,497 summer steelhead; 609 adult, 1,018 jack and 979 subjack fall Chinook; 5,036 adult and 144 jack coho; and 1,117 adult, 386 jack and 125 subjack spring Chinook either released at, or allowed to volitionally migrate past, Threemile Dam. Also, 110 summer steelhead; 878 adult and 43 jack fall Chinook; and 560 adult and 28 jack spring Chinook were collected as broodstock for the Umatilla River hatchery program. In addition, there were 241 adult and 15 jack spring Chinook collected at Threemile Dam for outplanting in the South Fork Walla Walla River and Mill Cr, a tributary of the mainstem Walla Walla River. The Westland Canal juvenile facility (Westland), located near the town of Echo at river mile (RM) 27, is the major collection point for out-migrating juvenile salmonids and steelhead kelts. The canal was open for 158 days between February 11, 2008 and July 18, 2008. During that period, fish were bypassed back to the river 150 days and were trapped 6 days. There were also 2 days when fish were directed into and held in the canal forebay between the time the bypass was closed and the trap opened. An estimated 64 pounds of fish were transported from the Westland trapping facility. Approximately 25.8% of the fish transported were salmonids. In addition, one adult Pacific lamprey was trapped and released above the Westland ladder this year. The Threemile Dam west bank juvenile bypass was opened on March 11, 2008 in conjunction with water deliveries and continued through the summer. West Extension Irrigation District (WEID) discontinued diverting live flow on June 24, 2008 but the bypass remained open throughout the project year. The juvenile trap was not operated this project year.« less

  13. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program; Satellite Facilities Operation and Maintenance, 2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie

    2006-01-01

    There were 2 acclimation periods at the Catherine Creek Acclimation Facility (CCAF) in 2005. During the early acclimation period, 130,748 smolts were delivered from Lookingglass Hatchery (LGH) on 7 March. This group contained progeny of both the captive (53%) and conventional broodstock programs. The size of the fish at delivery was 23.9 fish/lb. Volitional releases began 14 March 2005 and ended 27 March with an estimated total (based on PIT tag detections of 3,187) of 29,402 fish leaving the raceways. This was 22.5% of the total fish delivered. Fish remaining in the raceways after volitional release were forced out. Hourlymore » detections of PIT-tagged fish showed that most of the fish left around 1900 hours. The size of the fish just before the volitional release was 23.9 and the size of the fish remaining just before the forced release was 23.2 fish/lb. The total mortality for the acclimation period was 204 (0.16%). The total number of fish released from the acclimation facility during the early period was 130,544. During the second acclimation period 59,100 smolts were delivered from LGH on 28 March. This group was comprised entirely of progeny from the conventional broodstock program. The size of the fish at delivery was 21.8 fish/lb. Volitional releases began 3 April 2005 and ended with a force out emergency release on 7 April. The size of the fish just before the volitional release was 21.8. The total mortality for the acclimation period was 64 (0.11 %). The total number of fish released from the acclimation facility during the late period was 59,036. There was only 1 planned acclimation period at the Upper Grande Ronde Acclimation Facility (UGRAF) in 2005. During the early acclimation period 105,418 smolts were delivered from LGH on 8 March. This group was comprised entirely of progeny from the conventional broodstock program. The size of the fish at delivery was 21.0 fish/lb. There was no volitional release in 2005 due to freezing air and water conditions prompting an early release. The total mortality for the acclimation period was 49 (0.05 %). The total number of fish released from the acclimation facility during the late period was 105,369. Maintenance and repair activities were conducted at the acclimation facilities in 2005. Facility maintenance work consisted of snow removal, installation of drainage lines, removal of gravel from intake area, installation of new gate at the CCAF, and complete overhaul of 2 travel trailers. The Catherine Creek Adult Capture Facility (CCACF) was put into operation on 11 February 2005. The first adult summer steelhead was captured on 4 March. A total of 190 adult summer steelhead were trapped and released from 4 March to 16 May 2005. Peak arrival at the trap was the week of 8 April. The first adult spring Chinook salmon was captured at CCACF on 6 May 2005. A total of 226 spring Chinook salmon were trapped from 6 May to 8 July 2005. There were 56 adults and 4 jacks unmarked and 136 adult and 30 jack marked spring Chinook salmon trapped. Peak arrival at the trap was the week of 10 June for the unmarked and marked fish. None of the captive broodstock returns were collected for broodstock. Broodstock was collected systematically over the entire return from 31 May to 6 July 2005. Ten of the 34 broodstock collected and transported from CCACF to LGH were unmarked fish trapped. About 18% of the naturally produced adult males and females trapped were taken to LGH for broodstock. One jack was collected for every 5 adult males that were taken to LGH. A total of 30 age 4 and 5 and 4 age 3 fish were transported to LGH for broodstock. The hatchery component of the broodstock was 66.7%. Five weekly spawning surveys were conducted below the weir on Catherine Creek beginning 30 June 2005. During these surveys no live or dead fish were observed. The trap was removed from Catherine Creek on 3 August 2005. Temperatures at the CCACF ranged from -0.1 C on 14 February to 23.7 C on 21 July. The hourly temperatures at the adult trap during the period of operation showed that the lowest water temperatures usually occurred around 0700 hours and the highest water temperatures usually occurred around 1600 hours. Facility maintenance work at CCACF consisted of construction of a debris barrier in front of the intake, maintenance of weir, and weed abatement. The Upper Grande Ronde Adult Collection Facility (UGRACF) was put into operation on 10 March 2005. The first adult summer steelhead was captured on 8 April. A total of 41 adult summer steelhead were trapped and released from 8 April to 11 May 2005. Peak arrival at the trap was the week of 22 April. The first adult spring Chinook salmon was captured at UGRACF on 31 May 2005. A total of 277 spring Chinook salmon were trapped from 31 May to 3 August 2005. There were 14 adults and no jacks unmarked and 257 adult and 6 jack marked spring Chinook salmon trapped. Peak arrival at the trap for both unmarked and marked fish was 10 June.« less

  14. Estimating Mudpuppy (Necturus maculosus) abundance in the Lamoille River, Vermont, USA

    USGS Publications Warehouse

    Chellman, Isaac C.; Parrish, Donna; Donovan, Therese M.

    2017-01-01

    The Mudpuppy (Necturus maculosus) is classified as a Species of Greatest Conservation Need by the state of Vermont. There is concern regarding status of populations in the Lake Champlain basin because of habitat alteration and potential effects of 3-trifluromethyl-4-nitrophenol (TFM), a chemical used to control Sea Lamprey (Petromyzon marinus). The purpose of our research was to assess Mudpuppy capture methods and abundance in the Lamoille River, Vermont, USA. We sampled Mudpuppies under a mark-recapture framework, using modified, baited minnow traps set during two winter-spring periods. We marked each Mudpuppy with a passive integrated transponder (PIT) tag and released individuals after collecting morphological measurements. We collected 80 individuals during 2,581 trap days in 2008–2009 (year 1), and 81 individuals during 3,072 trap days in 2009–2010 (year 2). We estimated abundance from spring trapping periods in 2009 and 2010, during which capture rates were sufficient for analysis. Capture probability was low (< 0.04), but highest following precipitation events in spring, during periods of higher river flow, when water temperatures were approximately 3 to 6° C. During October 2009, management agencies treated the Lamoille River with TFM. Surveyors recovered more than 500 dead Mudpuppies during the post-treatment assessment. Overall, Mudpuppy captures did not change between sampling periods; however, we captured fewer females during year 2 compared to year 1, and the sex ratio changed from 0.79:1 (M:F) during year 1 to 3:1 (M:F) during year 2. Our data may help wildlife managers assess population status of Mudpuppies in conjunction with fisheries management techniques.

  15. Scattering-free optical levitation of a cavity mirror.

    PubMed

    Guccione, G; Hosseini, M; Adlong, S; Johnsson, M T; Hope, J; Buchler, B C; Lam, P K

    2013-11-01

    We demonstrate the feasibility of levitating a small mirror using only radiation pressure. In our scheme, the mirror is supported by a tripod where each leg of the tripod is a Fabry-Perot cavity. The macroscopic state of the mirror is coherently coupled to the supporting cavity modes allowing coherent interrogation and manipulation of the mirror motion. The proposed scheme is an extreme example of the optical spring, where a mechanical oscillator is isolated from the environment and its mechanical frequency and macroscopic state can be manipulated solely through optical fields. We model the stability of the system and find a three-dimensional lattice of trapping points where cavity resonances allow for buildup of optical field sufficient to support the weight of the mirror. Our scheme offers a unique platform for studying quantum and classical optomechanics and can potentially be used for precision gravitational field sensing and quantum state generation.

  16. Food habits of the raccoon in eastern Texas

    USGS Publications Warehouse

    Baker, R.H.; Newman, C.C.; Wilke, F.

    1945-01-01

    The food habits of raccoons were studied along the Neches River in three counties of eastern Texas in 1940-42. Field studies mere supplemented by laboratory analyses of 344 scats collected in all months and of 23 stomachs and 11 intestines obtained in winter. Acorns and crayfish constitute more than half of the yearly diet and both are consumed in considerable amount at all seasons. Persimmons and grapes were utilized heavily when available and other fruits in smaller amounts. Insects and other invertebrates formed an important part of the diet. Vertebrates were eaten sparingly but species of water snakes were preyed upon as were winter and spring concentrations of water fowl.....Raccoons were found to concentrate in timbered river bottoms during the winter and spring, feeding largely on acorns and crayfish. Under these conditions they are readily trapped. In the summer and autumn the populations appear to be dispersed through the uplands as well as bottomlands in search of seasonal foods.

  17. [How dangerous are "mouse trap projectile traps"?].

    PubMed

    Schyma, C; Placidi, P

    1994-01-01

    The authors research by experiments to define the potency of wounding of a special mouse trap which belongs to the spring-guns. Besides the regular assigned 9 mm blank cartridge also the 9 x 17 mm "green" cattle stunning cartridge is tested. Shots were made on soap, cotton and skin on different conditions. As result the authors found that by close range shots (up to 1 cm) by the blank cartridge badly healing wounds are caused. The 600 Joule cattle stunning cartridge is able to mutilate the hand by contact shots.

  18. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, Progress Report 2000-2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleary, Peter; Kucera, Paul; Blenden, Michael

    This report summarizes the emigration studies of the Nez Perce Tribe in the Imnaha River subbasin during the 2001 and 2002 migration years. A migration year for the Imnaha River is defined here as beginning July 31 of the previous year and ending July 30 the following year. The conclusion of the studies at the end of migration year 2002 marked the 11th year of the Nez Perce Tribe's Lower Snake River Emigration Studies. The Nez Perce Tribe has participated in the Fish Passage Center's Smolt Monitoring Program for nine of the 11 years. These studies collect and tag juvenilemore » chinook salmon and steelhead at two locations in the fall, rkm 74 and rkm 7, and at rkm 7 during the spring. Data from captured and tagged fish provide an evaluation of hatchery production and releases strategies, post release survival of hatchery chinook salmon, abundance of natural chinook salmon, and downstream survival and arrival timing of natural and hatchery chinook salmon and steelhead. The hydrologic conditions that migrating fish encountered in 2001 were characterized as a drought and conditions in 2002 were characterized as below average. Hatchery chinook salmon had a mean fork length that was 34 mm greater in 2001 and 35 mm greater in 2002 than the mean fork length of natural chinook smolts. Hatchery steelhead smolt mean fork lengths were 39 mm greater than natural steelhead smolts in 2001 and 44 mm greater than natural steelhead smolt fork lengths in 2002. A significant difference (p < 0.05) between hatchery and natural chinook salmon and steelhead fork lengths has been documented by these emigration studies from 1997 to 2002. Hatchery chinook salmon were volitionally released in 2001 and 2002 and the 90% arrivals for 2001 and 2002 at the lower rkm 7 trap were within the range of past observations of 22 to 38 days observed in 1999 and 2000. We estimated that 93.9% of the 123,014 hatchery chinook salmon released in 2001 survived to the lower trap and 90.2% of the 303,769 hatchery chinook salmon released in 2002 survived to the lower trap. Post release survival estimates for hatchery chinook salmon were within the range of past estimates; 88.4% in 1998 to 100.9% in 1994. An estimated 7,646 to 23,249 (95% C.I.) natural chinook salmon smolts migrated past the lower Imnaha River trap from April 4 to April 22. An additional 6,767 to 14,706 (95% C.I.) natural chinook salmon smolts migrated past the lower Imnaha River trap from April 23 to May 14, 2002. Natural chinook salmon captured and tagged at the upper rkm 74 trap survived to Lower Granite Dam (LGR) at a rate of 28.8% during migration year 2001 and 21.9% during migration year 2002. The survival estimate for fall tagged natural chinook salmon from the lower trap to LGR was 41.9% in 2001 and 33.3% in 2002. Differences between survival from release to LGR for fall tagged natural chinook salmon from the lower trap have been 5.9% to 16.9% higher than for fall tagged natural chinook salmon from the upper trap from 1994 to 2002. Spring PIT tag release groups of natural chinook salmon, hatchery chinook salmon, and hatchery steelhead produced estimates of survival from the trap to LGR within the range of past estimates since 1993. Estimated survival from release to LGR for 2001 and 2002 were as follows: 83.7% and 86.9% for natural chinook salmon, 80.3% and 77.3% for hatchery chinook salmon, 82.7% and 81.8% for natural steelhead, and 82.0% and 83.0% for hatchery steelhead. Estimates of survival for spring tagged fish from the trap to Lower Monumental Dam (LMO) during the drought of 2001 were the lowest estimates of survival from 1998 to 2002 for natural chinook salmon, and from1997 to 2002 for natural and hatchery steelhead. Estimates of migration year 2001 survival from the trap to LMO were as follows: 65.6% - natural chinook salmon, 68.9% - hatchery chinook salmon, 49.7% natural steelhead, and 42.9% - hatchery steelhead. Estimates of migration year 2002 survival from the trap to LMO were as follows: 76.8% - natural chinook salmon, 68.1% - hatchery chinook salmon, 69.9% natural steelhead, and 78.0% - hatchery steelhead. A smolt-to-adult return rate (SAR) index from LGR to LGR was calculated for migrating pre-smolt and smolt natural chinook salmon, that were PIT tagged in the fall and spring at the lower trap, for brood years 1996 to 1998 (migration years 1998 to 2000). The SARs are representative of in-river Imnaha natural chinook salmon. The LGR to LGR SAR index for presmolt chinook salmon is as follows: 3.08% (BY 1996), 2.41% (BY 1997), and 2.98% (BY 1998). Smolt-to-adult return rate index for spring tagged smolts was lower: 1.75% (BY 1996), 2.24% (BY 1997) and 2.94% (BY 1998). Fall tagged natural chinook salmon from the upper and lower trap and spring tagged natural chinook salmon from the lower trap all had significantly different (p < 0.05) median and cumulative arrival timing at LGR during migration year 2001.« less

  19. Activity of aphids associated with lettuce and broccoli in Spain and their efficiency as vectors of Lettuce mosaic virus.

    PubMed

    Nebreda, M; Moreno, A; Pérez, N; Palacios, I; Seco-Fernández, V; Fereres, A

    2004-03-01

    This research sought to identify the aphid virus vector species associated with lettuce and broccoli crops in Spain, and to determine their population dynamics and ability to transmit Lettuce mosaic virus (LMV). Green tile traps and Moericke yellow water-pan traps were used to monitor aphid flights during the spring and autumn growing seasons of 2001. Aphid species feeding on lettuce were counted weekly. The transmission efficiencies of LMV were determined for the aphid species caught most frequently. The Moericke traps generally caught more aphid species than the tile trap, but the latter was the most suitable to estimate flight activity of species involved in virus spread. Spring aphid catches indicated that the main aphid species landing on lettuce in the regions of Madrid and Murcia was Hyperomyzus lactucae, but Brachycaudus helichrysi was also abundant in both regions. In broccoli in the Navarra region, the most abundant species in spring were Aphis fabae, B. helichrysi and H. lactucae. In autumn-sown crops, the main species landing on lettuce in the Madrid region were Hyadaphis coriandri and Aphis spiraecola. In Murcia, A. spiraecola and Myzus persicae were the most abundant, while in Navarra, Therioaphis trifolii, and various Aphis spp. were the most numerous landing on broccoli. The main aphid species colonising lettuce was Nasonovia ribisnigri, but other less abundant colonising species were Aulacorthum solani and Macrosiphum euphorbiae. The most efficient vectors of LMV were M. persicae, Aphis gossypii and M. euphorbiae, while A. fabae and H. lactucae transmitted with low efficiency, and Rhopalosiphum padi and N. ribisnigri did not transmit. Occurrence of LMV epidemics in central Spain in relation to aphid flights and the role of weeds as virus reservoirs is discussed.

  20. Comparison of catch and lake trout bycatch in commercial trap nets and gill nets targeting lake whitefish in northern Lake Huron

    USGS Publications Warehouse

    Johnson, James E.; Ebener, Mark P.; Gebhardt, Kenneth; Bergstedt, Roger

    2004-01-01

    We compared seasonal lake whitefish catch rates, lake trout bycatch, and gearinduced lake trout mortality between commercial trap nets and gill nets in north-central Lake Huron. Onboard monitors recorded catches from 260 gill net and 96 trap net lifts from October 1998 through December 1999. Catch rates for lake whitefish were highest in fall for both gear types, reflecting proximity of spawning sites to the study area. Lake whitefish catch rates were also relatively high in spring but low in both gear types in summer. Lake trout were the principal bycatch species in both gears. The lake trout bycatch was lowest in both gear types in fall, highest in gill nets in spring, and highest in trap nets in summer. The ratio of lake trout to legal whitefish (the target species) was highest in summer and lowest in fall in both gear types. The high lake trout ratio in summer was due principally to low catch rates of lake whitefish. All but 3 of 186 live lake trout removed from trap net pots survived for at least two days of observation in laboratory tanks. Therefore, we estimated that post-release survival of trap netted lake trout that had not been entangled in the mesh was 98.4%. In addition, we accounted for stress-induced mortality for lake trout that were live at capture but entangled in the mesh of either gear type. Resulting estimates of lake trout survival were higher in trap nets (87.8%) than in gill nets (39.6%). The number of lake trout killed per lift was highest during summer in trap nets and during spring in gill nets. In trap nets, 85% of dead lake trout were observed to be entangled in the mesh of the pot or tunnels. Survival rates of lake trout in gill nets were higher in our study than reported by others, probably because our nets were hand lifted in a small boat. Our trap net-induced mortality estimates on lake trout were higher than those reported by others because we adjusted our estimates to account for post-release mortality caused by handling and injury. Studies such as ours should prove useful to managers developing harvest allocation options that are consistent with the need to protect nontarget populations. For example, applying our seasonal lake trout-whitefish catch ratios to a hypothetical small-boat gill net fishery, the lake trout bycatch from harvest of 100,000 kg of whitefish would equal the estimated lake trout production available for harvest in the study area for year 2002. The two trap net fisheries may have incidentally killed half this number of lake trout annually from 1995-99. Bycatch estimates are also important inputs to catch-at-age decision models used in developing rehabilitation and harvest strategies for target and bycatch species.

  1. Measuring evaporation rates of laser-trapped droplets by use of fluorescent morphology-dependent resonances.

    PubMed

    Pastel, R; Struthers, A

    2001-05-20

    Morphology-dependent resonances (MDRs) are used to measure accurately the evaporation rates of laser-trapped 1- to 2-mum droplets of ethylene glycol. Droplets containing 3 x 10(-5) M Rhodamine-590 laser dye are optically trapped in a 20-mum hollow fiber by two counterpropagating 150-mW, 800-nm laser beams. A weaker 532-nm laser excites the dye, and fluorescence emission is observed near 560 nm as the droplet evaporates. A complete series of first-order TE and TM MDRs dominates the fluorescent output. MDR mode identification sizes the droplets and provides accurate evaporation rates. We verify the automated MDR mode identification by counting fringes in a videotape of the experiment. The longitudinal spring constant of the trap, measured by analysis of the videotaped motion of droplets perturbed from the trap center, provides independent verification of the laser's intensity within the trap.

  2. Measuring Evaporation Rates of Laser-Trapped Droplets by Use of Fluorescent Morphology-Dependent Resonances

    NASA Astrophysics Data System (ADS)

    Pastel, Robert; Struthers, Allan

    2001-05-01

    Morphology-dependent resonances (MDRs) are used to measure accurately the evaporation rates of laser-trapped 1- to 2- m droplets of ethylene glycol. Droplets containing 3 x10-5 M Rhodamine-590 laser dye are optically trapped in a 20- m hollow fiber by two counterpropagating 150-mW, 800-nm laser beams. A weaker 532-nm laser excites the dye, and fluorescence emission is observed near 560 nm as the droplet evaporates. A complete series of first-order TE and TM MDRs dominates the fluorescent output. MDR mode identification sizes the droplets and provides accurate evaporation rates. We verify the automated MDR mode identification by counting fringes in a videotape of the experiment. The longitudinal spring constant of the trap, measured by analysis of the videotaped motion of droplets perturbed from the trap center, provides independent verification of the laser s intensity within the trap.

  3. Larval fish dynamics in spring pools in middle Tennessee

    USGS Publications Warehouse

    Bettoli, Phillip William; Goldsworthy, C.A.

    2011-01-01

    We used lighted larval traps to assess reproduction by fishes inhabiting nine spring pools in the Barrens Plateau region of middle Tennessee between May and September 2004. The traps (n = 162 deployments) captured the larval or juvenile forms of Etheostoma crossopterum (Fringed Darter) (n = 188), Gambusia affinis (Western Mosquitofish) (n = 139), Hemitremia flammea (Flame Chub) (n = 55), the imperiled Fundulus julisia (Barrens Topminnow) (n = 10), and Forbesichthys agassizii (Spring Cavefish) (n = 1). The larval forms of four other species (Families Centrarchidae, Cyprinidae, and Cottidae) were not collected, despite the presence of adults. Larval Barrens Topminnow hatched over a protracted period (early June through late September); in contrast, hatching intervals were much shorter for Fringed Darter (mid-May through early June). Flame Chub hatching began before our first samples in early May and concluded by late-May. Juvenile Western Mosquitofish were collected between early June and late August. Our sampling revealed that at least two species (Flame Chub and Fringed Darter) were able to reproduce and recruit in habitats harboring the invasive Western Mosquitofish, while Barrens Topminnow could not.

  4. Can neap-spring tidal cycles modulate biogeochemical fluxes in the abyssal near-seafloor water column?

    NASA Astrophysics Data System (ADS)

    Turnewitsch, Robert; Dale, Andrew; Lahajnar, Niko; Lampitt, Richard S.; Sakamoto, Kei

    2017-05-01

    Before particulate matter that settles as 'primary flux' from the interior ocean is deposited into deep-sea sediments it has to traverse the benthic boundary layer (BBL) that is likely to cover almost all parts of the seafloor in the deep seas. Fluid dynamics in the BBL differ vastly from fluid dynamics in the overlying water column and, consequently, have the potential to lead to quantitative and compositional changes between primary and depositional fluxes. Despite this potential and the likely global relevance very little is known about mechanistic and quantitative aspects of the controlling processes. Here, results are presented for a sediment-trap time-series study that was conducted on the Porcupine Abyssal Plain in the abyssal Northeast Atlantic, with traps deployed at 2, 40 and 569 m above bottom (mab). The two bottommost traps were situated within the BBL-affected part of the water column. The time series captured 3 neap and 4 spring tides and the arrival of fresh settling material originating from a surface-ocean bloom. In the trap-collected material, total particulate matter (TPM), particulate inorganic carbon (PIC), biogenic silica (BSi), particulate organic carbon (POC), particulate nitrogen (PN), total hydrolysable amino acids (AA), hexosamines (HA) and lithogenic material (LM) were determined. The biogeochemical results are presented within the context of time series of measured currents (at 15 mab) and turbidity (at 1 mab). The main outcome is evidence for an effect of neap/spring tidal oscillations on particulate-matter dynamics in BBL-affected waters in the deep sea. Based on the frequency-decomposed current measurements and numerical modelling of BBL fluid dynamics, it is concluded that the neap/spring tidal oscillations of particulate-matter dynamics are less likely due to temporally varying total free-stream current speeds and more likely due to temporally and vertically varying turbulence intensities that result from the temporally varying interplay of different rotational flow components (residual, tidal, near-inertial) within the BBL. Using information from previously published empirical and theoretical relations between fluid and biogeochemical dynamics at the scale of individual particle aggregates, a conceptual and semi-quantitative picture of a mechanism was derived that explains how the neap/spring fluid-dynamic oscillations may translate through particle dynamics into neap/spring oscillations of biogeochemical aggregate decomposition (microbially driven organic-matter breakdown, biomineral dissolution). It is predicted that, during transitions from neap into spring tides, increased aggregation in near-seafloor waters and/or reduced deposition of aggregates at the seafloor coincides with reduced biogeochemical particulate-matter decomposition in near-seafloor waters. By contrast, during transitions from spring into neap tides, enhanced biogeochemical particulate-matter decomposition in near-seafloor waters is predicted to coincide with increased deposition of particulate matter at the seafloor. This study suggests that, in addition to current speed, the specifics and subtleties of the interplay of different rotational flow components can be an important control on how the primary flux from the interior ocean is translated into the depositional flux, with potential implications for sedimentary carbon deposition, benthic food supply and possibly even the sedimentary records of environmental change.

  5. Optical spring stabilization

    NASA Astrophysics Data System (ADS)

    Lough, James D.

    The Advanced LIGO detectors will soon be online with enough sensitivity to begin detecting gravitational waves, based on conservative estimates of the rate of neutron star inspirals. These first detections are sure to be significant, however, we will always strive to do better. More questions will be asked about the nature of neutron star material, rates of black hole inspirals, electromagnetic counterparts, etc. To begin to answer all of the questions aLIGO will bring us we will need even better sensitivity in future gravitational wave detectors. This thesis addresses one aspect that will limit us in the future: angular stability of the test masses. Angular stability in advanced LIGO uses an active feedback system. We are proposing to replace the active feedback system with a passive one, eliminating sensing noise contributions. This technique uses the radiation pressure of light inside a cavity as a stable optical spring, fundamentally the same as technique developed by Corbitt, et al. with an additional degree of freedom. I will review the theory of the one dimensional technique and discuss the multidimensional control theory and angular trap setup. I will then present results from the one-dimensional trap which we have built and tested. And propose improvements for the angular trap experiment. Along the way we have discovered an interesting coupling with thermal expansion due to round trip absorption in the high reflective coatings. The front surface HR coating limits our spring stability in this experiment due to the high circulating power and small beam spot size.

  6. Fish Research Project Oregon; Aspects of Life History and Production of Juvenile Oncorhynchus Mykiss in the Grande Ronde River Basin, Northeast Oregon, 1995-1999 Summary Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Dyke, Erick S.; Jonnasson, Brian C.; Carmichael, Richard W.

    2001-07-01

    Rotary screw traps, located at four sites in the Grande Ronde River basin, were used to characterize aspects of early life history exhibited by juvenile Onchorhychus mykiss during migration years 1995-99. The Lostine, Catherine Creek and upper Grande Ronde traps captured fish as they migrated out of spawning areas into valley rearing habitats. The Grande Ronde Valley trap captured fish as they left valley habitats downstream of Catherine Creek and upper Grande Ronde River rearing habitats. Dispersal downstream of spawning areas was most evident in fall and spring, but movement occurred during all seasons that the traps were fished. Seawardmore » migration occurred primarily in spring when O. mykiss smolts left overwintering area located in both spawning area and valley habitats. Migration patterns exhibited by O. mykiss suggest that Grande Ronde Valley habitats are used for overwintering and should be considered critical rearing habitat. We were unable to positively differentiate anadromous and resident forms of O. mykiss in the Grande Ronde River basin because both forms occur in our study area. The Grande Ronde Valley trap provided the best information on steelhead production in the basin because it fished below valley habitats where O. mykiss overwinter. Length frequency histograms of O. mykiss captured below upper spawning and rearing habitats showed a bimodal distribution regardless of the season of capture. Scale analyses suggested that each mode represents a different brood year. Length frequency histograms of O. mykiss captured in the Grande Ronde Valley trap were not bimodal, and primarily represented a size range consistent with other researchers' accounts of anadromous smolts.« less

  7. Promising new technology for managing diamondback moth (Lepidoptera: Plutellidae) in cabbage with pheromone.

    PubMed

    Mitchell, Everett R

    2002-05-01

    Experiments were conducted in plantings of cabbage in spring 1999 and 2000 to evaluate a novel, new matrix system for delivering sex pheromone to suppress sexual communication by diamondback moth, Plutella xylostella (L.). The liquid, viscous, slow-release formulation contained a combination of diamondback moth pheromone, a blend of Z-11-hexadecenyl acetate, 27%:Z-11-hexadecen-1-ol, 1%:Z-11-tetradecen-1-ol, 9%:Z-11-hexadecenal, 63%, and the insecticide permethrin (0.16% and 6% w/w of total formulated material, respectively). Field trapping experiments showed that the lure-toxicant combination was highly attractive to male moths for at least four weeks using as little as a 0.05 g droplet of formulated material per trap; and the permethrin insecticide had no apparent influence on response of moths to lure baited traps. Small field plots of cabbage were treated with the lure-toxicant-matrix combination using droplets of 0.44 and 0.05 g each applied to cabbage in a grid pattern at densities ranging from 990 to 4396 droplets/ha to evaluate the potential for disrupting sexual communication of diamondback moth. There was no significant difference in the level of suppression of sexual communication of diamondback moth, as measured by captures of males in pheromone-baited traps located in the treated plots, versus moths captured in untreated control plots, among the treatments regardless of droplet size (0.05 or 0.44 g) or number of droplets applied per ha. Plots treated with the smallest droplet size (0.05 g) and with the fewest number of droplets per ha (990) suppressed captures of male diamondback moths > 90% for up to 3 weeks post treatment. Although laboratory assays showed that the lure-toxicant combination was 100% effective at killing the diamondback moth, the mode of action in the field trials was not determined. The results indicate that the liquid, viscous, slow release formulation containing diamondback moth pheromone could be used to effectively suppress sexual communication of this pest in cabbage and other crucifers, although as many as three applications probably would be required for suppression over an entire growing season.

  8. Baited traps may be an alternative to conventional pesticides in integrated crop management of chicory (Compositae) in South Africa.

    PubMed

    Midgley, J M; Hill, M P; Villet, M H

    2008-02-01

    Chicory, Chicorium intybus L. (Compositae), is a major field crop in the Eastern Cape Province of South Africa. Several pests feed on the leaves of the plant, resulting in reduced yield. The most important of these are the noctuid moths Helicoverpa armigera (Hübner), Chrysodeixis acuta (Walker), and Trichoplusia orichalcea (F.). The use of attract-and-kill traps offers an alternative to broad-based insecticides in the control of these species. Three fields were treated with normal insecticides and three fields with yellow-baited traps. Eight additional traps were placed in each field, with half of the traps containing the insecticide 2,2-dichlorovinyl dimethyl phosphate (dichlorvos) and half without dichlorvos; and half yellow and half green. Total moth numbers and nonphytophage diversity were measured from these eight traps. Although no differences in H. armigera or T. orichalcea catches were observed between insecticide- and trap-treated fields, numbers of C. acuta and the total number of moths were significantly higher in insecticide-treated fields. Yellow traps containing dichlorvos contained more moths than yellow traps without dichlorvos, or green traps with dichlorvos, or green traps without dichlorvos; but they also contained more nonphytophagous insects. Yellow traps also enhanced the catches of thrips on card traps associated with them. These results offer an opportunity for the South African chicory industry to reduce pesticide applications and thus mitigate environmental impacts.

  9. Development and optimization of the Suna trap as a tool for mosquito monitoring and control

    PubMed Central

    2014-01-01

    Background Monitoring of malaria vector populations provides information about disease transmission risk, as well as measures of the effectiveness of vector control. The Suna trap is introduced and evaluated with regard to its potential as a new, standardized, odour-baited tool for mosquito monitoring and control. Methods Dual-choice experiments with female Anopheles gambiae sensu lato in a laboratory room and semi-field enclosure, were used to compare catch rates of odour-baited Suna traps and MM-X traps. The relative performance of the Suna trap, CDC light trap and MM-X trap as monitoring tools was assessed inside a human-occupied experimental hut in a semi-field enclosure. Use of the Suna trap as a tool to prevent mosquito house entry was also evaluated in the semi-field enclosure. The optimal hanging height of Suna traps was determined by placing traps at heights ranging from 15 to 105 cm above ground outside houses in western Kenya. Results In the laboratory the mean proportion of An. gambiae s.l. caught in the Suna trap was 3.2 times greater than the MM-X trap (P < 0.001), but the traps performed equally in semi-field conditions (P = 0.615). As a monitoring tool , the Suna trap outperformed an unlit CDC light trap (P < 0.001), but trap performance was equal when the CDC light trap was illuminated (P = 0.127). Suspending a Suna trap outside an experimental hut reduced entry rates by 32.8% (P < 0.001). Under field conditions, suspending the trap at 30 cm above ground resulted in the greatest catch sizes (mean 25.8 An. gambiae s.l. per trap night). Conclusions The performance of the Suna trap equals that of the CDC light trap and MM-X trap when used to sample An. gambiae inside a human-occupied house under semi-field conditions. The trap is effective in sampling mosquitoes outside houses in the field, and the use of a synthetic blend of attractants negates the requirement of a human bait. Hanging a Suna trap outside a house can reduce An. gambiae house entry and its use as a novel tool for reducing malaria transmission risk will be evaluated in peri-domestic settings in sub-Saharan Africa. PMID:24998771

  10. A trap, neuter, and release program for feral cats on Prince Edward Island

    PubMed Central

    Gibson, Karen L.; Keizer, Karen; Golding, Christine

    2002-01-01

    A new program to address the feral cat population on Prince Edward Island was undertaken during the spring and summer of 2001. Feral cats from specific geographic areas were trapped, sedated, and tested for feline leukemia virus and feline immunodeficiency virus. Healthy cats were neutered, dewormed, vaccinated, tattooed, and released to their area of origin. A total of 185 cats and kittens were trapped and tested during a 14-week period; 158 cats and kittens as young as 6 weeks of age were neutered and released. Twenty-three adult cats were positive for feline leukemia virus, feline immunodeficiency virus, or both, and were euthanized. PMID:12240526

  11. Correcting for time-dependent field inhomogeneities in a time orbiting potential magnetic trap

    NASA Astrophysics Data System (ADS)

    Fallon, Adam; Berl, Seth; Sackett, Charles

    2017-04-01

    Many experiments use a Time Orbiting Potential (TOP) magnetic trap to confine a Bose-condensate. An advantage of the TOP trap is that it is relatively insensitive to deviations and errors in the magnetic field. However, precision experiments using the trapped atoms often do require the rotating field to be well characterized. For instance, precision spectroscopy requires accurate knowledge of both the field magnitude and field direction relative to the polarization of a probe laser beam. We have developed an RF spectroscopic technique to measure the magnitude of the field at arbitrary times within the TOP trap rotation period. From the time-variation mapped out, various imperfections can be isolated and measured, including asymmetries in the applied trap field and static environmental fields. By compensating for these imperfections, field control at the 10 mG level or better is achievable, for a bias field of 10 G or more. This should help enable more precision experiments using trapped condensates, including precision measurements of tune-out wavelengths and possibly parity-violation measurements. Supported by the National Science Foundation, the Jefferson Scholars Foundation, and NASA.

  12. Absence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plant species.

    PubMed

    Greger, Maria; Wang, Yaodong; Neuschütz, Clara

    2005-03-01

    In this paper we investigated if, and to what extent, six different plant species accumulate, translocate and emit mercury (Hg) into the air. The Hg uptake by roots, distribution of Hg to the shoot and release of Hg via shoots of garden pea, spring wheat, sugar beet, oil-seed rape, white clover and willow were investigated in a transpiration chamber. The airborne Hg was trapped in a Hopcalite trap or a gold trap. Traps and plant materials were analysed for content of Hg by CVAAS. The results show that all plant species were able to take up Hg to a large extent from a nutrient solution containing 200 microg L(-1) Hg. However, the Hg translocation to the shoot was low (0.17-2.5%) and the Hg that reached the leaves was trapped and no release of the absorbed Hg to the air was detected.

  13. Types of stratigraphic traps in Lower Cretaceous Muddy Formation, northern Powder River Basin, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovekin, J.R.; Odland, S.K.; Quartarone, T.S. Gardner, M.H.

    1986-08-01

    Stratigraphic traps account for most of the oil produced from the Muddy Sandstone in the northern Powder River basin. Two categories of traps exist. The first trap type is the result of lateral and vertical facies changes. Reservoir facies include tidal channels, point bars, bayhead deltas, barrier islands, and strand-plain sandstones; trapping facies include bay-fill and estuarine sediments, mud-filled tidal channels, and flood-plain deposits. The second of the two categories of traps results from an unconformity that juxtaposes permeable and impermeable sediments of quite different ages. Structural and diagenetic factors often modify and locally enhance reservoir quality within both categoriesmore » of stratigraphic traps. The various types of traps are demonstrated by studies of six field areas: (1) barrier-island sandstones, sealed updip by back-barrier shales, produce at Ute and Kitty fields; (2) tidal channels produce at Collums and Kitty fields; (3) bayhead deltas, encased in estuarine sediments, form traps at Oedekoven and Kitty fields; (4) fluvial point-bar sandstones form traps at Oedekoven, Store, and Kitty fields; (5) unconformity-related traps exist where Muddy fluvial valley-fill sediments lap out against impermeable valley walls of Skull Creek Shale on the updip side at Store, Oedekoven, and Kitty fields; and (6) the clay-rich weathered zone, directly beneath an intraformational unconformity, forms the seal to the reservoirs at Amos Draw field.« less

  14. Determination of the force constant of a single-beam gradient trap by measurement of backscattered light

    NASA Astrophysics Data System (ADS)

    Friese, M. E. J.; Rubinsztein-Dunlop, H.; Heckenberg, N. R.; Dearden, E. W.

    1996-12-01

    A single-beam gradient trap could potentially be used to hold a stylus for scanning force microscopy. With a view to development of this technique, we modeled the optical trap as a harmonic oscillator and therefore characterized it by its force constant. We measured force constants and resonant frequencies for 1 4- m-diameter polystyrene spheres in a single-beam gradient trap using measurements of backscattered light. Force constants were determined with both Gaussian and doughnut laser modes, with powers of 3 and 1 mW, respectively. Typical values for spring constants were measured to be between 10 6 and 4 10 6 N m. The resonant frequencies of trapped particles were measured to be between 1 and 10 kHz, and the rms amplitudes of oscillations were estimated to be around 40 nm. Our results confirm that the use of the doughnut mode for single-beam trapping is more efficient in the axial direction.

  15. Improvement of persistent magnetic field trapping in bulk Y-Ba-Cu-O superconductors

    NASA Technical Reports Server (NTRS)

    Chen, In-Gann; Weinstein, Roy

    1993-01-01

    For type-II superconductors, magnetic field can be trapped due to persistent internal supercurrent. Quasi-persistent magnetic fields near 2 T at 60 K (and 1.4 T at 77 K) have been measured in minimagnets made of proton-irradiated melt-textured Y-Ba-Cu-O (MT-Y123) samples. Using the trapping effect, high-field permanent magnets with dipole, quadrupole, or more complicated configurations can be made of existing MT-Y123 material, thus bypassing the need for high-temperature superconductor (HTS) wires. A phenomenological current model has been developed to account for the trapped field intensity and profile in HTS samples. This model is also a guide to select directions of materials development to further improve field trapping properties. General properties such as magnetic field intensities, spatial distributions, stabilities, and temperature dependence of trapped field are discussed.

  16. An evaluation of the efficiency of minnow traps for estimating the abundance of minnows in desert spring systems

    USGS Publications Warehouse

    Peterson, James T.; Scheerer, Paul D.; Clements, Shaun

    2015-01-01

    Desert springs are sensitive aquatic ecosystems that pose unique challenges to natural resource managers and researchers. Among the most important of these is the need to accurately quantify population parameters for resident fish, particularly when the species are of special conservation concern. We evaluated the efficiency of baited minnow traps for estimating the abundance of two at-risk species, Foskett Speckled Dace Rhinichthys osculus ssp. and Borax Lake Chub Gila boraxobius, in desert spring systems in southeastern Oregon. We evaluated alternative sample designs using simulation and found that capture–recapture designs with four capture occasions would maximize the accuracy of estimates and minimize fish handling. We implemented the design and estimated capture and recapture probabilities using the Huggins closed-capture estimator. Trap capture probabilities averaged 23% and 26% for Foskett Speckled Dace and Borax Lake Chub, respectively, but differed substantially among sample locations, through time, and nonlinearly with fish body size. Recapture probabilities for Foskett Speckled Dace were, on average, 1.6 times greater than (first) capture probabilities, suggesting “trap-happy” behavior. Comparison of population estimates from the Huggins model with the commonly used Lincoln–Petersen estimator indicated that the latter underestimated Foskett Speckled Dace and Borax Lake Chub population size by 48% and by 20%, respectively. These biases were due to variability in capture and recapture probabilities. Simulation of fish monitoring that included the range of capture and recapture probabilities observed indicated that variability in capture and recapture probabilities in time negatively affected the ability to detect annual decreases by up to 20% in fish population size. Failure to account for variability in capture and recapture probabilities can lead to poor quality data and study inferences. Therefore, we recommend that fishery researchers and managers employ sample designs and estimators that can account for this variability.

  17. Tempo-Spatial Dynamics of Adult Plum Curculio (Coleoptera: Curculionidae) Based on Semiochemical-Baited Trap Captures in Blueberries.

    PubMed

    Hernandez-Cumplido, Johnattan; Leskey, Tracy C; Holdcraft, Robert; Zaman, Faruque U; Hahn, Noel G; Rodriguez-Saona, Cesar

    2017-06-01

    Plum curculio, Conotrachelus nenuphar (Herbst), has become an important pest of highbush blueberries in the northeastern United States. Here, we conducted experiments in 2010-2013 to compare the efficacy of semiochemical-baited traps for C. nenuphar versus conventional (beating cloth) sampling methods in blueberries, and to understand the seasonal abundance and distribution of C. nenuphar adults within and among blueberry fields using these traps. Black pyramid traps baited with the C. nenuphar aggregation pheromone grandisoic acid and the fruit volatile benzaldehyde caught three to four times more adults than unbaited traps without causing an increase in injury to berries in neighboring bushes. Numbers of adult weevils caught in traps correlated with those on bushes (beating cloth samples), indicating that trap counts can predict C. nenuphar abundance in the field. Early in the season, traps placed 20 m from field edges near a forest caught higher C. nenuphar numbers than traps placed at farther distances, suggesting movement of overwintered weevils from outside fields. Using a trapping network across multiple fields in an organic farm, we found evidence of C. nenuphar aggregation in "hotspots"; early in the season, C. nenuphar numbers in traps were higher in the middle of fields, and there was a correlation between these numbers and distance from the forest in 2013 but not in 2012. These results show that semiochemical-baited traps are effective in capturing C. nenuphar adults in blueberries, and that these traps should be placed in the interior of fields preferably, but not exclusively, near wooded habitats to maximize their efficacy. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. On-chip photonic tweezers for photonics, microfluidics, and biology

    NASA Astrophysics Data System (ADS)

    Pin, Christophe; Renaut, Claude; Tardif, Manon; Jager, Jean-Baptiste; Delamadeleine, Eric; Picard, Emmanuel; Peyrade, David; Hadji, Emmanuel; de Fornel, Frédérique; Cluzel, Benoît

    2017-04-01

    Near-field optical forces arise from evanescent electromagnetic fields and can be advantageously used for on-chip optical trapping. In this work, we investigate how evanescent fields at the surface of photonic cavities can efficiently trap micro-objects such as polystyrene particles and bacteria. We study first the influence of trapped particle's size on the trapping potential and introduce an original optofluidic near-field optical microscopy technique. Then we analyze the rotational motion of trapped clusters of microparticles and investigate their possible use as microfluidic micro-tools such as integrated micro-flow vane. Eventually, we demonstrate efficient on-chip optical trapping of various kinds of bacteria.

  19. Direct probing of electron and hole trapping into nano-floating-gate in organic field-effect transistor nonvolatile memories

    NASA Astrophysics Data System (ADS)

    Cui, Ze-Qun; Wang, Shun; Chen, Jian-Mei; Gao, Xu; Dong, Bin; Chi, Li-Feng; Wang, Sui-Dong

    2015-03-01

    Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process.

  20. Hysteresis in Carbon Nanotube Transistors: Measurement and Analysis of Trap Density, Energy Level, and Spatial Distribution.

    PubMed

    Park, Rebecca Sejung; Shulaker, Max Marcel; Hills, Gage; Suriyasena Liyanage, Luckshitha; Lee, Seunghyun; Tang, Alvin; Mitra, Subhasish; Wong, H-S Philip

    2016-04-26

    We present a measurement technique, which we call the Pulsed Time-Domain Measurement, for characterizing hysteresis in carbon nanotube field-effect transistors, and demonstrate its applicability for a broad range of 1D and 2D nanomaterials beyond carbon nanotubes. The Pulsed Time-Domain Measurement enables the quantification (density, energy level, and spatial distribution) of charged traps responsible for hysteresis. A physics-based model of the charge trapping process for a carbon nanotube field-effect transistor is presented and experimentally validated using the Pulsed Time-Domain Measurement. Leveraging this model, we discover a source of traps (surface traps) unique to devices with low-dimensional channels such as carbon nanotubes and nanowires (beyond interface traps which exist in today's silicon field-effect transistors). The different charge trapping mechanisms for interface traps and surface traps are studied based on their temperature dependencies. Through these advances, we are able to quantify the interface trap density for carbon nanotube field-effect transistors (∼3 × 10(13) cm(-2) eV(-1) near midgap), and compare this against a range of previously studied dielectric/semiconductor interfaces.

  1. Shift in the species composition of the diatom community in the eutrophic Mauritanian coastal upwelling: Results from a multi-year sediment trap experiment (2003-2010)

    NASA Astrophysics Data System (ADS)

    Romero, Oscar E.; Fischer, Gerhard

    2017-12-01

    A multiannual, continuous sediment trap experiment was conducted at the mooring site CBeu (Cape Blanc eutrophic, ca. 20 °N, ca. 18 °W; trap depth = 1256-1296 m) in the high-productive Mauritanian coastal upwelling. Here we present fluxes and the species-specific composition of the diatom assemblage, and fluxes of biogenic silica (BSi, opal) and total organic carbon (TOC) for the time interval June 2003-Feb 2010. Flux ranges of studied parameters are (i) total diatoms = 1.2 ∗ 108-4.7 ∗ 104 valves m-2 d-1 (average = 5.9 × 106 valves ± 1.4 × 107); (ii) BSi = 296-0.5 mg m-2 d-1 (average = 41.1 ± 53.5 mg m-2 d-1), and (iii) TOC = 97-1 mg m-2 d-1 (average = 20.5 ± 17.8 mg m-2 d-1). Throughout the experiment, the overall good match of total diatom, BSi and TOC fluxes is reasonably consistent and reflects well the temporal occurrence of the main Mauritanian upwelling season. Spring and summer are the most favorable seasons for diatom production and sedimentation: out of the recorded 14 diatom maxima of different magnitude, six occurred in spring and four in summer. The diverse diatom community at site CBeu is composed of four main assemblages: benthic, coastal upwelling, coastal planktonic and open-ocean diatoms, reflecting different productivity conditions and water masses. A striking feature of the temporal variability of the diatom populations is the persistent pattern of seasonal groups' contribution: benthic and coastal upwelling taxa dominated during the main upwelling season in spring, while open-ocean diatoms were more abundant in fall and winter, when the upper water column becomes stratified, upwelling relaxes and productivity decreases. The relative abundance of benthic diatoms strongly increased after 2006, yet their spring-summer contribution remained high until the end of the trap experiment. The occurrence of large populations of benthic diatoms at the hemipelagic CBeu site is interpreted to indicate transport from shallow waters via nepheloid layers. We argue that a significant amount of valves, BSi and TOC produced in waters overlying the Banc d'Arguin and the Mauritanian shelf is effectively transported to the CBeu trap in intermediate waters at the outer Mauritanian slope. The impact of the intermediate and bottom-near nepheloid layers-driven transport in the transfer of valves and bulk particulates and its potential contribution to the export of biogenic materials from the shelf and uppermost slope might play a significant role in hemipelagial fluxes off Mauritania.

  2. Evaluation of Fish Movements, Migration Patterns, and Population Abundance with Streamwidth PIT Tag Interrogation Systems, Final Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zydlewski, Gayle; Winter, Christiane; McClanahan, Dee

    2003-02-01

    Two remote Streamwidth PIT tag Interrogation systems (SPIs) were operated continuously for over one year to test the feasibility of these systems for generating movement, migration, survival and smolt production estimates for salmonids. A total of 1,588 juvenile (< 100 mm FL) naturally produced salmonids (7 coho salmon, 482 cutthroat trout, and 1,099 steelhead) were PIT tagged above the upstream-most SPI (9 sites approximately 1 linear km each) in Fall 2001. Age at tagging for wild caught cutthroat and steelhead was 1 year. SPIs were operating before any PIT tagged fish were released in the creek. Over 390,000 detections weremore » recorded from October 2001 to 31 July 2002. Efficiencies were site dependent, but overall detection efficiency for the creek was 97% with 95% confidence intervals of 91-100%. PIT tag detection efficiency ranged from 55-100% depending on the SPI and varied throughout the year with average efficiencies of 73% and 89%. SPI efficiency of PIT tag detection was not completely dependent on electronics noise levels or environmental conditions. Fish from all tagging locations were detected at the SPIs. Steelhead and cutthroat trout were primarily detected moving in the Spring (April-June) coincident with the anticipated smolt migration. Steelhead were also detected moving past SPIs at lower numbers in the Fall and Winter. Travel time between SPIs (downstream movement) was highly dependent on time of year. Travel time in the Spring was significantly faster (34.4 {+-} 7.0 hours) for all species than during any other time of year (763.1 {+-} 267.0 hours). Steelhead and cutthroat migrating in the Spring were the same age as those that did not migrate in the Spring. Peak of steelhead migration recorded at the two SPIs was 5/11 and 5/12 and the peak in the screw trap was recorded on 5/17. Steelhead smolt production estimates using SPIs (3,802 with 95% confidence intervals of 3,440 - 4,245) was similar to those using more standard screw trap methods (approximately 5,400). All species used the faster moving/deeper section of the creek at both SPIs. A backpack PIT tag detector was also developed and used as another remote 'recapture' for additional accuracy in estimating population survival and recapture probability. This unit was used at an approximate efficiency of 24% to survey the creek after the Spring migration. Twenty-five individual fish were re-located. All PIT tag data were used to calculate survival and recapture probabilities using the Cormack-Jolly-Seber population model. Survival for steelhead was high and recapture probability depended greatly on season. Probability of recapture was highest in Spring (29.5%) and relatively low in all other seasons (< 7% in Fall, Winter, and Summer). Wild steelhead PIT tagged in the field and returned to the laboratory had a tag retention rate of 97.6%. A laboratory study was designed to determine the effects of 3-sized PIT tags (12 mm, 20 mm, and 23 mm) on survival and growth of individuals. Survival from surgical implantation of 23 mm PIT tags was > 98% for fish (coho salmon and steelhead). Retention of 23 mm PIT tags was 100% for coho salmon and 89% for steelhead. For both coho and steelhead, growth rates during the first month were affected by tagging, but by the end of 2 months growth effects equalized for all tag sizes. Life history characteristics quantified with SPI techniques are comparable to standard techniques. For example, peaks of Spring migration for steelhead and cutthroat were amazingly similar to those reported from the screw trap. These techniques will enable application of less laborious methods which are more accurate at estimating life history parameters.« less

  3. Evaluation of Fish Movements, Migration Patterns and Populations Abundance with Streamwidth PIT Tag Interrogation Systems, Final Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zydlewski, Gayle B.; Casey, Sean

    2003-02-01

    Two remote Streamwidth PIT tag Interrogation systems (SPIs) were operated continuously for over one year to test the feasibility of these systems for generating movement, migration, survival and smolt production estimates for salmonids. A total of 1,588 juvenile (< 100 mm FL) naturally produced salmonids (7 coho salmon, 482 cutthroat trout, and 1,099 steelhead) were PIT tagged above the upstream-most SPI (9 sites approximately 1 linear km each) in Fall 2001. Age at tagging for wild caught cutthroat and steelhead was 1 year. SPIs were operating before any PIT tagged fish were released in the creek. Over 390,000 detections weremore » recorded from October 2001 to 31 July 2002. Efficiencies were site dependent, but overall detection efficiency for the creek was 97% with 95% confidence intervals of 91-100%. PIT tag detection efficiency ranged from 55-100% depending on the SPI and varied throughout the year with average efficiencies of 73% and 89%. SPI efficiency of PIT tag detection was not completely dependent on electronics noise levels or environmental conditions. Fish from all tagging locations were detected at the SPIs. Steelhead and cutthroat trout were primarily detected moving in the Spring (April-June) coincident with the anticipated smolt migration. Steelhead were also detected moving past SPIs at lower numbers in the Fall and Winter. Travel time between SPIs (downstream movement) was highly dependent on time of year. Travel time in the Spring was significantly faster (34.4 {+-} 7.0 hours) for all species than during any other time of year (763.1 {+-} 267.0 hours). Steelhead and cutthroat migrating in the Spring were the same age as those that did not migrate in the Spring. Peak of steelhead migration recorded at the two SPIs was 5/11 and 5/12 and the peak in the screw trap was recorded on 5/17. Steelhead smolt production estimates using SPIs (3,802 with 95% confidence intervals of 3,440-4,245) was similar to those using more standard screw trap methods (approximately 5,400). All species used the faster moving/deeper section of the creek at both SPIs. A backpack PIT tag detector was also developed and used as another remote ''recapture'' for additional accuracy in estimating population survival and recapture probability. This unit was used at an approximate efficiency of 24% to survey the creek after the Spring migration. Twenty-five individual fish were re-located. All PIT tag data were used to calculate survival and recapture probabilities using the Cormack-Jolly-Seber population model. Survival for steelhead was high and recapture probability depended greatly on season. Probability of recapture was highest in Spring (29.5%) and relatively low in all other seasons (< 7% in Fall, Winter, and Summer). Wild steelhead PIT tagged in the field and returned to the laboratory had a tag retention rate of 97.6%. A laboratory study was designed to determine the effects of 3-sized PIT tags (12 mm, 20 mm, and 23 mm) on survival and growth of individuals. Survival from surgical implantation of 23 mm PIT tags was > 98% for fish (coho salmon and steelhead). Retention of 23 mm PIT tags was 100% for coho salmon and 89% for steelhead. For both coho and steelhead, growth rates during the first month were affected by tagging, but by the end of 2 months growth effects equalized for all tag sizes. Life history characteristics quantified with SPI techniques are comparable to standard techniques. For example, peaks of Spring migration for steelhead and cutthroat were amazingly similar to those reported from the screw trap. These techniques will enable application of less laborious methods which are more accurate at estimating life history parameters.« less

  4. Walla Walla River Fish Passage Operations Program, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronson, James P.; Duke, Bill B.

    2006-02-01

    In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survivalmore » of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2004-2005 project year, there were 590 adult summer steelhead, 31 summer steelhead kelts (Oncorhynchus mykiss), 70 adult bull trout (Salvelinus confluentus); 80 adult and 1 jack spring Chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway video counting window between December 13, 2004, and June 16, 2005. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. In addition, the old ladder trap was operated by ODFW in order to enumerate fish passage. Of the total, 143 adult summer steelhead and 15 summer steelhead kelts were enumerated at the west ladder at Nursery Bridge Dam during the video efforts between February 4 and May 23, 2005. Operation of the Little Walla Walla River juvenile trap for trap and haul purposes was not necessary this year.« less

  5. An efficient, self-orienting, vertical-array, sand trap

    NASA Astrophysics Data System (ADS)

    Hilton, Michael; Nickling, Bill; Wakes, Sarah; Sherman, Douglas; Konlechner, Teresa; Jermy, Mark; Geoghegan, Patrick

    2017-04-01

    There remains a need for an efficient, low-cost, portable, passive sand trap, which can provide estimates of vertical sand flux over topography and within vegetation and which self-orients into the wind. We present a design for a stacked vertical trap that has been modelled (computational fluid dynamics, CFD) and evaluated in the field and in the wind tunnel. The 'swinging' trap orients to within 10° of the flow in the wind tunnel at 8 m s-1, and more rapidly in the field, where natural variability in wind direction accelerates orientation. The CFD analysis indicates flow is steered into the trap during incident wind flow. The trap has a low profile and there is only a small decrease in mass flow rate for multiple traps, poles and rows of poles. The efficiency of the trap was evaluated against an isokinetic sampler and found to be greater than 95%. The centre pole is a key element of the design, minimally decreasing trap efficiency. Finally, field comparisons with the trap of Sherman et al. (2014) yielded comparable estimates of vertical sand flux. The trap described in this paper provides accurate estimates of sand transport in a wide range of field conditions.

  6. Modification of ocean-estuary salt fluxes by density-driven advection of a headland eddy

    NASA Astrophysics Data System (ADS)

    Fram, J. P.; Stacey, M. T.

    2005-05-01

    Scalar exchange between San Francisco Bay and the coastal ocean is examined using shipboard observations made across the Golden Gate Channel. Ocean-estuary exchange is often described as a combination of two independent types of mechanisms: density-driven exchange such as gravitational circulation and tidal asymmetries such as tidal trapping. In this study we found that exchange is also governed by an interaction between these mechanisms. Tidally trapped eddies created in shallow shoals are mixed into the main channel earlier in the tidal cycle during the rainy season because the eddies are pushed seaward by gravitational circulation. This interaction increases the tidally averaged dispersive salt flux into the bay. The study consists of experiments during each of three 'seasons': winter/spring runoff (March 2002), summer upwelling (July 2003), and fall relaxation (October 2002). Within each experiment, transects across the channel were repeated approximately every 12 minutes for 25 hours during both spring tide and the following neap tide. Velocity was measured from a boat-mounted ADCP. Scalar concentrations were measured from a tow-yoed SeaSciences Acrobat. Salinity exchange over each spring-neap cycle is quantified with harmonic analysis. Harmonic results are decomposed into flux mechanisms using temporal and spatial correlations. The temporal correlation of cross-sectional averaged salinity and velocity (tidal pumping flux) is the largest part of the dispersive flux of salinity into the bay. From the tidal pumping portion of the dispersive flux, it is shown that there is less exchange than was found in earlier studies. Furthermore, tidal pumping flux scales strongly with flow due to density-driven movement of tidally trapped eddies and density-driven increases in ebb-flood frictional phasing. Complex bathymetry makes salinity exchange scale differently with flow than would be expected from simple tidal pumping and gravitational circulation models.

  7. Estimation of the number of aphids carrying Citrus tristeza virus that visit adult citrus trees.

    PubMed

    Marroquín, Carlos; Olmos, Antonio; Teresa Gorris, María; Bertolini, Edson; Carmen Martínez, M; Carbonell, Emilio A; Hermoso de Mendoza, Alfonso; Cambra, Mariano

    2004-03-01

    Aphid species were counted on citrus trees in orchards in Valencia, Spain, in the spring and autumn of 1997, 1998 and 1999. Moericke yellow water traps, the 'sticky shoot' method and counts of established colonies were used in extensive surveys in which 29,502 aphids were recorded and identified. Aphis spiraecola and Aphis gossypii were the most abundant aphid species. The numbers of aphid species landing on mature trees of grapefruit, sweet orange, lemon and clementine and satsuma mandarins, were estimated by counting the numbers of young shoots/tree and aphids trapped on sticky shoots. The proportions of the different aphid species captured were: A. gossypii (53%), A. spiraecola (32%), Toxoptera aurantii (11%), Myzus persicae (1%), Aphis craccivora (1%) and other species (2%). Clementine was the most visited species with 266,700 aphids landing/tree in spring 2000, followed by lemon (147,000), sweet orange (129,150), grapefruit (103,200), and satsuma (92,400). The numbers and relative percentages of aphids carrying Citrus tristeza virus (CTV) were assessed by nested RT-PCR in single closed tubes and analysed by extraction of RNA-CTV targets from trapped aphids. An average of 37,190 CTV-carrying aphids visited each tree in spring 2000 (29 per shoot). The percentage detection of viral RNA in the aphid species that landed were 27% for A. gossypii, 23% for A. spiraecola and 19% for T. aurantii. This high incidence of aphids carrying CTV is consistent with the high prevalence and rapid spread of CTV in sweet orange, clementine, and satsuma mandarins in recent years in the region. The infection rate was proportional to the number of aphids landing/tree.

  8. A new ring-shape high-temperature superconducting trapped-field magnet

    NASA Astrophysics Data System (ADS)

    Sheng, Jie; Zhang, Min; Wang, Yawei; Li, Xiaojian; Patel, Jay; Yuan, Weijia

    2017-09-01

    This paper presents a new trapped-field magnet made of second-generation high-temperature superconducting (2G HTS) rings. This so-called ring-shape 2G HTS magnet has the potential to provide much stronger magnetic fields relative to existing permanent magnets. Compared to existing 2G HTS trapped- field magnets, e.g. 2G HTS bulks and stacks, this new ring-shape 2G HTS magnet is more flexible in size and can be made into magnets with large dimensions for industrial applications. Effective magnetization is the key to being able to use trapped-field magnets. Therefore, this paper focuses on the magnetization mechanism of this new magnet using both experimental and numerical methods. Unique features have been identified and quantified for this new type of HTS magnet in the field cooling and zero field cooling process. The magnetization mechanism can be understood by the interaction between shielding currents and the penetration of external magnetic fields. An accumulation in the trapped field was observed by using multiple pulse field cooling. Three types of demagnetization were studied to measure the trapped-field decay for practical applications. Our results show that this new ring-shape HTS magnet is very promising in the trapping of a high magnetic field. As a super-permanent magnet, it will have a significant impact on large-scale industrial applications, e.g. the development of HTS machines with a very high power density and HTS magnetic resonance imaging devices.

  9. Evaluation of two counterflow traps for testing behaviour-mediating compounds for the malaria vector Anopheles gambiae s.s. under semi-field conditions in Tanzania

    PubMed Central

    Schmied, Wolfgang H; Takken, Willem; Killeen, Gerry F; Knols, Bart GJ; Smallegange, Renate C

    2008-01-01

    Background Evaluation of mosquito responses towards different trap-bait combinations in field trials is a time-consuming process that can be shortened by experiments in contained semi-field systems. Possible use of the BG Sentinel (BGS) trap to sample Anopheles gambiae s.s. was evaluated. The efficiency of this trap was compared with that of the Mosquito Magnet-X (MM-X) trap, when baited with foot odour alone or combinations of foot odour with carbon dioxide (CO2) or lemongrass as behaviour-modifying cues. Methods Female An. gambiae s.s. were released in an experimental flight arena that was placed in a semi-field system and left overnight. Catch rates for the MM-X and BGS traps were recorded. Data were analysed by fitting a generalized linear model to the (n+1) transformed catches. Results Both types of traps successfully captured mosquitoes with all odour cues used. When the BGS trap was tested against the MM-X trap in a choice assay with foot odour as bait, the BGS trap caught about three times as many mosquitoes as the MM-X trap (P = 0.002). Adding CO2 (500 ml/min) to foot odour increased the number of mosquitoes caught by 268% for the MM-X (P < 0.001) and 34% (P = 0.051) for the BGS trap, compared to foot odour alone. When lemongrass leaves were added to foot odour, mosquito catches were reduced by 39% (BGS, P < 0.001) and 38% (MM-X, P = 0.353), respectively. Conclusion The BGS trap shows high potential for field trials due to its simple construction and high catch rate when baited with human foot odour only. However, for rapid screening of different baits in a contained semi-field system, the superior discriminatory power of the MM-X trap is advantageous. PMID:18980669

  10. Using impedance measurements for detecting pathogens trapped in an electric field

    DOEpatents

    Miles, Robin R.

    2004-07-20

    Impedance measurements between the electrodes in an electric field is utilized to detect the presence of pathogens trapped in the electric field. Since particles trapped in a field using the dielectiphoretic force changes the impedance between the electrodes by changing the dielectric material between the electrodes, the degree of particle trapping can be determined by measuring the impedance. This measurement is used to determine if sufficient pathogen have been collected to analyze further or potentially to identify the pathogen.

  11. Seasonal and altitudinal variations in populations of small mammals on Rattlesnake Mountain, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Farrell, T.P.

    1975-07-01

    Small mammals were live-trapped for 2 years at four elevations in shrub-steppe vegetation of S-central Washington to determine seasonal and altitudinal changes in populations. Species trapped included: Perognathus parvus, Peromyscus maniculatus, Onychromys leucogaster, Lagurus curtatus, Spermophilus townsendii; Neotoma cinerea and Mustela frenata. Perognathus parvus was the most numerous, and widespread species, reaching peak densities in the Artemisia/Poa association at 500-ft elevation. Its density declined with increasing elevation. Perognathus was most numerous on a site with a high frequency of seed-producing annuals, and less numerous in perennial grasslands or where soil temperatures below 40 F were prolonged in the spring. Peromyscusmore » maniculatus were most numerous in the Artemisia/Agropyron association above 2000 ft. Peromyscus appeared to be limited by lack of succulent vegetation or free water at lower, more arid sites. Perognathus was most active and breeding between spring and autumn. Peromyscus favored the period between autumn and late spring. Interspecific competition was not apparent. Perognathus employed periods of torpor during the winter, and some evidence indicated that Peromyscus may have used hypothermia during the driest part of summer and midwinter. Average weights of male Perognathus increased with increasing altitude. The weight increase was not apparent in Peromyscus. (auth)« less

  12. Interannual variation in seasonal diatom dynamics - what information is preserved in an annual sediment record?

    NASA Astrophysics Data System (ADS)

    Maier, D. B.; Bigler, C.; Diehl, S.

    2017-12-01

    Diatom sediment assemblages are among the most important proxies for past climate and ecological condition reconstruction in aquatic environments, but the role of seasonality in the formation of diatom records is poorly understood. In this study we combine the diatom record of a varved sediment with year-round physico-chemical water column monitoring and the corresponding sequential sediment trap diatom record to disentangle the process information contained in a diatom sediment signal. The comparison of three consecutive annual diatom records indicates that the entire annual diatom sediment signal can be driven by winter air temperature induced timing of ice and snow melt and persistent under-ice stratification promoting an early diatom bloom under ice before spring lake over-turn. By contrast, in a year of late ice thinning when the chlorophyll a maximum occurred after spring lake over-turn, a more annually integrated diatom sediment signal was built buy a continuous diatom flux. The contrasting diatom records produced during years of different winter conditions have important implications for diatom based paleoecological reconstructions. Decadal records of sediment trap samples as well as long-term varved sediment records provide further support for the role of late winter and early spring weather conditions in determining sediment diatom assemblages.

  13. Quantum mechanics in rotating-radio-frequency traps and Penning traps with a quadrupole rotating field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, K.; Hasegawa, T.

    2010-03-15

    Quantum-mechanical analysis of ion motion in a rotating-radio-frequency (rrf) trap or in a Penning trap with a quadrupole rotating field is carried out. Rrf traps were introduced by Hasegawa and Bollinger [Phys. Rev. A 72, 043404 (2005)]. The classical motion of a single ion in this trap is described by only trigonometric functions, whereas in the conventional linear radio-frequency (rf) traps it is by the Mathieu functions. Because of the simple classical motion in the rrf trap, it is expected that the quantum-mechanical analysis of the rrf traps is also simple compared to that of the linear rf traps. Themore » analysis of Penning traps with a quadrupole rotating field is also possible in a way similar to the rrf traps. As a result, the Hamiltonian in these traps is the same as the two-dimensional harmonic oscillator, and energy levels and wave functions are derived as exact results. In these traps, it is found that one of the vibrational modes in the rotating frame can have negative energy levels, which means that the zero-quantum-number state (''ground'' state) is the highest energy state.« less

  14. Intercept™ Panel Trap (INT PT) effective in management of forest Coleoptera

    Treesearch

    D. Czokajlo; J. McLaughlin; L. I. Abu Ayyash; S. Teale; J. Wickham; J. Warren; R. Hoffman; B. Aukema; K. Raffa; P. Kirsch

    2003-01-01

    Trap efficacy in capturing economically important forest Coleoptera was measured in field trials comparing the Intercept Panel Trap (INT PT) with the Multi-Funnel Trap. The INT PT was designed to provide a better option for the monitoring of forest Coleoptera. The trap is made of corrugated plastic and is very robust under rigorous field conditions, but still...

  15. Evaluation of a nematode bio-product Dbx-20% against root-knot nematode Meloidogyne incognita affecting grapevine under field conditions.

    PubMed

    Aboul-Eid, H Z; Noweer, E M A; Ashour, N E; Ameen, Hoda H

    2006-01-01

    A field trial was conducted in El-Shourouk Farm, El-Beheira governorate, western Nile valley, Egypt to determine the effectiveness of the commercial bio-product Dbx 1003 20% containing the nematode-trapping fungus Dactylaria brochopaga against root-knot nematode Meloidogyne incognita infesting grapevine variety Superior. Its effects on plant growth criteria and yield production were also investigated. The fungus was introduced to soil by either of two ways. First: soil was drenched with spore suspension at the rate of 3 l/tree. Second: 1/2 kg of a vermiculite substrate, as a carrier of spores and mycelia was added around each tree both as single and twice application in autumn and spring. All treatments significantly reduced M. incognita J2 in soil and number of root galls compared with the untreated control. Significant yield increases have been observed with all treatments compared with the untreated control. Spores suspension twice applications gave the highest yield production.

  16. Experiments to trap dust particles by a wire simulating an electron beam

    NASA Astrophysics Data System (ADS)

    Saeki, Hiroshi; Momose, Takashi; Ishimaru, Hajime

    1991-11-01

    Motion of trapped dust particles has been previously analyzed using high-energy bremsstrahlung data obtained during dust trapping in the TRISTAN accumulation ring. Because it is difficult to observe the actual motions of dust particles trapped in an electron beam due to the strong synchrotron light background, we carried out experiments to trap sample dust particles with a Cu wire simulating an electron beam. A negative potential was slowly applied to the wire using a high voltage dc power supply. Motions of dust particles trapped by the wire were recorded with a video camera system. In an experiment using a Cu wire (1.5 mm in diameter) with no magnetic field, the charged dust particle made vertical oscillation about the wire. In another experiment using the same wire but with a vertical magnetic field (0.135 T) simulating a bending magnetic field, both vertical and horizontal oscillating motions perpendicular to the wire were observed. Furthermore, it was found that the dust particle moved in the longitudinal direction of the wire in the bending magnetic field. Therefore, it is expected that charged dust particles trapped by the electric field of the electron beam oscillate vertically where there is no magnetic field in the TRISTAN accumulation ring. It is also expected that trapped dust particles where there is a bending magnetic field oscillate horizontally and vertically as the particle drifts in a longitudinal direction along the ring.

  17. Working Ni-Mn-Ga Single Crystals in a Magnetic Field Against a Spring Load

    NASA Astrophysics Data System (ADS)

    Lindquist, P. G.; Müllner, P.

    2015-03-01

    This research characterizes ferromagnetic shape memory elements for use as mechanical actuators. A single crystal of Ni-Mn-Ga was pre-strained in compression from 0 to 6 % and then the shape was recovered with a magnetic field perpendicular to the loading direction while working against a pair of springs. The magnetic field was raised from 0 to 0.64 MA/m and then reduced to zero field. Eight pairs of springs with combined spring constants ranging from 14.3 to 269.4 N/mm were used. When the magnetic field was on, the sample expanded against the springs due to magnetic field-induced strain. When the magnetic field was turned off, the springs compressed the sample back to the initial size before the next cycle. During each cycle, force and displacement were measured and the specific work was computed. Specific work increased with the applied magnetic field and the pre-strain, with a maximum of 14 kJ/m3 at 4.5 % pre-strain and 0.64 MA/m. This value is five times less than the values suggested in the literature which were inferred from stress-strain curves measured under various magnetic fields. The spring prescribes the load-displacement path of the magnetic shape memory element and controls the work output of the actuator.

  18. Chapter 3: Geologic Assessment of Undiscovered Oil and Gas Resources in the Phosphoria Total Petroleum System of the Wind River Basin Province, Wyoming

    USGS Publications Warehouse

    Kirschbaum, M.A.; Lillis, P.G.; Roberts, L.N.R.

    2007-01-01

    The Phosphoria Total Petroleum System (TPS) encompasses the entire Wind River Basin Province, an area of 4.7 million acres in central Wyoming. The source rocks most likely are black, organic-rich shales of the Meade Peak and Retort Phosphatic Shale Members of the Permian Phosphoria Formation located in the Wyoming and Idaho thrust belt to the west and southwest of the province. Petroleum was generated and expelled during Jurassic and Cretaceous time in westernmost Wyoming and is interpreted to have migrated into the province through carrier beds of the Pennsylvanian Tensleep Sandstone where it was preserved in hypothesized regional stratigraphic traps in the Tensleep and Permian Park City Formation. Secondary migration occurred during the development of structural traps associated with the Laramide orogeny. The main reservoirs are in the Tensleep Sandstone and Park City Formation and minor reservoirs are in the Mississippian Madison Limestone, Mississippian-Pennsylvanian Amsden Formation, Triassic Chugwater Group, and Jurassic Nugget Sandstone and Sundance Formation. The traps are sealed by shale or evaporite beds of the Park City, Amsden, and Triassic Dinwoody Formations, Triassic Chugwater Group, and Jurassic Gypsum Spring Formation. A single conventional oil and gas assessment unit (AU), the Tensleep-Park City AU, was defined for the Phosphoria TPS. Both the AU and TPS cover the entire Wind River Basin Province. Oil is produced from 18 anticlinal fields, the last of which was discovered in 1957, and the possibility of discovering new structural oil accumulations is considered to be relatively low. Nonassociated gas is produced from only two fields, but may be underexplored in the province. The discovery of new gas is more promising, but will be from deep structures. The bulk of new oil and gas accumulations is dependent on the discovery of hypothesized stratigraphic traps in isolated carbonate reservoirs of the Park City Formation. Mean resource estimates for the Tensleep-Park City Conventional Oil and Gas AU total 18 million barrels of oil, 294 billion cubic feet of gas, and 5.9 million barrels of natural gas liquids.

  19. Observation of Diamond Nitrogen-Vacancy Center Photoluminescence under High Vacuum in a Magneto-Gravitational Trap

    NASA Astrophysics Data System (ADS)

    Ji, Peng; Hsu, Jen-Feng; Lewandowski, Charles W.; Dutt, M. V. Gurudev; D'Urso, Brian

    2016-05-01

    We report the observation of photoluminescence from nitrogen-vacancy (NV) centers in diamond nanocrystals levitated in a magneto-gravitational trap. The trap utilizes a combination of strong magnetic field gradients and gravity to confine diamagnetic particles in three dimensions. The well-characterized NV centers in trapped diamond nanocrystals provide an ideal built-in sensor to measure the trap magnetic field and the temperature of the trapped diamond nanocrystal. In the future, the NV center spin state could be coupled to the mechanical motion through magnetic field gradients, enabling in an ideal quantum interface between NV center spin and the mechanical motion. National Science Foundation, Grant No. 1540879.

  20. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buettner, Edwin W.; Putnam, Scott A.

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2005 spring out-migration at migrant traps on the Snake River and Salmon River. In 2005 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, the age-1 and older fish were distinguishable from wild fish by the occurrence of fin erosion. Age-0 Chinook salmon are more difficult to distinguish between wild and non-adclipped hatchery fish and therefore classifiedmore » as unknown rearing. The total annual hatchery spring/summer Chinook salmon catch at the Snake River trap was 0.34 times greater in 2005 than in 2004. The wild spring/summer Chinook catch was 0.34 times less than the previous year. Hatchery steelhead trout catch was 0.67 times less than in 2004. Wild steelhead trout catch was 0.72 times less than the previous year. The Snake River trap collected 1,152 age-0 Chinook salmon of unknown rearing. During 2005, the Snake River trap captured 219 hatchery and 44 wild/natural sockeye salmon and 110 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. Trap operations began on March 6 and were terminated on June 3. The trap was out of operation for a total of one day due to heavy debris. FPC requested that the trap be restarted on June 15 through June 22 to collect and PIT tag age-0 Chinook salmon. Hatchery Chinook salmon catch at the Salmon River trap was 1.06 times greater and wild Chinook salmon catch was 1.26 times greater than in 2004. The hatchery steelhead trout collection in 2005 was 1.41 times greater and wild steelhead trout collection was 1.27 times greater than the previous year. Trap operations began on March 6 and were terminated on May 17 due to high flows. There were two days when the trap was taken out of service because of mechanical failure. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for passive integrated transponder (PIT) tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2005 data detected a relation between migration rate and discharge for hatchery Chinook but was unable to detect a relation for wild Chinook. The inability to detect a migration rate discharge relation for wild Chinook salmon was caused by a lack of data. For hatchery Chinook salmon there was a 1.8-fold increase in migration rate between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 2.2-fold and a 2.2-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2005 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery Chinook salmon, wild Chinook salmon, hatchery steelhead trout, and wild steelhead trout. Migration rate increased 4.2-fold for hatchery Chinook salmon, 2.9-fold for wild Chinook salmon and 2.5-fold for hatchery steelhead, and 1.7-fold for wild steelhead as discharge increased between 50 kcfs and 100 kcfs. Fish tagged with PIT tags at the Snake River and Salmon River traps were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993 and the installation of the Removable Spillway Weir at Lower Granite Dam in 2001, caution must be used in comparing cumulative interrogation data. Cumulative interrogations at the four dams for fish marked at the Snake River trap were 84% for hatchery Chinook, 89% for wild Chinook, 94% for hatchery steelhead, and 93% for wild steelhead. Cumulative interrogations at the four dams for fish marked at the Salmon River trap were 71% for hatchery Chinook, 78% for wild Chinook salmon, 80% for hatchery steelhead trout, and 81% for wild steelhead trout.« less

  1. Recent developments in trapping and manipulation of atoms with adiabatic potentials

    NASA Astrophysics Data System (ADS)

    Garraway, Barry M.; Perrin, Hélène

    2016-09-01

    A combination of static and oscillating magnetic fields can be used to ‘dress’ atoms with radio-frequency (RF), or microwave, radiation. The spatial variation of these fields can be used to create an enormous variety of traps for ultra-cold atoms and quantum gases. This article reviews the type and character of these adiabatic traps and the applications which include atom interferometry and the study of low-dimensional quantum systems. We introduce the main concepts of magnetic traps leading to adiabatic dressed traps. The concept of adiabaticity is discussed in the context of the Landau-Zener model. The first bubble trap experiment is reviewed together with the method used for loading it. Experiments based on atom chips show the production of double wells and ring traps. Dressed atom traps can be evaporatively cooled with an additional RF field, and a weak RF field can be used to probe the spectroscopy of the adiabatic potentials. Several approaches to ring traps formed from adiabatic potentials are discussed, including those based on atom chips, time-averaged adiabatic potentials and induction methods. Several proposals for adiabatic lattices with dressed atoms are also reviewed.

  2. Graphene quantum dot (GQD)-induced photovoltaic and photoelectric memory elements in a pentacene/GQD field effect transistor as a probe of functional interface

    NASA Astrophysics Data System (ADS)

    Kim, Youngjun; Cho, Seongeun; Kim, Hyeran; Seo, Soonjoo; Lee, Hyun Uk; Lee, Jouhahn; Ko, Hyungduk; Chang, Mincheol; Park, Byoungnam

    2017-09-01

    Electric field-induced charge trapping and exciton dissociation were demonstrated at a penatcene/grapheme quantum dot (GQD) interface using a bottom contact bi-layer field effect transistor (FET) as an electrical nano-probe. Large threshold voltage shift in a pentacene/GQD FET in the dark arises from field-induced carrier trapping in the GQD layer or GQD-induced trap states at the pentacene/GQD interface. As the gate electric field increases, hysteresis characterized by the threshold voltage shift depending on the direction of the gate voltage scan becomes stronger due to carrier trapping associated with the presence of a GQD layer. Upon illumination, exciton dissociation and gate electric field-induced charge trapping simultaneously contribute to increase the threshold voltage window, which can potentially be exploited for photoelectric memory and/or photovoltaic devices through interface engineering.

  3. Trapped-ion quantum logic gates based on oscillating magnetic fields.

    PubMed

    Ospelkaus, C; Langer, C E; Amini, J M; Brown, K R; Leibfried, D; Wineland, D J

    2008-08-29

    Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multiqubit quantum gates for trapped-ion quantum information processing (QIP). With fields generated by currents in microfabricated surface-electrode traps, it should be possible to achieve gate speeds that are comparable to those of optically induced gates for realistic distances between the ion crystal and the electrode surface. Magnetic-field-mediated gates have the potential to significantly reduce the overhead in laser-beam control and motional-state initialization compared to current QIP experiments with trapped ions and will eliminate spontaneous scattering, a fundamental source of decoherence in laser-mediated gates.

  4. Clumped isotopologue constraints on the origin of methane at seafloor hot springs

    NASA Astrophysics Data System (ADS)

    Wang, David T.; Reeves, Eoghan P.; McDermott, Jill M.; Seewald, Jeffrey S.; Ono, Shuhei

    2018-02-01

    Hot-spring fluids emanating from deep-sea vents hosted in unsedimented ultramafic and mafic rock commonly contain high concentrations of methane. Multiple hypotheses have been proposed for the origin(s) of this methane, ranging from synthesis via reduction of aqueous inorganic carbon (∑CO2) during active fluid circulation to leaching of methane-rich fluid inclusions from plutonic rocks of the oceanic crust. To further resolve the process(es) responsible for methane generation in these systems, we determined the relative abundances of several methane isotopologues (including 13CH3D, a "clumped" isotopologue containing two rare isotope substitutions) in hot-spring source fluids sampled from four geochemically-distinct hydrothermal vent fields (Rainbow, Von Damm, Lost City, and Lucky Strike). Apparent equilibrium temperatures retrieved from methane clumped isotopologue analyses average 310-42+53 °C, with no apparent relation to the wide range of fluid temperatures (96-370 °C) and chemical compositions (pH, [H2], [∑CO2], [CH4]) represented. Combined with very similar bulk stable isotope ratios (13C/12C and D/H) of methane across the suite of hydrothermal fluids, all available geochemical and isotopic data suggest a common mechanism of methane generation at depth that is disconnected from active fluid circulation. Attainment of equilibrium amongst methane isotopologues at temperatures of ca. 270-360 °C is compatible with the thermodynamically-favorable reduction of CO2 to CH4 at temperatures at or below ca. 400 °C under redox conditions characterizing intrusive rocks derived from sub-ridge melts. Collectively, the observations support a model where methane-rich aqueous fluids, known to be trapped in rocks of the oceanic lithosphere, are liberated from host rocks during hydrothermal circulation and perhaps represent the major source of methane venting with thermal waters at unsedimented hydrothermal fields. The results also provide further evidence that water-rock reactions occurring at temperatures lower than 200 °C do not contribute significantly to the quantities of methane venting at mid-ocean ridge hot springs.

  5. Trapping of ultracold polar molecules with a thin-wire electrostatic trap.

    PubMed

    Kleinert, J; Haimberger, C; Zabawa, P J; Bigelow, N P

    2007-10-05

    We describe the realization of a dc electric-field trap for ultracold polar molecules, the thin-wire electrostatic trap (TWIST). The thin wires that form the electrodes of the TWIST allow us to superimpose the trap onto a magneto-optical trap (MOT). In our experiment, ultracold polar NaCs molecules in their electronic ground state are created in the MOT via photoassociation, achieving a continuous accumulation in the TWIST of molecules in low-field seeking states. Initial measurements show that the TWIST trap lifetime is limited only by the background pressure in the chamber.

  6. Overflow of a dipolar exciton trap at high magnetic fields

    NASA Astrophysics Data System (ADS)

    Dietl, Sebastian; Kowalik-Seidl, Katarzyna; Hammer, Lukas; Schuh, Dieter; Wegscheider, Werner; Holleitner, Alexander; Wurstbauer, Ursula

    We study the photoluminescence of trapped dipolar excitons (IX) in coupled double GaAs quantum wells at low temperatures and high magnetic fields. A voltage-tunable electrode geometry controls the strength of the quantum confined Stark effect and defines the lateral trapping potential. Furthermore, it enhances the IX lifetime, enabling them to cool down to lattice temperature. We show that a magnetic field in Faraday configuration effectively prevents the escape of unbound photogenerated charge carriers from the trap area, thus increasing the density of dipolar excitons. For large magnetic fields, we observe an overflow of the IX trap and an effectively suppressed quantum confined Stark effect. We acknowledge financial support by the German Excellence Initiative via the Nanosystems Initiative Munich (NIM).

  7. Status of the NIST Penning-Trap Neutron Lifetime Measurement

    NASA Astrophysics Data System (ADS)

    Snow, W. M.; Fei, X.; Chowdhuri, Z.; Dewey, M. S.; Gilliam, D.; Nico, J. S.; Greene, G. L.

    1998-10-01

    The decay rate of the free neutron is important input for Big-Bang Nucleosynthesis calculations of the primordial ^4He abundance in the universe(T. P. Walker et al, Astrophys. J. 376, 51 (1991).) and for tests of the electroweak model in the charged-current sector(I. S. Towner, Nucl. Phys. A540, 478 (1992).). We will describe an experiment in progress at NIST to measure the neutron decay rate. The technique uses a Penning trap to trap and count protons from in-beam neutron decay(J. Byrne et al., Phys. Rev. Lett. 65, 289 (1990).) and an absolutely calibrated beam monitor to measure the neutron density in the beam(R. D. Scott et al., Nucl. Inst. Meth. A362, 151 (1995).). We will present data taken in the spring and summer of 1998.

  8. Development of semiochemical attractants for monitoring bean seed beetle, Bruchus rufimanus.

    PubMed

    Bruce, Toby J A; Martin, Janet L; Smart, Lesley E; Pickett, John A

    2011-10-01

    Bruchus rufimanus is a serious pest of field beans. The objective here was to develop a semiochemical-baited trapping system to facilitate monitoring of the pest. Volatile compounds that were electrophysiologically active with the antennae of B. rufimanus females were identified from headspace samples of Vicia faba flowers and from male B. rufimanus. Selected headspace samples and synthetic compounds were tested in olfactometer bioassays. The semiochemicals were then formulated in lures for traps and evaluated in a field trapping experiment. Cone traps baited with a three-component blend of floral volatiles, releasing (R)-linalool (17.7 mg day(-1)), cinnamyl alcohol (0.4 mg day(-1)) and cinnamaldehyde (0.77 mg day(-1)), caught significantly more of both sexes of B. rufimanus than unbaited control traps. A male volatile, 1-undecene, was EAG active with female antennae. It was attractive to females in an olfactometer, indicating that it is a sex pheromone. However, in the field it only enhanced trap catches if it was released together with the floral volatiles. The blends of semiochemicals identified were shown to be attractive in cone traps under field conditions. The prototype trapping system developed could be used as a monitoring tool to determine infestation levels of B. rufimanus in bean fields. Copyright © 2011 Society of Chemical Industry.

  9. Molecular phylogenetics and diversification of trap-jaw ants in the genera Anochetus and Odontomachus (Hymenoptera: Formicidae).

    PubMed

    Larabee, Fredrick J; Fisher, Brian L; Schmidt, Chris A; Matos-Maraví, Pável; Janda, Milan; Suarez, Andrew V

    2016-10-01

    Ants in the genera Anochetus and Odontomachus belong to one of the largest clades in the subfamily Ponerinae, and are one of four lineages of ants possessing spring-loaded "trap-jaws." Here we present results from the first global species-level molecular phylogenetic analysis of these trap-jaw ants, reconstructed from one mitochondrial, one ribosomal RNA, and three nuclear protein-coding genes. Bayesian and likelihood analyses strongly support reciprocal monophyly for the genera Anochetus and Odontomachus. Additionally, we found strong support for seven trap-jaw ant clades (four in Anochetus and three in Odontomachus) mostly concordant with geographic distribution. Ambiguity remains concerning the closest living non-trap-jaw ant relative of the Anochetus+Odontomachus clade, but Bayes factor hypothesis testing strongly suggests that trap-jaw ants evolved from a short mandible ancestor. Ponerine trap-jaw ants originated in the early Eocene (52.5Mya) in either South America or Southeast Asia, where they have radiated rapidly in the last 30million years, and subsequently dispersed multiple times to Africa and Australia. These results will guide future taxonomic work on the group and act as a phylogenetic framework to study the macroevolution of extreme ant mouthpart specialization. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Trapped Field Characteristics of Stacked YBCO Thin Plates for Compact NMR Magnets: Spatial Field Distribution and Temporal Stability

    PubMed Central

    Hahn, Seungyong; Kim, Seok Beom; Ahn, Min Cheol; Voccio, John; Bascuñán, Juan; Iwasa, Yukikazu

    2010-01-01

    This paper presents experimental and analytical results of trapped field characteristics of a stack of square YBCO thin film plates for compact NMR magnets. Each YBCO plate, 40 mm × 40 mm × 0.08 mm, has a 25-mm diameter hole at its center. A total of 500 stacked plates were used to build a 40-mm long magnet. Its trapped field, in a bath of liquid nitrogen, was measured for spatial field distribution and temporal stability. Comparison of measured and analytical results is presented: the effects on trapped field characteristics of the unsaturated nickel substrate and the non-uniform current distribution in the YBCO plate are discussed. PMID:20585463

  11. New ion trap for atomic frequency standard applications

    NASA Technical Reports Server (NTRS)

    Prestage, J. D.; Dick, G. J.; Maleki, L.

    1989-01-01

    A novel linear ion trap that permits storage of a large number of ions with reduced susceptibility to the second-order Doppler effect caused by the radio frequency (RF) confining fields has been designed and built. This new trap should store about 20 times the number of ions a conventional RF trap stores with no corresponding increase in second-order Doppler shift from the confining field. In addition, the sensitivity of this shift to trapping parameters, i.e., RF voltage, RF frequency, and trap size, is greatly reduced.

  12. Bee Community of Commercial Potato Fields in Michigan and Bombus impatiens Visitation to Neonicotinoid-Treated Potato Plants

    PubMed Central

    Buchanan, Amanda L.; Gibbs, Jason; Komondy, Lidia; Szendrei, Zsofia

    2017-01-01

    We conducted a bee survey in neonicotinoid-treated commercial potato fields using bowl and vane traps in the 2016 growing season. Traps were placed outside the fields, at the field edges, and 10 and 30 m into the fields. We collected 756 bees representing 58 species, with Lasioglossum spp. comprising 73% of all captured bees. We found seven Bombus spp., of which B. impatiens was the only known visitor of potato flowers in our region. The majority of the bees (68%) were collected at the field edges and in the field margins. Blue vane traps caught almost four-times as many bees and collected 30% more species compared to bowl traps. Bee communities did not differ across trap locations but they were different among trap types. We tested B. impatiens visitation to neonicotinoid treated and untreated potato flowers in field enclosures. The amount of time bees spent at flowers and the duration of visits were not significantly different between the two treatments. Our results demonstrate that a diverse assemblage of bees is associated with an agroecosystem dominated by potatoes despite the apparent lack of pollinator resources provided by the crop. We found no difference in B. impatiens foraging behavior on neonicotinoid-treated compared to untreated plants. PMID:28282931

  13. A World of Snowy Dunes

    NASA Image and Video Library

    2017-08-21

    It is spring in the Northern hemisphere when NASA's Mars Reconnaissance Orbiter took this image. Over the winter, snow and ice have inexorably covered the dunes. Unlike on Earth, this snow and ice is carbon dioxide, better known to us as dry ice. When the sun starts shining on it in the spring, the ice on the smooth surface of the dune cracks and escaping gas carries dark sand out from the dune below, often creating beautiful patterns. On the rough surface between the dunes, frost is trapped behind small sheltered ridges. https://photojournal.jpl.nasa.gov/catalog/PIA21882

  14. Field evaluation of two novel sampling devices for collecting wild oviposition site seeking malaria vector mosquitoes: OviART gravid traps and squares of electrocuting nets.

    PubMed

    Dugassa, Sisay; Lindh, Jenny M; Lindsay, Steven W; Fillinger, Ulrike

    2016-05-10

    New sampling tools are needed for collecting exophilic malaria mosquitoes in sub-Saharan Africa to monitor the impact of vector control interventions. The OviART gravid trap and squares of electrocuting nets (e-nets) were recently developed under semi-field conditions for collecting oviposition site seeking Anopheles gambiae (sensu stricto) (s.s.). This study was designed to evaluate the efficacy of these traps for sampling malaria vectors under field conditions. Prior to field testing, two modifications to the prototype OviART gravid trap were evaluated by (i) increasing the surface area and volume of water in the artificial pond which forms part of the trap, and (ii) increasing the strength of the suction fan. Six sampling tools targeting gravid females (Box gravid trap, detergent-treated ponds, e-nets insect glue-treated ponds, sticky boards and sticky floating-acetate sheets) were compared under field conditions to evaluate their relative catching performance and to select a method for comparison with the OviART gravid trap. Finally, the trapping efficacy of the OviART gravid trap and the square of e-nets were compared with a Box gravid trap during the long rainy season in three household clusters in western Kenya. The OviART gravid trap prototype's catch size was doubled by increasing the pond size [rate ratio (RR) 1.9; 95 % confidence interval (CI) 1.1-3.4] but a stronger fan did not improve the catch. The square of e-nets performed better than the other devices, collecting three times more gravid Anopheles spp. than the Box gravid trap (RR 3.3; 95 % CI 1.4-7.6). The OviART gravid trap collections were comparable to those from the e-nets and 3.3 (95 % CI 1.5-7.0) times higher than the number of An. gambiae senso lato (s.l.) collected by the Box gravid trap. Both OviART gravid trap and squares of e-nets collected wild gravid Anopheles gambiae (s.l.) where natural habitats were within 200-400 m of the trap. Whilst the e-nets are difficult to handle and might therefore only be useful as a research device, the OviART gravid trap presents a promising new surveillance tool. Further field testing is needed in different eco-epidemiological settings to provide recommendations for its use.

  15. Aligning fast alternating current electroosmotic flow fields and characteristic frequencies with dielectrophoretic traps to achieve rapid bacteria detection.

    PubMed

    Gagnon, Zachary; Chang, Hsueh-Chia

    2005-10-01

    Tailor-designed alternating current electroosmotic (AC-EO) stagnation flows are used to convect bioparticles globally from a bulk solution to localized dielectrophoretic (DEP) traps that are aligned at the flow stagnation points. The multiscale trap, with a typical trapping time of seconds for a dilute 70 microL volume of 10(3) particles per cc sample, is several orders of magnitude faster than conventional DEP traps and earlier AC-EO traps with parallel, castellated, or finger electrodes. A novel serpentine wire capable of sustaining a high voltage, up to 2500 V(RMS), without causing excessive heat dissipation or Faradaic reaction in strong electrolytes is fabricated to produce the strong AC-EO flow with two separated stagnation lines, one aligned with the field minimum and one with the field maximum. The continuous wire design allows a large applied voltage without inducing Faradaic electrode reactions. Particles are trapped within seconds at one of the traps depending on whether they suffer negative or positive DEP. The particles can also be rapidly released from their respective traps by varying the frequency of the applied AC field below particle-distinct cross-over frequencies. Zwitterion addition to the buffer allows further geometric and frequency alignments of the AC-EO and DEP motions. The same device hence allows fast trapping, detection, sorting, and characterization on a sample with realistic conductivity, volume, and bacteria count.

  16. Field trapping and magnetic levitation performances of large single-grain Gd Ba Cu O at different temperatures

    NASA Astrophysics Data System (ADS)

    Nariki, S.; Fujikura, M.; Sakai, N.; Hirabayashi, I.; Murakami, M.

    2005-10-01

    We measured the temperature dependence of the trapped field and the magnetic levitation force for c-axis-oriented single-grain Gd-Ba-Cu-O bulk samples 48 mm in diameter. Trapped magnetic field of the samples was 2.1-2.2 T at 77 K and increased with decreasing temperature and reached 4.1 T at 70 K, however the sample fractured during the measurements at lower temperatures due to a large electromagnetic force. The reinforcement by a metal ring was effective in improving the mechanical strength. The sample encapsulated in an Al ring could trap a very high magnetic field of 9.0 T at 50 K. In liquid O 2 the Gd-Ba-Cu-O bulk exhibited a trapped field of 0.42 T and a magnetic levitation force about a half value of that in liquid N 2.

  17. Recent Developments in Microwave Ion Clocks

    NASA Astrophysics Data System (ADS)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    We review the development of microwave-frequency standards based on trapped ions. Following two distinct paths, microwave ion clocks have evolved greatly in the last twenty years since the earliest Paul-trap-based units. Laser-cooled ion frequency standards reduce the second-order Doppler shift from ion micromotion and thermal secular motion achieving good signal-to-noise ratios via cycling transitions where as many as ~10^8 photons per second per ion may be scattered. Today, laser-cooled ion standards are based on linear Paul traps which hold ions near the node line of the trapping electric field, minimizing micromotion at the trapping-field frequency and the consequent second-order Doppler frequency shift. These quadrupole (radial) field traps tightly confine tens of ions to a crystalline single-line structure. As more ions are trapped, space charge forces some ions away from the node-line axis and the second-order Doppler effect grows larger, even at negligibly small secular temperatures. Buffer-gas-cooled clocks rely on large numbers of ions, typically ~10^7, optically pumped by a discharge lamp at a scattering rate of a few photons per second per ion. To reduce the second-order Doppler shift from space charge repulsion of ions from the trap node line, novel multipole ion traps are now being developed where ions are weakly bound with confining fields that are effectively zero through the trap interior and grow rapidly near the trap electrode ``walls''.

  18. Yakima River Radio-Telemetry Study: Spring Chinook Salmon, 1991-1992 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hockersmith, Eric

    1994-09-01

    As part of the presupplementation planning, baseline data on the productivity of spring chinook salmon (Oncorhynchus tshawytscha) in the Yakima River have been collected. However, for adult salmonids, data on habitat use, delays in passage at irrigation diversions, migration rates, and substock separation had not been previously collected. In 1991, the National Marine Fisheries Service began a 2-year radio-telemetry study of adult spring chinook salmon in the Yakima River Basin. Specific objectives addressed in this study were: to determine spawning populations` run timing, passage patterns at irrigation diversion dams, and morphometric characteristics to determine where and when substocks become separated;more » to evaluate fish passage at Yakima River Basin diversion dams including Prosser, Sunnyside, Wapato, Roza, Town Diversion, Easton, Cowiche, and Wapatox Dams; to determine spring chinook salmon migration rates between Yakima River Basin dams, prespawning behavior, temporal distribution, and habitat utilization; to identify spawning distribution and timing of spring chinook salmon; to determine the amount and cause of prespawning mortality of spring chinook salmon; and to evaluate adult fish-handling procedures for the right-bank, adult-trapping facility at Prosser Dam.« less

  19. An Orbital Trap Mass Analyzer Using a Hybrid Magnetic-Electric Field: A Simulation Study

    NASA Astrophysics Data System (ADS)

    Xu, Chongsheng; Wu, Fangling; Ding, Li; Ding, Chuan-Fan

    2018-03-01

    An orbital ion trap mass analyzer employing hybrid magnetic-electric field was designed and simulated. The trap has a rotational symmetrical structure and the hybrid trapping field was created in a toroidal space between 12 pairs of sector detection electrodes. Ion injection and ion orbital motion inside the trap were simulated using SIMION 8.1 with a user Lua program, and the required electric and magnetic field were investigated. The image charge signal can be picked up by the 12 pairs of detection electrodes and the mass resolution was evaluated using FFT. The simulated resolving power for the optimized configuration over 79,000 FWHM was obtained at the magnetic induction intensity of 0.5 Tesla in the simulation. [Figure not available: see fulltext.

  20. Seasonal patterns of water column particulate organic carbon and fluxes in the Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Gardner, Wilford D.; Richardson, Mary Jo; Smith, Walker O.

    The standing stock of particulate organic carbon (POC) was determined during five cruises in the Ross Sea in 1996 and 1997 and compared with primary production of carbon measured in short-term 14C-incubations and the flux of organic carbon collected in moored sediment traps. POC concentrations were estimated from transmissometer profiles that were calibrated with discrete POC bottle samples from each cruise. The mean standing stock of POC integrated to a depth of 100 m and averaged along a 330 km transect at 76.5°S in mid-October (early spring) was only 240 mmol C m -2, but more than doubled to 560 mmol C m -2 10 days later. By mid-January (summer) the standing stock had increased by an order of magnitude to ˜5300 mmol C m -2, but dropped to 3500 mmol C m -2 one week later. By late April (autumn), the standing stock was only 200 mmol C m -2. The following spring the standing stock increased from 700 mmol C m -2 in late November to 2200 mmol C m -2 in early December. Despite the high standing stock in the photic zone in summer, 1997, little POC was collected in the moored sediment traps until late summer (February-March) when the traps showed an increase in POC and silica flux. A three-fold increase in POC flux occurred in autumn (March-April) dominated by pteropods, but the standing stock of POC in the photic zone at that time was very low. Light-scattering sensor data suggest that, although present in all seasons, aggregates were most abundant in autumn and were distributed throughout the water column. These aggregates may have temporarily stored POC and provided food support for a pteropod population that died and settled into the traps in March-April. Still, the trap POC flux was only 5% of the peak standing stock. Resuspension and lateral advection of recently settled organic matter from a nearby topographic high may explain the larger flux measured in the deep sediment traps, a flux that continued into winter.

  1. Status and outlook of CHIP-TRAP: The Central Michigan University high precision Penning trap

    NASA Astrophysics Data System (ADS)

    Redshaw, M.; Bryce, R. A.; Hawks, P.; Gamage, N. D.; Hunt, C.; Kandegedara, R. M. E. B.; Ratnayake, I. S.; Sharp, L.

    2016-06-01

    At Central Michigan University we are developing a high-precision Penning trap mass spectrometer (CHIP-TRAP) that will focus on measurements with long-lived radioactive isotopes. CHIP-TRAP will consist of a pair of hyperbolic precision-measurement Penning traps, and a cylindrical capture/filter trap in a 12 T magnetic field. Ions will be produced by external ion sources, including a laser ablation source, and transported to the capture trap at low energies enabling ions of a given m / q ratio to be selected via their time-of-flight. In the capture trap, contaminant ions will be removed with a mass-selective rf dipole excitation and the ion of interest will be transported to the measurement traps. A phase-sensitive image charge detection technique will be used for simultaneous cyclotron frequency measurements on single ions in the two precision traps, resulting in a reduction in statistical uncertainty due to magnetic field fluctuations.

  2. Field evaluation of a new light trap for phlebotomine sand flies.

    PubMed

    Gaglio, Gabriella; Napoli, Ettore; Falsone, Luigi; Giannetto, Salvatore; Brianti, Emanuele

    2017-10-01

    Light traps are one of the most common attractive method for the collection of nocturnal insects. Although light traps are generally referred to as "CDC light traps", different models, equipped with incandescent or UV lamps, have been developed. A new light trap, named Laika trap 3.0, equipped with LED lamps and featured with a light and handy design, has been recently proposed into the market. In this study we tested and compared the capture performances of this new trap with those of a classical light trap model under field conditions. From May to November 2013, a Laika trap and a classical light trap were placed biweekly in an area endemic for sand flies. A total of 256 sand fly specimens, belonging to 3 species (Sergentomyia minuta, Phlebotomus perniciosus, Phlebotomus neglectus) were collected during the study period. The Laika trap captured 126 phlebotomine sand flies: P. perniciosus (n=38); S. minuta (n=88), a similar number of specimens (130) and the same species were captured by classical light trap which collected also 3 specimens of P. neglectus. No significant differences in the capture efficiency at each day of trapping, neither in the number of species or in the sex of sand flies were observed. According to results of this study, the Laika trap may be a valid alternative to classical light trap models especially when handy design and low power consumption are key factors in field studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinert, J.; Haimberger, C.; Zabawa, P. J.

    We describe the realization of a dc electric-field trap for ultracold polar molecules, the thin-wire electrostatic trap (TWIST). The thin wires that form the electrodes of the TWIST allow us to superimpose the trap onto a magneto-optical trap (MOT). In our experiment, ultracold polar NaCs molecules in their electronic ground state are created in the MOT via photoassociation, achieving a continuous accumulation in the TWIST of molecules in low-field seeking states. Initial measurements show that the TWIST trap lifetime is limited only by the background pressure in the chamber.

  4. Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae

    PubMed Central

    2010-01-01

    Background Carbon dioxide (CO2) plays an important role in the host-seeking process of opportunistic, zoophilic and anthropophilic mosquito species and is, therefore, commonly added to mosquito sampling tools. The African malaria vector Anopheles gambiae sensu stricto is attracted to human volatiles augmented by CO2. This study investigated whether CO2, usually supplied from gas cylinders acquired from commercial industry, could be replaced by CO2 derived from fermenting yeast (yeast-produced CO2). Methods Trapping experiments were conducted in the laboratory, semi-field and field, with An. gambiae s.s. as the target species. MM-X traps were baited with volatiles produced by mixtures of yeast, sugar and water, prepared in 1.5, 5 or 25 L bottles. Catches were compared with traps baited with industrial CO2. The additional effect of human odours was also examined. In the laboratory and semi-field facility dual-choice experiments were conducted. The effect of traps baited with yeast-produced CO2 on the number of mosquitoes entering an African house was studied in the MalariaSphere. Carbon dioxide baited traps, placed outside human dwellings, were also tested in an African village setting. The laboratory and semi-field data were analysed by a χ2-test, the field data by GLM. In addition, CO2 concentrations produced by yeast-sugar solutions were measured over time. Results Traps baited with yeast-produced CO2 caught significantly more mosquitoes than unbaited traps (up to 34 h post mixing the ingredients) and also significantly more than traps baited with industrial CO2, both in the laboratory and semi-field. Adding yeast-produced CO2 to traps baited with human odour significantly increased trap catches. In the MalariaSphere, outdoor traps baited with yeast-produced or industrial CO2 + human odour reduced house entry of mosquitoes with a human host sleeping under a bed net indoors. Anopheles gambiae s.s. was not caught during the field trials. However, traps baited with yeast-produced CO2 caught similar numbers of Anopheles arabiensis as traps baited with industrial CO2. Addition of human odour increased trap catches. Conclusions Yeast-produced CO2 can effectively replace industrial CO2 for sampling of An. gambiae s.s.. This will significantly reduce costs and allow sustainable mass-application of odour-baited devices for mosquito sampling in remote areas. PMID:20973963

  5. Direct observation of trapped charges under field-plate in p-GaN gate AlGaN/GaN high electron mobility transistors by electric field-induced optical second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Katsuno, Takashi; Manaka, Takaaki; Soejima, Narumasa; Iwamoto, Mitsumasa

    2017-02-01

    Trapped charges underneath the field-plate (FP) in a p-gallium nitride (GaN) gate AlGaN/ GaN high electron mobility transistor device were visualized by using electric field-induced optical second-harmonic generation imaging. Second-harmonic (SH) signals in the off-state of the device with FP indicated that the electric field decreased at the p-GaN gate edge and concentrated at the FP edge. Nevertheless, SH signals originating from trapped charges were slightly observed at the p-GaN gate edge and were not observed at the FP edge in the on-state. Compared with the device without FP, reduction of trapped charges at the p-GaN gate edge of the device with FP is attributed to attenuation of the electric field with the aid of the FP. Negligible trapped charges at the FP edge is owing to lower trap density of the SiO2/AlGaN interface at the FP edge compared with that of the SiO2/p-GaN sidewall interface at the p-GaN gate edge and attenuated electric field by the thickness of the SiO2 passivation layer on the AlGaN surface.

  6. Movement of particles using sequentially activated dielectrophoretic particle trapping

    DOEpatents

    Miles, Robin R.

    2004-02-03

    Manipulation of DNA and cells/spores using dielectrophoretic (DEP) forces to perform sample preparation protocols for polymerized chain reaction (PCR) based assays for various applications. This is accomplished by movement of particles using sequentially activated dielectrophoretic particle trapping. DEP forces induce a dipole in particles, and these particles can be trapped in non-uniform fields. The particles can be trapped in the high field strength region of one set of electrodes. By switching off this field and switching on an adjacent electrodes, particles can be moved down a channel with little or no flow.

  7. Laboratory and field testing of bednet traps for mosquito (Diptera: Culicidae) sampling in West Java, Indonesia.

    PubMed

    Stoops, Craig A; Gionar, Yoyo R; Rusmiarto, Saptoro; Susapto, Dwiko; Andris, Heri; Elyazar, Iqbal R F; Barbara, Kathryn A; Munif, Amrul

    2010-06-01

    Surveillance of medically important mosquitoes is critical to determine the risk of mosquito-borne disease transmission. The purpose of this research was to test self-supporting, exposure-free bednet traps to survey mosquitoes. In the laboratory we tested human-baited and unbaited CDC light trap/cot bednet (CDCBN) combinations against three types of traps: the Mbita Trap (MIBITA), a Tent Trap (TENT), and a modified Townes style Malaise trap (TSM). In the laboratory, 16 runs comparing MBITA, TSM, and TENT to the CDCBN were conducted for a total of 48 runs of the experiment using 13,600 mosquitoes. The TENT trap collected significantly more mosquitoes than the CDCBN. The CDCBN collected significantly more than the MBITA and there was no difference between the TSM and the CDCBN. Two field trials were conducted in Cibuntu, Sukabumi, West Java, Indonesia. The first test compared human-baited and unbaited CDCBN, TENT, and TSM traps during six nights over two consecutive weeks per month from January, 2007 to September, 2007 for a total of 54 trapnights. A total of 8,474 mosquitoes representing 33 species were collected using the six trapping methods. The TENT-baited trap collected significantly more mosquitoes than both the CDCBN and the TSM. The second field trial was a comparison of the baited and unbaited TENT and CDCBN traps and Human Landing Collections (HLCs). The trial was carried out from January, 2008 to May, 2008 for a total of 30 trap nights. A total of 11,923 mosquitoes were collected representing 24 species. Human Landing Collections captured significantly more mosquitoes than either the TENT or the CDCBN. The baited and unbaited TENT collected significantly more mosquitoes than the CDCBN. The TENT trap was found to be an effective, light-weight substitute for the CDC light-trap, bednet combination in the field and should be considered for use in surveys of mosquito-borne diseases such as malaria, arboviruses, and filariasis.

  8. Students' Anchoring Predisposition: An Illustration from Spring Training Baseball

    ERIC Educational Resources Information Center

    Mohrweis, Lawrence C.

    2014-01-01

    The anchoring tendency results when decision makers anchor on initial values and then make final assessments that are adjusted insufficiently away from the initial values. The professional literature recognizes that auditors often risk falling into the judgment trap of anchoring and adjusting (Ranzilla et al., 2011). Students may also be unaware…

  9. Working Papers in Educational Linguistics, Volume 9, Number 1, Spring 1993.

    ERIC Educational Resources Information Center

    Chen, Fred, Ed.; And Others

    1993-01-01

    This issue of a journal designed to serve as a forum for the exchange of ideas among students and scholars on various aspects of linguistics in education contains the following papers: "The Importance of Participant Role in Cooperative Learning" (Rebecca Freeman); "The Trap of Generalization: A Case of Encountering a New…

  10. Alaska's forest resource.

    Treesearch

    O. Keith Hutchison

    1968-01-01

    Alaska's romantic past includes the magnetic lure of gold; the mad stampede to strike it rich; success and heartbreak; men and animals battling snow, ice, spring breakup, insects, and loneliness; dog teams at work and on desperate missions; river steamers battling the Yukon; bush pilots performing miraculous flights; and hordes of salmon taken by traps and seine...

  11. Microfabricated Microwave-Integrated Surface Ion Trap

    NASA Astrophysics Data System (ADS)

    Revelle, Melissa C.; Blain, Matthew G.; Haltli, Raymond A.; Hollowell, Andrew E.; Nordquist, Christopher D.; Maunz, Peter

    2017-04-01

    Quantum information processing holds the key to solving computational problems that are intractable with classical computers. Trapped ions are a physical realization of a quantum information system in which qubits are encoded in hyperfine energy states. Coupling the qubit states to ion motion, as needed for two-qubit gates, is typically accomplished using Raman laser beams. Alternatively, this coupling can be achieved with strong microwave gradient fields. While microwave radiation is easier to control than a laser, it is challenging to precisely engineer the radiated microwave field. Taking advantage of Sandia's microfabrication techniques, we created a surface ion trap with integrated microwave electrodes with sub-wavelength dimensions. This multi-layered device permits co-location of the microwave antennae and the ion trap electrodes to create localized microwave gradient fields and necessary trapping fields. Here, we characterize the trap design and present simulated microwave performance with progress towards experimental results. This research was funded, in part, by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA).

  12. An evaluation of western bean cutworm pheromone trapping techniques (Lepidoptera: Noctuidae) in a corn and soybean agroecosystem.

    PubMed

    Dorhout, David L; Rice, Marlin E

    2008-04-01

    Pheromone traps can be used to monitor for adult western bean cutworms, Striacosta albicosta (Smith) (Lepidoptera: Noctuidae), and for the timing of field scouting. Understanding the effect that different trapping techniques have on adult captures could help corn (Zea mays L.) producers make better pest management decisions. Several approaches to trapping adults were evaluated in 2005 and 2006 by using two different pheromone traps (sticky wing and jug traps) in two different environments (corn or corn/soybean [Glycine max (L.) Merr.] at three different heights (0.6, 1.2, and 1.8 m). There was no significant difference in the trap catches by trap type in either 2005 or 2006. There were significantly more adults captured in traps placed between two cornfields than traps placed between corn/soybean fields during both years. Trap height also was significant, with the traps at 1.2 and 1.8 m catching more moths than traps at 0.6 m during both years. These results show that trapping techniques do affect trap catches and that either trap type placed between two cornfields at either 1.2 or 1.8 m above the ground will maximize trap catches.

  13. A Computer Model of Insect Traps in a Landscape

    NASA Astrophysics Data System (ADS)

    Manoukis, Nicholas C.; Hall, Brian; Geib, Scott M.

    2014-11-01

    Attractant-based trap networks are important elements of invasive insect detection, pest control, and basic research programs. We present a landscape-level, spatially explicit model of trap networks, focused on detection, that incorporates variable attractiveness of traps and a movement model for insect dispersion. We describe the model and validate its behavior using field trap data on networks targeting two species, Ceratitis capitata and Anoplophora glabripennis. Our model will assist efforts to optimize trap networks by 1) introducing an accessible and realistic mathematical characterization of the operation of a single trap that lends itself easily to parametrization via field experiments and 2) allowing direct quantification and comparison of sensitivity between trap networks. Results from the two case studies indicate that the relationship between number of traps and their spatial distribution and capture probability under the model is qualitatively dependent on the attractiveness of the traps, a result with important practical consequences.

  14. Large CO 2 and CH 4 emissions from polygonal tundra during spring thaw in northern Alaska: Spring Pulse Emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raz-Yaseef, Naama; Torn, Margaret S.; Wu, Yuxin

    The few prethaw observations of tundra carbon fluxes suggest that there may be large spring releases, but little Is lmown about the scale and underlying mechanisms of this phenomenon. To address these questions, we combined ecosystem eddy flux measurements from two towers near Barrow, Alaska, with mechanistic soil-core thawing experiment During a 2week period prior to snowmelt In 2014, large fluxes were measured, reducing net summer uptake of CO2 by 46% and adding 6% to cumulative CH4 emissions. Emission pulses were linked to unique rain-on-snow events enhancing soli cracking. Controlled laboratory experiment revealed that as surface Ice thaws, an immediate,more » large pulse of trapped gases Is emitted. These results suggest that the Arctic C02 and CH4 spring pulse is a delayed release of biogenic gas production from the previous fall and that the pulse can be large enough to offset a significant fraction of the moderate Arctic tundra carbon sink.« less

  15. Spatio-temporal optimization of sampling for bluetongue vectors (Culicoides) near grazing livestock

    PubMed Central

    2013-01-01

    Background Estimating the abundance of Culicoides using light traps is influenced by a large variation in abundance in time and place. This study investigates the optimal trapping strategy to estimate the abundance or presence/absence of Culicoides on a field with grazing animals. We used 45 light traps to sample specimens from the Culicoides obsoletus species complex on a 14 hectare field during 16 nights in 2009. Findings The large number of traps and catch nights enabled us to simulate a series of samples consisting of different numbers of traps (1-15) on each night. We also varied the number of catch nights when simulating the sampling, and sampled with increasing minimum distances between traps. We used resampling to generate a distribution of different mean and median abundance in each sample. Finally, we used the hypergeometric distribution to estimate the probability of falsely detecting absence of vectors on the field. The variation in the estimated abundance decreased steeply when using up to six traps, and was less pronounced when using more traps, although no clear cutoff was found. Conclusions Despite spatial clustering in vector abundance, we found no effect of increasing the distance between traps. We found that 18 traps were generally required to reach 90% probability of a true positive catch when sampling just one night. But when sampling over two nights the same probability level was obtained with just three traps per night. The results are useful for the design of vector monitoring programmes on fields with grazing animals. PMID:23705770

  16. The range of attraction for light traps catching Culicoides biting midges (Diptera: Ceratopogonidae)

    PubMed Central

    2013-01-01

    Background Culicoides are vectors of e.g. bluetongue virus and Schmallenberg virus in northern Europe. Light trapping is an important tool for detecting the presence and quantifying the abundance of vectors in the field. Until now, few studies have investigated the range of attraction of light traps. Methods Here we test a previously described mathematical model (Model I) and two novel models for the attraction of vectors to light traps (Model II and III). In Model I, Culicoides fly to the nearest trap from within a fixed range of attraction. In Model II Culicoides fly towards areas with greater light intensity, and in Model III Culicoides evaluate light sources in the field of view and fly towards the strongest. Model II and III incorporated the directionally dependent light field created around light traps with fluorescent light tubes. All three models were fitted to light trap collections obtained from two novel experimental setups in the field where traps were placed in different configurations. Results Results showed that overlapping ranges of attraction of neighboring traps extended the shared range of attraction. Model I did not fit data from any of the experimental setups. Model II could only fit data from one of the setups, while Model III fitted data from both experimental setups. Conclusions The model with the best fit, Model III, indicates that Culicoides continuously evaluate the light source direction and intensity. The maximum range of attraction of a single 4W CDC light trap was estimated to be approximately 15.25 meters. The attraction towards light traps is different from the attraction to host animals and thus light trap catches may not represent the vector species and numbers attracted to hosts. PMID:23497628

  17. Non-localized trapping effects in AlGaN/GaN heterojunction field-effect transistors subjected to on-state bias stress

    NASA Astrophysics Data System (ADS)

    Hu, Cheng-Yu; Hashizume, Tamotsu

    2012-04-01

    For AlGaN/GaN heterojunction field-effect transistors, on-state-bias-stress (on-stress)-induced trapping effects were observed across the entire drain access region, not only at the gate edge. However, during the application of on-stress, the highest electric field was only localized at the drain side of the gate edge. Using the location of the highest electric field as a reference, the trapping effects at the gate edge and at the more distant access region were referred to as localized and non-localized trapping effect, respectively. Using two-dimensional-electron-gas sensing-bar (2DEG-sensing-bar) and dual-gate structures, the non-localized trapping effects were investigated and the trap density was measured to be ˜1.3 × 1012 cm-2. The effect of passivation was also discussed. It was found that both surface leakage currents and hot electrons are responsible for the non-localized trapping effects with hot electrons having the dominant effect. Since hot electrons are generated from the 2DEG channel, it is highly likely that the involved traps are mainly in the GaN buffer layer. Using monochromatic irradiation (1.24-2.81 eV), the trap levels responsible for the non-localized trapping effects were found to be located at 0.6-1.6 eV from the valence band of GaN. Both trap-assisted impact ionization and direct channel electron injection are proposed as the possible mechanisms of the hot-electron-related non-localized trapping effect. Finally, using the 2DEG-sensing-bar structure, we directly confirmed that blocking gate injected electrons is an important mechanism of Al2O3 passivation.

  18. Microscopic studies of the fate of charges in organic semiconductors: Scanning Kelvin probe measurements of charge trapping, transport, and electric fields in p- and n-type devices

    NASA Astrophysics Data System (ADS)

    Smieska, Louisa Marion

    Organic semiconductors could have wide-ranging applications in lightweight, efficient electronic circuits. However, several fundamental questions regarding organic electronic device behavior have not yet been fully addressed, including the nature of chemical charge traps, and robust models for injection and transport. Many studies focus on engineering devices through bulk transport measurements, but it is not always possible to infer the microscopic behavior leading to the observed measurements. In this thesis, we present scanning-probe microscope studies of organic semiconductor devices in an effort to connect local properties with local device behavior. First, we study the chemistry of charge trapping in pentacene transistors. Working devices are doped with known pentacene impurities and the extent of charge trap formation is mapped across the transistor channel. Trap-clearing spectroscopy is employed to measure an excitation of the pentacene charge trap species, enabling identification of the degradationrelated chemical trap in pentacene. Second, we examine transport and trapping in peryelene diimide (PDI) transistors. Local mobilities are extracted from surface potential profiles across a transistor channel, and charge injection kinetics are found to be highly sensitive to electrode cleanliness. Trap-clearing spectra generally resemble PDI absorption spectra, but one derivative yields evidence indicating variation in trap-clearing mechanisms for different surface chemistries. Trap formation rates are measured and found to be independent of surface chemistry, contradicting a proposed silanol trapping mechanism. Finally, we develop a variation of scanning Kelvin probe microscopy that enables measurement of electric fields through a position modulation. This method avoids taking a numeric derivative of potential, which can introduce high-frequency noise into the electric field signal. Preliminary data is presented, and the theoretical basis for electric field noise in both methods is examined.

  19. The range of attraction for light traps catching Culicoides biting midges (Diptera: Ceratopogonidae).

    PubMed

    Kirkeby, Carsten; Græsbøll, Kaare; Stockmarr, Anders; Christiansen, Lasse E; Bødker, René

    2013-03-15

    Culicoides are vectors of e.g. bluetongue virus and Schmallenberg virus in northern Europe. Light trapping is an important tool for detecting the presence and quantifying the abundance of vectors in the field. Until now, few studies have investigated the range of attraction of light traps. Here we test a previously described mathematical model (Model I) and two novel models for the attraction of vectors to light traps (Model II and III). In Model I, Culicoides fly to the nearest trap from within a fixed range of attraction. In Model II Culicoides fly towards areas with greater light intensity, and in Model III Culicoides evaluate light sources in the field of view and fly towards the strongest. Model II and III incorporated the directionally dependent light field created around light traps with fluorescent light tubes. All three models were fitted to light trap collections obtained from two novel experimental setups in the field where traps were placed in different configurations. Results showed that overlapping ranges of attraction of neighboring traps extended the shared range of attraction. Model I did not fit data from any of the experimental setups. Model II could only fit data from one of the setups, while Model III fitted data from both experimental setups. The model with the best fit, Model III, indicates that Culicoides continuously evaluate the light source direction and intensity. The maximum range of attraction of a single 4W CDC light trap was estimated to be approximately 15.25 meters. The attraction towards light traps is different from the attraction to host animals and thus light trap catches may not represent the vector species and numbers attracted to hosts.

  20. Aerospace devices for magnetic replicas

    NASA Technical Reports Server (NTRS)

    Weinstein, Roy

    1993-01-01

    Retained persistent magnetic field has been studied and improved in the superconductor YBa2Cu3O7 (Y123). During the study, trapped magnetic field, B(t), has been increased by over a factor of 10(exp 5). Methods used to improve magnetic field trapping were principally: (1) the adoption of the Melt Texturing process to increase grain size; (2) the addition of excess Y to disperse deposits of Y2BaCuO5 (Y211) and again increase grain size; (3) irradiation with high energy particles including 1H+, 3He++, 4He++, and fission fragments; and (4) utilizing temperatures below 77 K has also been quantified as a way to increase trapped field. In addition, in our study of B(t), we have found laws governing creep, activation, temperature dependence, creep vs. current flow, etc. In the range 20 K less than or equal to T less than or equal to 65 K, and for B less than 10 Tesla, a simple empirical relationship was found: B(trap) (T2) = B(trap) (T1) ((Tc - T2)/(Tc - T1))squared where Tc is the critical temperature. The highest experimental trapped field was B(trap) = 3.96 Tesla, at 65 K. We believe this to be the highest persistent field ever produced, by any method. A two component model of the persistent currents has been developed. This accurately reproduces the data, using as parameters only the magnitude of a constant surface current, J(s), and a constant volume current J(v). The model successfully predicts B(t) (xyz) for the case of maximum trapped field, for all samples observed. It has also been extended to describe the unsaturated case either zero field cooled, or field cooled. Loss of strap with time has been studied for the critical state (Bt,max), and non critical state (Bt less than Bt,max), for times from a few minutes to a few months, for unirradiated material, for irradiation by 1H+, 3He++, 4He++, high z projectiles, and neutrons, and for all materials used in the overall study. We conclude that: (1) multi Tesla trapped fields are attained; (2) fields over 10 T are achievable; (3) creep is not a large problem; (4) application is feasible to motors, generators, magnets for particle beam optics, separators, levitating bearings, energy storage, shielding, and transportation.

  1. Extracting the potential-well of a near-field optical trap using the Helmholtz-Hodge decomposition

    NASA Astrophysics Data System (ADS)

    Zaman, Mohammad Asif; Padhy, Punnag; Hansen, Paul C.; Hesselink, Lambertus

    2018-02-01

    The non-conservative nature of the force field generated by a near-field optical trap is analyzed. A plasmonic C-shaped engraving on a gold film is considered as the trap. The force field is calculated using the Maxwell stress tensor method. The Helmholtz-Hodge decomposition is used to extract the conservative and the non-conservative component of the force. Due to the non-negligible non-conservative component, it is found that the conventional approach of extracting the potential by direct integration of the force is not accurate. Despite the non-conservative nature of the force field, it is found that the statistical properties of a trapped nanoparticle can be estimated from the conservative component of the force field alone. Experimental and numerical results are presented to support the claims.

  2. Improvement in trapped fields by stacking bulk superconductors

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Wongsatanawarid, A.; Seki, H.; Murakami, M.

    2009-10-01

    We studied the effects of stacking several bulk superconductor blocks on the field trapping properties. In order to avoid the detrimental effects of the bottom deteriorated parts, bulk Dy-Ba-Cu-O superconductors 45 mm in diameter and 10 mm in thickness were cut from the top parts of as-grown bulk blocks of 25 mm diameter. We stacked the superconductors and measured the field distribution as a function of the gap. The trapped field measurements were performed by field-cooling the samples inserted in between two permanent magnets with liquid nitrogen. It was found that the trapped field values are almost doubled when the number of stacked bulk superconductors increased from two to three. The present results clearly show that one can expect beneficial effects of increasing the ratio of the height to the diameter even in bulk high temperature superconductors.

  3. Seasonal ecology and thermal constraints of Telenomus spp. (Hymenoptera: Scelionidae), egg parasitoids of the hemlock looper (Lepidoptera: Geometridae).

    PubMed

    Legault, Simon; Hébert, Christian; Blais, Julie; Berthiaume, Richard; Bauce, Eric; Brodeur, Jacques

    2012-12-01

    We describe seasonal patterns of parasitism by Telenomus coloradensis Crawford, Telenomus droozi Muesebeck, Telenomus flavotibiae Pelletier (Hymenoptera: Scelionidae), and Trichogramma spp. (Hymenoptera: Trichogrammatidae), egg parasitoids of the hemlock looper, Lambdina fiscellaria (Guenée) (Lepidoptera: Geometridae), after a 3-yr survey of defoliated stands in the lower St. Lawrence region (Quebec, Canada). Results from sentinel trap sampling indicate that T. coloradensis and T. droozi are the most common species, whereas parasitism by T. flavotibiae and Trichogramma spp. is rare. Telenomus coloradensis and T. droozi show similar seasonal periods of parasitism, both species being active in early spring (late April) at temperatures as low as 4°C. Using thermal threshold (T(0)) and thermal constant (K) for immature development of T. coloradensis males and females from egg to adult emergence, we estimated that the spring progeny emerges in the middle of the summer while hemlock looper eggs are absent from the forest environment. Parasitoid females would then mate and remain in the environment to 1) exploit alternate host species, 2) enter into quiescence and later parasitize eggs laid by hemlock looper females in the fall, 3) enter into a reproductive diapause and parasitize hemlock looper eggs only the next spring, or all of these. Although previous studies have shown that T. coloradensis can overwinter in its immature form within the host egg, our field and laboratory results indicate that in the lower St. Lawrence region, this species principally enters diapause as fertilized females, with a mean supercooling point of -30.6°C in the fall.

  4. Linear excitation and detection in Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Grosshans, Peter B.; Chen, Ruidan; Limbach, Patrick A.; Marshall, Alan G.

    1994-11-01

    We present the first Fourier transform ion cyclotron resonance (FT-ICR) ion trap designed to produce both a linear spatial variation of the excitation electric potential field and a linear response of the detection circuit to the motion of the confined ions. With this trap, the magnitude of the detected signal at a given ion cyclotron frequency varies linearly with both the number of ions of given mass-to-charge ratio and also with the magnitude-mode excitation signal at the ion cyclotron orbital frequency; the proportionality constant is mass independent. Interestingly, this linearization may be achieved with any ion trap geometry. The excitation/detection design consists of an array of capacitively coupled electrodes which provide a voltage-divider network that produces a nearly spatially homogeneous excitation electric field throughout the linearized trap; resistive coupling to the electrodes isolates the a.c. excitation (or detection) circuit from the d.c. (trapping) potential. The design is based on analytical expressions for the potential associated with each electrode, from which we are able to compute the deviation from linearity for a trap with a finite number of elements. Based on direct experimental comparisons to an unmodified cubic trap, the linearized trap demonstrates the following performance advantages at the cost of some additional mechanical complexity: (a) signal response linearly proportional to excitation electric field amplitude; (b) vastly reduced axial excitation/ejection for significantly improved ion relative abundance accuracy; (c) elimination of harmonics and sidebands of the fundamental frequencies of ion motion. As a result, FT-ICR mass spectra are now more reproducible. Moreover, the linearized trap should facilitate the characterization of other fundamental aspects of ion behavior in an ICR ion trap, e.g. effects of space charge, non-quadrupolar electrostatic trapping field, etc. Furthermore, this novel design should improve significantly the precision of ion relative abundance and mass accuracy measurements, while removing spectral artifacts of the detection process. We discuss future modifications that linearize the spatial variation of the electrostatic trapping electric field as well, thereby completing the linearization of the entire FT-ICR mass spectrometric techniques. Suggested FT-ICR mass spectrometric applications for the linearized trap are discussed.

  5. Methods and apparatus for producing and storing positrons and protons

    DOEpatents

    Akers, Douglas W [Idaho Falls, ID

    2010-07-06

    Apparatus for producing and storing positrons may include a trap that defines an interior chamber therein and that contains an electric field and a magnetic field. The trap may further include a source material that includes atoms that, when activated by photon bombardment, become positron emitters to produce positrons. The trap may also include a moderator positioned adjacent the source material. A photon source is positioned adjacent the trap so that photons produced by the photon source bombard the source material to produce the positron emitters. Positrons from the positron emitters and moderated positrons from the moderator are confined within the interior chamber of the trap by the electric and magnetic fields. Apparatus for producing and storing protons are also disclosed.

  6. Optical trapping of nanoparticles by ultrashort laser pulses.

    PubMed

    Usman, Anwar; Chiang, Wei-Yi; Masuhara, Hiroshi

    2013-01-01

    Optical trapping with continuous-wave lasers has been a fascinating field in the optical manipulation. It has become a powerful tool for manipulating micrometer-sized objects, and has been widely applied in physics, chemistry, biology, material, and colloidal science. Replacing the continuous-wave- with pulsed-mode laser in optical trapping has already revealed some novel phenomena, including the stable trap, modifiable trapping positions, and controllable directional optical ejections of particles in nanometer scales. Due to two distinctive features; impulsive peak powers and relaxation time between consecutive pulses, the optical trapping with the laser pulses has been demonstrated to have some advantages over conventional continuous-wave lasers, particularly when the particles are within Rayleigh approximation. This would open unprecedented opportunities in both fundamental science and application. This Review summarizes recent advances in the optical trapping with laser pulses and discusses the electromagnetic formulations and physical interpretations of the new phenomena. Its aim is rather to show how beautiful and promising this field will be, and to encourage the in-depth study of this field.

  7. Trap Height Affects Capture of Lady Beetles (Coleoptera: Coccinellidae) in Pecan Orchards.

    PubMed

    Cottrell, T E

    2017-04-01

    There is scarce information regarding the vertical stratification of predaceous Coccinellidae in tall trees. Although numerous studies have been done in orchards and forests, very few studies have assessed the occurrence of predaceous Coccinellidae high in tree canopies. The objective of this study was to examine the abundance of Coccinellidae at different heights in mature pecan, Carya illinoinensis (Wangenh.) K. Koch, orchards with tall trees. From spring through late fall during 2013 and 2014, yellow pyramidal Tedders traps were suspended in the pecan canopy at 6.1 and 12.2 m, in addition to being placed on the ground (0 m). The exotic species Harmonia axyridis and Coccinella septempunctata accounted for a high percentage of trap capture during this study. Except for Olla v-nigrum, low numbers of native species (Hippodamia convergens, Coleomegilla maculata, Cycloneda munda, Scymnus spp., and Hyperaspis spp.) were captured. However, significantly more were captured in ground traps rather than in canopy traps with the exception of O. v-nigrum. Similar to most native species, significantly more C. septempunctata were captured in ground traps than canopy traps. This contrasts sharply with H. axyridis captured similarly at all trap heights. The ability to exploit resources across vertical strata, unlike many intraguild predators, may be an underestimated factor helping to explain the invasiveness of H. axyridis. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by a US Government employee and is in the public domain in the US.

  8. Cucumber Lure Trapping of Zeugodacus cucurbitae (Diptera: Tephritidae) in Hawaii and Taiwan: Longevity and Nontargets Captures.

    PubMed

    Jang, Eric B; Carvalho, Lori A F N; Chen, Chung-Chien; Siderhurst, Matthew S

    2017-02-01

    The melon fly, Zeugodacus cucurbitae (Coquillett), is a serious pest of tropical horticulture, causing damage to cucurbits, tree fruits, and fruiting vegetables. Melon flies are especially attractive to freshly sliced cucumber, and this has led to the identification of a nine-compound kairomone lure that can be used to trap both female and male flies. In this study, a seven-compound lure, containing (Z)-6-nonenal, (Z)-6-nonen-1-ol, 1-octen-3-ol, (E,Z)-2,6-nonadienal, (E)-2-nonenal, hexanal, and 1-hexanol, was formulated into PVC plugs (100 or 300 mg/plug) for field testing in wet traps. In Hawaii, 100 mg of the seven-compound cucumber lure, loaded in either plugs or glass capillaries, attracted more flies than traps containing Solulys protein over a 9-wk period. However, both cucumber lure formulations showed marked declines in the number of flies trapped after 3 wk. Similar results were obtained during a 6-wk field trial using 100 mg cucumber lure plugs in Taiwan. Increasing the cucumber lure loading rate to 300 mg/lure increased the effective trapping life of the attractant during a second 9-wk field trial conducted in Hawaii. The synthetic cucumber lure showed female-biased sex ratios in trap captures in the Taiwanese and second Hawaiian field trials. Protein lures captures were female-biased in all three field trials. Wet traps in Hawaii containing the cucumber lure were found to capture 25-30 nontarget insects/trap/week, less than half that captured with Solulys. Captured nontarget insects represented 37 families in 10 orders. The most common families caught were Ceratopogonidae (∼9 flies/trap) and Gryllidae (∼7 crickets/trap). Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  9. Enhanced cell trapping throughput using DC-biased AC electric field in a dielectrophoresis-based fluidic device with densely packed silica beads.

    PubMed

    Lewpiriyawong, Nuttawut; Xu, Guolin; Yang, Chun

    2018-03-01

    This paper presents the use of DC-biased AC electric field for enhancing cell trapping throughput in an insulator-based dielectrophoretic (iDEP) fluidic device with densely packed silica beads. Cell suspension is carried through the iDEP device by a pressure-driven flow. Under an applied DC-biased AC electric field, DEP trapping force is produced as a result of non-uniform electric field induced by the gap of electrically insulating silica beads packed between two mesh electrodes that allow both fluid and cells to pass through. While the AC component is mainly to control the magnitude of DEP trapping force, the DC component generates local electroosmotic (EO) flow in the cavity between the beads and the EO flow can be set to move along or against the main pressure-driven flow. Our experimental and simulation results show that desirable trapping is achieved when the EO flow direction is along (not against) the main flow direction. Using our proposed DC-biased AC field, the device can enhance the trapping throughput (in terms of the flowrate of cell suspension) up to five times while yielding almost the same cell capture rates as compared to the pure AC field case. Additionally, the device was demonstrated to selectively trap dead yeast cells from a mixture of flowing live and dead yeast cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Influence of trap placement and design on capture of the emerald ash borer (Coleoptera: Buprestidae).

    PubMed

    Francese, Joseph A; Oliver, Jason B; Fraser, Ivich; Lance, David R; Youssef, Nadeer; Sawyer, Alan J; Mastro, Victor C

    2008-12-01

    The key to an effective pest management program for the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera Buprestidae), is a survey program equipped with tools for detecting and delimiting populations. We studied the effects of trap design, color, and placement on the efficacy of sticky traps for capturing the emerald ash borer. There were significant differences in trap catch along a transect gradient from wooded to open field conditions, with most beetles being caught along the edge, or in open fields, 15-25 m outside an ash (Fraxinus spp. L.) (Oleaceae) woodlot. Greater emerald ash borer catch occurred on purple traps than on red or white traps. Traps placed in the mid-canopy of ash trees (13 m) caught significantly more beetles than those placed at ground level. We also describe a new trap design, a three-sided prism trap, which is relatively easy to assemble and deploy.

  11. Electrostatic particle trap for ion beam sputter deposition

    DOEpatents

    Vernon, Stephen P.; Burkhart, Scott C.

    2002-01-01

    A method and apparatus for the interception and trapping of or reflection of charged particulate matter generated in ion beam sputter deposition. The apparatus involves an electrostatic particle trap which generates electrostatic fields in the vicinity of the substrate on which target material is being deposited. The electrostatic particle trap consists of an array of electrode surfaces, each maintained at an electrostatic potential, and with their surfaces parallel or perpendicular to the surface of the substrate. The method involves interception and trapping of or reflection of charged particles achieved by generating electrostatic fields in the vicinity of the substrate, and configuring the fields to force the charged particulate material away from the substrate. The electrostatic charged particle trap enables prevention of charged particles from being deposited on the substrate thereby enabling the deposition of extremely low defect density films, such as required for reflective masks of an extreme ultraviolet lithography (EUVL) system.

  12. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, October 20, 1999 to June 15, 2000 : 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleary, Peter J.

    2002-12-01

    This report details the smolt performance of natural and hatchery chinook salmon and steelhead from the Imnaha River to the Snake River and Columbia River dams during migration year 2000. Flow conditions in the Imnaha River and Snake River were appreciably lower during May and June in 2000, compared to historic levels at gauging stations, but flow conditions in the Imnaha and Snake River were above average during April. Overall, water conditions for the entire Columbia River were characterized by the Fish Passage Center as below normal levels. Spill occurred continuously at Lower Granite Dam (LGR), Little Goose Dam (LGO),more » and Lower Monumental Dam (LMO) from April 5, April 10, and April 4, respectively, to June 20, and encompassed the periods of migration of Imnaha River juvenile chinook salmon and steelhead, with a few exceptions. Outflow in the tailraces of LGR, LGO, and LMO decreased in May and June while temperatures increased. Chinook salmon and steelhead were captured using rotary screw traps at river kilometer (rkm) 74 and 7 during the fall from October 20 to November 24, 1999, and during the spring period from February 26 to June 15, 2000, at rkm 7. Spring trapping information was reported weekly to the Fish Passage Center's Smolt Monitoring Program. A portion of these fish were tagged weekly with passive integrated transponder (PIT) tags and were detected migrating past interrogation sites at Snake River and Columbia River dams. Survival of PIT tagged fish was estimated with the Survival Using Proportional Hazards model (SURPH model). Estimated survival of fall tagged natural chinook (with {+-} 95% confidence intervals in parenthesis) from the upper Imnaha (rkm 74) to LGR was 29.6% ({+-} 2.8 ). Natural chinook salmon tagged in the fall in the lower Imnaha River at rkm 7, which over wintered in the Snake River, had an estimated survival of 36.8% ({+-} 2.9%) to LGR. Spring tagged natural chinook salmon from the lower site had an estimated survival of 84.8% ({+-} 2.6%) to LGR. The season wide survival of spring tagged natural chinook salmon smolts from release in the Imnaha River to McNary Dam (MCN) was 67.9% ({+-} 6.3%). Post release survival of hatchery chinook salmon smolts, from release at the Imnaha River acclimation facility to the lower Imnaha River trap, was estimated at 94.7% ({+-} 4.7%). Hatchery chinook salmon, PIT tagged and released at the lower Imnaha River trap, had an estimated survival of 75.0% ({+-} 4.2%) to LGR. Estimated survival of hatchery chinook salmon smolts from the Imnaha River to McNary Dam (MCN) was 54.1% ({+-} 9.7%). Natural steelhead smolts had an estimated survival of 84.4% ({+-} 2.7%) to LGR and a survival estimate of 49.9% ({+-}12.2%) from the lower Imnaha River trap to MCN. The estimated survival of hatchery steelhead smolts to LGR was 85.8 ({+-} 2.4) and the survival from release to MCN was 40.2% ({+-}12.5%).« less

  13. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, 1998-1999 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleary, Peter J.; Blenden, Michael L.; Kucera, Paul A.

    2002-08-01

    This report summarizes the results of the Lower Snake River Compensation Plan Hatchery Evaluation Studies (LSRCP) and the Imnaha Smolt Monitoring Program (SMP) for the 1999 smolt migration from the Imnaha River, Oregon. These studies were designed and closely coordinated to provide information about juvenile natural and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) biological characteristics, behavior and emigrant timing, survival, arrival timing and travel time to the Snake River dams and McNary Dam on the Columbia River. Data collected from these studies are shared with the Fish Passage Center (FPC). These data are essential to quantify smoltmore » survival rates under the current passage conditions and to evaluate the future recovery strategies that seek to optimize smolt survival through the hydroelectric system. Information shared with the FPC assists with in-season shaping of flow and spill management requests in the Snake River reservoirs. The Bonneville Power Administration and the United States Fish and Wildlife Service contracted the Nez Perce Tribe (NPT) to monitor emigration timing and tag 21,200 emigrating natural and hatchery chinook salmon and steelhead smolts from the Imnaha River during the spring emigration period (March 1-June 15) with passive integrated transponder (PIT) tags. The completion of trapping in the spring of 1999 marked the eighth year of emigration studies on the Imnaha River and the sixth year of participating in the FPC smolt monitoring program. Monitoring and evaluation objectives were to: (1) Determine spring emigration timing of chinook salmon and steelhead smolts collected at the Imnaha River trap. (2) Evaluate effects of flow, temperature and other environmental factors on emigration timing. (3) Monitor the daily catch and biological characteristics of juvenile chinook salmon and steelhead smolts collected at the Imnaha River screw trap. (4) Determine emigration timing, travel time, and in-river survival of PIT tagged hatchery chinook salmon smolts released at the Imnaha River acclimation facility to the Imnaha River Trap. (5) Determine arrival timing, travel time and estimated survival of PIT tagged hatchery and natural chinook salmon and natural and hatchery steelhead smolts from the Imnaha River to Snake and Columbia river dams.« less

  14. MEASUREMENT OF RF LOSSES DUE TO TRAPPED FLUX IN A LARGE-GRAIN NIOBIUM CAVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianluigi Ciovati; Alex Gurevich

    Trapped magnetic field in superconducting niobium is a well known cause of radio-frequency (RF) residual losses. In this contribution, we present the results of RF tests on a single-cell cavity made of high-purity large grain niobium before and after allowing a fraction of the Earth’s magnetic field to be trapped in the cavity during the cooldown below the critical temperature Tc. This experiment has been done on the cavity before and after a low temperature baking. Temperature mapping allowed us to determine the location of hot-spots with high losses and to measure their field dependence. The results show not onlymore » an increase of the low-field residual resistance, but also a larger increase of the surface resistance for intermediate RF field (higher "medium field Qslope"), which depends on the amount of the trapped flux. These additional field-dependent losses can be described as losses of pinned vortices oscillating under the applied RF magnetic field.« less

  15. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2003 Smolt Acclimation and Adult Return Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the seventh season (1997-2003) of adult Chinook salmon broodstock collectionmore » in the Lostine River and the fifth season (1999-2003) of acclimating the resultant progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2003, acclimation of Lostine River spring Chinook salmon smolts occurred from March 3, 2003 through to April 14, 2003 and a total of 242,776 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2001 egg source and included captive broodstock (141,860) and conventional broodstock (100,916) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2003 began April 30th, the first Chinook was captured on May 16, 2003 and the last Chinook was captured on September 21, 2003. The weir and trap were removed on October 1, 2003. A total of 464 adult Chinook, including jacks, were captured during the season. The composition of the run included 239 natural origin fish and 225 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 45 natural and 4 hatchery supplementation adults were retained for broodstock and transported to LGH for holding and spawning, 366 adult Chinook were passed or transported above the weir to spawn naturally, and 49 hatchery origin adult jack Chinook were transported and outplanted in the Wallowa River and Bear Creek to spawn in underseeded habitat. Of the 49 adults retained for broodstock at Lookingglass Hatchery, 21 natural females and no hatchery origin females were represented in spawning. These females produced a total of 106,609 eggs at fertilization. Eye-up was 95.50% which yielded a total of 101,811 conventional program eyed eggs. The fecundity averaged 5,077 eggs per female. These eggs were incubated and at Lookingglass Hatchery until eyed stage. At eye they were transferred to Oxbow Hatchery where they were reared to the fingerling state at which time they were transported back to LGH until they were smolts in the spring of 2005. Captive brood program eggs/fish will be added to the conventional program eggs to make up the entire juvenile release for the Lostine River program in 2005.« less

  16. Near-field multiple traps of paraxial acoustic vortices with strengthened gradient force generated by sector transducer array

    NASA Astrophysics Data System (ADS)

    Wang, Qingdong; Li, Yuzhi; Ma, Qingyu; Guo, Gepu; Tu, Juan; Zhang, Dong

    2018-01-01

    In order to improve the capability of particle trapping close to the source plane, theoretical and experimental studies on near-field multiple traps of paraxial acoustic vortices (AVs) with a strengthened acoustic gradient force (AGF) generated by a sector transducer array were conducted. By applying the integration of point source radiation, numerical simulations for the acoustic fields generated by the sector transducer array were conducted and compared with those produced by the circular transducer array. It was proved that strengthened AGFs of near-field multiple AVs with higher peak pressures and smaller vortex radii could be produced by the sector transducer array with a small topological charge. The axial distributions of the equivalent potential gradient indicated that the AGFs of paraxial AVs in the near field were much higher than those in the far field, and the distances at the near-field vortex antinodes were also proved to be the ideal trapping positions with relatively higher AGFs. With the established 8-channel AV generation system, theoretical studies were also verified by the experimental measurements of pressure and phase for AVs with various topological charges. The formation of near-field multiple paraxial AVs was verified by the cross-sectional circular pressure distributions with perfect phase spirals around central pressure nulls, and was also proved by the vortex nodes and antinodes along the center axis. The favorable results demonstrated the feasibility of generating near-field multiple traps of paraxial AVs with strengthened AGF using the sector transducer array, and suggested the potential applications of close-range particle trapping in biomedical engineering.

  17. Source of water to Lithia Springs in Hillsborough County, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickey, J.J.; Coates, M.J.

    1993-03-01

    The source of water to Lithia Springs adjacent to the Alafia River in Hillsborough County, Florida has traditionally been hypothesized to be from the Upper Floridan aquifer. As a result, potential impacts from an adjacent public supply well field has been of interest since the well field began production in July, 1988. The discharge from Lithia Springs since March, 1984 has averaged about 3,600,000 cubic feet per day. Pumpage from the adjacent well field since July, 1988 has averaged about 2,500,000 cubic feet per day. A comparison between mean daily pumpage from the well field and mean daily discharge frommore » the springs showed no apparent association indicating that the Floridan aquifer may not be the source for the springs. Lithologic data suggested that the Upper Floridan aquifer was confined with no direct connection to the springs. This confining unit hypothesis was tested and accepted by pumping two wells close to the springs. The test consisted of pumping both wells for about 13 days at a combined rate that was about 40% of the average daily well field pumpage. No discernable test caused effects were observed on the springs or in an adjacent 115-foot deep well open to carbonate rock. Because of this, it was concluded that the Upper Floridan aquifer was not the source of water to Lithia Springs. Interpretation of available data suggested that the source of water to Lithia Springs was from the intermediate aquifer system located within solution riddled Early Miocene carbonate rocks of the lower Hawthorn Formation with maybe an important aquifer contribution from the Alafia River.« less

  18. The trapping and distribution of charge in polarized polymethylmethacrylate under electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Song, Z. G.; Gong, H.; Ong, C. K.

    1997-06-01

    A scanning electron microscope (SEM) mirror-image method (MIM) is employed to investigate the charging behaviour of polarized polymethylmethacrylate (PMMA) under electron-beam irradiation. An ellipsoid is used to model the trapped charge distribution and a fitting method is employed to calculate the total amount of the trapped charge and its distribution parameters. The experimental results reveal that the charging ability decreases with increasing applied electric field, which polarizes the PMMA sample, whereas the trapped charge distribution is elongated along the direction of the applied electric field and increases with increasing applied electric field. The charges are believed to be trapped in some localization states, of activation energy and radius estimated to be about 19.6 meV and 0022-3727/30/11/004/img6, respectively.

  19. Controlling matter waves in momentum space

    NASA Astrophysics Data System (ADS)

    Lin, De-Hone

    2014-07-01

    The transformation design method of momentum for matter waves in a harmonic trap is proposed. As applications, we design (1) a momentum invisibility cloak to control the distribution of a wave function in momentum space, (2) a quantum localization cloak that localizes a matter wave around zero momentum, and (3) the unusual quantum states of momentum space. Comprehension of these momentum cloaks in position space through the Fourier transformation is presented. In contrast to the construct of quantum cloaks in position space, the momentum cloaks presented here can only be reached by controlling the spring parameter of the trap and offering a potential there, without needing to control the effective mass of quantum particles themselves. The presented discussions also provide a possible inspiration to help localize and maintain a quantum state in momentum space by way of controlling the shape of a trap and a supplied potential.

  20. Scattering of a Tightly Focused Beam by an Optically Trapped Particle

    NASA Technical Reports Server (NTRS)

    Lock, James A.; Wrbanek, Susan Y.; Weiland, Kenneth E.

    2006-01-01

    Near-forward scattering of an optically trapped 5 m radius polystyrene latex sphere by the trapping beam was examined both theoretically and experimentally. Since the trapping beam is tightly focused, the beam fields superpose and interfere with the scattered fields in the forward hemisphere. The observed light intensity consists of a series of concentric bright and dark fringes centered about the forward scattering direction. Both the number of fringes and their contrast depend on the position of the trapping beam focal waist with respect to the sphere. The fringes are caused by diffraction due to the truncation of the tail of the trapping beam as the beam is transmitted through the sphere.

  1. Nano-optical conveyor belt, part I: Theory.

    PubMed

    Hansen, Paul; Zheng, Yuxin; Ryan, Jason; Hesselink, Lambertus

    2014-06-11

    We propose a method for peristaltic transport of nanoparticles using the optical force field over a nanostructured surface. Nanostructures may be designed to produce strong near-field hot spots when illuminated. The hot spots function as optical traps, separately addressable by their resonant wavelengths and polarizations. By activating closely packed traps sequentially, nanoparticles may be handed off between adjacent traps in a peristaltic fashion. A linear repeating structure of three separately addressable traps forms a "nano-optical conveyor belt"; a unit cell with four separately addressable traps permits controlled peristaltic transport in the plane. Using specifically designed activation sequences allows particle sorting.

  2. Captures of Ostrinia furnacalis (Lepidoptera: Crambidae) With Sex Pheromone Traps in NE China Corn and Soybeans.

    PubMed

    Chen, Ri-Zhao; Li, Lian-Bing; Klein, Michael G; Li, Qi-Yun; Li, Peng-Pei; Sheng, Cheng-Fa

    2016-02-01

    Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae), commonly referred to as the Asian corn borer, is the most important corn pest in Asia. Although capturing males with pheromone traps has recently been the main monitoring tool and suppression technique, the best trap designs remain unclear. Commercially available Delta and funnel traps, along with laboratory-made basin and water traps, and modified Delta traps, were evaluated in corn and soybean fields during 2013-2014 in NE China. The water trap was superior for capturing first-generation O. furnacalis (1.37 times the Delta trap). However, the basin (8.3 ± 3.2 moths/trap/3 d), Delta (7.9 ± 2.5), and funnel traps (7.0 ± 2.3) were more effective than water traps (1.4 ± 0.4) during the second generation. Delta traps gave optimal captures when deployed at ca. 1.57 × the highest corn plants, 1.36× that of average soybean plants, and at the field borders. In Delta traps modified by covering 1/3 of their ends, captures increased by ca. 15.7 and 8.1% in the first and second generations, respectively. After 35 d in the field, pheromone lures were still ca. 50% as attractive as fresh lures, and retained this level of attraction for ca. 25 more days. Increased captures (first and second generation: 90.9 ± 9.5%; 78.3 ± 9.3%) were obtained by adding a lure exposed for 5 d to funnel traps baited with a 35-d lure. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Evaporite geometries and diagenetic traps, lower San Andres, Northwest shelf, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, D.R.

    An east-west-trending belt of lower San Andres oil fields extends 80 mi across southeastern New Mexico from the Pecos River near Roswell to the Texas-New Mexico border. These fields are along a porosity pinch-out zone where porous carbonates grade laterally into bedded anhydrite and halite. The lower San Andres traps are associated with pre-Tertiary structural or stratigraphic traps. Oil and water production relationships from these fields are not consistent with present-day structure. These fields have been commonly interpreted to be hydrodynamic traps created by the eastern flow of fresh surface water that enters the lower San Andres outcrops west ofmore » Pecos River. There is no evidence, however, that surface water has moved through the lower San Andres in this area. This conclusion is supported by the fact that formation-water resistivities are uniform throughout the producing trend, no significant dissolution of carbonates or evaporites has occurred, and there has been no increase in biogradation of oils adjacent to the lower San Andres outcrops. These fields actually are diagenetic traps created by porosity occlusion in the water column beneath the oil accumulations. Hydrocarbons originally were trapped in pre-Tertiary structural and structural-stratigraphic traps. Bedded evaporites were effective barriers to vertical and lateral hydrocarbon migration. Eastward tilting of the Northwest shelf during the Tertiary opened these traps, but the oil remained in these structurally unfavorable positions because of the diagenetic sealing. The gas-solution drive in these reservoirs is a result of this sealing. The sequence of events leading to diagenetic entrapment include (1) Triassic and Jurassic migration of hydrocarbons into broad, low-relief post-San Andres structural and structural-stratigraphic traps; (2) rapid occlusion of porosity in the water column beneath oil reservoirs, and (3) Tertiary tilt-out traps.« less

  4. Comparison of Trapping Performance Between the Original BG-Sentinel® Trap and BG-Sentinel 2® Trap (1).

    PubMed

    Arimoto, Hanayo; Harwood, James F; Nunn, Peter J; Richardson, Alec G; Gordon, Scott; Obenauer, Peter J

    2015-12-01

    Recently, the BG-Sentinel® trap (BGS) trap has been reconfigured for increased durability during harsh field conditions. We evaluated the attractiveness of this redesigned trap, BG-Sentinel 2® (BGS2), and its novel granular lure cartridge system relative to the original trap and lure. Granular lures containing different combinations of lactic acid, ammonia, hexanoic acid, and octenol were also evaluated. Lure cartridges with all components except octenol trapped significantly more Aedes albopictus than lures containing octenol. This new granular lure combination and original BG-Lure® system were paired with BGS and BGS2 traps to compare relative attractiveness of the lures and the traps. All evaluations were conducted under field conditions in a suburban neighborhood in northeastern Florida from July to October 2014. Overall, the average numbers of Ae. albopictus collected by BGS or BGS2 were similar regardless of the lure type (i.e., mesh bag versus granules) (P  =  0.56). The functionality and durability of both trap models are discussed.

  5. A molecular dynamics simulation study on trapping ions in a nanoscale Paul trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xiongce; Krstic, Predrag S

    2008-01-01

    We found by molecular dynamics simulations that a low energy ion can be trapped effectively in a nanoscale Paul trap in both vacuum and in aqueous environment when appropriate AC/DC electric fields are applied to the system. Using the negatively charged chlorine ion as an example, we show that the trapped ion oscillates around the center of the nanotrap with the amplitude dependent on the parameters of the system and applied voltage. Successful trapping of the ion within nanoseconds requires electric bias of GHz frequency, in the range of hundreds of mV. The oscillations are damped in the aqueous environment,more » but polarization of the water molecules requires application of the higher voltage biases to reach the improved stability of the trapping. Application of a supplemental DC driving field along the trap axis can effectively drive the ion off the trap center and out of the trap, opening a possibility of studying DNA and other biological molecules using embedded probes while achieving a full control of their translocation and localization in the trap.« less

  6. Manipulating Neutral Atoms in Chip-Based Magnetic Traps

    NASA Technical Reports Server (NTRS)

    Aveline, David; Thompson, Robert; Lundblad, Nathan; Maleki, Lute; Yu, Nan; Kohel, James

    2009-01-01

    Several techniques for manipulating neutral atoms (more precisely, ultracold clouds of neutral atoms) in chip-based magnetic traps and atomic waveguides have been demonstrated. Such traps and waveguides are promising components of future quantum sensors that would offer sensitivities much greater than those of conventional sensors. Potential applications include gyroscopy and basic research in physical phenomena that involve gravitational and/or electromagnetic fields. The developed techniques make it possible to control atoms with greater versatility and dexterity than were previously possible and, hence, can be expected to contribute to the value of chip-based magnetic traps and atomic waveguides. The basic principle of these techniques is to control gradient magnetic fields with suitable timing so as to alter a trap to exert position-, velocity-, and/or time-dependent forces on atoms in the trap to obtain desired effects. The trap magnetic fields are generated by controlled electric currents flowing in both macroscopic off-chip electromagnet coils and microscopic wires on the surface of the chip. The methods are best explained in terms of examples. Rather than simply allowing atoms to expand freely into an atomic waveguide, one can give them a controllable push by switching on an externally generated or a chip-based gradient magnetic field. This push can increase the speed of the atoms, typically from about 5 to about 20 cm/s. Applying a non-linear magnetic-field gradient exerts different forces on atoms in different positions a phenomenon that one can exploit by introducing a delay between releasing atoms into the waveguide and turning on the magnetic field.

  7. Trapping and dynamic manipulation of polystyrene beads mimicking circulating tumor cells using targeted magnetic/photoacoustic contrast agents

    NASA Astrophysics Data System (ADS)

    Wei, Chen-Wei; Xia, Jinjun; Pelivanov, Ivan; Hu, Xiaoge; Gao, Xiaohu; O'Donnell, Matthew

    2012-10-01

    Results on magnetically trapping and manipulating micro-scale beads circulating in a flow field mimicking metastatic cancer cells in human peripheral vessels are presented. Composite contrast agents combining magneto-sensitive nanospheres and highly optical absorptive gold nanorods were conjugated to micro-scale polystyrene beads. To efficiently trap the targeted objects in a fast stream, a dual magnet system consisting of two flat magnets to magnetize (polarize) the contrast agent and an array of cone magnets producing a sharp gradient field to trap the magnetized contrast agent was designed and constructed. A water-ink solution with an optical absorption coefficient of 10 cm-1 was used to mimic the optical absorption of blood. Magnetomotive photoacoustic imaging helped visualize bead trapping, dynamic manipulation of trapped beads in a flow field, and the subtraction of stationary background signals insensitive to the magnetic field. The results show that trafficking micro-scale objects can be effectively trapped in a stream with a flow rate up to 12 ml/min and the background can be significantly (greater than 15 dB) suppressed. It makes the proposed method very promising for sensitive detection of rare circulating tumor cells within high flow vessels with a highly absorptive optical background.

  8. Homopolar dc motor and trapped flux brushless dc motor using high temperature superconductor materials

    NASA Astrophysics Data System (ADS)

    Crapo, Alan D.; Lloyd, Jerry D.

    1991-03-01

    Two motors have been designed and built for use with high-temperature superconductor (HTSC) materials. They are a homopolar dc motor that uses HTSC field windings and a brushless dc motor that uses bulk HTSC materials to trap flux in steel rotor poles. The HTSC field windings of the homopolar dc motor are designed to operate at 1000 A/sq cm in a 0.010-T field. In order to maximize torque in the homopolar dc motor, an iron magnetic circuit with small air gaps gives maximum flux for minimum Ampere turns in the field. A copper field winding version of the homopolar dc motor has been tested while waiting for 575 A turn HTSC coils. The trapped flux brushless dc motor has been built and is ready to test melt textured bulk HTSC rings that are currently being prepared. The stator of the trapped flux motor will impress a magnetic field in the steel rotor poles with warm HTSC bulk rings. The rings are then cooled to 77 K to trap the flux in the rotor. The motor can then operate as a brushless dc motor.

  9. Culicoides and other biting flies on the Palos Verdes Peninsula of Southern California, and their possible relationship to equine dermatitis.

    PubMed

    Mullens, Bradley A; Owen, Jeb P; Heft, David E; Sobeck, Ruth V

    2005-03-01

    Biting insects were sampled to investigate the cause(s) of dermatitis (putative Culicoides hypersensitivity [CHS]) on horses on the Palos Verdes Peninsula, Los Angeles County, California. Suction traps baited with CO2 were operated at 5 sites from April 2002 to August 2003, supplemented by sampling from horses. Six species of Culicoides, 7 species of mosquitoes, and occasional Simulium and Stomoxys were collected in traps. Culicoides sonorensis was the most common midge trapped, although C. obsoletus and C. freeborni also were collected repeatedly. Insects from the belly region of horses in spring (peak dermatitis period) were mostly C. obsoletus, which were far more abundant than indicated by CO2-baited suction traps. The predominant mosquito was Culiseta incidens; Culex quinquefasciatus and Cx. tarsalis also could be common, depending on the site. Mosquitoes, particularly Cs. incidens, were more abundant the 2nd year (normal rainfall), whereas C. sonorensis and C. freeborni were more abundant the 1st year (drought period). Culicoides obsoletus, supplemented by C. sonorensis, is regarded as a primary suspect causing CHS in this area.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawase, Kazumasa; Uehara, Yasushi; Teramoto, Akinobu

    Silicon dioxide (SiO{sub 2}) films formed by chemical vapor deposition (CVD) were treated with oxygen radical oxidation using Ar/O{sub 2} plasma excited by microwave. The mass density depth profiles, carrier trap densities, and current-voltage characteristics of the radical-oxidized CVD-SiO{sub 2} films were investigated. The mass density depth profiles were estimated with x ray reflectivity measurement using synchrotron radiation of SPring-8. The carrier trap densities were estimated with x ray photoelectron spectroscopy time-dependent measurement. The mass densities of the radical-oxidized CVD-SiO{sub 2} films were increased near the SiO{sub 2} surface. The densities of the carrier trap centers in these films weremore » decreased. The leakage currents of the metal-oxide-semiconductor capacitors fabricated by using these films were reduced. It is probable that the insulation properties of the CVD-SiO{sub 2} film are improved by the increase in the mass density and the decrease in the carrier trap density caused by the restoration of the Si-O network with the radical oxidation.« less

  11. Characterization of YBa2Cu3O7, including critical current density Jc, by trapped magnetic field

    NASA Technical Reports Server (NTRS)

    Chen, In-Gann; Liu, Jianxiong; Weinstein, Roy; Lau, Kwong

    1992-01-01

    Spatial distributions of persistent magnetic field trapped by sintered and melt-textured ceramic-type high-temperature superconductor (HTS) samples have been studied. The trapped field can be reproduced by a model of the current consisting of two components: (1) a surface current Js and (2) a uniform volume current Jv. This Js + Jv model gives a satisfactory account of the spatial distribution of the magnetic field trapped by different types of HTS samples. The magnetic moment can be calculated, based on the Js + Jv model, and the result agrees well with that measured by standard vibrating sample magnetometer (VSM). As a consequence, Jc predicted by VSM methods agrees with Jc predicted from the Js + Jv model. The field mapping method described is also useful to reveal the granular structure of large HTS samples and regions of weak links.

  12. Correlation of interplanetary-space B sub z field fluctuations and trapped-particle redistribution.

    NASA Technical Reports Server (NTRS)

    Parks, G. K.; Pellat, R.

    1972-01-01

    Observations of interplanetary magnetic field fluctuations in correlation with trapped particle fluctuations are discussed. From observations of particle-redistribution effects, properties of the magnetospheric electric field are derived. The obtained results suggest that the interplanetary B(sub z) field fluctuations might represent a strong driving source for particle diffusion.

  13. Building a better sticky trap: description of an easy-to-use trap and pole mount for quantifying the abundance of adult aquatic insects

    USGS Publications Warehouse

    Smith, Joshua T.; Kennedy, Theodore A.; Muehlbauer, Jeffrey D.

    2014-01-01

    Insect emergence is a fundamental process in freshwaters. It is a critical life-history stage for aquatic insects and provides an important prey resource for terrestrial and aquatic consumers. Sticky traps are increasingly being used to sample these insects. The most common design consists of an acetate sheet coated with a nondrying adhesive that is attached to a wire frame or cylinder. These traps must be prepared at the deployment site, a process that can be time consuming and difficult given the vagaries of field conditions. Our goals were to develop a sturdy, low-cost sticky trap that could be prepared in advance, rapidly deployed and recovered in the field, and used to estimate the flight direction of insects. We used 150-mm Petri dishes with lids. The dishes can be coated cleanly and consistently with Tangle-Trap® adhesive. Deploying traps is simple and requires only a pole set near the body of water being sampled. Four dishes can be attached to the pole using Velcro and aligned in 4 different directions to enable quantification of insect flight direction. After sampling, Petri dishes can be taped closed, packed in boxes, and stored indefinitely. Petri traps are comparable in price to standard acetate sheet traps at ∼US$0.50/directional deployment, but they require more space for storage than acetate sheet traps. However, a major benefit of Petri traps is that field deployment times are ⅓ those of acetate traps. Our study demonstrated that large Petri dishes are an ideal platform for sampling postemergent adult aquatic insects, particularly when the study design involves estimating flight direction and when rapid deployment and recovery of traps is critical.

  14. Magnetic coherent population trapping in a single ion

    NASA Astrophysics Data System (ADS)

    Das, S.; Liu, P.; Grémaud, B.; Mukherjee, M.

    2018-03-01

    Magnetically induced coherent population trapping has been studied in a single trapped laser cooled ion. The magnetic-field-dependent narrow spectral feature is found to be a useful tool in determining the null point of magnetic field at the ion position. In particular, we use a double Λ scheme that allows us to measure the null magnetic-field point limited by the detector shot noise. We analyzed the system theoretically and found certain long-lived bright states as the dark state is generated under steady-state condition.

  15. Arthropods of native and exotic vegetation and their association with willow flycatchers and Wilson's warblers

    Treesearch

    Linda S. DeLay; Deborah M. Finch; Sandra Brantley; Richard Fagerlund; Michael D. Means; Jeffrey F. Kelly

    1999-01-01

    We compared abundance of migrating Willow Flycatchers and Wilson's Warblers to the abundance of arthropods in exotic and native vegetation at Bosque del Apache National Wildlife Refuge. We trapped arthropods using glue-boards in 1996 and 1997 in the same cottonwood, saltcedar, and willow habitats where we mist-netted birds during spring and fall migration. There...

  16. Ambrosia Beetle (Coleoptera: Scolytidae) species, flight, and attack on living eastern cottonwood trees

    Treesearch

    David R. Coyle; Derek C. Booth; M. S. Wallace

    2005-01-01

    In spring 2002, ambrosia beetles (Coleoptera: Scolytidae) infested an intensively managed 22-ha tree plantation on the upper coastal plain of South Carolina. Nearly 3,500 scolytids representing 28 species were captured in ethanol-baited traps from 18 June 2002 to 18 April 2004. More than 88% of total captures were exotic species. Five species [Dryoxylon...

  17. Avoiding social traps in the ecosystem stewardship: The Italian Fontanile lowland spring.

    PubMed

    Balderacchi, Matteo; Perego, Alessia; Lazzari, Giovanni; Muñoz-Carpena, Rafael; Acutis, Marco; Laini, Alex; Giussani, Andrea; Sanna, Mattia; Kane, David; Trevisan, Marco

    2016-01-01

    Fontanile is a Po Valley (Italy) quasi-natural lowland spring built in the middle age. This paper identifies options for the conservation of the Fontanile water dependent ecosystem, using scenarios and simulations, and exploring different policy options. Three modeling analysis have been performed: the first was carried out for estimating groundwater contamination and recharge from above, the second for evaluating the function of vegetative filter strip on the surface water quality and the last one for testing pesticide drift reduction due to the vegetative filter strip. Uncertainty characterization included climate change projections. Despite the nitrate concentration in water could favorite the eutrophication phenomena, this not occurs because of the low phosphate concentration in water and of the presence of arboreal shade. Therefore, the protection strategies must focus on sustaining desirable water quantity conditions. Water saving and conservation technologies that improve the agricultural productivity but reduce the Fontanile water flow and large buffer strips that have a limited efficacy due to the Fontanile hydrological settings can be judged as ecological traps. Inefficient irrigation systems, good agricultural practices, integrated pest management and arboreal filter strip can preserve the quality of those ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Phase-field-crystal study of solute trapping

    NASA Astrophysics Data System (ADS)

    Humadi, Harith; Hoyt, Jeffrey J.; Provatas, Nikolas

    2013-02-01

    In this study we have incorporated two time scales into the phase-field-crystal model of a binary alloy to explore different solute trapping properties as a function of crystal-melt interface velocity. With only diffusive dynamics, we demonstrate that the segregation coefficient, K as a function of velocity for a binary alloy is consistent with the model of Kaplan and Aziz where K approaches unity in the limit of infinite velocity. However, with the introduction of wavelike dynamics in both the density and concentration fields, the trapping follows the kinetics proposed by Sobolev [Phys. Lett. A10.1016/0375-9601(95)00084-G 199, 383 (1995)], where complete trapping occurs at a finite velocity.

  19. Observations of flux motion in niobium films. [study of magnetic field trapped in superconducting coatings of gyroscope rotor

    NASA Technical Reports Server (NTRS)

    Xiao, Y. M.; Keiser, G. M.

    1991-01-01

    A magnetic field trapped in a superconducting sphere was examined at temperatures from 4.6 K to 5.5 K. The sphere was the rotor of a precision gyroscope and was made of fused quartz and coated with a sputtered niobium film. The rotor diameter was 3.8 cm. The film thickness was 2.5 microns. The tests were carried out at an ambient magnetic field of about 1 mG. Unexpected instability of the trapped field was observed. The experimental results and possible explanations are presented.

  20. Developments on the Toroid Ion Trap Analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammert, S.A.; Thompson, C.V.; Wise, M.B.

    1999-06-13

    Investigations into several areas of research have been undertaken to address the performance limitations of the toroid analyzer. The Simion 3D6 (2) ion optics simulation program was used to determine whether the potential well minimum of the toroid trapping field is in the physical center of the trap electrode structure. The results (Figures 1) indicate that the minimum of the potential well is shifted towards the inner ring electrode by an amount approximately equal to 10% of the r0 dimension. A simulation of the standard 3D ion trap under similar conditions was performed as a control. In this case, themore » ions settle to the minimum of the potential well at a point that is coincident with the physical center (both radial and axial) of the trapping electrodes. It is proposed that by using simulation programs, a set of new analyzer electrodes can be fashioned that will correct for the non- linear fields introduced by curving the substantially quadrupolar field about the toroid axis in order to provide a trapping field similar to the 3D ion trap cross- section. A new toroid electrode geometry has been devised to allow the use of channel- tron style detectors in place of the more expensive multichannel plate detector. Two different versions have been designed and constructed - one using the current ion trap cross- section (Figure 2) and another using the linear quedrupole cross- section design first reported by Bier and Syka (3).« less

  1. Effect of Male House Mouse Pheromone Components on Behavioral Responses of Mice in Laboratory and Field Experiments.

    PubMed

    Musso, Antonia E; Gries, Regine; Zhai, Huimin; Takács, Stephen; Gries, Gerhard

    2017-03-01

    Urine of male house mice, Mus musculus, is known to have primer pheromone effects on the reproductive physiology of female mice. Urine-mediated releaser pheromone effects that trigger certain behavioral responses are much less understood, and no field studies have investigated whether urine deposits by male or female mice, or synthetic mouse pheromone, increase trap captures of mice. In field experiments, we baited traps with bedding soiled with urine and feces of caged female or male mice, and recorded captures of mice in these and in control traps containing clean bedding. Traps baited with female bedding preferentially captured adult males, whereas traps baited with male bedding preferentially captured juvenile and adult females, indicating the presence of male- and female-specific sex pheromones in soiled bedding. Analyses of headspace volatiles emanating from soiled bedding by gas chromatography/mass spectrometry revealed that 3,4-dehydro-exo-brevicomin (DEB) was seven times more prevalent in male bedding and that 2-sec-butyl-4,5-dihydrothiazole (DHT) was male-specific. In a follow-up field experiment, traps baited with DEB and DHT captured 4 times more female mice than corresponding control traps, thus indicating that DEB and DHT are sex attractant pheromone components of house mouse males. Our study provides impetus to identify the sex attractant pheromone of female mice, and to develop synthetic mouse pheromone as a lure to enhance the efficacy of trapping programs for mouse control.

  2. On Magnetic Flux Trapping by Surface Superconductivity

    NASA Astrophysics Data System (ADS)

    Podolyak, E. R.

    2018-03-01

    The magnetic flux trapping by surface superconductivity is considered. The stability of the state localized at the cylindrical sample surface upon a change in the external magnetic field is tested. It is shown that as the magnetic field decreases, the sample acquires a positive magnetic moment due to magnetic flux trapping; i.e., the magnetization curve of surface superconductivity is "paramagnetic" by nature.

  3. Advances in the use of trapping systems for Rhynchophorus ferrugineus (Coleoptera: Curculionidae): traps and attractants.

    PubMed

    Vacas, S; Primo, J; Navarro-Llopis, V

    2013-08-01

    Given the social importance related to the red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae), efforts are being made to develop new control methods, such as the deployment of trapping systems. In this work, the efficacy of a new black pyramidal trap design (Picusan) has been verified in comparison with white and black buckets. In addition, the attractant and synergistic effect of ethyl acetate (EtAc) at different release levels has been evaluated under field conditions. The results show that Picusan traps captured 45% more weevils than bucket-type traps, offering significantly better trapping efficacy. The addition of water to traps baited with palm tissues was found to be essential, with catches increasing more than threefold compared with dry traps. EtAc alone does not offer attractant power under field conditions, and the release levels from 57 mg/d to 1 g/d have no synergistic effect with ferrugineol. Furthermore, significantly fewer females were captured when EtAc was released at 2 g/d. The implications of using EtAc dispensers in trapping systems are discussed.

  4. Spectroscopic analysis of electron trapping levels in pentacene field-effect transistors

    NASA Astrophysics Data System (ADS)

    Park, Chang Bum

    2014-08-01

    Electron trapping phenomena have been investigated with respect to the energy levels of localized trap states and bias-induced device instability effects in pentacene field-effect transistors. The mechanism of the photoinduced threshold voltage shift (ΔVT) is presented by providing a ΔVT model governed by the electron trapping. The trap-and-release behaviour functionalized by photo-irradiation also shows that the trap state for electrons is associated with the energy levels in different positions in the forbidden gap of pentacene. Spectroscopic analysis identifies two kinds of electron trap states distributed above and below the energy of 2.5 eV in the band gap of the pentacene crystal. The study of photocurrent spectra shows the specific trap levels of electrons in energy space that play a substantial role in causing device instability. The shallow and deep trapping states are distributed at two centroidal energy levels of ˜1.8 and ˜2.67 eV in the pentacene band gap. Moreover, we present a systematic energy profile of electron trap states in the pentacene crystal for the first time.

  5. Magnetic Compensation for Second-Order Doppler Shift in LITS

    NASA Technical Reports Server (NTRS)

    Burt, Eric; Tjoelker, Robert

    2008-01-01

    The uncertainty in the frequency of a linear-ion-trap frequency standard (LITS) can be reduced substantially by use of a very small magnetic inhomogeneity tailored to compensate for the residual second-order Doppler shift. An effect associated with the relativistic time dilatation, one cause of the second-order Doppler shift, is ion motion that is attributable to the trapping radio-frequency (RF)electromagnetic field used to trap ions. The second-order Doppler shift is reduced by using a multi-pole trap; however it is still the largest source of systematic frequency shift in the latest generation of LITSs, which are among the most stable clocks in the world. The present compensation scheme reduces the frequency instability of the affected LITS to about a tenth of its previous value. The basic principles of prior generation LITSs were discussed in several prior NASA Tech Briefs articles. Below are recapitulated only those items of basic information necessary to place the present development in context. A LITS includes a microwave local oscillator, the frequency of which is stabilized by comparison with the frequency of the ground state hyperfine transition of 199Hg+ ions. The comparison involves a combination of optical and microwave excitation and interrogation of the ions in a linear ion trap in the presence of a nominally uniform magnetic field. In the current version of the LITS, there are two connected traps (see figure): (1) a quadrupole trap wherein the optical excitation and measurement take place and (2) a 12-pole trap (denoted the resonance trap), wherein the microwave interrogation takes place. The ions are initially loaded into the quadrupole trap and are thereafter shuttled between the two traps. Shuttling ions into the resonance trap allows sensitive microwave interrogation to take place well away from loading interference. The axial magnetic field for the resonance trap is generated by an electric current in a finely wound wire coil surrounded by magnetic shields. In the quadrupole and 12-pole traps, the potentials are produced by RF voltages applied to even numbers (4 and 12, respectively) of parallel rods equally spaced around a circle. The polarity of the voltage on each rod is opposite that of the voltage on the adjacent rod. As a result, the amplitude of the RF trapping field is zero along the centerline and increases, with radius, to a maximum value near the rods.

  6. Motional studies of one and two laser-cooled trapped ions for electric-field sensing applications

    NASA Astrophysics Data System (ADS)

    Domínguez, F.; Gutiérrez, M. J.; Arrazola, I.; Berrocal, J.; Cornejo, J. M.; Del Pozo, J. J.; Rica, R. A.; Schmidt, S.; Solano, E.; Rodríguez, D.

    2018-03-01

    We have studied the dynamics of one and two laser-cooled trapped ?Ca? ions by applying electric fields of different nature along the axial direction of the trap, namely, driving the motion with a harmonic dipolar field, or with white noise. These two types of driving induce distinct motional states of the axial modes: a coherent oscillation with the dipolar field, or an enhanced Brownian motion due to an additional contribution to the heating rate from the electric noise. In both scenarios, the sensitivity of an isolated ion and a laser-cooled two-ion crystal has been evaluated and compared. The analysis and understanding of this dynamics is important towards the implementation of a novel Penning trap mass-spectroscopy technique based on optical detection, aiming at improving precision and sensitivity.

  7. Scanning dimensional measurement using laser-trapped microsphere with optical standing-wave scale

    NASA Astrophysics Data System (ADS)

    Michihata, Masaki; Ueda, Shin-ichi; Takahashi, Satoru; Takamasu, Kiyoshi; Takaya, Yasuhiro

    2017-06-01

    We propose a laser trapping-based scanning dimensional measurement method for free-form surfaces. We previously developed a laser trapping-based microprobe for three-dimensional coordinate metrology. This probe performs two types of measurements: a tactile coordinate and a scanning measurement in the same coordinate system. The proposed scanning measurement exploits optical interference. A standing-wave field is generated between the laser-trapped microsphere and the measured surface because of the interference from the retroreflected light. The standing-wave field produces an effective length scale, and the trapped microsphere acts as a sensor to read this scale. A horizontal scan of the trapped microsphere produces a phase shift of the standing wave according to the surface topography. This shift can be measured from the change in the microsphere position. The dynamics of the trapped microsphere within the standing-wave field was estimated using a harmonic model, from which the measured surface can be reconstructed. A spherical lens was measured experimentally, yielding a radius of curvature of 2.59 mm, in agreement with the nominal specification (2.60 mm). The difference between the measured points and a spherical fitted curve was 96 nm, which demonstrates the scanning function of the laser trapping-based microprobe for free-form surfaces.

  8. High trapped fields in bulk YBCO superconductors

    NASA Astrophysics Data System (ADS)

    Fuchs, Günter; Gruss, Stefan; Krabbes, Gernot; Schätzle, Peter; Verges, Peter; Müller, Karl-Hartmut; Fink, Jörg; Schultz, Ludwig

    The trapped field properties of bulk melt-textured YBCO material were investigated at different temperatures. In the temperature range of liquid nitrogen, maximum trapped fields of 1.1 T were found at 77 K by doping of YBCO with small amounts of zinc. The improved pinning of zinc-doped YBa2Cu3O7-x (YBCO) results in a pronounced peak effect in the field dependence of the critical current density. the trapped field at lower temperatures increases due to the increasing critical current density, however, at temperatures around 50 K cracking of the material is observed which is exposed to considerably tensile stresses due to Lorentz forces. Very high trapped fields up to 14.4 T were achieved at 22.5 K for a YBCO disk pair by the addition of silver improving the tensile strength of YBCO and by using a bandage made of a steel tube. The steel tube produces a compressive stress on YBCO after cooling down from 300 K to the measuring temperature, which is due to the higher coeeficient of thermal expansion of steel compared with that of YBCO in the a,b plane. The application of superconducting permanent magnets with trapped fields of 10 T and more in superconducting bearings would allow to obtain very high levitation pressures up to 2500 N/cm2 which is two orders of magnitude higher than the levitation pressure achievable in superconducting bearings with conventional permanent magnets. The most important problem for the application of superconducting permanent magnets is the magnetizing procedure of the YBCO material. Results of magnetizing YBCO disks by using of pulsed magnetic fields will be presented.

  9. Production of large Bose-Einstein condensates in a magnetic-shield-compatible hybrid trap

    NASA Astrophysics Data System (ADS)

    Colzi, Giacomo; Fava, Eleonora; Barbiero, Matteo; Mordini, Carmelo; Lamporesi, Giacomo; Ferrari, Gabriele

    2018-05-01

    We describe the production of large 23Na Bose-Einstein condensates in a hybrid trap characterized by a weak magnetic field quadrupole and a tightly focused infrared beam. The use of small magnetic field gradients makes the trap compatible with the state-of-the-art magnetic shields. By taking advantage of the deep cooling and high efficiency of gray molasses to improve the initial trap loading conditions, we produce condensates composed of as many as 7 million atoms in less than 30 s .

  10. High-field penning-malmberg trap: confinement properties and use in positron accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, J.H.

    1997-09-01

    This dissertation reports on the development of the 60 kG cryogenic positron trap at Lawrence Livermore National Laboratory, and compares the trap`s confinement properties with other nonneutral plasma devices. The device is designed for the accumulation of up to 2{times}10{sup 9} positrons from a linear-accelerator source. This positron plasma could then be used in Bhabha scattering experiments. Initial efforts at time-of-flight accumulation of positrons from the accelerator show rapid ({approximately}100 ms) deconfinement, inconsistent with the long electron lifetimes. Several possible deconfinement mechanisms have been explored, including annihilation on residual gas, injection heating, rf noise from the accelerator, magnet field curvature,more » and stray fields. Detailed studies of electron confinement demonstrate that the empirical scaling law used to design the trap cannot be extrapolated into the parameter regime of this device. Several possible methods for overcoming these limitations are presented.« less

  11. Aggressiveness Changes in Populations of Didymella pinodes over Winter and Spring Pea Cropping Seasons

    PubMed Central

    Laloi, G.; Montarry, J.; Guibert, M.; Andrivon, D.; Michot, D.

    2016-01-01

    ABSTRACT Ascochyta blight, caused by the necrotrophic ascomycete Didymella pinodes, is responsible for severe losses in winter and spring pea crops. Despite different climatic conditions, epidemics on winter and spring crops are due to a single population of D. pinodes, suggesting gene flow either between the two crops or from reservoir sources during the cropping season. This should lead to similar pathogenicity characteristics in isolates sampled from the two crops. However, these hypotheses have never been formally tested. We therefore sampled a total of 520 D. pinodes strains throughout a growing season from winter and spring pea plots (WP and SP, respectively) and from winter and spring trap plants (TWP and TSP). Amplified fragment length polymorphism (AFLP) markers revealed high genetic diversity within subpopulations, whereas pathogenicity tests showed that mean aggressiveness increases over the course of an epidemic. These results support the idea that alloinoculum contributes to the carryover of epidemics between winter and spring crops and that the most aggressive isolates are selected as an epidemic progresses. IMPORTANCE Ascochyta blight, caused by Didymella pinodes, is responsible for severe losses in pea crops. While previous studies have shown that ascochyta blight epidemics on winter and spring crops are due to a single population of D. pinodes, suggesting that isolates from the two crops present similar pathogenicity characteristics, that hypothesis have never been tested. Genetic analysis of subpopulations sampled throughout a growing season from winter and spring pea plots revealed high genetic diversity within subpopulations, whereas pathogenicity tests showed that mean aggressiveness increases over the course of an epidemic. PMID:27208102

  12. Population dynamics of the diamondback moth, Plutella xylostella (L.), in northern China: the effects of migration, cropping patterns and climate.

    PubMed

    Zhu, Liuhong; Li, Zhenyu; Zhang, Shufa; Xu, Baoyun; Zhang, Youjun; Zalucki, Myron P; Wu, Qingjun; Yin, Xianhui

    2018-02-08

    The diamondback moth, Plutella xylostella (L.), is the most widely distributed pest of Brassica vegetables. Control of P. xylostella has relied on insecticides and it has developed resistance to most insecticides. Although research has clarified the resistance status of P. xylostella and the mechanisms of its resistance in northern China, little work has been conducted on long-term population dynamics in the key vegetable-growing areas of the region. We reviewed and summarized the history of P. xylostella field management practices in northern China (Haidian, Changping, Xuanhua and Zhangbei). Moths were caught in pheromone traps throughout the cropping season and P. xylostella phenology and the general trends in abundance were analysed using DYMEX modelling software. The initial input in the spring determined population size in all years. The seasonal phenology and variation in abundance in most years and sites were simulated, suggesting that the suitable climate creates the conditions for population outbreaks, and growers' actual management level (spraying and crop hygiene) influenced population abundance. Based on climate and using the timing of the initial peak in pheromone trap captures as a biofix, the timing of emergence of the next generation can be forecast, and more effective scouting and regional management strategies against this pest can be developed. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  13. Broadening of Distribution of Trap States in PbS Quantum Dot Field-Effect Transistors with High-k Dielectrics

    PubMed Central

    2017-01-01

    We perform a quantitative analysis of the trap density of states (trap DOS) in PbS quantum dot field-effect transistors (QD-FETs), which utilize several polymer gate insulators with a wide range of dielectric constants. With increasing gate dielectric constant, we observe increasing trap DOS close to the lowest unoccupied molecular orbital (LUMO) of the QDs. In addition, this increase is also consistently followed by broadening of the trap DOS. We rationalize that the increase and broadening of the spectral trap distribution originate from dipolar disorder as well as polaronic interactions, which are appearing at strong dielectric polarization. Interestingly, the increased polaron-induced traps do not show any negative effect on the charge carrier mobility in our QD devices at the highest applied gate voltage, giving the possibility to fabricate efficient low-voltage QD devices without suppressing carrier transport. PMID:28084725

  14. Seasonal Flight Activity of the Sugarcane Beetle (Coleoptera: Scarabaeidae) in North Carolina Using Black Light Traps.

    PubMed

    Billeisen, T L; Brandenburg, R L

    2016-04-01

    Seasonal flight activity, adult beetle sex count, and egg production were examined in sugarcane beetles Euetheola rugiceps (LeConte) caught in light traps in North Carolina from the fall of 2009 through the summer of 2014. A regression model using variable environmental conditions as predictive parameters was developed to examine the impact of these conditions on flight activity. Depending on flight trap location and sampling years, beetles exhibited an inconsistent flight pattern, with the majority of adults flying in the spring (April-June) and intermittently in the fall (September-October). Our model indicated that larger numbers of adults collected from traps coincided with an increase in average soil temperature. Sugarcane beetles also exhibit a synchronous emergence during both periods of flight activity. Eggs were detected in females collected from light traps every week throughout the entire sampling period. The majority of females produced 7-12 eggs, with most egg production occurring between 15 May and 1 August. The findings of this research provide adult sugarcane beetle emergence and flight behavior information necessary to determine optimal pesticide application timing. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Field evaluation of effect of temperature on release of Disparlure from a pheromone-baited trapping system used to monitor gypsy moth (Lepidoptera: Lymantriidae)

    Treesearch

    Patrick C. Tobin; Aijun Zhang; Ksenia Onufrieva; Donna Leonard

    2011-01-01

    Traps baited with disparlure, the synthetic form of the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), sex pheromone are used to detect newly founded populations and estimate population density across the United States. The lures used in trapping devices are exposed to field conditions with varying climates, which can affect the rate...

  16. Field dependence of interface-trap buildup in polysilicon and metal gate MOS devices

    NASA Astrophysics Data System (ADS)

    Shaneyfelt, M. R.; Schwank, J. R.; Fleetwood, D. M.; Winokur, P. S.; Hughes, K. L.

    1990-12-01

    The electric field dependence of radiation-induced oxide- and interface-trap charge (Delta Vot and Delta Vit) generation for polysilicon- and metal-gate MOS transistors is investigated at electric fields (Eox) from -4.2 MV/cm to +4.7 MV/cm. If electron-hole recombination effects are taken into account, the absolute value of Delta Vot and the saturated value of Delta Vit for both polysilicon- and metal-gate transistors are shown to follow an approximate E exp -1/2 field dependence for Eox = 0.4 MV/cm or greater. An E exp -1/2 dependence for the saturated value of Delta Vit was also observed for negative-bias irradiation followed by a constant positive-bias anneal. The E exp -1/2 field dependence observed suggests that the total number of interface traps created in these devices may be determined by hole trapping near the Si/SiO2 interface for positive-bias irradiation or near the gate/SiO2 interface for negative bias irradiation, though H+ drift remains the likely rate-limiting step in the process. Based on these results, a hole-trapping/hydrogen transport model-involving hole trapping and subsequent near-interfacial H+ release, transport, and reaction at the interface-is proposed as a possible explanation of Delta Vit buildup in these polysilicon- and metal-gate transistors.

  17. Rock Island Dam Smolt Monitoring; 1994-1995 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truscott, Keith B.; Fielder, Paul C.

    1995-10-01

    Downstream migrating salmon and steelhead trout (Oncorhynchus spp.) smolts were monitored at the Rock Island Dam bypass trap from April 1 - August 31, 1954. This was the tenth consecutive year that the bypass trap was monitored. Data collected included: (1) number of fish caught by species, (2) number of adipose clipped and/or Passive Integrated Transponder (PIT) tagged fish caught by species, (3) daily average riverflow, (4) daily average powerhouse No. 1 and No. 2 flows and daily average spill. These data were transmitted to the Fish Passage Center, which manages the Smolt Monitoring Program throughout the Columbia River Basin.more » The Smolt Monitoring Program is used to manage the {open_quotes}water budget{close_quotes}, releasing upstream reservoir water storage allocated to supplement river flows to enhance survival of downstream migrating juvenile salmonids. The Rock Island Dam trapping facility collected 37,795 downstream migrating salmonids in 1994. Collected fish included 4 yearling and 4 sub-yearling chinook salmon (O. tshawytscha) that had been previously PIT tagged to help determine migration rates. Additionally, 1,132 sub-yearling chinook, 4,185 yearling chinook, 6,627 steelhead, (O. mykiss) and 422 sockeye (O. nerka) with clipped adipose fins were collected. The middle 80% of the 1994 spring migration (excluding sub-yearling chinooks) passed Rock Island Dam during a 34 day period, April 25 - May 28. Passage rates of chinook and steelhead smolts released from hatcheries and the downstream migration timing of all salmonids are presented. The spring migration timing of juvenile salmonids is strongly influenced by hatchery releases above Rock Island Dam.« less

  18. Time-dependent deformation of polymer network in polymer-stabilized cholesteric liquid crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Kyung Min; Tondiglia, Vincent P.; Bunning, Timothy J.; White, Timothy J.

    2017-02-01

    Recently, we reported direct current (DC) field controllable electro-optic (EO) responses of negative dielectric anisotropy polymer stabilized cholesteric liquid crystals (PSCLCs). A potential mechanism is: Ions in the liquid crystal mixtures are trapped in/on the polymer network during the fast photopolymerization process, and the movement of ions by the application of the DC field distorts polymer network toward the negative electrode, inducing pitch variation through the cell thickness, i.e., pitch compression on the negative electrode side and pitch expansion on positive electrode side. As the DC voltage is directly applied to a target voltage, charged polymer network is deformed and the reflection band is tuned. Interestingly, the polymer network deforms further (red shift of reflection band) with time when constantly applied DC voltage, illustrating DC field induced time dependent deformation of polymer network (creep-like behavior). This time dependent reflection band changes in PSCLCs are investigated by varying the several factors, such as type and concentration of photoinitiators, liquid crystal monomer content, and curing condition (UV intensity and curing time). In addition, simple linear viscoelastic spring-dashpot models, such as 2-parameter Kelvin and 3-parameter linear models, are used to investigate the time-dependent viscoelastic behaviors of polymer networks in PSCLC.

  19. Evaluation of commercial and field-expedient baited traps for house flies, Musca domestica L. (Diptera: Muscidae).

    USDA-ARS?s Scientific Manuscript database

    A comparison of 9 commercial baited fly traps on Florida dairy farms demonstrated that Terminator traps collected significantly more (13,323/trap) house flies (Musca domestica L.) than the others tested; Final Flight, Fly Magnet and FliesBeGone traps collected intermediate numbers of flies (834-2,16...

  20. Statistical analysis of relationship between negative-bias temperature instability and random telegraph noise in small p-channel metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Tega, Naoki; Miki, Hiroshi; Mine, Toshiyuki; Ohmori, Kenji; Yamada, Keisaku

    2014-03-01

    It is demonstrated from a statistical perspective that the generation of random telegraph noise (RTN) changes before and after the application of negative-bias temperature instability (NBTI) stress. The NBTI stress generates a large number of permanent interface traps and, at the same time, a large number of RTN traps causing temporary RTN and one-time RTN. The interface trap and the RTN trap show different features in the recovery process. That is, a re-passivation of interface states is the minor cause of the recovery after the NBTI stress, and in contrast, rapid disappearance of the temporary RTN and the one-time RTN is the main cause of the recovery. The RTN traps are less likely to become permanent. This two-type trap, namely, the interface trap and RTN trap, model simply explains NBTI degradation and recovery in scaled p-channel metal-oxide-semiconductor field-effect transistors.

  1. Seasonality of vertical flux and sinking particle characteristics in an ice-free high arctic fjord-Different from subarctic fjords?

    NASA Astrophysics Data System (ADS)

    Wiedmann, Ingrid; Reigstad, Marit; Marquardt, Miriam; Vader, Anna; Gabrielsen, Tove M.

    2016-02-01

    The arctic Adventfjorden (78°N, 15°E, Svalbard) used to be seasonally ice-covered but has mostly been ice-free since 2007. We used this ice-free arctic fjord as a model area to investigate (1) how the vertical flux of biomass (chlorophyll a and particulate organic carbon, POC) follows the seasonality of suspended material, (2) how sinking particle characteristics change seasonally and affect the vertical flux, and (3) if the vertical flux in the ice-free arctic fjord with glacial runoff resembles the flux in subarctic ice-free fjords. During seven field investigations (December 2011-September 2012), suspended biomass was determined (5, 15, 25, and 60 m), and short-term sediment traps were deployed (20, 30, 40, and 60 m), partly modified with gel-filled jars to study the size and frequency distribution of sinking particles. During winter, resuspension from the seafloor resulted in large, detrital sinking particles. Intense sedimentation of fresh biomass occurred during the spring bloom. The highest POC flux was found during autumn (770-1530 mg POC m- 2 d- 1), associated with sediment-loaded glacial runoff and high pteropod abundances. The vertical biomass flux in the ice-free arctic Adventfjorden thus resembled that in subarctic fjords during winter and spring, but a higher POC sedimentation was observed during autumn.

  2. Fostered Thermomagnetic Stabilities and Boosted Mechanical Reliability Related to High Trapped Field in Composite Bulk YBa2Cu3O(7-δ) Cryomagnets.

    PubMed

    Kenfaui, Driss; Sibeud, Pierre-Frédéric; Gomina, Moussa; Louradour, Eric; Chaud, Xavier; Noudem, Jacques G

    2015-08-06

    In the quest of YBa2Cu3O(7-δ) (Y123) bulk superconductors providing strong magnetic fields without failure, it is of paramount importance to achieve high thermal stabilities to safeguard the magnetic energy inside them during the trapping-field process, and sufficient mechanical reliability to withstand the stresses derived from the Lorenz force. Herein, we experimentally demonstrate a temperature rise induced by dissipative flux motion inside an Y123 thin-wall superconductor, and a significant thermal exchange in a composite bulk Y123 cryomagnet realized by embedding this superconductor with high thermal-conductivity metal network. It resulted in stimulating the maximum trapped field Bm, which reached 6.46 T on 15.9 mm-diameter single disk superconductor after magnetization by field cooling to 17 K under 7 T, leading to an improvement of 18% compared to the thin-wall superconductor. The composite cryomagnet particularly revealed the potential to trap stronger fields if larger magnetic activation is available. By virtue of the pore-free and crack-free microstructure of this cryomagnet, its strength σR was estimated to be 363 MPa, the largest one obtained so far for Y123 bulk superconductors, thus suggesting a striking mechanical reliability that seems to be sufficient to sustain stresses derived from trapped fields stronger than any values hitherto reported.

  3. Hydrodynamic enhanced dielectrophoretic particle trapping

    DOEpatents

    Miles, Robin R.

    2003-12-09

    Hydrodynamic enhanced dielectrophoretic particle trapping carried out by introducing a side stream into the main stream to squeeze the fluid containing particles close to the electrodes producing the dielelectrophoretic forces. The region of most effective or the strongest forces in the manipulating fields of the electrodes producing the dielectrophoretic forces is close to the electrodes, within 100 .mu.m from the electrodes. The particle trapping arrangement uses a series of electrodes with an AC field placed between pairs of electrodes, which causes trapping of particles along the edges of the electrodes. By forcing an incoming flow stream containing cells and DNA, for example, close to the electrodes using another flow stream improves the efficiency of the DNA trapping.

  4. Charge trapping and de-trapping in isolated CdSe/ZnS nanocrystals under an external electric field: indirect evidence for a permanent dipole moment.

    PubMed

    Zang, Huidong; Cristea, Mihail; Shen, Xuan; Liu, Mingzhao; Camino, Fernando; Cotlet, Mircea

    2015-09-28

    Single nanoparticle studies of charge trapping and de-trapping in core/shell CdSe/ZnS nanocrystals incorporated into an insulating matrix and subjected to an external electric field demonstrate the ability to reversibly modulate the exciton dynamics and photoluminescence blinking while providing indirect evidence for the existence of a permanent ground state dipole moment in such nanocrystals. A model assuming the presence of energetically deep charge traps physically aligned along the direction of the permanent dipole is proposed in order to explain the dynamics of nanocrystal blinking in the presence of a permanent dipole moment.

  5. Charge trapping and de-trapping in isolated CdSe/ZnS nanocrystals under an external electric field: Indirect evidence for a permanent dipole moment

    DOE PAGES

    Zang, Huidong; Cristea, Mihail; Shen, Xuan; ...

    2015-08-05

    Single nanoparticle studies of charge trapping and de-trapping in core/shell CdSe/ZnS nanocrystals incorporated into an insulating matrix and subjected to an external electric field demonstrate the ability to reversibly modulate the exciton dynamics and photoluminescence blinking while providing indirect evidence for the existence of a permanent ground state dipole moment in such nanocrystals. A model assuming the presence of energetically deep charge traps physically aligned along the direction of the permanent dipole is proposed in order to explain the dynamics of nanocrystal blinking in the presence of a permanent dipole moment.

  6. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum

    PubMed Central

    Arita, Yoshihiko; Mazilu, Michael; Dholakia, Kishan

    2013-01-01

    Quantum state preparation of mesoscopic objects is a powerful playground for the elucidation of many physical principles. The field of cavity optomechanics aims to create these states through laser cooling and by minimizing state decoherence. Here we demonstrate simultaneous optical trapping and rotation of a birefringent microparticle in vacuum using a circularly polarized trapping laser beam—a microgyroscope. We show stable rotation rates up to 5 MHz. Coupling between the rotational and translational degrees of freedom of the trapped microgyroscope leads to the observation of positional stabilization in effect cooling the particle to 40 K. We attribute this cooling to the interaction between the gyroscopic directional stabilization and the optical trapping field. PMID:23982323

  7. METHOD AND APPARATUS FOR TRAPPING IONS IN A MAGNETIC FIELD

    DOEpatents

    Luce, J.S.

    1962-04-17

    A method and apparatus are described for trapping ions within an evacuated container and within a magnetic field utilizing dissociation and/or ionization of molecular ions to form atomic ions and energetic neutral particles. The atomic ions are magnetically trapped as a result of a change of charge-to- mass ratio. The molecular ions are injected into the container and into the path of an energetic carbon arc discharge which dissociates and/or ionizes a portion of the molecular ions into atomic ions and energetic neutrals. The resulting atomic ions are trapped by the magnetic field to form a circulating beam of atomic ions, and the energetic neutrals pass out of the system and may be utilized in a particle accelerator. (AEC)

  8. The nature and role of trap states in a dendrimer-based organic field-effect transistor explosive sensor

    NASA Astrophysics Data System (ADS)

    Tang, Guoqiang; Chen, Simon S. Y.; Lee, Kwan H.; Pivrikas, Almantas; Aljada, Muhsen; Burn, Paul L.; Meredith, Paul; Shaw, Paul E.

    2013-06-01

    We report the fabrication and charge transport characterization of carbazole dendrimer-based organic field-effect transistors (OFETs) for the sensing of explosive vapors. After exposure to para-nitrotoluene (pNT) vapor, the OFET channel carrier mobility decreases due to trapping induced by the absorbed pNT. The influence of trap states on transport in devices before and after exposure to pNT vapor has been determined using temperature-dependent measurements of the field-effect mobility. These data clearly show that the absorption of pNT vapor into the dendrimer active layer results in the formation of additional trap states. Such states inhibit charge transport by decreasing the density of conducting states.

  9. Observation of Persistent Currents in Finely Dispersed Pyrolytic Graphite

    NASA Astrophysics Data System (ADS)

    Saad, M.; Gilmutdinov, I. F.; Kiiamov, A. G.; Tayurskii, D. A.; Nikitin, S. I.; Yusupov, R. V.

    2018-01-01

    The trapped magnetic flux in the finely ground pyrolytic graphite sample annealed at 670 K in air has been observed. Flux trapping occurs on cooling of the sample from room temperature to 10 K in a magnetic field of 1 T. The magnitude and sign of the induced trapped moment remain unchanged when the applied magnetic field is varied within ±1 T at T K. The trapped magnetic flux is manifested in the displacement of the magnetization curve relative to that of the sample cooled in zero field. Displacement magnitude gradually decreases with the temperature increase up to 350 K, not reaching zero. The set of experimental observations probably reflects the presence in the sample of a granular high-temperature superconducting phase.

  10. Precise and low-cost monitoring of plum curculio (Coleoptera: Curculionidae) pest activity in pyramid traps with cameras.

    PubMed

    Selby, R D; Gage, S H; Whalon, M E

    2014-04-01

    Incorporating camera systems into insect traps potentially benefits insect phenology modeling, nonlethal insect monitoring, and research into the automated identification of traps counts. Cameras originally for monitoring mammals were instead adapted to monitor the entrance to pyramid traps designed to capture the plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae). Using released curculios, two new trap designs (v.I and v.II) were field-tested alongside conventional pyramid traps at one site in autumn 2010 and at four sites in autumn 2012. The traps were evaluated on the basis of battery power, ease-of-maintenance, adaptability, required-user-skills, cost (including labor), and accuracy-of-results. The v.II design fully surpassed expectations, except that some trapped curculios were not photographed. In 2012, 13 of the 24 traps recorded every curculio entering the traps during the 18-d study period, and in traps where some curculios were not photographed, over 90% of the omissions could be explained by component failure or external interference with the motion sensor. Significantly more curculios entered the camera traps between 1800 and 0000 hours. When compared with conventional pyramid traps, the v.I traps collected a similar number of curculios. Two observed but not significant trends were that the v.I traps collected twice as many plum curculios as the v.II traps, while at the same time the v.II traps collected more than twice as many photos per plum curculio as the v.I traps. The research demonstrates that low-cost, precise monitoring of field insect populations is feasible without requiring extensive technical expertise.

  11. Ion trap device

    DOEpatents

    Ibrahim, Yehia M.; Smith, Richard D.

    2016-01-26

    An ion trap device is disclosed. The device includes a series of electrodes that define an ion flow path. A radio frequency (RF) field is applied to the series of electrodes such that each electrode is phase shifted approximately 180 degrees from an adjacent electrode. A DC voltage is superimposed with the RF field to create a DC gradient to drive ions in the direction of the gradient. A second RF field or DC voltage is applied to selectively trap and release the ions from the device. Further, the device may be gridless and utilized at high pressure.

  12. Simulation of a 3D MOT-Optical Molasses Hybrid for Potassium-41 Atoms

    NASA Astrophysics Data System (ADS)

    Peterson, W. A.; Wrubel, Jonathan

    2017-04-01

    We report a design and numerical model for a 3D magneto-optical trap (MOT)-optical molasses hybrid for potassium-41 atoms. In this arrangement, the usual quadrupole magnetic field is replaced by an octupole field. The octupole field has a central region of very low magnetic field where our simulations show that the atoms experience an optical molasses, resulting in sub-doppler cooling not possible in a quadrupole MOT. The simulations also show that the presence of the magneto-optical trapping force at the edge of the cooling beams provides a restoring force which cycles atoms through the molasses region. We plan to use this hybrid trap to directly load a far off-resonance optical dipole trap. Because the atoms are recycled for multiple passes through the molasses, we expect a higher phase-space density of atoms loaded into the dipole trap. Similar hybrid cooling schemes should be relevant for lithium-6 and lithium-7, which also have poorly resolved D2 hyperfine structure. Research Corporation for Science Advancement, Cottrell College Science Award.

  13. A percolation approach to study the high electric field effect on electrical conductivity of insulating polymer

    NASA Astrophysics Data System (ADS)

    Benallou, Amina; Hadri, Baghdad; Martinez-Vega, Juan; El Islam Boukortt, Nour

    2018-04-01

    The effect of percolation threshold on the behaviour of electrical conductivity at high electric field of insulating polymers has been briefly investigated in literature. Sometimes the dead ends links are not taken into account in the study of the electric field effect on the electrical properties. In this work, we present a theoretical framework and Monte Carlo simulation of the behaviour of the electric conductivity at high electric field based on the percolation theory using the traps energies levels which are distributed according to distribution law (uniform, Gaussian, and power-law). When a solid insulating material is subjected to a high electric field, and during trapping mechanism the dead ends of traps affect with decreasing the electric conductivity according to the traps energies levels, the correlation length of the clusters, the length of the dead ends, and the concentration of the accessible positions for the electrons. A reasonably good agreement is obtained between simulation results and the theoretical framework.

  14. Hexapole-compensated magneto-optical trap on a mesoscopic atom chip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joellenbeck, S.; Mahnke, J.; Randoll, R.

    2011-04-15

    Magneto-optical traps on atom chips are usually restricted to small atomic samples due to a limited capture volume caused primarily by distorted field configurations. Here we present a magneto-optical trap based on a millimeter-sized wire structure which generates a magnetic field with minimized distortions. Together with the loading from a high-flux two-dimensional magneto-optical trap, we achieve a loading rate of 8.4x10{sup 10} atoms/s and maximum number of 8.7x10{sup 9} captured atoms. The wire structure is placed outside of the vacuum to enable a further adaptation to new scientific objectives. Since all magnetic fields are applied locally without the need formore » external bias fields, the presented setup will facilitate parallel generation of Bose-Einstein condensates on a conveyor belt with a cycle rate above 1 Hz.« less

  15. Improving the lifetime in optical microtraps by using elliptically polarized dipole light

    NASA Astrophysics Data System (ADS)

    Garcia, Sébastien; Reichel, Jakob; Long, Romain

    2018-02-01

    Tightly focused optical dipole traps induce vector light shifts ("fictitious magnetic fields") which complicate their use for single-atom trapping and manipulation. The problem can be mitigated by adding a larger, real magnetic field, but this solution is not always applicable; in particular, it precludes fast switching to a field-free configuration. Here we show that this issue can be addressed elegantly by deliberately adding a small elliptical polarization component to the dipole trap beam. In our experiments with single 87Rb atoms laser-cooled in a chopped trap, we observe improvements up to a factor of 11 of the trap lifetime compared to the standard, seemingly ideal linear polarization. This effect results from a modification of heating processes via spin-state diffusion in state-dependent trapping potentials. We develop Monte Carlo simulations of the evolution of the atom's internal and motional states and find that they agree quantitatively with the experimental data. The method is general and can be applied in all experiments where the longitudinal polarization component is non-negligible.

  16. Optical waveguide loop for planar trapping of blood cells and microspheres

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Balpreet S.; Hellesø, Olav G.

    2013-09-01

    The evanescent field from a waveguide can be used to trap and propel a particle. An optical waveguide loop with an intentional gap at the center is used for planar transport and stable trapping of particles. The waveguide acts as a conveyor belt to trap and deliver spheres towards the gap. At the gap, the counter-diverging light fields hold the sphere at a fixed position. Numerical simulation based on the finite element method was performed in three dimensions using a computer cluster. The field distribution and optical forces for rib and strip waveguide designs are compared and discussed. The optical force on a single particle was computed for various positions of the particle in the gap. Simulation predicted stable trapping of particles in the gap. Depending on the gap separation (2-50 μm) a single or multiple spheres and red blood cells were trapped at the gap. Waveguides were made of tantalum pentaoxide material. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip.

  17. Microfabricated linear Paul-Straubel ion trap

    DOEpatents

    Mangan, Michael A [Albuquerque, NM; Blain, Matthew G [Albuquerque, NM; Tigges, Chris P [Albuquerque, NM; Linker, Kevin L [Albuquerque, NM

    2011-04-19

    An array of microfabricated linear Paul-Straubel ion traps can be used for mass spectrometric applications. Each ion trap comprises two parallel inner RF electrodes and two parallel outer DC control electrodes symmetric about a central trap axis and suspended over an opening in a substrate. Neighboring ion traps in the array can share a common outer DC control electrode. The ions confined transversely by an RF quadrupole electric field potential well on the ion trap axis. The array can trap a wide array of ions.

  18. Influence of trap color and host volatiles on capture of the emerald ash borer (Coleoptera: Buprestidae).

    PubMed

    Crook, Damon J; Khrimian, Ashot; Cossé, Allard; Fraser, Ivich; Mastro, Victor C

    2012-04-01

    Field trapping assays were conducted in 2009 and 2010 throughout western Michigan, to evaluate lures for adult emerald ash borer, A. planipennis Fairmaire (Coleoptera: Buprestidae). Several ash tree volatiles were tested on purple prism traps in 2009, and a dark green prism trap in 2010. In 2009, six bark oil distillate lure treatments were tested against manuka oil lures (used in 2008 by USDA APHIS PPQ emerald ash borer cooperative program). Purple traps baited with 80/20 (manuka/phoebe oil) significantly increased beetle catch compared with traps baited with manuka oil alone. In 2010 we monitored emerald ash borer attraction to dark green traps baited with six lure combinations of 80/20 (manuka/phoebe), manuka oil, and (3Z)-hexenol. Traps baited with manuka oil and (3Z)-hexenol caught significantly more male and total count insects than traps baited with manuka oil alone. Traps baited with manuka oil and (3Z)-hexenol did not catch more beetles when compared with traps baited with (3Z)-hexenol alone. When compared with unbaited green traps our results show that (3Z)-hexenol improved male catch significantly in only one of three field experiments using dark green traps. Dark green traps caught a high number of A. planipennis when unbaited while (3Z)-hexenol was seen to have a minimal (nonsignificant) trap catch effect at several different release rates. We hypothesize that the previously reported kairomonal attractancy of (3Z)-hexenol (for males) on light green traps is not as obvious here because of improved male attractancy to the darker green trap.

  19. Optical trapping of metal-dielectric nanoparticle clusters near photonic crystal microcavities.

    PubMed

    Mejia, Camilo A; Huang, Ningfeng; Povinelli, Michelle L

    2012-09-01

    We predict the formation of optically trapped, metal-dielectric nanoparticle clusters above photonic crystal microcavities. We determine the conditions on particle size and position for a gold particle to be trapped above the microcavity. We then show that strong field redistribution and enhancement near the trapped gold nanoparticle results in secondary trapping sites for a pair of dielectric nanoparticles.

  20. Northern range expansion of the Asian tiger mosquito (Aedes albopictus): Analysis of mosquito data from Connecticut, USA.

    PubMed

    Armstrong, Philip M; Andreadis, Theodore G; Shepard, John J; Thomas, Michael C

    2017-05-01

    The Asian tiger mosquito (Aedes albopictus) is an invasive species and important arbovirus vector that was introduced into the U.S. in the 1980's where it continues to expand its range. Winter temperature is an important constraint to its northward expansion, with potential range limits located between the 0° and -5°C mean cold month isotherm. Connecticut is located within this climatic zone and therefore, Ae. albopictus was monitored statewide to assess its northern range expansion and to delineate where populations can stably persist. Ae. albopictus females were monitored at fixed trapping sites throughout Connecticut from June-October over a 20-year period, 1997-2016. In addition, Ae. albopictus larvae and pupae were collected from tire habitats and tires were retrieved from the field in the spring and flooded to evaluate overwintering success of hatching larvae. Ae. albopictus was first detected during statewide surveillance when a single adult female was collected in 2006. This species was not collected again until 2010 and was subsequently detected each successive year with increasing abundance and distribution except following the unusually cold winters of 2014 and 2015. Ae. albopictus mosquitoes were most abundant in urban and suburban locations along the southwestern shoreline of Connecticut; however, single specimens were occasionally detected in central parts of the state. Field-collected females were also screened for arbovirus infection yielding two isolations of Cache Valley virus and one isolation of West Nile virus, highlighting the threat posed by this mosquito. Ae. albopictus overwintered in Connecticut under mild winter conditions as shown by recovery of hatched larvae from field collected tires in spring and by early season detection of larvae and pupae. This study documents the establishment and expansion of Ae. albopictus at the northern boundary of its range in the northeastern U.S. and provides a baseline for monitoring the future spread of this species anticipated under climate change.

  1. Northern range expansion of the Asian tiger mosquito (Aedes albopictus): Analysis of mosquito data from Connecticut, USA

    PubMed Central

    Andreadis, Theodore G.; Shepard, John J.; Thomas, Michael C.

    2017-01-01

    Background The Asian tiger mosquito (Aedes albopictus) is an invasive species and important arbovirus vector that was introduced into the U.S. in the 1980's where it continues to expand its range. Winter temperature is an important constraint to its northward expansion, with potential range limits located between the 0° and -5°C mean cold month isotherm. Connecticut is located within this climatic zone and therefore, Ae. albopictus was monitored statewide to assess its northern range expansion and to delineate where populations can stably persist. Methodology/Principal findings Ae. albopictus females were monitored at fixed trapping sites throughout Connecticut from June-October over a 20-year period, 1997–2016. In addition, Ae. albopictus larvae and pupae were collected from tire habitats and tires were retrieved from the field in the spring and flooded to evaluate overwintering success of hatching larvae. Ae. albopictus was first detected during statewide surveillance when a single adult female was collected in 2006. This species was not collected again until 2010 and was subsequently detected each successive year with increasing abundance and distribution except following the unusually cold winters of 2014 and 2015. Ae. albopictus mosquitoes were most abundant in urban and suburban locations along the southwestern shoreline of Connecticut; however, single specimens were occasionally detected in central parts of the state. Field-collected females were also screened for arbovirus infection yielding two isolations of Cache Valley virus and one isolation of West Nile virus, highlighting the threat posed by this mosquito. Ae. albopictus overwintered in Connecticut under mild winter conditions as shown by recovery of hatched larvae from field collected tires in spring and by early season detection of larvae and pupae. Conclusions/Significance This study documents the establishment and expansion of Ae. albopictus at the northern boundary of its range in the northeastern U.S. and provides a baseline for monitoring the future spread of this species anticipated under climate change. PMID:28545111

  2. Structural Inventory of Great Basin Geothermal Systems and Definition of Favorable Structural Settings

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Over the course of the entire project, field visits were made to 117 geothermal systems in the Great Basin region. Major field excursions, incorporating visits to large groups of systems, were conducted in western Nevada, central Nevada, northwestern Nevada, northeastern Nevada, east‐central Nevada, eastern California, southern Oregon, and western Utah. For example, field excursions to the following areas included visits of multiple geothermal systems: - Northwestern Nevada: Baltazor Hot Spring, Blue Mountain, Bog Hot Spring, Dyke Hot Springs, Howard Hot Spring, MacFarlane Hot Spring, McGee Mountain, and Pinto Hot Springs in northwest Nevada. - North‐central to northeastern Nevada: Beowawe, Crescent Valley (Hot Springs Point), Dann Ranch (Hand‐me‐Down Hot Springs), Golconda, and Pumpernickel Valley (Tipton Hot Springs) in north‐central to northeast Nevada. - Eastern Nevada: Ash Springs, Chimney Hot Spring, Duckwater, Hiko Hot Spring, Hot Creek Butte, Iverson Spring, Moon River Hot Spring, Moorman Spring, Railroad Valley, and Williams Hot Spring in eastern Nevada. - Southwestern Nevada‐eastern California: Walley’s Hot Spring, Antelope Valley, Fales Hot Springs, Buckeye Hot Springs, Travertine Hot Springs, Teels Marsh, Rhodes Marsh, Columbus Marsh, Alum‐Silver Peak, Fish Lake Valley, Gabbs Valley, Wild Rose, Rawhide‐ Wedell Hot Springs, Alkali Hot Springs, and Baileys/Hicks/Burrell Hot Springs. - Southern Oregon: Alvord Hot Spring, Antelope Hot Spring‐Hart Mountain, Borax Lake, Crump Geyser, and Mickey Hot Spring in southern Oregon. - Western Utah: Newcastle, Veyo Hot Spring, Dixie Hot Spring, Thermo, Roosevelt, Cove Fort, Red Hill Hot Spring, Joseph Hot Spring, Hatton Hot Spring, and Abraham‐Baker Hot Springs. Structural controls of 426 geothermal systems were analyzed with literature research, air photos, google‐Earth imagery, and/or field reviews (Figures 1 and 2). Of the systems analyzed, we were able to determine the structural settings of more than 240 sites. However, we found that many “systems” consisted of little more than a warm or hot well in the central part of a basin. Such “systems” were difficult to evaluate in terms of structural setting in areas lacking in geophysical data. Developed database for structural catalogue in a master spreadsheet. Data components include structural setting, primary fault orientation, presence or absence of Quaternary faulting, reservoir lithology, geothermometry, presence or absence of recent magmatism, and distinguishing blind systems from those that have surface expressions. Reviewed site locations for all 426 geothermal systems– Confirmed and/or relocated spring and geothermal sites based on imagery, maps, and other information for master database. Many systems were mislocated in the original database. In addition, some systems that included several separate springs spread over large areas were divided into two or more distinct systems. Further, all hot wells were assigned names based on their location to facilitate subsequent analyses. We catalogued systems into the following eight major groups, based on the dominant pattern of faulting (Figure 1): - Major normal fault segments (i.e., near displacement maxima). - Fault bends. - Fault terminations or tips. - Step‐overs or relay ramps in normal faults. - Fault intersections. - Accommodation zones (i.e., belts of intermeshing oppositely dipping normal faults), - Displacement transfer zones whereby strike‐slip faults terminate in arrays of normal faults. - Transtensional pull‐aparts. These settings form a hierarchal pattern with respect to fault complexity. - Major normal faults and fault bends are the simplest. - Fault terminations are typically more complex than mid‐segments, as faults commonly break up into multiple strands or horsetail near their ends. - A fault intersection is generally more complex, as it generally contains both multiple fault strands and can include discrete di...

  3. Numerical modelling of iron-pnictide bulk superconductor magnetization

    NASA Astrophysics Data System (ADS)

    Ainslie, Mark D.; Yamamoto, Akiyasu; Fujishiro, Hiroyuki; Weiss, Jeremy D.; Hellstrom, Eric E.

    2017-10-01

    Iron-based superconductors exhibit a number of properties attractive for applications, including low anisotropy, high upper critical magnetic fields (H c2) in excess of 90 T and intrinsic critical current densities above 1 MA cm-2 (0 T, 4.2 K). It was shown recently that bulk iron-pnictide superconducting magnets capable of trapping over 1 T (5 K) and 0.5 T (20 K) can be fabricated with fine-grain polycrystalline Ba0.6K0.4Fe2As2 (Ba122). These Ba122 magnets were processed by a scalable, versatile and low-cost method using common industrial ceramic processing techniques. In this paper, a standard numerical modelling technique, based on a 2D axisymmetric finite-element model implementing the H -formulation, is used to investigate the magnetisation properties of such iron-pnictide bulk superconductors. Using the measured J c(B, T) characteristics of a small specimen taken from a bulk Ba122 sample, experimentally measured trapped fields are reproduced well for a single bulk, as well as a stack of bulks. Additionally, the influence of the geometric dimensions (thickness and diameter) on the trapped field is analysed, with a view of fabricating larger samples to increase the magnetic field available from such trapped field magnets. It is shown that, with current state-of-the-art superconducting properties, surface trapped fields >2 T could readily be achieved at 5 K (and >1 T at 20 K) with a sample of diameter 50 mm. Finally, an aspect ratio of between 1 and 1.5 for R/H (radius/thickness) would be an appropriate compromise between the accessible, surface trapped field and volume of superconducting material for bulk Ba122 magnets.

  4. Dependence of interface charge trapping on channel engineering in pentacene field effect transistors.

    PubMed

    Lee, Sunwoo; Park, Junghyuck; Park, In-Sung; Ahn, Jinho

    2014-07-01

    We investigate the dependence of charge carrier mobility by trap states at various interface regions through channel engineering. Prior to evaluation of interface trap density, the electrical performance in pentaene field effect transistors (FET) with high-k gate oxide are also investigated depending on four channel engineering. As a channel engineering, gas treatment, coatings of thin polymer layer, and chemical surface modification using small molecules were carried out. After channel engineering, the performance of device as well as interface trap density calculated by conductance method are remarkably improved. It is found that the reduced interface trap density is closely related to decreasing the sub-threshold swing and improving the mobility. Particularly, we also found that performance of device such as mobility, subthreshold swing, and interface trap density after gas same is comparable to those of OTS.

  5. System and method for trapping and measuring a charged particle in a liquid

    DOEpatents

    Reed, Mark A; Krstic, Predrag S; Guan, Weihua; Zhao, Xiongce

    2013-07-23

    A system and method for trapping a charged particle is disclosed. A time-varying periodic multipole electric potential is generated in a trapping volume. A charged particle under the influence of the multipole electric field is confined to the trapping volume. A three electrode configuration giving rise to a 3D Paul trap and a four planar electrode configuration giving rise to a 2D Paul trap are disclosed.

  6. System and method for trapping and measuring a charged particle in a liquid

    DOEpatents

    Reed, Mark A; Krstic, Predrag S; Guan, Weihua; Zhao, Xiongce

    2012-10-23

    A system and method for trapping a charged particle is disclosed. A time-varying periodic multipole electric potential is generated in a trapping volume. A charged particle under the influence of the multipole electric field is confined to the trapping volume. A three electrode configuration giving rise to a 3D Paul trap and a four planar electrode configuration giving rise to a 2D Paul trap are disclosed.

  7. Dual-stage trapped-flux magnet cryostat for measurements at high magnetic fields

    DOEpatents

    Islam, Zahirul; Das, Ritesh K.; Weinstein, Roy

    2015-04-14

    A method and a dual-stage trapped-flux magnet cryostat apparatus are provided for implementing enhanced measurements at high magnetic fields. The dual-stage trapped-flux magnet cryostat system includes a trapped-flux magnet (TFM). A sample, for example, a single crystal, is adjustably positioned proximate to the surface of the TFM, using a translation stage such that the distance between the sample and the surface is selectively adjusted. A cryostat is provided with a first separate thermal stage provided for cooling the TFM and with a second separate thermal stage provided for cooling sample.

  8. Fault-controlled advective, diffusive, and eruptive CO 2 leakage from natural reservoirs in the Colorado Plateau, East-Central Utah

    NASA Astrophysics Data System (ADS)

    Jung, Na-Hyun

    This study investigated a natural analogue for CO2 leakage near Green River, Utah, aiming to understand the influence of various factors on CO2 leakage and to reliably predict underground CO2 behavior after injection for geologic CO2 sequestration. Advective, diffusive, and eruptive characteristics of CO2 leakage were assessed via a soil CO2 flux survey and numerical modeling. The field results show anomalous CO2 fluxes (> 10 g m-2 d-1 ) along the faults, particularly adjacent to CO2-driven cold springs and geysers (e.g., 36,259 g m-2 d-1 at Crystal Geyser), ancient travertines (e.g., 5,917 g m-2 d-1), joint zones in sandstone (e.g., 120 g m-2 d-1), and brine discharge zones (e.g., 5,515 g m-2 d-1). Combined with similar isotopic ratios of gas and progressive evolution of brine chemistry at springs and geysers, a gradual decrease of soil CO2 flux from the Little Grand Wash (LGW; ~36,259 g m -2 d-1) to Salt Wash (SW; ~1,428 g m-2 d-1) fault zones reveals the same CO2 origin and potential southward transport of CO2 over 10-20 km. The numerical simulations exhibit lateral transport of free CO2 and CO2-rich brine from the LGW to SW fault zones through the regional aquifers (e.g., Entrada, Navajo, Kayenta, Wingate, White Rim). CO2 travels predominantly as an aqueous phase (XCO2=~0.045) as previously suggested, giving rise to the convective instability that further accelerates CO2 dissolution. While the buoyant free CO2 always tends to ascend, a fraction of dense CO2-rich brine flows laterally into the aquifer and mixes with the formation fluids during upward migration along the fault. The fault always enhances advective CO2 transport regardless of its permeability (k). However, only low-k fault prevents unconditional upright migration of CO2 and induces fault-parallel movement, feeding the northern aquifers with more CO2. Low-k fault also impedes lateral southward fluid flow from the northern aquifers, developing anticlinal CO2 traps at shallow depths (<300 m). The regional k of the LGW fault in which CO2 flux coincides with the field spatial variation is estimated between 0.01.kh<0.1 md and 0.5.k v<1 md. The anticlinal trap serves as an essential fluid source and conducive environment for intensifying eruption at Crystal Geyser. Geyser-like discharge in the simulations sensitively responds to varying well permeability and radius, and CO2 recharge rate. Indeed, the cycling behavior of wellbore CO2 leakage turns into a constant discharge with time, indicating the potential switch of Crystal Geyser to a CO2-driven cold-water spring or even fumarole.

  9. The effectiveness of habitat modification schemes for enhancing beneficial insects: Assessing the importance of trap cropping management approach

    NASA Astrophysics Data System (ADS)

    Trisnawati, Indah; Azis, Abdul

    2017-06-01

    Many farms in regions of intensive crop production lack the habitats that historically provided resources to beneficial insects, and this lack has compromised the ability of farmers to rely on natural enemies for pest control. One of the strategies to boost populations of existing or naturally occurring beneficial insects is to supply them with appropriate habitat and alternative food sources, such as diversifying trap crop systems and plant populations in or around fields include perennials and flowering plants. Trap cropping using insectary plant that attracts beneficial insects as natural enemies, especially flowering plants, made for provision of habitat for predators or parasitoids that are useful for biological control. Perimeter trap cropping (PTC) is a method of integrated pest management in which the main crop is surrounded with a perimeter trap crop that is more attractive to pests. We observed PTC habitat modification and conventionaly-managed tobacco farms in Purwosari Village, Pasuruan (East Java) to evaluate the effectiveness of habitat modification management prescription (perimeter trap crop using flowering plant Crotalaria juncea) on agroecosystem natural enemies. Field tests were conducted in natural enemies (predator and parasitoid) abundance dynamic and diversity on tobacco field in Purwoasri, Pasuruan. Yellow pan trap, sweep net and hand collecting methods were applied in each 10 days during tobacco growth stage (vegetative, generative until reproductive/harvesting. The results showed that application perimeter trap crop with C. juncea in tobacco fields able to help arthropod conservation of natural enemies on all tobacco growth stages. These results were evidenced the increase in abundance of predators and parasitoids and the increased value of the Diversity Index (H') and Evenness Index (EH) in all tobacco growth phases. Composition of predator and parasitoid in the habitat modification field were more diverse than in the conventional field. Three specific predator species were found on habitat modification field, i.e.: Crocothemis servilia, Orthetrum sabina and Paratrechina sp., as well as specific parasitoid species, i.e.: Polistes sp. (vegetative stage), Chloromyia sp., Theronia sp., Sarcophaga sp. and Cletus sp (generative stage), Condylodtylus sp., Trichogramma sp. (reproductive stage). Trends in predator abundance toward parasitoid insects were indicated a positive linear trend, with the abundance of predator on habitat modification field has an influence on the level of 67.1% parasitoid.

  10. Seismic fault zone trapped noise

    NASA Astrophysics Data System (ADS)

    Hillers, G.; Campillo, M.; Ben-Zion, Y.; Roux, P.

    2014-07-01

    Systematic velocity contrasts across and within fault zones can lead to head and trapped waves that provide direct information on structural units that are important for many aspects of earthquake and fault mechanics. Here we construct trapped waves from the scattered seismic wavefield recorded by a fault zone array. The frequency-dependent interaction between the ambient wavefield and the fault zone environment is studied using properties of the noise correlation field. A critical frequency fc ≈ 0.5 Hz defines a threshold above which the in-fault scattered wavefield has increased isotropy and coherency compared to the ambient noise. The increased randomization of in-fault propagation directions produces a wavefield that is trapped in a waveguide/cavity-like structure associated with the low-velocity damage zone. Dense spatial sampling allows the resolution of a near-field focal spot, which emerges from the superposition of a collapsing, time reversed wavefront. The shape of the focal spot depends on local medium properties, and a focal spot-based fault normal distribution of wave speeds indicates a ˜50% velocity reduction consistent with estimates from a far-field travel time inversion. The arrival time pattern of a synthetic correlation field can be tuned to match properties of an observed pattern, providing a noise-based imaging tool that can complement analyses of trapped ballistic waves. The results can have wide applicability for investigating the internal properties of fault damage zones, because mechanisms controlling the emergence of trapped noise have less limitations compared to trapped ballistic waves.

  11. Laser guidance of mesoscale particles

    NASA Astrophysics Data System (ADS)

    Underdown, Frank Hartman, Jr.

    Mesoscale particles are guided and trapped in hollow optical fibers using radiation pressure forces. Laser light from a 0.4W, 780nm diode laser is guided in a low- loss fiber mode and used to generate the guidance forces. Laser scattering and absorption forces propels particles along the fiber and polarization gradient forces attract them to the fiber's axial center. Using two counter propagating laser beams, inside the fiber, particles can be trapped in three dimensions. Measuring the spring constant of the trap gives the gradient force. This dissertation describes Rayleigh and Mie scattering models for calculating guidance forces. Calculated forces as a function of particle size and composition (i.e. dielectric, semiconductor, and metals) will be presented. For example, under typical experimental conditions 100nm Au particles are guided by a 2 × 10-14 N propulsive force in a water filled fiber. In comparison, the measured force, obtained from the particle's velocity and Stokes' law, is 7.98 × 10-14 N.

  12. A horizontally polarizing liquid trap enhances the tabanid-capturing efficiency of the classic canopy trap.

    PubMed

    Egri, Á; Blahó, M; Száz, D; Kriska, G; Majer, J; Herczeg, T; Gyurkovszky, M; Farkas, R; Horváth, G

    2013-12-01

    Host-seeking female tabanid flies, that need mammalian blood for the development of their eggs, can be captured by the classic canopy trap with an elevated shiny black sphere as a luring visual target. The design of more efficient tabanid traps is important for stock-breeders to control tabanids, since these blood-sucking insects can cause severe problems for livestock, especially for horse- and cattle-keepers: reduced meat/milk production in cattle farms, horses cannot be ridden, decreased quality of hides due to biting scars. We show here that male and female tabanids can be caught by a novel, weather-proof liquid-filled black tray laid on the ground, because the strongly and horizontally polarized light reflected from the black liquid surface attracts water-seeking polarotactic tabanids. We performed field experiments to reveal the ideal elevation of the liquid trap and to compare the tabanid-capturing efficiency of three different traps: (1) the classic canopy trap, (2) the new polarization liquid trap, and (3) the combination of the two traps. In field tests, we showed that the combined trap captures 2.4-8.2 times more tabanids than the canopy trap alone. The reason for the larger efficiency of the combined trap is that it captures simultaneously the host-seeking female and the water-seeking male and female tabanids. We suggest supplementing the traditional canopy trap with the new liquid trap in order to enhance the tabanid-capturing efficiency.

  13. Induced-charge electroosmotic trapping of particles.

    PubMed

    Ren, Yukun; Liu, Weiyu; Jia, Yankai; Tao, Ye; Shao, Jinyou; Ding, Yucheng; Jiang, Hongyuan

    2015-05-21

    Position-controllable trapping of particles on the surface of a bipolar metal strip by induced-charge electroosmotic (ICEO) flow is presented herein. We demonstrate a nonlinear ICEO slip profile on the electrode surface accounting for stable particle trapping behaviors above the double-layer relaxation frequency, while no trapping occurs in the DC limit as a result of a strong upward fluidic drag induced by a linear ICEO slip profile. By extending an AC-flow field effect transistor from the DC limit to the AC field, we reveal that fixed-potential ICEO exceeding RC charging frequency can adjust the particle trapping position flexibly by generating controllable symmetry breaking in a vortex flow pattern. Our results open up new opportunities to manipulate microscopic objects in modern microfluidic systems by using ICEO.

  14. Control of Screening of a Charged Particle in Electrolytic Aqueous Paul Trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jae Hyun nmn; Krstic, Predrag S

    2011-01-01

    Individual charged particles could be trapped and confined in the combined radio-frequency and DC quadrupole electric field of an aqueous Paul trap. Viscosity of water improves confinement and extends the range of the trap parameters which characterize the stability of the trap. Electrolyte, if present in aqueous solution, may screen the charged particle and thus partially or fully suppress electrophoretic interaction with the applied filed, possibly reducing it to a generally much weaker dielectrophoretic interaction with an induced dipole. Applying molecular dynamics simulation we show that the quadrupole field has a different affects at the electrolyte ions and at muchmore » heavier charged particle, effectively eliminating the screening effect and reinstating the electrophoretic confinement.« less

  15. Control Of Screening Of A Charged Particle In Electrolytic Aqueous Paul Trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jae Hyun; Krstic, Predrag S.

    2011-06-01

    Individual charged particles could be trapped and confined by the combined radio-frequency and DC quadrupole electric field of an aqueous Paul trap. Viscosity of water improves confinement and extends the range of the trap parameters which characterize the stability of the trap. Electrolyte, if present in aqueous solution, may screen the charged particle and thus partially or fully suppress electrophoretic interaction with the applied filed, possibly reducing it to a generally much weaker dielectrophoretic interaction with an induced dipole. Applying molecular dynamics simulation we show that the quadrupole field has a different effect at the electrolyte ions and at muchmore » heavier charged particle, effectively eliminating the screening by electrolyte ions and reinstating the electrophoretic confinement.« less

  16. Field-free junctions for surface electrode ion traps

    NASA Astrophysics Data System (ADS)

    Jordens, Robert; Schmied, R.; Blain, M. G.; Leibfried, D.; Wineland, D.

    2015-05-01

    Intersections between transport guides in a network of RF ion traps are a key ingredient to many implementations of scalable quantum information processing with trapped ions. Several junction architectures demonstrated so far are limited by varying radial secular frequencies, a reduced trap depth, or a non-vanishing RF field along the transport channel. We report on the design and progress in implementing a configurable microfabricated surface electrode Y-junction that employs switchable RF electrodes. An essentially RF-field-free pseudopotential guide between any two legs of the junction can be established by applying RF potential to a suitable pair of electrodes. The transport channel's height above the electrodes, its depth and radial curvature are constant to within 15%. Supported by IARPA, Sandia, NSA, ONR, and the NIST Quantum Information Program.

  17. RADIATION SOURCE

    DOEpatents

    Gow, J.D.

    1961-06-27

    An improved version of a crossed electric and magnetic field plasma producing and containing device of the general character disclosed in U. S. Patent No. 2,967,943 is described. This device employs an annular magnet encased within an anode and a pair of cathodes respectively coaxially spaced from the opposite ends of the anode to establish crossed field electron trapping regions adjacent the ends of the anode. The trapping regions are communicably connected through the throat of the anode and the electric field negatively increases in opposite axial directions from the center of the throat. Electrons are trapped within the two trapping regions and throat to serve as a source of intense ionization to gas introduced thereto, the ions in copious quantities being attracted to the cathodes to bombard neutron productive targets dlsposed - thereat.

  18. Electrothermal flow effects in insulating (electrodeless) dielectrophoresis systems.

    PubMed

    Hawkins, Benjamin G; Kirby, Brian J

    2010-11-01

    We simulate electrothermally induced flow in polymeric, insulator-based dielectrophoresis (iDEP) systems with DC-offset, AC electric fields at finite thermal Péclet number, and we identify key regimes where electrothermal (ET) effects enhance particle deflection and trapping. We study a single, two-dimensional constriction in channel depth with parametric variations in electric field, channel geometry, fluid conductivity, particle electrophoretic (EP) mobility, and channel electroosmotic (EO) mobility. We report the effects of increasing particle EP mobility, channel EO mobility, and AC and DC field magnitudes on the mean constriction temperature and particle behavior. Specifically, we quantify particle deflection and trapping, referring to the deviation of particles from their pathlines due to dielectrophoresis as they pass a constriction and the stagnation of particles due to negative dielectrophoresis near a constriction, respectively. This work includes the coupling between fluid, heat, and electromagnetic phenomena via temperature-dependent physical parameters. Results indicate that the temperature distribution depends strongly on the fluid conductivity and electric field magnitude, and particle deflection and trapping depend strongly on the channel geometry. Electrothermal (ET) effects perturb the EO flow field, creating vorticity near the channel constriction and enhancing the deflection and trapping effects. ET effects alter particle deflection and trapping responses in insulator-based dielectrophoresis devices, especially at intermediate device aspect ratios (2 ≤ r ≤ 7) in solutions of higher conductivity (σ m ≥ 1 × 10(-3)S/m). The impact of ET effects on particle deflection and trapping are diminished when particle EP mobility or channel EO mobility is high. In almost all cases, ET effects enhance negative dielectrophoretic particle deflection and trapping phenomena. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Accumulator for Low-Energy Laser-Cooled Particles

    NASA Astrophysics Data System (ADS)

    Mertes, Kevin; Walstrom, Peter; di Rosa, Michael; LANL Collaboration

    2017-04-01

    An accumulator builds phase-space density by use of a non-Hamiltonian process, thereby circumventing Liouville's theorem, which states that phase-space density is preserved in processes governed by Hamilton's equations. We have built an accumulator by a simple magneto-static cusp trap formed from two ring shaped permanent magnets. In traps with a central minimum of | B | , the stored particles are in a field-repelled (FR) Zeeman state, pushed away by | B | and oscillating about its minimum. After laser-cooling our particles and before entering the trap, we employ the non-hamiltonian process of optical pumping: A FR particle approaches the trap and climbs to the top of the confining potential with a finite velocity. There, it is switched to a field seeking (FS) state. As the switch does not change the velocity, the particle proceeds into the trap but continues to lose momentum because, now in the FS state, the particles sees the decreasing field as a potential hill to climb. Before it comes to a halt, the particle is switched back to a FR state for storage. The process repeats, building the trapped number and density. A simple consideration of potential and kinetic energies would show the trapped particles to have less kinetic energy than those injected. Los Alamos National Laboratory's Office of Laboratory Directed Research and Development.

  20. Ion gyroradius effects on particle trapping in kinetic Alfven waves along auroral field lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiano, P. A.; Johnson, J. R.; Chaston, C. C.

    In this study, a 2-D self-consistent hybrid gyrofluid-kinetic electron model is used to investigate Alfven wave propagation along dipolar magnetic field lines for a range of ion to electron temperature ratios. The focus of the investigation is on understanding the role of these effects on electron trapping in kinetic Alfven waves sourced in the plasma sheet and the role of this trapping in contributing to the overall electron energization at the ionosphere. This work also builds on our previous effort by considering a similar system in the limit of fixed initial parallel current, rather than fixed initial perpendicular electric field.more » It is found that the effects of particle trapping are strongest in the cold ion limit and the kinetic Alfven wave is able to carry trapped electrons a large distance along the field line yielding a relatively large net energization of the trapped electron population as the phase speed of the wave is increased. However, as the ion temperature is increased, the ability of the kinetic Alfven wave to carry and energize trapped electrons is reduced by more significant wave energy dispersion perpendicular to the ambient magnetic field which reduces the amplitude of the wave. This reduction of wave amplitude in turn reduces both the parallel current and the extent of the high-energy tails evident in the energized electron populations at the ionospheric boundary (which may serve to explain the limited extent of the broadband electron energization seen in observations). Here, even in the cold ion limit, trapping effects in kinetic Alfven waves lead to only modest electron energization for the parameters considered (on the order of tens of eV) and the primary energization of electrons to keV levels coincides with the arrival of the wave at the ionospheric boundary.« less

  1. Ion gyroradius effects on particle trapping in kinetic Alfven waves along auroral field lines

    DOE PAGES

    Damiano, P. A.; Johnson, J. R.; Chaston, C. C.

    2016-11-10

    In this study, a 2-D self-consistent hybrid gyrofluid-kinetic electron model is used to investigate Alfven wave propagation along dipolar magnetic field lines for a range of ion to electron temperature ratios. The focus of the investigation is on understanding the role of these effects on electron trapping in kinetic Alfven waves sourced in the plasma sheet and the role of this trapping in contributing to the overall electron energization at the ionosphere. This work also builds on our previous effort by considering a similar system in the limit of fixed initial parallel current, rather than fixed initial perpendicular electric field.more » It is found that the effects of particle trapping are strongest in the cold ion limit and the kinetic Alfven wave is able to carry trapped electrons a large distance along the field line yielding a relatively large net energization of the trapped electron population as the phase speed of the wave is increased. However, as the ion temperature is increased, the ability of the kinetic Alfven wave to carry and energize trapped electrons is reduced by more significant wave energy dispersion perpendicular to the ambient magnetic field which reduces the amplitude of the wave. This reduction of wave amplitude in turn reduces both the parallel current and the extent of the high-energy tails evident in the energized electron populations at the ionospheric boundary (which may serve to explain the limited extent of the broadband electron energization seen in observations). Here, even in the cold ion limit, trapping effects in kinetic Alfven waves lead to only modest electron energization for the parameters considered (on the order of tens of eV) and the primary energization of electrons to keV levels coincides with the arrival of the wave at the ionospheric boundary.« less

  2. Micro Penning Trap for Continuous Magnetic Field Monitoring in High Radiation Environments

    NASA Astrophysics Data System (ADS)

    Latorre, Javiera; Bollen, Georg; Gulyuz, Kerim; Ringle, Ryan; Bado, Philippe; Dugan, Mark; Lebit Team; Translume Collaboration

    2016-09-01

    As new facilities for rare isotope beams, like FRIB at MSU, are constructed, there is a need for new instrumentation to monitor magnetic fields in beam magnets that can withstand the higher radiation level. Currently NMR probes, the instruments used extensively to monitor magnetic fields, do not have a long lifespans in radiation-high environments. Therefore, a radiation-hard replacement is needed. We propose to use Penning trap mass spectrometry techniques to make high precision magnetic field measurements. Our Penning microtrap will be radiation resistant as all of the vital electronics will be at a safe distance from the radiation. The trap itself is made from materials not subject to radiation damage. Penning trap mass spectrometers can determine the magnetic field by measuring the cyclotron frequency of an ion with a known mass and charge. This principle is used on the Low Energy Beam Ion Trap (LEBIT) minitrap at NSCL which is the foundation for the microtrap. We have partnered with Translume, who specialize in glass micro-fabrication, to develop a microtrap in fused-silica glass. A microtrap is finished and ready for testing at NSCL with all of the electronic and hardware components setup. DOE Phase II SBIR Award No. DE-SC0011313, NSF Award Number 1062410 REU in Physics, NSF under Grant No. PHY-1102511.

  3. Microwave quantum logic gates for trapped ions.

    PubMed

    Ospelkaus, C; Warring, U; Colombe, Y; Brown, K R; Amini, J M; Leibfried, D; Wineland, D J

    2011-08-10

    Control over physical systems at the quantum level is important in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can be coherently manipulated with laser light. Similar control is difficult to achieve with radio-frequency or microwave radiation: the essential coupling between internal degrees of freedom and motion requires significant field changes over the extent of the atoms' motion, but such changes are negligible at these frequencies for freely propagating fields. An exception is in the near field of microwave currents in structures smaller than the free-space wavelength, where stronger gradients can be generated. Here we first manipulate coherently (on timescales of 20 nanoseconds) the internal quantum states of ions held in a microfabricated trap. The controlling magnetic fields are generated by microwave currents in electrodes that are integrated into the trap structure. We also generate entanglement between the internal degrees of freedom of two atoms with a gate operation suitable for general quantum computation; the entangled state has a fidelity of 0.76(3), where the uncertainty denotes standard error of the mean. Our approach, which involves integrating the quantum control mechanism into the trapping device in a scalable manner, could be applied to quantum information processing, simulation and spectroscopy.

  4. Superior bit error rate and jitter due to improved switching field distribution in exchange spring magnetic recording media

    PubMed Central

    Suess, D.; Fuger, M.; Abert, C.; Bruckner, F.; Vogler, C.

    2016-01-01

    We report two effects that lead to a significant reduction of the switching field distribution in exchange spring media. The first effect relies on a subtle mechanism of the interplay between exchange coupling between soft and hard layers and anisotropy that allows significant reduction of the switching field distribution in exchange spring media. This effect reduces the switching field distribution by about 30% compared to single-phase media. A second effect is that due to the improved thermal stability of exchange spring media over single-phase media, the jitter due to thermal fluctuation is significantly smaller for exchange spring media than for single-phase media. The influence of this overall improved switching field distribution on the transition jitter in granular recording and the bit error rate in bit-patterned magnetic recording is discussed. The transition jitter in granular recording for a distribution of Khard values of 3% in the hard layer, taking into account thermal fluctuations during recording, is estimated to be a = 0.78 nm, which is similar to the best reported calculated jitter in optimized heat-assisted recording media. PMID:27245287

  5. Helium gas bubble trapped in liquid helium in high magnetic field

    NASA Astrophysics Data System (ADS)

    Bai, H.; Hannahs, S. T.; Markiewicz, W. D.; Weijers, H. W.

    2014-03-01

    High magnetic field magnets are used widely in the area of the condensed matter physics, material science, chemistry, geochemistry, and biology at the National High Magnetic Field Laboratory. New high field magnets of state-of-the-art are being pursued and developed at the lab, such as the current developing 32 T, 32 mm bore fully superconducting magnet. Liquid Helium (LHe) is used as the coolant for superconducting magnets or samples tested in a high magnetic field. When the magnetic field reaches a relatively high value the boil-off helium gas bubble generated by heat losses in the cryostat can be trapped in the LHe bath in the region where BzdBz/dz is less than negative 2100 T2/m, instead of floating up to the top of LHe. Then the magnet or sample in the trapped bubble region may lose efficient cooling. In the development of the 32 T magnet, a prototype Yttrium Barium Copper Oxide coil of 6 double pancakes with an inner diameter of 40 mm and an outer diameter of 140 mm was fabricated and tested in a resistive magnet providing a background field of 15 T. The trapped gas bubble was observed in the tests when the prototype coil was ramped up to 7.5 T at a current of 200 A. This letter reports the test results on the trapped gas bubble and the comparison with the analytical results which shows they are in a good agreement.

  6. Comparative evaluation of the efficiency of the BG-Sentinel trap, CDC light trap and Mosquito-oviposition trap for the surveillance of vector mosquitoes.

    PubMed

    Li, Yiji; Su, Xinghua; Zhou, Guofa; Zhang, Hong; Puthiyakunnon, Santhosh; Shuai, Shufen; Cai, Songwu; Gu, Jinbao; Zhou, Xiaohong; Yan, Guiyun; Chen, Xiao-Guang

    2016-08-12

    The surveillance of vector mosquitoes is important for the control of mosquito-borne diseases. To identify a suitable surveillance tool for the adult dengue vector Aedes albopictus, the efficacy of the BG-Sentinel trap, CDC light trap and Mosquito-oviposition trap (MOT) on the capture of vector mosquitoes were comparatively evaluated in this study. The capture efficiencies of the BG-Sentinel trap, CDC light trap and Mosquito-oviposition trap for common vector mosquitoes were tested in a laboratory setting, through the release-recapture method, and at two field sites of Guangzhou, China from June 2013 to May 2014. The captured mosquitoes were counted, species identified and compared among the three traps on the basis of species. In the release-recapture experiments in a laboratory setting, the BG-Sentinel trap caught significantly more Aedes albopictus and Culex quinquefasciatus than the CDC light trap and Mosquito-ovitrap, except for Anopheles sinensis. The BG-Sentinel trap had a higher efficacy in capturing female rather than male Ae. albopictus and Cx. quinquefasciatus, but the capture in CDC light traps displayed no significant differences. In the field trial, BG-Sentinel traps collected more Aedes albopictus than CDC light traps and MOTs collected in both urban and suburban areas. The BG-Sentinel trap was more sensitive for monitoring the population density of Aedes albopictus than the CDC light trap and MOT during the peak months of the year 2013. However, on an average, CDC light traps captured significantly more Cx. quinquefasciatus than BG-Sentinel traps. The population dynamics of Cx. quinquefasciatus displayed a significant seasonal variation, with the lowest numbers in the middle of the year. This study indicates that the BG-Sentinel trap is more effective than the commonly used CDC light trap and MOT in sampling adult Aedes albopictus and Culex quinquefasciatus. We recommend its use in the surveillance of dengue vector mosquitoes in China.

  7. A continuously weighing, high frequency sand trap: Wind tunnel and field evaluations

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Yang, XingHua; Huo, Wen; Ali, Mamtimin; Zheng, XinQian; Zhou, ChengLong; He, Qing

    2017-09-01

    A new continuously weighing, high frequency sand trap (CWHF) has been designed. Its sampling efficiency is evaluated in a wind tunnel and the potential of the new trap has been demonstrated in field trials. The newly designed sand trap allows fully automated and high frequency measurement of sediment fluxes over extensive periods. We show that it can capture the variations and structures of wind-driven sand transport processes and horizontal sediment flux, and reveal the relationships between sand transport and meteorological parameters. Its maximum sampling frequency can reach 10 Hz. Wind tunnel tests indicated that the sampling efficiency of the CWHF sand trap varies between 39.2 to 64.3%, with an average of 52.5%. It achieved a maximum sampling efficiency of 64.3% at a wind speed of 10 m s- 1. This is largely achieved by the inclusion of a vent hole which leads to a higher sampling efficiency than that of a step-like sand trap at high wind speeds. In field experiments, we show a good agreement between the mass of sediment from the CWHF sand trap, the wind speed at 2 m and the number of saltating particles at 5 cm above the ground surface. According to analysis of the horizontal sediment flux at four heights from the CWHF sand trap (25, 35, 50, and 100 cm), the vertical distribution of the horizontal sediment flux up to a height of 100 cm above the sand surface follows an exponential function. Our field experiments show that the new instrument can capture more detailed information on sediment transport with much reduced labor requirement. Therefore, it has great potential for application in wind-blown sand monitoring and process studies.

  8. All-optical atom trap as a target for MOTRIMS-like collision experiments

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Acharya, B. P.; De Silva, A. H. N. C.; Parris, N. W.; Ramsey, B. J.; Romans, K. L.; Dorn, A.; de Jesus, V. L. B.; Fischer, D.

    2018-04-01

    Momentum-resolved scattering experiments with laser-cooled atomic targets have been performed since almost two decades with magneto-optical trap recoil ion momentum spectroscopy (MOTRIMS) setups. Compared to experiments with gas-jet targets, MOTRIMS features significantly lower target temperatures allowing for an excellent recoil ion momentum resolution. However, the coincident and momentum-resolved detection of electrons was long rendered impossible due to incompatible magnetic field requirements. Here we report on an experimental approach which is based on an all-optical 6Li atom trap that—in contrast to magneto-optical traps—does not require magnetic field gradients in the trapping region. Atom temperatures of about 2 mK and number densities up to 109 cm-3 make this trap ideally suited for momentum-resolved electron-ion coincidence experiments. The overall configuration of the trap is very similar to conventional magneto-optical traps. It mainly requires small modifications of laser beam geometries and polarization which makes it easily implementable in other existing MOTRIMS experiments.

  9. Capture of Anastrepha suspensa and sterile male Ceratitis capitata (Diptera: Tephritidae) in multilure traps versus phase 4 traps

    USDA-ARS?s Scientific Manuscript database

    Field trials were conducted in south Florida to compare capture of wild Caribbean fruit flies, Anastrepha suspensa (Loew), and sterile male Mediterranean fruit flies, Ceratitis capitata (Wiedemann), in Multilure traps, which are McPhail-type traps that use an aqueous solution to retain attracted fli...

  10. Aggressiveness Changes in Populations of Didymella pinodes over Winter and Spring Pea Cropping Seasons.

    PubMed

    Laloi, G; Montarry, J; Guibert, M; Andrivon, D; Michot, D; Le May, C

    2016-07-15

    Ascochyta blight, caused by the necrotrophic ascomycete Didymella pinodes, is responsible for severe losses in winter and spring pea crops. Despite different climatic conditions, epidemics on winter and spring crops are due to a single population of D. pinodes, suggesting gene flow either between the two crops or from reservoir sources during the cropping season. This should lead to similar pathogenicity characteristics in isolates sampled from the two crops. However, these hypotheses have never been formally tested. We therefore sampled a total of 520 D. pinodes strains throughout a growing season from winter and spring pea plots (WP and SP, respectively) and from winter and spring trap plants (TWP and TSP). Amplified fragment length polymorphism (AFLP) markers revealed high genetic diversity within subpopulations, whereas pathogenicity tests showed that mean aggressiveness increases over the course of an epidemic. These results support the idea that alloinoculum contributes to the carryover of epidemics between winter and spring crops and that the most aggressive isolates are selected as an epidemic progresses. Ascochyta blight, caused by Didymella pinodes, is responsible for severe losses in pea crops. While previous studies have shown that ascochyta blight epidemics on winter and spring crops are due to a single population of D. pinodes, suggesting that isolates from the two crops present similar pathogenicity characteristics, that hypothesis have never been tested. Genetic analysis of subpopulations sampled throughout a growing season from winter and spring pea plots revealed high genetic diversity within subpopulations, whereas pathogenicity tests showed that mean aggressiveness increases over the course of an epidemic. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2006 Smolt Acclimation and Adult Return Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the tenth season (1997-2006) of adult Chinook salmon broodstock collectionmore » in the Lostine River and the eighth season (1999-2006) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2006, acclimation of Lostine River spring Chinook salmon smolts occurred from February 27, 2006 through to April 10, 2006 and a total of 240,568 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2004 egg source and included captive brood (40,982) and conventional (199,586) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2006 began May 15th, the first Chinook was captured on June 14, 2006 and the last Chinook was captured on September 27, 2006. The weir and trap were removed on October 1, 2006. A total of 534 adult Chinook, including jacks, were captured during the season. The composition of the run included 205 natural origin fish and 329 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 33 natural and 120 hatchery supplementation adults were retained for broodstock and transported to LGH for holding and spawning and 397 adult Chinook were passed or transported above the weir to spawn naturally. In 2006, no hatchery origin adult Chinook were transported and out planted in the Wallowa River and Bear Creek to spawn in under seeded habitat. In order to meet egg take goals for the conventional portion of the program, a determination was made that approximately 147 adults were needed for broodstock. As a result 16 (8 males and 8 females) of the 153 fish collected for broodstock were returned to the Lostine River to spawn naturally. Females that were spawned and provided the brood source were made up of 12 natural females and 45 supplementation females. One of these females tested positive for high levels of Bacterial Kidney Disease and consequently this females eggs were destroyed. The remaining females produced a total of 241,372 eggs at fertilization. Eye-up was 85.47% which yielded a total of 206,309 conventional program eyed eggs. The fecundity averaged 4,162 eggs per female. The brood year 2006 eggs will be incubated and reared at Lookingglass Hatchery until they are smolts in the spring of 2008. Captive brood program eggs/fish will be added to the conventional program eggs to make up the entire juvenile release for the Lostine River program in 2008.« less

  12. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2004 Smolt Acclimation and Adult Return Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eighth season (1997-2004) of adult Chinook salmon broodstock collectionmore » in the Lostine River and the sixth season (1999-2004) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progency for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2004, acclimation of Lostine River spring Chinook salmon smolts occurred from March 1, 2004 through to April 14, 2004 and a total of 250,249 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2002 egg source and included captive brood (133,781) and conventional (116,468) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2004 began May 10, the first Chinook was captured on May 19, 2004 and the last Chinook was captured on September 16, 2004. The weir and trap were removed on October 1, 2004. A total of 1,091 adult Chinook, including jacks, were captured during the season. The composition of the run included 299 natural origin fish and 792 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 46 natural and 69 hatchery supplementation adults were retained for broodstock and transported to Lookingglass Hatchery for holding and spawning, 537 adult Chinook were passed or transported above the weir to spawn naturally, and 447 hatchery origin adult Chinook were transported and outplanted in the Wallowa River and Bear Creek to spawn in underseeded habitat. Of the 107 adults retained (eight additional hatchery females were collected and then later returned to the Lostine River to spawn naturally) for broodstock at Lookingglass Hatchery, 22 natural females and 30 supplementation females were represented in spawning. These females produced a total of 221,889 eggs at fertilization. Eye-up was 94.9% which yielded a total of 210,661 conventional program eyed eggs. The fecundity averaged 4,267 eggs per female. These eggs were incubated and at Lookingglass Hatchery until eyed stage and then transferred to Oxbow Hatchery where they will be reared to the fingerling stage. They will then be transported back to LGH and reared to the smolt stage and then transported to the Lostine acclimation facility for release in the spring of 2006. Captive brood program eggs/fish will be added to the conventional program eggs to make up the entire juvenile release for the Lostine River program in 2006.« less

  13. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2007 Smolt Acclimation and Adult Return Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eleventh season (1997-2007) of adult Chinook salmon broodstock collectionmore » in the Lostine River and the ninth season (1999-2007) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2007, acclimation of Lostine River spring Chinook salmon smolts occurred from 3/5/07 through to 4/17/07 and a total of 230,010 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2005 egg source and included captive brood (24,604) and conventional (205,406) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2007 began May 14th. The first Chinook was captured on June 2, 2007 and the last Chinook was captured on September 25, 2007. The weir and trap were removed on October 1, 2007. A total of 637 adult Chinook, including jacks, were captured during the season. The composition of the run included 240 natural origin fish and 397 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 41 natural and 81 hatchery supplementation adults were retained for broodstock and transported to LGH for holding and spawning, 403 adult Chinook were passed or transported above the weir to spawn naturally, and only hatchery origin jack Chinook were transported and outplanted in the Wallowa River and Bear Creek in underseeded habitat. Of the 122 adult fish retained for broodstock, 20 natural females and 40 supplementation females were represented in spawning. The eggs from these females produced a total of 267,350 eggs at fertilization. Eye-up was 86.73% which yielded a total of 231,882 conventional program eyed eggs. The fecundity averaged 4,456 eggs per female. These eggs will be incubated and reared at Lookingglass Hatchery until they are smolts in the spring of 2009. Captive brood program eggs/fish will be added to the conventional program eggs to make up the entire juvenile release for the Lostine River program in 2009. Due to the success of the 2007 egg collection, the number of fish produced exceeded program needs and facility capabilities. As a result, there are plans to outplant fry in 2008 and parr in early 2009 to underseeded habitat in the Wallowa River.« less

  14. Large CO 2 and CH 4 emissions from polygonal tundra during spring thaw in northern Alaska

    DOE PAGES

    Raz-Yaseef, Naama; Torn, Margaret S.; Wu, Yuxin; ...

    2016-12-05

    The few prethaw observations of tundra carbon fluxes suggest that there may be large spring releases, but little is known about the scale and underlying mechanisms of this phenomenon. To address these questions, we combined in this paper ecosystem eddy flux measurements from two towers near Barrow, Alaska, with mechanistic soil-core thawing experiment. During a 2 week period prior to snowmelt in 2014, large fluxes were measured, reducing net summer uptake of CO 2 by 46% and adding 6% to cumulative CH 4 emissions. Emission pulses were linked to unique rain-on-snow events enhancing soil cracking. Controlled laboratory experiment revealed thatmore » as surface ice thaws, an immediate, large pulse of trapped gases is emitted. Finally, these results suggest that the Arctic CO 2 and CH 4 spring pulse is a delayed release of biogenic gas production from the previous fall and that the pulse can be large enough to offset a significant fraction of the moderate Arctic tundra carbon sink.« less

  15. Propagation of Plasma Bunches through a Transverse Magnetic Barrier

    NASA Astrophysics Data System (ADS)

    Bishaev, A. M.; Gavrikov, M. B.; Kozintseva, M. V.; Savel'ev, V. V.

    2018-01-01

    The injection of a plasma bunch into a multipolar trap can be applied to fill the trap with a plasma. The injection of the bunch into a tokamak-like trap can be considered an additional means for controlling the processes of plasma heating and fuel delivery to the central zone of a thermonuclear reactor. In both cases, the bunch is injected normally to the magnetic field of the trap. It has been shown theoretically, experimentally, and by numerical simulation that the depth of plasma bunch penetration into the magnetic field varies in direct proportion to the bunch energy and in inverse proportion to the magnetic pressure and the cross-sectional area of the plasma bunch. The data of this work allow researchers to estimate the values of plasma bunch parameters at which the bunch will be trapped. As a result, the process of plasma bunch trapping has been optimized.

  16. Probing the density of trap states in the middle of the bandgap using ambipolar organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Häusermann, Roger; Chauvin, Sophie; Facchetti, Antonio; Chen, Zhihua; Takeya, Jun; Batlogg, Bertram

    2018-04-01

    The number of trap states in the band gap of organic semiconductors directly influences the charge transport as well as the threshold and turn-on voltage. Direct charge transport measurements have been used until now to probe the trap states rather close to the transport level, whereas their number in the middle of the band gap has been elusive. In this study, we use PDIF-CN2, a well known n-type semiconductor, together with vanadium pentoxide electrodes to build ambipolar field-effect transistors. Employing three different methods, we study the density of trap states in the band gap of the semiconductor. These methods give consistent results, and no pool of defect states was found. Additionally, we show first evidence that the number of trap states close to the transport level is correlated with the number of traps in the middle of the band-gap, meaning that a high number of trap states close to the transport level also implies a high number of trap states in the middle of the band gap. This points to a common origin of the trap states over a wide energy range.

  17. Measurements of trap dynamics of cold OH molecules using resonance-enhanced multiphoton ionization

    NASA Astrophysics Data System (ADS)

    Gray, John M.; Bossert, Jason A.; Shyur, Yomay; Lewandowski, H. J.

    2017-08-01

    Trapping cold, chemically important molecules with electromagnetic fields is a useful technique to study small molecules and their interactions. Traps provide long interaction times, which are needed to precisely examine these low-density molecular samples. However, the trapping fields lead to nonuniform molecular density distributions in these systems. Therefore, it is important to be able to experimentally characterize the spatial density distribution in the trap. Ionizing molecules at different locations in the trap using resonance-enhanced multiphoton ionization (REMPI) and detecting the resulting ions can be used to probe the density distribution even at the low density present in these experiments because of the extremely high efficiency of detection. Until recently, one of the most chemically important molecules, OH, did not have a convenient REMPI scheme identified. Here, we use a newly developed 1 +1' REMPI scheme to detect trapped cold OH molecules. We use this capability to measure the trap dynamics of the central density of the cloud and the density distribution. These types of measurements can be used to optimize loading of molecules into traps, as well as to help characterize the energy distribution, which is critical knowledge for interpreting molecular collision experiments.

  18. Enhancement of the BG-sentinel trap with varying number of mice for field sampling of male and female Aedes albopictus mosquitoes.

    PubMed

    Le Goff, Gilbert; Damiens, David; Payet, Laurent; Ruttee, Abdoul-Hamid; Jean, Frédéric; Lebon, Cyrille; Dehecq, Jean-Sébastien; Gouagna, Louis-Clément

    2016-09-22

    Trapping male mosquitoes in the field is essential for the development of area-wide vector control programs with a sterile insect technique (SIT) component. To determine the optimal temporal and spatial release strategy, an estimation of the wild population density and its temporal dynamics is essential. Among the traps available for such data collection, the BG-Sentinel trap developed by the Biogents company uses a combination of visual cues, convection currents and olfactory signals. Although in numerous cases, this trap has shown high efficiency in sampling Aedes albopictus, in some cases low capture rates of Ae. albopictus males were recorded for the BG-sentinel mosquito trap baited with synthetic attractants. The effects of modifying the BG-sentinel trap (by adding one mouse, two or three live mice to the trap) on the efficiency of trapping Ae. albopictus males and females was tested. The experiment was carried out in three distinct areas on La Réunion that have been selected for pilot field testing of the release of sterile male Ae. albopictus mosquitoes. The effect of four types of attractant (including the generic BG-Lure, one mouse or two to three mice) in baited BGS traps was tested with a Latin square design in order to control for the variability of different sampling positions and dates. At the three studied sites, the number of Ae. albopictus adults caught and the proportion of males per trap consistently increased with the number of mice present in the trap. The results from this study suggest that some new attractants derived from, or similar to, mouse odors could be developed and tested in combination with other existing attractive components, such as CO 2 and heat, in order to provide a reliable estimation method for Ae. albopictus adult male abundance in the wild.

  19. Interfacial dynamic surface traps of lead sulfide (PbS) nanocrystals: test-platform for interfacial charge carrier traps at the organic/inorganic functional interface

    NASA Astrophysics Data System (ADS)

    Kim, Youngjun; Ko, Hyungduk; Park, Byoungnam

    2018-04-01

    Nanocrystal (NC) size and ligand dependent dynamic trap formation of lead sulfide (PbS) NCs in contact with an organic semiconductor were investigated using a pentacene/PbS field effect transistor (FET). We used a bilayer pentacene/PbS FET to extract information of the surface traps of PbS NCs at the pentacene/PbS interface through the field effect-induced charge carrier density measurement in the threshold and subthreshold regions. PbS size and ligand dependent trap properties were elucidated by the time domain and threshold voltage measurements in which threshold voltage shift occurs by carrier charging and discharging in the trap states of PbS NCs. The observed threshold voltage shift is interpreted in context of electron trapping through dynamic trap formation associated with PbS NCs. To the best of our knowledge, this is the first demonstration of the presence of interfacial dynamic trap density of PbS NC in contact with an organic semiconductor (pentacene). We found that the dynamic trap density of the PbS NC is size dependent and the carrier residence time in the specific trap sites is more sensitive to NC size variation than to NC ligand exchange. The probing method presented in the study offers a means to investigate the interfacial surface traps at the organic-inorganic hetero-junction, otherwise understanding of the buried surface traps at the functional interface would be elusive.

  20. Assessing the quality of bottom water temperatures from the Finite-Volume Community Ocean Model (FVCOM) in the Northwest Atlantic Shelf region

    NASA Astrophysics Data System (ADS)

    Li, Bai; Tanaka, Kisei R.; Chen, Yong; Brady, Damian C.; Thomas, Andrew C.

    2017-09-01

    The Finite-Volume Community Ocean Model (FVCOM) is an advanced coastal circulation model widely utilized for its ability to simulate spatially and temporally evolving three-dimensional geophysical conditions of complex and dynamic coastal regions. While a body of literature evaluates model skill in surface fields, independent studies validating model skill in bottom fields over large spatial and temporal scales are scarce because these fields cannot be remotely sensed. In this study, an evaluation of FVCOM skill in modeling bottom water temperature was conducted by comparison to hourly in situ observed bottom temperatures recorded by the Environmental Monitors on Lobster Traps (eMOLT), a program that attached thermistors to commercial lobster traps from 2001 to 2013. Over 2 × 106 pairs of FVCOM-eMOLT records were evaluated by a series of statistical measures to quantify accuracy and precision of the modeled data across the Northwest Atlantic Shelf region. The overall comparison between modeled and observed data indicates reliable skill of FVCOM (r2 = 0.72; root mean squared error = 2.28 °C). Seasonally, the average absolute errors show higher model skill in spring, fall and winter than summer. We speculate that this is due to the increased difficulty of modeling high frequency variability in the exact position of the thermocline and frontal zones. The spatial patterns of the residuals suggest that there is improved similarity between modeled and observed data at higher latitudes. We speculate that this is due to increased tidal mixing at higher latitudes in our study area that reduces stratification in winter, allowing improved model accuracy. Modeled bottom water temperatures around Cape Cod, the continental shelf edges, and at one location at the entrance to Penobscot Bay were characterized by relatively high errors. Constraints for future uses of FVCOM bottom water temperature are provided based on the uncertainties in temporal-spatial patterns. This study is novel as it is the first skill assessment of a regional ocean circulation model in bottom fields at high spatial and temporal scales in the Northwest Atlantic Shelf region.

  1. Loading an Equidistant Ion Chain in a Ring Shaped Surface Trap and Anomalous Heating Studies with a High Optical Access Trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabakov, Boyan

    2015-07-01

    Microfabricated segmented surface ion traps are one viable avenue to scalable quantum information processing. At Sandia National Laboratories we design, fabricate, and characterize such traps. Our unique fabrication capabilities allow us to design traps that facilitate tasks beyond quantum information processing. The design and performance of a trap with a target capability of storing hundreds of equally spaced ions on a ring is described. Such a device could aid experimental studies of phenomena as diverse as Hawking radiation, quantum phase transitions, and the Aharonov - Bohm effect. The fabricated device is demonstrated to hold a ~ 400 ion circular crystal,more » with 9 μm average spacing between ions. The task is accomplished by first characterizing undesired electric fields in the trapping volume and then designing and applying an electric field that substantially reduces the undesired fields. In addition, experimental efforts are described to reduce the motional heating rates in a surface trap by low energy in situ argon plasma treatment that reduces the amount of surface contaminants. The experiment explores the premise that carbonaceous compounds present on the surface contribute to the anomalous heating of secular motion modes in surface traps. This is a research area of fundamental interest to the ion trapping community, as heating adversely affects coherence and thus gate fidelity. The device used provides high optical laser access, substantially reducing scatter from the surface, and thus charging that may lead to excess micromotion. Heating rates for different axial mode frequencies are compared before and after plasma treatment. The presence of a carbon source near the plasma prevents making a conclusion on the observed absence of change in heating rates.« less

  2. AN IMPROVED TRAP TO CAPTURE ADULT CONTAINER-INHABITING MOSQUITOES

    PubMed Central

    BARRERA, ROBERTO; MACKAY, ANDREW J.; AMADOR, MANUEL

    2015-01-01

    Although dengue viruses are thought to be transmitted by Aedes aegypti in Puerto Rico, Aedes mediovittatus, the Caribbean tree hole mosquito, is also a potential vector. This species is native to the Greater Antilles and has been shown to be a competent vector of dengue viruses in the laboratory. Consequently, it has been suggested that Ae. mediovittatus could be acting as a secondary vector or virus reservoir. This study was part of an ongoing investigation into this, and it aimed to determine whether BG-Sentinel traps (BGS traps) could be used to collect adults of this mosquito and could be modified to increase the number of captures of this species in the field. We conducted experiments to test the relative attractiveness of BGS traps to Ae. mediovittatus and Ae. aegypti and explored the effects of chemical lures (BG-Lure, CO2, octenol) and optical properties (color, size) on the capture rates of BGS traps in a large, outdoor cage in San Juan city, Puerto Rico. We also conducted field tests to compare modified BGS traps with the original traps in a rural community in Patillas municipality, Puerto Rico. Results obtained from the large, outdoor cage experiments indicated that trap captures of both mosquito species could be significantly enhanced by using black instead of white BGS traps combined with BG-Lure. Field experiments revealed that the modified traps captured a significantly greater number of Ae. aegypti, Ae. mediovittatus, and Culex quinquefasciatus, with greater sensitivity for the latter 2 species, and also captured a larger number of mosquito species and a smaller ratio of Ae. aegypti to Ae. mediovittatus, with greater than expected species co-occurrences. PMID:24551969

  3. Trap density of states in small-molecule organic semiconductors: A quantitative comparison of thin-film transistors with single crystals

    NASA Astrophysics Data System (ADS)

    Kalb, Wolfgang L.; Haas, Simon; Krellner, Cornelius; Mathis, Thomas; Batlogg, Bertram

    2010-04-01

    We show that it is possible to reach one of the ultimate goals of organic electronics: producing organic field-effect transistors with trap densities as low as in the bulk of single crystals. We studied the spectral density of localized states in the band gap [trap density of states (trap DOS)] of small-molecule organic semiconductors as derived from electrical characteristics of organic field-effect transistors or from space-charge-limited current measurements. This was done by comparing data from a large number of samples including thin-film transistors (TFT’s), single crystal field-effect transistors (SC-FET’s) and bulk samples. The compilation of all data strongly suggests that structural defects associated with grain boundaries are the main cause of “fast” hole traps in TFT’s made with vacuum-evaporated pentacene. For high-performance transistors made with small-molecule semiconductors such as rubrene it is essential to reduce the dipolar disorder caused by water adsorbed on the gate dielectric surface. In samples with very low trap densities, we sometimes observe a steep increase in the trap DOS very close (<0.15eV) to the mobility edge with a characteristic slope of 10-20 meV. It is discussed to what degree band broadening due to the thermal fluctuation of the intermolecular transfer integral is reflected in this steep increase in the trap DOS. Moreover, we show that the trap DOS in TFT’s with small-molecule semiconductors is very similar to the trap DOS in hydrogenated amorphous silicon even though polycrystalline films of small-molecules with van der Waals-type interaction on the one hand are compared with covalently bound amorphous silicon on the other hand.

  4. [Leaf water potential of spring wheat and field pea under different tillage patterns and its relationships with environmental factors].

    PubMed

    Zhang, Ming; Zhang, Ren-Zhi; Cai, Li-Qun

    2008-07-01

    Based on a long-term experiment, the leaf water potential of spring wheat and field pea, its relationships with environmental factors, and the diurnal variations of leaf relative water content and water saturation deficient under different tillage patterns were studied. The results showed that during whole growth period, field pea had an obviously higher leaf water potential than spring wheat, but the two crops had similar diurnal variation trend of their leaf water potential, i.e., the highest in early morning, followed by a descent, and a gradual ascent after the descent. For spring wheat, the maximum leaf water potential appeared at its jointing and heading stages, followed by at booting and flowering stages, and the minimum appeared at filling stage. For field pea, the maximum leaf water potential achieved at squaring stage, followed by at branching and flowering stages, and the minimum was at podding stage. The leaf relative water content of spring wheat was the highest at heading stage, followed by at jointing and flowering stages, and achieved the minimum at filling stage; while the water saturation deficient was just in adverse. With the growth of field pea, its leaf relative water content decreased, but leaf water saturation deficient increased. The leaf water potential of both spring wheat and field pea had significant correlations with environmental factors, including soil water content, air temperature, solar radiation, relative air humidity, and air water potential. Path analysis showed that the meteorological factor which had the strongest effect on the diurnal variation of spring wheat' s and field pea' s leaf water potential was air water potential and air temperature, respectively. Compared with conventional tillage, the protective tillage patterns no-till, no-till plus straw mulching, and conventional tillage plus straw returning increased the leaf water potential and relative water content of test crops, and the effect of no-till plus straw mulching was most significant.

  5. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaoyang; Frisbie, Daniel

    2017-03-31

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering.

  6. The Størmer problem for an aligned rotator

    NASA Astrophysics Data System (ADS)

    Epp, V.; Pervukhina, O. N.

    2018-03-01

    The effective potential energy of the particles in the field of rotating uniformly magnetized celestial body is investigated. The axis of rotation coincides with the axis of the magnetic field. Electromagnetic field of the body is composed of a dipole magnetic and quadrupole electric fields. The geometry of the trapping regions is studied as a function of the magnetic field magnitude and the rotation speed of the body. Examples of the potential energy topology for different values of these parameters are given. The main difference from the classical Størmer problem is that the single toroidal trapping region predicted by Størmer is divided into equatorial and off-equatorial trapping regions. Applicability of the idealized model of a rotating uniformly magnetized sphere with a vacuum magnetosphere to real celestial bodies is discussed.

  7. Solar hot water space heating system. Technical progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Dam, T

    1979-08-13

    A retrofit solar heating system was installed on Madison Hall at Jordan College, Cedar Springs, Michigan. The system provides heating and domestic water preheating for a campus dormitory. Freeze protection is provided by a draindown system. The building and solar system, construction progress, and design changes are described. Included in appendices are: condensate trap design, structural analysis, pictures of installation, operating instructions, maintenance instructions, and as-built drawings. (MHR)

  8. Changes in permeability caused by transient stresses: field observations, experiments, and mechanisms

    USGS Publications Warehouse

    Manga, Michael; Beresnev, Igor; Brodsky, Emily E.; Elkhoury, Jean E.; Elsworth, Derek; Ingebritsen, Steve E.; Mays, David C.; Wang, Chi-Yuen

    2012-01-01

    Oscillations in stress, such as those created by earthquakes, can increase permeability and fluid mobility in geologic media. In natural systems, strain amplitudes as small as 10–6 can increase discharge in streams and springs, change the water level in wells, and enhance production from petroleum reservoirs. Enhanced permeability typically recovers to prestimulated values over a period of months to years. Mechanisms that can change permeability at such small stresses include unblocking pores, either by breaking up permeability-limiting colloidal deposits or by mobilizing droplets and bubbles trapped in pores by capillary forces. The recovery time over which permeability returns to the prestimulated value is governed by the time to reblock pores, or for geochemical processes to seal pores. Monitoring permeability in geothermal systems where there is abundant seismicity, and the response of flow to local and regional earthquakes, would help test some of the proposed mechanisms and identify controls on permeability and its evolution.

  9. Vaccination of free-living juvenile wild rabbits (Oryctolagus cuniculus) against myxomatosis improved their survival.

    PubMed

    Guitton, Jean-Sébastien; Devillard, Sébastien; Guénézan, Michel; Fouchet, David; Pontier, Dominique; Marchandeau, Stéphane

    2008-04-17

    For several decades, the populations of the European wild rabbit (Oryctolagus cuniculus) have declined, which is partly due to myxomatosis. Vaccination against this disease is expected to contribute to restoration of rabbit populations but the actual impact of myxomatosis is not well known and vaccination might have some negative effects. We analyzed the capture-mark-recapture data obtained in a 4-year field experiment (1991-1994) in a park near Paris, France wherein 300 out of 565 seronegative juvenile rabbits were vaccinated at first capture against myxomatosis with the nontransmissible Dervaximyxo SG33 vaccine. After accounting for weight at first capture, age-class (juvenile/adult), "trap-happiness" and season (spring/autumn) of the capture event, vaccinated rabbits had 1.8-fold greater odds of surviving than the unvaccinated rabbits. The average summer survival risk for vaccinated juveniles was 0.63 (+/-0.08 S.E.) whereas it was 0.48 (+/-0.08 S.E.) for unvaccinated juvenile rabbits.

  10. Instability analysis of charges trapped in the oxide of metal-ultra thin oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Aziz, A.; Kassmi, K.; Maimouni, R.; Olivié, F.; Sarrabayrouse, G.; Martinez, A.

    2005-09-01

    In this paper, we present the theoretical and experimental results of the influence of a charge trapped in ultra-thin oxide of metal/ultra-thin oxide/semiconductor structures (MOS) on the I(Vg) current-voltage characteristics when the conduction is of the Fowler-Nordheim (FN) tunneling type. The charge, which is negative, is trapped near the cathode (metal/oxide interface) after constant current injection by the metal (Vg<0). Of particular interest is the influence on the Δ Vg(Vg) shift over the whole I(Vg) characteristic at high field (greater than the injection field (>12.5 MV/cm)). It is shown that the charge centroid varies linearly with respect to the voltage Vg. The behavior at low field (<12.5 MV/cm) is analyzed in référence A. Aziz, K. Kassmi, Ka. Kassmi, F. Olivié, Semicond. Sci. Technol. 19, 877 (2004) and considers that the trapped charge centroid is fixed. The results obtained make it possible to analyze the influence of the injected charge and the applied field on the centroid position of the trapped charge, and to highlight the charge instability in the ultra-thin oxide of MOS structures.

  11. Gypsy moth (Lepidoptera: Lymantriidae) flight behavior and phenology based on field-deployed automated pheromone-baited traps

    Treesearch

    Patrick C. Tobin; Kenneth T. Klein; Donna S. Leonard

    2009-01-01

    Populations of the gypsy moth, Lymantria dispar (L.), are extensively monitored in the United States through the use of pheromone-baited traps.We report on use of automated pheromone-baited traps that use a recording sensor and data logger to record the unique date-time stamp of males as they enter the trap.We deployed a total of 352 automated traps...

  12. Trap placement and attractant choice affect capture and create sex and parity biases in collections of the biting midge, Culicoides sonorensis.

    PubMed

    McDermott, E G; Mayo, C E; Gerry, A C; Mullens, B A

    2016-09-01

    Culicoides sonorensis Wirth & Jones (Diptera: Ceratopogonidae) is the primary North American vector of bluetongue virus (BTV), which can cause high morbidity and mortality in ruminant livestock or wildlife. Worldwide, most Culicoides surveillance relies on light (usually UV) traps typically placed near animals or larval development sites. However, the trapping method can cause sex, species and parity biases in collections. We collected C. sonorensis from three dairies in California using suction traps baited with CO2 , UV light or CO2  + UV placed near animals, wastewater ponds, or in fields. Higher numbers of parous females were collected using CO2  + UV traps, although this difference was only significant on one dairy. UV traps were poor at collecting nulliparous females, but the addition of UV to a trap increased the abundance of males in a collection. Traps set in open fields collected significantly higher numbers of males and females than in either of the other two locations. In some cases, there was a significant interaction between the trap type and site. We discuss the limitations of traditional trapping methodologies for C. sonorensis and make suggestions for vector surveillance. © 2016 The Royal Entomological Society.

  13. Assembling, cleaning, and testing a unique prototype open-ended cylindrical penning trap

    NASA Astrophysics Data System (ADS)

    Marble, Kassie; Shidling, Praveen; Melconian, Dan

    2016-09-01

    A new experimental beamline containing a prototype cylindrical penning trap has recently been constructed at the Cyclotron Laboratory at Texas A&M University. The new beamline will enable precision experiments that enhance our understanding of the limits on non-SM processes in the weak interaction through the measurement of the β- ν correlation parameter for T = 2 ,0+ ->0+ supper allowed β-delayed proton emitters. The prototype TAMU TRAP consists of an open-ended cylindrical penning trap of diameter of 90 mm with gold-plated electrodes of oxygen free high conductivity copper to prevent oxidation. The trap's electric quadrupole field is provided by a SHIP TRAPS RF electronic circuit to the four segmented electrodes at the center of the trap while the trap's 7 Tesla radial magnetic field is provided by an Agilent 210 ASR magnet. A discussion of the assembly of the prototype TAMU TRAP, construction of the RF electronic circuit, the experimental set up and alignment of the beamline will be presented. The method used to test the prototype penning trap using an ion source, Faraday cups, and Micro Chanel Plate (MCP) detectors will also be discussed. Work supported by the U.S. Department of Energy under Grant No. DE-FG02-11ER41747 and the National Science Foundation.

  14. Trapping and dynamic manipulation with magnetomotive photoacoustic imaging of targeted microspheres mimicking metastatic cancer cells trafficking in the vasculature

    NASA Astrophysics Data System (ADS)

    Wei, Chenwei; Xia, Jinjun; Pelivanov, Ivan; Hu, Xiaoge; Gao, Xiaohu; O'Donnell, Matthew

    2012-02-01

    Trapping and manipulation of micro-scale objects mimicking metastatic cancer cells in a flow field have been demonstrated with magnetomotive photoacoustic (mmPA) imaging. Coupled contrast agents combining gold nanorods (15 nm × 50 nm; absorption peak around 730 nm) with 15 nm diameter magnetic nanospheres were targeted to 10 μm polystyrene beads recirculating in a 1.6 mm diameter tube mimicking a human peripheral vessel. Targeted objects were then trapped by an external magnetic field produced by a dual magnet system consisting of two disc magnets separated by 6 cm to form a polarizing field (0.04 Tesla in the tube region) to magnetize the magnetic contrast agents, and a custom designed cone magnet array with a high magnetic field gradient (about 0.044 Tesla/mm in the tube region) producing a strong trapping force to magnetized contrast agents. Results show that polystyrene beads linked to nanocomposites can be trapped at flow rates up to 12 ml/min. It is shown that unwanted background in a photoacoustic image can be significantly suppressed by changing the position of the cone magnet array with respect to the tube, thus creating coherent movement of the trapped objects. This study makes mmPA imaging very promising for differential visualization of metastatic cells trafficking in the vasculature.

  15. Site-based data curation based on hot spring geobiology

    PubMed Central

    Palmer, Carole L.; Thomer, Andrea K.; Baker, Karen S.; Wickett, Karen M.; Hendrix, Christie L.; Rodman, Ann; Sigler, Stacey; Fouke, Bruce W.

    2017-01-01

    Site-Based Data Curation (SBDC) is an approach to managing research data that prioritizes sharing and reuse of data collected at scientifically significant sites. The SBDC framework is based on geobiology research at natural hot spring sites in Yellowstone National Park as an exemplar case of high value field data in contemporary, cross-disciplinary earth systems science. Through stakeholder analysis and investigation of data artifacts, we determined that meaningful and valid reuse of digital hot spring data requires systematic documentation of sampling processes and particular contextual information about the site of data collection. We propose a Minimum Information Framework for recording the necessary metadata on sampling locations, with anchor measurements and description of the hot spring vent distinct from the outflow system, and multi-scale field photography to capture vital information about hot spring structures. The SBDC framework can serve as a global model for the collection and description of hot spring systems field data that can be readily adapted for application to the curation of data from other kinds scientifically significant sites. PMID:28253269

  16. Revisiting the role of trap-assisted-tunneling process on current-voltage characteristics in tunnel field-effect transistors

    NASA Astrophysics Data System (ADS)

    Omura, Yasuhisa; Mori, Yoshiaki; Sato, Shingo; Mallik, Abhijit

    2018-04-01

    This paper discusses the role of trap-assisted-tunneling process in controlling the ON- and OFF-state current levels and its impacts on the current-voltage characteristics of a tunnel field-effect transistor. Significant impacts of high-density traps in the source region are observed that are discussed in detail. With regard to recent studies on isoelectronic traps, it has been discovered that deep level density must be minimized to suppress the OFF-state leakage current, as is well known, whereas shallow levels can be utilized to control the ON-state current level. A possible mechanism is discussed based on simulation results.

  17. Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor

    NASA Astrophysics Data System (ADS)

    Zhi, Jiang; Yi-Qi, Zhuang; Cong, Li; Ping, Wang; Yu-Qi, Liu

    2016-02-01

    Trap-assisted tunneling (TAT) has attracted more and more attention, because it seriously affects the sub-threshold characteristic of tunnel field-effect transistor (TFET). In this paper, we assess subthreshold performance of double gate TFET (DG-TFET) through a band-to-band tunneling (BTBT) model, including phonon-assisted scattering and acoustic surface phonons scattering. Interface state density profile (Dit) and the trap level are included in the simulation to analyze their effects on TAT current and the mechanism of gate leakage current. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574109 and 61204092).

  18. Nonlinear Dynamics of a Magnetically Driven Duffing-Type Spring-Magnet Oscillator in the Static Magnetic Field of a Coil

    ERIC Educational Resources Information Center

    Donoso, Guillermo; Ladera, Celso L.

    2012-01-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the…

  19. In situ plasma removal of surface contaminants from ion trap electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haltli, Raymond A.

    2015-05-01

    In this thesis, the construction and implementation of an in situ plasma discharge designed to remove surface contaminants from electrodes in an ion trapping experimental system is presented with results. In recent years, many advances have been made in using ion traps for quantum information processing. All of the criteria defined by DiVincenzo for using ion traps for implementing a quantum computer have been individually demonstrated, and in particular surface traps provide a scalable platform for ions. In order to be used for quantum algorithms, trapped ions need to be cooled to their motional (quantum mechanical) ground state. One ofmore » the hurdles in integrating surface ion traps for a quantum computer is minimizing electric field noise, which causes the ion to heat out of its motional ground state and which increases with smaller ion-to-electrode distances realized with surface traps. Surface contamination of trap electrodes is speculated to be the primary source of electric field noise. The main goal achieved by this work was to implement an in situ surface cleaning solution for surface electrode ion traps, which would not modify the ion trap electrode surface metal. Care was taken in applying the RF power in order to localize a plasma near the trap electrodes. A method for characterizing the energy of the plasma ions arriving at the ion trap surface is presented and results for plasma ion energies are shown. Finally, a method for quantifying the effectiveness of plasma cleaning of trap electrodes, using the surface analysis technique of X-ray photoelectron spectroscopy for measuring the amount and kind of surface contaminants, is described. A significant advantage of the trap electrode surface cleaning method presented here is the minimal changes necessary for implementation on a working ion trap experimental system.« less

  20. Polarized neutron imaging and three-dimensional calculation of magnetic flux trapping in bulk of superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treimer, Wolfgang; Ebrahimi, Omid; Karakas, Nursel

    Polarized neutron radiography was used to study the three-dimensional magnetic flux distribution inside of single-crystal and polycrystalline Pb cylinders with large (cm3) volume and virtually zero demagnetization. Experiments with single crystals being in the Meissner phase (T

  1. Geomagnetic Field Distortion by a Solar Stream as a Mechanism for the Production of Polar Aurora and Electrojets

    NASA Technical Reports Server (NTRS)

    Kern, J. W.

    1961-01-01

    This paper describes a mechanism for charge separation in the geomagnetically trapped radiation which may account for some observed phenomena associated with the polar aurora and the electrojet current systems. The following development is proposed: given that there exist eastward or westward longitudinal gradients in the geomagnetic field resulting from distortion of the geomagnetic field by solar streams, if the trapped radiation is adiabatic in character, radial drift separation of positive and negative charged particles must occur. It follows that, for bounded or irregular distributions of plasma number density in such an adiabatic - drift region, electric fields will arise. The origin of such electric fields will not arrest the drift separation of the charged particles, but will contribute to exponential growth of irregularities in the trapped plasma density. An adiabatic acceleration mechanism is described, which is based on incorporating the electrostatic energy of the particle in the energy function for the particle. Direct consequences of polarization of the geomagnetically trapped radiation will be the polar electrojet current systems and the polar aurora.

  2. Hopping and trapping mechanisms in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Konezny, S. J.; Bussac, M. N.; Zuppiroli, L.

    2010-01-01

    A charge carrier in the channel of an organic field-effect transistor (OFET) is coupled to the electric polarization of the gate in the form of a surface Fröhlich polaron [N. Kirova and M. N. Bussac, Phys. Rev. B 68, 235312 (2003)]. We study the effects of the dynamical field of polarization on both small-polaron hopping and trap-limited transport mechanisms. We present numerical calculations of polarization energies, band-narrowing effects due to polarization, hopping barriers, and interface trap depths in pentacene and rubrene transistors as functions of the dielectric constant of the gate insulator and demonstrate that a trap-and-release mechanism more appropriately describes transport in high-mobility OFETs. For mobilities on the order 0.1cm2/Vs and below, all states are highly localized and hopping becomes the predominant mechanism.

  3. Trapping effect of metal nanoparticle mono- and multilayer in the organic field-effect transistor

    NASA Astrophysics Data System (ADS)

    Lee, Keanchuan; Weis, Martin; Lin, Jack; Taguchi, Dai; Majková, Eva; Manaka, Takaaki; Iwamoto, Mitsumasa

    2011-03-01

    The effect of silver nanoparticles self-assembled monolayer (Ag NPs SAM) on charge transport in pentacene organic field-effect transistors (OFET) was investigated by both steady-state and transient-state methods, which are current-voltage measurements in steady-state and time-resolved microscopic (TRM) second harmonic generation (SHG) in transient-state, respectively. The analysis of electronic properties revealed that OFET with SAM exhibited significant charge trapping effect due to the space-charge field formed by immobile charges. Lower transient-state mobility was verified by the direct probing of carrier motion by TRM-SHG technique. It was shown that the trapping effect rises together with increase of SAM layers suggesting the presence of traps in the bulk of NP films. The model based on the electrostatic charge barrier is suggested to explain the phenomenon.

  4. Influence of trap color and host volatiles on capture of the emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae)

    USDA-ARS?s Scientific Manuscript database

    Field trapping assays were conducted in 2009 and 2010 throughout western Michigan, USA, to evaluate lures for adult emerald ash borer, A. planipennis Fairmaire (Coleoptera: Buprestidae). Several ash tree volatiles were tested on purple prism traps in 2009, and a dark green prism trap in 2010. In 200...

  5. Flea abundance, diversity, and plague in Gunnison's prairie dogs (Cynomys gunnisoni) and their burrows in montane grasslands in northern New Mexico.

    PubMed

    Friggens, Megan M; Parmenter, Robert R; Boyden, Michael; Ford, Paulette L; Gage, Kenneth; Keim, Paul

    2010-04-01

    Plague, a flea-transmitted infectious disease caused by the bacterium Yersinia pestis, is a primary threat to the persistence of prairie dog populations (Cynomys spp.). We conducted a 3-yr survey (2004-2006) of fleas from Gunnison's prairie dogs (Cynomys gunnisoni) and their burrows in montane grasslands in Valles Caldera National Preserve in New Mexico. Our objectives were to describe flea communities and identify flea and rodent species important to the maintenance of plague. We live-trapped prairie dogs and conducted burrow sweeps at three colonies in spring and summer of each year. One hundred thirty prairie dogs and 51 golden-mantled ground squirrels (Spermophilus lateralis) were captured over 3,640 trap nights and 320 burrows were swabbed for fleas. Five flea species were identified from prairie dogs and ground squirrels and four were identified from burrow samples. Oropsylla hirsuta was the most abundant species found on prairie dogs and in burrows. Oropsylla idahoensis was most common on ground squirrels. Two colonies experienced plague epizootics in fall 2004. Plague-positive fleas were recovered from burrows (O. hirsuta and Oropsylla tuberculata tuberculata) and a prairie dog (O. hirsuta) in spring 2005 and summer 2006. Three prairie dogs collected in summer 2005 and 2006 had plague antibody. We found a significant surge in flea abundance and prevalence, particularly within burrows, following plague exposure. We noted an increased tendency for flea exchange opportunities in the spring before O. hirsuta reached its peak population. We hypothesize that the role of burrows as a site of flea exchange, particularly between prairie dogs and ground squirrels, may be as important as summer conditions that lead to buildup in O. hirsuta populations for determining plague outbreaks.

  6. Suppression of Plutella xylostella and Trichoplusia ni in cole crops with attracticide formulations.

    PubMed

    Maxwell, Elly M; Fadamiro, Henry Y; McLaughlin, John R

    2006-08-01

    The three key lepidopteran pests of cole, Brassica oleracea L., crops in North America are diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae); cabbage looper; Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae); and imported cabbageworm, Pieris rapae (L.) (Lepidoptera: Pieridae). Two species-specific pheromone-based experimental attracticide formulations were evaluated against these pests: LastCall DBM for P. xylostella and LastCall CL for T. ni. No LastCall formulation was available against P. rapae. Laboratory toxicity experiments confirmed the effectiveness of each LastCall formulations in killing conspecific males that made contact. In replicated small plots of cabbage and collards in central Alabama, over four growing seasons (fall 2003, spring 2004, fall 2004, and spring 2005), an attracticide treatment receiving the two LastCall formulations, each applied multiple times at the rate of 1,600 droplets per acre, was compared against Bacillus thuringiensis. subspecies kursatki (Bt) spray at action threshold and a negative untreated control. Efficacy was measured by comparing among the three treatments male capture in pheromone-baited traps, larval counts in plots, and crop damage rating at harvest. LastCall provided significant reductions in crop damage comparable to Bt in three of the four seasons. Efficacy of LastCall was dependent upon lepidopteran population densities, which fluctuated from season to season. In general, reduction in crop damage was achieved with LastCall at low-to-moderate population densities of the three species, such as typically occurs in the fall in central Alabama, but not in the spring when high P. rapae population pressure typically occurs in central Alabama. Significant reductions in pheromone trap captures did not occur in LastCall plots, suggesting that elimination of males by the toxicant (permethrin), rather than interruption of sexual communication, was the main mechanism of effect.

  7. Dependence of trapped-flux-induced surface resistance of a large-grain Nb superconducting radio-frequency cavity on spatial temperature gradient during cooldown through T c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Shichun; Kubo, Takayuki; Geng, R. L.

    Recent studies by Romanenko et al. revealed that cooling down a superconducting cavity under a large spatial temperature gradient decreases the amount of trapped flux and leads to reduction of the residual surface resistance. In the present paper, the flux expulsion ratio and the trapped-flux-induced surface resistance of a large-grain cavity cooled down under a spatial temperature gradient up to 80K/m are studied under various applied magnetic fields from 5E-6 T to 2E-5 T. We show the flux expulsion ratio improves as the spatial temperature gradient increases, independent of the applied magnetic field: our results supports and enforces the previousmore » studies. We then analyze all RF measurement results obtained under different applied magnetic fields together by plotting the trapped- flux-induced surface resistance normalized by the applied magnetic field as a function of the spatial temperature gradient. All the data can be fitted by a single curve, which defines an empirical formula for the trapped- flux-induced surface resistance as a function of the spatial temperature gradient and applied magnetic field. The formula can fit not only the present results but also those obtained by Romanenko et al. previously. Furthermore, the sensitivity r fl of surface resistance from trapped magnetic flux of fine-grain and large-grain niobium cavities and the origin of dT/ds dependence of R fl/B a are also discussed.« less

  8. Dependence of trapped-flux-induced surface resistance of a large-grain Nb superconducting radio-frequency cavity on spatial temperature gradient during cooldown through T c

    DOE PAGES

    Huang, Shichun; Kubo, Takayuki; Geng, R. L.

    2016-08-26

    Recent studies by Romanenko et al. revealed that cooling down a superconducting cavity under a large spatial temperature gradient decreases the amount of trapped flux and leads to reduction of the residual surface resistance. In the present paper, the flux expulsion ratio and the trapped-flux-induced surface resistance of a large-grain cavity cooled down under a spatial temperature gradient up to 80K/m are studied under various applied magnetic fields from 5E-6 T to 2E-5 T. We show the flux expulsion ratio improves as the spatial temperature gradient increases, independent of the applied magnetic field: our results supports and enforces the previousmore » studies. We then analyze all RF measurement results obtained under different applied magnetic fields together by plotting the trapped- flux-induced surface resistance normalized by the applied magnetic field as a function of the spatial temperature gradient. All the data can be fitted by a single curve, which defines an empirical formula for the trapped- flux-induced surface resistance as a function of the spatial temperature gradient and applied magnetic field. The formula can fit not only the present results but also those obtained by Romanenko et al. previously. Furthermore, the sensitivity r fl of surface resistance from trapped magnetic flux of fine-grain and large-grain niobium cavities and the origin of dT/ds dependence of R fl/B a are also discussed.« less

  9. Rotating magnetic shallow water waves and instabilities in a sphere

    NASA Astrophysics Data System (ADS)

    Márquez-Artavia, X.; Jones, C. A.; Tobias, S. M.

    2017-07-01

    Waves in a thin layer on a rotating sphere are studied. The effect of a toroidal magnetic field is considered, using the shallow water ideal MHD equations. The work is motivated by suggestions that there is a stably stratified layer below the Earth's core mantle boundary, and the existence of stable layers in stellar tachoclines. With an azimuthal background field known as the Malkus field, ?, ? being the co-latitude, a non-diffusive instability is found with azimuthal wavenumber ?. A necessary condition for instability is that the Alfvén speed exceeds ? where ? is the rotation rate and ? the sphere radius. Magneto-inertial gravity waves propagating westward and eastward occur, and become equatorially trapped when the field is strong. Magneto-Kelvin waves propagate eastward at low field strength, but a new westward propagating Kelvin wave is found when the field is strong. Fast magnetic Rossby waves travel westward, whilst the slow magnetic Rossby waves generally travel eastward, except for some ? modes at large field strength. An exceptional very slow westward ? magnetic Rossby wave mode occurs at all field strengths. The current-driven instability occurs for ? when the slow and fast magnetic Rossby waves interact. With strong field the magnetic Rossby waves become trapped at the pole. An asymptotic analysis giving the wave speed and wave form in terms of elementary functions is possible both in polar trapped and equatorially trapped cases.

  10. Hg-201 (+) CO-Magnetometer for HG-199(+) Trapped Ion Space Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Burt, Eric A. (Inventor); Taghavi, Shervin (Inventor); Tjoelker, Robert L. (Inventor)

    2011-01-01

    Local magnetic field strength in a trapped ion atomic clock is measured in real time, with high accuracy and without degrading clock performance, and the measurement is used to compensate for ambient magnetic field perturbations. First and second isotopes of an element are co-located within the linear ion trap. The first isotope has a resonant microwave transition between two hyperfine energy states, and the second isotope has a resonant Zeeman transition. Optical sources emit ultraviolet light that optically pump both isotopes. A microwave radiation source simultaneously emits microwave fields resonant with the first isotope's clock transition and the second isotope's Zeeman transition, and an optical detector measures the fluorescence from optically pumping both isotopes. The second isotope's Zeeman transition provides the measure of magnetic field strength, and the measurement is used to compensate the first isotope's clock transition or to adjust the applied C-field to reduce the effects of ambient magnetic field perturbations.

  11. Induced dual EIT and EIA resonances with optical trapping phenomenon in near/far fields in the N-type four-level system

    NASA Astrophysics Data System (ADS)

    Osman, Kariman I.; Joshi, Amitabh

    2017-01-01

    The optical trapping phenomenon is investigated in the probe absorptive susceptibility spectra, during the interaction of four-level N-type atomic system with three transverse Gaussian fields, in a Doppler broadened medium. The system was studied under different temperature settings of 87Rb atomic vapor as well as different non-radiative decay rate. The system exhibits a combination of dual electromagnetically induced transparency with electromagnetically induced absorption (EIA) or transparency (EIT) resonances simultaneously in near/far field. Also, the optical trapping phenomenon is considerably affected by the non-radiative decay rate.

  12. Trapped particles at a magnetic discontinuity

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1972-01-01

    At a tangential discontinuity between two constant magnetic fields a layer of trapped particles can exist, this work examines the conditions under which the current carried by such particles tends to maintain the discontinuity. Three cases are examined. If the discontinuity separates aligned vacuum fields, the only requirement is that they be antiparallel. With arbitrary relative orientations, the field must have equal intensities on both sides. Finally, with a guiding center plasma on both sides, the condition reduces to a relation which is also derivable from hydromagnetic theory. Arguments are presented for the occurrence of such trapped modes in the magnetopause and for the non-existence of specular particle reflection.

  13. Influence of e-e+ creation on the radiative trapping in ultraintense fields of colliding laser pulses

    NASA Astrophysics Data System (ADS)

    Baumann, C.; Pukhov, A.

    2016-12-01

    The behavior of a thin plasma target irradiated by two counterpropagating laser pulses of ultrahigh intensity is studied in the framework of one- and two-dimensional particle-in-cell simulations. It is found that above an intensity threshold, radiative trapping can focus electrons in the peaks of the electromagnetic field. At even higher intensities, the trapping effect cannot be maintained according to the increasing influence of electron-positron pair production on the laser-plasma dynamics.

  14. The two-parametric scaling and new temporal asymptotic of survival probability of diffusing particle in the medium with traps.

    PubMed

    Arkhincheev, V E

    2017-03-01

    The new asymptotic behavior of the survival probability of particles in a medium with absorbing traps in an electric field has been established in two ways-by using the scaling approach and by the direct solution of the diffusion equation in the field. It has shown that at long times, this drift mechanism leads to a new temporal behavior of the survival probability of particles in a medium with absorbing traps.

  15. The two-parametric scaling and new temporal asymptotic of survival probability of diffusing particle in the medium with traps

    NASA Astrophysics Data System (ADS)

    Arkhincheev, V. E.

    2017-03-01

    The new asymptotic behavior of the survival probability of particles in a medium with absorbing traps in an electric field has been established in two ways—by using the scaling approach and by the direct solution of the diffusion equation in the field. It has shown that at long times, this drift mechanism leads to a new temporal behavior of the survival probability of particles in a medium with absorbing traps.

  16. Microsatellite marker analysis of peach-potato aphids (Myzus persicae, Homoptera: Aphididae) from Scottish suction traps.

    PubMed

    Malloch, G; Highet, F; Kasprowicz, L; Pickup, J; Neilson, R; Fenton, B

    2006-12-01

    The peach-potato aphid Myzus persicae (Sulzer) is an important vector of plant viruses. A network of suction traps collects aerial samples of this aphid in order to monitor and help predict its spatial distribution and likely impact on virus transmission in crops. A suction trap catch is thought to be a good representation of the total aphid pool. Sensitive molecular markers have been developed that determine the genetic composition of the M. persicae population. In Scotland, UK, these were applied to field collections revealing a limited number of clones. Molecular markers are less successful when applied to specimens that have been preserved in an ethanol-based trap fluid designed to preserve morphology. An assessment of different DNA extraction and PCR techniques is presented and the most efficient are used to analyse M. persicae specimens caught in the Dundee suction trap in 2001, a year when exceptionally high numbers were caught. The results reveal that the majority of the M. persicae caught belonged to two highly insecticide resistant clones. In addition, it was possible to compare the relative frequencies of genotypes caught in the trap with those collected at insecticide treated and untreated field sites in the vicinity. These results indicate that, in addition to suction trap data, the ability to sample field sites provides valuable early warning data which have implications for pest control and virus management strategies.

  17. Umatilla River Fish Passage Operations Program, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronson, James P.; Duke, Bill B.

    2005-08-01

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were enumerated at Threemile Dam from August 19, 2003 to July 8, 2004. A total of 3,388 summer steelhead (Oncorhynchus mykiss); 1,482 adult, 638 jack, and 2,150 subjack fall chinook (O. tshawytscha); 8,319 adult and 667 jack coho (O. kisutch); and 2,965 adult and 270 jack spring chinook (O. tshawytscha) were counted. All fish were enumerated at the east bank facility. Of the fish counted, 34 summer steelhead and 31more » adult and 9 jack spring chinook were hauled upstream from Threemile Dam. There were 3,166 summer steelhead; 1,076 adult, 554 jack and 2,026 subjack fall chinook; 8,213 adult and 647 jack coho; and 2,152 adult and 174 jack spring chinook either released at, or allowed to volitionally migrate past, Threemile Dam. Also, 121 summer steelhead; 388 adult and 19 jack fall chinook; and 561 adult and 29 jack spring chinook were collected for brood. In addition, 239 spring chinook were collected for the outplanting efforts in the Walla Walla Basin. There were also 25 pair hatchery steelhead adults collected for the progeny maker study. The Westland Canal juvenile facility (Westland), located near the town of Echo at rivermile (RM) 27, is the major collection point for outmigrating juvenile salmonids and steelhead kelts. The canal was open for 184 days between January 12 and July 6, 2004. During that period, fish were bypassed back to the river 173 days and were trapped 10 days. An estimated 44 pounds of juvenile fish were transported from Westland to the Umatilla River boat ramp (RM 0.5). Approximately 84% of the juveniles transported were salmonids. No steelhead kelts were hauled from Westland this year. The Threemile Dam west bank juvenile bypass was opened on February 10, 2004 for outmigration sampling and continued until July 7, 2004 when sampling was discontinued. The juvenile bypass ran at the 5 cfs level until the initiation of Phase I on August 15, 2004. The juvenile trap was operated by the Oregon Department of Fish and Wildlife (ODFW) under the Evaluation of Umatilla Juvenile Salmonid Outmigration Project.« less

  18. High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K.

    PubMed

    Tomita, Masaru; Murakami, Masato

    2003-01-30

    Large-grain high-temperature superconductors of the form RE-Ba-Cu-O (where RE is a rare-earth element) can trap magnetic fields of several tesla at low temperatures, and so can be used for permanent magnet applications. The magnitude of the trapped field is proportional to the critical current density and the volume of the superconductor. Various potential engineering applications for such magnets have emerged, and some have already been commercialized. However, the range of applications is limited by poor mechanical stability and low thermal conductivity of the bulk superconductors; RE-Ba-Cu-O magnets have been found to fracture during high-field activation, owing to magnetic pressure. Here we present a post-fabrication treatment that improves the mechanical properties as well as thermal conductivity of a bulk Y-Ba-Cu-O magnet, thereby increasing its field-trapping capacity. First, resin impregnation and wrapping the materials in carbon fibre improves the mechanical properties. Second, a small hole drilled into the centre of the magnet allows impregnation of Bi-Pb-Sn-Cd alloy into the superconductor and inclusion of an aluminium wire support, which results in a significant enhancement of thermal stability and internal mechanical strength. As a result, 17.24 T could be trapped, without fracturing, in a bulk Y-Ba-Cu-O sample of 2.65 cm diameter at 29 K.

  19. Method and apparatus for steady-state magnetic measurement of poloidal magnetic field near a tokamak plasma

    DOEpatents

    Woolley, R.D.

    1998-09-08

    A method and apparatus are disclosed for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators. 6 figs.

  20. Method and apparatus for steady-state magnetic measurement of poloidal magnetic field near a tokamak plasma

    DOEpatents

    Woolley, Robert D.

    1998-01-01

    A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators.

  1. Advective, Diffusive and Eruptive Leakage of CO2 and Brine within Fault Zone

    NASA Astrophysics Data System (ADS)

    Jung, N. H.; Han, W. S.

    2014-12-01

    This study investigated a natural analogue for CO2 leakage near the Green River, Utah, aiming to understand the influence of various factors on CO2 leakage and to reliably predict underground CO2 behavior after injection for geologic CO2 sequestration. Advective, diffusive, and eruptive characteristics of CO2 leakage were assessed via a soil CO2 flux survey and numerical modeling. The field results show anomalous CO2 fluxes (> 10 g m-2 d-1) along the faults, particularly adjacent to CO2-driven cold springs and geysers (e.g., 36,259 g m-2 d-1 at Crystal Geyser), ancient travertines (e.g., 5,917 g m-2 d-1), joint zones in sandstone (e.g., 120 g m-2 d-1), and brine discharge zones (e.g., 5,515 g m-2 d-1). Combined to similar isotopic ratios of gas and progressive evolution of brine chemistry at springs and geysers, a gradual decrease of soil CO2 flux from the Little Grand Wash (LGW; ~36,259 g m-2 d-1) to Salt Wash (SW; ~1,428 g m-2 d-1) fault zones reveals the same CO2 origin and potential southward transport of CO2 over 10-20 km. The numerical simulations overtly exhibit lateral transport of free CO2 and CO2-rich brine from the LGW to SW fault zones through the regional aquifers (e.g., Entrada, Navajo, Kayenta, Wingate, White Rim). CO2 travels predominantly as an aqueous phase (Xco2=~0.045) as previously suggested, giving rise to the convective instability that further accelerates CO2 dissolution. While the buoyant free CO2 always tends to ascend, a fraction of dense CO2-rich brine flows laterally into the aquifer and mixes with the formation fluids during upward migration along the fault. The fault always enhances advective CO2 transport regardless of its permeability (k). However, only the low-k fault scenario engenders development of CO2 anticlinal trap within the shallow aquifers (Entrada and Navajo), concentrating high CO­­­2 fluxes (~1,273 g m-2 d-1) within the northern footwall of the LGW fault similar to the field. Moreover, eruptive CO2 leakage at a well (Crystal Geyser) solely appears under the presence of anticlinal trap. Thus, it can be concluded that the LGW fault is likely low-permeable, 0.01 md ≤ kh <0.1 md and 0.5 md ≤ kv < 1 md, which could be used as a good starting point for other studies and further improved.

  2. Hunting oil between elephants in Block 34/7 on the Norwegian shelf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elvsborg, A.; Nybakken, S.; Solli, T.

    Block 34/7 is located east of the Statfjord field producing since 1979, and north of Gullfaks field, producing since 1986. Snorre field in the block should begin production in 1992. These three fields have more than 11 billion bbl in place and 5 billion bbl recoverable reserves. A heavy exploration program is done parallel to field development studies. The exploration activity is due to approaching relinquishment and securing tie-in to existing infrastructure. Because of extensive production facilities, small reserves can be used and all traps are now mapped and risk evaluated. So far, four discoveries have been made outside themore » Snorre field: Statfjord Oest Snorre Vest, C, and B. Estimated recoverable reserves are 400 million bbl. However, additional prospects could more than double these reserves. Exploration started with conventional structural traps. The two latest discoveries are pinch-out traps, and the next to be tested by wells are sealing fault traps. The East flank is a separate province downfaulted 2 km with several structures depending on sealing faults. New stratigraphy will be tested by the next well which is deviated to penetrate possible Lower Cretaceous and Upper Jurassic reservoir before reaching the main goal, which is the Brent reservoir. The result of this well could be very important for the opening of possible new play concepts in the northern North Sea. A sealing fault trap with Brent reservoir on the Tampen Spur will be tested by a well in 1990. Exploration is, however, in progress at several other stratigraphic levels within Tertiary, Upper and Lower Cretaceous, and other Upper Jurassic reservoirs where the possibilities for stratigraphic traps exist. These will be tested during next year's exploration program to secure potential reserves for field development at low production cost. Today, the minimum economic recoverable reserves in a prospect are 5-10 million bbl.« less

  3. Trapping spotted wing drosophila, Drosophila suzukii (Matsumura)(Diptera: Drosophilidae) with combinations of vinegar and wine, and acetic acid and ethanol

    USDA-ARS?s Scientific Manuscript database

    Recommendations for monitoring spotted wing drosophila (SWD) Drosophila suzukii, (Matsumura) are to use either vinegar or wine as a bait for traps. Traps baited with vinegar and traps baited with wine, in field tests in northern Oregon, captured large numbers of male and female SWD flies. Numbers of...

  4. Atomistic modeling trap-assisted tunneling in hole tunnel field effect transistors

    NASA Astrophysics Data System (ADS)

    Long, Pengyu; Huang, Jun Z.; Povolotskyi, Michael; Sarangapani, Prasad; Valencia-Zapata, Gustavo A.; Kubis, Tillmann; Rodwell, Mark J. W.; Klimeck, Gerhard

    2018-05-01

    Tunnel Field Effect Transistors (FETs) have the potential to achieve steep Subthreshold Swing (S.S.) below 60 mV/dec, but their S.S. could be limited by trap-assisted tunneling (TAT) due to interface traps. In this paper, the effect of trap energy and location on OFF-current (IOFF) of tunnel FETs is evaluated systematically using an atomistic trap level representation in a full quantum transport simulation. Trap energy levels close to band edges cause the highest leakage. Wave function penetration into the surrounding oxide increases the TAT current. To estimate the effects of multiple traps, we assume that the traps themselves do not interact with each other and as a whole do not modify the electrostatic potential dramatically. Within that model limitation, this numerical metrology study points to the critical importance of TAT in the IOFF in tunnel FETs. The model shows that for Dit higher than 1012/(cm2 eV) IO F F is critically increased with a degraded IO N/IO F F ratio of the tunnel FET. In order to have an IO N/IO F F ratio higher than 104, the acceptable Dit near Ev should be controlled to no larger than 1012/(cm2 eV) .

  5. Migration patterns and movements of sandhill cranes wintering in central and southwestern Louisiana

    USGS Publications Warehouse

    King, Sammy L.; Pierce, Aaron R.; Hersey, Kent R.; Winstead, Nicholas; Hartup, Barry K.

    2010-01-01

    In this study we trapped wintering sandhill cranes (Grus canadensis) in Louisiana and fitted them with satellite transmitters to determine their migration routes. Four of the 6 sandhill cranes with validated locations and a terminus point used the Central Flyway for spring migration; 2 of these 4 (the only 2 for which we have data) also used the Central Flyway for fall migration. Two of the 6 birds used the Mississippi Flyway for spring migration. The results of this study suggest that reintroduced whooping cranes (G. americana) that intermix and migrate with sandhill cranes that winter in Louisiana may enter the Central Flyway. In addition, the Mississippi Flyway is a viable option to use as a migration route for whooping cranes if they are reintroduced in Louisiana.

  6. Mode Transition of RNA Trap by Electric and Hydraulic Force Field in Microfluidic Taper Shape Channel

    NASA Astrophysics Data System (ADS)

    Takamura, Yuzuru; Ueno, Kunimitsu; Nagasaka, Wako; Tomizawa, Yuichi; Tamiya, Eiichi

    2007-03-01

    We have discovered a phenomenon of accumulation of DNA near the constricted position of a microfluidic chip with taper shaped channel when both hydro pressure and electric field are applied in opposite directions. However, RNA has not been able to trap so far, unlike huge and uniformly double stranded DNA molecules, RNAs are smaller in size and single stranded with complicated conformation like blocks in lysed cell solution. In this paper, we will report not only large but also small RNA (100˜10b) are successfully trapped in relatively large microfluidic taper shape channel (width >10um). RNA are trapped in circular motion near the constricted position of taper shape channel, and the position and shape of the trapped RNA are controlled and make mode transition by changing the hydraulic and the electric force. Using this technique, smaller size molecule can be trapped in larger micro fluidic structure compared to the trap using dielectrophoresis. This technique is expected to establish easy and practical device as a direct total RNA extraction tool from living cells or tissues.

  7. Optical trapping and binding of particles in an optofluidic stable Fabry-Pérot resonator with single-sided injection.

    PubMed

    Gaber, Noha; Malak, Maurine; Marty, Frédéric; Angelescu, Dan E; Richalot, Elodie; Bourouina, Tarik

    2014-07-07

    In this article, microparticles are manipulated inside an optofluidic Fabry-Pérot cylindrical cavity embedding a fluidic capillary tube, taking advantage of field enhancement and multiple reflections within the optically-resonant cavity. This enables trapping of suspended particles with single-side injection of light and with low optical power. A Hermite-Gaussian standing wave is developed inside the cavity, forming trapping spots at the locations of the electromagnetic field maxima with a strong intensity gradient. The particles get arranged in a pattern related to the mechanism affecting them: either optical trapping or optical binding. This is proven to eventually translate into either an axial one dimensional (1D) particle array or a cluster of particles. Numerical simulations are performed to model the field distributions inside the cavity allowing a behavioral understanding of the phenomena involved in each case.

  8. Space-time crystals of trapped ions.

    PubMed

    Li, Tongcang; Gong, Zhe-Xuan; Yin, Zhang-Qi; Quan, H T; Yin, Xiaobo; Zhang, Peng; Duan, L-M; Zhang, Xiang

    2012-10-19

    Spontaneous symmetry breaking can lead to the formation of time crystals, as well as spatial crystals. Here we propose a space-time crystal of trapped ions and a method to realize it experimentally by confining ions in a ring-shaped trapping potential with a static magnetic field. The ions spontaneously form a spatial ring crystal due to Coulomb repulsion. This ion crystal can rotate persistently at the lowest quantum energy state in magnetic fields with fractional fluxes. The persistent rotation of trapped ions produces the temporal order, leading to the formation of a space-time crystal. We show that these space-time crystals are robust for direct experimental observation. We also study the effects of finite temperatures on the persistent rotation. The proposed space-time crystals of trapped ions provide a new dimension for exploring many-body physics and emerging properties of matter.

  9. Miniaturized magnet-less RF electron trap. II. Experimental verification

    DOE PAGES

    Deng, Shiyang; Green, Scott R.; Markosyan, Aram H.; ...

    2017-06-15

    Atomic microsystems have the potential of providing extremely accurate measurements of timing and acceleration. But, atomic microsystems require active maintenance of ultrahigh vacuum in order to have reasonable operating lifetimes and are particularly sensitive to magnetic fields that are used to trap electrons in traditional sputter ion pumps. Our paper presents an approach to trapping electrons without the use of magnetic fields, using radio frequency (RF) fields established between two perforated electrodes. The challenges associated with this magnet-less approach, as well as the miniaturization of the structure, are addressed. These include, for example, the transfer of large voltage (100–200 V)more » RF power to capacitive loads presented by the structure. The electron trapping module (ETM) described here uses eight electrode elements to confine and measure electrons injected by an electron beam, within an active trap volume of 0.7 cm 3. The operating RF frequency is 143.6 MHz, which is the measured series resonant frequency between the two RF electrodes. It was found experimentally that the steady state electrode potentials on electrodes near the trap became more negative after applying a range of RF power levels (up to 0.15 W through the ETM), indicating electron densities of ≈3 × 10 5 cm -3 near the walls of the trap. The observed results align well with predicted electron densities from analytical and numerical models. The peak electron density within the trap is estimated as ~1000 times the electron density in the electron beam as it exits the electron gun. Finally, this successful demonstration of the RF electron trapping concept addresses critical challenges in the development of miniaturized magnet-less ion pumps.« less

  10. 75 FR 22207 - Importation of Papayas From Colombia and Ecuador

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... Colombia and Ecuador include requirements for field sanitation, hot water treatment, and fruit fly trapping... that fruit fly trapping, field sanitation, and hot water treatment be employed to remove pests of... before harvest, we proposed to, among other things, require the treatment of papayas with a hot water dip...

  11. Speckle field as a multiple particle trap

    NASA Astrophysics Data System (ADS)

    Shvedov, V. G.; Rode, A. V.; Izdebskaya, Ya. V.; Desyatnikov, A. S.; Krolikowski, W.; Kivshar, Yu. S.

    2010-04-01

    We demonstrate that a speckle pattern in the spatially coherent laser field transmitted by a diffuser forms a multitude of three-dimensional bottle-shaped micro-traps. These multiple traps serve as a means for an effective trapping of large number of air-born absorbing particles. Confinement of up to a few thousand particles in air with a single beam has been achieved. The ability to capture light-absorbing particles suspended in gases by optical means opens up rich and diverse practical opportunities, including development of photonic shielding/fencing for environmental protection in nanotechnology industry and new methods of touch-free air transport of particles and small containers, which may hold dangerous substances, or viruses and living cells.

  12. Radiation detector using a bulk high T.sub.c superconductor

    DOEpatents

    Artuso, Joseph F.; Franks, Larry A.; Hull, Kenneth L.; Symko, Orest G.

    1993-01-01

    A radiation detector (10) is provided, wherein a bulk high T.sub.c superconducting sample (11) is placed in a magnetic field and maintained at a superconducting temperature. Photons of incident radiation will cause localized heating in superconducting loops of the sample destroying trapped flux and redistributing the fluxons, and reducing the critical current of the loops. Subsequent cooling of the sample in the magnetic field will cause trapped flux redistributed Abrikosov fluxons and trapped Josephson fluxons. The destruction and trapping of the fluxons causes changes in the magnetization of the sample inducing currents in opposite directions in a pickup coil (12) which is coupled by an input coil (15) to an rf SQUID (16).

  13. Radiation detector using a bulk high T[sub c] superconductor

    DOEpatents

    Artuso, J.F.; Franks, L.A.; Hull, K.L.; Symko, O.G.

    1993-12-07

    A radiation detector is provided, wherein a bulk high T[sub c] superconducting sample is placed in a magnetic field and maintained at a superconducting temperature. Photons of incident radiation will cause localized heating in superconducting loops of the sample destroying trapped flux and redistributing the fluxons, and reducing the critical current of the loops. Subsequent cooling of the sample in the magnetic field will cause trapped flux redistributed Abrikosov fluxons and trapped Josephson fluxons. The destruction and trapping of the fluxons causes changes in the magnetization of the sample inducing currents in opposite directions in a pickup coil which is coupled by an input coil to an rf SQUID. 4 figures.

  14. A New Perspective on Trapped Radiation Belts in Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Diaz, A.; Lodhi, M. A. K.; Wilson, T. L.

    2005-01-01

    The charged particle fluxes trapped in the magnetic dipole fields of certain planets in our Solar System are interesting signatures of planetary properties in space physics. They also represent a source of potentially hazardous radiation to spacecraft during planetary and interplanetary exploration. The Earth s trapped radiation belts have been studied for years and the physical mechanisms by which primary radiation from the Sun and Galaxy is captured is well understood. The higher-energy particles collide with molecules in the planetary atmosphere and initiate large cascades of secondary radiation which itself becomes trapped by the magnetic dipole field of the planet. Some of it is even backscattered as albedo neutrons.

  15. Flux-trapping during the formation of field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Armstrong, W. T.; Harding, D. G.; Crawford, E. A.; Hoffman, A. L.

    1981-10-01

    Optimized trapping of bias flux during the early formation phases of a Field Reversed Configuration was studied experimentally on the field reversed theta pinch TRX-1. An annular z-pinch preionizer was employed to permit ionization at high values of initial reverse bias flux. Octopole barrier fields are pulsed during field reversal to minimize plasma/wall contact and associated loss of reverse flux. Also, second half cycle operation was examined in obtaining very high values of reverse flux. Flux loss is generally observed to be governed by resistive diffusion through a current sheath at the plasma boundary, rather than flux convection to the plasma boundary. Trapped reverse flux at the time of field reversal, as well as after the radial implosion, is observed to increase with the applied bias field. This increase is greatest, and in fact nearly linear with bias field, when barrier fields are employed. Barrier fields also appear to broaden the current sheath, which results in some flux loss and a less dynamic radial implosion. A general model and one dimensional simulation of flux loss is described and correlated with experimental results.

  16. Effect of low-frequency mechanical vibration on orthodontic tooth movement.

    PubMed

    Yadav, Sumit; Dobie, Thomas; Assefnia, Amir; Gupta, Himank; Kalajzic, Zana; Nanda, Ravindra

    2015-09-01

    Our objective was to investigate the effect of low-frequency mechanical vibration (LFMV) on the rate of tooth movement, bone volume fraction, tissue density, and the integrity of the periodontal ligament. Our null hypothesis was that there would be no difference in the amount of tooth movement between different values of LFMV. Sixty-four male CD1 mice, 12 weeks old, were used for orthodontic tooth movement. The mice were randomly divided into 2 groups: control groups (baseline; no spring + 5 Hz; no spring + 10 Hz; and no spring + 20 Hz) and experimental groups (spring + no vibration; spring + 5 Hz; spring + 10 Hz; and spring + 20 Hz). In the experimental groups, the first molars were moved mesially for 2 weeks using nickel-titanium coil springs delivering 10 g of force. In the control and experimental groups, LFMV was applied at 5, 10, or 20 Hz. Microfocus x-ray computed tomography analysis was used for tooth movement measurements, bone volume fraction, and tissue density. Additionally, immunostaining for sclerostin, tartrate-resistant acid phosphatase (TRAP) staining, and picrosirius red staining were used on the histologic sections. Simple descriptive statistics were used to summarize the data. Kruskal-Wallis tests were used to compare the outcomes across treatment groups. LFMV did not increase the rate of orthodontic tooth movement. Microfocus x-ray computed tomography analysis showed increases in bone volume fractions and tissue densities with applications of LFMV. Sclerostin expression was decreased with 10 and 20 Hz vibrations in both the control and experimental groups. Additionally, the picrosirius staining showed that LFMV helped in maintaining the thickness and integrity of collagen fibers in the periodontal ligament. There was no significant increase in tooth movement by applying LFMV when compared with the control groups (spring + no vibration). Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  17. Captures of Boll Weevils (Coleoptera: Curculionidae) in Relation to Trap Distance From Cotton Fields.

    PubMed

    Spurgeon, Dale W

    2016-12-01

    The boll weevil (Anthonomus grandis grandis Boheman) has been eradicated from much of the United States, but remains an important pest of cotton (Gossypium spp.) in other parts of the Americas. Where the weevil occurs, the pheromone trap is a key tool for population monitoring or detection. Traditional monitoring programs have placed traps in or near the outermost cotton rows where damage by farm equipment can cause loss of trapping data. Recently, some programs have adopted a trap placement adjacent to but outside monitored fields. The effects of these changes have not been previously reported. Captures of early-season boll weevils by traps near (≤1 m) or far (7-10 m) from the outermost cotton row were evaluated. In 2005, during renewed efforts to eradicate the boll weevil from the Lower Rio Grande Valley of Texas, far traps consistently captured more weevils than traps near cotton. Traps at both placements indicated similar patterns of early-season weevil captures, which were consistent with those previously reported. In 2006, no distinction between trap placements was detected. Early-season patterns of captures in 2006 were again similar for both trap placements, but captures were much lower and less regular compared with those observed in 2005. These results suggest magnitude and likelihood of weevil capture in traps placed away from cotton are at least as high as for traps adjacent to cotton. Therefore, relocation of traps away from the outer rows of cotton should not negatively impact ability to monitor or detect the boll weevil. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by a US Government employee and is in the public domain in the US.

  18. Vertical profiles of aerosol and black carbon in the Arctic: a seasonal phenomenology along 2 years (2011-2012) of field campaigns

    NASA Astrophysics Data System (ADS)

    Ferrero, Luca; Cappelletti, David; Busetto, Maurizio; Mazzola, Mauro; Lupi, Angelo; Lanconelli, Christian; Becagli, Silvia; Traversi, Rita; Caiazzo, Laura; Giardi, Fabio; Moroni, Beatrice; Crocchianti, Stefano; Fierz, Martin; Močnik, Griša; Sangiorgi, Giorgia; Perrone, Maria G.; Maturilli, Marion; Vitale, Vito; Udisti, Roberto; Bolzacchini, Ezio

    2016-10-01

    We present results from a systematic study of vertical profiles of aerosol number size distribution and black carbon (BC) concentrations conducted in the Arctic, over Ny-Ålesund (Svalbard). The campaign lasted 2 years (2011-2012) and resulted in 200 vertical profiles measured by means of a tethered balloon (up to 1200 m a.g.l.) during the spring and summer seasons. In addition, chemical analysis of filter samples, aerosol size distribution and a full set of meteorological parameters were determined at ground. The collected experimental data allowed a classification of the vertical profiles into different typologies, which allowed us to describe the seasonal phenomenology of vertical aerosol properties in the Arctic. During spring, four main types of profiles were found and their behavior was related to the main aerosol and atmospheric dynamics occurring at the measuring site. Background conditions generated homogenous profiles. Transport events caused an increase of aerosol concentration with altitude. High Arctic haze pollution trapped below thermal inversions promoted a decrease of aerosol concentration with altitude. Finally, ground-based plumes of locally formed secondary aerosol determined profiles with decreasing aerosol concentration located at different altitude as a function of size. During the summer season, the impact from shipping caused aerosol and BC pollution plumes to be constrained close to the ground, indicating that increasing shipping emissions in the Arctic could bring anthropogenic aerosol and BC in the Arctic summer, affecting the climate.

  19. A versatile electrostatic trap with open optical access

    NASA Astrophysics Data System (ADS)

    Li, Sheng-Qiang; Yin, Jian-Ping

    2018-04-01

    A versatile electrostatic trap with open optical access for cold polar molecules in weak-field-seeking state is proposed in this paper. The trap is composed of a pair of disk electrodes and a hexapole. With the help of a finite element software, the spatial distribution of the electrostatic field is calculated. The results indicate that a three-dimensional closed electrostatic trap is formed. Taking ND3 molecules as an example, the dynamic process of loading and trapping is simulated. The results show that when the velocity of the molecular beam is 10 m/s and the loading time is 0.9964 ms, the maximum loading efficiency reaches 94.25% and the temperature of the trapped molecules reaches about 30.3 mK. A single well can be split into two wells, which is of significant importance to the precision measurement and interference of matter waves. This scheme, in addition, can be further miniaturized to construct one-dimensional, two-dimensional, and three-dimensional spatial electrostatic lattices.

  20. Higher order microfibre modes for dielectric particle trapping and propulsion

    PubMed Central

    Maimaiti, Aili; Truong, Viet Giang; Sergides, Marios; Gusachenko, Ivan; Nic Chormaic, Síle

    2015-01-01

    Optical manipulation in the vicinity of optical micro- and nanofibres has shown potential across several fields in recent years, including microparticle control, and cold atom probing and trapping. To date, most work has focussed on the propagation of the fundamental mode through the fibre. However, along the maximum mode intensity axis, higher order modes have a longer evanescent field extension and larger field amplitude at the fibre waist compared to the fundamental mode, opening up new possibilities for optical manipulation and particle trapping. We demonstrate a microfibre/optical tweezers compact system for trapping and propelling dielectric particles based on the excitation of the first group of higher order modes at the fibre waist. Speed enhancement of polystyrene particle propulsion was observed for the higher order modes compared to the fundamental mode for particles ranging from 1 μm to 5 μm in diameter. The optical propelling velocity of a single, 3 μm polystyrene particle was found to be 8 times faster under the higher order mode than the fundamental mode field for a waist power of 25 mW. Experimental data are supported by theoretical calculations. This work can be extended to trapping and manipulation of laser-cooled atoms with potential for quantum networks. PMID:25766925

  1. Influence of geometry and material of insulating posts on particle trapping using positive dielectrophoresis.

    PubMed

    Pesch, Georg R; Du, Fei; Baune, Michael; Thöming, Jorg

    2017-02-03

    Insulator-based dielectrophoresis (iDEP) is a powerful particle analysis technique based on electric field scattering at material boundaries which can be used, for example, for particle filtration or to achieve chromatographic separation. Typical devices consist of microchannels containing an array of posts but large scale application was also successfully tested. Distribution and magnitude of the generated field gradients and thus the possibility to trap particles depends apart from the applied field strength on the material combination between post and surrounding medium and on the boundary shape. In this study we simulate trajectories of singe particles under the influence of positive DEP that are flowing past one single post due to an external fluid flow. We analyze the influence of key parameters (excitatory field strength, fluid flow velocity, particle size, distance from the post, post size, and cross-sectional geometry) on two benchmark criteria, i.e., a critical initial distance from the post so that trapping still occurs (at fixed particle size) and a critical minimum particle size necessary for trapping (at fixed initial distance). Our approach is fundamental and not based on finding an optimal geometry of insulating structures but rather aims to understand the underlying phenomena of particle trapping. A sensitivity analysis reveals that electric field strength and particle size have the same impact, as have fluid flow velocity and post dimension. Compared to these parameters the geometry of the post's cross-section (i.e. rhomboidal or elliptical with varying width-to-height or aspect ratio) has a rather small influence but can be used to optimize the trapping efficiency at a specific distance. We hence found an ideal aspect ratio for trapping for each base geometry and initial distance to the tip which is independent of the other parameters. As a result we present design criteria which we believe to be a valuable addition to the existing literature. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Comparative Field Evaluation of Different Traps for Collecting Adult Phlebotomine Sand Flies (Diptera: Psychodidae) in an Endemic Area of Cutaneous Leishmaniasis in Quintana Roo, Mexico.

    PubMed

    Rodríguez-Rojas, Jorge J; Arque-Chunga, Wilfredo; Fernández-Salas, Ildefonso; Rebollar-Téllez, Eduardo A

    2016-06-01

    Phlebotominae are the vectors of Leishmania parasites. It is important to have available surveillance and collection methods for the sand fly vectors. The objectives of the present study were to evaluate and compare traps for the collection of sand fly species and to analyze trap catches along months and transects. Field evaluations over a year were conducted in an endemic area of leishmaniasis in the state of Quintana Roo, Mexico. A randomized-block design was implemented in study area with tropical rainforest vegetation. The study design utilized 4 transects with 11 trap types: 1) Centers for Disease Control and Prevention (CDC) light trap with incandescent bulb (CDC-I), 2) CDC light trap with blue light-emitting diodes (LEDs) (CDC-B), 3) CDC light trap with white LEDs (CDC-W), 4) CDC light trap with red LEDs (CDC-R), 5) CDC light trap with green LEDs (CDC-G), 6) Disney trap, 7) Disney trap with white LEDs, 8) sticky panels, 9) sticky panels with white LEDs, 10) delta-like trap, and 11) delta-like trap with white LEDs. A total of 1,014 specimens of 13 species and 2 genera (Lutzomyia and Brumptomyia) were collected. There were significant differences in the mean number of sand flies caught with the 11 traps; CDC-I was (P  =  0.0000) more effective than the other traps. Other traps exhibited the following results: CDC-W (17.46%), CDC-B (15.68%), CDC-G (14.89%), and CDC-R (14.30%). The relative abundance of different species varied according to trap types used, and the CDC-I trap attracted more specimens of the known vectors of Leishmania spp., such as like Lutzomyia cruciata, Lu. shannoni, and Lu. ovallesi. Disney trap captured more specimens of Lu. olmeca olmeca. Based on abundance and number of species, CDC light traps and Disney traps appeared to be good candidates for use in vector surveillance programs in this endemic area of Mexico.

  3. Antimatter plasmas in a multipole trap for antihydrogen.

    PubMed

    Andresen, G; Bertsche, W; Boston, A; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Chartier, M; Deutsch, A; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Gomberoff, K; Hangst, J S; Hayano, R S; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Telle, H H; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2007-01-12

    We have demonstrated storage of plasmas of the charged constituents of the antihydrogen atom, antiprotons and positrons, in a Penning trap surrounded by a minimum-B magnetic trap designed for holding neutral antiatoms. The neutral trap comprises a superconducting octupole and two superconducting, solenoidal mirror coils. We have measured the storage lifetimes of antiproton and positron plasmas in the combined Penning-neutral trap, and compared these to lifetimes without the neutral trap fields. The magnetic well depth was 0.6 T, deep enough to trap ground state antihydrogen atoms of up to about 0.4 K in temperature. We have demonstrated that both particle species can be stored for times long enough to permit antihydrogen production and trapping studies.

  4. Composition and provenance of terrigenous organic matter transported along submarine canyons in the Gulf of Lion (NW Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Pasqual, Catalina; Goñi, Miguel A.; Tesi, Tommaso; Sanchez-Vidal, Anna; Calafat, Antoni; Canals, Miquel

    2013-11-01

    Previous projects in the Gulf of Lion have investigated the path of terrigenous material in the Rhone deltaic system, the continental shelf and the nearby canyon heads. This study focuses on the slope region of the Gulf of Lion to further describe particulate exchanges with ocean’s interior through submarine canyons and atmospheric inputs. Nine sediment traps were deployed from the heads to the mouths of Lacaze-Duthiers and Cap de Creus submarine canyons and on the southern open slope from October 2005 to October 2006. Sediment trap samples were analyzed by CuO oxidation to investigate spatial and temporal variability in the yields and compositional characteristics of terrigenous biomarkers such as lignin-derived phenols and cutin acids. Sediment trap data show that the Dense Shelf Water Cascading event that took place in the months of winter 2006 (January, February and March) had a profound impact on particle fluxes in both canyons. This event was responsible for the majority of lignin phenol (55.4%) and cutin acid (42.8%) inputs to submarine canyons, with lignin compositions similar to those measured along the mid- and outer-continental shelf, which is consistent with the resuspension and lateral transfer of unconsolidated shelf sediment to the canyons. The highest lithogenic-normalized lignin derived phenols contents in sediment trap samples were found during late spring and summer at all stations (i.e., 193.46 μg VP g-1 lithogenic at deep slope station), when river flow, wave energy and total particle fluxes were relatively low. During this period, lignin compositions were characterized by elevated cinnamyl to vanillyl phenol ratios (>3) at almost all stations, high p-coumaric to ferulic acid ratios (>3) and high yields of cutin acids relative to vanillyl phenols (>1), all trends that are consistent with high pollen inputs. Our results suggest marked differences in the sources and transport processes responsible for terrigenous material export along submarine canyons, mainly consisting of fluvial and shelf sediments during winter and atmospheric dust inputs during spring and summer.

  5. Stable structures of microparticles in the electrodynamic trap created by the corona discharge

    NASA Astrophysics Data System (ADS)

    Vladimirov, V. I.; Deputatova, L. V.; Filinov, V. S.; Lapitsky, D. S.; Pecherkin, V. Ya; Syrovatka, R. A.; Vasilyak, L. M.; Petrov, O. F.

    2018-01-01

    For the first time the stable structures of microparticles in a dynamic linear trap with corona electrodes have been obtained. The possibility for capturing and confining of microparticles in a linear electrodynamic trap with corona electrodes at atmospheric pressure has been studied experimentally. The corona discharge on the electrodes of the trap was generated by an alternating electric field.

  6. Some concepts of the advanced mass spectrometry at the COMBAS magnetic separator of nuclear reaction products

    NASA Astrophysics Data System (ADS)

    Artukh, A. G.; Tarantin, N. I.

    Proposed is an in-flight measurement method of recoil nuclei masses with the help of a Penning trap located behind the COMBAS magnetic separator for nuclear reaction products. The method is based on the following operations: (i) Accepting the recoil nuclear reaction products by the magnetic separator and decreasing their kinetic energy by degraders. (ii) In-flight transportation of the retarded nuclei into the magnetic field of the Penning trap's solenoid and transforming their remaining longitudinal momentum into orbital rotation by the fringing magnetic field of the solenoid. (iii) Cooling the orbital rotation of the ions by the high-frequency azimuthal electric field of the Penning trap's electric hyperboloid.

  7. Influence of an electric field on photostimulated states in NH4BPh4 films

    NASA Astrophysics Data System (ADS)

    Antonova, O. V.; Nadolinny, V. A.; Il'inchik, E. A.; Trubin, S. V.

    2012-10-01

    The influence of an electric field on stable photostimulated triplet states of NH4BPh4 at a temperature of 77 K have been studied by EPR spectroscopy. It has been established that, on exposure to UV radiation, electron capture by traps in the band gaps takes place with formation of triplet state. After application of an electric field, triplet states are destructed because, with an increase in the applied voltage, a gradual inclination of energy bands takes place and electrons found in traps on different energy levels are released. The assumption that captured electrons are found in traps on different energy levels is confirmed by earlier studies of thermoluminescence spectra.

  8. Magnetic Trapping of Bacteria at Low Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-06-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells.

  9. Electrodeless direct current dielectrophoresis using reconfigurable field-shaping oil barriers.

    PubMed

    Thwar, Prasanna K; Linderman, Jennifer J; Burns, Mark A

    2007-12-01

    We demonstrate dielectrophoretic (DEP) potential wells using pairs of insulating oil menisci to shape the DC electric field. These oil menisci are arranged in a configuration similar to the quadrupolar electrodes, typically used in DEP, and are shown to produce similar field gradients. While the one-pair well produces a focusing effect on particles in flow, the two-pair well results in creating spatial traps against crossflows. Uncharged polystyrene particles were used to map the DEP force fields and the experimental observations were compared against the field profiles obtained by numerically solving Maxwell's equations. We demonstrate trapping of a single particle due to negative DEP against a pressure-driven crossflow. This can be easily extended to trap and hold cells and other objects against flow for a longer time. We also show the results of particle trapping experiments performed to observe the effect of adjusting the oil menisci and the gap between two pairs of menisci in a four-menisci configuration on the nature of the DEP well formed at the center. A design parameter, Theta, capturing the dimensions of the DEP energy well, is defined and simulations exploring the effects of different geometric features on Theta are presented.

  10. Submillikelvin Dipolar Molecules in a Radio-Frequency Magneto-Optical Trap.

    PubMed

    Norrgard, E B; McCarron, D J; Steinecker, M H; Tarbutt, M R; DeMille, D

    2016-02-12

    We demonstrate a scheme for magneto-optically trapping strontium monofluoride (SrF) molecules at temperatures one order of magnitude lower and phase space densities 3 orders of magnitude higher than obtained previously with laser-cooled molecules. In our trap, optical dark states are destabilized by rapidly and synchronously reversing the trapping laser polarizations and the applied magnetic field gradient. The number of molecules and trap lifetime are also significantly improved from previous work by loading the trap with high laser power and then reducing the power for long-term trapping. With this procedure, temperatures as low as 400  μK are achieved.

  11. Single ion as a shot-noise-limited magnetic-field-gradient probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walther, A.; Poschinger, U.; Ziesel, F.

    2011-06-15

    It is expected that ion-trap quantum computing can be made scalable through protocols that make use of transport of ion qubits between subregions within the ion trap. In this scenario, any magnetic field inhomogeneity the ion experiences during the transport may lead to dephasing and loss of fidelity. Here we demonstrate how to measure, and compensate for, magnetic field gradients inside a segmented ion trap, by transporting a single ion over variable distances. We attain a relative magnetic field sensitivity of {Delta}B/B{sub 0{approx}}5x10{sup -7} over a test distance of 140 {mu}m, which can be extended to the mm range, stillmore » with sub-{mu}m resolution. A fast experimental sequence is presented, facilitating its use as a magnetic-field-gradient calibration routine, and it is demonstrated that the main limitation is the quantum shot noise.« less

  12. Mercury Trapped Ion Frequency Standard for Ultra-Stable Reference Applications

    NASA Technical Reports Server (NTRS)

    Larsen, Kameron (Inventor); Burt, Eric A. (Inventor); Tjoelker, Robert L. (Inventor); Hamell, Robert L. (Inventor); Tucker, Blake C. (Inventor)

    2017-01-01

    An atomic clock including an ion trap assembly, a C-field coil positioned for generating a first magnetic field in the interrogation region of the ion trap assembly, a compensation coil positioned for generating a second magnetic field in the interrogation region, wherein the combination of the first and second magnetic fields produces an ion number-dependent second order Zeeman shift (Zeeman shift) in the resonance frequency that is opposite in sign to an ion number-dependent second order Doppler shift (Doppler shift) in the resonance frequency, the C-field coil has a radius selected using data indicating how changes in the radius affect an ion-number-dependent shift in the resonance frequency, such that a difference in magnitude between the Doppler shift and the Zeeman shift is controlled or reduced, and the resonance frequency, including the adjustment by the Zeeman shift, is used to obtain the frequency standard.

  13. MAVEN Observations of Energy-Time Dispersed Electron Signatures in Martian Crustal Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Harada, Y.; Mitchell, D. L.; Halekas, J. S.; McFadden, J. P.; Mazelle, C.; Connerney, J. E. P.; Espley, J.; Brain, D. A.; Larson, D. E.; Lillis, R. J.; hide

    2016-01-01

    Energy-time dispersed electron signatures are observed by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission in the vicinity of strong Martian crustal magnetic fields. Analysis of pitch angle distributions indicates that these dispersed electrons are typically trapped on closed field lines formed above strong crustal magnetic sources. Most of the dispersed electron signatures are characterized by peak energies decreasing with time rather than increasing peak energies. These properties can be explained by impulsive and local injection of hot electrons into closed field lines and subsequent dispersion by magnetic drift of the trapped electrons. In addition, the dispersed flux enhancements are often bursty and sometimes exhibit clear periodicity, suggesting that the injection and trapping processes are intrinsically time dependent and dynamic. These MAVEN observations demonstrate that common physical processes can operate in both global intrinsic magnetospheres and local crustal magnetic fields.

  14. Superconducting magnet and fabrication method

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)

    1994-01-01

    A method of trapping a field in a block of superconductor material, includes providing (i) a block of material defining a bore, (ii) a high permeability core within the bore that defines a low reluctance path through the bore, (iii) a high permeability external structure on the exterior of the block of material that defines a low reluctance path between opposite ends of the core, and (iv) an electromagnet configured to apply a magnetic field around the high permeability core. The method proceeds by energizing the electromagnet to produce an applied magnetic field around the high permeability core, cooling the block of material sufficiently to render the block of material superconducting, de-energizing the electromagnet to result in a trapped magnetic field, and at least partially removing the low reluctance path defined by the core and the external structure in order to increase the magnetic flux density of the trapped magnetic field.

  15. Numerical study of groundwater flow cycling controlled by seawater/freshwater interaction in a coastal karst aquifer through conduit network using CFPv2.

    PubMed

    Xu, Zexuan; Hu, Bill X; Davis, Hal; Kish, Stephen

    2015-11-01

    In this study, a groundwater flow cycling in a karst springshed and an interaction between two springs, Spring Creek Springs and Wakulla Springs, through a subground conduit network are numerically simulated using CFPv2, the latest research version of MODFLOW-CFP (Conduit Flow Process). The Spring Creek Springs and Wakulla Springs, located in a marine estuary and 11 miles inland, respectively, are two major groundwater discharge spots in the Woodville Karst Plain (WKP), North Florida, USA. A three-phase conceptual model of groundwater flow cycling between the two springs and surface water recharge from a major surface creek (Lost Creek) was proposed in various rainfall conditions. A high permeable subground karst conduit network connecting the two springs was found by tracer tests and cave diving. Flow rate of discharge, salinity, sea level and tide height at Spring Creek Springs could significantly affect groundwater discharge and water stage at Wakulla Springs simultaneously. Based on the conceptual model, a numerical hybrid discrete-continuum groundwater flow model is developed using CFPv2 and calibrated by field measurements. Non-laminar flows in conduits and flow exchange between conduits and porous medium are implemented in the hybrid coupling numerical model. Time-variable salinity and equivalent freshwater head boundary conditions at the submarine spring as well as changing recharges have significant impacts on seawater/freshwater interaction and springs' discharges. The developed numerical model is used to simulate the dynamic hydrological process and quantitatively represent the three-phase conceptual model from June 2007 to June 2010. Simulated results of two springs' discharges match reasonably well to measurements with correlation coefficients 0.891 and 0.866 at Spring Creeks Springs and Wakulla Springs, respectively. The impacts of sea level rise on regional groundwater flow field and relationship between the inland springs and submarine springs are evaluated as well in this study. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Numerical study of groundwater flow cycling controlled by seawater/freshwater interaction in a coastal karst aquifer through conduit network using CFPv2

    NASA Astrophysics Data System (ADS)

    Xu, Zexuan; Hu, Bill X.; Davis, Hal; Kish, Stephen

    2015-11-01

    In this study, a groundwater flow cycling in a karst springshed and an interaction between two springs, Spring Creek Springs and Wakulla Springs, through a subground conduit network are numerically simulated using CFPv2, the latest research version of MODFLOW-CFP (Conduit Flow Process). The Spring Creek Springs and Wakulla Springs, located in a marine estuary and 11 miles inland, respectively, are two major groundwater discharge spots in the Woodville Karst Plain (WKP), North Florida, USA. A three-phase conceptual model of groundwater flow cycling between the two springs and surface water recharge from a major surface creek (Lost Creek) was proposed in various rainfall conditions. A high permeable subground karst conduit network connecting the two springs was found by tracer tests and cave diving. Flow rate of discharge, salinity, sea level and tide height at Spring Creek Springs could significantly affect groundwater discharge and water stage at Wakulla Springs simultaneously. Based on the conceptual model, a numerical hybrid discrete-continuum groundwater flow model is developed using CFPv2 and calibrated by field measurements. Non-laminar flows in conduits and flow exchange between conduits and porous medium are implemented in the hybrid coupling numerical model. Time-variable salinity and equivalent freshwater head boundary conditions at the submarine spring as well as changing recharges have significant impacts on seawater/freshwater interaction and springs' discharges. The developed numerical model is used to simulate the dynamic hydrological process and quantitatively represent the three-phase conceptual model from June 2007 to June 2010. Simulated results of two springs' discharges match reasonably well to measurements with correlation coefficients 0.891 and 0.866 at Spring Creeks Springs and Wakulla Springs, respectively. The impacts of sea level rise on regional groundwater flow field and relationship between the inland springs and submarine springs are evaluated as well in this study.

  17. Scanning instrumentation for measuring magnetic field trapping in high Tc superconductors

    NASA Technical Reports Server (NTRS)

    Sisk, R. C.; Helton, A. J.

    1993-01-01

    Computerized scanning instrumentation measures and displays trapped magnetic fields across the surface of high Tc superconductors at 77 K. Data are acquired in the form of a raster scan image utilizing stepping motor stages for positioning and a cryogenic Hall probe for magnetic field readout. Flat areas up to 45 mm in diameter are scanned with 0.5-mm resolution and displayed as false color images.

  18. Estimating shorebird populations during spring stopover in rice fields of the Louisiana and Texas Gulf Coastal Plain

    USGS Publications Warehouse

    Norling, Wayne; Jeske, Clinton W.; Thigpen, Tyler F.; Chadwick, Paul C.

    2012-01-01

    Migrating shorebird populations using approximately 2% of Louisiana and Texas Gulf Coastal rice fields were surveyed during spring migration (March–May of 1997 and 1998) using biweekly stratified random surveys conducted at 50 roadside survey points and approximately 30,000 shorebirds were observed. Shorebird counts were extrapolated and almost 1.4 million birds in 1997 and over 1.6 million birds of 31 species in 1998 were estimated to use rice field habitat for stopover sites in Louisiana and Texas. Greater than 50% of the estimated North American populations were estimated to use rice field habitats for five species, including a species of concern, Buff-breasted Sandpiper (Tryngites subruficollis) at 187%. Because of predictability of suitable rice field habitat acreage, timing of field preparation and water availability, coastal rice prairies are identified as critical spring migration stopover sites.

  19. Numerical analyses of trapped field magnet and stable levitation region of HTSC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuchimoto, M.; Kojima, T.; Waki, H.

    Stable levitation with a permanent magnet and a bulk high {Tc} superconductor (HTSC) is examined numerically by using the critical state model and the frozen field model. Differences between a permanent magnet and a trapped field magnet are first discussed from property of levitation force. Stable levitation region of the HTSC on a ring magnet and on a solenoid coil are calculated with the numerical methods. Obtained results are discussed from difference of the magnetic field configuration.

  20. Charge transport and trapping in organic field effect transistors exposed to polar analytes

    NASA Astrophysics Data System (ADS)

    Duarte, Davianne; Sharma, Deepak; Cobb, Brian; Dodabalapur, Ananth

    2011-03-01

    Pentacene based organic thin-film transistors were used to study the effects of polar analytes on charge transport and trapping behavior during vapor sensing. Three sets of devices with differing morphology and mobility (0.001-0.5 cm2/V s) were employed. All devices show enhanced trapping upon exposure to analyte molecules. The organic field effect transistors with different mobilities also provide evidence for morphology dependent partition coefficients. This study helps provide a physical basis for many reports on organic transistor based sensor response.

  1. Capture of non-target flies (Diptera: Lauxaniidae, Chloropidae, Anthomyiidae) on traps baited with volatile chemicals in field crop habitats

    USDA-ARS?s Scientific Manuscript database

    Volatile chemicals increased trap catch of flies from the families Lauxaniidae [Homoneura bispina (Loew) and Camptoprosopella borealis Shewell], Chloropidae (Olcella sp.) and Anthomyiidae (Delia spp.) in field crops. With cotton rolls as dispensers, baiting with 2-phenylethanol increased catch of H...

  2. Field Comparison of Spruce Budworm Pheromone Lures

    Treesearch

    David G. Grimble

    1987-01-01

    Four types of spruce budworm pheromone lures were tested to compare field longevity and efficiency. Biolures with three different pheromone release rates and Silk-PVC lures all caught male budworm moths throughout the moth flight period in proportion to the different release rates. Fumigant strips in traps to kill trapped moths were necessary.

  3. Capture of nonmagnetic particles and living cells using a microelectromagnetic system

    NASA Astrophysics Data System (ADS)

    Aki, Atsushi; Ito, Osamu; Morimoto, Hisao; Nagaoka, Yutaka; Nakajima, Yoshikata; Mizuki, Toru; Hanajiri, Tatsuro; Usami, Ron; Maekawa, Toru

    2008-11-01

    We develop a microelectromagnetic system to trap nonmagnetic materials such as micropolystyrene particles and yeast cells in particular areas. We fabricate gold films, the width of the central narrow part is 22 μm, and flow an electric current through the films. We then apply an external uniform dc magnetic field to weaken the local magnetic field at the narrow part so that a nonuniform magnetic field is produced. We demonstrate that the particles, which are dispersed in magnetic fluid, are successfully trapped at the narrow part of the film. We evaluate the driving force acting on a microparticle in the nonuniform magnetic field and carry out a Stokesian dynamics simulation of the motion of the particles. We show that yeast cells are also trapped at the narrow part of the film. Finally, we fabricate multichannel microelectromagnets so that yeast cells are trapped at multiple points in the microelectromagnetic system. The present system may be applied to cell transfection on a cell microarray and, therefore, eventually contribute to progress in the identification and determination technologies of different drug targets and the functions of genes and proteins.

  4. Lab-on-a-chip Single Particle Dielectrophoretic Traps

    NASA Astrophysics Data System (ADS)

    Wang, Weina; Shao, Hua; Lear, Kevin

    2007-03-01

    Cell-patterning and cell-manipulation in micro-environments are fundamental to biological and biomedical applications, for example, spectroscopic cytology based cancer detection. Dielectrophoresis (DEP) traps with transparent centers for stabilized cell and particle optofluidic intracavity spectroscopy (OFIS) were fabricated by patterning 10 μm wide, planar gold electrodes on glass substrates. The capturing strength of DEP traps was quantified based on the minimum AC voltage required to capture and hold varying diameter polystyrene or was it some other material, e.g. silica or PMMA microspheres in water as a function of frequency required under a constant flowrate of 20 μm/s. The maximum required trapping voltage in the negative DEP regime of f = 1 kHz to 40 MHz was 5.0 VAC. The use of AC fields effectively suppressed hydrolysis. New geometries of DEP traps are being explored on the basis of 3-D electrostatic field simulations.

  5. Millikelvin cooling of the center-of-mass motion of a levitated nanoparticle

    NASA Astrophysics Data System (ADS)

    Bullier, Nathanaël. P.; Pontin, Antonio; Barker, Peter F.

    2017-08-01

    Cavity optomechanics has been used to cool the center-of-mass motion of levitated nanospheres to millikelvin temperatures. Trapping the particle in the cavity field enables high mechanical frequencies bringing the system close to the resolved-sideband regime. Here we describe a Paul trap constructed from a printed circuit board that is small enough to fit inside the optical cavity and which should enable an accurate positioning of the particle inside the cavity field. This will increase the optical damping and therefore reduce the final temperature by at least one order of magnitude. Simulations of the potential inside the trap enable us to estimate the charge- to-mass ratio of trapped particles by measuring the secular frequencies as a function of the trap parameters. Lastly, we show the importance of reducing laser noise to reach lower temperatures and higher sensitivity in the phase-sensitive readout.

  6. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink.

    PubMed

    Wang, Kai; Schonbrun, Ethan; Steinvurzel, Paul; Crozier, Kenneth B

    2011-09-13

    Although optical tweezers based on far-fields have proven highly successful for manipulating objects larger than the wavelength of light, they face difficulties at the nanoscale because of the diffraction-limited focused spot size. This has motivated interest in trapping particles with plasmonic nanostructures, as they enable intense fields confined to sub-wavelength dimensions. A fundamental issue with plasmonics, however, is Ohmic loss, which results in the water, in which the trapping is performed, being heated and to thermal convection. Here we demonstrate the trapping and rotation of nanoparticles using a template-stripped plasmonic nanopillar incorporating a heat sink. Our simulations predict an ~100-fold reduction in heating compared with previous designs. We further demonstrate the stable trapping of polystyrene particles, as small as 110 nm in diameter, which can be rotated around the nanopillar actively, by manual rotation of the incident linear polarization, or passively, using circularly polarized illumination.

  7. Evaluation of double-decker traps for emerald ash borer (Coleoptera: Buprestidae).

    PubMed

    Poland, Therese M; McCullough, Deborah G; Anulewicz, Andrea C

    2011-04-01

    Improved detection tools are needed for the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), an invasive forest insect from Asia that has killed millions of ash (Fraxinus spp.) trees in North America since its discovery in Michigan in 2002. We evaluated attraction of adult A. planipennis to artificial traps incorporating visual (e.g., height, color, silhouette) and olfactory cues (e.g., host volatiles) at field sites in Michigan. We developed a double-decker trap consisting of a 3-m-tall polyvinyl pipe with two purple prisms attached near the top. In 2006, we compared A. planipennis attraction to double-decker traps baited with various combinations of manuka oil (containing sesquiterpenes present in ash bark), a blend of four ash leaf volatiles (leaf blend), and a rough texture to simulate bark. Significantly more A. planipennis were captured per trap when traps without the rough texture were baited with the leaf blend and manuka oil lures than on traps with texture and manuka oil but no leaf blend. In 2007, we also tested single prism traps set 1.5 m above ground and tower traps, similar to double-decker traps but 6 m tall. Double-decker traps baited with the leaf blend and manuka oil, with or without the addition of ash leaf and bark extracts, captured significantly more A. planipennis than similarly baited single prism traps, tower traps, or unbaited double-decker traps. A baited double-decker trap captured A. planipennis at a field site that was not previously known to be infested, representing the first detection event using artificial traps and lures. In 2008, we compared purple or green double-decker traps, single prisms suspended 3-5 m above ground in the ash canopy (canopy traps), and large flat purple traps (billboard traps). Significantly more A. planipennis were captured in purple versus green traps, baited traps versus unbaited traps, and double-decker versus canopy traps, whereas billboard traps were intermediate. At sites with very low A. planipennis densities, more A. planipennis were captured on baited double-decker traps than on other traps and a higher percentage of the baited double-decker traps captured beetles than any other trap design. In all 3 yr, peak A. planipennis activity occurred during late June to mid-July, corresponding to 800-1200 growing degree-days base 10 degrees C (DD10). Nearly all (95%) beetles were captured by the end of July at approximately 1400 DD10.

  8. Trapping and Injecting Single Domain Walls in Magnetic Wire by Local Fields

    NASA Astrophysics Data System (ADS)

    Vázquez, Manuel; Basheed, G. A.; Infante, Germán; Del Real, Rafael P.

    2012-01-01

    A single domain wall (DW) moves at linearly increasing velocity under an increasing homogeneous drive magnetic field. Present experiments show that the DW is braked and finally trapped at a given position when an additional antiparallel local magnetic field is applied. That position and its velocity are further controlled by suitable tuning of the local field. In turn, the parallel local field of small amplitude does not significantly affect the effective wall speed at long distance, although it generates tail-to-tail and head-to-head pairs of walls moving along opposite directions when that field is strong enough.

  9. Assessing Animal Welfare Impacts in the Management of European Rabbits (Oryctolagus cuniculus), European Moles (Talpa europaea) and Carrion Crows (Corvus corone)

    PubMed Central

    Baker, Sandra E.; Sharp, Trudy M.; Macdonald, David W.

    2016-01-01

    Human-wildlife conflict is a global issue. Attempts to manage this conflict impact upon wild animal welfare, an issue receiving little attention until relatively recently. Where human activities harm animal welfare these effects should be minimised where possible. However, little is known about the welfare impacts of different wildlife management interventions, and opinions on impacts vary widely. Welfare impacts therefore need to be assessed objectively. Our objectives were to: 1) establish whether an existing welfare assessment model could differentiate and rank the impacts of different wildlife management interventions (for decision-making purposes); 2) identify and evaluate any additional benefits of making formal welfare assessments; and 3) illustrate issues raised by application of the model. We applied the welfare assessment model to interventions commonly used with rabbits (Oryctolagus cuniculus), moles (Talpa europaea) and crows (Corvus corone) in the UK. The model ranked interventions for rabbits (least impact first: fencing, head shot, chest shot) and crows (shooting, scaring, live trapping with cervical dislocation). For moles, managing molehills and tunnels scored least impact. Both spring trapping, and live trapping followed by translocation, scored greater impacts, but these could not be compared directly as they scored on different axes of the model. Some rankings appeared counter-intuitive, highlighting the need for objective formal welfare assessments. As well as ranking the humaneness of interventions, the model highlighted future research needs and how Standard Operating Procedures might be improved. The model is a milestone in assessing wildlife management welfare impacts, but our research revealed some limitations of the model and we discuss likely challenges in resolving these. In future, the model might be developed to improve its utility, e.g. by refining the time-scales. It might also be used to reach consensus among stakeholders about relative welfare impacts or to identify ways of improving wildlife management practice in the field. PMID:26726808

  10. Assessing Animal Welfare Impacts in the Management of European Rabbits (Oryctolagus cuniculus), European Moles (Talpa europaea) and Carrion Crows (Corvus corone).

    PubMed

    Baker, Sandra E; Sharp, Trudy M; Macdonald, David W

    2016-01-01

    Human-wildlife conflict is a global issue. Attempts to manage this conflict impact upon wild animal welfare, an issue receiving little attention until relatively recently. Where human activities harm animal welfare these effects should be minimised where possible. However, little is known about the welfare impacts of different wildlife management interventions, and opinions on impacts vary widely. Welfare impacts therefore need to be assessed objectively. Our objectives were to: 1) establish whether an existing welfare assessment model could differentiate and rank the impacts of different wildlife management interventions (for decision-making purposes); 2) identify and evaluate any additional benefits of making formal welfare assessments; and 3) illustrate issues raised by application of the model. We applied the welfare assessment model to interventions commonly used with rabbits (Oryctolagus cuniculus), moles (Talpa europaea) and crows (Corvus corone) in the UK. The model ranked interventions for rabbits (least impact first: fencing, head shot, chest shot) and crows (shooting, scaring, live trapping with cervical dislocation). For moles, managing molehills and tunnels scored least impact. Both spring trapping, and live trapping followed by translocation, scored greater impacts, but these could not be compared directly as they scored on different axes of the model. Some rankings appeared counter-intuitive, highlighting the need for objective formal welfare assessments. As well as ranking the humaneness of interventions, the model highlighted future research needs and how Standard Operating Procedures might be improved. The model is a milestone in assessing wildlife management welfare impacts, but our research revealed some limitations of the model and we discuss likely challenges in resolving these. In future, the model might be developed to improve its utility, e.g. by refining the time-scales. It might also be used to reach consensus among stakeholders about relative welfare impacts or to identify ways of improving wildlife management practice in the field.

  11. Calculating the trap density of states in organic field-effect transistors from experiment: A comparison of different methods

    NASA Astrophysics Data System (ADS)

    Kalb, Wolfgang L.; Batlogg, Bertram

    2010-01-01

    The spectral density of localized states in the band gap of pentacene (trap DOS) was determined with a pentacene-based thin-film transistor from measurements of the temperature dependence and gate-voltage dependence of the contact-corrected field-effect conductivity. Several analytical methods to calculate the trap DOS from the measured data were used to clarify, if the different methods lead to comparable results. We also used computer simulations to further test the results from the analytical methods. Most methods predict a trap DOS close to the valence-band edge that can be very well approximated by a single exponential function with a slope in the range of 50-60 meV and a trap density at the valence-band edge of ≈2×1021eV-1cm-3 . Interestingly, the trap DOS is always slightly steeper than exponential. An important finding is that the choice of the method to calculate the trap DOS from the measured data can have a considerable effect on the final result. We identify two specific simplifying assumptions that lead to significant errors in the trap DOS. The temperature dependence of the band mobility should generally not be neglected. Moreover, the assumption of a constant effective accumulation-layer thickness leads to a significant underestimation of the slope of the trap DOS.

  12. Helical plasma thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beklemishev, A. D., E-mail: bekl@bk.ru

    2015-10-15

    A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E × B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ionsmore » along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR{sup ®} rocket engine.« less

  13. Trapped magnetic field of a mini-bulk magnet using YBaCuO at 77 K

    NASA Astrophysics Data System (ADS)

    Fujimoto, Hiroyuki; Kamijo, Hiroki

    2001-09-01

    Melt-processed rare earth (RE)123 superconductors have a high Jc at 77 K and high magnetic field. Solidification processes for producing (L)RE123 superconductors and pinning centers in the (L)RE123 matrix are effective for obtaining high Jc, leading to high-field application as a superconducting quasi-permanent bulk magnet with the liquid nitrogen refrigeration. One of the promising applications is a superconducting magnet for the magnetically levitated train. We fabricated a mini-superconducting bulk magnet of 200×100 mm2, consisting of 18 bulks, which are a square 33 mm on a side and 10 mm in thickness, and magnetized the mini-magnet by field cooling. The mini-magnet showed the trapped magnetic field of larger than 0.1 T on the surface of the outer vessel of the magnet. The present preliminary study discusses trapped magnetic field properties of the mini-bulk magnet using YBaCuO superconductors at 77 K.

  14. Modeling the entry and trapping of solar energetic particles in the magnetosphere during the November 24-25, 2001 storm

    NASA Astrophysics Data System (ADS)

    Richard, R. L.; El-Alaoui, M.; Ashour-Abdalla, M.; Walker, R. J.

    2009-04-01

    We have modeled the entry of solar energetic particles (SEPs) into the magnetosphere during the November 24-25, 2001 magnetic storm and the trapping of particles in the inner magnetosphere. The study used the technique of following many test particles, protons with energies greater than about 100 keV, in the electric and magnetic fields from a global magnetohydrodynamic (MHD) simulation of the magnetosphere during this storm. SEP protons formed a quasi-trapped and trapped population near and within geosynchronous orbit. Preliminary data comparisons show that the simulation does a reasonably good job of predicting the differential flux measured by geosynchronous spacecraft. Particle trapping took place mainly as a result of particles becoming non-adiabatic and crossing onto closed field lines. Particle flux in the inner magnetosphere increased dramatically as an interplanetary shock impacted and compressed the magnetosphere near 0600 UT, but long term trapping (hours) did not become widespread until about an hour later, during a further compression of the magnetosphere. Trapped and quasi-trapped particles were lost during the simulation by motion through the magnetopause and by precipitation, primarily the former. This caused the particle population near and within geosynchronous orbit to gradually decrease later on during the latter part of the interval.

  15. Optical Trapping of Ion Coulomb Crystals

    NASA Astrophysics Data System (ADS)

    Schmidt, Julian; Lambrecht, Alexander; Weckesser, Pascal; Debatin, Markus; Karpa, Leon; Schaetz, Tobias

    2018-04-01

    The electronic and motional degrees of freedom of trapped ions can be controlled and coherently coupled on the level of individual quanta. Assembling complex quantum systems ion by ion while keeping this unique level of control remains a challenging task. For many applications, linear chains of ions in conventional traps are ideally suited to address this problem. However, driven motion due to the magnetic or radio-frequency electric trapping fields sometimes limits the performance in one dimension and severely affects the extension to higher-dimensional systems. Here, we report on the trapping of multiple barium ions in a single-beam optical dipole trap without radio-frequency or additional magnetic fields. We study the persistence of order in ensembles of up to six ions within the optical trap, measure their temperature, and conclude that the ions form a linear chain, commonly called a one-dimensional Coulomb crystal. As a proof-of-concept demonstration, we access the collective motion and perform spectrometry of the normal modes in the optical trap. Our system provides a platform that is free of driven motion and combines advantages of optical trapping, such as state-dependent confinement and nanoscale potentials, with the desirable properties of crystals of trapped ions, such as long-range interactions featuring collective motion. Starting with small numbers of ions, it has been proposed that these properties would allow the experimental study of many-body physics and the onset of structural quantum phase transitions between one- and two-dimensional crystals.

  16. Late season commercial mosquito trap and host seeking activity evaluation against mosquitoes in a malarious area of the Republic of Korea

    PubMed Central

    Burkett, Douglas A.; Lee, Kwan-Woo; Kim, Heung-Chul; Lee, Hee-Il; Lee, Jong-Soo; Shin, E-Hyun; Wirtz, Robert A.; Cho, Hae-Wol; Claborn, David M.; Coleman, Russel E.; Kim, Wan Y; Klein, Terry A.

    2002-01-01

    Field trials evaluating selected commercially available mosquito traps variously baited with light, carbon dioxide, and/or octenol were conducted from 18-27 September 2000 in a malarious area near Paekyeon-ri (Tongil-Chon ) and Camp Greaves in Paju County, Kyonggi Province, Republic of Korea. The host-seeking activity for common mosquito species, including the primary vector of Japanese encephalitis, Culex tritaeniorhynchus Giles, was determined using hourly aspirator collections from a human and propane lantern-baited Shannon trap during hours when temperatures exceeded 15℃. The total number of mosquitoes and number of each species captured during the test was compared using a block design. Significant differences were observed for the total number of mosquitoes collected, such that, the Mosquito MagnetTM with octenol > Shannon trap > ABC light trap with light and dry ice > Miniature Black Light trap (manufactured by John W. Hock) ≥ New Jersey Trap > ABC light trap with light only. Significant differences in numbers collected among traps were noted for several species including: Aedes vexans (Meigen), Anopheles lesteri Baisas and Hu, An. sinensis Weidemann, An. sineroides Yamada, An. yatsushiroensis Miyazaki, Culex pipiens pallens Coquillett L., Cx. orientalis Edwards and Cx. tritaeniorhynchus. Host-seeking activity for most common species showed a similar bimodal pattern. Results from these field trap evaluations can significantly enhance current vector and disease surveillance efforts especially for the primary vector of Japanese encephalitis, Cx. tritaeniorhynchus. PMID:11949213

  17. Mechanical Properties of a Primary Cilium Measured by Resonant Oscillation

    NASA Astrophysics Data System (ADS)

    Resnick, Andrew

    Primary cilia are ubiquitous mammalian cellular substructures implicated in an ever-increasing number of regulatory pathways. The well-established `ciliary hypothesis' states that physical bending of the cilium (for example, due to fluid flow) initiates signaling cascades, yet the mechanical properties of the cilium remain incompletely measured, resulting in confusion regarding the biological significance of flow-induced ciliary mechanotransduction. In this work we measure the mechanical properties of a primary cilium by using an optical trap to induce resonant oscillation of the structure. Our data indicate 1), the primary cilium is not a simple cantilevered beam, 2), the base of the cilium may be modeled as a nonlinear rotatory spring, the linear spring constant `k' of the cilium base calculated to be (4.6 +/- 0.62)*10-12 N/rad and nonlinear spring constant ` α' to be (-1 +/- 0.34) *10-10 N/rad2 , and 3) the ciliary base may be an essential regulator of mechanotransduction signalling. Our method is also particularly suited to measure mechanical properties of nodal cilia, stereocilia, and motile cilia, anatomically similar structures with very different physiological functions.

  18. Suppressing Loss of Ions in an Atomic Clock

    NASA Technical Reports Server (NTRS)

    Prestage, John; Chung, Sang

    2010-01-01

    An improvement has been made in the design of a compact, highly stable mercury- ion clock to suppress a loss of ions as they are transferred between the quadrupole and higher multipole ion traps. Such clocks are being developed for use aboard spacecraft for navigation and planetary radio science. The modification is also applicable to ion clocks operating on Earth: indeed, the success of the modification has been demonstrated in construction and operation of a terrestrial breadboard prototype of the compact, highly stable mercury-ion clock. Selected aspects of the breadboard prototype at different stages of development were described in previous NASA Tech Briefs articles. The following background information is reviewed from previous articles: In this clock as in some prior ion clocks, mercury ions are shuttled between two ion traps, one a 16- pole linear radio-frequency trap, while the other is a quadrupole radio-frequency trap. In the quadrupole trap, ions are tightly confined and optical state selection from a 202Hg lamp is carried out. In the 16-pole trap, the ions are more loosely confined and atomic transitions are interrogated by use of a microwave beam at approximately 40.507 GHz. The trapping of ions effectively eliminates the frequency pulling that would otherwise be caused by collisions between clock atoms and the wall of a gas cell. The shuttling of the ions between the two traps enables separation of the state-selection process from the clock microwave-resonance process, so that each of these processes can be optimized independently of the other. This is similar to the operation of an atomic beam clock, except that with ions the beam can be halted and reversed as ions are shuttled back and forth between the two traps. When the two traps are driven at the same radio frequency, the strength of confinement can be reduced near the junction between the two traps, depending upon the relative phase of the RF voltage used to operate each of the two traps, and can cause loss of ions during each transit between the traps and thereby cause loss of the 40.507-GHz ion-clock resonance signal. The essence of the modification is to drive the two traps at different frequencies typically between 1.5 and 2 MHz for the quadrupole trap and a frequency a few hundred kHz higher for the 16- pole trap. A frequency difference of a few hundred kHz ensures that the ion motion caused by the trapping electric fields is small relative to the diameter of the traps. Unlike in the case in which both traps are driven at the same frequency, the trapping electric fields near the junction are not zero at all times; instead, the regions of low electric field near the junction open and close at the difference frequency. An additional benefit of making the 16-pole trap operate at higher frequency is that the strength or depth of the multipole trap can be increased independent of the quadrupole ion trap.

  19. Hepatozoon canis infection in ticks during spring and summer in Italy.

    PubMed

    Dantas-Torres, Filipe; Latrofa, Maria Stefania; Weigl, Stefania; Tarallo, Viviana Domenica; Lia, Riccardo Paolo; Otranto, Domenico

    2012-02-01

    Hepatozoon canis is a common protozoan of dogs, being among the most prevalent tick-borne pathogens infecting dogs around the world. It is primarily transmitted by Rhipicephalus sanguineus, the brown dog tick. In this study we tested ticks collected from dogs and from the environment in order to track the origin of an outbreak of H. canis infection detected in October 2009 in a private dog shelter in southern Italy. Ticks from dogs (n = 267) were collected during the spring of 2009, whereas ticks from environment (n = 300) were found on sticky traps placed in the same shelter during the summer of 2009. All ticks were tested by PCR for the detection of a H. canis 18S ribosomal RNA gene fragment. Four (1.5%, one female and three males) ticks collected from dogs were PCR positive. None of the larvae collected from the environment were positive, but a relatively high infection rate (8.0%) was detected in nymphs. These findings point out that dogs became infected during the summer, when ticks were abundant and highly infected by H. canis. Moreover, this study suggests that castor oil sticky traps might be useful to collect engorged immature ticks in highly infested environments (e.g., dog shelters). This might be particularly interesting to evaluate the level of infection by certain pathogens in free-ranging ticks R. sanguineus, as done in the present study.

  20. Genetic analysis without replications: Model evaluation and application in spring wheat

    USDA-ARS?s Scientific Manuscript database

    Genetic data collected from plant breeding and genetic studies may not be replicated in field designs even though field variation is present. In this study, we addressed this problem using spring wheat (Triticum eastivum L.) trial data collected from two locations. There were no intra-location repl...

  1. Geochemical investigation of the hydrothermal system on Akutan Island, Alaska, July 2012

    USGS Publications Warehouse

    Bergfeld, D.; Lewicki, Jennifer L.; Evans, William C.; Hunt, Andrew G.; Revesz, Kinga; Huebner, Mark

    2014-01-01

    We have studied the geochemistry of the hot springs on Akutan Island in detail for the first time since the early 1980s. Springs in four discrete groups (A-D) along Hot Springs Creek showed generally higher temperatures and substantially higher Na, Ca, and Cl concentrations than previously reported, and total hot-spring discharge has also increased markedly. The springs now account for a heat output of ~29 MW, about an order of magnitude more than in 1981. Gas samples from the hot springs and from a fumarolic area on the flank of Akutan Volcano show high 3He/4He ratios (>6.4 RA) after correction for air contamination and reveal a common magmatic heat source. Hot-spring gases are unusually rich in N2, Ar, and CH4, suggesting that the water has boiled and lost CO2 during upflow beneath the flank fumarole field. Gas geothermometry calculations applied to the flank fumarole field implies temperatures of 200–240 °C for the reservoir, and Na-K-Ca geothermometry implies temperatures near 180 °C for the outflow waters that feed the hot springs. The results of our study confirm the existence of a substantial geothermal resource on the island.

  2. An efficient smolt trap for sandy and debris-laden streams

    USGS Publications Warehouse

    Scace, J.G.; Letcher, B.H.; Noreika, J.

    2007-01-01

    Tripod weir and box traps are traditionally used to capture and enumerate out-migrating salmonid smolts in short-term studies and in streams where temporary or portable traps are the only practical option. Although traditional traps can be effective when conditions are ideal, they are often unable to withstand high-discharge events in streams containing a large amount of debris or sandy substrates. We created a rotary-screw trap and resistance board weir hybrid design that we evaluated along with a tripod weir and box trap, both in a 6.1-m-wide flume and in the field. The new design outperformed the tripod weir in both situations. The tripod weir failed in 10 min in the flume trial, whereas the new design was still operating at the conclusion of an 8-h trial under the same conditions. The new design operated continuously in the field during a high-discharge event that caused the tripod weir to fail. The new design also required less frequent cleaning than the tripod weir. The trap efficiency of the new design was estimated by using passive integrated transponder (PIT) tag antennas and radiotelemetry. The trap was 80% efficient (n = 40) in capturing migrating PIT-tagged individuals detected at an antenna upstream of the trap and 87.5% efficient (n = 48) at recapturing fish that had been tagged and released upstream. With its high efficiency and increased resiliency over the tripod weir, the new trap design will benefit management and research efforts in streams where traditional traps are unsuitable. ?? Copyright by the American Fisheries Society 2007.

  3. Capturing migration phenology of terrestrial wildlife using camera traps

    USGS Publications Warehouse

    Tape, Ken D.; Gustine, David D.

    2014-01-01

    Remote photography, using camera traps, can be an effective and noninvasive tool for capturing the migration phenology of terrestrial wildlife. We deployed 14 digital cameras along a 104-kilometer longitudinal transect to record the spring migrations of caribou (Rangifer tarandus) and ptarmigan (Lagopus spp.) in the Alaskan Arctic. The cameras recorded images at 15-minute intervals, producing approximately 40,000 images, including 6685 caribou observations and 5329 ptarmigan observations. The northward caribou migration was evident because the median caribou observation (i.e., herd median) occurred later with increasing latitude; average caribou migration speed also increased with latitude (r2 = .91). Except at the northernmost latitude, a northward ptarmigan migration was similarly evident (r2 = .93). Future applications of this method could be used to examine the conditions proximate to animal movement, such as habitat or snow cover, that may influence migration phenology.

  4. Spring Outmigration of Wild and Hatchery Chinook Salmon and Steelhead Trout Smolts from the Imnaha River, Oregon; 1996 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blenden, Michael L.; Rocklage, Stephen J.; Kucera, Paul A.

    1997-04-01

    For the third consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 23 to June 24, 1996. A total of 1,797 wild chinook salmon, 11,896 hatchery chinook salmon, 3,786 wild steelhead trout, and 31,094 hatchery steelhead trout smolts were captured during outmigration studies on the Imnaha River in 1996. Mortality associated with trapping, handling and tagging was low, being 1.4% for wildmore » chinook, 0.18% for hatchery chinook, 0.21% for wild steelhead and 0.28% for hatchery steelhead trout smolts.« less

  5. The hydrogeology of urbanization: The lost springs of Washington, D.C., late Tertiary and Quaternary sediments of D.C., and the Baltimore Long Term Ecological Research site (LTER): Chapter

    USGS Publications Warehouse

    Bhaskar, Aditi; Pavich, Milan J.; Sharp, John M.

    2015-01-01

    Urbanization is a major process now shaping the environment. This field trip looks at the hydrogeology of the general Washington, D.C., area and focuses on the city's lost springs. Until 150 years ago, springs and shallow dug wells were the main source of drinking water for residents of Washington, D.C. Celebrating the nation's bicentennial, Garnett P. Williams of the U.S. Geological Survey examined changes in water supply and water courses since 1776. He examined old newspaper files to determine the location of the city's springs. This field trip visits sites of some of these springs (few of which are now flowing), discusses the hydrologic impacts of urbanization and the general geological setting, and finishes with the Baltimore Long Term Ecological Research site at Dead Run and its findings. The field trip visits some familiar locations in the Washington, D.C., area, and gives insights into their often hidden hydrologic past and present.

  6. Achieving Translationally Invariant Trapped Ion Rings

    NASA Astrophysics Data System (ADS)

    Urban, Erik; Li, Hao-Kun; Noel, Crystal; Hemmerling, Boerge; Zhang, Xiang; Haeffner, Hartmut

    2017-04-01

    We present the design and implementation of a novel surface ion trap design in a ring configuration. By eliminating the need for wire bonds through the use of electrical vias and using a rotationally invariant electrode configuration, we have realized a trap that is able to trap up to 20 ions in a ring geometry 45um in diameter, 400um above the trap surface. This large trapping height to ring diameter ratio allows for global addressing of the ring with both lasers and electric fields in the chamber, thereby increasing our ability to control the ring as a whole. Applying compensating electric fields, we measure very low tangential trap frequencies (less than 20kHz) corresponding to rotational barriers down to 4mK. This measurement is currently limited by the temperature of the ions but extrapolation indicates the barrier can be reduced much further with more advanced cooling techniques. Finally, we show that we are able to reduce this energy barrier sufficiently such that the ions are able to overcome it either through thermal motion or rotational motion and delocalize over the full extent of the ring. This work was funded by the Keck Foundation and the NSF.

  7. Impact of nitrogen doping of niobium superconducting cavities on the sensitivity of surface resistance to trapped magnetic flux

    NASA Astrophysics Data System (ADS)

    Gonnella, Dan; Kaufman, John; Liepe, Matthias

    2016-02-01

    Future particle accelerators such as the SLAC "Linac Coherent Light Source-II" (LCLS-II) and the proposed Cornell Energy Recovery Linac require hundreds of superconducting radio-frequency (SRF) niobium cavities operating in continuous wave mode. In order to achieve economic feasibility of projects such as these, the cavities must achieve a very high intrinsic quality factor (Q0) to keep cryogenic losses within feasible limits. To reach these high Q0's in the case of LCLS-II, nitrogen-doping of niobium cavities has been selected as the cavity preparation technique. When dealing with Q0's greater than 1 × 1010, the effects of ambient magnetic field on Q0 become significant. Here, we show that the sensitivity to RF losses from trapped magnetic field in a cavity's walls is strongly dependent on the cavity preparation. Specifically, standard electropolished and 120 °C baked cavities show a sensitivity of residual resistance from trapped magnetic flux of ˜0.6 and ˜0.8 nΩ/mG trapped, respectively, while nitrogen-doped cavities show a higher sensitivity of residual resistance from trapped magnetic flux of ˜1 to 5 nΩ/mG trapped. We show that this difference in sensitivities is directly related to the mean free path of the RF surface layer of the niobium: shorter mean free paths lead to less sensitivity of residual resistance to trapped magnetic flux in the dirty limit (ℓ ≪ ξ0), while longer mean free paths lead to lower sensitivity of residual resistance to trapped magnetic flux in the clean limit (ℓ ≫ ξ0). These experimental results are also shown to have good agreement with recent theoretical predictions for pinned vortex lines oscillating in RF fields.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Shiyang; Green, Scott R.; Markosyan, Aram H.

    Atomic microsystems have the potential of providing extremely accurate measurements of timing and acceleration. But, atomic microsystems require active maintenance of ultrahigh vacuum in order to have reasonable operating lifetimes and are particularly sensitive to magnetic fields that are used to trap electrons in traditional sputter ion pumps. Our paper presents an approach to trapping electrons without the use of magnetic fields, using radio frequency (RF) fields established between two perforated electrodes. The challenges associated with this magnet-less approach, as well as the miniaturization of the structure, are addressed. These include, for example, the transfer of large voltage (100–200 V)more » RF power to capacitive loads presented by the structure. The electron trapping module (ETM) described here uses eight electrode elements to confine and measure electrons injected by an electron beam, within an active trap volume of 0.7 cm 3. The operating RF frequency is 143.6 MHz, which is the measured series resonant frequency between the two RF electrodes. It was found experimentally that the steady state electrode potentials on electrodes near the trap became more negative after applying a range of RF power levels (up to 0.15 W through the ETM), indicating electron densities of ≈3 × 10 5 cm -3 near the walls of the trap. The observed results align well with predicted electron densities from analytical and numerical models. The peak electron density within the trap is estimated as ~1000 times the electron density in the electron beam as it exits the electron gun. Finally, this successful demonstration of the RF electron trapping concept addresses critical challenges in the development of miniaturized magnet-less ion pumps.« less

  9. Geothermal system boundary at the northern edge of Patuha Geothermal Field based on integrated study of volcanostratigraphy, geological field mapping, and cool springs contamination by thermal fluids

    NASA Astrophysics Data System (ADS)

    Suryantini; Rachmawati, C.; Abdurrahman, M.

    2017-12-01

    Patuha Geothermal System is a volcanic hydrothermal system. In this type of system, the boundary of the system is often determined by low resistivity (10 ohm.m) anomaly from Magnetotelluric (MT) or DC-Resistivity survey. On the contrary, during geothermal exploration, the system boundary often need to be determined as early as possible even prior of resistivity data available. Thus, a method that use early stage survey data must be developed properly to reduce the uncertainty of the geothermal area extent delineation at the time the geophysical data unavailable. Geological field mapping, volcanostratigraphy analysis and fluid chemistry of thermal water and cold water are the data available at the early stage of exploration. This study integrates this data to delineate the geothermal system boundary. The geological mapping and volcanostratigraphy are constructed to limit the extent of thermal and cold springs. It results that springs in the study area are controlled hydrologically by topography of Patuha Volcanic Crown (complex) or so called PVC, the current geothermal field and Masigit Volcanic Crown (complex) or so called MVC, the dormant volcano not associated with active geothermal system. Some of the cold springs at PVC are contaminated by subsurface steam heated outflow while others are not contaminated. The contaminated cold springs have several characteristics such as higher water temperature than ambient temperature at the time it was measured, higher total disolved solid (TDS), and lower pH. The soluble elements analysis support the early contamination indication by showing higher cation and anion, and positive oxygen shifting of stable isotope of these cool springs. Where as the uncontaminated spring shows similar characteristic with cool springs occur at MVC. The boundary of the system is delineated by an arbitrary line drawn between distal thermal springs from the upflow or contaminated cool springs with the cool uncontaminated springs. This boundary is more or less in agreement with low resisitivity boundary derived from MT and DC resistivity survey. The area defined as part of geothermal area from this method is also validate with drilling data that give high temperature gradient. It suggests that the method use in this study is applicable and reliable.

  10. Cooling an Optically Trapped Ultracold Fermi Gas by Periodical Driving.

    PubMed

    Li, Jiaming; de Melo, Leonardo F; Luo, Le

    2017-03-30

    We present a cooling method for a cold Fermi gas by parametrically driving atomic motions in a crossed-beam optical dipole trap (ODT). Our method employs the anharmonicity of the ODT, in which the hotter atoms at the edge of the trap feel the anharmonic components of the trapping potential, while the colder atoms in the center of the trap feel the harmonic one. By modulating the trap depth with frequencies that are resonant with the anharmonic components, we selectively excite the hotter atoms out of the trap while keeping the colder atoms in the trap, generating parametric cooling. This experimental protocol starts with a magneto-optical trap (MOT) that is loaded by a Zeeman slower. The precooled atoms in the MOT are then transferred to an ODT, and a bias magnetic field is applied to create an interacting Fermi gas. We then lower the trapping potential to prepare a cold Fermi gas near the degenerate temperature. After that, we sweep the magnetic field to the noninteracting regime of the Fermi gas, in which the parametric cooling can be manifested by modulating the intensity of the optical trapping beams. We find that the parametric cooling effect strongly depends on the modulation frequencies and amplitudes. With the optimized frequency and amplitude, we measure the dependence of the cloud energy on the modulation time. We observe that the cloud energy is changed in an anisotropic way, where the energy of the axial direction is significantly reduced by parametric driving. The cooling effect is limited to the axial direction because the dominant anharmonicity of the crossed-beam ODT is along the axial direction. Finally, we propose to extend this protocol for the trapping potentials of large anharmonicity in all directions, which provides a promising scheme for cooling quantum gases using external driving.

  11. Field capture of Thyanta perditor with pheromone-baited traps and cross-attraction to other pentatomids

    USDA-ARS?s Scientific Manuscript database

    In Brazil, Thyanta perditor is one of the stink bugs attacking soybean and also could be found on others crops such as wheat, sunflower and sorghum. The objective of this work was to test the field attractiveness of traps baited with synthetic T. perditor pheromone. Two-liter transparent plastic sof...

  12. Leachable particulate iron in the Columbia River, estuary, and near-field plume

    NASA Astrophysics Data System (ADS)

    Lippiatt, Sherry M.; Brown, Matthew T.; Lohan, Maeve C.; Berger, Carolyn J. M.; Bruland, Kenneth W.

    2010-03-01

    This study examines the distribution of leachable particulate iron (Fe) in the Columbia River, estuary, and near-field plume. Surface samples were collected during late spring and summer of 2004-2006 as part of four River Influence on Shelf Ecosystems (RISE) cruises. Tidal amplitude and river flow are the primary factors influencing the estuary leachable particulate Fe concentrations, with greater values during high flow and/or spring tides. Near the mouth of the estuary, leachable particulate Fe [defined as the particulate Fe solubilized with a 25% acetic acid (pH 2) leach containing a weak reducing agent to reduce Fe oxyhydroxides and a short heating step to access intracellular Fe] averaged 770 nM during either spring tide or high flow, compared to 320 nM during neap tide, low flow conditions. In the near-field Columbia River plume, elevated leachable particulate Fe concentrations occur during spring tides and/or higher river flow, with resuspended shelf sediment as an additional source to the plume during periods of coastal upwelling and spring tides. Near-field plume concentrations of leachable particulate Fe (at a salinity of 20) averaged 660 nM during either spring tide or high flow, compared to 300 nM during neap tide, low flow conditions. Regardless of tidal amplitude and river flow, leachable particulate Fe concentrations in both the river/estuary and near-field plume are consistently one to two orders of magnitude greater than dissolved Fe concentrations. The Columbia River is an important source of reactive Fe to the productive coastal waters off Oregon and Washington, and leachable particulate Fe is available for solubilization following biological drawdown of the dissolved phase. Elevated leachable Fe concentrations allow coastal waters influenced by the Columbia River plume to remain Fe-replete and support phytoplankton production during the spring and summer seasons.

  13. Efficacy of aggregation pheromone in trapping red palm weevil (Rhynchophorus ferrugineus Olivier) and rhinoceros beetle (Oryctes rhinoceros Linn.) from infested coconut palms.

    PubMed

    Chakravarthy, A K; Chandrashekharaiah, M; Kandakoor, Subhash B; Nagaraj, D N

    2014-05-01

    Red palm weevil and Rhinoceros beetle are the major pests inflicting severe damage to coconut palms. Due to ineffectiveness of the current management practices to control the two important pests on coconut, a study was conducted to know the attractiveness of red palm weevil and rhinoceros beetle to aggregation pheromone. Olfactometer studies indicated that the aggregation pheromone of red palm weevil and rhinoceros beetle attracted significantly more number of weevils (13.4 females and 7.6 male weevils) and beetles (6.5 male and 12.3 female beetles), respectively than control. Similarly, field studies found that both 750 and 1000 mg pheromone dosage lures of red palm weevil and rhinoceros beetle trapped significantly higher numbers of weevils (695.80 and 789 weevils, respectively) and beetles (98 and 108 beetles, respectively) in traps (P < 0.05), respectively. On an average (n = 6 field trials) 80-85% red palm weevil and 72-78% rhinoceros beetle population got trapped. Observations indicated activity of red palm weevil throughout the year and of rhinoceros beetle from September to March around Bangalore, South India. Pheromone traps for red palm weevil can be placed in fields from June to August and October to December and September to February for rhinoceros beetle. Population reductions of the two coleopteran pests by pheromone traps are compatible with mechanical and cultural management tools with cumulative effects.

  14. Near interface traps in SiO{sub 2}/4H-SiC metal-oxide-semiconductor field effect transistors monitored by temperature dependent gate current transient measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiorenza, Patrick; La Magna, Antonino; Vivona, Marilena

    This letter reports on the impact of gate oxide trapping states on the conduction mechanisms in SiO{sub 2}/4H-SiC metal-oxide-semiconductor field effect transistors (MOSFETs). The phenomena were studied by gate current transient measurements, performed on n-channel MOSFETs operated in “gate-controlled-diode” configuration. The measurements revealed an anomalous non-steady conduction under negative bias (V{sub G} > |20 V|) through the SiO{sub 2}/4H-SiC interface. The phenomenon was explained by the coexistence of a electron variable range hopping and a hole Fowler-Nordheim (FN) tunnelling. A semi-empirical modified FN model with a time-depended electric field is used to estimate the near interface traps in the gate oxide (N{sub trap} ∼ 2 × 10{supmore » 11} cm{sup −2}).« less

  15. Evaluation of Turner relaxed state as a model of long-lived ion-trapping structures in plasma focus and Z-pinches

    NASA Astrophysics Data System (ADS)

    Auluck, S. K. H.

    2011-03-01

    Relatively long-lived spheroidal structures coincident with the neutron emission phase have been observed in frozen deuterium fiber Z-pinch and some plasma focus devices. Existence of energetic ion-trapping mechanism in plasma focus has also been inferred from experimental data. It has been conjectured that these are related phenomena. This paper applies Turner's theory [L. Turner, IEEE Trans. Plasma Sci. 14, 849 (1986)] of relaxation of a Hall magnetofluid to construct a model of these structures and ion-trapping mechanism. Turner's solution modified for a finite-length plasma is used to obtain expressions for the magnetic field, velocity, and equilibrium pressure fields and is shown to represent an entity which is simultaneously a fluid vortex, a force-free magnetic field, a confined finite-pressure plasma, a charged object, and a trapped energetic ion beam. Characteristic features expected from diagnostic experiments are evaluated and shown to resemble experimental observations.

  16. Multipole electrodynamic ion trap geometries for microparticle confinement under standard ambient temperature and pressure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihalcea, Bogdan M., E-mail: bogdan.mihalcea@inflpr.ro; Vişan, Gina T.; Ganciu, Mihai

    2016-03-21

    Trapping of microparticles and aerosols is of great interest for physics and chemistry. We report microparticle trapping in case of multipole linear Paul trap geometries, operating under standard ambient temperature and pressure conditions. An 8- and 12-electrode linear trap geometries have been designed and tested with an aim to achieve trapping for larger number of particles and to study microparticle dynamical stability in electrodynamic fields. We report emergence of planar and volume ordered structures of microparticles, depending on the a.c. trapping frequency and particle specific charge ratio. The electric potential within the trap is mapped using the electrolytic tank method.more » Particle dynamics is simulated using a stochastic Langevin equation. We emphasize extended regions of stable trapping with respect to quadrupole traps, as well as good agreement between experiment and numerical simulations.« less

  17. Predator-prey interactions of nematode-trapping fungi and nematodes: both sides of the coin.

    PubMed

    Vidal-Diez de Ulzurrun, Guillermo; Hsueh, Yen-Ping

    2018-05-01

    Nematode-trapping fungi develop complex trapping devices to capture and consume nematodes. The dynamics of these organisms is especially important given the pathogenicity of nematodes and, consequently, the potential application of nematode-trapping fungi as biocontrol agents. Furthermore, both the nematodes and nematode-trapping fungi can be easily grown in laboratories, making them a unique manipulatable predator-prey system to study their coevolution. Several different aspects of these fungi have been studied, such as their genetics and the different factors triggering trap formation. In this review, we use the nematode-trapping fungus Arthrobotrys oligospora (which forms adhesive nets) as a model to describe the trapping process. We divide this process into several stages; namely attraction, recognition, trap formation, adhesion, penetration, and digestion. We summarize the latest findings in the field and current knowledge on the interactions between nematodes and nematode-trapping fungi, representing both sides of the predator-prey interaction.

  18. Tool and Technique for Restraining Live-Captured American Martens and Fishers

    Treesearch

    Linda Ebel Thomasma; Rolf O. Peterson; Rolf O. Peterson

    1998-01-01

    Restraining live-captured animals poses challenges when working alone, especially in remote field locations. While studying American martens (Marfes americana) and fishers (Martes pennantr) in Michigan, we developed a new tool, trap combs, to restrain a live-captured animal in the trap. The construction and use of trap combs are described.

  19. Response of Phlebotomus papatasi to visual, physical and chemical attraction features in the field.

    USDA-ARS?s Scientific Manuscript database

    In this study, 27 CDC traps were modified with various attractive features and compared with a CDC trap with no light source or baits to evaluate the effects on attraction to Phlebotomus papatasi (Scopoli). Attractive features included CO2, lights, colored trap bodies, heat, moisture, chemical lures...

  20. Dynamics of predation on Lygus hesperus (Hemiptera: Miridae) in alfalfa trap cropped organic strawberry

    USDA-ARS?s Scientific Manuscript database

    Alfalfa (Medicago sativa L.) can be strategically planted as a trap crop for Lygus spp. in California’s organic strawberry fields. Alfalfa has been shown to attract both Lygus spp. and, in turn, a Lygus-specific parasitoid, Peristenus relictus (Ruthe). However, the impact of alfalfa trap-cropped st...

  1. Anisotropic magnetic switching along hard [1 1 0]-type axes in Er-doped DyFe2/YFe2 thin films

    NASA Astrophysics Data System (ADS)

    Stenning, G. B. G.; Bowden, G. J.; van der Laan, G.; Figueroa, A. I.; Bencok, P.; Steadman, P.; Hesjedal, T.

    2017-10-01

    Epitaxial-grown DyFe2/YFe2 multilayer thin films form an ideal model system for the study of magnetic exchange springs. Here the DyFe2 (YFe2) layers are magnetically hard (soft). In the presence of a magnetic field, exchange springs form in the YFe2 layers. Recently, it has been demonstrated that placing small amounts of Er into the centre of the YFe2 springs generates substantial changes in magnetic behavior. In particular, (i) the number of exchange-spring states is increased dramatically, (ii) the resulting domain-wall states cannot simply be described as either Néel or Bloch walls, (iii) the Er and Dy magnetic loops are strikingly different, and (iv) it is possible to engineer Er-induced magnetic exchange-spring collapse. Here, results are presented for Er-doped (1 1 0)-oriented DyFe2 (60 Å/YFe2(240 Å)15 multilayer films, at 100 K in fields of up to 12 T. In particular, we contrast magnetic loops for fields applied along seemingly equivalent hard-magnetic [1 1 0]-type axes. MBE-grown cubic Laves thin films offer the unique feature of allowing to apply the magnetic field along (i) a hard out-of-plane [1 1 0]-axis (the growth axis) and (ii) a similar hard in-plane [ 1 bar 10 ] -axis. Differences are found and attributed to the competition between the crystal-field interaction at the Er site and the long-range dipole-dipole interaction. In particular, the out-of-plane [1 1 0] Er results show the existence of a new magnetic exchange spring state, which would be very difficult to identify without the aid of element-specific technique of X-ray magnetic circular dichroism (XMCD).

  2. Conduction mechanism of leakage current due to the traps in ZrO2 thin film

    NASA Astrophysics Data System (ADS)

    Seo, Yohan; Lee, Sangyouk; An, Ilsin; Song, Chulgi; Jeong, Heejun

    2009-11-01

    In this work, a metal-oxide-semiconductor capacitor with zirconium oxide (ZrO2) gate dielectric was fabricated by an atomic layer deposition (ALD) technique and the leakage current characteristics under negative bias were studied. From the result of current-voltage curves there are two possible conduction mechanisms to explain the leakage current in the ZrO2 thin film. The dominant mechanism is the space charge limited conduction in the high-electric field region (1.5-5.0 MV cm-1) while the trap-assisted tunneling due to the existence of traps is prevailed in the low-electric field region (0.8-1.5 MV cm-1). Conduction caused by the trap-assisted tunneling is found from the experimental results of a weak temperature dependence of current, and the trap barrier height is obtained. The space charge limited conduction is evidenced, for different temperatures, by Child's law dependence of current density versus voltage. Child's law dependence can be explained by considering a single discrete trapping level and we can obtain the activation energy of 0.22 eV.

  3. Spontaneous Mass and Charge Losses from Single Multi-Megadalton Ions Studied by Charge Detection Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Keifer, David Z.; Alexander, Andrew W.; Jarrold, Martin F.

    2017-03-01

    Spontaneous mass and charge losses from individual multi-megadalton ions have been observed with charge detection mass spectrometry (CDMS) by trapping single hepatitis B virus (HBV) capsids for 3 s. Gradual increases in the oscillation frequency of single ions in the ion trap are attributed mainly to mass loss (probably solvent, water, and/or salt). The total mass lost during the 3 s trapping period peaks at around 20 kDa for 4 MDa HBV T = 4 capsids. Discrete frequency drops punctuate the gradual increases in the oscillation frequencies. The drops are attributed to a sudden loss of charge. In most cases a single positive charge is lost along with some mass (on average around 1000 Da). Charge loss occurs for over 40% of the trapped ions. It usually occurs near the beginning of the trapping event, and it occurs preferentially in regions of the trap with strong electric fields, indicating that external electric fields promote charge loss. This process may contribute to the decrease in m/ z resolution that often occurs with megadalton ions.

  4. Electrofluidics in Micro/Nanofluidic Systems

    NASA Astrophysics Data System (ADS)

    Guan, Weihua

    This work presents the efforts to study the electrofluidics, with a focus on the electric field - matter interactions in microfluidic and nanofluidic systems for lab-on-a-chip applications. The field of electrofluidics integrates the multidisciplinary knowledge in silicon technology, solid and soft condensed matter physics, fluidics, electrochemistry, and electronics. The fundamental understanding of electrofluidics in engineered micro and nano structures opens up wide opportunities for biomedical sensing and actuation devices integrated on a single chip. Using spatial and temporal properties of electric fields in top-down engineered micro/nana structures, we successfully demonstrated the precise control over a single macro-ion and a collective group of ions in aqueous solutions. In the manipulation of a single macro-ion, we revisited the long-time overlooked AC electrophoretic (ACEP) phenomena. We proved that the widely held notion of vanishing electrophoretic (EP) effects in AC fields does not apply to spatially non-uniform electric fields. In contrast to dielectrophoretic (DEP) traps, ACEP traps favor the downscaling of the particle size if it is sufficiently charged. We experimentally demonstrated the predicted ACEP trap by recognizing that the ACEP dynamics is equivalent to that of Paul traps working in an aqueous solution. Since all Paul traps realized so far have only been operated in vacuum or gaseous phase, our experimental effort represents the world's first aqueous Paul trap device. In the manipulation of a collective group of ions, we demonstrated that the ion transport in nanochannels can be directly gated by DC electric fields, an impossible property in microscale geometries. Successful fabrication techniques were developed to create the nanochannel structures with gating ability. Using the gated nanochannel structures, we demonstrated a field effect reconfigurable nanofluidic diode, whose forward/reverse direction as well as the rectification degree can be significantly modulated. We also demonstrated a solid-state protocell, whose ion selectivity and membrane potential can be modulated by external electric field. Moreover, by recognizing the key role played by the surface charge density in electrofluidic gating of nanochannels, a low-cost, off-chip extended gate field effect transistor (FET) structure to measure the surface charges at the dielectric-electrolyte interface is demonstrated. This technique simplifies and accelerates the process of dielectric selection for effective electrofluidic gating.

  5. Magnetic measurements of the 10 T superconducting wiggler for the SPring-8 storage ring

    NASA Astrophysics Data System (ADS)

    Batrakov, A.; Borovikov, V.; Bekhtenev, E.; Fedurin, M.; Hara, M.; Karpov, G.; Kuzin, M.; Mezentsev, N.; Miahara, Y.; Shimada, T.; Shkaruba, V.; Soutome, K.; Tzumaki, K.

    2001-07-01

    In 1999, in the frame of the project ISTC #767 "Budker INP/RIKEN Slow Positron Source", the Budker Institute of Nuclear Physics had made a 10 T Three-pole Superconducting Wiggler. The wiggler will be the keystone of this project by its installation on the SPring-8 storage ring for powerful gamma ray generation ( λ c=450 keV ), that will be used for slow positron production ( Nγ( ɛ>1 MeV)˜10 15, γ/s I e=0.1 A ). A. Ando et al., Proposal of the high magnetic field super conducting WLS for slow positron source at SPring-8, presented at SR1 '97 Conference. In January, 2000, the wiggler was transported to SPring-8, where the last test and measurements were carried out in collaboration with Japan. In this article, the results of measurements of the magnetic field, finding the magnetic field amplitude by an NMR probe, the definition of feed current relations by stretch current wire method, the calibration of a Hall probe in the high magnetic field, and the measurement of the magnetic field profile by a Hall probe are presented.

  6. Maximization of permanent trapping of CO{sub 2} and co-contaminants in the highest-porosity formations of the Rock Springs Uplift (Southwest Wyoming): experimentation and multi-scale modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piri, Mohammad

    2014-03-31

    Under this project, a multidisciplinary team of researchers at the University of Wyoming combined state-of-the-art experimental studies, numerical pore- and reservoir-scale modeling, and high performance computing to investigate trapping mechanisms relevant to geologic storage of mixed scCO{sub 2} in deep saline aquifers. The research included investigations in three fundamental areas: (i) the experimental determination of two-phase flow relative permeability functions, relative permeability hysteresis, and residual trapping under reservoir conditions for mixed scCO{sub 2}-­brine systems; (ii) improved understanding of permanent trapping mechanisms; (iii) scientifically correct, fine grid numerical simulations of CO{sub 2} storage in deep saline aquifers taking into account themore » underlying rock heterogeneity. The specific activities included: (1) Measurement of reservoir-­conditions drainage and imbibition relative permeabilities, irreducible brine and residual mixed scCO{sub 2} saturations, and relative permeability scanning curves (hysteresis) in rock samples from RSU; (2) Characterization of wettability through measurements of contact angles and interfacial tensions under reservoir conditions; (3) Development of physically-­based dynamic core-­scale pore network model; (4) Development of new, improved high-­performance modules for the UW-­team simulator to provide new capabilities to the existing model to include hysteresis in the relative permeability functions, geomechanical deformation and an equilibrium calculation (Both pore-­ and core-­scale models were rigorously validated against well-­characterized core-­ flooding experiments); and (5) An analysis of long term permanent trapping of mixed scCO{sub 2} through high-­resolution numerical experiments and analytical solutions. The analysis takes into account formation heterogeneity, capillary trapping, and relative permeability hysteresis.« less

  7. Effects of grazing and burning on densities and habitats of breeding ducks in North Dakota

    USGS Publications Warehouse

    Kruse, Arnold D.; Bowen, Bonnie S.

    1996-01-01

    Native grassland communities controlled by public agencies become increasingly important to the maintenance of many wildlife species as privately owned grasslands are destroyed or degraded for farming, mining, and development. In turn, wildlife on publicly owned grasslands are affected by the management techniques practiced by local managers. We studied the effects of grazing and prescribed burning on upland-nesting ducks and the structure and type of vegetation from 1980 to 1988 at the Lostwood National Wildlife Refuge (NWR) in northwestern North Dakota. Mallard (Anas platyrhynchos), the most abundant species at Lostwood NWR, had lower (P < 0.05) annual nest densities on experimental and control fields in the later years than in the early years of the study. Spring burning reduced (P = 0.016) nest densities of gadwall (A. strepera). Spring grazing reduced nest densities of gadwall (P = 0.014), and blue-winged teal (A. discors, P = 0.023). Nest density of gadwall increased (P = 0.018) after spring grazing was terminated. On the summer burn/spring graze fields, blue-winged teal had lower (P = 0.010) nest densities after treatments (1987-88) than before treatments (1980-81). Nest success was high (mallard 34%, gadwall 45%, blue-winged teal 31%) but was not influenced (P 0.16) by the burning and grazing treatments. During the study, the amount of grass/brush increased, whereas the amount of brush and brush/grass decreased on control and treatment fields. During the years with burning and grazing, short vegetation increased and tall vegetation decreased. On the spring graze fields, 1 year after grazing ended the vegetation was similar to that on the control fields. The spring burn and summer burn/spring graze fields recovered more slowly. Brushy species such as western snowberry (Symphoricarpos occidentalis) provided attractive nesting habitat for many upland-nesting waterfowl species, especially mallard, gadwall, American wigeon (A. americana), and northern pintail (A. acuta). Habitat needs of additional species of wildlife that depend on grasslands may need to be considered when deciding how to manage habitat.

  8. Interaction of an ion bunch with a plasma slab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasovitskiy, V. B., E-mail: krasovit@mail.ru; Turikov, V. A.

    2016-11-15

    Charge neutralization of a short ion bunch passing through a plasma slab is studied by means of numerical simulation. It is shown that a fraction of plasma electrons are trapped by the bunch under the action of the collective charge separation field. The accelerated electrons generated in this process excite beam−plasma instability, thereby violating the trapping conditions. The process of electron trapping is also strongly affected by the high-frequency electric field caused by plasma oscillations at the slab boundaries. It is examined how the degree of charge neutralization depends on the parameters of the bunch and plasma slab.

  9. Gate bias stress in pentacene field-effect-transistors: Charge trapping in the dielectric or semiconductor

    NASA Astrophysics Data System (ADS)

    Häusermann, R.; Batlogg, B.

    2011-08-01

    Gate bias stress instability in organic field-effect transistors (OFETs) is a major conceptual and device issue. This effect manifests itself by an undesirable shift of the transfer characteristics and is associated with long term charge trapping. We study the role of the dielectric and the semiconductor separately by producing OFETs with the same semiconductor (pentacene) combined with different dielectrics (SiO2 and Cytop). We show that it is possible to fabricate devices which are immune to gate bias stress. For other material combinations, charge trapping occurs in the semiconductor alone or in the dielectric.

  10. Floodplain/wetlands assessment for the interceptor trench field study near the Weldon Spring Quarry, Weldon Spring Site, Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Lonkhuyzen, R.A.

    1999-12-15

    The US Department of Energy proposes to construct a groundwater interceptor trench near the Weldon Spring Quarry at the Weldon Spring Site in Missouri. The trench would be located near two palustrine wetland areas. Impacts to wetland hydrology and biotic communities are expected to be negligible. No long-term adverse impacts to floodplains are expected.

  11. Whole-stream metabolism of a perennial spring-fed aufeis field in Alaska, with coincident surface and subsurface flow

    NASA Astrophysics Data System (ADS)

    Hendrickson, P. J.; Gooseff, M. N.; Huryn, A. D.

    2017-12-01

    Aufeis (icings or naleds) are seasonal arctic and sub-arctic features that accumulate through repeated overflow and freeze events of river or spring discharge. Aufeis fields, defined as the substrate on which aufeis form and the overlaying ice, have been studied to mitigate impacts on engineering structures; however, ecological characteristics and functions of aufeis fields are poorly understood. The perennial springs that supply warm water to aufeis fields create unique fluvial habitats, and are thought to act as winter and summer oases for biota. To investigate ecosystem function, we measured whole-stream metabolism at the Kuparuk River Aufeis (North Slope, AK), a large ( 5 km2) field composed of cobble substrate and predominately subsurface flow dynamics. The single-station open channel diel oxygen method was utilized at several dissolved oxygen (DO) stations located within and downstream of the aufeis field. DO loggers were installed in August 2016, and data downloaded summer 2017. Daily ecosystem respiration (ER), gross primary production (GPP) and reaeration rates were modeled using BASE, a package freely available in the open-source software R. Preliminary results support net heterotrophy during a two-week period of DO measurements in the fall season when minimum ice extent is observed. GPP, ER, and net metabolism are greater at the upstream reach near the spring source (P/R = 0.53), and decrease as flow moves downstream. As flow exits the aufeis field, surface and subsurface flow are incorporated into the metabolism model, and indicate the stream system becomes dependent on autochthonous production (P/R = 0.91). Current work is directed towards spring and summer discharge and metabolic parameter estimation, which is associated with maximum ice extent and rapid melting of the aufeis feature.

  12. Searching for quantum optimal controls under severe constraints

    DOE PAGES

    Riviello, Gregory; Tibbetts, Katharine Moore; Brif, Constantin; ...

    2015-04-06

    The success of quantum optimal control for both experimental and theoretical objectives is connected to the topology of the corresponding control landscapes, which are free from local traps if three conditions are met: (1) the quantum system is controllable, (2) the Jacobian of the map from the control field to the evolution operator is of full rank, and (3) there are no constraints on the control field. This paper investigates how the violation of assumption (3) affects gradient searches for globally optimal control fields. The satisfaction of assumptions (1) and (2) ensures that the control landscape lacks fundamental traps, butmore » certain control constraints can still prevent successful optimization of the objective. Using optimal control simulations, we show that the most severe field constraints are those that limit essential control resources, such as the number of control variables, the control duration, and the field strength. Proper management of these resources is an issue of great practical importance for optimization in the laboratory. For each resource, we show that constraints exceeding quantifiable limits can introduce artificial traps to the control landscape and prevent gradient searches from reaching a globally optimal solution. These results demonstrate that careful choice of relevant control parameters helps to eliminate artificial traps and facilitate successful optimization.« less

  13. Electron holes in inhomogeneous magnetic field: Electron heating and electron hole evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasko, I. Y.; Space Research Institute of Russian Academy of Science, Moscow; Agapitov, O. V.

    Electron holes are electrostatic non-linear structures widely observed in the space plasma. In the present paper, we analyze the process of energy exchange between electrons trapped within electron hole, untrapped electrons, and an electron hole propagating in a weakly inhomogeneous magnetic field. We show that as the electron hole propagates into the region with stronger magnetic field, trapped electrons are heated due to the conservation of the first adiabatic invariant. At the same time, the electron hole amplitude may increase or decrease in dependence on properties of distribution functions of trapped and untrapped resonant electrons. The energy gain of trappedmore » electrons is due to the energy losses of untrapped electrons and/or decrease of the electron hole energy. We stress that taking into account the energy exchange with untrapped electrons increases the lifetime of electron holes in inhomogeneous magnetic field. We illustrate the suggested mechanism for small-amplitude Schamel's [Phys. Scr. T2, 228–237 (1982)] electron holes and show that during propagation along a positive magnetic field gradient their amplitude should grow. Neglect of the energy exchange with untrapped electrons would result in the electron hole dissipation with only modest heating factor of trapped electrons. The suggested mechanism may contribute to generation of suprathermal electron fluxes in the space plasma.« less

  14. A model of optical trapping cold atoms using a metallic nano wire with surface plasmon effect

    NASA Astrophysics Data System (ADS)

    Thi Phuong Lan, Nguyen; Thi Nga, Do; Viet, Nguyen Ai

    2016-06-01

    In this work, we construct a new model of optical trapping cold atoms with a metallic nano wire by using surface plasmon effect generated by strong field of laser beams. Using the skin effect, we send a strong oscillated electromagnetic filed through the surface of a metallic nano wire. The local field generated by evanescent effect creates an effective attractive potential near the surface of metallic nano wires. The consideration of some possible boundary and frequency conditions might lead to non-trivial bound state solution for a cold atom. We discus also the case of the laser reflection optical trap with shell-core design, and compare our model with another recent schemes of cold atom optical traps using optical fibers and carbon nanotubes.

  15. 76 FR 5607 - Notice of Intent To Prepare a Resource Management Plan for the Rock Springs Field Office, Wyoming...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ..., recreation, visual resource management, public safety, law enforcement, and geographic information systems... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLWY930000-L16100000-DS0000] Notice of Intent To Prepare a Resource Management Plan for the Rock Springs Field Office, Wyoming and Associated...

  16. Observations of Lower Mississippi River Estuarine Dynamics: Effects of the Salt Wedge on Sediment Deposition

    NASA Astrophysics Data System (ADS)

    Ramirez, M. T.; Allison, M. A.

    2017-12-01

    The lowermost Mississippi River is subject to salt-wedge estuarine conditions during seasonally low flow, when seaward flow is unable to overcome density stratification. Previous studies in the Mississippi River salt wedge have shown the deposition of a fine sediment layer accumulating several mm/day beneath the reach where the salt wedge is present. Field studies were conducted during low flow in 2012-2015 utilizing ADCP, CTD, LISST, and physical samples to observe the physics of the salt wedge reach and to calculate rates and character of sediment trapping beneath the salt wedge. The field observations were summarized using a two-layer box-model representation of the reach to calculate water and sediment budgets entering, exiting, and stored within the reach. The salt wedge reach was found to be net depositional at rates up to 1.8 mm/day. The mechanism for transferring sediment mass from the downstream-flowing fluvial layer to the upstream-flowing marine layer appears to be flocculation, evidenced in LISST data by a spike in sediment particle diameters at the halocline. Applying reach-averaged rates of sediment trapping to a time-integrated model of salt-wedge position, we calculated annual totals ranging from 0.025 to 2.2 million tons of sediment deposited beneath the salt wedge, depending on salt-wedge persistence and upstream extent. Most years this seasonal deposit is remobilized during spring flood following the low-flow estuarine season, which may affect the timing of sediment delivery to the Gulf of Mexico, as well as particulate organic carbon, whose transport trajectory mirrors that of mineral sediment. These results are also relevant to ongoing dredging efforts necessary to maintain the economically-important navigation pathway through the lower Mississippi River, as well as planned efforts to use Mississippi River sedimentary resources to build land in the degrading Louisiana deltaic coast.

  17. The influence of moonlight and lunar periodicity on the efficacy of CDC light trap in sampling Phlebotomus (Larroussius) orientalis Parrot, 1936 and other Phlebotomus sandflies (Diptera: Psychodidae) in Ethiopia.

    PubMed

    Gebresilassie, Araya; Yared, Solomon; Aklilu, Essayas; Kirstein, Oscar David; Moncaz, Aviad; Tekie, Habte; Balkew, Meshesha; Warburg, Alon; Hailu, Asrat; Gebre-Michael, Teshome

    2015-02-15

    Phlebotomus orientalis is the main sandfly vector of visceral leishmaniasis in the north and northwest of Ethiopia. CDC light traps and sticky traps are commonly used for monitoring sandfly populations. However, their trapping efficiency is greatly influenced by various environmental factors including moonlight and lunar periodicity. In view of that, the current study assessed the effect of moonlight and lunar periodicity on the performance of light traps in collecting P. orientalis. Trapping of P. orientalis and other Phlebotomus spp. was conducted for 7 months between December 2012 and June 2013 using CDC light traps and sticky traps from peri-domestic and agricultural fields. Throughout the trapping periods, collections of sandfly specimens were carried out for 4 nights per month, totaling 28 trapping nights that coincided with the four lunar phases (viz., first quarter, third quarter, new and full moon) distributed in each month. In total, 13,533 sandflies of eight Phlebotomus species (P. orientalis, P. bergeroti, P. rodhaini, P. duboscqi, P. papatasi, P. martini, P. lesleyae and P. heischi) were recorded. The predominant species was P. orientalis in both trapping sites and by both methods of collection in all lunar phases. A significant difference (P < 0.05) was observed in the mean numbers of P. orientalis and other Phlebotomus spp. caught by CDC light traps among the four lunar phases. The highest mean number (231.13 ± 36.27 flies/trap/night) of P. orientalis was collected during the new moon phases, when the moonlight is absent. Fewer sandflies were attracted to light traps during a full moon. However, the number of P. orientalis and the other Phlebotomus spp. from sticky traps did not differ in their density among the four lunar phases (P = 0.122). Results of the current study demonstrated that the attraction and trapping efficiency of CDC light traps is largely influenced by the presence moonlight, especially during a full moon. Therefore, sampling of sandflies using light traps to estimate population density and other epidemiological studies in the field should take the effect of moonlight and lunar periodicity into account on the trapping efficacy of light traps.

  18. Hidden in the light: Magnetically induced afterglow from trapped chameleon fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gies, Holger; Mota, David F.; Shaw, Douglas J.

    2008-01-15

    We propose an afterglow phenomenon as a unique trace of chameleon fields in optical experiments. The vacuum interaction of a laser pulse with a magnetic field can lead to a production and subsequent trapping of chameleons in the vacuum chamber, owing to their mass dependence on the ambient matter density. Magnetically induced reconversion of the trapped chameleons into photons creates an afterglow over macroscopic timescales that can conveniently be searched for by current optical experiments. We show that the chameleon parameter range accessible to available laboratory technology is comparable to scales familiar from astrophysical stellar energy-loss arguments. We analyze quantitativelymore » the afterglow properties for various experimental scenarios and discuss the role of potential background and systematic effects. We conclude that afterglow searches represent an ideal tool to aim at the production and detection of cosmologically relevant scalar fields in the laboratory.« less

  19. Hybrid entanglement between a trapped ion and a mirror

    NASA Astrophysics Data System (ADS)

    Corrêa, Clóvis; Vidiella-Barranco, A.

    2018-05-01

    We present a scheme for cavity-assisted generation of hybrid entanglement between a moving mirror belonging to an optomechanical cavity and a single trapped ion located inside a second cavity. Due to radiation pressure, it is possible to entangle the states of the moving mirror and the corresponding cavity field. Also, by tuning the second cavity field with the internal degrees of freedom of the ion, an entangled state of the cavity field/ion can be independently generated. The fields leaking from each cavity may be then combined in a beam splitter, and following the detection of the outgoing photons by conveniently placed photodetectors, we show that it is possible to generate entangled states of the moving mirror and the single trapped ion's center-of-mass vibration. In our scheme the generated states are hybrid entangled states, in the sense that they are constituted by discrete (Fock) states and continuous variable (coherent) states.

  20. On the nature of high field charge transport in reinforced silicone dielectrics: Experiment and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S.

    The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field and were compared with the properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial in determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails and is successfully verified by amore » Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to the non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.« less

  1. De-trapping Magnetic Mirror Confined Fast Electrons by Shear Alfvén Waves

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Gekelman, W. N.; Pribyl, P.; Papadopoulos, K.

    2013-12-01

    Highly energetic electrons produced naturally or artificially can be trapped in the Earth's radiation belts for months, posing a danger to valuable space satellites. Concepts that can lead to radiation belts mitigation have drawn a great deal of interest. We report a clear demonstration in a controlled lab experiment that a shear Alfvén wave can effectively de-trap energetic electrons confined by a magnetic mirror field. The experiment is performed in a quiescent afterglow plasma in the Large Plasma Device (LaPD) at UCLA. A hot electron ring, along with hard x-rays of energies of 100 keV ~ 3 MeV, is generated by 2nd harmonic electron cyclotron resonance heating and is trapped in a magnetic mirror field (Rmirror = 1.1 ~ 4, Bmin = 438 Gauss). A shear Alfvén wave (fAlfvén ~ 0.5 fci, BAlfvén / B0 ~ 0.1%), is launched with a rotating magnetic field antenna with arbitrary polarization. Irradiated by the Alfvén wave, the loss of electrons is modulated at fAlfvén. The periodic loss of electrons is found to be related to the spatial distortion of the hot electron ring, and continues even after the termination of the wave. The effect is found to be caused only by the right-hand (electron diamagnetic direction) circularly polarized component of the Alfvén wave. Hard x-ray tomography, constructed from more than 1000 chord projections at each axial location, shows electrons are lost in both the radial and axial direction. X-ray spectroscopy shows electrons over a broad range of energy de-trapped by the Alfvén wave, which suggests a non-resonant nature of the de-trapping process. The de-trapping process is found to be accompanied by electro-magnetic fluctuations in the frequency range of 1~5 fLH, which are also modulated at the frequency of the Alfvén wave. To exclude the possible role of whistler waves in this electron de-trapping process, whistler waves at these frequencies are launched with an antenna in absence of the Alfvén wave and no significant electron loss found. Research is supported by an ONR MURI award, and conducted at the Basic Plasma Science Facility at UCLA funded by DoE and NSF. A schematic plot of the experiment, with measured Alfvén wave magnetic field vector over-plotted. The plot shows a plane transverse to the background magnetic mirror field, in which a population of fast electrons is trapped and formed a hot electron ring. It has been observed the shear Alfvén wave can effectively de-trap the mirror confined fast electrons.

  2. The electron trap parameter extraction-based investigation of the relationship between charge trapping and activation energy in IGZO TFTs under positive bias temperature stress

    NASA Astrophysics Data System (ADS)

    Rhee, Jihyun; Choi, Sungju; Kang, Hara; Kim, Jae-Young; Ko, Daehyun; Ahn, Geumho; Jung, Haesun; Choi, Sung-Jin; Myong Kim, Dong; Kim, Dae Hwan

    2018-02-01

    Experimental extraction of the electron trap parameters which are associated with charge trapping into gate insulators under the positive bias temperature stress (PBTS) is proposed and demonstrated for the first time in amorphous indium-gallium-zinc-oxide thin-film transistors. This was done by combining the PBTS/recovery time-evolution of the experimentally decomposed threshold voltage shift (ΔVT) and the technology computer-aided design (TCAD)-based charge trapping simulation. The extracted parameters were the trap density (NOT) = 2.6 × 1018 cm-3, the trap energy level (ΔET) = 0.6 eV, and the capture cross section (σ0) = 3 × 10-19 cm2. Furthermore, based on the established TCAD framework, the relationship between the electron trap parameters and the activation energy (Ea) is comprehensively investigated. It is found that Ea increases with an increase in σ0, whereas Ea is independent of NOT. In addition, as ΔET increases, Ea decreases in the electron trapping-dominant regime (low ΔET) and increases again in the Poole-Frenkel (PF) emission/hopping-dominant regime (high ΔET). Moreover, our results suggest that the cross-over ΔET point originates from the complicated temperature-dependent competition between the capture rate and the emission rate. The PBTS bias dependence of the relationship between Ea and ΔET suggests that the electric field dependence of the PF emission-based electron hopping is stronger than that of the thermionic field emission-based electron trapping.

  3. Traps containing carvacrol, a biological approach for the control of Dermanyssus gallinae.

    PubMed

    Barimani, Alireza; Youssefi, Mohammad Reza; Tabari, Mohaddeseh Abouhosseini

    2016-09-01

    Resistance to conventional synthetic pesticides has been widely reported in Dermanyssus gallinae in different aviary systems. Cardboard traps containing acaricides had been introduced as a successive device for collection and control of the poultry red mite. The present study assessed field efficacy of traps containing carvacrol in the control and reduction of D. gallinae in laying poultry farm. Two different carvacrol-based formulations were tested for their toxicity and possible repellent activity on D. gallinae to determine the most appropriate formulation and concentration to be used in the field study. In vitro tests confirmed that 1 % carvacrol formulation with ethoxylated castor oil as emulsifier was significantly toxic to D. gallinae without any dissuading effect in comparison to ethanol and higher concentrations of carvacrol (p < 0.05). A subsequent in vivo experiment in a cage system laying farm demonstrated significant acaricidal activity for traps containing 1 % carvacrol. Throughout the study, untreated cardboard traps were used for monitoring mite populations. Carvacrol-impregnated traps were efficacious in the control of D. gallinae and led to over 92 % reduction in mite's population after 2 week of application. Toxic effects of carvacrol maintained through 2 weeks after the last application of traps. Results of the present study suggested that effective control of the poultry red mite can be achieved by traps containing carvacrol. These traps can be used safely in poultry facilities without any concern about residues in eggs, meat, and environment.

  4. Agricultural practices and residual corn during spring crane and waterfowl migration in Nebraska

    USGS Publications Warehouse

    Sherfy, M.H.; Anteau, M.J.; Bishop, A.A.

    2011-01-01

    Nebraska's Central Platte River Valley (CPRV) is a major spring-staging area for migratory birds. Over 6 million ducks, geese, and sandhill cranes (Grus canadensis) stage there en route to tundra, boreal forest, and prairie breeding habitats, storing nutrients for migration and reproduction by consuming primarily corn remaining in fields after harvest (hereafter residual corn). In springs 2005-2007, we measured residual corn density in randomly selected harvested cornfields during early (n=188) and late migration (n=143) periods. We estimated the mean density of residual corn for the CPRV and examined the influence of agricultural practices (post-harvest field management) and migration period on residual corn density. During the early migration period, residual corn density was greater in idle harvested fields than any other treatments of fields (42%, 48%, 53%, and 92% more than grazed, grazed and mulched, mulched, and tilled fields, respectively). Depletion of residual corn from early to late migration did not differ among post-harvest treatments but was greatest during the year when overall corn density was lowest (2006). Geometric mean early-migration residual corn density for the CPRV in 2005-2007 (42.4 kg/ha; 95% CI=35.2-51.5 kg/ha) was markedly lower than previously published estimates, indicating that there has been a decrease in abundance of residual corn available to waterfowl during spring staging. Increases in harvest efficiency have been implicated as a cause for decreasing corn densities since the 1970s. However, our data show that post-harvest management of cornfields also can substantially influence the density of residual corn remaining in fields during spring migration. Thus, managers may be able to influence abundance of high-energy foods for spring-staging migratory birds in the CPRV through programs that influence post-harvest management of cornfields. ?? 2011 The Wildlife Society.

  5. Trapping and breaking of in vivo nicked DNA during pulsed-field gel electrophoresis

    PubMed Central

    Khan, Sharik R.; Kuzminov, Andrei

    2013-01-01

    Pulsed field gel electrophoresis (PFGE) offers a high-resolution approach to quantify chromosomal fragmentation in bacteria, measured as percent of chromosomal DNA entering the gel. The degree of separation in PFG depends upon the size of DNA, as well as various conditions of electrophoresis, such as electric field strength (FS), time of electrophoresis, switch time and buffer composition. Here we describe a new parameter, the structural integrity of the sample DNA itself, that influences its migration through PFGs. We show that sub-chromosomal fragments containing both spontaneous and DNA damage-induced nicks are prone to breakage during PFGE. Such breakage at single strand interruptions results in artefactual decrease in molecular weight of linear DNA making accurate determination of the number of double strand breaks difficult. While breakage of nicked sub-chromosomal fragments is FS-independent, some high molecular weight sub-chromosomal fragments are also trapped within wells under the standard PFGE conditions. This trapping can be minimized by lowering the field strength and increasing the time of electrophoresis. We discuss how breakage of nicked DNA may be mechanistically linked to trapping. Our results suggest how to optimize conditions for PFGE when quantifying chromosomal fragmentation induced by DNA damage. PMID:23770235

  6. Continuous-flow trapping and localized enrichment of micro- and nano-particles using induced-charge electrokinetics.

    PubMed

    Zhao, Cunlu; Yang, Chun

    2018-02-14

    In this work, we report an effective microfluidic technique for continuous-flow trapping and localized enrichment of micro- and nano-particles by using induced-charge electrokinetic (ICEK) phenomena. The proposed technique utilizes a simple microfluidic device that consists of a straight microchannel and a conducting strip attached to the bottom wall of the microchannel. Upon application of the electric field along the microchannel, the conducting strip becomes polarized to introduce two types of ICEK phenomena, the ICEK flow vortex and particle dielectrophoresis, and they are identified by a theoretical model formulated in this study to be jointly responsible for the trapping of particles over the edge of the conducting strip. Our experiments showed that successful trapping requires an AC/DC combined electric field: the DC component is mainly to induce electroosmotic flow for transporting particles to the trapping location; the AC component induces ICEK phenomena over the edge of the conducting strip for particle trapping. The performance of the technique is examined with respect to the applied electric voltage, AC frequency and the particle size. We observed that the trapped particles form a narrow band (nearly a straight line) defined by the edge of the conducting strip, thereby allowing localized particle enrichment. For instance, we found that under certain conditions a high particle enrichment ratio of 200 was achieved within 30 seconds. We also demonstrated that the proposed technique was able to trap particles from several microns down to several tens of nanometer. We believe that the proposed ICEK trapping would have great flexibility that the trapping location can be readily varied by controlling the location of the patterned conducting strip and multiple-location trapping can be expected with the use of multiple conducting strips.

  7. Ground-water and water-chemistry data for the Willamette basin, Oregon

    USGS Publications Warehouse

    Orzol, Leonard L.; Wozniak, Karl C.; Meissner, Tiffany R.; Lee, Douglas B.

    2000-01-01

    This report presents ground-water data collected and compiled as part of a study of the ground-water resources of the Willamette River Basin, Oregon. The report includes tabulated information and a location map for 1,234 field-located water wells and 6 springs, hydrographs showing water-level fluctuations during various time periods for 265 of the wells, borehole geophysical data for 16 wells, and water-chemistry analyses from 125 wells and 6 springs. These data, as well as data for 4,752 additional fieldlocated wells and 1 spring, are included on a CD-ROM. In addition, the locations of the field-located wells and springs are provided in geographic information system formats on the CD-ROM.

  8. Field evaluation of 3-hydroxy-2-hexanone and ethanol as attractants for the cerambycid beetle pest of vineyards, Xylotrechus arvicola.

    PubMed

    Rodríguez-González, Álvaro; Sánchez-Maíllo, Esteban; Peláez, Horacio J; González-Núñez, Manuel; Hall, David R; Casquero, Pedro A

    2017-08-01

    The beetle Xylotrechus arvicola (Coleoptera: Cerambycidae) is a serious pest of vineyards in the Iberian Peninsula. In previous work, the male beetles, but not females, were shown to produce (R)-3-hydroxy-2-hexanone, and female beetles were attracted to this compound in a laboratory bioassay. In this study, release rates of 3-hydroxy-2-hexanone from different dispensers were measured in the laboratory, and the attractiveness of these to X. arvicola adults was determined in trapping tests in three traditional wine-growing regions in Spain. As a result of laboratory experiments, for field experiments 3-hydroxy-2-hexanone was formulated as 100 μL in a polyethylene sachet (50 mm × 50 mm × 250 µm), and ethanol was formulated as 1 mL in a polyethylene press-seal bag (76 mm × 57 mm ×50 µm). Field catches were similar at all three study sites. Catches in traps baited with 3-hydroxy-2-hexanone alone were not significantly different from those in unbaited control traps, but catches in traps baited with 3-hydroxy-2-hexanone and ethanol in separate sachets, with 3-hydroxy-2-hexanone and ethanol in the same sachet or with ethanol alone were significantly greater than those in control traps. These results confirm that the beetles are attracted to ethanol, and the addition of 3-hydroxy-2-hexanone does not seem to make any difference. Attraction of females for the male-produced compound (R)-3-hydroxy-2-hexanone has been observed in laboratory but not in field experiments. Traps baited with ethanol are highly attractive to both sexes of adults of X. arvicola, and these can be used for improved monitoring of the adult emergence and for population control by mass trapping. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Wide, Branching Channels

    NASA Image and Video Library

    2017-01-11

    Southern spring on Mars brings sublimation of the seasonal dry ice polar cap. Gas trapped under the seasonal ice sheet carves channels on its way to escaping to the atmosphere. At this site, the channels are wider than we see elsewhere on Mars, perhaps meaning that the spider-like (or more scientifically, "araneiform") terrain here is older, or that the surface is more easily eroded. Seasonal fans of eroded surface material, pointed in two different directions, are deposited on the remaining ice. http://photojournal.jpl.nasa.gov/catalog/PIA13151

  10. Remote sensing in hydrology: A survey of applications with selected bibliography and abstracts

    NASA Technical Reports Server (NTRS)

    Sers, S. W. (Compiler)

    1971-01-01

    Remote infrared sensing as a water exploration technique is demonstrated. Various applications are described, demonstrating that infrared sensors can locate aquifers, geothermal water, water trapped by faults, springs and water in desert regions. The potentiality of airborne IR sensors as a water prospecting tool is considered. Also included is a selected bibliography with abstracts concentrating on those publications which will better acquaint the hydrologist with investigations using thermal remote sensors as applied to water exploration.

  11. Field-Scale Modeling of Local Capillary Trapping During CO2 Injection into a Saline Aquifer

    NASA Astrophysics Data System (ADS)

    Ren, B.; Lake, L. W.; Bryant, S. L.

    2015-12-01

    Local capillary trapping is the small-scale (10-2 to 10+1 m) CO2 trapping that is caused by the capillary pressure heterogeneity. The benefit of LCT, applied specially to CO2 sequestration, is that saturation of stored CO2 is larger than the residual gas, yet these CO2 are not susceptible to leakage through failed seals. Thus quantifying the extent of local capillary trapping is valuable in design and risk assessment of geologic storage projects. Modeling local capillary trapping is computationally expensive and may even be intractable using a conventional reservoir simulator. In this paper, we propose a novel method to model local capillary trapping by combining geologic criteria and connectivity analysis. The connectivity analysis originally developed for characterizing well-to-reservoir connectivity is adapted to this problem by means of a newly defined edge weight property between neighboring grid blocks, which accounts for the multiphase flow properties, injection rate, and gravity effect. Then the connectivity is estimated from shortest path algorithm to predict the CO2 migration behavior and plume shape during injection. A geologic criteria algorithm is developed to estimate the potential local capillary traps based only on the entry capillary pressure field. The latter is correlated to a geostatistical realization of permeability field. The extended connectivity analysis shows a good match of CO2 plume computed by the full-physics simulation. We then incorporate it into the geologic algorithm to quantify the amount of LCT structures identified within the entry capillary pressure field that can be filled during CO2 injection. Several simulations are conducted in the reservoirs with different level of heterogeneity (measured by the Dykstra-Parsons coefficient) under various injection scenarios. We find that there exists a threshold Dykstra-Parsons coefficient, below which low injection rate gives rise to more LCT; whereas higher injection rate increases LCT in heterogeneous reservoirs. Both the geologic algorithm and connectivity analysis are very fast; therefore, the integrated methodology can be used as a quick tool to estimate local capillary trapping. It can also be used as a potential complement to the full-physics simulation to evaluate safe storage capacity.

  12. Beetle fauna captured in traps baited with Tomicus piniperda pheromone blends in a pine stand in Central Croatia

    Treesearch

    Milan Pernek; Boris Hrasovec; Miljenko Zupanic

    2003-01-01

    During field evaluations of pheromone blends used for monitoring Tomicus piniperda beetles, many non-target beetles were captured and identified. Five pheromone blends, plus commercially available TOMODOR were used in two different traps: the IPM Tech Intercept PTBB and the THEYSOHN intercept barrier trap. In addition to Tomicus...

  13. Comparison Of trap types and colors for capturing emerald ash borer adults at different population densities

    Treesearch

    Therese M. Poland; Deborah G. Mccullough

    2014-01-01

    Results of numerous trials to evaluate artificial trap designs and lures for detection of Agrilus planipennis Fairmaire, the emerald ash borer, have yielded inconsistent results, possibly because of different A. planipennis population densities in the field sites. In 2010 and 2011, we compared 1) green canopy traps, 2) purple...

  14. Effect of lures and colors on capture of lady beetles (coleoptera: coccinellidae) in tedders pyramidal traps

    USDA-ARS?s Scientific Manuscript database

    Purposeful attraction and/or aggregation of adult Coccinellidae at target sites would be useful for sampling purposes and/or pest suppression. We field-tested 1) lures in yellow and black pyramidal traps and 2) pyramidal traps that had been painted one or two colors (without lures) to determine if ...

  15. Combination Phenyl Propionate/Pheromone Traps for Monitoring Navel Orangeworm (Lepidoptera: Pyralidae) in Almonds in the Vicinity of Mating Disruption.

    PubMed

    Burks, Charles S

    2017-04-01

    Aerosol mating disruption is used for management of navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), in an increasing portion of California almonds and pistachios. This formulation suppresses pheromone monitoring traps far beyond the treatment block, potentially complicating monitoring and management of this key pest. Phenyl propionate is an attractant used to capture adults in the presence of mating disruption, completely suppressing pheromone traps, and lures combining phenyl propionate with a pheromone lure (PPO-combo lure) synergize trap capture in the presence of mating disruption. In this study, laboratory and field trials of different phenyl propionate dispensers indicate a useful life of six weeks. Controlled experiments found similar numbers of adults captured in phenyl propionate and PPO-combo lures in the presence of varying levels of mating disruption intensity. A subsequent trial compared monitoring of field plots at various distances from fields under commercial mating disruption for much of the growing season with pheromone and PPO-combo lures. Although there was some evidence of partial suppression of capture in PPO-combo traps closer to mating disruption compared with lures farther away, there was no failure of detection as occurred with pheromone lures. The ratio of adults in pheromone and PPO-combo traps varied with proximity from treated fields. These results indicate that, in addition to monitoring in mating disruption plots, phenyl propionate lures can be useful for insuring against failure of detection of navel orangeworm pressure in areas where mating disruption is widely used. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by a US Government employee and is in the public domain in the US.

  16. Electron Cloud Trapping in Recycler Combined Function Dipole Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, Sergey A.; Nagaitsev, S.

    2016-10-04

    Electron cloud can lead to a fast instability in intense proton and positron beams in circular accelerators. In the Fermilab Recycler the electron cloud is confined within its combined function magnets. We show that the field of combined function magnets traps the electron cloud, present the results of analytical estimates of trapping, and compare them to numerical simulations of electron cloud formation. The electron cloud is located at the beam center and up to 1% of the particles can be trapped by the magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electronsmore » significantly increases the density of the cloud on the next revolution. In a Recycler combined function dipole this multiturn accumulation allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The multi-turn build-up can be stopped by injection of a clearing bunch of 1010 p at any position in the ring.« less

  17. Direct observation of closed magnetic flux trapped in the high-latitude magnetosphere.

    PubMed

    Fear, R C; Milan, S E; Maggiolo, R; Fazakerley, A N; Dandouras, I; Mende, S B

    2014-12-19

    The structure of Earth's magnetosphere is poorly understood when the interplanetary magnetic field is northward. Under this condition, uncharacteristically energetic plasma is observed in the magnetotail lobes, which is not expected in the textbook model of the magnetosphere. Using satellite observations, we show that these lobe plasma signatures occur on high-latitude magnetic field lines that have been closed by the fundamental plasma process of magnetic reconnection. Previously, it has been suggested that closed flux can become trapped in the lobe and that this plasma-trapping process could explain another poorly understood phenomenon: the presence of auroras at extremely high latitudes, called transpolar arcs. Observations of the aurora at the same time as the lobe plasma signatures reveal the presence of a transpolar arc. The excellent correspondence between the transpolar arc and the trapped closed flux at high altitudes provides very strong evidence of the trapping mechanism as the cause of transpolar arcs. Copyright © 2014, American Association for the Advancement of Science.

  18. Study of tunneling transport in Si-based tunnel field-effect transistors with ON current enhancement utilizing isoelectronic trap

    NASA Astrophysics Data System (ADS)

    Mori, Takahiro; Morita, Yukinori; Miyata, Noriyuki; Migita, Shinji; Fukuda, Koichi; Mizubayashi, Wataru; Masahara, Meishoku; Yasuda, Tetsuji; Ota, Hiroyuki

    2015-02-01

    The temperature dependence of the tunneling transport characteristics of Si diodes with an isoelectronic impurity has been investigated in order to clarify the mechanism of the ON-current enhancement in Si-based tunnel field-effect transistors (TFETs) utilizing an isoelectronic trap (IET). The Al-N complex impurity was utilized for IET formation. We observed three types of tunneling current components in the diodes: indirect band-to-band tunneling (BTBT), trap-assisted tunneling (TAT), and thermally inactive tunneling. The indirect BTBT and TAT current components can be distinguished with the plot described in this paper. The thermally inactive tunneling current probably originated from tunneling consisting of two paths: tunneling between the valence band and the IET trap and tunneling between the IET trap and the conduction band. The probability of thermally inactive tunneling with the Al-N IET state is higher than the others. Utilization of the thermally inactive tunneling current has a significant effect in enhancing the driving current of Si-based TFETs.

  19. High-Performance Nonvolatile Organic Field-Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers.

    PubMed

    Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Yi, Mingdong; Wang, Laiyuan; Wu, Dequn; Xie, Linghai; Huang, Wei

    2017-08-01

    Nonvolatile organic field-effect transistor (OFET) memory devices based on pentacene/ N , N '-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n-type P13 embedded in p-type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well-like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge-trapping property of the poly(4-vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high-performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory.

  20. Non-contact, non-destructive, quantitative probing of interfacial trap sites for charge carrier transport at semiconductor-insulator boundary

    NASA Astrophysics Data System (ADS)

    Choi, Wookjin; Miyakai, Tomoyo; Sakurai, Tsuneaki; Saeki, Akinori; Yokoyama, Masaaki; Seki, Shu

    2014-07-01

    The density of traps at semiconductor-insulator interfaces was successfully estimated using microwave dielectric loss spectroscopy with model thin-film organic field-effect transistors. The non-contact, non-destructive analysis technique is referred to as field-induced time-resolved microwave conductivity (FI-TRMC) at interfaces. Kinetic traces of FI-TRMC transients clearly distinguished the mobile charge carriers at the interfaces from the immobile charges trapped at defects, allowing both the mobility of charge carriers and the number density of trap sites to be determined at the semiconductor-insulator interfaces. The number density of defects at the interface between evaporated pentacene on a poly(methylmethacrylate) insulating layer was determined to be 1012 cm-2, and the hole mobility was up to 6.5 cm2 V-1 s-1 after filling the defects with trapped carriers. The FI-TRMC at interfaces technique has the potential to provide rapid screening for the assessment of interfacial electronic states in a variety of semiconductor devices.

  1. [Trapping techniques for Solenopsis invicta].

    PubMed

    Liang, Xiao-song; Zhang, Qiang; Zhuang, Yiong-lin; Li, Gui-wen; Ji, Lin-peng; Wang, Jian-guo; Dai, Hua-guo

    2007-06-01

    A field study was made to investigate the trapping effects of different attractants, traps, and wind directions on Solenopsis invicta. The results showed that among the test attractants, TB1 (50 g fishmeal, 40 g peptone, 10 ml 10% sucrose water solution and 20 ml soybean oil) had the best effect, followed by TB2 (ham), TB6 (100 g cornmeal and 20 ml soybean oil) and TB4 (10 ml 10% sucrose water solution, 100 g sugarcane powder and 20 ml soybean oil), with a mean capture efficiency being 77.6, 58.7, 29 and 7.7 individuals per trap, respectively. No S. invicta was trapped with TB3 (10 ml 10% sucrose water solution, 100 g cornmeal and 20 ml soybean oil) and TB5 (honey). Tube trap was superior to dish trap, with a trapping efficiency of 75.2 and 35 individuals per trap, respectively. The attractants had better effects in leeward than in windward.

  2. Microstructure and trapped field of YBCO bulk single-grain superconductors prepared by interior seeding

    NASA Astrophysics Data System (ADS)

    Radusovska, M.; Diko, P.; Piovarci, S.; Park, S.-D.; Jun, B.-H.; Kim, C.-J.

    2017-10-01

    The microstructural analyses of YBCO bulk single-grain superconductors grown by interior seeding with taller and shorter upper pellets have shown that a suitable upper pellet height can lower the porosity in the upper part of the sample, produce a more appropriate distribution of pinning centres in the form of Y-211 particles and suppress subgrain formation with a higher crystal misalignment in the c-growth sector (c-GS), which can lead to a higher measured trapped magnetic field and a more uniform cone of the trapped-field profile. The observed bulging of the sample surface at the c-GS can be explained by the edge melt distribution model, which shows that macroscopic mass transport to the growth sector occurs with higher growth rates.

  3. A field test of attractant traps for invasive Burmese pythons (Python molurus bivittatus) in southern Florida

    USGS Publications Warehouse

    Reed, R.N.; Hart, K.M.; Rodda, G.H.; Mazzotti, F.J.; Snow, R.W.; Cherkiss, M.; Rozar, R.; Goetz, S.

    2011-01-01

    Context. Invasive Burmese pythons (Python molurus bivittatus) are established over thousands of square kilometres of southern Florida, USA, and consume a wide range of native vertebrates. Few tools are available to control the python population, and none of the available tools have been validated in the field to assess capture success as a proportion of pythons available to be captured. Aims. Our primary aim was to conduct a trap trial for capturing invasive pythons in an area east of Everglades National Park, where many pythons had been captured in previous years, to assess the efficacy of traps for population control.Wealso aimed to compare results of visual surveys with trap capture rates, to determine capture rates of non-target species, and to assess capture rates as a proportion of resident pythons in the study area. Methods.Weconducted a medium-scale (6053 trap nights) experiment using two types of attractant traps baited with live rats in the Frog Pond area east of Everglades National Park.Wealso conducted standardised and opportunistic visual surveys in the trapping area. Following the trap trial, the area was disc harrowed to expose pythons and allow calculation of an index of the number of resident pythons. Key results. We captured three pythons and 69 individuals of various rodent, amphibian, and reptile species in traps. Eleven pythons were discovered during disc harrowing operations, as were large numbers of rodents. Conclusions. The trap trial captured a relatively small proportion of the pythons that appeared to be present in the study area, although previous research suggests that trap capture rates improve with additional testing of alternative trap designs. Potential negative impacts to non-target species were minimal. Low python capture rates may have been associated with extremely high local prey abundances during the trap experiment. Implications. Results of this trial illustrate many of the challenges in implementing and interpreting results from tests of control tools for large cryptic predators such as Burmese pythons. ?? CSIRO 2011.

  4. Atmospheric bromoform at Cape Point, South Africa: an initial fixed-point data set on the African continent

    NASA Astrophysics Data System (ADS)

    Kuyper, Brett; Palmer, Carl J.; Labuschagne, Casper; Reason, Chris J. C.

    2018-04-01

    Bromoform mixing ratios in marine air were measured at Cape Point Global Atmospheric Watch Station, South Africa. This represents the first such bromoform data set recorded at this location. Manual daily measurements were made during a month-long field campaign (austral spring 2011) using a gas chromatograph-electron capture detector (GC-ECD) with a custom-built front end thermal desorption trap. The measured concentrations ranged between 4.4 and 64.6 (± 22.2 %) ppt with a mean of 24.8 ± 14.8 ppt. The highest mixing ratios recorded here occurred at, or shortly after, low tide. The diurnal cycle exhibited a morning and evening maximum with lower concentrations throughout the rest of the day. Initial analysis of the data presented indicates that the local kelp beds were the dominant source of the bromoform reported. A concentration-weighted trajectory analysis of the bromoform measurements suggests that two offshore source areas may exist. These source areas appear to be centred on the Agulhas retroflection and extend from St Helena Bay to the southwest.

  5. Advanced methods for light trapping in optically thin silicon solar cells

    NASA Astrophysics Data System (ADS)

    Nagel, James Richard

    2011-12-01

    The field of light trapping is the study of how best to absorb light in a thin film of material when most light either reflects away at the surface or transmits straight through to the other side. This has tremendous application to the field of photovoltaics where thin silicon films can be manufactured cheaply, but also fail to capture all of the available photons in the solar spectrum. Advancements in light trapping therefore bring us closer to the day when photovoltaic devices may reach grid parity with traditional fossil fuels on the electrical energy market. This dissertation advances our understanding of light trapping by first modeling the effects of loss in planar dielectric waveguides. The mathematical framework developed here can be used to model any arbitrary three-layer structure with mixed gain or loss and then extract the total field solution for the guided modes. It is found that lossy waveguides possess a greater number of eigenmodes than their lossless counterparts, and that these "loss guided" modes attenuate much more rapidly than conventional modes. Another contribution from this dissertation is the exploration of light trapping through the use of dielectric nanospheres embedded directly within the active layer of a thin silicon film. The primary benefit to this approach is that the device can utilize a surface nitride layer serving as an antireflective coating while still retaining the benefits of light trapping within the film. The end result is that light trapping and light injection are effectively decoupled from each other and may be independently optimized within a single photovoltaic device. The final contribution from this work is a direct numerical comparison between multiple light trapping schemes. This allows us to quantify the relative performances of various design techniques against one another and objectively determine which ideas tend to capture the most light. Using numerical simulation, this work directly compares the absorption gains due to embedded nanoparticles, surface textures, antireflective coatings, and plasmonic nanospheres. This work also introduces a new mathematical metric for differentiating between index matching and angular scattering at a textured surface. Such information will prove useful in guiding future scientific efforts in the fields of light trapping and light management in thin film photovoltaics.

  6. One-Way Particle Transport Using Oscillatory Flow in Asymmetric Traps.

    PubMed

    Lee, Jaesung; Burns, Mark A

    2018-03-01

    One challenge of integrating of passive, microparticles manipulation techniques into multifunctional microfluidic devices is coupling the continuous-flow format of most systems with the often batch-type operation of particle separation systems. Here, a passive fluidic technique-one-way particle transport-that can conduct microparticle operations in a closed fluidic circuit is presented. Exploiting pass/capture interactions between microparticles and asymmetric traps, this technique accomplishes a net displacement of particles in an oscillatory flow field. One-way particle transport is achieved through four kinds of trap-particle interactions: mechanical capture of the particle, asymmetric interactions between the trap and the particle, physical collision of the particle with an obstacle, and lateral shift of the particle into a particle-trapping stream. The critical dimensions for those four conditions are found by numerically solving analytical mass balance equations formulated using the characteristics of the flow field in periodic obstacle arrays. Visual observation of experimental trap-particle dynamics in low Reynolds number flow (<0.01) confirms the validity of the theoretical predictions. This technique can transport hundreds of microparticles across trap rows in only a few fluid oscillations (<500 ms per oscillation) and separate particles by their size differences. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A Single, Plastic Population of Mycosphaerella pinodes Causes Ascochyta Blight on Winter and Spring Peas (Pisum sativum) in France

    PubMed Central

    Guibert, Michèle; Leclerc, Aurélie; Andrivon, Didier; Tivoli, Bernard

    2012-01-01

    Plant diseases are caused by pathogen populations continuously subjected to evolutionary forces (genetic flow, selection, and recombination). Ascochyta blight, caused by Mycosphaerella pinodes, is one of the most damaging necrotrophic pathogens of field peas worldwide. In France, both winter and spring peas are cultivated. Although these crops overlap by about 4 months (March to June), primary Ascochyta blight infections are not synchronous on the two crops. This suggests that the disease could be due to two different M. pinodes populations, specialized on either winter or spring pea. To test this hypothesis, 144 pathogen isolates were collected in the field during the winter and spring growing seasons in Rennes (western France), and all the isolates were genotyped using amplified fragment length polymorphism (AFLP) markers. Furthermore, the pathogenicities of 33 isolates randomly chosen within the collection were tested on four pea genotypes (2 winter and 2 spring types) grown under three climatic regimes, simulating winter, late winter, and spring conditions. M. pinodes isolates from winter and spring peas were genetically polymorphic but not differentiated according to the type of cultivars. Isolates from winter pea were more pathogenic than isolates from spring pea on hosts raised under winter conditions, while isolates from spring pea were more pathogenic than those from winter pea on plants raised under spring conditions. These results show that disease developed on winter and spring peas was initiated by a single population of M. pinodes whose pathogenicity is a plastic trait modulated by the physiological status of the host plant. PMID:23023742

  8. Seasonal and Diel Activity Patterns of Eight Sympatric Mammals in Northern Japan Revealed by an Intensive Camera-Trap Survey.

    PubMed

    Ikeda, Takashi; Uchida, Kenta; Matsuura, Yukiko; Takahashi, Hiroshi; Yoshida, Tsuyoshi; Kaji, Koichi; Koizumi, Itsuro

    2016-01-01

    The activity patterns of mammals are generally categorized as nocturnal, diurnal, crepuscular (active at twilight), and cathemeral (active throughout the day). These patterns are highly variable across regions and seasons even within the same species. However, quantitative data is still lacking, particularly for sympatric species. We monitored the seasonal and diel activity patterns of terrestrial mammals in Hokkaido, Japan. Through an intensive camera-trap survey a total of 13,279 capture events were recorded from eight mammals over 20,344 camera-trap days, i.e., two years. Diel activity patterns were clearly divided into four categories: diurnal (Eurasian red squirrels), nocturnal (raccoon dogs and raccoons), crepuscular (sika deer and mountain hares), and cathemeral (Japanese martens, red foxes, and brown bears). Some crepuscular and cathemeral mammals shifted activity peaks across seasons. Particularly, sika deer changed peaks from twilight during spring-autumn to day-time in winter, possibly because of thermal constraints. Japanese martens were cathemeral during winter-summer, but nocturnal in autumn. We found no clear indication of predator-prey and competitive interactions, suggesting that animal densities are not very high or temporal niche partitioning is absent among the target species. This long-term camera-trap survey was highly cost-effective and provided one of the most detailed seasonal and diel activity patterns in multiple sympatric mammals under natural conditions.

  9. The effect of a radial electric field on ripple-trapped ions observed by neutral particle fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heikkinen, J.A.; Herrmann, W.; Kurki-Suonio, T.

    1997-10-01

    The effect of a radial electric field on nonthermal ripple-trapped ions is investigated using toroidal Monte Carlo simulations for edge tokamak plasmas. The increase in the neutral particle flux from the ions trapped in local magnetic wells observed by the charge exchange (CX) detector at a low confinement to high confinement transition at ASDEX (Axially Symmetric Divertor Experiment). Upgrade tokamak [{ital Proceedings of the 20th European Conference on Controlled Fusion and Plasma Physics}, Lisbon (European Physical Society, Petit-Lancy, Switzerland, 1993), Vol. 17C, Part I, p. 267] is reproduced in the simulations by turning on a radial electric field near themore » plasma periphery. The poloidal and toroidal angles at which the CX detector signal is most sensitive to the radial electric field are determined. A fast response time of the signal in the range of 50{endash}100 {mu}s to the appearance of the electric field can be found in the simulations with a relatively large half-width of the negative electric field region. {copyright} {ital 1997 American Institute of Physics.}« less

  10. A field test of attractant traps for invasive Burmese pythons (Python molurus bivittatus) in southern Florida

    USGS Publications Warehouse

    Reed, Robert N.; Hart, Kristen M.; Rodda, Gordon H.; Mazzotti, Frank J.; Snow, Ray W.; Cherkiss, Michael; Rozar, Rondald; Goetz, Scott

    2011-01-01

    Conclusions: The trap trial captured a relatively small proportion of the pythons that appeared to be present in the study area, although previous research suggests that trap capture rates improve with additional testing of alternative trap designs. Potential negative impacts to non-target species were minimal. Low python capture rates may have been associated with extremely high local prey abundances during the trap experiment. Implications: Results of this trial illustrate many of the challenges in implementing and interpreting results from tests of control tools for large cryptic predators such as Burmese pythons.

  11. A new quasi-thermal trap model for solar flare hard X-ray bursts - An electrostatic trap model

    NASA Technical Reports Server (NTRS)

    Spicer, D. S.; Emslie, A. G.

    1988-01-01

    A new quasi-thermal trap model of solar flare hard X-ray bursts is presented. The new model utilizes the trapping ability of a magnetic mirror and a magnetic field-aligned electrostatic potential produced by differences in anisotropies of the electron and ion distribution function. It is demonstrated that this potential can, together with the magnetic mirror itself, effectively confine electrons in a trap, thereby enhancing their bremsstrahlung yield per electron. This analysis makes even more untenable models involving precipitation of the bremsstrahlung-producing electrons onto a cold target.

  12. Stable Trapping of Multielectron Helium Bubbles in a Paul Trap

    NASA Astrophysics Data System (ADS)

    Joseph, E. M.; Vadakkumbatt, V.; Pal, A.; Ghosh, A.

    2017-06-01

    In a recent experiment, we have used a linear Paul trap to store and study multielectron bubbles (MEBs) in liquid helium. MEBs have a charge-to-mass ratio (between 10^{-4} and 10^{-2} C/kg) which is several orders of magnitude smaller than ions (between 10^6 and 10^8 C/kg) studied in traditional ion traps. In addition, MEBs experience significant drag force while moving through the liquid. As a result, the experimental parameters for stable trapping of MEBs, such as magnitude and frequency of the applied electric fields, are very different from those used in typical ion trap experiments. The purpose of this paper is to model the motion of MEBs inside a linear Paul trap in liquid helium, determine the range of working parameters of the trap, and compare the results with experiments.

  13. Spectrally reconfigurable integrated multi-spot particle trap.

    PubMed

    Leake, Kaelyn D; Olson, Michael A B; Ozcelik, Damla; Hawkins, Aaron R; Schmidt, Holger

    2015-12-01

    Optical manipulation of small particles in the form of trapping, pushing, or sorting has developed into a vast field with applications in the life sciences, biophysics, and atomic physics. Recently, there has been increasing effort toward integration of particle manipulation techniques with integrated photonic structures on self-contained optofluidic chips. Here, we use the wavelength dependence of multi-spot pattern formation in multimode interference (MMI) waveguides to create a new type of reconfigurable, integrated optical particle trap. Interfering lateral MMI modes create multiple trapping spots in an intersecting fluidic channel. The number of trapping spots can be dynamically controlled by altering the trapping wavelength. This novel, spectral reconfigurability is utilized to deterministically move single and multiple particles between different trapping locations along the channel. This fully integrated multi-particle trap can form the basis of high throughput biophotonic assays on a chip.

  14. On the relationship between satellite-retrieved surface temperature fronts and chlorophyll a in the western South Atlantic

    NASA Astrophysics Data System (ADS)

    Saraceno, Martin; Provost, Christine; Piola, Alberto R.

    2005-11-01

    The time-space distribution of chlorophyll a in the southwestern Atlantic is examined using 6 years (1998-2003) of sea surface color images from Sea-viewing Wide Field of View Sensor (SeaWiFS). Chlorophyll a (chl a) distribution is confronted with sea surface temperature (SST) fronts retrieved from satellite imagery. Histogram analysis of the color, SST, and SST gradient data sets provides a simple procedure for pixel classification from which eight biophysical regions in the SWA are identified, including three new regions with regard to Longhurst (1998) work: Patagonian Shelf Break (PSB), Brazil Current Overshoot, and Zapiola Rise region. In the PSB region, coastal-trapped waves are suggested as a possible mechanism leading to the intraseasonal frequencies observed in SST and chl a. Mesoscale activity associated with the Brazil Current Front and, in particular, eddies drifting southward is probably responsible for the high chl a values observed throughout the Brazil Current Overshoot region. The Zapiola Rise is characterized by a local minimum in SST gradient magnitudes and shows chl a maximum values in February, 3 months later than the austral spring bloom of the surroundings. Significant interannual variability is present in the color imagery. In the PSB, springs and summers with high chl a concentrations seem associated with stronger local northerly wind speed, and possible mechanisms are discussed. Finally, the Brazil-Malvinas front is detected using both SST gradient and SeaWiFS images. The time-averaged position of the front at 54.2°W is estimated at 38.9°S and its alongshore migration of about 300 km.

  15. Direct high-precision measurement of the magnetic moment of the proton.

    PubMed

    Mooser, A; Ulmer, S; Blaum, K; Franke, K; Kracke, H; Leiteritz, C; Quint, W; Rodegheri, C C; Smorra, C; Walz, J

    2014-05-29

    One of the fundamental properties of the proton is its magnetic moment, µp. So far µp has been measured only indirectly, by analysing the spectrum of an atomic hydrogen maser in a magnetic field. Here we report the direct high-precision measurement of the magnetic moment of a single proton using the double Penning-trap technique. We drive proton-spin quantum jumps by a magnetic radio-frequency field in a Penning trap with a homogeneous magnetic field. The induced spin transitions are detected in a second trap with a strong superimposed magnetic inhomogeneity. This enables the measurement of the spin-flip probability as a function of the drive frequency. In each measurement the proton's cyclotron frequency is used to determine the magnetic field of the trap. From the normalized resonance curve, we extract the particle's magnetic moment in terms of the nuclear magneton: μp = 2.792847350(9)μN. This measurement outperforms previous Penning-trap measurements in terms of precision by a factor of about 760. It improves the precision of the forty-year-old indirect measurement, in which significant theoretical bound state corrections were required to obtain µp, by a factor of 3. By application of this method to the antiproton magnetic moment, the fractional precision of the recently reported value can be improved by a factor of at least 1,000. Combined with the present result, this will provide a stringent test of matter/antimatter symmetry with baryons.

  16. Local condensate depletion at trap center under strong interactions

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.; Yukalova, E. P.

    2018-04-01

    Cold trapped Bose-condensed atoms, interacting via hard-sphere repulsive potentials are considered. Simple mean-field approximations show that the condensate distribution inside a harmonic trap always has the shape of a hump with the maximum condensate density occurring at the trap center. However, Monte Carlo simulations at high density and strong interactions display the condensate depletion at the trap center. The explanation of this effect of local condensate depletion at trap center is suggested in the frame of self-consistent theory of Bose-condensed systems. The depletion is shown to be due to the existence of the anomalous average that takes into account pair correlations and appears in systems with broken gauge symmetry.

  17. Did the Mississippian Lodgepole buildup at Dickinson Field (North Dakota) form as a gas seep ({open_quotes}vent{close_quotes}) community?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longman, M.W.

    1996-10-01

    The Lower Mississippian Lodgepole carbonate buildup reservoir at Dickinson Field in Stark County, North Dakota, has been widely reported as being a Waulsortian (or Waulsortian-like) mound. The term {open_quotes}Waulsortian mound{close_quotes} is used for a variety of Early Mississippian carbonate buildups that share a number of features including an abundance of carbonate mud, a {open_quotes}framework{close_quotes} of organisms such as fenestrate bryozoans and crinoids that tended to trap or baffle sediment, and a general absence of marine-cemented reef framework. Although the age of the Lodgepole mound at Dickinson Field qualifies it to be a Waulsortian mound, petrographic study of cores reveals thatmore » the reservoir rocks are quite unlike those in true Waulsortian mounds. Instead of being dominated by carbonate mud, the Lodgepole mound core is dominated by marine cement. Furthermore, ostracods and microbial limestones are common in the mound core where they occur with crinoid debris and small amounts of bryozoan, coral, and brachiopod debris. The abundant microbial limestones and marine cement indicate that the Dickinson mound formed as a lithified reef on the sea floor rather than as a Waulsortian mud mound. The microbial limestones, marine cement, and common ostracods in the mount core, and the fact that the mound nucleated almost directly o top of the Bakken Shale, suggest that the Dickinson Lodgepole mound formed at the site of a submarine spring and gas seep.« less

  18. A survey of bees (hymenoptera: Apoidea) of the Indiana dunes and Northwest Indiana, USA

    USGS Publications Warehouse

    Grundel, R.; Jean, R.P.; Frohnapple, K.J.; Gibbs, J.; Glowacki, G.A.; Pavlovic, N.B.

    2011-01-01

    The Indiana Dunes, and nearby natural areas in northwest Indiana, are floristically rich Midwest U.S. locales with many habitat types. We surveyed bees along a habitat gradient ranging from grasslands to forests in these locales, collecting at least 175 bee species along this gradient plus 29 additional species in other nearby habitats. About 25% of all species were from the genus Lasioglossum and 12% of the species were associated with sandy soils. Several bumblebee (Bombus) species of conservation concern that should occur in this region were not collected during our surveys. Similarity of the northwest Indiana bee fauna to other published U.S. faunas decreased about 1.3% per 100 km distance from northwest Indiana. Thirty percent of bees netted from flowers were males. Males and females differed significantly in their frequency of occurrence on different plant species. For bees collected in bowl traps, the percentage captured in fluorescent yellow traps declined and in fluorescent blue traps increased from spring to late summer. Capture rates for different bee genera varied temporally, with about a quarter of the genera being captured most frequently in late spring and a quarter in late summer. Capture rates for most genera were higher in more open than in more closed canopy habitats. The maximum number of plant species on which a single bee species was captured plateaued at 24, on average. Forty-nine percent of bee species known to occur in Indiana were found at these northwest Indiana sites. Having this relatively high proportion of the total Indiana bee fauna is consistent with Indiana Dunes existing at a biogeographic crossroads where grassland and forest biomes meet in a landscape whose climate and soils are affected by proximity to Lake Michigan. The resulting habitat, plant, edaphic, and climatic diversity likely produces the diverse bee community documented.

  19. Geochemical particle fluxes in the Southern Indian Ocean seasonal ice zone: Prydz Bay region, East Antarctica

    NASA Astrophysics Data System (ADS)

    Pilskaln, C. H.; Manganini, S. J.; Trull, T. W.; Armand, L.; Howard, W.; Asper, V. L.; Massom, R.

    2004-02-01

    Time-series sediment traps were deployed between December 1998 and January 2000 and from March 2000 to February 2001 at two offshore Prydz Bay sites within the seasonal ice zone (SIZ) of the Southern Indian Ocean located between 62-63°S and 73-76°E to quantify seasonal biogeochemical particle fluxes. Samples were obtained from traps placed at 1400, 2400, and 3400 m during the first deployment year (PZB-1) and from 3300 m in the second deployment year (PZB-2). All geochemical export fluxes were highly seasonal with primary peaks occurring during the austral summer and relatively low fluxes prevailing through the winter months. Secondary flux peaks in mid-winter and in early spring were suggestive of small-scale, sea-ice break-up events and the spring retreat of seasonal ice, respectively. Biogenic silica represented over 70% (by weight) of the collected trap material and provided an annual opal export of 18 g m -2 to 1 km and 3-10 g m -2 to 3 km. POC fluxes supplied an annual export of approximately 1 g m -2, equal to the estimated ocean-wide average. Elevated particulate C org/C inorg and Si bio/C inorg molar ratios indicate a productive, diatom-dominated system, although consistently small fluxes of planktonic foraminifera and pteropod shells document a heterotrophic source of carbonate to deeper waters in the SIZ. The observation of high Si bio/C org ratios and the δ15N time-series data suggest enhanced rates of diatom-POC remineralization in the upper 1000 m relative to bioSiO 2. The occurrence in this region of a pronounced temperature minimum, associated with a strong pycnocline and subsurface particle maximum at 50-100 m, may represent a zone where sinking, diatom-rich particulates temporarily accumulate and POC is remineralized.

  20. Putative sex pheromone of the Asian citrus psyllid, Diaphorina citri, breaks down into an attractant.

    PubMed

    Zanardi, Odimar Z; Volpe, Haroldo X L; Favaris, Arodi P; Silva, Weliton D; Luvizotto, Rejane A G; Magnani, Rodrigo F; Esperança, Victoria; Delfino, Jennifer Y; de Freitas, Renato; Miranda, Marcelo P; Parra, José Roberto P; Bento, José Mauricio S; Leal, Walter S

    2018-01-11

    Under laboratory conditions, mating activity in Asian citrus psyllid (ACP) started 4 days after emergence, peaked at day 7, and showed a clear window of activity starting 8 h into the photophase and extending through the first hour of the scotophase. We confirmed that ACP males are attracted to emanations from conspecific females. Traps loaded with a candidate compound enriched with female extract, lignoceryl acetate (24Ac), at various doses were active only after being deployed for several weeks in the field, suggesting that a degradation product, not the test compound, was the active ingredient(s). Lignocerol, a possible product of 24Ac degradation, was not active, whereas acetic acid, another possible degradation product, was found in the airborne volatile collections from lures matured under field conditions and detected in higher amounts in volatiles collected from females at the peak of mating activity than in male samples. Acetic acid elicited dose-dependent electroantennographic responses and attracted ACP males, but not females, in Y-type and 4-way olfactometers. Field tests showed that acetic acid-baited traps captured significantly more males than control traps. Surprisingly, captures of females in acetic acid-baited traps were also higher than in control traps, possibly because of physical stimuli emitted by captured males.

  1. Dipolar DC Collisional Activation in a "Stretched" 3-D Ion Trap: The Effect of Higher Order Fields on rf-Heating

    NASA Astrophysics Data System (ADS)

    Prentice, Boone M.; McLuckey, Scott A.

    2012-04-01

    Applying dipolar DC (DDC) to the end-cap electrodes of a 3-D ion trap operated with a bath gas at roughly 1 mTorr gives rise to `rf-heating' and can result in collision-induced dissociation (CID). This approach to ion trap CID differs from the conventional single-frequency resonance excitation approach in that it does not rely on tuning a supplementary frequency to coincide with the fundamental secular frequeny of the precursor ion of interest. Simulations using the program ITSIM 5.0 indicate that application of DDC physically displaces ions solely in the axial (inter end-cap) dimension whereupon ion acceleration occurs via power absorption from the drive rf. Experimental data shows that the degree of rf-heating in a stretched 3-D ion trap is not dependent solely on the ratio of the dipolar DC voltage/radio frequency (rf) amplitude, as a model based on a pure quadrupole field suggests. Rather, ion temperatures are shown to increase as the absolute values of the dipolar DC and rf amplitude both decrease. Simulations indicate that the presence of higher order multi-pole fields underlies this unexpected behavior. These findings have important implications for the use of DDC as a broad-band activation approach in multi-pole traps.

  2. Temperature-dependent leakage current behavior of epitaxial Bi0.5Na0.5TiO3-based thin films made by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Hejazi, M. M.; Safari, A.

    2011-11-01

    This paper discusses the electrical conduction mechanisms in a 0.88 Bi0.5Na0.5TiO3-0.08 Bi0.5K0.5TiO3-0.04 BaTiO3 thin film in the temperature range of 200-350 K. The film was deposited on a SrRuO3/SrTiO3 substrate by pulsed laser deposition technique. At all measurement temperatures, the leakage current behavior of the film matched well with the Lampert's triangle bounded by three straight lines of different slopes. The relative location of the triangle sides varied with temperature due to its effect on the density of charge carriers and un-filled traps. At low electric fields, the ohmic conduction governed the leakage mechanism. The calculated activation energy of the trap is 0.19 eV implying the presence of shallow traps in the film. With increasing the applied field, an abrupt increase in the leakage current was observed. This was attributed to a trap-filling process by the injected carriers. At sufficiently high electric fields, the leakage current obeyed the Child's trap-free square law suggesting the space charge limited current was the dominant mechanism.

  3. Shielding and flux trapping properties of high temperature superconductors in the shape of hollow cylinders

    NASA Technical Reports Server (NTRS)

    Israelsson, U. E.; Strayer, D. M.

    1991-01-01

    Allowing for a field-dependent critical current density, the authors calculate the magnetic field that can be supported by hollow cylinders of varying wall thickness. An adiabatically stable field of 1.0 T can be shielded by or trapped in a cylinder with a wall thickness of 0.4 cm if the critical current density varies linearly with magnetic field and has a value of 104 A/sq cm at a field of 1.0 T. Such a current density appears to be within reach of present state-of-the-art melt-processed YBa2Cu3O7 (123) materials.

  4. Rapid acceleration of protons upstream of earthward propagating dipolarization fronts

    PubMed Central

    Ukhorskiy, AY; Sitnov, MI; Merkin, VG; Artemyev, AV

    2013-01-01

    [1] Transport and acceleration of ions in the magnetotail largely occurs in the form of discrete impulsive events associated with a steep increase of the tail magnetic field normal to the neutral plane (Bz), which are referred to as dipolarization fronts. The goal of this paper is to investigate how protons initially located upstream of earthward moving fronts are accelerated at their encounter. According to our analytical analysis and simplified two-dimensional test-particle simulations of equatorially mirroring particles, there are two regimes of proton acceleration: trapping and quasi-trapping, which are realized depending on whether the front is preceded by a negative depletion in Bz. We then use three-dimensional test-particle simulations to investigate how these acceleration processes operate in a realistic magnetotail geometry. For this purpose we construct an analytical model of the front which is superimposed onto the ambient field of the magnetotail. According to our numerical simulations, both trapping and quasi-trapping can produce rapid acceleration of protons by more than an order of magnitude. In the case of trapping, the acceleration levels depend on the amount of time particles stay in phase with the front which is controlled by the magnetic field curvature ahead of the front and the front width. Quasi-trapping does not cause particle scattering out of the equatorial plane. Energization levels in this case are limited by the number of encounters particles have with the front before they get magnetized behind it. PMID:26167430

  5. Towards the development of an autocontamination trap system to manage populations of emerald ash borer (Coleoptera: Buprestidae) with the native entomopathogenic fungus, Beauveria bassiana.

    PubMed

    Lyons, D Barry; Iavallée, Robert; Kyei-Poku, George; Van Frankenhuyzen, Kees; Johny, Shajahan; Guertin, Claude; Francese, Joseph A; Jones, Gene C; Blais, Martine

    2012-12-01

    Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) is an invasive species from Asia that was discovered in North America Canada, in 2002. Herein, we describe studies to develop an autocontamination trapping system to disseminate Beauveria bassiana to control beetle populations. The standard trap for emerald ash borer in Canada is a light green prism trap covered in an insect adhesive and baited with (Z)-3-hexenol. We compared of green multifunnel traps, green intercept panel traps (both with and without fluon coating) and green prism traps for capturing emerald ash borer in a green ash plantation. The coated green multifunnel traps captured significantly more males and more females than any other trap design. We examined the efficacy of two native B. bassiana isolates, INRS-CFL and L49-1AA. In a field experiment the INRS-CFL isolate attached to multifunnel traps in autocontamination chambers retained its pathogenicity to emerald ash borer adults for up to 43 d of outdoor exposure. Conidia germination of the INRS-CFL isolate was >69% after outdoor exposure in the traps for up to 57 d. The L49-1AA isolate was not pathogenic in simulated trap exposures and the germination rate was extremely low (<5.3%). Mean (+/- SEM) conidia loads on ash borer adults after being autocontaminated in the laboratory using pouches that had been exposed in traps out of doors for 29 d were 579,200 (+/- 86,181) and 2,400 (+/- 681) for the INRS-CFL and the LA9-1AA isolates, respectively. We also examined the fungal dissemination process under field conditions using the L49-1AA isolate in a green ash plantation. Beetles were lured to baited green multifunnel traps with attached autocontamination chambers. Beetles acquired fungal conidia from cultures growing on pouches in the chambers and were recaptured on Pestick-coated traps. In total, 2,532 beetles were captured of which 165 (6.5%) had fungal growth that resembled B. bassiana. Of these 25 beetles were positive for the L49-1AA isolate.

  6. Mobile atom traps using magnetic nanowires

    NASA Astrophysics Data System (ADS)

    Allwood, D. A.; Schrefl, T.; Hrkac, G.; Hughes, I. G.; Adams, C. S.

    2006-07-01

    By solving the Landau-Lifshitz-Gilbert equation using a finite element method we show that an atom trap can be produced above a ferromagnetic nanowire domain wall. Atoms experience trap frequencies of up to a few megahertz, and can be transported by applying a weak magnetic field along the wire. Lithographically defined nanowire patterns could allow quantum information processing by bringing domain walls in close proximity at certain places to allow trapped atom interactions and far apart at others to allow individual addressing.

  7. Probing surface states in PbS nanocrystal films using pentacene field effect transistors: controlling carrier concentration and charge transport in pentacene.

    PubMed

    Park, Byoungnam; Whitham, Kevin; Bian, Kaifu; Lim, Yee-Fun; Hanrath, Tobias

    2014-12-21

    We used a bilayer field effect transistor (FET) consisting of a thin PbS nanocrystals (NCs) film interfaced with vacuum-deposited pentacene to probe trap states in NCs. We interpret the observed threshold voltage shift in context of charge carrier trapping by PbS NCs and relate the magnitude of the threshold voltage shift to the number of trapped carriers. We explored a series of NC surface ligands to modify the interface between PbS NCs and pentacene and demonstrate the impact of interface chemistry on charge carrier density and the FET mobility in a pentacene FET.

  8. 75 FR 30054 - Notice of Intent To Prepare an Environmental Impact Statement and Resource Management Plan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... Casper, Kemmerer, Pinedale, Rock Springs, Newcastle, and Rawlins Field Offices, WY AGENCY: Bureau of Land..., Pinedale, Rock Springs, Newcastle, and Rawlins Resource Management Plans (RMPs) and by this [[Page 30055..., Kemmerer, Pinedale, Rock Springs, Newcastle, and Rawlins RMPs to incorporate policies set forth in BLM...

  9. High-Fidelity Trapped-Ion Quantum Logic Using Near-Field Microwaves.

    PubMed

    Harty, T P; Sepiol, M A; Allcock, D T C; Ballance, C J; Tarlton, J E; Lucas, D M

    2016-09-30

    We demonstrate a two-qubit logic gate driven by near-field microwaves in a room-temperature microfabricated surface ion trap. We introduce a dynamically decoupled gate method, which stabilizes the qubits against fluctuating energy shifts and avoids the need to null the microwave field. We use the gate to produce a Bell state with fidelity 99.7(1)%, after accounting for state preparation and measurement errors. The gate is applied directly to ^{43}Ca^{+} hyperfine "atomic clock" qubits (coherence time T_{2}^{*}≈50  s) using the oscillating magnetic field gradient produced by an integrated microwave electrode.

  10. Utilization of Plasmonic and Photonic Crystal Nanostructures for Enhanced Micro- and Nanoparticle Manipulation

    PubMed Central

    Simmons, Cameron S.; Knouf, Emily Christine; Tewari, Muneesh; Lin, Lih Y.

    2011-01-01

    A method to manipulate the position and orientation of submicron particles nondestructively would be an incredibly useful tool for basic biological research. Perhaps the most widely used physical force to achieve noninvasive manipulation of small particles has been dielectrophoresis(DEP).1 However, DEP on its own lacks the versatility and precision that are desired when manipulating cells since it is traditionally done with stationary electrodes. Optical tweezers, which utilize a three dimensional electromagnetic field gradient to exert forces on small particles, achieve this desired versatility and precision.2 However, a major drawback of this approach is the high radiation intensity required to achieve the necessary force to trap a particle which can damage biological samples.3 A solution that allows trapping and sorting with lower optical intensities are optoelectronic tweezers (OET) but OET's have limitations with fine manipulation of small particles; being DEP-based technology also puts constraint on the property of the solution.4,5 This video article will describe two methods that decrease the intensity of the radiation needed for optical manipulation of living cells and also describe a method for orientation control. The first method is plasmonic tweezers which use a random gold nanoparticle (AuNP) array as a substrate for the sample as shown in Figure 1. The AuNP array converts the incident photons into localized surface plasmons (LSP) which consist of resonant dipole moments that radiate and generate a patterned radiation field with a large gradient in the cell solution. Initial work on surface plasmon enhanced trapping by Righini et al and our own modeling have shown the fields generated by the plasmonic substrate reduce the initial intensity required by enhancing the gradient field that traps the particle.6,7,8 The plasmonic approach allows for fine orientation control of ellipsoidal particles and cells with low optical intensities because of more efficient optical energy conversion into mechanical energy and a dipole-dependent radiation field. These fields are shown in figure 2 and the low trapping intensities are detailed in figures 4 and 5. The main problems with plasmonic tweezers are that the LSP's generate a considerable amount of heat and the trapping is only two dimensional. This heat generates convective flows and thermophoresis which can be powerful enough to expel submicron particles from the trap.9,10 The second approach that we will describe is utilizing periodic dielectric nanostructures to scatter incident light very efficiently into diffraction modes, as shown in figure 6.11 Ideally, one would make this structure out of a dielectric material to avoid the same heating problems experienced with the plasmonic tweezers but in our approach an aluminum-coated diffraction grating is used as a one-dimensional periodic dielectric nanostructure. Although it is not a semiconductor, it did not experience significant heating and effectively trapped small particles with low trapping intensities, as shown in figure 7. Alignment of particles with the grating substrate conceptually validates the proposition that a 2-D photonic crystal could allow precise rotation of non-spherical micron sized particles.10 The efficiencies of these optical traps are increased due to the enhanced fields produced by the nanostructures described in this paper. PMID:21988841

  11. Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal.

    PubMed

    van Leest, Thijs; Caro, Jacob

    2013-11-21

    On-chip optical trapping and manipulation of cells based on the evanescent field of photonic structures is emerging as a promising technique, both in research and for applications in broader context. Relying on mass fabrication techniques, the involved integration of photonics and microfluidics allows control of both the flow of light and water on the scale of interest in single cell microbiology. In this paper, we demonstrate for the first time optical trapping of single bacteria (B. subtilis and E. coli) using photonic crystal cavities for local enhancement of the evanescent field, as opposed to the synthetic particles used so far. Three types of cavities (H0, H1 and L3) are studied, embedded in a planar photonic crystal and optimized for coupling to two collinear photonic crystal waveguides. The photonic crystals are fabricated on a silicon-on-insulator chip, onto which a fluidic channel is created as well. For each of the cavities, when pumped at the resonance wavelength (around 1550 nm), we clearly demonstrate optical trapping of bacteria, in spite of their low index contrast w.r.t. water. By tracking the confined Brownian motion of B. subtilis spores in the traps using recorded microscope observations, we derive strong in-plane trap stiffnesses of about 7.6 pN nm(-1) W(-1). The values found agree very well with calculations based on the Maxwell stress tensor for the force and finite-difference time-domain simulations of the fields for the fabricated cavity geometries. We envision that our lab-on-a-chip with photonic crystal traps opens up new application directions, e.g. immobilization of single bio-objects such as mammalian cells and bacteria under controlled conditions for optical microscopy studies.

  12. Droppings From Captive Coturnix coturnix (Galliformes: Phasianidae) as a Fly Breeding Resource

    PubMed Central

    Horenstein, M. Battán; Lynch-Ianniello, I.; de Dio, B.; Gleiser, R. M.

    2014-01-01

    Abstract The aim of this study was to describe the fauna of flies associated with captive Coturnix coturnix (L.) (Galliformes: Phasianidae) droppings. Samples of 150 g of quail droppings were exposed in the quail house for 48 h in plastic containers to promote eventual access of flies, and then placed in emergence traps. The number of adults and species emerging was recorded daily. This procedure was carried out in spring 2008 and spring and autumn 2009. In total, 2,138 adults belonging to Muscidae, Calliphoridae, Piophilidae, Phoridae, Fanniidae, and Milichiidae families were collected. The most numerous family was Muscidae (representing >82% of the total specimens), with Musca domestica L. being the most abundant species followed by Ophyra aenescens (Wiedemann) (both Diptera: Muscidae). Quail breeding should include adequate droppings management policies to avoid potential sanitary issues related to fly production. PMID:25347840

  13. Microfabricated ion trap array

    DOEpatents

    Blain, Matthew G [Albuquerque, NM; Fleming, James G [Albuquerque, NM

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  14. Enhanced and selective optical trapping in a slot-graphite photonic crystal.

    PubMed

    Krishnan, Aravind; Huang, Ningfeng; Wu, Shao-Hua; Martínez, Luis Javier; Povinelli, Michelle L

    2016-10-03

    Applicability of optical trapping tools for nanomanipulation is limited by the available laser power and trap efficiency. We utilized the strong confinement of light in a slot-graphite photonic crystal to develop high-efficiency parallel trapping over a large area. The stiffness is 35 times higher than our previously demonstrated on-chip, near field traps. We demonstrate the ability to trap both dielectric and metallic particles of sub-micron size. We find that the growth kinetics of nanoparticle arrays on the slot-graphite template depends on particle size. This difference is exploited to selectively trap one type of particle out of a binary colloidal mixture, creating an efficient optical sieve. This technique has rich potential for analysis, diagnostics, and enrichment and sorting of microscopic entities.

  15. Assessing transmission of crop diseases by insect vectors in a landscape context.

    PubMed

    Carrière, Y; Degain, B; Hartfield, K A; Nolte, K D; Marsh, S E; Ellers-Kirk, C; Van Leeuwen, W J D; Liesner, L; Dutilleul, P; Palumbo, J C

    2014-02-01

    Theory indicates that landscape composition affects transmission of vector-borne crop diseases, but few empirical studies have investigated how landscape composition affects plant disease epidemiology. Since 2006, Bemisia tabaci (Gennadius) has vectored the cucurbit yellow stunting disorder virus (CYSDV) to cantaloupe and honeydew melons (Cucumis melo L.) in the southwestern United States and northern Mexico, causing significant reductions in yield of fall melons and increased use of insecticides. Here, we show that a landscape-based approach allowing simultaneous assessment of impacts of local (i.e., planting date) and regional (i.e., landscape composition) factors provides valuable insights on how to reduce crop disease risks. Specifically, we found that planting fall melon fields early in the growing season, eliminating plants germinating from seeds produced by spring melons after harvest, and planting fall melon fields away from cotton and spring melon fields may significantly reduce the incidence of CYSDV infection in fall melons. Because the largest scale of significance of the positive association between abundance of cotton and spring melon fields and CYSDV incidence was 1,750 and 3,000 m, respectively, reducing areas of cotton and spring melon fields within these distances from fall melon fields may decrease CYSDV incidence. Our results indicate that landscape-based studies will be fruitful to alleviate limitations imposed on crop production by vector-borne diseases.

  16. Marginally outer trapped surfaces and symmetries

    NASA Astrophysics Data System (ADS)

    Carrasco, Alberto; Mars, Marc

    2009-05-01

    We study properties of outermost marginally outer trapped surfaces in slices of space-times possessing certain symmetries, like isometries, homotheties or conformal Killings. In particular, we find restrictions on these surfaces for the vector field generating the symmetry. As an application we give a result of non-existence of outermost marginally outer trapped surfaces in accelerated Friedmann-Lemaître-Roberson-Walker spacetimes.

  17. Effects of pheromone and plant volatile release rates and ratios on trapping Anoplophora glabripennis (Coleoptera: Cerambycidae) in China

    Treesearch

    P.S. Meng; R.T. Trotter; M.A. Keena; T.C. Baker; S. Yan; E.G. Schwartzberg; K. Hoover

    2014-01-01

    Native to China and Korea, the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), is a polyphagous wood-boring pest for which a trapping system would greatly benefit eradication and management programs in both the introduced and native ranges. Over two field seasons, a total of 160 flight intercept panel traps...

  18. Evaluation of imidacloprid-treated traps as an attract and kill system for filth flies during contingency operations.

    USDA-ARS?s Scientific Manuscript database

    Field trials were conducted to evaluate if filth fly trap efficacy was increased by application of an insecticide to a trap’s exterior. Four Fly Terminator® Pro traps baited with Fly Terminator® attractant were suspended on PVC pipe framing at a Florida waste transfer site. Exterior surfaces of tw...

  19. Cooling and heating of the quantum motion of trapped cadmium(+) ions

    NASA Astrophysics Data System (ADS)

    Deslauriers, Louis

    The quest for a quantum system best satisfying the stringent requirements of a quantum information processor has made tremendous progress in many fields of physics. In the last decade, trapped ions have been established as one of the most promising architectures to accomplish the task. Internal states of an ion which can have extremely long coherence time can be used to store a quantum bit, and therefore allow many gate operations before the coherence is lost. Entanglement between multiple ions can be established via Coulomb interactions mediated by appropriate laser fields. Entangling schemes usually require the ions to be initialized to near their motional ground state. The interaction of fluctuating electric fields with the motional state of the ion leads to heating and thus to decoherence for entanglement generation limiting the fidelity of quantum logic gates. Effective ground state cooling of trapped ion motion and suppression of motional heating are thus crucial to many applications of trapped ions in quantum information science. In this thesis, I describe the implementation and study of several components of a Cadmium-ion-based quantum information processor, with special emphasis on the control and decoherence of trapped ion motion. I first discuss the building and design of various ion traps that were used in this work. I also report on the use of ultrafast laser pulses to photoionize and load cadmium ions in a variety of rf Paul trap geometries. A detailed analysis of the photoionization scheme is presented, along with its dependence on controlled experimental parameters. I then describe the implementation of Raman sideband cooling on a single trapped 111Cd+ ion to the ground state of motion, where a ground state population of 97% was achieved. The efficacy of this cooling technique is discussed with respect to different initial motional state distributions and its sensitivity to the presence of motional heating. I also present an experiment where the motion of a single trapped 112Cd+ ion is sympathetically cooled by directly Doppler cooling a 114Cd+ ion in the same trap. The implications of this result are relevant to the scaling of a trapped ion quantum computer, where the unwanted motion of an ion crystal can be quenched while not affecting the internal states of the qubit ions. (Abstract shortened by UMI.)

  20. Construction of a single atom trap for quantum information protocols

    NASA Astrophysics Data System (ADS)

    Shea, Margaret E.; Baker, Paul M.; Gauthier, Daniel J.; Duke Physics Department Team

    2016-05-01

    The field of quantum information science addresses outstanding problems such as achieving fundamentally secure communication and solving computationally hard problems. Great progress has been made in the field, particularly using photons coupled to ions and super conducting qubits. Neutral atoms are also interesting for these applications and though the technology for control of neutrals lags behind that of trapped ions, they offer some key advantages: primarily coupling to optical frequencies closer to the telecom band than trapped ions or superconducting qubits. Here we report progress on constructing a single atom trap for 87 Rb. This system is a promising platform for studying the technical problems facing neutral atom quantum computing. For example, most protocols destroy the trap when reading out the neutral atom's state; we will investigate an alternative non-destructive state detection scheme. We detail the experimental systems involved and the challenges addressed in trapping a single atom. All of our hardware components are off the shelf and relatively inexpensive. Unlike many other systems, we place a high numerical aperture lens inside our vacuum system to increase photon collection efficiency. We gratefully acknowledge the financial support of the ARO through Grant # W911NF1520047.

  1. Near-coastal ocean variability off southern Tamaulipas - northern Veracruz, western Gulf of Mexico, during spring-summer 2013

    NASA Astrophysics Data System (ADS)

    Rivas, David

    2016-04-01

    Six months of observations from a near-coastal mooring deployed off southern Tamaulipas-northern Veracruz coast (western Gulf of Mexico) during spring-summer 2013 provides velocity, temperature, salinity, sea level, and dissolved oxygen series in a region which ocean dynamics is still poorly understood. As shown in a preceding analysis of this region's winter circulation for winter 2012-2013, coastal trapped motions associated with the regional invasion of synoptic cold fronts modulate the local variability; this pattern remains in the spring 2013, when even more intense events of alongshore flow (>50 cm/s) are observed. This intensified flow is associated with a significant decrease in the dissolved oxygen, most probably related to an influence of hypoxic waters coming from the northern Gulf. In late spring-mid summer, the wind pattern corresponds to persistent southeasterly winds that favor the occurrence of a local upwelling, which maintains a local thermal reduction (>3 degrees Celsius) and is associated with a persistent northward flow (>30 cm/s). The late summer was characterized by a significant tropical-cyclone activity, when a depression, a storm, and a hurricane affected the western Gulf. These tropical systems caused an intense precipitation and hence an important intensification of the local riverine discharge, and the winds enhanced the mixing of such riverine waters, via mostly kinetic stirring and Ekman pumping.

  2. Arctic atmospheric preconditioning: do not rule out shortwave radiation just yet

    NASA Astrophysics Data System (ADS)

    Sedlar, J.

    2017-12-01

    Springtime atmospheric preconditioning of Arctic sea ice for enhanced or buffered sea ice melt during the subsequent melt year has received considerable research focus in recent years. A general consensus points to enhanced poleward atmospheric transport of moisture and heat during spring, effectively increasing the emission of longwave radiation to the surface. Studies have essentially ruled out the role of shortwave radiation as an effective preconditioning mechanism because of the relatively weak incident solar radiation and high surface albedo from sea ice and snow during spring. These conclusions, however, are derived primarily from atmospheric reanalysis data, which may not always represent an accurate depiction of the Arctic climate system. Here, observations of top of atmosphere radiation from state of the art satellite sensors are examined and compared with reanalysis and climate model data to examine the differences in the spring radiative budget over the Arctic Ocean for years with extreme low/high ice extent at the end of the ice melt season (September). Distinct biases are observed between satellite-based measurements and reanalysis/models, particularly for the amount of shortwave radiation trapped (warming effect) within the Arctic climate system during spring months. A connection between the differences in reanalysis/model surface albedo representation and the albedo observed by satellite is discussed. These results suggest that shortwave radiation should not be overlooked as a significant contributing mechanism to springtime Arctic atmospheric preconditioning.

  3. Efficacy of multifunnel traps for capturing emerald ash borer (Coleoptera: Buprestidae): effect of color, glue, and other trap coatings.

    PubMed

    Francese, Joseph A; Fraser, Ivich; Lance, David R; Mastro, Victor C

    2011-06-01

    Tens of thousands of adhesive-coated purple prism traps are deployed annually in the United States to survey for the invasive emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). A reusable, more user-friendly trap is desired by program managers, surveyors, and researchers. Field assays were conducted in southeastern Michigan to ascertain the feasibility of using nonsticky traps as survey and detection tools for emerald ash borer. Three nonsticky trap designs, including multifunnel (Lindgren), modified intercept panel, and drainpipe (all painted purple) were compared with the standard purple prism trap; no statistical differences in capture of emerald ash borer adults were detected between the multifunnel design and the prism. In subsequent color comparison assays, both green- and purple-painted multifunnel traps (and later, plastic versions of these colors) performed as well or better than the prism traps. Multifunnel traps coated with spray-on adhesive caught more beetles than untreated traps. The increased catch, however, occurred in the traps' collection cups and not on the trap surface. In a separate assay, there was no significant difference detected between glue-coated traps and Rain-X (normally a glass treatment)-coated traps, but both caught significantly more A. planipennis adults than untreated traps.

  4. Determination of trap distributions from current characteristics of pentacene field-effect transistors with surface modified gate oxide

    NASA Astrophysics Data System (ADS)

    Scheinert, Susanne; Pernstich, Kurt P.; Batlogg, Bertram; Paasch, Gernot

    2007-11-01

    It has been demonstrated [K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, A. N. Rashid, and G. Schitter, J. Appl. Phys. 96, 6431 (2004)] that a controllable shift of the threshold voltage in pentacene thin film transistors is caused by the use of organosilanes with different functional groups forming a self-assembled monolayer (SAM) on the gate oxide. The observed broadening of the subthreshold region indicates that the SAM creates additional trap states. Indeed, it is well known that traps strongly influence the behavior of organic field-effect transistors (OFETs). Therefore, the so-called "amorphous silicon (a-Si) model" has been suggested to be an appropriate model to describe OFETs. The main specifics of this model are transport of carriers above a mobility edge obeying Boltzmann statistics and exponentially distributed tail states and deep trap states. Here, approximate trap distributions are determined by adjusting two-dimensional numerical simulations to the experimental data. It follows from a systematic variation of parameters describing the trap distributions that the existence of both donorlike and acceptorlike trap distributions near the valence band, respectively, and a fixed negative interface charge have to be assumed. For two typical devices with different organosilanes the electrical characteristics can be described well with a donorlike bulk trap distribution, an acceptorlike interface distribution, and/or a fixed negative interface charge. As expected, the density of the fixed or trapped interface charge depends strongly on the surface treatment of the dielectric. There are some limitations in determining the trap distributions caused by either slow time-dependent processes resulting in differences between transfer and output characteristics, or in the uncertainty of the effective mobility.

  5. Beam trapping in high-current cyclic accelerators with strong-focusing fields. Memorandum report, January-December 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprangle, P.; Kapetanakos, C.A.

    1985-03-06

    In cyclic induction accelerators, the energy of the particles increases slowly in synchronism with the vertical (betatron) magnetic field. As a consequence of the slow acceleration, the charged particles must be confined by the weak-focusing magnetic field over long periods of time, and thus field errors, instabilities, and radiation losses can impose limitations on the acceleration process. These limitations can be substantially relaxed if the acceleration were to occur rapidly, say over a few microseconds. An appropriate name for such an accelerator is REBA-TRON (Rapid Electron Beam Accelerator). This paper considers a possible mechanism which could trap a high currentmore » electron beam in the strong focusing magnetic fields of the rebatron. We investigate a possible mechanism for trapping an intense relativistic electron beam confined by strong focusing fields. In our model the electron beam is assumed to be injected into torsatron fields off axis, near the chamber walls. The finite resistivity of the walls results in a drag force on the beam centroid which may cause the beam to spiral inward towards the axis of the chamber. We have analyzed this mechanism and obtained decay rates for the inward spiraling beam motion.« less

  6. Diversity and Distribution of Thermophilic Bacteria in Hot Springs of Pakistan.

    PubMed

    Amin, Arshia; Ahmed, Iftikhar; Salam, Nimaichand; Kim, Byung-Yong; Singh, Dharmesh; Zhi, Xiao-Yang; Xiao, Min; Li, Wen-Jun

    2017-07-01

    Chilas and Hunza areas, located in the Main Mantle Thrust and Main Karakoram Thrust of the Himalayas, host a range of geochemically diverse hot springs. This Himalayan geothermal region encompassed hot springs ranging in temperature from 60 to 95 °C, in pH from 6.2 to 9.4, and in mineralogy from bicarbonates (Tato Field), sulfates (Tatta Pani) to mixed type (Murtazaabad). Microbial community structures in these geothermal springs remained largely unexplored to date. In this study, we report a comprehensive, culture-independent survey of microbial communities in nine samples from these geothermal fields by employing a bar-coded pyrosequencing technique. The bacterial phyla Proteobacteria and Chloroflexi were dominant in all samples from Tato Field, Tatta Pani, and Murtazaabad. The community structures however depended on temperature, pH, and physicochemical parameters of the geothermal sites. The Murtazaabad hot springs with relatively higher temperature (90-95 °C) favored the growth of phylum Thermotogae, whereas the Tatta Pani thermal spring site TP-H3-b (60 °C) favored the phylum Proteobacteria. At sites with low silica and high temperature, OTUs belonging to phylum Chloroflexi were dominant. Deep water areas of the Murtazaabad hot springs favored the sulfur-reducing bacteria. About 40% of the total OTUs obtained from these samples were unclassified or uncharacterized, suggesting the presence of many undiscovered and unexplored microbiota. This study has provided novel insights into the nature of ecological interactions among important taxa in these communities, which in turn will help in determining future study courses in these sites.

  7. The Path to High Q-Factors in Superconducting Accelerating Cavities: Flux Expulsion and Surface Resistance Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinello, Martina

    Accelerating cavities are devices resonating in the radio-frequency (RF) range used to accelerate charged particles in accelerators. Superconducting accelerating cavities are made out of niobium and operate at the liquid helium temperature. Even if superconducting, these resonating structures have some RF driven surface resistance that causes power dissipation. In order to decrease as much as possible the power losses, the cavity quality factor must be increased by decreasing the surface resistance. In this dissertation, the RF surface resistance is analyzed for a large variety of cavities made with different state-of-the-art surface treatments, with the goal of finding the surface treatmentmore » capable to return the highest Q-factor values in a cryomodule-like environment. This study analyzes not only the superconducting properties described by the BCS surface resistance, which is the contribution that takes into account dissipation due to quasi-particle excitations, but also the increasing of the surface resistance due to trapped flux. When cavities are cooled down below their critical temperature inside a cryomodule, there is always some remnant magnetic field that may be trapped increasing the global RF surface resistance. This thesis also analyzes how the fraction of external magnetic field, which is actually trapped in the cavity during the cooldown, can be minimized. This study is performed on an elliptical single-cell horizontally cooled cavity, resembling the geometry of cavities cooled in accelerator cryomodules. The horizontal cooldown study reveals that, as in case of the vertical cooldown, when the cooling is performed fast, large thermal gradients are created along the cavity helping magnetic flux expulsion. However, for this geometry the complete magnetic flux expulsion from the cavity equator is more difficult to achieve. This becomes even more challenging in presence of orthogonal magnetic field, that is easily trapped on top of the cavity equator causing temperature rising. The physics behind the magnetic flux expulsion is also analyzed, showing that during a fast cooldown the magnetic field structures, called vortices, tend to move in the same direction of the thermal gradient, from the Meissner state region to the mixed state region, minimizing the Gibbs free energy. On the other hand, during a slow cool down, not only the vortices movement is limited by the absence of thermal gradients, but, also, at the end of the superconducting transition, the magnetic field concentrates along randomly distributed normal-conducting region from which it cannot be expelled anymore. The systematic study of the surface resistance components performed for the different surface treatments, reveals that the BCS surface resistance and the trapped flux surface resistance have opposite trends as a function of the surface impurity content, defined by the mean free path. At medium field value, the BCS surface resistance is minimized for nitrogen-doped cavities and significantly larger for standard niobium cavities. On the other hand, Nitrogen-doped cavities show larger dissipation due to trapped flux. This is consequence of the bell-shaped trend of the trapped flux sensitivity as a function of the mean free path. Such experimental findings allow also a better understanding of the RF dissipation due to trapped flux. The best compromise between all the surface resistance components, taking into account the possibility of trapping some external magnetic field, is given by light nitrogen-doping treatments. However, the beneficial effects of the nitrogen-doping is completely lost when large amount of magnetic field is trapped during the cooldown, underlying the importance of both cooldown and magnetic field shielding optimization in high quality factors cryomodules.« less

  8. Challenging a 15-year-old claim: The North Atlantic Oscillation index as a predictor of spring migration phenology of birds.

    PubMed

    Haest, Birgen; Hüppop, Ommo; Bairlein, Franz

    2018-04-01

    Many migrant bird species that breed in the Northern Hemisphere show advancement in spring arrival dates. The North Atlantic Oscillation (NAO) index is one of the climatic variables that have been most often investigated and shown to be correlated with these changes in spring arrival. Although the NAO is often claimed to be a good predictor or even to have a marked effect on interannual changes in spring migration phenology of Northern Hemisphere breeding birds, the results on relations between spring migration phenology and NAO show a large variety, ranging from no, over weak, to a strong association. Several factors, such as geographic location, migration phase, and the NAO index time window, have been suggested to partly explain these observed differences in association. A combination of a literature meta-analysis, and a meta-analysis and sliding time window analysis of a dataset of 23 short- and long-distance migrants from the constant-effort trapping garden at Helgoland, Germany, however, paints a completely different picture. We found a statistically significant overall effect size of the NAO on spring migration phenology (coefficient = -0.14, SE = 0.054), but this on average only explains 0%-6% of the variance in spring migration phenology across all species. As such, the value and biological meaning of the NAO as a general predictor or explanatory variable for climate change effects on migration phenology of birds, seems highly questionable. We found little to no definite support for previously suggested factors, such as geographic location, migration phenology phase, or the NAO time window, to explain the heterogeneity in correlation differences. We, however, did find compelling evidence that the lack of accounting for trends in both time series has led to strongly inflated (spurious) correlations in many studies (coefficient = -0.13, SE = 0.019). © 2017 John Wiley & Sons Ltd.

  9. Laboratory and field response of the emerald ash borer (Coleoptera: Buprestidae), to selected regions of the electromagnetic spectrum.

    PubMed

    Crook, Damon J; Francese, Joseph A; Zylstra, Kelley E; Fraser, Ivich; Sawyer, Alan J; Bartels, David W; Lance, David R; Mastro, Victor C

    2009-12-01

    Retinal sensitivity of Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) was examined with an aim to improve trap efficacy for the beetle. Electroretinogram (ERG) recordings from dark-adapted compound eyes of male and female were measured at different wavelengths across the spectrum ranging from 300 to 700 nm. The spectral sensitivity curves revealed peaks in the UV (340 nm), the violet/purple (420-430 nm), blue (460 nm), and green (540-560 nm) regions of the spectrum. Females were sensitive to red regions of the spectrum (640-670 nm), whereas males were not. A spectrophotometer was used to measure the wavelength and reflectance for ash foliage, purple corrugated plastic traps, as well as the elytra and abdomen of adult A. planipennis. Traps were painted using colors based on ERG and spectrophotometer measurements and compared with purple corrugated plastic traps currently used by the USDA-APHIS-PPQ-EAB National Survey. In a field assay conducted along the edges of several A. planipennis-infested ash stands, there were no significant differences in trap catch among green, red, or purple treatments. Dark blue traps caught significantly fewer A. planipennis than red, light green, or dark purple traps. In a second assay where purple and green treatments were placed in the mid canopy of ash trees (approximately 13 m in height), trap catch was significantly higher on green treatments. We hypothesize that when placed in the mid-canopy, green traps constitute a foliage-type stimulus that elicits food-seeking and/or host seeking behavior by A. planipennis.

  10. Optimising Camera Traps for Monitoring Small Mammals

    PubMed Central

    Glen, Alistair S.; Cockburn, Stuart; Nichols, Margaret; Ekanayake, Jagath; Warburton, Bruce

    2013-01-01

    Practical techniques are required to monitor invasive animals, which are often cryptic and occur at low density. Camera traps have potential for this purpose, but may have problems detecting and identifying small species. A further challenge is how to standardise the size of each camera’s field of view so capture rates are comparable between different places and times. We investigated the optimal specifications for a low-cost camera trap for small mammals. The factors tested were 1) trigger speed, 2) passive infrared vs. microwave sensor, 3) white vs. infrared flash, and 4) still photographs vs. video. We also tested a new approach to standardise each camera’s field of view. We compared the success rates of four camera trap designs in detecting and taking recognisable photographs of captive stoats ( Mustela erminea ), feral cats (Felis catus) and hedgehogs ( Erinaceus europaeus ). Trigger speeds of 0.2–2.1 s captured photographs of all three target species unless the animal was running at high speed. The camera with a microwave sensor was prone to false triggers, and often failed to trigger when an animal moved in front of it. A white flash produced photographs that were more readily identified to species than those obtained under infrared light. However, a white flash may be more likely to frighten target animals, potentially affecting detection probabilities. Video footage achieved similar success rates to still cameras but required more processing time and computer memory. Placing two camera traps side by side achieved a higher success rate than using a single camera. Camera traps show considerable promise for monitoring invasive mammal control operations. Further research should address how best to standardise the size of each camera’s field of view, maximise the probability that an animal encountering a camera trap will be detected, and eliminate visible or audible cues emitted by camera traps. PMID:23840790

  11. Self-consistent electrostatic potential due to trapped plasma in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Miller, Ronald H.; Khazanov, George V.

    1993-01-01

    A steady state solution for the self-consistent electrostatic potential due to a plasma confined in a magnetic flux tube is considered. A steady state distribution function is constructed for the trapped particles from the constants of the motion, in the absence of waves and collisions. Using Liouville's theorem, the particle density along the geomagnetic field is determined and found to depend on the local magnetic field, self-consistent electric potential, and the equatorial plasma distribution function. A hot anisotropic magnetospheric plasma in steady state is modeled by a bi-Maxwellian at the equator. The self-consistent electric potential along the magnetic field is calculated assuming quasineutrality, and the potential drop is found to be approximately equal to the average kinetic energy of the equatorially trapped plasma. The potential is compared with that obtained by Alfven and Faelthammar (1963).

  12. Enumerating virus-like particles in an optically concentrated suspension by fluorescence correlation spectroscopy.

    PubMed

    Hu, Yi; Cheng, Xuanhong; Daniel Ou-Yang, H

    2013-01-01

    Fluorescence correlation spectroscopy (FCS) is one of the most sensitive methods for enumerating low concentration nanoparticles in a suspension. However, biological nanoparticles such as viruses often exist at a concentration much lower than the FCS detection limit. While optically generated trapping potentials are shown to effectively enhance the concentration of nanoparticles, feasibility of FCS for enumerating field-enriched nanoparticles requires understanding of the nanoparticle behavior in the external field. This paper reports an experimental study that combines optical trapping and FCS to examine existing theoretical predictions of particle concentration. Colloidal suspensions of polystyrene (PS) nanospheres and HIV-1 virus-like particles are used as model systems. Optical trapping energies and statistical analysis are used to discuss the applicability of FCS for enumerating nanoparticles in a potential well produced by a force field.

  13. Photocurrent microscopy of contact resistance and charge carrier traps in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Liewald, C.; Reiser, D.; Westermeier, C.; Nickel, B.

    2016-08-01

    We use a pentacene transistor with asymmetric source drain contacts to test the sensitivity of scanning photocurrent microscopy (SPCM) for contact resistance and charge traps. The drain current of the device strongly depends on the choice of the drain electrode. In one case, more than 94% of the source drain voltage is lost due to contact resistance. Here, SPCM maps show an enhanced photocurrent signal at the hole-injecting contact. For the other bias condition, i.e., for ohmic contacts, the SPCM signal peaks heterogeneously along the channel. We argue from basic transport models that bright areas in SPCM maps indicate areas of large voltage gradients or high electric field strength caused by injection barriers or traps. Thus, SPCM allows us to identify and image the dominant voltage loss mechanism in organic field-effect transistors.

  14. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buettner, Edwin W.; Putnam, Scott A.

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2002 spring out-migration at migrant traps on the Snake River and Salmon River. In 2002 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 11.4 times greater in 2002 than in 2001.more » The wild Chinook catch was 15.5 times greater than the previous year. Hatchery steelhead trout catch was 2.9 times greater than in 2001. Wild steelhead trout catch was 2.8 times greater than the previous year. The Snake River trap collected 3,996 age-0 Chinook salmon of unknown rearing. During 2002, the Snake River trap captured 69 hatchery and 235 wild/natural sockeye salmon and 114 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant increase in catch in 2002 was due to a 3.1 fold increase in hatchery Chinook production and a more normal spring runoff. Trap operations began on March 10 and were terminated on June 7. The trap was out of operation for a total of four days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 4.2 times greater and wild Chinook salmon catch was 2.4 times greater than in 2001. The hatchery steelhead trout collection in 2002 was 81% of the 2001 numbers. Wild steelhead trout collection in 2002 was 81% of the previous year's catch. Trap operations began on March 10 and were terminated on May 29 due to high flows. The trap was out of operation for four days due to high flow or debris. The increase in hatchery Chinook catch in 2002 was due to a 3.1 fold increase in hatchery production and differences in flow between years. Changes in hatchery and wild steelhead catch are probably due to differences in flow between years. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2002 data detected a relation between migration rate and discharge for hatchery and wild Chinook salmon. For hatchery and wild Chinook salmon there was a 4.7-fold and a 3.7-fold increase in migration rate, respectively, between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 1.8-fold and a 1.7-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2002 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for wild Chinook salmon and hatchery steelhead trout. The analysis was unable to detect a relation between migration rate and discharge for hatchery Chinook salmon. The lack of a detectable relation was probably a result of the migration rate data being spread over a very narrow range of discharge. Not enough data were available to perform the analysis for wild steelhead trout. Migration rate increased 4.3-fold for wild Chinook salmon and 2.2-fold for hatchery steelhead between 50 kcfs and 100 kcfs. Fish tagged with passive integrated transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993 and the installation of the Removable Spillway Weir at Lower Granite Dam in 2000, caution must be used in comparing cumulative interrogation data. Cumulative interrogations at the four dams for fish marked at the Snake River trap were 61% for hatchery Chinook, 68% for wild Chinook, 58% for hatchery steelhead, and 62% for wild steelhead. Cumulative interrogations at the four dams for fish marked at the Salmon River trap were 51% for hatchery Chinook, 59% for wild Chinook salmon, 45% for hatchery steelhead trout, and 54% for wild steelhead trout. Cumulative interrogations were significantly lower in 2002 than in previous years with similar flow.« less

  15. METHOD AND APPARATUS FOR INJECTING AND TRAPPING ELECTRONS IN A MAGNETIC FIELD

    DOEpatents

    Christofilos, N.C.

    1962-05-29

    An apparatus is designed for the manipulation of electrons in an exially symmetric magnetic field region and may be employed to trap electrons in such a field by directing an electron beam into a gradientially intensified field region therein to form an annular electron moving axially in the field and along a decreasing field gradient. Dissipative loop circuits such as resistive loops are disposed along at least the decreasing field gradient so as to be inductively coupled to the electron bunch so as to extract energy of the electron bunch and provide a braking force effective to reduce the velocity of the bunch. Accordingly, the electron bunch upon entering a lower intensity magnetic field region is retained therein since the electrons no longer possess sufficient energy to escape. (AEC)

  16. Ball-grid array architecture for microfabricated ion traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guise, Nicholas D., E-mail: nicholas.guise@gtri.gatech.edu; Fallek, Spencer D.; Stevens, Kelly E.

    2015-05-07

    State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-grid array (BGA) connections, that is suitable for increasingly complex trap designs. In the BGA trap, through-substrate vias bring electrical signals from the back side of the trap die to the surface trap structure on the top side. Gold-ball bump bonds connect the back side of the trap die to an interposer for signal routing from the carrier. Trench capacitors fabricated into the trap die replace area-intensivemore » surface or edge capacitors. Wirebonds in the BGA architecture are moved to the interposer. These last two features allow the trap die to be reduced to only the area required to produce trapping fields. The smaller trap dimensions allow tight focusing of an addressing laser beam for fast single-qubit rotations. Performance of the BGA trap as characterized with {sup 40}Ca{sup +} ions is comparable to previous surface-electrode traps in terms of ion heating rate, mode frequency stability, and storage lifetime. We demonstrate two-qubit entanglement operations with {sup 171}Yb{sup +} ions in a second BGA trap.« less

  17. Comparison of catch per unit effort among four minnow trap models in the three-spined stickleback (Gasterosteus aculeatus) fishery.

    PubMed

    Budria, Alexandre; DeFaveri, Jacquelin; Merilä, Juha

    2015-12-21

    Minnow traps are commonly used in the stickleback (Gasterostidae) fishery, but the potential differences in catch per unit effort (CPUE) among different minnow trap models are little studied. We compared the CPUE of four different minnow trap models in field experiments conducted with three-spined sticklebacks (Gasterosteus aculeatus). Marked (up to 26 fold) differences in median CPUE among different trap models were observed. Metallic uncoated traps yielded the largest CPUE (2.8 fish/h), followed by metallic black nylon-coated traps (1.3 fish/h). Collapsible canvas traps yielded substantially lower CPUEs (black: 0.7 fish/h; red: 0.1 fish/h) than the metallic traps. Laboratory trials further revealed significant differences in escape probabilities among the different trap models. While the differences in escape probability can explain at least part of the differences in CPUE among the trap models (e.g. high escape rate and low CPUE in red canvas traps), discrepancies between model-specific CPUEs and escape rates suggests that variation in entrance rate also contributes to the differences in CPUE. In general, and in accordance with earlier data on nine-spined stickleback (Pungitius pungitius) trapping, the results suggest that uncoated metallic (Gee-type) traps are superior to the other commonly used minnow trap models in stickleback fisheries.

  18. Comparison of catch per unit effort among four minnow trap models in the three-spined stickleback (Gasterosteus aculeatus) fishery

    PubMed Central

    Budria, Alexandre; DeFaveri, Jacquelin; Merilä, Juha

    2015-01-01

    Minnow traps are commonly used in the stickleback (Gasterostidae) fishery, but the potential differences in catch per unit effort (CPUE) among different minnow trap models are little studied. We compared the CPUE of four different minnow trap models in field experiments conducted with three-spined sticklebacks (Gasterosteus aculeatus). Marked (up to 26 fold) differences in median CPUE among different trap models were observed. Metallic uncoated traps yielded the largest CPUE (2.8 fish/h), followed by metallic black nylon-coated traps (1.3 fish/h). Collapsible canvas traps yielded substantially lower CPUEs (black: 0.7 fish/h; red: 0.1 fish/h) than the metallic traps. Laboratory trials further revealed significant differences in escape probabilities among the different trap models. While the differences in escape probability can explain at least part of the differences in CPUE among the trap models (e.g. high escape rate and low CPUE in red canvas traps), discrepancies between model-specific CPUEs and escape rates suggests that variation in entrance rate also contributes to the differences in CPUE. In general, and in accordance with earlier data on nine-spined stickleback (Pungitius pungitius) trapping, the results suggest that uncoated metallic (Gee-type) traps are superior to the other commonly used minnow trap models in stickleback fisheries. PMID:26685761

  19. Characterization of Nanoparticles by Capillary Electrophoresis and Trapping of Nanoparticles in Microfluidics Device

    DTIC Science & Technology

    2009-08-01

    tubular mode driven by electroosmotic flow and the inherent electrophoretic mobility of the analytes under the influence of an applied electric field...could be due to unlabeled beads. Figure 3 (C and D) also shows electropherogram of a neutral electroosmotic flow (EOF) marker dye BODIPY and...internal turbulent mixing . The current microfabricated electromagnets cannot produce sufficient fields to trap the NPs against a large flow forces

  20. Small mammal populations in Maryland meadows during four years of herbicide (brominal®) applications

    USGS Publications Warehouse

    Clark, D.R.; Moulton, C.A.; Hines, J.E.; Hoffman, D.J.

    1996-01-01

    The herbicide Brominal® was applied at the recommended rate to one plot in each of three paired 0.6-ha plots; the other three plots were used as controls. Plots were sprayed once in the fall of 1988 and 1989 and twice in the spring of 1990 and 1991. Small mammals were trapped three times during each activity season (April-October) to obtain population estimates before and after spraying and in the spring preceding fall spraying or the fall following spring spraying. Population estimates immediately after spraying gave no evidence of direct mortality. By 1991, dicot vegetation on treated plots was suppressed and mean numbers of meadow voles (Microtus pennsylvanicus) were less than on control plots. Because meadow voles favor dicots over monocots in their diet, reduced availability of dicots may have been related to the smaller vole population estimates. Species diversity of small mammals was negatively correlated with size of vole populations, but was not different between treated and control plots. Brominal apparently induced opaque corneas in nine voles. The condition was found in two voles too small to have been conceived at the time of the last previous spray nearly 8 months earlier, suggesting exposure to residue alone.

  1. Polar-core spin vortex of quasi-2D ferromagnetic spin-1 condensate in a flat-bottomed optical trap with a weak magnetic field

    NASA Astrophysics Data System (ADS)

    Zheng, Gong-Ping; Li, Pin; Li, Ting; Xue, Ya-Jie

    2018-02-01

    Motivated by the recent experiments realized in a flat-bottomed optical trap (Navon et al., 2015; Chomaz et al., 2015), we study the ground state of polar-core spin vortex of quasi-2D ferromagnetic spin-1 condensate in a finite-size homogeneous trap with a weak magnetic field. The exact spatial distribution of local spin is obtained with a variational method. Unlike the fully-magnetized planar spin texture with a zero-spin core, which was schematically demonstrated in previous studies for the ideal polar-core spin vortex in a homogeneous trap with infinitely large boundary, some plateaus and two-cores structure emerge in the distribution curves of spin magnitude in the polar-core spin vortex we obtained for the larger effective spin-dependent interaction. More importantly, the spin values of the plateaus are not 1 as expected in the fully-magnetized spin texture, except for the sufficiently large spin-dependent interaction and the weak-magnetic-field limit. We attribute the decrease of spin value to the effect of finite size of the system. The spin values of the plateaus can be controlled by the quadratic Zeeman energy q of the weak magnetic field, which decreases with the increase of q.

  2. Estimation of deepwater temperature and hydrogeochemistry of springs in the Takab geothermal field, West Azerbaijan, Iran.

    PubMed

    Sharifi, Reza; Moore, Farid; Mohammadi, Zargham; Keshavarzi, Behnam

    2016-01-01

    Chemical analyses of water samples from 19 hot and cold springs are used to characterize Takab geothermal field, west of Iran. The springs are divided into two main groups based on temperature, host rock, total dissolved solids (TDS), and major and minor elements. TDS, electrical conductivity (EC), Cl(-), and SO4 (2-) concentrations of hot springs are all higher than in cold springs. Higher TDS in hot springs probably reflect longer circulation and residence time. The high Si, B, and Sr contents in thermal waters are probably the result of extended water-rock interaction and reflect flow paths and residence time. Binary, ternary, and Giggenbach diagrams were used to understand the deeper mixing conditions and locations of springs in the model system. It is believed that the springs are heated either by mixing of deep geothermal fluid with cold groundwater or low conductive heat flow. Mixing ratios are evaluated using Cl, Na, and B concentrations and a mass balance approach. Calculated quartz and chalcedony geothermometer give lower reservoir temperatures than cation geothermometers. The silica-enthalpy mixing model predicts a subsurface reservoir temperature between 62 and 90 °C. The δ(18)O and δD (δ(2)H) are used to trace and determine the origin and movement of water. Both hot and cold waters plot close to the local meteoric line, indicating local meteoric origin.

  3. Vertical plasmonic nanowires for 3D nanoparticle trapping

    NASA Astrophysics Data System (ADS)

    Wu, Jingzhi; Gan, Xiaosong

    2011-12-01

    Nanoparticle trapping is considered to be more challenging than trapping micron-sized objects because of the diffraction limit of light and the severe Brownian motion of the nanoparticles. We introduce a nanoparticle trapping approach based on plasmonic nanostructures, which consist of nanopillars with high aspect ratio. The plasmonic nanopillars behave as plasmonic resonators that rely on paired nano-pillars supporting gap plasmon modes. The localized surface plasmon resonance effect provides strong electromagnetic field enhancement and enables confinement of nanoparticles in three dimensional space. Numerical simulations indicate that the plasmonic structure provides stronger optical forces for trapping nanoparticles. The study of thermal effect of the plasmonic structure shows that the impact of the thermal force is significant, which may determine the outcome of the nanoparticle trapping.

  4. Dynamics of trapped atoms around an optical nanofiber probed through polarimetry.

    PubMed

    Solano, Pablo; Fatemi, Fredrik K; Orozco, Luis A; Rolston, S L

    2017-06-15

    The evanescent field outside an optical nanofiber (ONF) can create optical traps for neutral atoms. We present a non-destructive method to characterize such trapping potentials. An off-resonance linearly polarized probe beam that propagates through the ONF experiences a slow axis of polarization produced by trapped atoms on opposite sides along the ONF. The transverse atomic motion is imprinted onto the probe polarization through the changing atomic index of refraction. By applying a transient impulse, we measure a time-dependent polarization rotation of the probe beam that provides both a rapid and non-destructive measurement of the optical trapping frequencies.

  5. Response ofMeteorus leviventris, (Hymenoptera: Braconidae) to mustard oils in field trapping experiments.

    PubMed

    Pivnick, K A

    1993-09-01

    Trapping experiments were carried out near Saskatoon, Canada, from May through August 1990 to assess the response of the braconid wasp,Meteorus leviventris, to four selected mustard oils or isothiocyanates (IC) at a release rate of 4 mg/day, and for allyl IC only, at 40 mg/day. Only allyl IC at 4 mg/day was significantly attractive when trap captures were compared to the captures in the control traps. The others (n-propyl IC, 2-phenylethyl IC., and ethyl IC) were not attractive, nor was allyl IC at the higher dose, although trap captures with the latter bait were the second highest.

  6. Controlling spin flips of molecules in an electromagnetic trap

    NASA Astrophysics Data System (ADS)

    Reens, David; Wu, Hao; Langen, Tim; Ye, Jun

    2017-12-01

    Doubly dipolar molecules exhibit complex internal spin dynamics when electric and magnetic fields are both applied. Near magnetic trap minima, these spin dynamics lead to enhancements in Majorana spin-flip transitions by many orders of magnitude relative to atoms and are thus an important obstacle for progress in molecule trapping and cooling. We conclusively demonstrate and address this with OH molecules in a trap geometry where spin-flip losses can be tuned from over 200 s-1 to below our 2 s-1 vacuum-limited loss rate with only a simple external bias coil and with minimal impact on trap depth and gradient.

  7. Trapping and assembling of particles and live cells on large-scale random gold nano-island substrates

    PubMed Central

    Kang, Zhiwen; Chen, Jiajie; Wu, Shu-Yuen; Chen, Kun; Kong, Siu-Kai; Yong, Ken-Tye; Ho, Ho-Pui

    2015-01-01

    We experimentally demonstrated the use of random plasmonic nano-islands for optical trapping and assembling of particles and live cells into highly organized pattern with low power density. The observed trapping effect is attributed to the net contribution due to near-field optical trapping force and long-range thermophoretic force, which overcomes the axial convective drag force, while the lateral convection pushes the target objects into the trapping zone. Our work provides a simple platform for on-chip optical manipulation of nano- and micro-sized objects, and may find applications in physical and life sciences. PMID:25928045

  8. 75 FR 32812 - Notice of Invitation To Participate; Coal Exploration License Application WYW179006, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-09

    ... License. SUMMARY: Pursuant to the Mineral Leasing Act of 1920, as amended by the Federal Coal Leasing..., Wyoming. DATES: This notice of invitation was published in the Rock Springs Daily Rocket-Miner once each... 82003; and, Bureau of Land Management, Rock Springs Field Office, 280 Highway 191 North, Rock Springs...

  9. Optimization of multifunnel traps for emerald ash borer (Coleoptera: Buprestidae): influence of size, trap coating, and color.

    PubMed

    Francese, Joseph A; Rietz, Michael L; Mastro, Victor C

    2013-12-01

    Field assays were conducted in southeastern and south-central Michigan in 2011 and 2012 to optimize green and purple multifunnel (Lindgren funnel) traps for use as a survey tool for the emerald ash borer, Agrilus planipennis Fairmaire. Larger sized (12- and 16-unit) multifunnel traps caught more beetles than their smaller-sized (4- and 8-unit) counterparts. Green traps coated with untinted (white) fluon caught almost four times as many adult A. planipennis as Rain-X and tinted (green) fluon-coated traps and almost 33 times more beetles than untreated control traps. Purple multifunnel traps generally caught much lower numbers of A. planipennis adults than green traps, and trap catch on them was not affected by differences in the type of coating applied. However, trap coating was necessary as untreated control purple traps caught significantly less beetles than traps treated with Rain-X and untinted or tinted (purple) fluon. Proportions of male beetles captured were generally much higher on green traps than on purple traps, but sex ratios were not affected by trap coating. In 2012, a new shade of purple plastic, based on a better color match to an attractive purple paint than the previously used purple, was used for trapping assays. When multifunnel traps were treated with fluon, green traps caught more A. planipennis adults than both shades of purple and a prism trap that was manufactured based on the same color match. Trap catch was not affected by diluting the fluon concentration applied to traps to 50% (1:1 mixture in water). At 10%, trap catch was significantly lowered.

  10. A Novel Approach to β-delayed Neutron Spectroscopy Using the Beta-decay Paul Trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scielzo, N.D., E-mail: scielzo1@llnl.gov; Yee, R.M.; Department of Nuclear Engineering, University of California, Berkeley, CA 94720

    A new approach to β-delayed neutron spectroscopy has been demonstrated that circumvents the many limitations associated with neutron detection by instead inferring the decay branching ratios and energy spectra of the emitted neutrons by studying the nuclear recoil. Using the Beta-decay Paul Trap, fission-product ions were trapped and confined to within a 1-mm{sup 3} volume under vacuum using only electric fields. Results from recent measurements of {sup 137}I{sup +} and plans for development of a dedicated ion trap for future experiments using the intense fission fragment beams from the Californium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne National Laboratorymore » are summarized. The improved nuclear data that can be collected is needed in many fields of basic and applied science such as nuclear energy, nuclear astrophysics, and stockpile stewardship.« less

  11. Paul Trap Simulator Experiment (PTSX) to simulate intense beam propagation through a periodic focusing quadrupole field

    NASA Astrophysics Data System (ADS)

    Davidson, Ronald C.; Efthimion, Philip C.; Gilson, Erik; Majeski, Richard; Qin, Hong

    2002-01-01

    The Paul Trap Simulator Experiment (PTSX) is under construction at the Princeton Plasma Physics Laboratory to simulate intense beam propagation through a periodic quadrupole magnetic field. In the Paul trap configuration, a long nonneutral plasma column is confined axially by dc voltages on end cylinders at z=+L and z=-L, and transverse confinement is provided by segmented cylindrical electrodes with applied oscillatory voltages ±V0(t) over 90° segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact laboratory facility. The experimental layout is described, together with the planned experiments to study beam mismatch, envelope instabilities, halo particle production, and collective wave excitations.

  12. Cryogenic buffer-gas loading and magnetic trapping of CrH and MnH molecules

    NASA Astrophysics Data System (ADS)

    Stoll, Michael; Bakker, Joost M.; Steimle, Timothy C.; Meijer, Gerard; Peters, Achim

    2008-09-01

    We report on the buffer-gas cooling and trapping of CrH and MnH molecules in a magnetic quadrupole trap with densities on the order of 106cm-3 at a temperature of 650mK . Storage times of up to 180ms have been observed, corresponding to a 20-fold lifetime enhancement with respect to the field-free diffusion through the He3 buffer-gas. Using Monte Carlo trajectory simulations, inelastic molecule- He3 collision cross sections of 1.6×10-18 and 3.1×10-17cm2 are extracted for CrH and MnH, respectively. Furthermore, elastic molecule- He3 collision cross sections of 1.4(±0.5)×10-14cm2 are determined for both species. We conclude that the confinement time of these molecules in a magnetic trapping field is limited by inelastic collisions with the helium atoms leading to Zeeman relaxation.

  13. Stress influenced trapping processes in Si based multi-quantum well structures and heavy ions implanted Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciurea, Magdalena Lidia, E-mail: ciurea@infim.ro; Lazanu, Sorina, E-mail: ciurea@infim.ro

    2014-10-06

    Multi-quantum well structures and Si wafers implanted with heavy iodine and bismuth ions are studied in order to evaluate the influence of stress on the parameters of trapping centers. The experimental method of thermostimullatedcurrents without applied bias is used, and the trapping centers are filled by illumination. By modeling the discharge curves, we found in multilayered structures the parameters of both 'normal' traps and 'stress-induced' ones, the last having a Gaussian-shaped temperature dependence of the cross section. The stress field due to the presence of stopped heavy ions implanted into Si was modeled by a permanent electric field. The increasemore » of the strain from the neighborhood of I ions to the neighborhood of Bi ions produces the broadening of some energy levels and also a temperature dependence of the cross sections for all levels.« less

  14. Stress influenced trapping processes in Si based multi-quantum well structures and heavy ions implanted Si

    NASA Astrophysics Data System (ADS)

    Ciurea, Magdalena Lidia; Lazanu, Sorina

    2014-10-01

    Multi-quantum well structures and Si wafers implanted with heavy iodine and bismuth ions are studied in order to evaluate the influence of stress on the parameters of trapping centers. The experimental method of thermostimullatedcurrents without applied bias is used, and the trapping centers are filled by illumination. By modeling the discharge curves, we found in multilayered structures the parameters of both 'normal' traps and 'stress-induced' ones, the last having a Gaussian-shaped temperature dependence of the cross section. The stress field due to the presence of stopped heavy ions implanted into Si was modeled by a permanent electric field. The increase of the strain from the neighborhood of I ions to the neighborhood of Bi ions produces the broadening of some energy levels and also a temperature dependence of the cross sections for all levels.

  15. Controlled Trapping of Onion-Like Carbon (OLC) via Dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Olariu, Marius; Arcire, Alexandru; Plonska-Brzezinska, Marta E.

    2017-01-01

    Manipulation of onion-like carbon (OLC), also known as carbon nano-onions (CNOs), at the level of various arrays of microelectrodes is vital in practical applications such as biological and chemical sensing, ultracapacitors (supercapacitors), electromagnetic shielding, catalysis, tribology, optical limiting and molecular junctions in scanning tunneling microscopy, and field-effect transistors. In spite of technological developments in this area, rigorous handling of carbon nano-onions towards desired locations within a device remains a challenge, and the quantity of OLC required significantly influences the price of the final electrical or electronic device. We present herein an experimental study on electromanipulation and trapping of onion-like carbon (OLC) at the level of gold-patterned interdigitated microelectrodes through dielectrophoresis. The influence of the magnitude as well as frequency of the alternating-current (AC) voltage employed for OLC trapping is discussed in detail. The effects of tuning the AC field strength and frequency on the OLC trapping behavior are also considered.

  16. Soft-type trap-induced degradation of MoS2 field effect transistors.

    PubMed

    Cho, Young-Hoon; Ryu, Min-Yeul; Lee, Kook Jin; Park, So Jeong; Choi, Jun Hee; Lee, Byung-Chul; Kim, Wungyeon; Kim, Gyu-Tae

    2018-06-01

    The practical applicability of electronic devices is largely determined by the reliability of field effect transistors (FETs), necessitating constant searches for new and better-performing semiconductors. We investigated the stress-induced degradation of MoS 2 multilayer FETs, revealing a steady decrease of drain current by 56% from the initial value after 30 min. The drain current recovers to the initial state when the transistor is completely turned off, indicating the roles of soft-traps in the apparent degradation. The noise current power spectrum follows the model of carrier number fluctuation-correlated mobility fluctuation (CNF-CMF) regardless of stress time. However, the reduction of the drain current was well fitted to the increase of the trap density based on the CNF-CMF model, attributing the presence of the soft-type traps of dielectric oxides to the degradation of the MoS 2 FETs.

  17. Spectra of 42S1/2→32D5/2 Transitions of a Single Trapped 40Ca+ Ion

    NASA Astrophysics Data System (ADS)

    Gong, Shi-Jie; Zhou, Fei; Wu, Hao-Yu; Wan, Wei; Chen, Liang; Feng, Mang

    2015-01-01

    We investigate the spectra of the electric quadrupole 42S1/2→32D5/2 transitions in a single 40Ca+ ion confined in a home-built linear trap. We probe the transitions with an ultra-narrow bandwidth laser at 729 nm. In a weak magnetic field, the quadrupole transition splits into ten components with the maximal line strength proportional to their squared Clebsch—Gordan factors. In a magnetic field of the order of Gauss, the observed equidistant sideband reflects the Zeeman substructure modulated by the quantized oscillation due to the secular motion in the trap. The temperature of the trapped ion can be determined by the envelope of the sideband spectrum. We also demonstrate the Rabi oscillation in a carrier transition after the ion has been Doppler cooled, which can be fitted by the model with the thermal state of motion.

  18. Soft-type trap-induced degradation of MoS2 field effect transistors

    NASA Astrophysics Data System (ADS)

    Cho, Young-Hoon; Ryu, Min-Yeul; Lee, Kook Jin; Park, So Jeong; Choi, Jun Hee; Lee, Byung-Chul; Kim, Wungyeon; Kim, Gyu-Tae

    2018-06-01

    The practical applicability of electronic devices is largely determined by the reliability of field effect transistors (FETs), necessitating constant searches for new and better-performing semiconductors. We investigated the stress-induced degradation of MoS2 multilayer FETs, revealing a steady decrease of drain current by 56% from the initial value after 30 min. The drain current recovers to the initial state when the transistor is completely turned off, indicating the roles of soft-traps in the apparent degradation. The noise current power spectrum follows the model of carrier number fluctuation–correlated mobility fluctuation (CNF–CMF) regardless of stress time. However, the reduction of the drain current was well fitted to the increase of the trap density based on the CNF–CMF model, attributing the presence of the soft-type traps of dielectric oxides to the degradation of the MoS2 FETs.

  19. Experimental nonlinear dynamical studies in cesium magneto-optical trap using time-series analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anwar, M., E-mail: mamalik2000@gmail.com; Islam, R.; Faisal, M.

    2015-03-30

    A magneto-optical trap of neutral atoms is essentially a dissipative quantum system. The fast thermal atoms continuously dissipate their energy to the environment via spontaneous emissions during the cooling. The atoms are, therefore, strongly coupled with the vacuum reservoir and the laser field. The vacuum fluctuations as well as the field fluctuations are imparted to the atoms as random photon recoils. Consequently, the external and internal dynamics of atoms becomes stochastic. In this paper, we have investigated the stochastic dynamics of the atoms in a magneto-optical trap during the loading process. The time series analysis of the fluorescence signal showsmore » that the dynamics of the atoms evolves, like all dissipative systems, from deterministic to the chaotic regime. The subsequent disappearance and revival of chaos was attributed to chaos synchronization between spatially different atoms in the magneto-optical trap.« less

  20. Coupling between Transport and Injection Properties of Pentacene Field-Effect Transistors with Different Morphologies

    NASA Astrophysics Data System (ADS)

    Lee, Keanchuan; Weis, Martin; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2013-08-01

    We investigated the injection and transport properties of pentacene organic field-effect transistors (OFETs) with inclined and lamellar pentacene grains at various mutual ratios. Although the threshold voltage was conserved and no additional trapping on grain boundaries was suggested from the current-voltage measurements, the contact resistance and mobility increased linearly with the lamellar phase content. We showed that a model based on the coupling between both transport and injection properties via a space charge field caused by injected and trapped carriers accounts for these results.

Top